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This dissertation consists of three essays. The first essay is titled “Speculative Dynamics

I: Imperfect Competition, and the Implications for High Frequency Trading”. In this essay,

I analyze the nature of imperfect competition among informed traders who continuously

generate and exploit private information about a risky asset’s liquidation value which follows

either a mean reverting process or random walk. I find the following results: (i) The combined

trading of multiple informed traders is much more aggressive than the monopolistic trader in

Chau and Vayanos (2008). (ii) The equilibrium price is even more revealing of the informed

trader’s private information. (iii) Market depth improves as the number of informed traders

increases. (iv) In the limit of continuous trading, market is strong form efficient while

aggregate profits of the informed traders remain bounded away from zero, in sharp contrast to

the corresponding results in Holden and Subrahmanyam (1992), and Foster and Viswanathan

(1993). (vi) Informed traders’ inventories follows a Brownian motion, therefore enabling

them to contribute significantly to total trading volume and price variance. These results

shed light on empirical findings regarding high frequency traders by helping explain why

they remain profitable despite aggressive competition with each other, why their trading



volume is very high, to what extent they improve efficiency, and through what mechanism

they improve liquidity.

The second essay is titled “Speculative Dynamics II: Asymmetric Informed Traders”. In

this essay, I study the strategic interaction between hierarchical duopolistic informed traders

who continuously generate and exploit private information about a risky asset’s liquidation

value, which follows either a mean reverting process or random walk. I find the following

results: (i) Both traders duopolize the private information they both observe and the more

informed trader monopolizes the additional exclusive private information. (ii) The common

private information is incorporated into prices more efficiently than the monopolistic private

information. (iii) In the limit of continuous trading, both traders’ inventories based on their

shared information follow Brownian motions. (iv) The trader with less superior information

has more contribution to the trading volume and price volatility when the frequency of

trading is sufficiently high. (v) As trading becomes more frequent, the less informed trader’s

expected profits may fall but converges to a strictly positive constant in the limit.

The third essay is titled “Real Options and Product Differentiation”. In this essay, I de-

velop a continuous time real investment model in an oligopoly industry where the products

are heterogenous. Although the heterogenous products assumption can lower each firm’s

incentive to exercise the growth options prematurely, the preemption strategy is still prof-

itable.
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Chapter 1

Speculative Dynamics I: Imperfect Competition, and the Implications for

High Frequency Trading

1.1 Introduction

Fama (1970) suggests that in a strong form efficient market, price reflects all public and

private information. Will it be possible for traders with superior private information to

earn strictly positive expected profits in a strong-form efficient market? Holden and Subrah-

manyam (1992) and Foster and Viswanathan (1993) find that this is not possible and instead

they reach a Bertrand-like result1. The intuition is that if there are two or more strategic

traders receiving the same private information, each trader tries to preempt the others with

the result that information is revealed almost instantaneously and each trader’s expected

profits quickly dissipate to zero in the limit of continuous trading. Surprisingly, Chau and

Vayanos (2008) find that positive expected profits are possible while the market is strong

form efficient. A monopolistic informed trader privately observes the flow of information

and chooses to trade aggressively on her information to push the price towards her valuation

of the asset2. In the limit, the information asymmetry disappears but the insider’s profits

1The informed traders in Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993) submit
market orders to the market maker instead of a demand schedule. The intuition is similar to that of Back
and Paulsen (2009), in which each firm tries to preempt other firms by investing earlier with the result that
the value of growth options equal to zero and the outcome is competitive.

2According to Chau and Vayanos (2008), the monopolist is “impatient” for three reasons: (1) time
discounting, (2) public revelation of information, (3) mean-reversion of profitability.
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converge to a positive constant. A similar result can also be found in Hellwig (1982) in

which competitive informed traders submit market order conditioning on past prices. Even

as the time interval between trades converges to zero, insiders can make positive returns

while pushing the price to an arbitrarily closed to the efficient value. The difference among

these models depends on the arrival of private information. Holden and Subrahmanyam

(1992) and Foster and Viswanathan (1993) follow the assumptions in Kyle (1985) in which

private information is one-shot and the asset’s value is fixed. The private information is

received when the trading session starts and there is a predetermined date when information

is publicly announced and the asset is liquidated. In Chau and Vayanos (2008), the informed

trader receives new information repeatedly, the fundamental value of the asset is stochastic,

and trading takes place over an infinite horizon.

It is reasonable to believe that in actual financial markets, there are several information-

aly large strategic investors consistently generating new information and trading to profit

from the information. In this paper, I study the nature of imperfect competition among

those traders. One of the purposes is to examine how imperfect competition and repeated

arrivals of private information affect market efficiency, market liquidity, trading volume, price

volatility, and the profitability of informed traders, especially relative to the monopolistic

case in Chau and Vayanos’ model and the oligoplistic case in Holden and Subrahmanyam

(1992) and Foster and Viswanathan (1993). The other purpose of this paper is to shed

light on high frequency trading by examining the properties of equilibrium in the limit of

continuous trading. The paper can explain why high frequency traders3 remain profitable

3According to Chlistalla (2011), there are three types of high frequency traders: (i) electronic market
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despite aggressive competition with one another, why they contribute a significant portion

to trading volume and price volatility, and to what extent do those traders improve market

efficiency and add to market liquidity.

In the model, there is a riskless bond and a risky asset. The liquidation value of the risky

asset which follows a stochastic process can only be observed by informed traders. Like the

“market order” model in Kyle (1985), multiple identically informed strategic traders and

exogenous liquidity traders execute batched market orders against competitive risk neutral

market makers. The informed traders receive new information each period and trading takes

place until the asset is liquidated at a random date. I prove that there exists a unique

linear equilibrium, obtain the closed form solution up to a set of nonlinear equations, and

derive analytical forms when trading becomes continuous. Not surprisingly, the combined

trading of multiple informed traders is more aggressive than the monopolistic trader in

Chau and Vayanos, the equilibrium price is even more revealing of the informed trader’s

private information, and market depth improves as the number of informed traders increases.

Oligopolistic imperfect competition makes the informed traders trade more aggressively than

a monopolist, thus improving market efficiency and increasing aggregate trading volume. The

effects of imperfect competition on market depth is slightly more difficult to interpret since

it has two opposite effects. One the one hand, with increasing competition, initially the

net order flow will contain more information relative to the noise trading, and therefore the

adverse selection is more severe and market depth is worse. On the other hand, as market

becomes more efficient, there is less private information contained in the order flow, thus

making; (ii) statistical arbitrage strategies; (iii) liquidity detection.
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improving market depth. In the stationary state, I show that the second effect dominates

and imperfect competition among informed traders makes market deeper, thus improving

liquidity.

Surprisingly, the model uncovers some important but unexpected results in the limit as

the time interval between trades goes to zero. The first result is that the variance of the

private information held by informed traders goes to zero at a rate proportional to the time

interval between rounds of trading. This is much faster than the corresponding strong from

efficiency result in the Chau and Vayanos’ model, where the convergence rate is proportional

to the square root of the time interval between rounds of trading. The second result is that

the aggregate profits of the informed traders remain bounded away from zero. As the number

of informed traders increases, their aggregate profits fall, tending to zero only as the number

of informed traders becomes large. To be more specific, the aggregate profits near continuous

trading is inversely proportional to the square root of the number of informed traders. The

result has the flavor of Cournot competition, not the flavor of Bertrand competition found in

the one-shot private information model of Holden and Subrahmanyam (1992) and Foster and

Viswanathan (1993). The third result concerns volume and volatility. The trading volume4

of informed traders over ∆t is of order
√

∆t, the same magnitude as the trading volume

of liquidity traders. This implies that in the limit informed traders make a non-negligible

contribution to total trading volume and thus price volatility, and the fraction converges to

one as the number of informed traders becomes large. The result is novel since in almost all

4Trading volume is not well defined in continuous time Kyle’s model since total variation of Brownian
motion over any finite time is infinite.
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the continuous time market microstructure model with price impact (Kyle’s model and many

extensions), the contributions to trading volume and price volatility by informed traders is

negligible compared to the contributions of liquidity traders.

The results near continuous trading can help explain some empirical findings regard-

ing high frequency trading. In recent years, financial markets have witnessed rapid growth

in high frequency trading5, made possible by the evolution of technology. High frequency

traders are a subset of algorithmic traders. Those traders apply mathematical algorithms

to either public or private statistical information, and they use fast computers to implement

the algorithms, transmitting orders in a few milliseconds or less. High frequency traders

contribute significantly to trading volume6. Despite aggressive competition with one an-

other, high frequency traders remain profitable7. Kirilenko et al. (2011) document that high

frequency traders are consistently profitable. They even turned a profit on the day on May

6, 2010 Flash Crash.

I focus on the type of high frequency traders who are pursuing low latency statistical

arbitrage strategies. According to Chlistalla (2011), these traders “seek to correlate be-

tween assets and try to profit from the imbalance in these correlations”. It might not be

appropriate to label those traders as “informed” if one defines information as corporate news

on “merger and acquisition decisions” or “content of earnings announcements”. However,

5As pointed out by Duhigg in Stock Traders Find Speed Pays, in Milliseconds (New York Times, July
23, 2009), “Average daily volume has soared by 164 percent since 2005, according to data from NYSE. ...,
stock exchanges say that a handful of high-frequency traders now account for more than half of all trades.”

6In “The Real Story of Trading Software Espionage” (AdvancedTrading.com, July 10, 2009), Iati mentions
that “High-frequency trading firms, which represent approximately 2% of the trading firms operating in the
U.S. markets today, account for 73% of all U.S. equity trading volume.”

7Iati’s article states that “TABB group estimates that annual aggregate profits of low-latency arbitrage
strategies exceed $21 billion, spread out among the few hundred firms that deploy them.”
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if those traders are faster and better than average market participants in gathering and

processing information on order flows and price movements on the security and any other

correlated securities to generate private signals which they can profit from, it is reasonable

to call them “informed”8. At first glance, it appears that Chau and Vayanos (2008) can be

a good model for those high frequency statistical arbitrageurs. Although their model has

good insights on market efficiency and profitability, it does not explain trading volume and

market liquidity. The fraction of trading volume of the monopolistic informed trader in Chau

and Vayanos is essentially zero in the limit of continuous trading, and the market becomes

less liquid as the frequency of trading increases. Their model does not address the question

of what happens to high frequency traders’ profits if they compete very aggressively with

each other. By focusing on imperfect competition in a non-cooperative duopolistic setting,

I am able to show that high frequency traders incorporate private signals into prices much

faster than in Chau and Vayanos’ model, high frequency traders add to market liquidity

by competing aggressively with each other, they contribute significantly to trading volume,

and most important of all, those traders remain profitable despite exploiting from the same

information set and implementing the same algorithms.

After the flash crash of May 6, 2010, a recent policy proposal suggests that batching

orders less frequently can reduce the participation rate and profits of high frequency traders

and improve market depth. My model suggests that such a regulation would have the

opposite effect of reducing liquidity. If each high frequency trader has to pay an entry cost

8Hendershott and Riordan (2011b) find that the market orders by high frequency traders have information
advantage.
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and operating cost, the number of high frequency traders might decrease with less frequent

order batching, with the result that less competition will lead to market being less liquid.

This paper belongs to the literature on strategic trading with asymmetric information.

In the pioneering work of Kyle (1985), a monopolistic insider uses liquidity traders as cam-

ouflage, reveals her private information gradually, and exploits her monopoly power over

time when facing a competitive risk neutral market maker. In the subsequent extensions by

Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993), due to the imperfect

competition among identically informed traders, almost all private information is revealed

only after a few trading rounds. Foster and Viswanathan (1994) replace homogenous private

information with a hierarchical information structure to study learning among strategic in-

formed traders. Foster and Viswanathan (1996) relax the assumption even further to allow

for a more general correlation structure among the signals received by multiple informed

traders. They show the initial correlation among the signals has a strong effect on the trad-

ing strategies and informativeness of prices. Traders initially compete aggressively on the

common part of the private information and later play a “waiting” game by making smaller

bets and trying to infer private information exclusive to others. Back et al. (2000) solve a

similar problem in continuous time and derive a closed-form solution.

The traders in my model exploit their private signals via market orders. Rosu (2009)

directly models the limit order book. He also finds a similar prediction that higher com-

petition causes smaller price impact. However, competition in his model is measured by

how fast traders arrive in the market whereas in my model, competition is measured by the
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number of informed traders. In his model, traders trade for liquidity reasons and there is

no asymmetric information, whereas the motive for trade in my model comes from private

information.

Martinez and Rosu (2011) study a very similar problem. They tackle the problem directly

in setup similar to that of Back (1992) and focus on non-stationary equilibrium. In order

to generate linear equilibrium in continuous time, they assume an informed trader to have

uncertainty aversion regarding the level of the asset value (Informed traders care more about

the change in the value of asset than the level) and impose a technological constraint on the

market maker. My paper, on the other hand, does not require such assumptions and focuses

on stationary equilibrium.

In my model, high frequency traders are risk neutral. Therefore, the model cannot

explain the phenomenons that high frequency traders reverse their inventories frequently,

and move in and out of short-term positions very quickly. Future work may explain pattern

of mean-reverting inventories by making the traders risk averse instead of risk neutral.

The paper is organized as follows. In Section II, I describe the model, solve the linear

equilibrium, prove its uniqueness. Section III characterizes the equilibrium near continuous

trading. Section IV shows some comparative statics results and derives empirical implica-

tions. Section V concludes.

1.2 The Model

Assumption 1: Securities
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I consider an economy with a single consumption good. There are a riskless bond with

zero interest rate and a non-dividend paying risky asset with a liquidation value vn which

evolves stochastically. Trading takes place from t = 0 to t = +∞ at the discrete points

tn (tn = nh), until the risky asset is liquidated where h is the time interval between the

auctions. At the end of each period, there is a probability 1 − exp (−rh) = rh + o(h2)

that the risky asset is liquidated. I further assume the riskless bonds are in perfectly elastic

supply. The liquidation value vn follows a mean-reverting process or random walk:

vn − vn−1 = κ(v̄ − vn−1)h+ εv,n. (1.1)

In the above specification, κ determines the adjustment speed of the liquidation value vn

to its long run fixed target v̄. κ is assumed to be greater than or equal to zero such that

the prices are stationary. If κ = 0, then vn follows a random walk. The innovation εv,n is

independently and normally distributed with mean zero and variance σ2
vh.

Assumption 2: Market Participants and Information Structure

The risk neutral market participants consist of a competitive market maker, M (M is a

positive integer) informed strategic traders, and a number of liquidity traders. The informed

traders are each assumed to be able to perfectly observe the liquidation value vn at each

period. Conditional on that the asset has not yet been liquidated at the beginning of the

nth period, I in ≡ {pτ , vτ |0 ≤ τ ≤ n} is each informed trader’s information set at t = nh, and

Imn = {pτ |τ ≤ n} is the market makers’ information set.

At each period, both the informed traders and liquidity traders submit market orders
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to the market maker. The liquidity traders’ order is denoted by un, which is normally

distributed with mean zero and variance σ2
uh. I further assume un is uncorrelated with εv,n.

I denote the market order submitted by the jth informed trader at the nth period (t = nh)

by xj,n. In equilibrium, I should have x1,n = ... = xM,n = xn because of symmetry argument.

Assumption 3: Timing of events

I assume at the nth period, the informed traders and the noise traders submit their

demands before new information arrives. After submitting their market orders, the informed

traders observe εn and thus vn. The market maker observes the total order imbalance

yn =
∑M

j=1 xj,n +un, then sets the price pn equal to the expected value of the asset based on

the history of order flows, and takes the other side of the trade. At the end of the period,

there is a probability (1− exp (−rh)) that the liquidation value vn is public announced, the

risky asset is liquidated and investors profits are realized.

Pricing

Since the market maker is assumed to be competitive and risk neutral, therefore, at

period n she sets the price pn equal to the expected value of the asset after she receives the

total batched market order yn = x1,n + ...+ xM,n + un. Therefore,

pn = E[
+∞∑
n′=n

(1− exp (−rh)) exp (−r(n′ − n)h)vn′|Imn−1, yn], (1.2)

where (1− exp (−rh)) exp (−r(n′ − n)h) is the probability that the asset is liquidated at the

end of the n′th period.

Lemma 1.2.1: The price pn is a linear function of the market maker’s expectation of

10



the current liquidation value of the risky asset E(vn|Imn ):

pn =
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|Imn ) +

κhv̄

1− exp(−rh)(1− κh)
. (1.3)

Proof : See Appendix A.

Optimization

Suppose the risky asset were liquidated at a random future date νh. Given that the asset

has not been liquidated at nh < νh, the jth informed trader’s profits that accrue to her from

period n should equal to the difference between the value of her position (
∑

n≤τ≤ν vνxj,τ )

and the cost of this position (
∑

n≤τ≤ν pτxj,τ ):

πj,n =
∑
n≤τ≤ν

(vν − pτ )xj,τ (1.4)

=
+∞∑
n′=n

(1− exp(−rh)) exp(−r(n′ − n)h)(
n′∑
τ=n

xj,τ (vn′ − pτ ))

Since informed traders are risk neutral, at the nth period, the jth informed trader tries

to maximize her expected trading profits:

max
xj,n′≥n

E[
+∞∑
n′=n

(1− exp(−rh)) exp(−r(n′ − n)h)(
n′∑
τ=n

xj,τ (vn′ − pτ ))|I in−1]. (1.5)
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Lemma 1.2.2: The jth informed trader’s objective function can be written as:

max
xj,n′≥n

E[
+∞∑
n′=n

exp(−r(n′−n)h)xj,n′(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn′+

κhv̄

1− exp(−rh)(1− κh)
−pn′)|I in−1].

(1.6)

Proof : See Appendix A.

1.2.1 Equilibrium Concept

The equilibrium concept in this paper is similar to the previous literature. I follow Foster and

Viswanathan (1996) closely here and let Xj = (xj,1, ..., xj,ν) (for each j) and P = (p1, ..., pν)

represent the strategy functions were the asset liquidated at νh. A Bayesian Nash equilibrium

of the trading game is a M + 1 vector of strategies (X1, ..., XM , P ) such that:

1. For any j = 1, ...,M and all n = 1, ..., ν, I have for X ′j = (x′j,1, ..., x
′
j,ν)

E[πj,n(X1, ..., Xj, ..., XM , P )|I in−1] ≥ E[πj,n(X1, ..., X
′
j, ..., XM , P )|I in−1] (1.7)

2. For all n = 1, ..., ν, I have

pn =
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|Imn ) +

κhv̄

1− exp(−rh)(1− κh)
. (1.8)

Therefore, the market maker sets the price equal to the expected value of the risky asset

conditional on her information set inferred from the order flow. Each risk neutral informed

trader, taking as given the price process set by the market maker and the strategies of
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other informed traders, submits market orders to maximize the expected profits taking into

account the effect on the price.

I restrict attention to stationary linear Markov eqilibrium. In order to set the price pn

which takes a linear form in Equation (1.3), the market maker has to solve the inference

problem about vn. I then conjecture that informed trader j’s optimal strategy at period n is

to submit market orders which depend linearly on the pricing error defined as the difference

between vn−1 and the market maker’s conditional estimate v̂n−1 = E(vn−1|Imn−1), i.e.,

xj,n = βj(vn−1 − v̂n−1), (1.9)

to maximize her expected profits.

1.2.2 The Market Maker’s Inference Problem

To solve the market maker’s inference problem, I use Kalman filtering. Conjecture that at

the end of the (n−1)th period, the market maker believe vn−1 to be normally distributed with

mean v̂n−1 and variance Σv
9. Then, at the nth period, after observing the order imbalance

yn, the market maker updates her belief about vn−1 in the form of

vn−1 = E(vn−1|In−1) +
λ

1− κh
yn + ηn (1.10)

= v̂n−1 +
λ

1− κh
(Xn + un) + ηn,

9Σv is strictly greater than σ2
vh since the informed traders observe εv,n−1 after they submit the market

order at the (n− 1)th period.
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where λ is the inference parameter for the market maker to be derived next. Since vn follows

a mean-reverting process (random walk if κ = 0) in Equation (1.1), vn has the following

expression:

vn = (1− κh)v̂n−1 + κhv̄ + λyn + (1− κh)ηn + εv,n. (1.11)

Therefore, the market maker’s posterior belief about vn is normally distributed with mean

E(vn|Imn ) = v̂n = (1− κh)v̂n−1 + κhv̄ + λyn (1.12)

and variance

var(vn|Imn ) = var((1− κh)ηn + εv,n) = (1− κh)2var(ηn) + σ2
vh. (1.13)

Stationary condition requires that var(vn|Imn ) = Σv.

Lemma 1.2.3: Given the trading strategy of the informed traders defined in equation

(1.9), the market maker’s inference parameter λ is given by

λ =
(1− κh)ΣvMβ

M2β2Σv + σ2
uh
, (1.14)

and the variance of the market maker’s belief on vn satisfies the equation

(1− κh)2Σvσ
2
uh

M2β2Σv + σ2
uh

+ σ2
vh = Σv. (1.15)
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Proof : See Appendix A.

1.2.3 The Informed Traders’ Optimization Problem

At the beginning of each period, each informed trader submits market orders given the price

process generated by the market maker to maximize the present value of the expected profits

scaled by (1−exp (−rh))
1−exp (−rh)(1−κh)

. The jth informed trader’s optimization problem becomes

E[
+∞∑
n′=n

xj,n′(vn′ − v̂n′)e−r(n
′−n)h|I in−1]. (1.16)

In the optimization, the informed trader takes account of how his trading and his estimate

of the trading by other market makers influence the market price, which equal to market

makers estimate v̂n. I conjecture that the value function for the jth informed trader is

quadratic with respect to vn−1 − v̂n−1 and takes the form of

Vj,n = B(vn−1 − v̂n−1)2 + C. (1.17)

Later, I will prove the quadratic form is sustained and valid in Lemma 1.2.4. The value

function must satisfy the following Bellman equation:

V (vn−1, v̂n−1) = maxxnE[xn(vn − v̂n) + e−rhV (vn, v̂n)|I in−1]. (1.18)

The solution of the above Bellman equation is provided in the following theorem:
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Lemma 1.2.4: Given the price process set by the market maker, each informed trader’s

strategy (equation (1.9)) is characterized by a trading intensity parameter β, given by

β =
(1− 2e−rhBλ)(1− κh)

λ(M(1− 2e−rhBλ) + 1)
. (1.19)

Equation (1.18) has a quadratic solution of the form V (vn−1, v̂n−1) = B(vn−1 − v̂n−1)2 + C

where B and C satisfy the following set of equations:

B =
(1− κh)2(1− e−rhBλ)

λ(1 +M − 2Me−rhBλ)2
(1.20)

and

C =
e−rhB(λ2σ2

u + σ2
v)h

1− e−rh
. (1.21)

Proof : See Appendix A.

1.2.4 Equilibrium

Proposition 1.2.1: There exists a unique linear Markovian equilibrium characterized by

five parameters λ, Σv, β, B and C which satisfy the system of five nonlinear equations:

(1.14), (1.15), (1.19), (1.20) and (1.21). The expressions for Σv, β and λ are given by

Σv =
σ2
vh

1− (1−κh)2

M(1−2q1)+1

, (1.22)
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β =

√
(1− 2q1)(1− (1−κh)2

M(1−2q1)+1
)

M

σu
σv
, (1.23)

and

λ =
(1− κh)

√
Mσv

√
(1−2q1(1+M(1−2q1)))
1+M(1−2q1)−(1−κh)2

Mσu(1− 2q1) + σu
, (1.24)

where

q1 =
M + 1

3M
(1.25)

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3

and Z = e−rh(1− κh)2 < 1.

Proof : See Appendix A.

1.3 Asymptotic Properties of Equilibrium in the Limit of Continuous Trad-

ing

1.3.1 Research Questions

It is important to study how imperfect competition affects the properties of equilibrium,

especially when the frequency of trading becomes very high approaching to the limit of con-

tinuous trading. Firstly, it is intuitively to believe that increasing competition will make the

already “impatient” monopolistic trader in Chau and Vayanos (2008) even more “impatient”.
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The aggregate trading of multiple informed traders competing strategically should be more

aggressive than in the monopolist case. Chau and Vayanos find that when the time interval

between rounds of trading is small, the variance of private information not incorporated into

price Σv is proportional to
√
h. How does the more aggressive trading by informed traders

improve the convergent rate? Can the rate be of the same or higher order than
√
h?

Secondly, does more competition improve market depth or not? As shown in the non-

stationary setup in Holden and Subrahmanyam (1992), imperfect competition has two op-

posite effects. The market is less liquid in the beginning of the trading sessions since the net

order flow contains more private information relative to the noise. After most information

is revealed in the remaining of trading sessions, the market becomes very deep since price is

already very efficient and there is less information asymmetry between the informed traders

and market maker. It would be interesting to know which effect dominates in the stationary

state.

Thirdly, Foster and Viswanathan (1993) show that identically informed traders’ profits

converge to zero in a continuous trading limit since by trading more frequently the traders

have more opportunities to preempt each other. In their model and the model of Holden and

Subrahmanyam (1992), private information is one-shot and the liquidation value of the risky

asset is fixed. It is important to examine whether this Bertrand-like result still holds in the

model where private information arrives repeatedly and the value of the asset is stochastic.

In the steady state of this model, the informed traders earn zero profits if and only if the

price impact is zero10. The market maker cannot set price impact to zero because there is

10This is because the market maker sets price efficiently and informed traders benefit when the liquidity
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always new information coming in and the market maker has to learn from the net order

flow. As long as the price impact is strictly positive in the limit, informed traders’ profits

remain bounded away from zero.

Lastly, in almost all dynamic market microstructure models with price impact, the trading

volume contributed by the informed traders is negligible compared to the trading volume

of liquidity traders when trading is continuous. For the same reason, the fraction of price

volatility contributed by informed traders is also zero. Even though the monopolistic trader

in Chau and Vayanos trades very aggressively, his trading volume over a short interval h

is of order h
3
4

11, which is much smaller than
√
h contributed by the liquidity trader over

the same short period. In the presence of imperfect competition, the aggregate trading of

informed traders should be more aggressive relative to the monopolistic case. But it remains

to be shown whether the results will change qualitatively such that the trading volume of

the informed traders is comparable to the trading volume of liquidity traders. If so, informed

traders will also contribute significantly to price volatility as well.

To answer the above questions, I derive the asymptotic properties of the equilibrium near

continuous trading in the following theorem.

trader moves price away from its efficient value.
11Since trading intensity parameter β ∼

√
h and pricing error is of order h

1
4 , the trading volume over one

period is of order h
3
4 .

19



1.3.2 Asymptotic Properties of Equilibrium

Proposition 1.2.2: In the limit of continuous trading (h → 0), the asymptotic behaviors

of Σv, β, λ, B and C are given by:

lim
h→0

Σv

h
=
σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(1.26)

lim
h→0

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
(1.27)

lim
h→0

λ =
σv
σu

√
1

1 +M(1− 2q0)
(1.28)

lim
h→0

B =
q0σu
σv

√
1 +M(1− 2q0) (1.29)

lim
h→0

C =
q0σuσv
r

(
√

1 +M(1− 2q0) +

√
1

1 +M(1− 2q0)
). (1.30)

where

q0 =
M + 1

3M
(1.31)

− 1

6M

3

√
(M + 1)3 − 18M − 9 +

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3

− 1

6M

3

√
(M + 1)3 − 18M − 9−

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3.

Proof : See Appendix A.

From the above theorem, the parameter which measures the uncertainty of the market

maker about the underlying profitability of the risky asset, Σv, converges to 0 when h goes

to 0. The value Σv is also the variance of private information not incorporated into price at
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each period. The notation Σv ∼ h means that all private information is reflected in the price,

information asymmetry disappears, and the market is strong form efficient when trading is

continuous. Although we reach the same conclusion regarding market efficiency as in Chau

and Vayanos’ model, there is still some difference in how efficient the price becomes or how

different the convergence rate is for small h. Since Σv ∼
√
h for the case of a monopolistic

informed trader and Σv ∼ h for our imperfectly competitive case, we have Σv(M=1)
Σv(M>1)

∼ 1√
h

with

the ratio converging to infinity when h → 0. Therefore, the equilibrium price with M ≥ 2

informed traders is even more revealing of the informed traders’ private information than the

monopolist case. We should also expect that trading intensity is qualitatively different. In

Chau and Vayanos, when there is only one monopolistic informed trader, β ∼
√
h. However,

β is of order 1 when the market is populated with multiple informed traders. This implies that

imperfect competition makes traders trade much more aggressively and bring information

into the price much more quickly. Therefore, market makers learn more from the order flows

and set more efficient price.

Next, I examine the trading volume contributed by informed traders to check whether

it is comparable to the trading volume of liquidity traders in continuous trading. One can

tell that β is of order 1 and |vn−1− v̂n−1| ∼
√
h. Then over one trading period, the absolute

aggregate trading volume of an informed trader |xn| = β|vn−1 − v̂n−1| is of order
√
h. Since

the trading volume contributed by liquidity trader is of the same order |un| = σu
√
h, it

follows that the informed traders generate a non-negligible fraction of total trading volume

because the ratio |Xn||un| converges to a positive constant bounded away from zero. The next

21



theorem derives the fraction of trading volume contributed by informed traders.

Proposition 1.2.3: In the continuous trading limit (h→ 0), define ξM to be the fraction

of trading volume contributed by the informed traders. The value of ξM can be expressed as

ξM =
M
√

1− 2q0

M
√

1− 2q0 + 1
(1.32)

which depends only on the number of informed traders.

In most dynamic models with price impact, the informed traders’ trade does not have a

diffusion component which contributes to volatility in the limit of continuous trading since

their fraction of trading volume is zero. In my model, as illustrated above, informed traders

contribute significantly to trading volume, and thus they should contribute significantly to

price volatility as well. It is trivial to write ∆pn as

∆pn = pn − pn−1 =
(1− exp (−rh))

1− exp (−rh)(1− κh)
∆v̂n (1.33)

=
(1− exp (−rh))

1− exp (−rh)(1− κh)
λ(Mβ(vn−1 − v̂n−1) + un).

The price variance can therefore be written as

V ar(∆pn)

h
= (

(1− exp (−rh))

1− exp (−rh)(1− κh)
)2λ

2(M2β2Σv + σ2
uh)

h
. (1.34)

The next theorem illustrates the contribution of price variance by informed traders and

liquidity traders.
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Proposition 1.2.4: In the continuous trading limit (h→ 0), the price variance limh→0
V ar(∆pn)

h

can be decomposed into two components: (i) a contribution from informed traders given by

( r
r+κ

)2β2λ2 σ
2
v(1+M(1−2q0))
M(1−2q0)

; (ii) a contribution from liquidity traders given by ( r
r+κ

)2λ2σ2
u. The

total price variance which is the sum of these two components, is ( r
r+κ

)2σ2
v , independent of

the number of traders.

Proof : (i) and (ii) are trivial to prove. To prove the last point regarding total price

variance, observe that

λ2(M2β2Σv + σ2
u) =

σ2
v

σ2
u

1

1 +M(1− 2q0)
(
M2(1− 2q0)2

1 +M(1− 2q0)

σ2
u

σ2
v

σ2
v(1 +M(1− 2q0)))

M(1− 2q0)
(1.35)

+ σ2
u)

=
σ2
v

σ2
u

1

1 +M(1− 2q0)
(M(1− 2q0)σ2

u + σ2
u)

= σ2
v .

Finally, I examine each informed trader’s profitability. The expected profits can be

written as

(1− exp (−rh))

1− exp (−rh)(1− κh)
V (vn−1, v̂n−1) =

(1− exp (−rh))

1− exp (−rh)(1− κh)
(B(vn−1−v̂n−1)2+C). (1.36)

The term (vn−1 − v̂n−1)2 converges to 0 when h → 0. But (1−exp (−rh))
1−exp (−rh)(1−κh)

C converges to a

positive constant from Proposition 1.2.2. Hence, competition makes the aggregate profits

fall, but it does not drive profits to zero. The results are in sharp contrast with the ones

found in Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993) although
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sharing a similar result in terms of market efficiency.

1.3.3 Properties of the Perfectly Competitive Equilibrium

I examine another class of asymptotic results by taking the limit as M goes to infinity. It

is easy to verify that when M → +∞, limM→∞M
2q0 = 1. Then substituting 1

M2 for q0 in

Proposition 1.2.2, I can derive the properties of the perfectly competitive equilibrium in the

limit of continuous trading in the next theorem.

Proposition 1.2.5: In the perfectly competitive case (i.e., when the number of traders

goes to infinity), the asymptotic properties of the equilibrium now becomes:

lim
h→0,M→+∞

Σv

h
= σ2

v (1.37)

lim
h→0,M→+∞

√
Mβ =

σu
σv

(1.38)

lim
h→0,M→+∞

√
Mλ =

σv
σu

(1.39)

lim
h→0,M→+∞

M
3
2B =

σu
σv

(1.40)

lim
h→0,M→+∞

M
3
2C =

σuσv
r

(1.41)

lim
M→+∞

ξM = 1 (1.42)

.

Since σ2
vh is the variance of new private information the informed traders learn at each

period, limh→0,M→+∞
Σv
h

= σ2
v implies that in the perfectly competitive case, there is no
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information left on the table. The result on β suggests that although each individual trader’s

trading intensity can be infinitesimally small, the aggregate trading intensity can be very

large as the number of traders increases. The results on λ and C suggest that as the number

of informed traders increases, market depth improves, but aggregate profits fall, tending to

zero only as the number of informed traders becomes large. The result on ξM , the fraction of

trading volume from informed traders, can be arbitrarily close to 1 as the number of traders

is large enough.

1.4 Numerical Illustrations and Comparative Statics

In what follows, I numerically illustrate how information structure and imperfect compe-

tition among informed traders affect market efficiency, market liquidity, trading volume,

price volatility, and expected profits of the informed traders. I also provide some empirical

implications.

Since M is the number of informed traders in the market, the model reduces to the

monopolist case if M is set to be 1. Most of the comparative static analysis is concerned

with the effect of changing M . One issue concerns the comparison between the duopolist case

M = 2 and monopolist case M = 1. I find that adding just one more informed trader to the

monopolist case will change the asymptotic properties of equilibrium in Chau and Vayanos’

model qualitatively. Another issue concerns within the oligopolistic situation. As we increase

M from M = 2 to large values, the competition among informed traders increases. I study

how changing the intensity of competition affects the properties of equilibrium.
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Market Efficiency

I set the parameters such that σv = σu = κ = 1 and r = 0.05. Σv measures the

market maker’s uncertainty about the liquidation value of the risk asset. It is therefore a

measure of the efficiency of price, with a smaller value corresponding to a more efficient price.

Σv = 0 corresponds to the scenario where information asymmetry vanishes and the market

is strong-form efficient. If increasing the number of imperfect competitors makes traders

willing to incorporate more private information into the price, the price should become more

informative and we therefore expect a smaller Σv as we increase M . As trading becomes more

frequent (h is smaller), the noncooperative setting results in a more aggressive competition,

making the already “impatient” informed traders even more “impatient”. To illustrate this

intuition, I show how Σv varies with h and M in Figure 1.1(A).

As shown in the figure, Σv monotonically decreases with h for the monopolist case and

for the oligopolist cases when M = 2, 3 and 10. The value of Σv declines more rapidly for

M ≥ 2 than for M = 1. If we fix h and vary only the number of informed traders, Σv is

found to be inversely related with the number of informed traders M . This confirms the

previous intuition that increasing competition makes the market more efficient.

Next I examine the asymptotic properties of Σv. According to Chau and Vayanos (2008),

Σv ∼
√
h as h→ 0 in the monopolist case M = 1. I prove in Proposition 1.2.2 that Σv ∼ h

in the oligopolist case M ≥ 2. In Figure 1.1(B), I show how the scaled value of Σv varies

with h for different M . I scale Σv by
√
h for M = 1 and h for M ≥ 1. From the figure,

Σh√
h

approaches to a constant for M = 1, confirming the asymptotic result obtained for the
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monopolistic trader. When M ≥ 2, Σv
h

converges to a positive constant confirming the

asymptotic property of Σv obtained in Proposition 1.2.2. Since the ratio Σv(M=1)
Σv(M≥2)

√
h
h
→∞ as

h converges to zero, private information is revealed much more quickly and price becomes

more efficient when there are multiple traders in the market.

Figure 1.2 illustrates how the degree of competition affects the asymptotic properties of

Σv. When M is large enough, limh→0
Σv

Σ2
vh

can be very close to 1. Since Σv is always greater

than σ2
vh, in the limit as M → ∞, we have the result of strong-form efficiency, consistent

with intuition based on perfect competition.
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Figure 1.1: (A) Σv as a function of h for M = 1, M = 2, M = 3 and M = 10. (B) Scaled Σv

as a function of h. Σv is scaled by
√
h for M = 1, and by h for M ≥ 2. Parameter values:

σv = σu = κ = 1 and r = 0.05.
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Figure 1.2: limh→0
Σv
σ2
vh

as a function of the number of informed traders M .

Trading Intensity β and Expected Quantity of Informed Trading

I have shown that, with increasing competition, informed traders reveal more information

through their trading. Intuitively, one should expect that the aggregate trading intensity

should be higher, and the fraction of trading volume contributed by informed traders should

be higher when M increases. I demonstrate numerically how each trader’s trading intensity

β and aggregate trading volume generated by the informed traders per period E(|Xn|) vary

with h, respectively, for the cases when M = 1, 2 ,3 and 10 in Figure 1.3.

As can be seen from the figure, when we compare monopoly M = 1 with duopoly M = 2,

the increased competition between the two traders induces each duopolist to choose a higher
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Figure 1.3: (A) The trading intensity parameter β as a function of h for M = 1, M = 2,
M = 3 and M = 10. (B) The aggregate expected trading volume per period E(Xn|) as a
function of h for M = 1, M = 2, M = 3 and M = 10. Parameter values: σv = σu = κ = 1
and r = 0.05.
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trading intensity β as shown in Figure 1.3(A) when h is small. But the result reverses sign

as we continue adding more informed traders when h is small. For M ≥ 2, the more the

informed traders, the less trading intensity from each individual trader. Each trader’s optimal

strategy is to exploit less the investment opportunity determined by the difference between

the true valuation of the asset and the price set by the market maker. Consequently, each

trader may actually trades less intensely as more traders become informed. In aggregate,

competition does make the traders behave more aggressively since the aggregate trading

intensity Mβ increases as competition becomes more intensive. In other words, when h is

small, for M ≥ 2, the value of β is decreasing in M while the value of Mβ is increasing in M .

Figure 1.4 illustrates how the asymptotic trading intensity limh→0 β and aggregate trading

intensity M limh→0 β vary with the number of informed traders. Although each individual

trader trades less intensely, the aggregate trading intensity monotonically increases with M .

As shown in Figure 1.3(B), the expected aggregate quantity of informed trading per pe-

riod E(|Xn|) monotonically increases with the number of traders M . Therefore, although

each individual trader tends to submit lower demand when the market becomes more compet-

itive, the aggregate trading volume which contains private information increases, conveying

more information to the market maker.

The asymptotic properties of β and E(|Xn|) can be inferred from Figure 1.3. In the

monopolist case, β is of order
√
h and E(|Xn|) = β

√
Σv is of order h

3
4 . In the imperfectly

competitive case, β converge to a positive constant and E(|Xn|) ∝ h
1
2 . Intuitively, as trading

becomes more frequent, there is less liquidity trading at each period to provide camouflage.
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Figure 1.4: limh→0 β and limh→0Mβ as functions of the number of informed traders.
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Figure 1.5: Fraction of trading volume of informed traders as a function of h for M = 1, 2, 3
and 10. Parameter values: σv = σu = κ = 1 and r = 0.05..

Therefore, the informed traders trade less intensely and scale back the trading volume at

each period. It can also be noted that in the monopolist case, the insider generates a

negligible fraction of total trading volume, whereas in the imperfectly competitive case, the

total aggregate volume submitted by the informed traders is comparable to the volume by

the liquidity traders. The results are illustrated in Figure 1.5. When M = 1, the ratio

quickly converges to zero when h is small. But the ratios converge to positive constants

when M > 1 and become 1 when M → +∞.
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Price variance

Since the aggregate trading volume is comparable to the trading volume of the liquidity

traders, following similar argument and Proposition 1.2.3, the informed traders’ contribution

to the total price variance is also non-negligible. Figure 1.6 illustrates how the total price

variance (blue lines) and its contribution by the informed traders (red lines) varies with the

time interval between rounds of trading and the number of informed traders.

In the monopolist case, although total price variance increases when h is small, the

contribution by the monopolistic trader converges to zero. The liquidity trader therefore

contributes almost all of the price volatility near continuous trading. In the imperfectly

competitive case, not only do informed traders contribute significantly to the total price

variance near continuous trading, but the ratio increases as the number of informed traders

increases. My numerical calculation make it reasonable to believe that the ratio converges

to 1 when M →∞.

Market Liquidity and Profitability

Stationarity requires that the price impact λ is a time independent constant. Figure 1.7

illustrates the effect of competition on λ. If we fix h and increase the number of informed

traders, λ declines accordingly. This is because in a steady state, more competition decreases

information asymmetry between informed traders and market maker, there is less adverse

selection. When the number of informed traders is fixed and trading frequency increases,

numerical calculations show that λ increases and converges to a positive constant. Two

opposite effects occur as trading becomes more frequent. On the one hand, there is less
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Figure 1.6: Total price variance (blue lines) and the contribution by the informed traders
(red lines) as a function of h for M = 1, 2, 3 and 10. Parameter values: σv = σu = κ = 1
and r = 0.05..
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Figure 1.7: The market liquidity parameter λ as a function of h for M = 1, 2, 3 and 10.
Parameter values: σv = σu = κ = 1 and r = 0.05.

liquidity trading over each period and the adverse selection problem is more severe. On the

other hand, as market becomes more efficient, there is less information asymmetry between

the informed traders and the market maker, and the adverse selection problem is less severe.

It can be shown from the figure that the first effect dominates with the adverse selection

parameter λ a decreasing function of h.

The fact that λ remains strictly positive in the continuous trading limit ensures that

informed traders make strictly positive expected profits. This is because informed traders

36



benefit from the liquidity traders. Their profits are higher when price impact is higher and

when liquidity traders are able to move the price further away from the efficient value giving

informed traders opportunities to trade. To give a more rigorous explanation, remember

that profit margin per share is Σv which is of the order
√
h when h is small. The demand

submit in period n in absolute term by each informed trader is proportional to
√
h. Then

at each period, each informed trader earns a small expected profits in the order of h. The

present value of the aggregate profits at any period n is proportional to
∑∞

k=n e
−r(k−n)hh,

which is finite when h → 0. Hence, our model predicts that each informed trader can still

earn positive expected profits in the continuous trading limit. But imperfect competition

does make each informed trader worse off. To demonstrate the effect of competition on

expected profits, we plot in Figure 1.8 the aggregate expected profits of informed traders

of informed traders as a function of h for different M . When M ≥ 2, the aggregate profits

monotonically decrease with M for fixed h and converge to positive constants as h→ 0.

Figure 1.9 illustrates how the asymptotic price impact limh→0 λ varies with the number of

informed traders. limh→0 λ monotonically decreases with M . When the number of traders is

large enough, the market can be infinitely deep with limh→0 λ very close to zero. Therefore,

the aggregate profits of informed traders also converges to zero as M →∞.

Empirical Implications

Hendershott and Riordan (2011b) find that high frequency traders’ marketable orders

have information advantage. Those traders trade in the direction of permanent price changes

and in the opposite direction of transitory pricing errors. Therefore, it is reasonable to believe
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Figure 1.8: Aggregate expected profits as a function of h for M = 1, 2, 3 and 10. Parameter
values: σv = σu = κ = 1 and r = 0.05.
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Figure 1.9: limh→0 λ as a function of the number of informed traders.
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that the high frequency traders who demand liquidity are “informed” traders. They may

not possess corporate inside information but are better and quicker than the average market

participants in gathering and processing information from massive market wide data to

generate private signals. The informed traders in my model can be treated as high frequency

traders when they are able to trade their information quickly (i.e, the frequency of trading

is very high). The unique results from my model in terms of efficiency, liquidity, trading

volume, price volatility, and expected profits can help us better understand the effects of

high frequency traders on financial markets than previous literature on strategic trading.

Hendershott et al. (2011), Hendershott and Riordan (2011a), Hendershott and Riordan

(2011b) and Brogaard (2010) provide evidences showing that the existence of high frequency

traders are beneficial to the market. Those traders provide more efficient quotes and the

growth of high frequency traders accompanies improvements in market liquidity, no matter

whether the traders are liquidity providers or liquidity demanders. In addition, high fre-

quency traders contribute significantly to trading volume. For example, Hendershott and

Riordan (2011b) estimate that high frequency traders initiating trades are responsible for

roughly 43% of trading volume in large stocks from a unique dataset from Nasdaq. High fre-

quency traders are found to implement highly correlated strategies but remain to be highly

profitable despite aggressive competition with one another.

At first glance, Chau and Vayanos (2008), Holden and Subrahmanyam (1992) and Foster

and Viswanathan (1993) seem to be good candidates to be used to understand high frequency

trading. All three models can predict that high frequency trading make price more efficient,
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although traders in those models are “impatient” to reveal their superior information very

quickly for different reasons. However, all three models cannot explain trading volume. The

fraction of trading volume contributed by informed traders is essentially zero in continu-

ous trading limit. Chau and Vayanos (2008) shows that market is thinner when trading is

more frequent, and Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993)

show that market can be infinitely illiquid when trading starts. Their predictions cannot

perfectly explain the empirical fact that market liquidity increases with more participation

of high frequency traders. In addition, Holden and Subrahmanyam (1992) and Foster and

Viswanathan (1993) predict that profits of informed traders quickly converge to zero when

there is imperfect competition. Zero expected profits are inconsistent with the profitability

of the imperfectly competitive high frequency traders. Therefore, both models cannot ex-

plain why high frequency traders can survive in the long run in an imperfect competitive

environment.

My model combines the two important features: (i) imperfect competition and (ii) con-

tinuous arrival of new private information. As the number of high frequency traders increases

due to ease of entry: (i) information is incorporated into prices more quickly and therefore

speeds up price discovery; (ii) high frequency traders participate in an even larger fraction of

total trading volume and price volatility, (iii) high frequency traders add to market liquidity

by competing aggressively with one another, and (iv) high frequency traders should make

profits which are bounded away from zero (like Cournot and not like Bertrand competition)

unless the number of high-frequency traders is very large.
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1.5 Conclusion

In this paper, I analyze how imperfect competition among informed traders affects market

efficiency, liquidity, trading volume and the profitability of informed traders. The combined

trading of multiple informed traders is more aggressive than the monopolistic trader, the

equilibrium price is even more revealing of the informed traders’ private information, and

market depth improves as the number of informed traders increases. In the continuous

trading limit, the variance of private information held by informed traders goes to zero at a

rate proportional to the time interval between rounds of trading. This is much faster than

the corresponding strong from efficiency result in the Chau and Vayanos model, where the

convergence rate is proportional to the square root of the time interval. In addition, in the

limit as the time interval between rounds of trading goes to zero, the aggregate profits of

the informed traders remain bounded away from zero and they contribute significantly to

the total trading volume and price volatility.

If high frequency traders are “informed” in a sense that they are able to generate prof-

itable private signals consistently by processing information from order flows and price move-

ments of securities across market, then this model provides a reasonable characterization of

those traders. My results suggest that the entry of more high frequency traders improves

market efficiency by incorporating information more quickly into price, improves market

liquidity by lowering price impact, and increases the fraction of trading volume from high

frequency traders. But those traders remain profitable despite exploiting the same informa-

tion set and implementing similar algorithms.
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Future research can extend the results of this paper in two directions. First, explain why

high frequency traders quickly reverse their inventories, we may add risk aversion. Second,

the assumption that traders are identically informed is too strong. The assumption does not

allow the more realistic scenario in which the informed traders learn from each other. Li

(2012) extends this paper by introducing a hierarchical information structure in which there

is one strictly better informed trader and one less informed trader. Kyle et al. (2012) further

relax the assumption in this paper even further to allow for a more general correlation among

streams of private information in which each trader has to forecast the forecasts of other

traders.
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Chapter 2

Speculative Dynamics II: Asymmetric Traders

2.1 Introduction

In a financial market, there are a few large institutional traders who actively spend resources

generating information and competing aggressively with one another. These informed traders

are found to follow positively correlated strategies. Li (2011) provides a theoretical frame-

work that characterize the equilibrium behavior of those traders. If their information sets

and strategies are perfectly correlated, adding more informed traders can speed up price

discovery and improve market depth. They contribute significantly to trading volume and

price variance. In the seminal paper of Kyle (1985) and many extensions, the informed

trader’s contributions to the total trading volume and price variance are negligible to the

contributions by the liquidity trader in continuous trading. This is because that the informed

trader’s strategy is continuous (of order dt) and liquidity trading is a Brownian motion (of

order
√
dt). and manage to earn a profit strictly bounded away from zero even when the fre-

quency trading is very high near continuous trading. This is in sharp contrast to the strategic

trading models with one-shot private information. In the one shot private information setup

of Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993), multiple informed

traders’ profits vanish due to imperfect competition in continuous trading.

In this paper, I relax the assumption in Li (2011) of identically informed traders. This
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assumption ignores the possibility that informed traders produce different information. If

their signals are imperfectly correlated, some traders have information that others don’t

possess. The inference problem becomes more complicated relative to the scenarios of one

monopolistic informed trader or multiple identically informed traders. On the one hand,

informed traders who do not know all the private information will infer any additional

information they do not have from past order flows and price movements, like uninformed

market makers. On the other hand, informed traders will treat their available information

differently: they trade cautiously on any exclusive information they may possess to exploit

their monopoly power, and they trade aggressively on information they share.

By allowing the signals observed by the informed traders to differ, especially when new

information arrives repeatedly, makes the problem very difficult to solve analytically. One

has to overcome the infinite regress problem arising in a dynamic model when traders try

to infer each other’s information. In this paper, we bypass the problem by focusing on a

hierarchical duopolistic setting. To be more specific, we consider an economy with a risky

asset which is going to be liquidated at a random date. The liquidation value is not fixed, but

rather evolves in a stochastic way and is only perfectly observed by an informed trader. The

other trader, however, observes a stream of noisy signals of the liquidation value. These noisy

signals are also observed by the first trader. Therefore, the second trader is less informed

and the first trader is strictly better informed. Both traders submit marketable orders to the

market maker along with liquidity traders at each trading period. The risk neutral market

maker cannot see each individual trader’s order but rather observes the batched order. She
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then sets the price equal to the expected value of the asset by solving an inference problem,

and takes the other side of the trade. The history of order imbalances provides information

not only to the market maker, but to the less informed trader as well. Like the market maker,

the less informed trader imperfectly infers the more informed trader’s additional information

from the history of order flows by subtracting her own contribution. In the meanwhile, she

has to compete with the more informed trader concerning any private information they both

observe.

There is another problem which is associated with the existence of linear equilibrium

in continuous trading when traders have perfectly correlated signals. Holden and Subrah-

manyam (1992) and Back et al. (2000) find that linear equilibrium does not exist when

informed traders are identically informed in the limit of continuous trading. This is because

risk neutral informed traders try to preempt each other causing the private information to

be revealed instantaneously, with trading intensity and price impact becoming infinite large

at the start of the trades (at t = 0+). Through the remaining of the trading sessions (t > 0),

there is no information asymmetry between the informed traders and therefore market is

infinitely deep. It is reasonable to believe that in a hierarchical private information setting

of Foster and Viswanathan (1994) where both asymmetric informed traders share a com-

mon noisy signal about the value of a risky asset to be liquidated at a predetermined date,

there is no linear equilibrium when trading is continuous1. In an economy where an risky

asset’s liquidation value is stochastic and private information arrives repeatedly, Li (2011)

1What should happen when trading is continuous is that both traders would trade on the common
private information so aggressively such that the common private information incorporated into price almost
instantaneously when trading starts and the more informed trader is able to monopolize the additional
exclusive information through the remaining trading session like the informed speculator in Kyle (1985).
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has found that stationary linear equilibrium does exist in the limit of continuous trading

with identically informed traders.

In this paper, we study the equilibrium in an economy with duopolistic traders endowed

with hierarchical information sets and a risk neutral market maker. Our model differs from

Foster and Viswanathan (1994) in several aspects. In Foster and Viswanathan’s model, all

the private information is known at time zero, the liquidation value of the asset is fixed

before trading starts, and there is a predetermined date when the asset is liquidated. In

this paper we have more realistic assumptions: both traders receive continuous flows of new

information, the fundamental value of the risky asset is stochastic, and the time for the risky

asset to be liquidated is random, following a geometric distribution. In their paper, Foster

and Viswanathan characterize the equilibria numerically and focus on time series properties

of equilibrium in an economy with only four trading periods. Because of the above argument

on the existence of equilibria in continuous trading, their paper does not address the economic

properties of equilibrium when trading periods are shortened to continuous limit. In this

paper, by making different assumptions and focusing on stationary equilibrium, we are able

to derive the equilibria in a closed form, able to derive economic propertis like to market

efficiency, market liquidity, and profitability.

By analyzing the properties of the equilibrium, the overall private information held by

both traders can be decomposed into two orthogonal components: a “common” component

of the private information known to both traders and “monopolistic” component known

only to the more informed trader. Consistent with the results found in Chau and Vayanos
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(2008) and Li (2011), the variances of both pieces of information converge to zero in the

continuous trading limit. However, the rates of how the two components of information are

incorporated into prices are quite different. When h is small (denote h to be the time interval

between trades), the variance of common component of private information not incorporated

into prices is proportional to h, while the variance of the monopolistic component of private

information not incorporated into prices is proportional to the square root of h. This suggests

that the common private information is incorporated more efficiently than the additional

monopolistic information.

The degree of competition is measured by the precision of the information stream that

is shared by both traders. Increasing the precision ρ can have two effects on market depth.

On the one hand, there will be more common private information and less monopolistic

information at each period and therefore more information will be incorporated into prices

conditional on the total private information. Since the market orders carry more informa-

tion, market maker should set a higher price impact. On the other hand, over time price

should become more efficient, there should be less information asymmetry among the mar-

ket participants, and the market should be more liquid. It can be shown in the stationary

state, the second effect dominates, thus the more precise the shared private information, the

more liquid the market becomes. Following the same logic, the inference parameter which

measures the sensitivity of belief to order flow for the less informed trader monotonically

also decreases with ρ.

In almost all dynamics models with price impact, the contribution to the trading volume
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or price variance from informed trading is negligible. This is because in the continuous

time limit as the interval between trades h goes to zero, the value of informed trading is

of order h, whereas the value of liquidity or noise trading strategy is a Brownian motion

of order
√
h. Li (2011) shows that with imperfect competition and continuous arrival of

new private information, the informed traders’ strategy can be a Brownian motion in the

limit as h→ 0. Therefore, informed traders can contribute significantly to the total trading

volume and add a volatility component to the price formation process. In this model, since

imperfectly competitive informed traders share a stream of signals, their strategies on the

common private information also become Brownian motions as h → 0 and therefore the

contributions to the total trading volume and price variance by the two traders should be

non-negligible in the limit.

A somewhat surprising result is that, contrary to conventional wisdom, when the fre-

quency of trading is sufficiently high, the less informed trader may contribute a more sig-

nificant fraction to total trading volume and price variance than the more informed trader.

A trader may rationally trade more because her information is “worse”. The intuition for

why this happens is that the less informed trader trades more aggressively on the common

private information, and the difference in trading on the common information may dominate

the trading volume in the additional private information by the more informed trader. The

more informed trader’s strategy on her additional private information is of order h
3
4 which

is negligible compared to
√
h when h is small enough.

Although not formally stated in Foster and Viswanathan (1994), by following the same
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spirit of Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993), when the

time interval between trades goes to zero, the informed traders compete so aggressively

based on shared information that this information is incorporated into prices almost instan-

taneously and the profits of the less-informed trader go to zero. This paper generates an

opposite result in terms of the profitability of the less informed trader. When the interval

between rounds of trading is small, both the profits of the more informed and less informed

traders remain bounded away from zero, with the profits of the more informed trader much

greater than the profits of the less informed when the signals are not highly correlated.

The plan of the paper is as follows. In Section II, I describe the model. The equilibrium

and its asymptotic properties are presented in Section III. Section IV shows some comparative

statics and empirical implications. Section V concludes.

2.2 The Model

2.2.1 Economy

Assumption 1: Securities

Trading takes place from t = 0 to t = +∞ at the discrete points tn (tn = nh) through

time where h is the time interval between the auctions. There are a riskless bond with

zero interest rate and a non-dividend paying risky asset with a stochastic liquidation value

vn. At the end of each period, there is a probability 1 − exp (−rh) that the risky asset is

liquidated. I further assume the riskless bond is in perfect elastic supply. The liquidation

value vn follows a mean-reverting process or random walk:
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vn − vn−1 = κ(v̄ − vn−1)h+ εv,n. (2.1)

In the above specification, κ determines the adjustment speed of the liquidation value vn to

its long run fixed target v̄; κ is assumed to be greater than or equal to zero implying that

the prices are stationary2; and the innovation εv,n is independently and normally distributed

with mean zero and variance σ2
vh.

Assumption 2: Market Participants and Information Structure

The risk neutral market participants consist of a competitive market maker, two informed

strategic traders, and a number of liquidity traders. The two strategic traders, however, are

asymmetrically informed with a hierarchical information structure such that one trader is less

informed and the other is better informed. Therefore, their information sets are hierarchical.

At each period, the less informed trader observes a noisy signal sn about εv,n (the innovation

term in equation (2.1)) in the form

sn = ρεv,n +
√

1− ρ2en (2.2)

where 0 ≤ ρ ≤ 1 and en ∼ N(0, σ2
vh) is normally distributed and uncorrelated with other

shocks in the economy. The better informed trader observes vn perfectly but also observes

the noisy signal sn each trading period. The variable ρ measures the level of precision

of the noisy signal received by both traders. When ρ = 0, the less informed trader is

completely uninformed. When ρ = 1, both traders are identically and perfectly informed.

2If κ = 0, then vn follows a random walk.
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I in = {pτ , vτ , sτ |τ ≤ n} is the more informed trader’s information set at t = nh, I ln =

{pτ , sτ |τ ≤ n} is the less informed trader’s information set, and Imn = {pτ |τ ≤ n} is the

market maker’s information set. Clearly, we have I in k I ln k Imn and the information sets are

nested.

Assumption 3: Timing of Events

At the beginning of the nth period, the informed traders and the liquidity traders submit

their demands before new information arrives. Let zn denote the less informed trader’s

market order and xn denote the more informed trader’s market order. After the market

orders are submitted, both informed traders observe sn but only the more informed perfectly

observes vn. The market maker observes the total order flow yn = xn + zn + un, then sets

the price pn equal to the expected value of the asset based on the history of orders flows,

and then clears the market.

Pricing

Since the market maker is assumed to be competitive and risk neutral, at period n she

sets the price pn equal to the expected value of the asset after she receives the total batched

market order yn = xn + zn + un. Therefore,

pn = E[
+∞∑
n′=n

(1− exp (−rh)) exp (−r(n′ − n)h)vn′ |Imn ], (2.3)

where (1− exp (−rh)) exp (−r(n′ − n)h) is the probability that the asset is liquidated at the

end of the n′th period.

Lemma 2.2.1: The price pn is the following linear function of the market maker’s
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expectation of the current liquidation value of the risky asset E(vn|Imn ):

pn =
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|Imn ) +

κhv̄

1− exp(−rh)(1− κh)
. (2.4)

Proof : See Appendix B.

Although the market maker observes the total order flow, she cannot distinguish the

contributions made by the more informed trader, less informed trader and the liquidity

trader. The less informed trader, however, by observing the price set by the market maker,

can infer the sum of the orders by the more informed trader and liquidity trader, xn + un,

therefore enabling her to maker a sharper inference about vn than the market maker. Similar

to the pricing function of Lemma 2.2.1, the less informed trader’s valuation of the risky asset

at the nth period equals to the expected value conditional on her information which is

denoted by ln:

ln = E[
+∞∑
n′=n

(1− exp(−rh)) exp(−r(n′ − n)h)vn′|I ln] (2.5)

=
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|I ln) +

κhv̄

1− exp(−rh)(1− κh)
.

Optimization

Since informed traders are risk neutral, then at the nth period, the better informed trader

tries to maximize her expected trading profits:

max
xn′≥n

E[
+∞∑
τ=n

(1− exp(−rh)) exp(−r(n′ − n)h)(
n′∑
τ=n

xτ (vn′ − pτ ))|I in−1]. (2.6)
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Lemma 2.2.2: The better informed trader’s objective function can be written as:

max
xn′≥n

E[
+∞∑
n′=n

exp(−r(n′−n)h)xn′(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn′+

κhv̄

1− exp(−rh)(1− κh)
−pn′)|I in−1].

(2.7)

Proof : See Appendix B.

Following a similar argument, the objective function of the less informed trader can be

expressed as:

max
zn′≥n

E[
+∞∑
n′=n

exp(−r(n′ − n)h)zn′(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn′ (2.8)

+
κhv̄

1− exp(−rh)(1− κh)
− pn′)|I ln−1].

2.2.2 Equilibrium Strategies and Value Functions

Suppose that conditional on information up to period n− 1, the market maker believes that

vn−1 is normally distributed with mean v̂n−1 and variance Σv,n−1, while the less informed

trader believes the mean to be v∗n−1 and variance to be Λv,n−1. Then, Σv,n−1 measures the

total variance of private information not incorporated into prices at the (n − 1)th period.

The value of Λv,n−1 measures the variance of private information withheld exclusively by

the better informed trader, and therefore Ωv,n−1 = Σv,n−1 − Λv,n−1 measures the variance of

private information withheld by both informed traders.
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I hypothesize that the more informed insider submits demand

xn = β(vn−1 − v∗n−1) + γ(v∗n−1 − v̂n−1) (2.9)

to maximize the present value of her expected profits scaled by (1−exp (−rh))
(1−exp (−rh)(1−κh))

which is

quadratic with respect to vn−1 − v∗n−1 and v∗n−1 − v̂n−1:

V i(vn−1−v∗n−1, v
∗
n−1−v̂n−1) = A(vn−1−v∗n−1)2+B(v∗n−1−v̂n−1)2+C(vn−1−v∗n−1)(v∗n−1−v̂n−1)+E.

(2.10)

The strategy and value function not only depend on vn−1 but also depend on v∗n−1 since

the more informed trader understands that her action will be closely followed by the less

informed trader as well as the market maker. The less informed insider submits demand

zn = θ(v∗n−1 − v̂n−1) (2.11)

to maximize the present value of her expected profits scaled by (1−exp (−rh))
(1−exp (−rh)(1−κh))

, which is

quadratic with respect to v∗n−1 − v̂n−1:

V l(v∗n−1 − v̂n−1) = F (v∗n−1 − v̂n−1)2 +G. (2.12)

Note that the order submission strategy of the more informed trader (Equation 2.9) can

be decomposed into two parts. The first term is proportional to the difference between the

perfect signal she receives and the information she shares with the other trader with intensity
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β. The second term is proportional to the difference between the information she shares and

the estimation of vn−1 by the market maker with intensity γ. The less informed trader,

bases her trade on the difference between the information she shares and market maker’s

estimation on vn−1 with intensity θ.

2.3 Inference Problems, Optimizations and The Equilibrium

2.3.1 The Market Maker’s Inference Problem

The market maker uses the total order flow yn, together with her prior belief on vn−1 to form

the posterior belief about vn−1:

vn−1 = E(vn−1|Imn−1) +
λ

1− κh
(xn + zn + un) + ηn (2.13)

= v̂n−1 +
λ

1− κh
(xn + zn + un) + ηn.

She believes that vn−1 is normally distributed with mean E(vn−1|Imn ) in the form

E(vn−1|Imn ) = v̂n−1 +
λ

1− κh
yn (2.14)

and variance var(ηn). Then according to the stochastic process of vn (equation (2.1)), she

believes that vn ∼ N(v̂n, var((1 − κh)ηn + εv,n)) is normally distributed with conditional

mean

E(vn|Imn ) = v̂n = (1− κh)v̂n−1 + λyn + κhv̄ (2.15)
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and conditional variance

var(vn|Imn ) = (1− κh)2var(ηn) + σ2
vh. (2.16)

In the next theorem, we derive the explicit form of the inference parameter λ and set up

nonlinear equation which can be solved for Σv.

Lemma 2.3.1: Given the trading strategies of the informed traders defined in equations

(2.9) and (2.11), the market maker’s inference parameter λ is given by

λ =
(1− κh)(βΛv + (γ + θ)Ωv)

β2Λv + (γ + θ)2Ωv + σ2
uh

. (2.17)

The uncertainty of the market maker’s belief on the risky asset’s liquidation value Σv satisfies

the following nonlinear equation:

Σv = (1− κh)2(Σv −
(βΛv + (γ + θ)Ωv)

2

β2Λv + (γ + θ)2Ωv + σ2
uh

) + σ2
vh. (2.18)

Proof : See Appendix B.

2.3.2 The Less Informed Trader’s Inference Problem

In this subsection, we solve the inference problem of the less informed trader. At period n,

the less informed insider can infer the realization of xn + un since the trader needs only to

subtract her contribution zn from the total order flow yn. Because xn + un contains private
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information which is exclusive to the more informed trader about vn−1, the less informed

trader can update her belief about vn−1 after observing pn:

vn−1 = v∗n−1 +
φ

1− κh
(xn + un − γ(v∗n−1 − v̂n−1)) + εn (2.19)

= v∗n−1 +
φ

1− κh
(xn + un − γ(v∗n−1 − v̂n−1)) + εn

with the conditional mean

E(vn−1|I ln) = v∗n−1 +
φ

1− κh
(xn + un − γ(v∗n−1 − v̂n−1)) (2.20)

and conditional variance var(εn).

When forming the posterior belief about vn, the trader needs to take into account of the

signal sn. Hence, the conditional mean and conditional variance of vn are given by

v∗n = E(vn|I ln) = (1− κh)v∗n−1 + κhv̄ + φ(xn + un − γ(v∗n−1 − v̂n−1)) + ρsn. (2.21)

and

var(vn|I ln) = (1− κh)2var(εn) + (1− ρ2)σ2
vh (2.22)

respectively.

In the following theorem, we derive the explicit form of the less informed trader’s inference

parameter φ and setup the nonlinear equation for Λv.

Lemma 2.3.2: Given the more informed trader’s strategy defined in equation (2.9)
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and the price process determined by the market maker in equation (2.15), the inference

parameters of the less informed trader φ is given by

φ

1− κh
=

βΛv

β2Λv + σ2
uh
. (2.23)

The trader’s uncertainty about the liquidation value of the risky asset Λv satisfies the fol-

lowing nonlinear equation:

Λ = (1− κh)2 Λ2
vσ

2
uh

β2Λv + σ2
uh

+ (1− ρ2)σ2
vh. (2.24)

Proof : see Appendix B.

2.3.3 The More Informed Trader’s Optimization Problem

At period n, the more informed trader submits demand xn to maximize the the expected

profits scaled by 1−exp(−rh)
1−exp(−rh)(1−κh)

E[
+∞∑
n′=n

xn′(vn′ − v̂n′)e−r(n
′−n)h|I in−1]. (2.25)

We have conjectured that the trader’s value function V1(vn−1, v
∗
n−1, v̂n−1) in period n,

evaluated at after submitting the market order xn, is a quadratic function of vn−1−v∗n−1 and

v∗n−1 − v̂n−1, as shown in equation (2.10). In equilibrium, V i(vn−1, v
∗
n−1, v̂n−1) must satisfy
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the following Bellman equation

V i(vn−1, v
∗
n−1, v̂n−1) = maxxnE[(vn − v̂n)xn + e−rhV i(vn, v

∗
n, v̂n)|I in−1]. (2.26)

Lemma 2.3.3: Given the price process determined by the market maker and the strategy

of the less informed trader, the trading strategy of the more informed trader is characterized

by:

β = (2τ)−1[1− κh− 2e−rhAφ(1− κh) + e−rhC(φ− λ)(1− κh)] (2.27)

and

γ = (2τ)−1[1− κh− λθ − 2e−rhAφγ (2.28)

+ 2e−rhB(φ− λ)(1− κh− φγ − λθ)

+ e−rhC(φ− λ)φγ − e−rhCφ(1− κh− φxγ − λθ)]

where

τ = λ− e−rh(Aφ2 +B(φ− λ)2 − Cφ(φ− λ)) (2.29)

The Bellman equation (2.26) has the solution of quadratic form A(vn−1− v∗n−1)2 +B(v∗n−1−

v̂n−1)2 +C(vn−1−v∗n−1)(v∗n−1− v̂n−1)+E, with A, B, C and E characterized by the following
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set of nonlinear equations:

A = β(1− κh− λβ) + e−rhA(1− κh− φβ)2 + (φ− λ)β]2 (2.30)

+ e−rhC(1− κh− φβ)(φ− λ)β,

B = γ(1− κh− λ(γ + θ)) + e−rhB[1− κh− λγ − λθ]2, (2.31)

C = β(1− κh− λ(γ + θ)) + γ(1− κh− λβ) (2.32)

+ 2e−rhB(φ− λ)β[1− κh− λγ − λθ]

+ e−rhC(1− κh− φβ)[1− κh− λγ − λθ],

and

E = e−rh[A(φ2σ2
uh+ (1− ρ2)σ2

vh) (2.33)

+ B((φ− λ)2σ2
uh+ ρ2σ2

vh)

− C(φ(φ− λ)σ2
uh) + E].

Proof : See Appendix B.
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2.3.4 The Less Informed Trader’s Optimization Problem

Having solved the dynamic programming of the more informed trader, we then focus on the

less informed trader’s optimization problem. Conditional on her most recent information set,

she submits market order zn at period n to maximize the present value of expected profits

scaled by 1−exp(−rh)
1−(1−exp(−rh))(1−κh)

,

E[
+∞∑
n′=n

zn′(vn′ − v̂n′)e−r(n
′−n)h|I ln−1]. (2.34)

The value function of the less informed trader is assumed to be quadratic in v∗n−1 − v̂n−1

and solves the following Bellman equation in equilibrium:

V l(v∗n−1, v̂n−1) = maxznE[zn(vn − v̂n) + e−rhV l(v∗n − v̂n)|I ln−1]. (2.35)

The following theorem characterizes the trading strategy of the less informed trader and the

solution for the Bellman equation.

Lemma 2.3.4: Given the trading strategy of the more informed trader and the pricing

rule determined by the market maker, the optimal strategy of the less informed trader is

characterized by

θ =
(1− 2e−rhλF )(1− κh− λγ)

2λ(1− e−rhλF )
. (2.36)

The Bellman equation (2.35) has the solution in a quadratic form F (v∗n−1− v̂g−1)2 +G, with
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F and G characterized by the following set of nonlinear equations:

F = θ(1− κh− λγ − λθ) + e−rhF (1− κh− λγ − λθ)2 (2.37)

and

G = e−rhF [(φ− λ)2β2Λv + (φ− λ)2σ2
uh (2.38)

+ ρ2σ2
vh] + e−rhG.

Proof : See Appendix B.

2.3.5 Equilibrium and Trading in the Continuous Time Limit

Having solved the inference problems for the market maker and the less informed trader and

the optimization problems for both informed traders, in the next theorem we establish the

necessary and sufficient conditions for the stationary equilibrium.

Proposition 1: The linear stationary equilibrium of the model with hierarchical infor-

mation structure is characterized by 13 parameters (λ, φ, Σv, Λv, β, γ, θ, A, B, C, E, F and

G) which are solutions to the system of equations (2.17 - 2.18), (2.23 - 2.24), (2.27 - 2.34)

and (2.36 - 2.39).

We are mostly concerned with the asymptotic properties of the equilibria in the limit of

continuous trading, i.e., h→ 0. When there is only one monopolistic informed insider, Chau

and Vayanos prove that the variance of information not incorporated into prices at each
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trading period is proportional to
√
h and the trading intensity is of order

√
h. By contrast,

in an economy with multiple identical informed traders, the variance of private information

left at each period is proportional to h and the trading intensity converges to a strictly

positive constant. In this paper, since the total private information can be decomposed

into two orthogonal components, we should expect that the variance of common private

information not incorporated into prices Ωv at each period is proportional to h and the

variance of additional private information Λv left at each period converges to zero at rate of

order of
√
h. The intensity at which the more informed trader trades, based on her additional

private information, β, should converge to zero at the order
√
h. The intensities at which

both traders trade, based on their common information, γ and θ, should converge to positive

constants. The next theorem establishes the asymptotic behavior of the equilibrium.

Proposition 2: When the time interval between rounds of trading converges to zero, we

have

lim
h→0

λ = λ0 − a
√
h (2.39)

lim
h→0

φ = φ0 − a
√
h (2.40)

lim
h→0

β√
h

= b (2.41)

lim
h→0

γ = γ0 (2.42)

lim
h→0

θ = θ0 (2.43)

lim
h→0

Σv = Oh+ L
√
h (2.44)
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lim
h→0

Λv = L
√
h (2.45)

and

lim
h→0

A = A0 limh→0B = B0 lim
h→0

C = C0 (2.46)

lim
h→0

E = E0 limh→0 F = F0 lim
h→0

G = G0,

where λ0, φ0, a, b, γ0, θ0, L, O, A0, B0, C0, E0, F0 and G0 satisfy the following set of

nonlinear equations:

λ0 =
(γ0 + θ0)O + bL

(γ0 + θ0)2O + σ2
u

, (2.47)

φ0 =
bL

σ2
u

, (2.48)

b− A0a

λ0 − φ0 + A0φ2
0 −B0(φ0 − λ0)2

, (2.49)

γ0 =
1− λθ0 − 2A0φγ0 + 2B(φ− λ)(1− φγ0 − λθ) + C(φ− λ)φγ0 − Cφ(1− φγ0 − λθ0)

2τ0

,

(2.50)

θ0 =
(1− 2λF0)(1− λγ0)

2λ(1− λF )
, (2.51)

F = θ0(1− λ(γ0 + θ0)) + F0(1− λ(γ0 + θ0))2, (2.52)

B0 = γ0(1− λ(γ0 + θ0)) +B0(1− λ(γ + θ))2, (2.53)

1− 2A0φ0 − C0(φ0 − λ0) = 0, (2.54)

−λb2 − (r + 2κ)A0 + 2A0ab+ Aφ2b2 − φb2C0(φ− λ) = 0, (2.55)
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E =
A(φ2σ2

u + (1− ρ2)σ2
v) +B((φ− λ)2σ2

u + ρ2σ2
v)− C(φ(φ− λ)σ2

u)

r
, (2.56)

G =
F (φ− λ)2σ2

u + ρ2σ2
v

r
(2.57)

2.4 Properties of Equilibriums and Comparative Statics

In what follows, we illustrate how information structure, the strategic interaction between

the two informed traders, and increasing trading frequency affect market efficiency, liquidity,

trading strategies, trading volume, and expected profits of the informed traders.

The variable ρ measures the precision of the noisy signal. Intuitively, it also measures

the degree of information asymmetry and hence the degree of imperfect competition between

the two informed traders. The higher the value of ρ, the more precise the stream of noisy

signals observed by both traders, the more information shared by both traders and less

private information exclusively held by the more informed trader. To illustrate the effect

of imperfect competition and the strategic interaction between the two traders, I compare

the results of when 0 ≤ ρ ≤ 1 with two benchmark cases. When ρ = 1, both traders are

equally informed and there is no information asymmetry between them; when ρ = 0, the less

informed trader is completely uninformed and the more informed trader is a monopolist on

the perfect signal she receives.

Market Efficiency

Since the information sets are hierarchical, I can decompose the overall private infor-

mation held by the informed traders vn − v̂n into two orthogonal components: the private

information known to both traders v∗n − v̂n and the information exclusive to the more in-
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formed trader vn − v∗n. It is natural to expect that both traders act like duopolists on the

common component of the information, and the more informed trader is able to monopolize

the information exclusive to herself.

Following the intuitions, we should expect that Ωv, which measures the market maker’s

uncertainty about the first component, is of order h when h is small and Λv, which measures

the variance about the second component, is of order
√
h3. Therefore, the shared private

information should be incorporated into prices in a much higher rate than the monopolistic

private information. Because Σv = Ωv+Λv and the
√
h dominates h for small h, the variance

of total private information not incorporated into price should be of order
√
h. Since

√
h→ 0

as h → 0, the market approaches to strong-form efficiency in the continuous trading limit

with no information asymmetry among the informed traders and market maker.

To illustrate the properties of market participants beliefs about the liquidation value vn,

we plot the variance Σv, Λv and Ωv against h respectively, for the cases when ρ = 0.7, ρ = 1

and ρ = 0 in Figure 2.1. When ρ = 0.7, Σv is always greater than Λv implying that the

less informed trader is making a sharper inference about the liquidation value of the asset

than the market maker. The difference between Σv and Λv is actually Ωv which measures

the variance of v∗n − v̂n. As h becomes smaller, Σv and Λv also decrease converging to zero

and so does their difference, Ωv.

We then compare the results when ρ = 0.7 to the benchmark cases when ρ = 1 and

ρ = 0. The stream of “noisy” signal received by the less informed trader becomes perfect

3In the monopolist case, Chau and Vayanos (2008) prove that the private information not incorporated
into price is of order

√
h when h is small. In the oligopolist case in Li (2011), the author proves that the

convergence rate is proportional to h.
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Figure 2.1: Σv, Λv and Ωv as functions of h for the cases when ρ = 0, 0.7 and 1. Parameter
values: σv = σu = κ = 1 and r = 0.05.
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and she is as informed as the other trader if ρ = 1. As illustrated in Figure 2.1, Λv is always

zero and Ωv = Σv. If ρ = 0, the fact that the less informed trader is completely uninformed

and she can make an inference no better than the market maker leads to Σv = Ωv.

Trading Intensity Parameters: β, γ and θ

We have demonstrated that the more informed trader monopolizes any additional private

information. Remember that β is the intensity with which the more informed trader trades

on this information, β should be of order
√
h when h is small. γ and θ are the intensities with

which the traders trade on the common private information. From the asymptotic properties

derived in Proposition 2, we expect γ and θ converge to positive constants when h is closed

to zero.

We first examine how the trading intensity parameters vary with the time interval between

trades and the precision of the stream of noisy signals. In Figure 2.2, we plot β, γ and θ

against h for the cases when ρ = 0.3, ρ = 0.9 and ρ = 1. As h becomes smaller, so do

β, γ and θ because the variance of noise trading is getting smaller at each trading period.

The value of β converges to zero except at ρ = 1 when the “more” informed trader has no

additional private information. The values of γ and θ converge to strictly positive values. In

addition, θ is always greater than γ except at ρ = 1 implying that the less informed trader

always acts more aggressively on their common private information than the more informed

trader.

We next study the asymptotic properties of β, γ and θ. We let b = limh→0
β√
h
, γ0 =

limh→0 γ and θ0 = limh→0 θ. Figure 2.3 illustrates how b, γ0 and θ0 vary with ρ. The value of
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Figure 2.2: The trading intensity parameters (β, γ and θ) as functions of h for cases when
ρ = 0.3, 0.9 and 1. Parameter values: σv = σu = κ = 1 and r = 0.05.
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b first increases with ρ slowly when ρ is small, but increases sharply with ρ when it is close

to 1. Since limh→0 β is found to be strictly positive at ρ = 1, we should expect b→ +∞ as

ρ → 1. The result is consistent with the counterpart found in Chau and Vayanos (2008) in

which b is infinity if there is no adverse selection between the monopolistic insider and the

market maker.

Although the two traders act like competing duopolists, the asymptotic properties of

trading intensities are quite different from the counterparts found in Li (2011). Li finds that

the trading intensity can be sufficient large when the information asymmetry between the

identically informed traders and the market maker is small enough in the limit of continuous

trading, and that the trading intensity is inversely related to information asymmetry. One

can tell from Figure 2.3(B) and (C) that γ0 and θ0 remain bounded at ρ = 0. γ0 is found

to be a non-monotonic function of ρ. γ0 first monotonically decreases with ρ and later

monotonically increases with ρ when ρ is close to 1. θ0 is a monotonically increasing function

for all values of ρ.

Inference Parameters: φ and λ

Li (2011) finds that more competition leads to a smaller price impact parameter λ and

hence a more liquid market. The degree of competition is measured by the number of the

traders in the market. In this paper, the number of traders is fixed to be two and the degree

of competition is measured by the precision of the noisy signal both traders receive. We

expect that the same conclusion still holds: as ρ increases, the market should become more

liquid in the stationary state where the market maker is facing a less severe adverse selection.
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Figure 2.3: The asymptotic properties of trading intensity parameters (b, γ0 and θ0) as
functions of h for cases when ρ = 0.3, 0.9 and 1. Parameter values: σv = σu = κ = 1 and
r = 0.05.
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Figure 2.4(A) and (B) confirm the conjecture. For a fixed h, the price impact or the inference

parameter for the market maker λ (inverse measure of market depth) monotonically decreases

with ρ. The inference parameter for the less informed trader φ is also found to be negatively

related to ρ since the trader becomes more informative about the value of the asset as the

stream of signals she observes becomes more precise. When ρ = 1, φ strictly equals to zero

since the “less” informed trader is perfectly informed and learns nothing from the history of

order flows.

In Figure 2.4(C), we plot λ0 = limh→0 λ and φ0 = limh→0 φ against ρ. We finds that λ0

is always greater than φ0 except at ρ = 0. This is because the less informed trader is more

informed than the market maker and learns less from the order flow.

Expected Quantity of Informed Trading

Intuition might suggest (incorrectly) that the better informed trader trade more than the

less informed trader on average because she has more private information. However, since the

less informed trader trades more intensely on the shared private information, the difference

between how they trade the common information may dominate the trading volume by the

more informed trader on her exclusive private information. We confirm the intuition in

Figure 2.5. In Figure 2.5(A), we fix ρ = 0.9 and κ = 1. When h is relatively large, the

contribution to the total trading volume by the more informed trader is greater than that

by the less informed trader. The relation switches sign when h becomes smaller or the

frequency of trading is higher. In Figure 2.5(B), we let ρ = 0.6 and κ = 1; in (C), we let

ρ = 0.6 and κ = 0. We observe similar phenomena as in (A). But the frequency at which
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Figure 2.4: (A) and (B) The inference parameters φ, λ as functions of h for ρ = 0, 0.3, 0.9
and 1. Parameter values: σv = σu = κ = 1 and r = 0.05. (C) λ0 and φ0 as functions of ρ.
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the less informed trader starts to dominate the better informed trader in terms of trading

volume becomes higher if we decrease ρ or κ.

Expected Profits

Although Foster and Viswanathan (1994) do not address the issue of each informed

trader’s expected profits in the limit of continuous trading, it is reasonable to believe that

as the time interval between trades converges to zero, the informed traders compete so

aggressively on shared private information that the information is reflected into prices in-

stantaneously and the profits of the less informed trader go to zero. The better informed

trader however, can earn strictly positive profits by trading the remaining monopolized in-

formation slowly. Li (2011) has shown that identically informed traders can earn strictly

positive profits when trading is continuous if the information arrives repeatedly. It is reason-

able to believe that in this model, despite both informed traders compete very aggressively

on their shared stream of noisy signals, in the limit, the less informed trader can still earn a

non-zero expected profits.

Figure 2.6 illustrates how each informed trader’s expected profits vary with the time

interval between trading and the precision of the flow of the noisy signals observed by both

traders. We find that the less informed trader’s expected profits increase when ρ becomes

higher. Intuitively, the better the information received by the less informed trader, the more

market power and hence the better investment opportunity she has. A more interesting

result is that as h converges to zero, both the profits of the more and less informed traders

remain strictly positive, with the profits of the more informed trader greater than the profits
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Figure 2.5: Contributions to the total trading volume. Parameter values: σv = σu = 1 and
r = 0.05.

76



of the less informed trader. When ρ = 1, we reach to the benchmark case where both traders

are equally informed. We should expect them to earn the same expected profits and it is

confirmed in the Figure.

2.5 Conclusion

In this paper, we examine how the correlation among flows of information received by in-

formed traders affects the market efficiency, market liquidity, trading volume and their ex-

pected profits, especially in the limit of continuous trading. We consider a very special case

in which duopolistic informed traders’ information sets are nested.

We find the total private information can be decomposed into two components with

each component incorporated into prices in a qualitatively different manner in the limit.

The shared private information is incorporated into prices much more quickly than the

information held exclusively by the more informed trader. One can find that the less informed

trader acts more aggressively than the better informed trader. When the frequency of trading

becomes high enough, the less informed trader who has worse information contributes more

trading volume contrary to conventional wisdom. The profits for the less informed trader

may fall as trading becomes more frequent, but converge to a positive constant in the limit

as the time interval between trades goes to zero.
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Figure 2.6: (A) and (B) The expected profits for each informed trader as functions of h for
cases when ρ = 0.4, 0.8 and 1. (C) Expected profits for each trader as functions of ρ in the
limit of continuous trading. Parameter values: σv = σu = κ = 1 and r = 0.05.
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Chapter 3

Real Options and Product Differentiation

3.1 Introduction

Ever since the pioneering work of McDonald and Siegel (1986), the real options literature

often either assumes the firm to be a monopolist (Pindyck (1988), He and Pindyck (1992))

or assumes the firm to be perfectly competitive (Dixit (1989) ). Very little literature has

modeled the imperfect competition among firms in exercising real options (option games).

Smets (1993) provides the first approach to model real options game in a duopoly industry.

In his model, the capital stock choice is discrete and there is a upper bound in the total

industry capital stock. He also randomly picks a firm to be the leader by investing first (the

other firm which invests later is called the follower) when time comes to make investment.

The subsequent work that follow Smets’s approach include Grenadier (1996) and Williams

(1993) .

In the situation where the capital stock choice is continuous, implying that each firm

can make arbitrarily small investment, the firms face a pre-emption problem. Each firm has

incentive to preempt its competitors to prematurely invest to extract more rents. Grenadier

(2002) claims to solve the equilibrium in an oligopoly industry by using a “myopic firm”

approach. When a “myopic” firm is evaluating the optimal time to invest, it assumes that

all other firms’ capital stock is fixed forever. The equilibrium derived in his approach has
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lower growth options value relative to the monopolist case but is still positive. Such an

equilibrium, however is not subgame perfect. It is an “open loop” equilibrium instead of a

“closed loop” equilibrium, as pointed out by Back and Paulsen (2009). In an “open loop”

equilibrium, each player in the game cannot observe the other players’ actions. While in a

“closed loop” equilibrium, all past play is common knowledge. In Grenadier (2002)’s setup,

each firm can infer its opponent’s capital stock from the price of the product. It can be

shown that, by knowing its opponent’s capital stock, each firm has incentive to preempt its

opponent by investing earlier than the conjectured optimal time in Grenadier’s equilibrium.

As long as the value of the real option is positive, each firm will have incentive to invest till

the real option value drops to zero. This means that the preemption never disappears as long

as the growth options is positive. Back and Paulsen further conjecture that the equilibrium

with pre-emption should be competitive in an oligopoly industry with elastic demand such

that the real option value remains zero all the time .

In Grenadier (2002) and Back and Paulsen (2009), the products are homogenous (per-

fect substitute). This paper examines whether the incentive to preempt could diminish if

we assume heterogenous products instead. By making such an assumption, each firm has

some limited monopoly power over its product. I examine whether such monopoly power,

although limited, could decrease the competition of exercising options to such an extent that

preemption is no longer profitable and the value of growth options is still positive. However,

we find that under the assumption of non-flexibility of capital stock, preemption is always

profitable even though the products are imperfect substitute.
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The plan of the paper is as follows. In Section II, we describe the model. We solve the

equilibria using the “myopic” approach for the CES demand case in Section III and for the

linear demand case in Section IV. We find the equilibrium is not subgame perfect in either

case. Section V concludes.

3.2 Model Setup

3.2.1 Demand Function and Capacity Process

I make the following assumptions:

(1) There exits an industry composed of n firms each producing a single non-storable

differentiated product. In section III, I use the CES (constant elasticity of substitution)

demand function. The inverse demand function is given by

Pi = Y (t)(
n∑
j=1

qρj )
θ−1qρ−1

i (3.1)

where dY = µY dt+ σY dz is an exogenous shock process to demand. ρ measures the degree

of differentiation, ranging from 0 for independent goods to 1 for perfect substitutes. The

demand function is derived from a n-good industry with representative consumer with utility

function given by U(q) = (
∑n

i=1 q
ρ
i )
θ (Xavier Vives 2000). Another specification can be found

in Dixit and Stiglitz (1977): U(q) = (
∑n

i=1 q
ρ
i )

1/ρ.

In section 3.4 , I use the linear inverse demand function: Pi = Yt − βqi − γ
∑

j 6=i qj.

(2) At time t, each firm produces qi(t) ≤ Ki(t) units of output where Ki is the capital
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stock of firm i. For simplicity, zero variable cost of production is assumed. The operating

profit flow is denoted πi(Y (t), Ki(t), K−i(t)) = Piqi.

(3) At any point in time, each firm can invest in additional capacity to increase its

output. Each unit of capacity costs I. I assume that Ki is a nondecreasing process implying

completely irreversibility of capital stock. I also assume that there exists an investment

strategy which is characterized by the trigger function Y (Ki, K−i). Whenever Y (t) rises to

the trigger function, firm i increases its capacity level.

(4) The firm i is solving the following problem:

V i[Y,K∗i (t), K∗−i(t)] = max
Ki

E(

∫ ∞
0

e−rtπi[Y (t), Ki(t), K−i(t)]dt−
∫ ∞

0

e−rtIdKi) (3.2)

3.2.2 Risk Neutral Measure

Following Carlson et al. (2004), let Bt denote the price of the riskless asset with dynamics

dBt = rBtdt, where r is the risk-free interest rate, and let St be the risky asst with dynamics

dSt = ηStdt+ σStdzt. (3.3)

We use assets B and S to define a new probability measure (Q) under which ẑt = zt + η−r
σ
t

is a standard Brownian motion. Under this new measure, the demand dynamics becomes

dYt = (r − δ)Ytdt+ σYtdẑt (3.4)
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where δ = η − µ > 0.

3.3 Symmetric Open Loop Equilibrium for CES Demand Function

3.3.1 The Open Loop Equilibrium

I consider the case when there are two firms in the industry.

Proposition 3.1

1. In a symmetric open-loop equilibrium, the trigger strategy for firm i is given by

Y ∗ =
Iδ

2θ−2(1− 1
λ1

)(ρθ + ρ)Kρθ−1
= νK1−ρθ (3.5)

with ν = Iδ
2θ−2(1− 1

λ1
)(ρθ+ρ)

and K = Ki = Kj to be each firm’s capacity.

2. The firm i’s value is given by

Vi(Y,K) = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1(

1

λ1(ρθ − 1) + 1
)Kλ1(ρθ−1)+1Y λ1 +

Y 2θ−1Kρθ

δ
. (3.6)

The value of assets in place is

Fi(Y,K) =
Y 2θ−1Kρθ

δ
+ Iν−λ1(

1

λ1(ρθ − 1) + 1
)Kλ1(ρθ−1)+1Y λ1 = J(K)Y + E(K)Y λ1 (3.7)

and the value of growth option is

Gi(Y,K) = −I 2λ1θ

(λ1 − 1)(θ + 1)
ν−λ1(

1

λ1(ρθ − 1) + 1
)Kλ1(ρθ−1)+1Y λ1 = C(K)Y λ1 . (3.8)
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Proof:

From standard arguments in the literature on investment with uncertainty, V i(Y,Ki, K−i)

and Y (Ki, K−i) are solutions to the following differential equation:

1

2
σ2Y 2V i

Y Y + (r − δ)Y V i
Y − rV i + πi(Y,Ki, K−i) = 0, (3.9)

with the following boundary conditions

∂V i

∂Ki

(Y (Ki, K−i), Ki, K−i) = I, (3.10)

∂2V i

∂Ki∂Y
(Y (Ki, K−i, Ki, K−i) = 0, (3.11)

and

∂V i

∂K−i
(Y (Ki, K−i), Ki, K−i) = 0. (3.12)

Grenadier provides a simple approach to solve the equilibrium strategies without involving

fixed point problem. He considers a myopic firm i that ignores all potential competitive

exercise. The value of the myopic firm is denoted as M i(Y,Ki, K−i). Then, I will denote the

myopic firm’s marginal output by mi(Ki, K−i), with mi(Y,Ki, K−i) = ∂M i

∂Ki
. It can be shown

that mi and Y (Ki, K−i) satisfy the following differential equation:

1

2
σ2mY Y + (r − δ)mY − rm+

∂π

∂Ki

= 0 (3.13)
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subject to

m(Y (Ki, K−i), Ki, K−i) = I (3.14)

and

∂m

∂Y
(Y (Ki, K−i), Ki, K−i) = 0. (3.15)

The function m(Y,Ki, K−i) represents the value of a perpetual American call option, where

the option has an exercise payoff of I, and a zero exercise price.

It can be easily verified that

∂π

∂Ki

= Y (t)(Kρ
i +Kρ

−i)
θ−2(ρθK2ρ−1

i + ρKρ−1
i Kρ

−i). (3.16)

The solution for Equation 3.9 is

m = BY λ1 +
2θ−2Y (ρθ + ρ)Kρθ−1

δ
. (3.17)

From the boundary conditions, we have

BY ∗λ1 +
2θ−2Y ∗(ρθ + ρ)Kρθ−1

δ
= I (3.18)

and

Bλ1Y
∗λ1−1 +

2θ−2(ρθ + ρ)Kρθ−1

δ
= 0. (3.19)

Since firms are symmetric, we should have Ki = Kj = K, and the above equation
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becomes

∂π

∂Ki

= Y (t)2θ−2ρ(θ + 1)Kθρ−1. (3.20)

Equation 3.19 can be reduced to

B = −2θ−2(ρθ + ρ)Kρθ−1

λ1Y ∗λ1−1δ
. (3.21)

Then, substituting the expression for B into 3.18, we have

−2θ−2(ρθ + ρ)Kρθ−1Y ∗

λ1δ
+

2θ−2Y ∗(ρθ + ρ)Kρθ−1

δ
= I, (3.22)

which leads to the solution for Y ∗,

Y ∗(K) =
Iδ

2θ−2(1− 1
λ1

)(ρθ + ρ)Kρθ−1
= νK1−ρθ, (3.23)

where ν = Iδ
2θ−2(1− 1

λ1
)(ρθ+ρ)

.

From a similar argument, we can also calculate the myopic trigger strategy when two

firms have different capital stock in the beginning (Ki 6= K−i).

Y ∗(Ki, K−i) =
Iδ

(1− 1/λ1)ρ(Kρ
i +Kρ

−i)
θ−2(θK2ρ−1

i +Kρ−1
i Kρ

−i)
(3.24)

The value of the firm: assets in place and growth options.

Our next goal is to solve Equation 3.9 with the boundary conditions. Given firm i’s
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instantaneous profit function πi = Y (Kρ
i +Kρ

j )θ−1Kρ
i , the solution can be written as follows

Vi = AY λ1 +
Y (Kρ

i +Kρ
j )θ−1Kρ

i

δ
= A(K)Y λ1 +

Y 2θ−1Kρθ

δ
. (3.25)

The subscript is ignored since in equilibrium K1 = K2 = ... = Kn.

From the boundary conditions, we have

∂V

∂K
(Y ∗, K) = I (3.26)

which is equivalent to

A′(K)νλ1Y ∗λ1 +
Y ∗2θ−1ρθKρθ−1

δ
= I. (3.27)

Solving Equation 3.27, we have

A′(K) = (I − Y ∗2θ−1ρθKρθ−1

δ
)Y ∗−λ1 (3.28)

= (I − ν2θ−1ρθ

δ
)ν−λ1Kλ1(ρθ−1) = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1Kλ1(ρθ−1).

By integrating A′(K), we find that

A(K) = −
∫ ∞
K

A′(k)dk = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1

1

λ1(ρθ − 1) + 1
Kλ1(ρθ−1)+1. (3.29)
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Therefor, firm i’s value can be expressed as

Vi = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1

1

λ1(ρθ − 1) + 1
Kλ1(ρθ−1)+1Y λ1 +

Y 2θ−1Kρθ

δ
. (3.30)

The value of assets in place is given by

Fi(K,Y ) =
Y 2θ−1Kρθ

δ
+Iν−λ1(

1

λ1(ρθ − 1) + 1
)Kλ1(ρθ−1)+1Y λ1 = J(K)Y +E(K)Y λ1 , (3.31)

and the value of growth option is given by

Gi(K,Y ) = −I 2λ1θ

(λ1 − 1)(θ + 1)
ν−λ1(

1

λ1(ρθ − 1) + 1
)Kλ1(ρθ−1)+1Y λ1 = C(K)Y λ1 . (3.32)

3.3.2 A Preemption Strategy

To determine whether there exists a preemption strategy, I follow the approach in Paulsen

(2006). Suppose K10 = K20 = K0. If both firms were to play the myopic strategy defined

in Proposition 2, then both firms would always hold the same capacity and the expected

present value of the future cash flow would be given by

Vi = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1

1

λ1(ρθ − 1) + 1
K
λ1(ρθ−1)+1
0 Y λ1 +

Y 2θ−1Kρθ
0

δ
. (3.33)

Now consider the strategy for firm 1: invest K > K0 and keep this capacity constant

until time τ when K2 = K, then play the symmetric trigger. We assume firm 2 plays the
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myopic trigger and time τ is the first passage time of Y ∗(K,K).

From time τ on, both firms will hold the same capacities, thus firm 1’s expected payoff is

given by the value function V (Y ∗, K,K) discounted by e−rτ . Up to time τ , firm 1’s capacity

is fixed and only K2 increases. Firm 1’s expected profit is thus

W (Y,K,K2) = EY,K2 [

∫ τ

0

e−rt(π(Yt, K,K2)− rIK)dt+ e−rτV (Yτ , K,K)]. (3.34)

From the Feynman-Kac theorem, W (Y,K,K2) satisfies the ODE

1

2
σ2Y 2WY Y + (r − δ)WY − rW + (π(Y,K,K2)− rIK) = 0, (3.35)

subject to the boundary conditions

WK2(Y (K2, K), K,K2) = 0, (3.36)

W (0, K,K2) = −IK, (3.37)

and

W (Y (K,K), K,K) = V (Y (K,K), K,K). (3.38)

The solution of the ODE is in the form of W (Y, K̄,K2) =
Y (K̄ρ+Kρ

2 )θ−1K̄ρ

δ
− IK̄ +

A(K̄,K2)Y λ1 . From the boundary condition,

∂W

∂K2

=
ρ(θ − 1)Y ∗(K2, K̄)(K̄ρ +Kρ

2 )θ−2K̄ρKρ−1
2

δ
+ AK2(K̄,K2)Y ∗λ2(K2, K̄) = 0, (3.39)
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we have

AK2(K̄,K2) = −ρ(θ − 1)(K̄ρ +Kρ
2 )θ−2K̄ρKρ−1

2

δY ∗λ1−1(K2, K̄)
. (3.40)

Integrating AK2(K̄,K2), we can find

A(K̄,K2) = A(K̄)−
∫ ∞
K2

AK2(K̄, s)ds. (3.41)

To find A(K̄), we have to use the last boundary condition. First, we need to calculate

V (Y ∗(K̄, K̄), K̄). From the result we have in section 3.3.1,

Vi = I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1

1

λ1(ρθ − 1) + 1
K̄λ1(ρθ−1)+1Y ∗λ1(K̄)+

Y ∗(K̄)2θ−1K̄ρθ

δ
. (3.42)

From the last boundary condition,

A(K̄) =

∫ ∞
K̄

AK2(K̄, s)ds+ I(1− 2λ1θ

(λ1 − 1)(θ + 1)
)ν−λ1

1

λ1(ρθ − 1) + 1
K̄λ1(ρθ−1)+1. (3.43)

Since the integrals cannot be derived in the closed forms except for a few parameter

values, I evaluate the integrals numerically to find the expected payoff from the preemption

strategy.

Some numerical examples.

First, we set σ = 0.2, δ = 0.12, r = 0.12, I = 1, ρ = 1 and θ = 0.5. One can tell from

simple calculation (not shown here), λ1 = 3. This is actually the set of parameters in the

counter-example provided by Paulsen (2006), in which the products are perfect substitute.
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We then plot W (Y ∗(1, 1), K̄, 1) vs. K̄. It can be shown from Figure 3.1 that W (Y (1, 1), K̄, 1)

is increasing in K̄ up to a value greater than 1 and then decreasing. Following the argument

in Paulsen (2006), the symmetric trigger Y ∗(Ki, K−i) is not sub-game perfect, and it is

profitable for the firm to exercise the growth option early to preempt the second firm.

We then keep θ fixed and decrease ρ from 1 to 0.5. Figure 3.2 shows the preempting

value function W (Y (1, 1), K̄, 1) as a function of K̄. In addition, the preemption strategy

still exists but the local maxima is less than the case when ρ = 1. I also tried other values

of ρ and calculate W (Y (1, 1), K̄, 1) numerically. As long as ρ is positive and less than 1,

it is always profitable for one firm to deviate the conjectured strategy in Proposition 1 and

preempt if the other firm plays the conjectured strategy.

If θ = 0, then the utility of the representative customer is not well defined. However,

we can define the form of logarithm as U(q1, q2) ∼ log (qρ1 + qρ2). Then the price can be

written as Pi(qi, q−i) = (qρi + qρ−i)
−1qρ−1

i . Fig. 3.3 shows the expected profit W (Y (1, 1), K̄, 1)

from the preemption strategy as a function of K̄. Clearly, W (Y (1, 1), K̄, 1) is monotonically

decreasing when K̄ > 1. The myopic strategies form a Nash equilibrium. The result is not

surprising since Heston and Loewenstein have already proved in the perfect substitute case

that if the elasticity is one (when the representative customer has a utility in the form of

log (qi + q−i)), each firm is indifferent between waiting and preempting.
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Figure 3.1: ρ = 1, θ = 0.5

Figure 3.2: ρ = 0.5, θ = 0.5
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Figure 3.3: ρ = 0.5, θ = 0 (equivalent to the case in which the representative customer has
a log utility function.)

3.4 Linear Demand

3.4.1 The Open Loop Equilibrium

Now we study the case in which the inverse demand function is linear. The inverse demand

function is given by

Pi = Yt − βKi − γ
∑
j 6=i

Kj. (3.44)

The value of ρ,0 ≤ ρ = γ/β ≤ 1 measures the degree of product differentiation. When

ρ = 1, the goods are perfect substitute, when ρ = 0, the goods are independent, and when

ρ < 0, the goods are complements. Baldursson (1998), Grenadier (2002) and Back and

Paulsen (2009) all have studied the open loop equilibrium in an oligopoly setting with the
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assumption of linear demand. Our assumption is the same except that the products are not

homogenous.

Again, we assume that there exist two firms in the industry. The instantaneous profit

for firm i (i = 1, 2) can be expressed as

πi = Ki(Y − βKi − γK−i). (3.45)

In the symmetric equilibrium, Ki = K−i and π = Ki(Y − (β + γ)Ki).

Proposition 3.2: 1. The trigger strategy is given by

Y ∗(Ki, K−i) =
λ1δ(2βKi + γK−i + rI)

(λ1 − 1)r
. (3.46)

At equilibrium, Ki = K−i and we have

Y ∗(Ki) =
λ1δ[(2β + γ)Ki + rI]

(λ1 − 1)r
(3.47)

2. The value of marginal investment is given by

m(Yt, Ki, K−i) =
Yt
δ
− 2βKi + γK−i

r
−
I +

2βKi+γKj
r

(λ1 − 1)Y ∗λ1
Y λ1
t . (3.48)

3. In the symmetric equilibrium, the value of firm i is given by

V (Y,Ki) = C(Ki)Y
λ1 +

Y Ki

δ
− (2β + γ)K2

i

r
(3.49)
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where

C(Ki) = −
∫ +∞

Ki

I + 2(2β+γ)K
r

− Y ∗(K)
δ

Y ∗λ1
dK =

r

δλ1(2β + γ)
Y ∗−λ1+1(Ki)+

r(λ1 − 1)

δλ1(2β + γ)

2
δλ1
− 1

δ

2− λ1

Y ∗−λ1+2(Ki).

(3.50)

Proof :

We first calculate the marginal benefit

∂πi
∂Ki

= Yt − 2βKi − γK−i. (3.51)

Let m(Yt, Ki, K−i) denote the value of the marginal investment. m(Yt, Ki, K−i) satisfies the

differential equation,

1

2
σ2Y 2mY Y + (r − δ)Y mY − rm+

∂πi
∂Ki

= 0 (3.52)

and is subject to the boundary conditions:

m(Y ∗, Ki, Kj) = I, (3.53)

∂m

∂Y
= 0. (3.54)

The solution of m(Yt, Ki, K−i) takes the form of

m(Yt, Ki, K−i) =
Yt
δ
− 2βKi + γKj

r
+ AY λ1

t . (3.55)

95



From the boundary conditions (value matching and smooth-pasting), we have

Y ∗t
δ
− 2βKi + γKj

r
+ AY ∗λ1t = I (3.56)

and

1

δ
+ λ1AY

∗λ1−1
t = 0. (3.57)

By solving Equation 3.56 and 3.57, we find the trigger strategy Y ∗(Ki, K−i) andm(Yt, Ki, K−i)

as follows

Y ∗(Ki, K−i) =
λ1

λ1 − 1
δ

2βKi + γK−i + rI

r
(3.58)

and

m(Yt, Ki, K−i) =
Yt
δ
− 2βKi + γK−i

r
− 1

λ1δY ∗λ1−1
Y λ1
t . (3.59)

We then need to find the value function of the firm Vi(Yt, Ki, K−i). The function Vi

satisfies the following differential equation

1

2
σ2∂

2Vi
∂Y 2

+ (r − δ)∂Vi
∂Y
− rVi + π = 0, (3.60)

subject to

∂Vi
∂Ki

(Y ∗, Ki) = I, (3.61)

with π = Ki(Y − (β + γ)Ki) = Y Ki − (β + γ)K2
i .
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The solution of Vi can be expressed as

Vi = C ∗ Y λ1 +
Y Ki

δ
− (β + γ)K2

i

r
. (3.62)

From the boundary condition, we have

C
′
(Ki)Y

∗λ1 +
Y ∗

δ
− 2(β + γ)Ki

r
= I. (3.63)

Solving the above equation, we have

C
′
(Ki) =

I + 2(β+γ)Ki
r

− Y ∗

δ

Y ∗λ1
. (3.64)

From the fact that

2(β + γ)Ki

r
=

2(β + γ)

2β + γ
(
Y ∗(λ1 − 1)

δλ1

− I), (3.65)

we can write C
′
(Ki) as

C
′
(Ki) =

− γI
2β+γ

+ γλ1−2(β+γ)
(2β+γ)δλ1

Y ∗

Y ∗λ1
. (3.66)

One can verify that ∫ ∞
Ki

1

Y ∗λ1
dKi =

r

λ1δ(2β + γ)
Y ∗−λ1+1 (3.67)

and ∫ ∞
Ki

1

Y ∗λ1−1
dKi =

r(λ1 − 1)

λ1δ(λ1 − 2)(2β + γ)
Y ∗−λ1+2. (3.68)
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We then can evaluate C(Ki) by integrating C
′
(Ki)

C(Ki) = −
∫ ∞
Ki

C
′
(K)dK = +

rγI

δλ1(2β + γ)2
Y ∗−λ1+1(Ki)−

r(λ1 − 1)(γλ1 − 2(β + γ))

(λ1 − 2)δ2λ2
1(2β + γ)2

Y ∗−λ1+2(Ki).

(3.69)

The growth option is then given by

G(Y,Ki) = (
2r(β + γ)I

δλ1(2β + γ)2
Y ∗−λ1+1(Ki) +

r(λ1 − 1)(2(β + γ)− γλ1)

(λ1 − 2)δ2λ2
1(2β + γ)2

Y ∗−λ1+2(Ki))Y
λ1 .

(3.70)

3.4.2 A Preemption Strategy

To determine whether there exists a preemption strategy, I again follow the approach in

Paulsen (2006). Suppose K10 = K20 = K0. If both firms were to play the myopic strategy

defined in Proposition 2, then both firms would always hold the same capacity and the

expected present value of the future cash flow would be given by

V (Y,K0, K0) = C(K0)Y λ1 +
Y K0

δ
− (β + γ)K2

0

r
. (3.71)

Now consider the strategy for firm 1: invest K > K0 and keep this capacity constant

until time τ when K2 = K, then play the symmetric trigger. We assume firm 2 plays the

myopic trigger and time τ is the first passage time of Y ∗(K,K).

From time τ on, both firms will hold the same capacities, thus firm 1’s expected payoff is

given by the value function V (Y ∗, K,K) discounted by e−rτ . Up to time τ , firm 1’s capacity
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is fixed and only K2 increases. Firm 1’s expected profit is thus

W (Y,K,K2) = EY,K2 [

∫ τ

0

e−rt(π(Yt, K,K2)− rIK)dt+ e−rτV (Yτ , K,K)]. (3.72)

From the Feynman Kac theorem, W (Y,K,K2) satisfies the ODE

1

2
σ2Y 2WY Y + (r − δ)WY − rW + (π(Y,K,K2)− rIK) = 0, (3.73)

subject to the boundary conditions

WK2(Y (K2, K), K,K2) = 0, (3.74)

W (0, K,K2) = −IK, (3.75)

and

W (Y (K,K), K,K) = V (Y (K,K), K,K). (3.76)

The general the solution is in the form

W (Y,K,K2) =
KY

δ
− K(βK + γK2)

r
− IK + A(K,K2)Y λ1 (3.77)

since π(Y,K,K2) = K(Y − βK − γK2).
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From the value-matching condition, we have

−Kγ
r

+ AK2(K,K2)Y ∗λ1(K2, K) = 0. (3.78)

Solving this equation, we have

AK2(K,K2) =
Kγ
r

Y ∗λ1(K2, K)
. (3.79)

Integrating AK2(K,K2), we can find the expression for A(K,K2),

A(K,K2) = A(K)−
∫ ∞
K2

AK2(K,K)dK = A(K)+
Kγ
r

2β λ1δ
(λ1−1)r

1

(λ1 − 1)(2βK2 + γK + rI)λ1−1
,

(3.80)

which can be simplified into

A(K,K2) = A(K) +
Kγ

2βλ1δ

1

(2βK2 + γK + rI)λ1−1
. (3.81)

From the last boundary condition, we can determine A(K):

A(K,K) = A(K) +
Kγ

2βλ1δ

1

(2βK + γK + rI)λ1−1
= C(K). (3.82)

Solving the equation, we find that

A(K) = C(K)− Kγ

2βλ1δ

1

(2βK + γK + rI)λ1−1
. (3.83)
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Some numerical examples

I set r = 0.12, µ = 0, σ = 0.2 and it is easy to find that λ1 = 3 and λ2 = −1. I first

study the case in which β = 2, γ = 1.5 and the goods are imperfect substitute. In fig. 3.4,

I plot W (Y ∗(1, 1), K̄, 1) as a function of K̄. It is increasing in K̄ up to a value around 1.2

and then decreasing. Hence the symmetric trigger strategy Y ∗(Ki, K−i) is not firm i’s best

response to firm −i’s strategy. I also tried smaller value of γ (not shown here). No matter

how small γ is, as long as γ is positive, the function W (Y ∗(1, 1), K̄, 1) has a local maxima

at some K̄ which is greater than 1. This means that although product differentiation can

decrease competition among firms, the open-loop equilibrium is still not sub-game perfect

since pre-emption strategy exists for arbitrary positive γ values.

I then keep β = 2 and set γ = 0. This is the case in which goods are independent and

firms are monopolists. As we can see from fig. 3.5, W (Y ∗(1, 1), K̄, 1) has a slope of zero at

K̄ = 1 and is decreasing when K̄ > 1. This is expected since firms are monopolists and the

equilibrium strategies do not depend on other firms’ capacities.

Finally, I examine the case in which γ < 0 and the goods are complements. I set β = 2

and γ = −1. The value function W (Y ∗(1, 1), K̄, 1) of firm 1 preempting at Y ∗(1, 1) is shown

in fig. 3.6. Again, we find that W (Y ∗(1, 1), K̄, 1) has a local maxima at K̄ > 1. This

illustrates that even for the case of complimentary goods, each firm has an incentive to

preempt.
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Figure 3.4: β = 2 and γ = 1.5

Figure 3.5: β = 2 and γ = 0
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Figure 3.6: β = 2 and γ = −1

3.5 Conclusion

I develop a continuous time real option model in an oligopoly industry with heterogenous

products. I find that although the heterogenous products assumption lowers the incentive

for each firm to prematurely exercise the growth options, the preemption strategy is still

profitable for each firm when the reverse demand function is either CES or linear with non-

operating flexibility.
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Chapter A

Appendix

Proof of Lemma 1.2.1: It is easy to verify that

vn′ = (1− κh)n
′−nvn + κhv̄

n′∑
τ=n

(1− κh)n
′−n +

n′∑
τ=n

(1− κh)n
′−nεv,τ . (A.1)

Taking expectations in Equation A.1, we have

E(vn′ |Imn ) = (1− κh)n
′−nE(vn|Imn ) + κhv̄(1− (1− κh)n

′−n+1). (A.2)

Substituting into Equation 1.2, the price is equal to

pn =
+∞∑
n′=n

(1− exp (−rh)) exp (−r(n′ − n)h)((1− κh)n
′−nE(vn|Imn ) (A.3)

+ κhv̄(1− (1− κh)n
′−n+1))

=
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|Imn ) +

κhv̄

1− exp(−rh)(1− κh)
.

104



Proof of Lemma 1.2.2: First, one can find that

+∞∑
n′=n

exp(−r(n′ − n)h)(
n′∑
τ=n

xj,τ (vn′ − pτ )) = (A.4)

xj,n

+∞∑
τ=n

(exp(−r(τ − n)h)(vτ − pn))

+ xj,n+1

+∞∑
τ=n+1

(exp(−r(τ − n)h)(vτ − pn+1))

+ xj,n+2

+∞∑
τ=n+1

(exp(−r(τ − n)h)(vτ − pn+2)) + ...

= xj,n ∗ (
+∞∑
τ=n

exp(−r(τ − n)h)vτ −
pn

1− exp(−rh)
)

+ xj,n+1 ∗ (
+∞∑

τ=n+1

exp(−r(τ − n)h)vτ −
exp(−rh)pn

1− exp(−rh)
)

+ xj,n+2 ∗ (
+∞∑

τ=n+2

exp(−r(τ − n)h)vτ −
exp(−2rh)pn
1− exp(−rh)

) + ...

(A.5)

Substituting Equation A.5 into Equation 1.5 and using the result in Equation A.1, we
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have

E[
+∞∑
τ=n

(1− exp(−rh)) exp(−r(n′ − n)h)(
n′∑
τ=n

xj,τ (vn′ − pτ ))|I in−1] = (A.6)

E[xj,n(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn +

κhv̄

1− exp(−rh)(1− κh)
− pn)

+ exp(−rh)xj,n+1(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn+1 +

κhv̄

1− exp(−rh)(1− κh)
− pn+1)

+ exp(−2rh)xj,n+1(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn+1 +

κhv̄

1− exp(−rh)(1− κh)
− pn+2)

...|I in−1]

= E[
+∞∑
n′=n

exp(−r(n′ − n)h)(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn′ +

κhv̄

1− exp(−rh)(1− κh)
− pn′)|I in−1].

Proof of Lemma 1.2.3: We first compute each component of the covariance matrix of

the vector (vn−1, yn) conditional on the market maker’s information set Imn−1:

cov(yn, vn−1|In−1) = cov(Mβ(vn−1 − ĝn−1), vn−1|In−1) = Mβvar(vn−1|In−1) = MβΣv (A.7)

var(yn|Imn−1) = M2β2Σv + σ2
uh. (A.8)
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Then under the market maker’s belief, we have the joint distribution of (vn−1, yn)′

vn−1

yn

 ∼ N(

v̂n−1

0

 , (A.9)


Σv MβΣv

Σvνh MβΣvνh

MβΣv M2β2Σv + σ2
uh

).

Then applying the projection theorem, we have

λ

1− κh
= (M2β2Σv + σ2

uh)−1MβΣv, (A.10)

which can be reduced to equation (1.14).

Applying the projection theorem again, we can derive the variance of ηn as

var(ηn) = var(vn−1|In−1)− λ

1− κh
MβΣv (A.11)

= Σv −
λ

1− κh
MβΣv

=
Σvσ

2
uh

ΣvM2β2 + σ2
uh
.

The uncertainty of market maker’s posterior belief about gn is given by

var(vn|Imn ) = var((1− κh)ηn + εv,n) = (1− κh)2var(ηn) + σ2
vh. (A.12)
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By stationary condition, we must have var(vn|Imn ) = Σv which leads to equation (1.15).

Proof of Lemma 1.2.4: From equations (1.1) and (1.12), market maker’s estimation

error on vn is

vn − v̂n = (1− κh)(vn−1 − v̂n−1)− λyn + εv,n. (A.13)

Substituting for vn − v̂n in equation (1.18), we find

V (vn−1, v̂n−1) = maxxi,n(xi,n((1− κh)(vn−1 − v̂n−1)− λ(xi,n +Xi−,n)) (A.14)

+ e−rh(B((1− κh)(vn−1 − v̂n−1)− λ(xi,n +Xi−,n))2

+ λ2σ2
uh+ σ2

vh) + C)).

The first order condition yields

xi,n =
(1− 2e−rhBλ)(1− κh)(vn−1 − v̂n−1) + λ(2e−rhBλ− 1)Xi−,n

2λ(1− e−rhBλ)
. (A.15)

The second order condition requires that

e−rhBλ− 1 < 0. (A.16)

Because of symmetry argument, the only possible equilibrium is one in which their strate-

gies are identical. We should have Xi−,n = (M − 1)xi,n, which leads

xi,n =
(1− 2e−rhBλ)(1− κh)

λ(M(1− 2e−rhBλ) + 1)
(vn−1 − v̂n−1) = β(vn−1 − v̂n−1), (A.17)
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where

β =
(1− 2e−rhBλ)(1− κh)

λ(M(1− 2e−rhBλ) + 1)
. (A.18)

Substituting for xi,n back in the Bellman equation and matching the (vn−1 − v̂n−1)2 term

and constant term, we find

B = β[1− κh− λMβ] + e−rhB(1− κh− λMβ)2 (A.19)

which can be reduced to

B =
(1− κh)2(1− e−rhBλ)

λ(1 +M − 2Me−rhBλ)2
, (A.20)

and

C =
e−rhB(λ2σ2

u + σ2
v)h

1− e−rh
. (A.21)

Proof of Proposition 1.2.1:

First, we define q = e−rhλB and Z = e−rh(1− κh)2. From equation (1.20), we have

f(q) = 4M2q3 − 4M(M + 1)q2 + ((M + 1)2 + Z)q − Z = 0. (A.22)

The cubic equation f(q) has three real roots:

q1 =
M + 1

3M
(A.23)

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3
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q2 =
M + 1

3M
(A.24)

− 1 + i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1− i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3

and

q3 =
M + 1

3M
(A.25)

− 1− i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1 + i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3.

It can be easily verified that for M > 1, we have

f(0) = −Z < 0, f(1/2) => 0, f(1) = (M − 1)2 > 0. (A.26)

In addition, the quadratic function f ′(q) = 0 has the two solutions

q4,5 =
2(M + 1)±

√
4(M + 1)2 − 2((M + 1)2 + Z)

2M
. (A.27)

The solution with the positive sign

q5 ∈ (
1

2
, 1). (A.28)

Equations (A.26) and (A.28) imply that 0 < q1 <
1
2

and 1
2
< q3 < q4 < 1.

From the second order condition (equation (A.16)) we have q < 1. In addition, from
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equation (1.19) any root that makes economically feasible must lie in the range q ∈ (0, 1
2
).

The only possible solution is q1. From equation (1.14) and equation (1.14), equation (1.19)

can be rewritten as

λβ

1− κh
=

ΣvMβ2

ΣvM2β2 + σ2
uh

=
1− 2q1

1 +M(1− 2q1)
. (A.29)

From Equation A.29, one can find that

β =

√
σ2
u(1− 2q1)h

ΣvM
. (A.30)

Substituting Equation A.30 into Equation 1.15, we can find the expression for Σv

Σv =
σ2
vh

1− (1−κh)2

M(1−2q1)+1

. (A.31)

Then, from Equations (A.30, 1.14), (A.24), (1.21) and the expression for q1, we can derive

the remaining parameters β, λ, B and C, respectively with the expressions for β and λ given

by

β =

√
(1− 2q1)(1− (1−κh)2

M(1−2q1)+1
)

M
, (A.32)

λ =
(1− κh)

√
Mσv

√
(1−2q1(1+M(1−2q1)))
1+M(1−2q1)−(1−κh)2

Mσu(1− 2q1) + σu
. (A.33)
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Proof of Proposition 1.2.2: We first define

Sv = Σv/h, (A.34)

and

q0 =
M + 1

3M
− 1

6M

3

√
(M + 1)3 − 18M − 9 +

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3(A.35)

− 1

6M

3

√
(M + 1)3 − 18M − 9−

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3.

Then, as h approaches 0, equations (A.29) and (1.15) become

M2Svβ
2

M2Svβ2 + σ2
u

=
M(1− 2q0)

1 +M(1− 2q0)
(A.36)

Svσ
2
u

M2β2Sv + σ2
u

+ Σ2
v = Sv. (A.37)

The set of the above nonlinear equations has the solution

Sv =
σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(A.38)

and

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
. (A.39)
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By the continuity argument, the limiting results of Σv and β become

lim
h→0

Σv

h
= Sv =

σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(A.40)

and

lim
h→0

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
. (A.41)

Then, from equations (1.14), (A.28) and (1.21), we obtain the following asymptotic results

for λ, B and C:

lim
h→0

λ =
σv
σu

√
1

1 +M(1− 2q0)
, (A.42)

lim
h→0

B =
q0σu
σv

√
1 +M(1− 2q0), (A.43)

lim
h→0

C = q0σuσv(
√

1 +M(1− 2q0) +

√
1

1 +M(1− 2q0)
). (A.44)
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Chapter B

Appendix

Proof of Lemma 2.2.1: It is easy to verify that

vn′ = (1− κh)n
′−nvn + κhv̄

n′∑
τ=n

(1− κh)n
′−n +

n′∑
τ=n

(1− κh)n
′−nεv,τ . (B.1)

Taking expectations in Equation B.1, we have

E(vn′|Imn ) = (1− κh)n
′−nE(vn|Imn ) + v̄(1− (1− κh)n

′−n+1). (B.2)

Substituting into Equation 2.3, the price is equal to

pn =
+∞∑
n′=n

(1− exp (−rh)) exp (−r(n′ − n)h)((1− κh)n
′−nE(vn|Imn ) (B.3)

+ κhv̄(1− (1− κh)n
′−n+1))

=
(1− exp (−rh))

1− exp (−rh)(1− κh)
E(vn|Imn ) +

κhv̄

1− exp(−rh)(1− κh)
.
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Proof of Lemma 2.2.2: First, one can find that

+∞∑
n′=n

exp(−r(n′ − n)h)(
n′∑
τ=n

xτ (vn′ − pτ )) = (B.4)

xn

+∞∑
τ=n

(exp(−r(τ − n)h)(vτ − pn))

+ xn+1

+∞∑
τ=n+1

(exp(−r(τ − n)h)(vτ − pn+1))

+ xn+2

+∞∑
τ=n+1

(exp(−r(τ − n)h)(vτ − pn+2)) + ...

= xn ∗ (
+∞∑
τ=n

exp(−r(τ − n)h)vτ −
pn

1− exp(−rh)
)

+ xn+1 ∗ (
+∞∑

τ=n+1

exp(−r(τ − n)h)vτ −
exp(−rh)pn

1− exp(−rh)
)

+ xn+2 ∗ (
+∞∑

τ=n+2

exp(−r(τ − n)h)vτ −
exp(−2rh)pn
1− exp(−rh)

) + ...

(B.5)

Substituting Equation B.5 into Equation 2.6 and using the result in Equation B.1, we
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have

E[
+∞∑
τ=n

(1− exp(−rh)) exp(−r(n′ − n)h)(
n′∑
τ=n

xτ (vn′ − pτ ))|I in−1] = (B.6)

E[xn(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn +

κhv̄

1− exp(−rh)(1− κh)
− pn)

+ exp(−rh)xn+1(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn+1 +

κhv̄

1− exp(−rh)(1− κh)
− pn+1)

+ exp(−2rh)xn+1(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn+1 +

κhv̄

1− exp(−rh)(1− κh)
− pn+2)

...|I in−1]

= E[
+∞∑
n′=n

exp(−r(n′ − n)h)(
(1− exp (−rh))

1− exp (−rh)(1− κh)
vn′ +

κhv̄

1− exp(−rh)(1− κh)
− pn′)|I in−1].

Proof of Lemma 3.1: At period n, under the market maker’s belief, we have the joint

distribution of (vn−1, xn + zn + un)′ conditional on her information set Imn−1

 vn−1

xn + zn + un

 ∼ N(

v̂n−1

0

 , (B.7)

 Σv βΛv + (γ + θ)Ωv

βΛv + (γ + θ)Ωv β2Λv + (γ + θ)2Ωv + σ2
uh

).

Then applying the projection theorem on equation (2.1), we have

λ

1− κh
=

βΛv + (γ + θ)Λv

β2Λv + (γ + θ)2Ωv + σ2
uh
. (B.8)
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Applying the projection theorem to find the conditional variance, we have

var(ηn) = Σv −
(βΛv + (γ + θ)Λv)

2

β2Λv + (γ + θ)2Ωv + σ2
uh
. (B.9)

From equations (2.1), market maker’s posterior belief about vn is

vn = (1− κh)v̂n−1 + κhv̄ + λ(xn + zn + un) + (1− κh)ηn + εv,n. (B.10)

The stationary condition requires that

Σv = (1− κh)2var(ηn) + σ2
vh, (B.11)

which leads to Equation (2.18).

Proof of Lemma 2.3.2: Under the less informed trader’s belief, we have the joint

distribution of (vn−1, xn + un)′ conditional on her information set I ln

 vn−1

xn + un

 ∼ N(

 v∗n−1

γ(v∗n−1 − v̂n−1)

 ,

 Λv βΛv

βΛv β2Λv + σ2
uh

). (B.12)

Applying the projection theorem on equation (2.20), we have

φx
1− κh

=
βΛv

β2Λv + σ2
uh

(B.13)
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and

var(εn) = Λv −
β2Λ2

v

β2Λv + σ2
uh
. (B.14)

Since the less informed insider observes a signal in the form sn = ρεv,n+
√

1− ρ2en, then

under the less informed insider’s belief,

εv,n = ρsn + ηs,t (B.15)

and

var(ηs,t) = (1− ρ2)σ2
vh. (B.16)

Thus, the less less informed trader’s posterior belief about vn is

vn = (1− κh)v∗n−1 + κhv̄ + φ(xn + un − γ(v∗n−1 − v̂n−1)) + (1− κh)εn + ρsn + ηs,n. (B.17)

The steady state condition requires that

Λv = (1− κh)2(Λv −
β2Λ2

v

β2Λv + σ2
uh

) + (1− ρ2)σ2
vh. (B.18)

Proof of Lemma 2.3.3: Using the results in section 2.3.2 and 2.3.3, we first compute
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the less informed trader’s estimation error of vn at period n

vn − v∗n = (1− κh)vn−1 + κhv̄ + εv,n − [(1− κh)v∗n−1 + κhv̄ (B.19)

+ φ(xn + un − γ(v∗n−1 − v̂n−1)) + ρsn]

= [1− κh](vn−1 − v∗n−1)− φ(xn + un)

+ φγ(v∗n−1 − v̂n−1) + εv,n − ρsn,

then compute the market maker’s estimation error relative to the less informed trader’s,

v∗n − v̂n = (1− κh)v∗n−1 + κhv̄ + φ(xn + un − γ(v∗n−1 − v̂n−1)) + ρsn (B.20)

− [(1− κh)v̂n−1 + κhv̄ + λ(xn + zn + un)]

= (1− κh− φγ)(v∗n−1 − v̂n−1)

+ (φ− λ)(xn + un)− λzn + ρsn,

and finally the market maker’s estimation error

vn − v̂n = (1− κh)(vn−1 − v̂n−1)− λ(xn + zn + un) + εv,n. (B.21)

Substituting for the above three equations into the Bellman equation (2.26), the more

119



informed trader solves the following problem:

V (vn, v
∗
n, v̂n) = maxxn{xn[(1− κh)(vn−1 − v̂n−1)− λ(xn + zn)] (B.22)

+ e−rh[A((1− κh)(vn−1 − v∗n−1)− φxn + φxγ(v∗n−1 − v̂n−1))2

+ A(φ2σ2
uh+ (1− ρ2)σ2

vh)

+ B((1− κh− φγ)(v∗n−1 − v̂n−1) + (φ− λ)xn − λzn)2

+ B((φ− λ)2σ2
uh+ ρ2σ2

vh)

+ C((1− κh)(vn−1 − v∗n−1)− φxn + φγ(v∗n−1 − v̂n−1))

× ((1− κh− φγ)(v∗n−1 − v̂n−1) + (φ− λ)xn − λzn)

− Cφ(φ− λ)σ2
uh+ E]}.

After simplification, the first order condition of the better informed trader’s value function

with respect to xn is

2τxn = [1− κh− 2e−rhAφ(1− κh) (B.23)

+ e−rhC(φ− λ)(1− κh)](vn−1 − v∗n−1)

+ [1− κh− λθ − 2e−rhAφγ

+ 2e−rhB(φ− λ)(1− κh− φγ − λθ)

+ e−rhC(φ− λ)φγ − e−rhCφ(1− κh− φγ − λθ)](v∗n−1 − v̂n−1)
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and the second order condition is

τ = λ− e−rh(Aφ2 +B(φ− λ)2 − Cφ(φ− λ)) > 0. (B.24)

Rewriting the first order condition leads to the expression xn = β(vn − v∗n−1) + γ(v∗n−1 −

v̂n−1) with the β and γ defined in equations (2.27) and (2.29).

Substituting xn back into the Bellman equation, and by matching the coefficient of (vn−

v∗n−1) term, the (vn− v∗n−1)(v∗n−1− v̂n−1), the (v∗n−1− v̂n−1)2 term and the constant term, we

are able to setup the nonlinear equations (2.31 to 2.34) that determine A, B, C and E.

Proof of Lemma 2.3.4: We first substitute for expressions of v∗n− v̂n and vn− v̂n found

in previous proof into the Bellman equation (2.35). The less informed trader then solves the

following optimization problem:

V2(v∗n−1, v̂n−1) = maxzn{zn[(1− κh− λγ)(v∗n−1 − v̂n−1)− λzn] (B.25)

+ e−rhF [(1− κh− λγ)(v∗n−1 − v̂n−1)− λzn]2

+ e−rhF [(φ− λ)2β2Λg + (φx − λ)2σ2
uh

+ ρ2σ2
gh] + e−rhG}.

After simplification, the first order condition of the less informed trader’s value function

with respect to zn is

zn =
(1− 2e−rhλF )(1− κh− λγ)

2λ(1− e−rhλF )
(v∗n−1 − v̂n−1) (B.26)
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and the second order condition is

λ(1− e−rhλF ) > 0. (B.27)

Since the optimal strategy is assumed to be zn = θ(v∗n− v̂n) which is proportional to v∗n− v̂n,

we have

θ =
(1− 2e−rhλF )(1− κh− λγ)

2λ(1− e−rhλF )
. (B.28)

Substituting for zn = θ(v∗n − v̂n) back into the objective function and matching the

coefficients of the quadratic term (v∗n−1− v̂n−1)2 and the constant term, we are able to setup

the nonlinear equations (2.37) and (2.39) which determine F and G.

Proof of Proposition 2.3.2:

To study the asymptotic properties of the equilibrium for small h, we make the following

assumptions:

λ ' λ0 − a
√
h, (B.29)

φx ' φ0 − a
√
h, (B.30)

Ωv ' Oh, (B.31)

Λv ' L
√
h, (B.32)

Σv ' L
√
h+Oh, (B.33)

β ' b
√
h, (B.34)
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γ ' γ0 (B.35)

θ ' θ0 (B.36)

Substituting the asymptotic forms of λ, φ, Σv Λv, Ωv, and β into equation 2.17, we have

λ =
(γ0 + θ0)O + bL

(γ0 + θ0)2O + σ2
u

, (B.37)

into Equation 2.23, we have

φ =
bL

σ2
u

, (B.38)

into Equation 2.36, we have

θ0 =
(1− 2λF0)(1− λγ0)

2λ(1− λF )
, (B.39)

into Equation 2.37, we have

F = θ0(1− λ(γ0 + θ0)) + F0(1− λ(γ0 + θ0))2, (B.40)

B0 = γ0(1− λ(γ0 + θ0)) +B0(1− λ(γ + θ))2, (B.41)

and into Equation 2.29, we have

γ0 =
1− λθ0 − 2A0φγ0 + 2B(φ− λ)(1− φγ0 − λθ) + C(φ− λ)φγ0 − Cφ(1− φγ0 − λθ0)

2τ0

,

(B.42)

where τ0 = λ− φ+ A0φ
2 −B0(φ− λ)2.
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Substituting the asymptotic forms into Equation 2.27, the constant term should equal to

zero which leads to

1− 2A0φ0 − C0(φ0 − λ0) = 0, (B.43)

and the
√
h term should equal to b

√
h, which leads to

b− A0a

λ0 − φ0 + A0φ2
0 −B0(φ0 − λ0)2

= 0. (B.44)

We then substitute the asymptotic expressions of β, λ, φx into equation 2.31, match the

coefficient of the
√
h term and reach the following equation:

−λb2 − (r + 2κ)A0 + 2A0ab+ Aφ2b2 − φb2C0(φ− λ) = 0. (B.45)
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