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Abstract

This article discusses the interplay in fractal geometry occurring between computer
programs for developing (approximations of) fractal sets and the underlying dimension
theory. The computer is ideally suited to implement the recursive algorithms needed to
create these sets, thus giving us a laboratory for studying fractals and their corresponding
dimensions. Moreover, this interaction between theory and procedure goes both ways.
Dimension theory can be used to classify and understand fractal sets. This allows us, given
a fixed generating pattern, to describe the resultant images produced by various programs.
Thus, dimension theory can be used as a tool which enables us to predict and classify
behavior of certain fractal generating algorithms.

We also tie these two perspectives in with some of the history of the subject. Four
examples of fractal sets developed around the turn of the century are introduced and studied
from both classical and modern viewpoints. Then, definitions and sample calculations of
fractal and Hausdorff-Besicovitch dimension are given. We discuss various methods for
extracting dimension from given fractal sets. Finally, dimension theory is used to classify
images.

*On sabbatical leave from the Department of Mathematics and Statistics, The American University.
tResearch partially supported by AFOSR Grant F49620-94-1-0196.






1 Introduction

Fractal geometry lies at an intersection of nature, art and many areas of science — mathematics,
physics, computer science, electrical and mechanical engineering, chemistry, economics, etc. (see
Pickover [15]). The theory has evolved into an extension (but by no means a replacement) of our
current models of the world, which are based on Euclidean geometry and smooth generalizations
of that geometry, e.g., differentiable manifolds. It includes highly detailed objects produced by
repeated application of maps, while Euclidean geometry includes objects made by the conglom-
eration of Euclidean shapes — circles, lines, polygons, etc. — each of which can be generated by
simple maps. Both visual inspection and statistical analysis® lead us to believe that much of the
natural world (e.g., clouds, mountains, coastlines, trees (see Mandelbrot [12])) and many man—
made objects (e.g., spatial distributions of communication networks, temporal flow of messages
in these networks, economic distribution of resources (see Casey[3] and Mandelbrot [12])) can be
modeled by this theory.

This article discusses a very interesting interplay in the theory of fractal geometry, occurring
between computer programs for developing (approximations of) fractal sets and the underlying
dimension theory. The computer is ideally suited to implement the recursive algorithms needed
to create these sets, thus giving us a laboratory for studying fractals and their corresponding
dimensions. In many articles, the flow of ideas is from procedure to theory. Images are generated,
then analyzed. However, this interaction between theory and procedure goes both ways. In this
paper we discuss how dimension theory can be used to classify and understand fractal sets,
enabling us to understand the outcome of fractal generating procedures. We can, for example,
start with a fixed generating pattern and predict and classify the resultant image, understanding
its properties directly from its generator.

We will also tie these two perspectives in with some of the history of the subject. Four

examples of fractal sets developed around the turn of the century are introduced and studied from

'Robust methods based on Pareto-Levy distributions can be used to measure data that exhibits a fractal
structure (see [3]).



both classical and modern viewpoints. We include definitions and sample calculations of fractal
and Hausdorff-Besicovitch dimension, and discuss various methods for extracting dimension from

given fractal sets.

1.1 The Fracmkr Algorithm

Figures for the article were generated by a recursive algorithm (Fracmkr) developed by the
author and Nicholas Reingold [4]. This is an efficient algorithm which produces (approximations
of ) self-similar fractal sets by a repeated scaling, translation, reflection, and/or rotation of a fixed
pattern or set of patterns. The resultant sets strictly preserve fractal scaling. The algorithm
complements Mandelbrot’s The Fractal Geometry of Nature, in that it can be developed into a
program which reproduces the self-similar fractals in Mandelbrot (approximately 45% of the
figures in the book).

Fracmkr is a “pattern rewriting system” in which a given geometric pattern is drawn
repeatedly after suitable scaling and placement. The system uses two patterns — an initial
configuration, or base, and a generating pattern, or seed. Generating schemes are patterns with
some built-in information on orientation and connection in later levels of iteration. This is
exactly how one would begin to study self-similar patterns with a paper and pencil. In this
system, if you can draw seed and base patterns on a piece of paper, identifying vertices and
orientation schemes, then you can produce iterates of the seed on the base in the computer. The
only overhead between levels of recursion is a single boolean variable. Consequently, the program
used to generate the patterns is extremely portable. Figures for the article can be generated on

any PC. See [4] for a more complete description of the procedure and a listing of the code.

1.2 Some Definitions

We now must establish some terminology. Let R™ denote n—dimensional Euclidean space.

We say a mapping f : R" — R™ is a contraction if there exists an «a, 0 < a < 1 such that

1f(2) = f)l < ellz -yl (1)
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for all z, y in the domain of f. We say that a set S is tnvariant under a collection of contraction
mappings, say {my,me,...,my}, if
Using these last two definitions, we define a self-similar set as a set which is invariant under a

collection of contraction maps such that m;S N m;S is at most a countable number of points

when 7 # j (see Hutchinson? [11]).

2 Fractal Geometry: Four Classical Examples

The theory of fractal geometry goes back at least to K. Weierstrass, who constructed a fractal
set in his development of a continuous but nowhere differentiable curve?® in 1872 (see Edgar [5]).
The first fractal sets were developed as examples and counterexamples necessary in the natural
development of mathematics, e.g., a totally disconnected perfect set, a curve of infinite length
without a tangent contained in a finite region, or a space-filling curve. From our modern per-
spective, we see that they all exhibit both the scale invariance and intricate detail which group
them together as fractals. It is important to note the years during which these mathematical
constructs appeared. Although we may think of fractals as modern objects generated by com-
puters, the mathematical foundations of fractal geometry are over one hundred years old (see
Mandelbrot [12]). Moreover, our fascination with fractals began much earlier (see Pickover [15]).

The four examples below are important in the development of the theory in analysis,
topology, and geometry (see Falconer [6, 7], Federer [8], Hocking and Young [9], Huriewicz and
Wallman [10], and Munkres [13]). All are currently being used in the mathematical modeling of
natural and man—-made phenomena (see Casey [3], Mandelbrot [12], and West [17]). The sets are
all self-similar. We include the collection of contraction mappings associated with each set in
the description, and remark that the fractal sets may be constructed directly from the mappings

by using M. Barnsley’s iterated function systems (see Barnsley [1]).

2More sophisticated overlap conditions are possible (see [11]). This will be sufficient for our purposes.
3A curve with similar properties was developed by B. Bolzano in 1830. He did not publish his result.
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2.1 The Cantor Set

G. Cantor (1884)

The ancient Greeks felt that in order to be indefinitely subdivisible a body had to be
a continuum. In 1884, Cantor produced a set showing that this was not the case. This set,
the Middle Thirds Set C, is constructed as follows. Given [0, 1], remove the open middle third
segment, (%, %) Then, remove the open middle thirds of the remaining two segments, i.e., remove
(3,2) from [0, 3] and (I, 3) from [,1]. Repeat. At the n‘" stage of this process, there will be 2"
segments, each of length (1/3)". Continue ad infinitum.

The total length of the removed set is (1/3) 32,(2/3)™, which equals one. However, the
remaining set C is a perfect, and thus an uncountable set which is totally disconnected? (see [9]).

The Cantor set can be generated by the maps

1 1 2
ml(m) = giL‘ y mg(l') = §CE+ 5 .

2.2 Space-Filling Curves

G. Peano (1890)

Peano developed a sequence of continuous curves, {P,}, defined on [0, 1] which converge to
a continuous curve P that hits every point in the square [0,1] x [0, 1], i.e., P is space-filling.®

The curve P; is shown in Figure 1. To produce P, divide [0, 1] x [0, 1] into four equal
subsquares, ordering them clockwise from the lower left hand corner. Then place four copies
of the Py curve, scaled by 1/2, and rotated by —=/2, 0, 0, and 7/2, respectively, into the four

subsquares. The curve P,,; is produced similarly, using four scaled and rotated copies of P,.

4Infinitely many other Cantor constructions are possible, e.g., removing the second and fourth sections of an
interval divided into equal fifths.

5Technically, Peano curves are not fractal. However, they are constructed in the same fashion as self-similar
fractals, and have the property that the limit curve P has a dimension which is an integer value greater than any
curve P, in the construction. (We can construct volume-filling curves, etc.) Mandelbrot [12] devotes chapter 7
of his book to a discussion of space filling curves.




The P,,, curve is no further away than (1/1/2)(1/2)**! from any point in [0, 1] x [0, 1] (also see
[13], pp. 271-74). Various approximations of Peano curves can be produced using the algorithm.

Let Z = [z y]T be a vector in the Cartesian plane R2. Let 6 € [0,27) be an angle, and let

cos(f) —sin(8)
sin(f)  cos(6)

1

be the rotation matrix for angle . Then, the contraction mappings under which P is invariant

are

2.3 Snowflake Curves

H. von Koch (1904)

Koch’s snowflake curve is an example of a Jordan curve (a closed, non—intersecting loop)
of infinite length fitting inside a bounded region. The limit curve also has a tangent nowhere.

The snowflake curve® consists of three Koch arcs K joined at the vertices of an equilateral
triangle. The Koch arc construction is to replace the segment [0, 1] with a seed pattern consisting

of four segments of length 1/3 with endpoints

0,0, G0, 2. %), .0, 1,0).

Then, each of the four segments is replaced by the seed pattern, and so on. At the n®* stage the
curve consists of 4" segments of length (1/3)". As n goes to infinity, the total length also goes
to infinity.

The contraction mappings under which K is invariant are

ml(a'c') = CI?, mg(.'i") = %R(.,T/g)f—}" [0 %]T y
1
3

1
3
m3(®) = LRa/mZ +[L BT, ma(Z) =1z +[20]".

6The snowflake curve is not self-similar. However, it consists of three self-similar pieces.



2.4 Sierpinski Gasket

W. Sierpinski (1915)

Starting with a filled—in equilateral triangle, perform a Cantor-like removal process by
removing the interior of the middle equilateral triangle whose vertices are the midpoints of the
three edges. Repeat this process on the three remaining filled—in triangles, and then the nine
remaining ones, and so on. All of the points in the remaining set are vertices of some removed
triangle, and thus are branch, or ramification, points. Figure 2 gives an approximation of the
gasket by a non-intersecting arc.

This construction is due to Sierpinski. The set S, is invariant under

1 1 1 1 13
— —_ — ’ A — 5 - 0 T , A — _ ;7 - vy T ]

my (%) = =% , my(%) 5%+ [2 1", ms(Z) 58+ 175 ]
These four examples provide a good framework in which to introduce the definition of a
fractal, given in the next section. In order to do this, we need to discuss dimension theory.

Understanding even the definitions in this theory requires some technical background, which can

be found in [9] and [13].

3 Fractals, Scaling, and Dimension

We can “define” a fractal as a set which :

(i.) has detailed fine structure. Fractals have the property that all magnifications of some or
all of the set reveals intricate detail. This is unlike the differentiable curves and surfaces

we encounter in calculus. Repeated enlargements of every differentiable curve or surface

reveal a line or a plane, respectively.

(ii.) has scale invariance. All magnifications of the fractal reveal a set which is exactly the
same (self-similarity) or statistically or asymptotically the same (statistical or quasi— self—
similarity). This is related to the first property. However, there are self-similar sets with

no detailed fine structure, e.g. a line.



(iii.) 4s produced recursively. We can generate these sets by repeated application of some collec-

tion of maps. These maps provide a simple encoding of these complicated sets.

(iv.) can not be described easily in terms of Euclidean geometry. Although the sets can be
constructed from the objects studied under classical geometry, the structure of the limit

set is an uncountable collection of points in a complicated arrangement.

(v.) you know is a fractal when you see it. This may be the only definition upon which everyone

can agree.

The mathematical definition is more complicated and very technical.

Definition 3.1 A fractal is a set whose Hausdorff-Besicovitch dimension strictly exceeds its

topological dimension (B. Mandelbrot (1975) [12], pg. 15).

3.1 Dimension Theory

In order to understand the definition of a fractal, we first need to calculate the dimension of
a given set. Dimension is the primary tool used in classifying fractal sets. The topological
and Hausdorff-Besicovitch dimensions (denoted Dy and Dgp, respectively) are very technical.
Topological dimension can be thought of as an integer n which describes which Euclidean n—space
R" that a given set resembles locally. This dimension is invariant under homeomorphisms’, and
therefore is an accurate determination of topological information about the set. It does not,
however, measure detailed geometry and scaling structure. For example, every Cantor set, any
countable set, and a set consisting of a single point all have topological dimension 0. All non—
intersecting curves have Dy = 1. Proof of these facts are difficult, and involve machinery from
algebraic topology. Many of the fundamental results of topological dimension are developed in
Huriewicz and Wallman’s Dimension Theory [10]. Also see [4], [6], and [7].

Fortunately, there is a more accessible and simplified version of dimension — the fractal

or Kolmogorov-Mandelbrot dimension Dy It was introduced by L. Pontrjagin (1932), and

7A homeomorphism is a one-to—one onto continuous mapping with a continuous inverse.
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studied by A. Kolmogorov (1950’s), L. Richardson (1960’s), and Mandelbrot (1970’s), among
others (see [12] for more information). The fractal dimension of a set is a key ingredient in
identifying a fractal set. Mandelbrot [12] assigns a Dy s value with most of the images in his
book. For self-similar and nearly self-similar sets with an intricate geometry, fractal dimension
can not only measure the structure of a set, but can also be determined experimentally (see [1],
[3], [12], and section 3.2). Assuming this definition, we define a fractal as a set whose fractal
dimension strictly exceeds its topological dimension. In most cases, the fractal dimension of a
fractal is a non-integer number. We shall see that the definition of a fractal given above reflects
properties (i.), (ii.), and (iv.) in the list above. A theorem of M. Barnsley and S. Demko gives
that all fractals can be approximated arbitrarily closely by repeated applications of a set of maps
(see [1], chapter 3).

Eight examples will be discussed. The first three are a point, the unit interval I = [0, 1],
and the unit square 12 = [0,1] x [0,1]. The next four were developed in the previous section —
C, P, K, and S;. The final example is the set H = {1,1,1,...} u{0}.

Consider any closed and bounded set in n-dimensional Euclidean space, R™. Let r be any

positive number, and let A/(r) be the minimal number of closed line segments, balls, or spheres

of radius r needed to cover the set. Then we want to calculate a number D such that as r — 0,
N(r)-rP ~1 (Scaling Relationship). (3)

Consider first a single point. For any r > 0, we need only one line segment to cover. Thus,
N(r)- P =1-7P =1 for Dy = 0.

Next consider [0,1]. Let [2] be the smallest integer greater than or equal to any real
number z. Given any r > 0, we need [1/r] line segments of length 7 to cover [0,1]. Thus
N(r)y-rP =[1/r] -rP ~ 1, for Dgp = 1.

The set [0,1] x [0,1] can be covered by [1/r]> balls of radius , so in this case Dy, is 2.

In these first three examples, Dg s agrees with the topological dimension. The next exam-

ple breaks from this notion.

Consider the Cantor Middle Thirds set constructed in 2.1. At the n'* stage of its con-
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struction, we need 2" line segments of radius (1/3)" to cover. As this is true for r restricted to

{(1/3)*} and for all n, n =1,2,...,

N(r)-rP =27(1/3)"P.

Therefore,
N(r)-rP = 1
& log(2(1/3)"P) = logl
& n(log2—-Dlog3) = 0.

(where log denotes the natural logarithm). Thus, for r restricted to {(1/3)"}, n = 1,2,...
Dgu(C) = log2/log 3.

These examples motivate the following:

Definition 3.2 The fractal, or Kolmogorov—Mandelbrot, dimension Dy (X) of a set X is:

_ i Jog (M(r))
Dgp(X) = lim Tog(1/r) | (4)

The number Dy s is the value necessary to preserve the scaling relationship N'(r) - r? ~ 1

as r — 0. Calculation of Dy, is simplified by the fact that the continuous variable r may be

replaced by the discrete variable r, = p", 0 < p< 1, n=1,2,.... That is, if

o log W)
A= 0 Tog(1/m)

: (5)
then A = Dy (see [1], pg. 176). This allows us to derive the fractal dimension of a self-similar
fractal set directly from its generating seed. Let’s look at the dimension of some of the sets from
the previous section.

First we see that for the Cantor Middle thirds set, Dgp(C) = log2/log3. Next, consider

the Koch arc K described in section 2.3. At the n'* stage it consists of 4" segments of length

(1/3)". Therefore, for r =1, = (1/3)",

N(r)-rP = 1
& log(4™(1/3)"P) = logl
& n(log4—Dlog3) = 0.
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Thus,
log 4

At the n'* stage of construction, the Sierpinski gasket (2.4) consists of 3" equilateral trian-
gles with sides of length (1/2)". Therefore, calculating as above, we see that

log 3
Dgp(S,) = ——.
() log 2
Finally, consider the construction of the Peano curve given in section 2.2. At the n®* stage
it consists of 2 - 4 line segments of length (v/2/2)(1/2)". So, for r, = (v/2/2)(1/2),

log(2-4") lim log(2 - 4™)

) e (1/2)log(2- 47)

DKM(P) = lim

1
"% log (<\/§/2>(1/2>n

We also introduce the Hausdorft-Besicovitch dimension. This dimension is an essential tool
of geometric measure theory. Since it requires sophisticated mathematical tools, we give only
the definition and the dimensions of the examples, referring the interested reader to Falconer
[6, 7], Federer [8], and Taylor [16] for details. These references also include detailed discussions

of other related dimensions.

Definition 3.3 The Hausdorfl-Besicovitch Dimension Dgg(X) of a set X: Let X be a subset of
R", and consider the set of all countable covers of X by sets of diameter less than r > 0. Let r,

be the diameter of the n'* set in any given cover. Then, for 8 > 0, the 3** Hausdorff-Besicovitch

outer measure of X is

'uﬂ (X) = }"l—r)% |:{C(1){rlefx.‘s}

> of]]. ©)

n=1

The Hausdorff—-Besicovitch dimension is then
Dpp(X) = inf {8 : ph(X) =0} . (7)
(F. Hausdorff (1919), A. Besicovitch (1928) [6], pp. 7-10)
Equivalently, we could define

Dip(X) = sup {8 : pj(X) = 0o} . (8)
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Clearly, the difference between Dgyp and Dg s is the choice of the covering sets. The
flexibility of choosing arbitrary sets of diameter less than r, as opposed to line segments, disks,
or balls of radius r, makes the HB dimension a much finer measurement, albeit more difficult to

calculate. However, for self-similar sets, we have the following useful theorem.
Theorem 3.1 (Hutchinson [11]) If X is self-similar, then
Dgu(X) = Dpp(X). (9)

Therefore, we see that for the examples above, we have that Dyg(I) = 1, Dgp(I?) = 2,
Dyp(C) = %3, Dus(K) = (&5, Dup(S,) = &3, and Dyp(P) = 2. Also, as self-similar
sets strictly preserve the scaling relationship given in the previous section, Dgyg will reflect the
scale invariant structure for these sets. It is also sufficiently robust to show this structure for
statistically and quasi— self-similar sets.

In general,

Dyp(X) < Dgm(X).

The set H is an example of a set for which Dgp(X) < Dgp(X). In fact, Dygp(H) = 0, while
Dgy(H) = 1/2 (see 7], pg. 45)%. Note that in this case, as H has only one “scaling point”
(namely the point {0}), H is not a set which would be considered as a fractal. Thus, we see that

the finer measurements used in calculating Dyp are needed to define a fractal.

3.2 Various Methods for Determining the Fractal Dimension

Sets that exhibit a scaling relationship can have this structure measured in various ways. The
first and most obvious method is to extract this measure from a graphical representation of the
set. This is most easily demonstrated by considering subsets of Euclidean n-space R".

Let I be as in 3.1. Let X be the set we wish to measure. If has topological dimension 0 or

1, we can get the “fractal length” of X by measuring X with rulers of length r - I. Let L(r) be

8For another example, let T = {1,%,%,...} U{0}. Then, Dpp(T) =0, while Dgp (T) = 1/2.
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the minimal number of units r- I placed end to end needed to measure X. Then, X has “length”
L(r) - r, which asymptotically gives

© TP O DM g1y

+1. (10)
Alternatively, we could calculate a “fractal box dimension.” A closed circle of radius p can
be contained in a closed square of side length 2p, which in turn can be contained in a closed

circle of radius v/2p. Therefore, if we let A'(r) denote the minimal number of closed squares of

side length p needed to cover the set, we get (by the “squeezing theorem” from calculus)

N log N ()
Dicw log(1/r) (11)

Finally, we can get a “fractal grid dimension” by using a grid of mesh size 2% Let G(n)
denote the number of elements of the grid (including boundary) that contain an element of X.

Then, for N (r) as above, we have in R*, m =1,2,...,
27"G(n — 1) S N(1/2%) < G(k(n))

where k(n) is the smallest integer satisfying k£ > (n — 1+ logy(m)). This inequality then in turn

gives
log G(n)

KM Tog(1/27)

(12)

(see [1]).

A more general and more robust technique is to use statistical measurement. For the more
complicated Hausdorff-Besicovitch measure, a related probability distribution function is the
Pareto-Levy distribution, introduced by P. Levy and A. Khinchine (1936) (see West [17]). These
distributions are stable, and most can be written down only in terms of their Fourier transforms.
The Pareto-Levy is linked to the Hausdorff-Besicovitch dimension in that the distribution scales
in the same manner as the outer measure, and, given a controlled random walk or more general
process producing a family of curves or surfaces, those surfaces will have H B dimension which

is a function of a parameter of the Pareto—Levy distribution.
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Just as the HB dimension has its simpler counterpart in the KM dimension, so too does
the Pareto—Levy, in that it reduces to the simpler Pareto distribution. This distribution was first
studied by V. Pareto (1897). It has probability distribution function

%8? T 2 o
fla) = { (13)

0 T < T
Thus, the cumulative distribution function is

F(z)=1- (xﬁo)-a — 1 — exp(—a(log(z) — log(x0))) - (14)

Therefore, by mapping the domain onto log((domain)), we transform the Pareto into the expo-

nential. Now, the exponential is “memoryless,” i.e.,
Pz >a+blz>b)=PF.(z>a).

Thus, for the Pareto,
Pz >a-blz>b)= Pz >a),

where @, b are of the form e®, e® and G,b > =, ie., the Pareto is “scale invariant.” Also note,
the r** moment of the Pareto about the origin is

o

(l=[") = ,

a—T

which converges for r < «, and diverges for a > r. Finally note that f(z) is linear on a log-log

scale. But

_ logN(x)

log(1/z)’
log NV (z) = —Dlog(z), and

Therefore we have the relationship

Pareto(a + 1) +— KM Dimension(D). (15)

Both have a linear relation in log-log, namely

log N (z) = —Dlog(z)
(16)
log f(z) = —(a + 1) log(z) .
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The connection between the Pareto distribution and the fractal dimension has proven to
be the most effective method of extracting fractal dimension (see [3]). Numerous data sets
were examined. First, the log of the data was taken, and then this data was fit to an expo-

4nentia1 by maximum likelihood estimation. The quality of this fit was then tested by x? and
Kolmogorov—Smirnov tests. A scaling structure was evident in many different sets, including er-
rors in communication lines, delays in the delivery of messages, the structure of communication
networks, and even European city sizes. (This last example gives more evidence to a theorem in
human geography introduced by G. Zipf.) Work of Mandelbrot, Voss, and others (see [12], [14])
tells us that these methods also will extract useful measures of many varieties of noise.

We close this subsection with the following result, given in [3]. Assume that the data we
have gathered is a subset of a larger data set which has a scaling structure, and that data is
truncated, grouped into bins and/or consists of separate data points. Let Np be the number of
binned elements, and let B be the indexing set for these elements, except the elements in the
last bin. Let Np, D be the number of and the indexing set (again, except for the last bin) for
the separate data points. Let n; be the number if elements in each bin. Let z, be the center of
the j** bin for 1 < j < K. If the K" bin is unbounded, let zx be its lower endpoint. Else, let

Tk be as above. We have the following.

Theorem 3.2 Let X be a truncated, binned and/or isolated subset of a set with a scaling struc-

ture of parameter D. Then the mazimum likelihood estimator for D is D=a+ 1, where

Ng + Np —ng

ZjGB,D nj.’L'J —+ NgTkg

o)}

(17)

The proof of this theorem, given in [3], is constructive, and provides a procedure for ex-

tracting the fractal dimension from the truncated and binned data.

3.3 Classifying General Fractal Sets Using Dimension Theory

We commented earlier that dimension is the primary tool for identifying fractals. In this sub-

section, we mention some of the theorems in which dimension is used to classify fractals. These
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theorems are for a very general class of “reasonable” subsets of Euclidean space, namely Borel
sets (see [7]). Federer’s encyclopedic Geometric Measure Theory [8] and Falconer’s The Geometry
of Fractal Sets and Fractal Geometry: Mathematical Foundations and Applications [6, 7] contain

many of the fundamental results in geometric measure theory, and applications of the theory to

the analysis of fractals.

We begin with a well known result.

Proposition 3.1 A set F' with a countable number of elements has HB dimension 0.

If F' is uncountable and has H B dimension less than one, it has qualities in common with

the Cantor set.
Theorem 3.3 ([7], pg. 30) A set FF C R™ with Dgg(F) <1 is totally disconnected.

Jordan curves with dimension between 1 and 2 all share a common property with the Koch

curve.

Theorem 3.4 ([7], pg. 80) IfC is a Jordan curve in R™ with 1 < Dyg(C) < 2, then C contains

a subcurve C, such that at almost all points of Cy, no tangent exists.

Theorem 3.4 generalizes to higher dimensions. If we have a surface of topological dimen-
sion n, we say that it has a tangent at a point z if there exists an n—dimensional hyperplane

approximating the surface at that point.

Theorem 3.5 ([8], section 3.3) If S is an n-dimensional non-intersecting surface in R™,
n <m, withn < Dgp(8) < n+1, then S contains a subsurface Sy such that at almost all points

of 8s, no tangent exists.

We will say that a curve is space—filling if it fills in any planar area. Combining the following

with our computation above proves that P is space-filling.

Theorem 3.6 ([12], II, 7) IfC is a curve in R™ such that Dyg(C) = 2, then C is space—filling.
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Theorem 3.6 also generalizes to higher dimensions. If have a curve C in R"™ such that
Dyp(C) = k, where k is an integer such that 3 < k < n, then we say that C' is volumefilling.
We can create fractal sets as Cartesian products or as intersections of other fractals. Com-

puting dimensions in these cases may be tricky. In general, we have the following.
Theorem 3.7 ([7], pg. 94) If F and G are subsets of Euclidean space, then
Dyg(E x F) > Dyg(E) + Dyg(F). (18)
Next, assume F, F' C R", and let F' + x be the translation of F' by the vector z.

Theorem 3.8 ([7], pg. 102)
Dyp(EN(F + z)) < max{0, Dyp(E x F) — n} for almost all z € R™. (19)

It becomes increasingly difficult to classify fractals as Dyp increases. In fact, the subtlety
of these types of results increases exponentially with the increase in dimension. General fractal
sets can have small subsets exhibiting one type of behavior, other subsets exhibiting another, and
so on. The dimension of the set is given by the component with the highest dimension. Thus,
a curve could have Dyp > 1, and yet be differentiable along most of its length. Self-similar
fractals, however, are homogeneous. Thus, the dimension of a subset equals the dimension of the
set.

The theorems in this section are just a few of the results in the area of geometric measure
theory. Classification of fractals using geometric measure theory is by no means complete, nor
is the study of fractal sets the only topic of research in this area.

We will be able to use the results quoted in this subsection to describe self-similar sets

directly from their generators.

4 Dimension and Classification of Self—Similar Fractals

The rigorous study of fractal sets involves sophisticated mathematical tools, some of which where

introduced in the previous section. It was also noted that fractals can be created via recursion,
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and therefore computers are an ideal tool for studying these sets. The computers can be used as
tools in proving theorems about these sets, generating examples and checking calculations, but
cannot prove theorems. However, the theory can be used to predict the output of a computer
program, as we will now demonstrate. Our discussion in this section is limited to self-similar
fractals. Recall the definition of a self-similar set given in the section 1.2. The first theorem we

mention is a theorem of J. Hutchinson (Theorem 3.1). It tells us that for self-similar sets X,
Dyp(X) = Dgm(X).

Thus for self-similar sets, the “proper” form of dimension can be calculated by the methods used

to calculate Dgps. Furthermore, this number can be calculated directly from the maps used to

define the set.

Theorem 4.1 (Hutchinson [11]) Let X be a self-similar set defined by contraction mappings
{mi}i_;. Let {au};_, be the set of contractions associated with these mappings. Then Dyp(X) =

D, where D is the solution to the equation

aiD =1. (20)

n
=1

)

Using Hutchinson’s theorems, we can calculate the HB dimension of a self-similar set in
several ways. For example, given the associated contraction mappings, we can use equation (20)
to compute the K M dimension. Hutchinson’s first theorem then gives us that this is in fact
equal to the HB dimension. The theory in section 3.3 then comes into play, classifying the set.

A variation on this also works for the resultant self-similar fractal sets. The trick is as
follows. We look for pieces of the image which are scaled, rotated, and/or translated miniatures
of the whole, and get the affine contraction mapping that maps the whole image onto this
piece. We do this so that the entire image is made up of a collage of essentially non—overlapping
miniatures of itself. This is the basic idea of Barnsley’s Collage Theorem (see [1], pp. 93-110).
Once we have the mappings, we again use (20).

We can also compute the dimension of a self-similar set X approximated by the pattern

rewriting system (see section 1.1) directly from the generating seed. The set X we refer to is
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the theoretical limit set which is produced by iterating the pattern rewriting system infinitely
often. Each seed needs to be normalized by drawing it so that it begins at (0,0) and ends at
(1,0). We also have to guarantee that the set we produce is self-similar. Our seed cannot have
line segments in it of length greater than or equal to one. (If you gave the pattern rewriting
system such a seed, it would produce a pattern — it just would not converge to a new self-similar
pattern.’) We also cannot have the line segments overlap each other except at the endpoints.

This can be determined by examining two generations of the pattern.

Theorem 4.2 Let S be a normalized seed pattern consisting of n line segments which generates
a self-similar set X. Let ¢; denote the length of the it line segment in S, i =1,...,n. Let D be

the solution to the equation

YP=1. (21)
Then DHB(X) =D.

The theorem follows directly from Hutchinson’s second theorem (Theorem 4.1). Given a
normalized seed, we can construct the contraction mappings associated with the pattern that
this seed generates by mapping the unit interval [0, 1] onto each line segment in the seed. Each
map is the composition of a contraction, a rotation, and a translation. The contraction factor
a; for the 5" map equals the length ¢; of the i* line segment.

If we have a normalized seed and we have that 37, /P = 1 has solution D = 2, then X will
be be space—filling. Moreover, if we relax the overlap condition and have D > 2, iterates of the
seed will overwrite each other. In fact, we can think of the number % as the number of times that
the iterates will overwrite each other. We discuss an example of this below. We note that the
need for an overlap condition is clear from the theorem. If we allowed for overlapping segments
in our defining seed, then we would be counting segments more than once in our formula. We

also remark that in general we cannot solve the equation (21) in closed form unless all of the

9There is, of course, the case where we have [0, 1] as a seed. Repeated iteration of the pattern produces nothing
new.
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lengths of the line segments are equal. However, a numerical solution can be easily calculated,
using, say, the Newton-Raphson algorithm.

Again, the theory in section 3.3 now comes into play. The dimension predicts and classifies
the resultant fractal set X, telling us what sort of pattern will emerge after repeated iterations
of a given seed. If Dyp(X) = 0, we will see only isolated dots. For 0 < Dgp(X) < 1, X will
be is totally disconnected. When Dgyp(X) = 1, the classification begins to get complicated. If
X is a Jordan curve or arc, then X is a rectifiable curve or arc i.e., having finite length and not
oscillating too much, which has a tangent at almost all of its points. However, X can also be a
product of two (or more) Cantor sets. Complete characterizations are possible if we split the set
into curve and curve—free components (see [7]). For 1 < Dyp < 2, several things can happen. If
X is a Jordan curve or arc, then we will approximate a curve or a set of curves with the property
that the curves have tangents almost nowhere, similar to the Koch arc. If X is intersecting,
intersection points are ramification points, similar to the Sierpinski gasket. The set X could be
a product of Cantor sets, or Cantor sets with lines or circles, etc. If Dy = 2, iterates of the
seed will, in the limit, be space—filling. Finally, if D > 2, iterates of the seed will quickly fill up
regions, “overlapping” many points g times.

We give the following examples. The first two come from Mandelbrot [12]. The “monkey’s
tree,” plates 31 and 146 from [12], is made up of six segments of length % and five segments of
length ?, with various orientations. Let M; be the set which results from iteration of the seed

(see Figure 3). Then, by equation (21), Dgg(M;) = D, where D is the solution of

6(%)1’ + 5(—‘9@1)1’ _1.

By noting that (z)* = 3 and () = LB we see that (1)?/2 = 2y, where 1, is the positive
solution of 5z% + 622 — 1 = 0. Solving, we get that
2log(—2
_ 20080 _y gggmagod. .
log(3)

Thus, M; will be a curve which has a tangent nowhere, but is not space filling (in spite of the fact

that iterates of the seed will “fill up” patches of the computer screen). The “snowflake sweep,”
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plate 68 from [12], is made up of six segments of length % and one segment of length ?, with
various orientations. Let M, be the set which results from iteration of the seed (see Figure 4).

Then, Dyp(Ms) = 2, because

The curve M, fills the interior of the Koch snowflake.

We also can produce curves with variable dimension using a “fat” Cantor set, a “sliding”
Koch generator, and two sides of a isosceles triangle.

A “fat” Cantor set can be produced by a seed consisting of the line segments

3—a] [3+a
6 ’ 6

[0, 1, 0<a< 1.

Here, we are removing middle interval of length 3. If C, is the set that is produced by iteration
of the seed, equation (21) gives that

log(2)
Dyp(C,) = @.
Since 0 < Dyp(C,) < 1for all o, 0 < a < 1, C, is totally disconnected. If the base is [0, 1],
the total mass of C,, as measured by Lebesgue measure,’’ is 1 — . Note that we can make o
arbitrarily close to zero. Interesting variations on this set can be created by taking its Cartesian
product with line segments or circles (see [7, pp. 95-96]).

We can make a “sliding” Koch generator as follows. Let o € (1/4,1/2), and let the

generator be given by the four line segments with endpoints

(0,0), (a,0), (%, Ja - %), (1—a,0), (1,0).

Proceed as in the generation of the Koch arc, i.e., each of the four segments is replaced by the

seed pattern, and so on.

Let K, be the set that is produced by iteration of the seed. Using (21), we compute that

log(4)

Dunlle) = fog(T):

10See [8] for reference.
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As o — 1/4, K, approaches the line segment [0,1]. As o — 1/2, K, becomes space-filling.
This is consistent with the theory. For o = 1/4, Dgp(K,) = 1, while if & = 1/2, Dyp(K,) = 2.
For o € (1/4,1/2),1 < Dgp(K,) < 2, and the resultant non-intersecting arc is of infinite length
and has a tangent nowhere.

Our final example gives a simple generator which produces a wide range of behavior. We
will use two sides of a isosceles triangle. We let these be the line segments with endpoints (0, 0),
(3,), (1,0), (3, ), respectively. With the orientation produced by connecting the line segments
in the order they were written, and oo = %, iterates of this produce Mandelbrot’s “dragon sweep”
(see plate 66 of [12]), which is a space-filling curve. For variable a, 0 < o < 3, the general seed

pattern will produce self-similar curves. With « in this range, we have that

_ log(2)
DaplX) = g1y

If % <a< @, then iterates of this pattern will produce an image by overwriting it. In fact,
if ¢ is the length of each side of the triangle, and if D is the solution of 2¢P = 1, then we can

produce a set with 2 overlap by setting

1

(S8
] =

2

for 2 < D < oo, which gives a range of % <a< ? Note that we can make D arbitrarily large.

For example, we can let o = ,/3%—\/5 — &, which then makes ¢ = —mlo\/—i and D = 100. Iterates of the

seed overwrite each other 50 times.
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Figure 1 — A Peano construction P.

2.4" log(2 - 47
Dyp(P) = limM— i og( )

= 11im =

Figure 2 — Arc Ag, approximating the Sierpinski Gasket.

log(3)
log(2)

Dup(As,) = = 1.584962501 . ... .

Figure 3 — Mandelbrot’s “Monkey’s Tree” M;.

21o 10
2log(Z17) = 1.868726764. .. .

Dap(M) = 35055

Figure 4 — Mandelbrot’s “Snowflake Sweep” M.

1
DHB(MQ) = 2, because 6(5)2 + (_—3‘—)2 =1.

Figure 5 — Peano—Gosper Curve G.

log(7)

Dyp(G) = Tog(V7)

Figure 6 — Antenna A.

n\? 2\ P
Dus(A) = D = 1.746141227 ..., because 2 (5) +2 (—) _1.

Figure 7 — Asymmetric Sierpinski Carpet S, (Also see [15]).

_ log(6)
~ log(3)

Dyp(S,.) = 1.630929754 . . . .
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