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Abstract

This paper presents the analysis of the dynamics of a representative axial flow com-
pressor model, emphasizing the influence of two important control parameters. These
are a nondimensional parameter B (previously introduced by Greitzer (1976) as a pri-
mary determinant of post-stall behavior) and the setting of the throttle line. Greitzer’s
lumped-parameter model is employed in this study, with a specific choice of compressor
and throttle characteristics. Our analysis shows the presence of a rich variety of global
as well as local bifurcations as the two control parameters are varied. The analysis leads
to a characterization of compressor operation into three major zones: the stalled zone,
the pre-stall zone, and the normal (unstalled) zone. Simulation results demonstrate the

qualitatively different dynamical behaviors within each regime of parameter space.
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1. Introduction

Recently, the dynamics of axial flow compressors has attracted considerable attention
[1]-[7]. Among these studies, Greitzer [1] introduced a nondimensional parameter B and
show-ed that, for a compressor operating near its maximum achievable pressure rise and
subjected to a moderate disturbance, one may observe either a large amplitude oscillation
(known as “surge”), or a very inefficient operation at constant mass flow and pressure rise
(known as “rotating stall”). In addition, such behaviors were found to be strongly depen-
dent upon the value of B. Based on Greitzer’s model, a global bifurcation of an unstable
periodic solution (antisurge oscillation) and a stable periodic solution (surge limit cycle)
were found and used to study these stall behaviors from the viewpoint of bifurcation theory
[3]. The presence of the global bifurcation of the surge and antisurge periodic solutions
noted in [3] depends strongly on the assumed compressor characteristic. Indeed, the cubic
characteristic used in [6] only supports the existence of a stable periodic oscillation, but
does not support the existence of an unstable periodic solution, while the more complicated

algebraic model of the characteristic of [3] does support the presence of both oscillations.

This paper continues the study of axial flow compressor dynamics begun in [3], em-
phasizing the combined effect of two control parameters: the setting of throttle line and
the value of the B-parameter. As mentioned above, the dynamic behavior of the axial
flow compressor depend on the model of the compressor characteristic. In this paper, the
algebraic model of the compressor characteristic introduced in [3] is employed. Using the
lumped parameter model proposed by Greitzer [1], we observe a rich variety of global and
local bifurcations as two parameters are varied. Our analysis reveals three major regimes
of compressor operation: the stalled zone, the pre-stall zone, and the normal (unstalled)
zone. The numerical continuation and bifurcation analysis package AUTO [8] and exten-
sive simulations are employed to evaluate the system’s behavior. The numerical techniques
consist of continuation of fixed points and limit cycles with respect to B, and continua-
tion of bifurcation-point branches of fixed points and limit cycles in the two-parameter
plane. Phase portraits are constructed by simulation to illustrate the distinctly-different

dynamical behaviors associated with each regime of parameter space.
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In [3], the dynamics for the stalled zone were studied for a fixed setting of the throttle
line. The present results corroborate those in [3]. In particular, in the stalled zone and for
small values of B, the rotating stall point is found to be globally asymptotically stable.
However, as the value of B is increased, two large amplitude periodic solutions appear
around the rotating stall point. These solutions consist of a stable periodic solution (limit
cycle) encircling an unstable periodic solution. In this case, the rotating stall point is locally
stable. As B increases further, the unstable periodic solution is observed to shrink and
finally collapse onto the rotating stall point (which is rendered unstable in a subcritical
Hopf bifurcation), while the stable periodic solution grows in amplitude resulting in a
stable oscillation, the so-called “deep surge.” Simulation results are given in Section 3,
demonstrating these observations for both the second-order simplified model of [3] and the

full fourth-order model of [1].

It has been shown [3] that the bifurcation behavior of the full fourth-order model of
the compressor can be captured by a second-order simplified model. In the present study
of the time responses of the compressor within the two remaining parameter zones (pre-
stall and normal), we consider only the second-order simplified model of [3]. In general,
as discussed in Section 4, there are two types of behavior of the compressor within the
normal unstalled zone. The first occurs for small 4 and is characterized by the presence
of two periodic oscillations for the compressor dynamics: a stable limit cycle encircling an
unstable periodic orbit and a locally stable fixed point. These oscillations are born and
disappear at two different cyclic fold bifurcations as B varies. (A cyclic fold bifurcation
is a common term for a saddle-node bifurcation of periodic orbits.) The other behavior
occurs for large ~, for which the unstalled equilibrium point of the system is globally
asymptotically stable, regardless of the value of B. In the pre-stall zone, the dynamical
behavior of the compressor is found to be more complicated and to strongly depend on the

throttle line position and the value of B. Details are given in Section 5.

2. Greitzer’s Lumped-Parameter Model

A fourth-order lumped parameter model for the dynamics of an axial flow compressor

has been introduced by Greitzer [1]. This model consists of the following set of ordinary
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differential equations (using the notation of [3]):

%?:Bw—am, (1)
L~ (Z)AP-F), )
2L (e — i), 3)
L - ye.-0), 4)
where
F (Vi (5)

Here, ¢ (resp. mr) denotes the nondimensional compressor (resp. throttle) mass flow,
AP (resp. C) denotes the nondimensional plenum (resp. compressor) pressure rise, and Cl
and F' denote the nondimensional steady state compressor pressure rise and the nondimen-
sional throttle pressure drop, respectively. The definition of the three parameters, B, G,
and 7, in Eqgs. (1)-(4) in terms of physical system parameters is given in [1]. 7 denotes

the relaxation time constant and B is proportional to rotor speed. In this paper, we set

G = 0.36, as in [1]. In Eq. (5), A7 and A¢ denote the cross-sectional areas of the throttle
and compressor, respectively. The steady state compressor characteristic Css (for an axial
flow compressor) is often modeled as a function of . An example of such a characteristic

is depicted in Figure 1.
It is observed from Eqgs. (1)-(4) that, at an equilibrium point,

C=Cys=AP=F (6)
and
e = (7)

Therefore, an equilibrium point of (1)-(4) occurs at the intersection of the compressor and

throttle characteristics, graphed relative to the independent variable m¢ (or, equivalently,

).



The relaxation time constant 7 is usually small. It has been shown [3] that, for small
7, the time response of the full fourth-order model is approximated by that of the reduced

second-order model

dmmc ‘
=€ = B(Cy - AP), (8)
dAP
5 = (%)(T’nc — YVAP) (9)
with
AT

It is observed from Eq. (10) that closing the throttle corresponds to reducing the value of
4. This can be seen in Figure 1, where the throttle line shifts to the left as v is reduced.
In this paper, we study the time response of the axial flow compressor dynamics (1)-(4) as
a function of v and B using extensive computer simulations and numerical continuation of
equilibrium solutions. The compressor characteristic assumed here is shown in Figure 1;

the mathematical formula used to generate this characteristic is not given here for brevity.

3. Stalled Zone Dynamics

In this section, we study the time response of the compressor dynamics (1)-(4) for
v < 0.41 (i.e., Zone I behavior). A typical time response for the simplified model (8), (9)
with respect to B can be seen in the bifurcation diagram of Figure 2.

To understand the bifurcation behavior illustrated in Figure 2, let us consider a rep-
resentative case in which v = 0.4. For small values of B, the rotating stall point is found
to be globally asymptotically stable for the system (8), (9). This is indicated by region
(a) of Figure 2. However, for B greater than a critical value (B = 0.367 for v = 0.4) the
system (8), (9) has two periodic solutions (born at a cyclic fold bifurcation at B = 0.367)
encircling the fixed point (i.e., the rotating stall point), with the stable periodic solution
outside the unstable one as indicated at (b) of Figure 2. The rotating stall point, in this
case, remains locally stable. As B increases, the unstable periodic solution shrinks and fi-

nally collapses onto the rotating stall point ( which becomes unstable through an exchange
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of stability), while the stable periodic solution grows and apparently reaches a limiting

size, the so-called deep surge, as indicated at (c)-(e) of Figure 2.

The effects of throttle area (i.e., the value of v) and the relaxation time constant 7
on the axial flow compressor dynamics (1)-(4) are studied in more detail in the remainder
of this section. In the following, we denote by B, the critical value of B at which the two
periodic solutions are born in a cyclic fold bifurcation. In Section 3.1, we discuss the effect
of v on the value of B, for the reduced model (8), (9). The effects of v and 7 on the time

response of the full model (1)-(4) are considered in Section 3.2.
3.1. Second-Order Simplified Model

First, we consider the effect of v on the value of B, for the second-order simplified
model (8), (9). It is observed from Egs. (8), (9) that the fixed points of the system depend
on ~v. Simulations demonstrate that the value of B, increases with closing of the throttle
(i.e., as v is reduced) in Zone I. For the case in which v = 0.29, we find B, = 0.74, which is
close to the value reported by Greitzer [1]. However, simulations show that Eqgs. (8), (9) do
not possess any periodic solutions for small v. It is observed from simulation evidence that
the smallest v for which periodic solutions occur (indeed, two periodic solutions, through a
cyclic fold bifurcation) is about 0.285. The rotating stall fixed point appears to be globally
stable for v < 0.285.

3.2. Fourth-Order Full Model

We now consider the behavior of the full fourth-order model, Egs. (1)-(4), as a function
of 7. The main finding is that the value of B, depends on both v and 7. As observed
from simulations, for fixed v, B, grows with increasing time constant 7, while for fixed 7,
B. grows with decreasing . This observation agrees with the one given in Section 3.1.
Referring to simulations, we have B, = 0.6835 for (r = 1.65, v = 0.4); B. = 0.6785 for
(r =1.2, y = 0.36); and B, = 0.673 for (1 = 0.65, v = 0.32). These values are all close to
the value 0.7 reported in [1]. However, they depend strongly on the throttle line setting
and the relaxation time constant 7. In addition, it is observed that, under some conditions,
system (1)-(4) does not possess periodic solutions. For instance, when 7 = 0.1, the system

(1)-(4) has no periodic solutions for all v < 0.305.
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4. Normal (Unstalled) Zone Dynamics

In this and the next sections, we focus on the time response of the second order model
(8), (9)-

First, consider the case v > 0.442 (i.e., Zone III dynamics). We have two typical
responses for Egs. (8), (9). One type of behavior is shown in the bifurcation diagram in
Figure 3; this occurs for 0.442 < v < 0.4617. As B is increased, we witness the appearance
of two large-amplitude periodic solutions via a cyclic fold bifurcation, followed by their
later disappearance in a second cyclic fold bifurcation. The unstalled operating point is
locally stable for all B. In the other (simpler) type of dynamic behavior, which occurs for
v > 0.4617, the unstalled equilibrium is globally asymptotically stable.

5. Pre-Stall Zone Dynamics

The dynamical behavior of the reduced model (7),(8) is found to be more complicated
and to strongly depend on the setting of the throttle line in the pre-stall zone (Zone II),
whose boundaries are defined by the saddle-node bifurcation of fixed points at v = 0.41
and v = 0.442. In order to compute a complete description of the different dynamical
behaviors, the bifurcation analysis package AUTO [8] is used to compute fixed points,
bifurcation points, periodic solutions, bifurcation points of periodic solutions, and their
continuations. Phase portraits are constructed by computing saddle point stable (unstable)
manifolds, which is achieved by integrating an initial condition near the saddle point along
the stable (unstable) eigenvector backward (forward) in time—the simplicity of this scheme
owes itself to the one-dimensional nature of the saddle manifolds. A shooting technique is
used to compute the saddle connections and their continuations.

The classification of the dynamic behavior exhibited by the second order compressor
model in the (v, B)-plane is found in Figure 4. Each region (i.e., a to z) in Figure 4
denotes a qualitatively different behavior of the reduced model (8), (9) within a subset of
(v, B)-plane. Samples of these behaviors are depicted in Figure 5, which correspond to
the behaviors in regions (a), (b), (n), (1), (k), (s), (x), (v) and (z), respectively. In these
phase portraits, we may find one fixed point (for instance, a globally stable rotating stall

equilibrium point as shown in Figure 5a) or three coexisting fixed points: the rotating stall
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equilibrium point, the unstalled equilibrium point, and a saddle point (see, for instance,
Figure 5b). The saddle point is marked with an “x” in the phase portraits.

The saddle point plays a crucial role in organizing the dynamics of Eqgs. (8), (9)
in the phase plane. For instance, following a perturbation in the unstable direction of
the saddle point in Figure 5b will result in a trajectory (denoted by long-dashed curves)
that asymptotically approaches one of the two stable fixed points (marked with filled-
in circles) in forward time. These long-dashed curves form the unstable manifold of the
saddle point. In addition, the stable manifold of the saddle point can also be constructed
approximately by perturbing the saddle point along its stable direction and then following
this point in backward time. This invariant curve (sometimes referred to as the separatrix),
denoted by the solid line in Figure 5b, is defined by the set of all the initial conditions
in phase space which asymptotically approach the saddle point in forward time. By this
definition, we can see how the stable manifold acts as the boundary separating the domain
of attraction of the unstalled operating point from that of the rotating stall point, which
does provide a quantitative measurement of the robustness of the unstalled operating point
under transient disturbances.

It is observed from Figure 4 that the variety of behaviors of Eqs. (8), (9) result
from a combination of local bifurcations of the fixed points and global bifurcations. The
local bifurcations include saddle-node bifurcations and Hopf bifurcations, while the global
bifurcations consist of cyclic fold bifurcations (i.e., saddle-node bifurcations of periodic
solutions) and homoclinic saddle connections.

The dynamical behaviors of Egs. (8), (9) in both Zones I and I, in terms of the (v, B)-
plane, are illustrated in Figure 4. Next, we describe the dynamical behaviors indicated in
Figure 4, with emphasis on Zone II behavior. For brevity, we only discuss some of results
in detail. It is not difficult to recover the remaining behaviors of Eqgs. (8), (9) from Figures
4 and 5.

First, we consider the separation between behavior (a) and behavior (b). These two
behaviors are separated by a saddle-node bifurcation of fixed points, which gives birth to
a saddle point and the stable unstalled operating point. (Note that such a bifurcation

always gives rise to a stable operating point below the double-0 eigenvalue point [9] and
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an unstable operating point above.) Next, we consider a bifurcation scenario consisting
of a path through the (v, B)-plane with a fixed value of v (y = 0.424) and B free. This
one-parameter “slice” results in a bifurcation diagram passing from region (b) through
regions (n), (1), (k), (s), (x), (v), and finally ends with behavior (z). The phase portrait of
each region is shown in Figure 5, while the behaviors of (8), (9) at the separation of each

two consecutive regions along the cut are described as follows.

Behavior (b) is separated from (n) by a cyclic fold bifurcation resulting in the birth of
two periodic solutions which encircle all three fixed points, with the stable surge oscillation
outside the unstable antisurge oscillation. The unstable periodic solution is observed to
continuously shrink as B increases, and then its amplitude drops suddenly at the saddle-

connection bifurcation which marks the separation of behaviors (n) and (1).

Another saddle-connection bifurcation separates behavior (1) from behavior (k) and
gives rise to another, small-amplitude periodic solution encircling the unstalled equilibrium
point as shown by behavior (k). In the phase portrait of (k), as depicted in Figure 5k, the
two unstable periodic solutions define the basin of attraction of each stable fixed point.
The unstable periodic solution encircling the rotating stall point shrinks as B increases and
finally collapses onto the fixed point in the Hopf bifurcation separating behavior (k) from
behavior (s). This process leaves the rotating stall point unstable, which is indicated by an
open circle. The other unstable periodic solution grows with increasing B and is destroyed
at a homoclinic saddle-connection bifurcation which separates behaviors (s) from (x). As B
increases further, another saddle-connection bifurcation creates a large-amplitude unstable
periodic solution (behavior (y)); this is depicted in Figure 5y. This periodic solution is
almost immediately destroyed at a cyclic fold bifurcation which separates behavior (y)
from (z). The dynamical behavior of (8), (9) is then observed to be qualitatively similar
to behavior (2) as B is increased. The phase diagram of behavior (z) is depicted in Figure

5z.
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Figure 5. Phase portraits associated with behavior (a) and
the one-parameter cut of v = 0.424.
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