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As Unmanned Aerial Vehicles (UAVs) become more commonplace, there is a

growing need for safer flight control software that allows for the UAV to understand

and autonomously react to various unsafe flight conditions. Decision-making soft-

ware must allow the aircraft to perform tasks such as detect and avoid, as well as

detect and respond to critical system failures mid-flight. There is a lack of systems

engineering in the development of UAV control software safe enough to allow for in-

tegration of UAVs into the National Airspace. This lack of systems engineering is a

big reason why UAVs are still too unsafe for everyday use. A model-based systems

engineering approach is needed to support system requirements, design, analysis,

and verification and validation activities.

In this thesis, we provide a model-based systems engineering approach toward

a safety module for UAV control software that will allow for safe UAV integration

into the National Airspace. System and simulation requirements and architecture

are established, in addition to presentation of a collision detection and avoidance



element, decision engine element, and ground impact hazard mitigation element.

Detailed models and algorithms are developed for the ground impact hazard miti-

gation module. Furthermore, simulation results are presented to show the utility of

the ground impact hazard mitigation module, which allows UAVs to react safely in

the presence of various critical flight anomalies.
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Chapter 1: Introduction

1.1 Introduction

Unmanned Aerial Vehicles (UAVs) have become more commonplace in todays

society and their utility has become vast. UAVs can be used to survey land, carry out

military operations, perform rescue missions, or deliver packages [1]. With so many

applications, UAVs must be integrated into the National Aispace System (NAS) in

order to effectively and safely use UAVs for these purposes. The reason they are not

already in the NAS can be deduced by comparing accident rates of UAVs compared

to aircraft already present in the NAS. According to Loh et al., UAVs can have

accident rates as high as 32 failures per 100,000 flight hours, 32 times higher than

accident rates for small general aviation aircraft, and 3,200 times higher than large

airliners [2]. Because UAVs have significantly higher rates of failure, they pose a

significantly higher risk on the ground and in the air. The high risk that UAVs

pose to infrastructure, other aircrafts, and human safety is the predominant issue

preventing UAV integration into the NAS.

Reducing a UAV’s risk starts with the technology on-board. There is an ex-

tensive body of work focused on UAV shortcomings in technology and capabilities,

which must be addressed before UAVs may operate in the NAS. A 2012 Congres-
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sional Research Service (CRS) Report attributes the high risk of UAVs to mid-air

collisions and ground impact resulting from critical flight anomalies [3]. A flight

anomaly is any non-normal flight situation which can result in the UAV becoming

uncontrollable and a danger to humans on the ground. A flight anomaly is consid-

ered critical if the anomaly is unrecoverable. This could include structural failures,

propulsion failures, or failures in flight control system [4]. As a result of the re-

port’s findings, the CRS recommended that a safety module that allows the UAV

to react safely during these critical flight anomalies is included in its flight capa-

bilities. Moreover, the CRS also recommended on-board technology that allows for

avoidance of mid-air collisions.

Mid-air collisions include collisions with other aircraft, buildings, or infras-

tructure. The Federal Aviation Administration (FAA) proposed a set of regulations

that will allow for small UAVs (under 55 lbs) to operate in the NAS. One of those

requirements are sense and avoid (SAA) abilities for the UAV. This is to ensure the

safety of other traffic, population on the ground, and all infrastructure. The SAA

function would need to be activated before a collision avoidance maneuver is needed.

It also must avoid collisions using gentle and controlled maneuvers [5].

With mid-air collision avoidance and ground impact minimization functions

required, changes to UAV control software needs to be the focus of development

efforts. UAV integration into the NAS is dependent on the UAV’s flight control

software having the ability to sense and avoid other air traffic and infrastructure,

autonomously return to base, or determine a safe path to crash or land during the

presence of critical flight anomalies. A sense and avoid module and ground impact
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hazard mitigation module (GIHM) are two core pieces that need to be incorporated

in a UAV’s flight control software to ensure safe integration of UAVs into the NAS. A

lack of high level systems engineering and model based systems engineering (MBSE)

practices have been a primary reason that this all-encompassing safer flight control

software has not yet been developed. A formal systems engineering approach is

needed if UAV flight control software hopes to become safe enough for the NAS.

The goal of this thesis is to take an MBSE approach towards developing the

architecture and requirements of a Situational Awareness and Response Guidance

Module (SARGM) that will be integrated with nominal flight control software. The

safety module will include the following three sub-modules: a collision detection

and avoidance sub-module, decision engine sub-module, and ground impact hazard

mitigation (GIHM) sub-module. Furthermore, detailed model development of the

GIHM submodule will be presented, in addition to integration of the sub-module

with nominal flight control software. Fig. 1.2 in Section 1.3 shows the different

parts of SARGM and nominal flight control software in the form of a block flow

diagram. The diagram is described in more detail in Section 1.3. The nominal

flight control software consists of a mission plan, path planning module, 6-DOF

aircraft model, and flight controller. The decision engine and collision detection and

avoidance sub-modules were developed by fellow University of Maryland researchers,

Lina Castano and Zijie Lin. These two sub-modules will be discussed at a high level

and integration strategies with the nominal control software will be presented. The

GIHM sub-module is presented at a low level, which includes model development

and algorithm logic. Simulations will provide a look into how UAVs react to the
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different critical flight anomalies. The system presented will take a significant step

towards developing control software safe enough that fatality and failure rates of

UAVs are on par with or better than aircraft already operating in the NAS.

1.2 Methods and Objectives

A semi-formal MBSE approach was used in the development of a safer flight

control software. A V Lifecycle Model (LCM) was used in developing SARGM.

Fig. 1.1 shows the V LCM, of which this thesis addresses concept development

to system integration. From Fig. 1.1, many of the phases on the right side of

the V LCM impact or are influenced by phases on the left side, and vice versa.

This illustrates the iterative nature of the system development based on the V

LCM. The first step ( concept development and stakeholder requirement phases)

was establishing a problem that needed a solution and identifying stakeholders.

The primary stakeholders are Millennium Engineering and Integration Company

(MEI) and the FAA. Secondary stakeholders are potential customers of the flight

control software. These could include companies such as Amazon, Google, etc.,

or government agencies such as the Navy, Airforce, etc.. Following the stakeholder

requirement phase, system requirements were established in the system requirements

phase.

Concurrently with requirements development, the context level and system

level architectural artifacts for SARGM were created in the preliminary design phase.

Once the system architecture was established, the bulk of the system design and

4



Figure 1.1: V LCM showing the logical project flow for the development
of SARGM. This thesis presents work from the Stakeholder Require-
ments Phase up to the Integration Phase.

development took place in the critical design phase. Following the critical design

phase, element verification was performed as part of the element verification phase.

SARGM was then integrated with nominal flight control software during the inte-

gration phase. System validation, verification, and acceptance was not completed

because SARGM is still in the integration phase.

Now that the development approach has been established, it is important to

present the objectives. The top-level objectives of SARGM are the following:

1. Reduce rate of failure of any fixed-wing UAV to the level of aircraft already

flying in the NAS. Estimate is 2 accidents per one million departures [value
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to be reviewed (TBR)] [6].

2. Reduce casualties per flight hour of any fixed-wing UAV to the level of aircraft

already flying in the NAS. Estimate is 1 fatality per one million departures

[value TBR].

1.3 Concept Description

SARGM contains three elements: a decision engine, collision detection and

avoidance module, and ground impact hazard mitigation module. The system will

be able to diagnose the following during a mission: if the UAV is experiencing a

flight anomaly, what type of flight anomaly is occurring and if it is critical, and

whether there is a mid-air collision imminent. SARGM will also have the following

functions: determine safest course of action (COA) given a specific flight anomaly

or imminent mid-air collision, and update the flight plan to execute the safest COA.

The specific situations that SARGM will account for are detailed in Section 2.2.1,

where the system requirements are established.

Fig. 1.2 shows a black box representation of how SARGM will be used with

nominal flight control software. The nominal flight control software is comprised

of the initial set of waypoints, path planning, control system, and aircraft blocks.

Everything else in Fig. 1.2 is a part of SARGM. The abbreviation ”Dec.” represents

information flow from the decision engine block. The abbreviations ”wps”, ”coll.”

and ”A/C” mean waypoints, collision, and aircraft/command, respectively. While

SARGM includes sensor models and databases, the main functionality of SARGM is
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Figure 1.2: Block flow diagram of SARGM integration with nominal
UAV flight control software. The initial set of waypoints, path planning,
control system, and aircraft blocks constitute the nominal flight control
software. Every other block is a part of SARGM.

housed in the decision engine, collision detection and avoidance, and GIHM blocks.

Use of the system is designed for the following standard protocol: the user uploads

the mission plan in the form of initial mission waypoints and maximum mission flight

envelope, the UAV executes its mission, SARGM monitors the UAVs aircraft states

and sensor data and determines whether an adjusted flight plan (due to potential

mid-air collision or emergency descent resulting from a critical flight anomaly) is

needed. If an adjusted flight plan is required, the safest adjusted flight plan is

calculated and sent to the flight management system, where the flight management

system executes the needed maneuvers. If the maneuver is to terminate flight, the

mission ends. If the maneuver is avoiding something in its environment, the flight

control software performs the maneuver then returns to its nominal flight plan.
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1.4 Background

In developing this system, it is essential to understand the current body work

in developing safer UAV control software, in addition to the shortcomings of that

body of work. In this section, previous works in safer UAV control architecture and

requirements are reviewed. In addition, literature on reachable footprint and ground

risk models for UAVs will be presented because reachable footprint and ground risk

models are developed in Chapter 3. This section will also discuss the advantages

and shortcomings of current work in safer UAV control architecture, ground risk

models, and collective risk models.

1.4.1 Safer UAV Control Requirements and Architecture

The development of UAV control software safe enough for integration into

the NAS has been a longstanding issue and one that is a challenge because of its

complexity. Bogdiukiewicz et al. explains the challenge in achieving this goal arises

from the complexity of autonomous decision making mechanisms, and vague and

ambiguous safety properties [7]. Loh et al. also noted the need for an integrated

requirements collection early in any development program and noted documentation

of requirements traceability and rationale is important [8]. This shows that clear and

consistent system requirements and architecture is an essential piece of developing

safer UAV control software.

To understand what requirements are needed for safer UAV control software,

factors which effect UAV safety need to be identified and categorized. Dawei et

8



al. categorizes these factors as follows: flight platform security (including flying a

UAV in a flight safety envelope, engine, body damage, fault, and fault factors), link

security (including link interference or loss of communication link), environmental

safety (wind, rain, snow, high temperature, cold weather may lead to deterioration

of UAV flight performance), and human factors [9]. They also note the flight system

platform as the most difficult one to verify, and one that has highest priority. Re-

quirements for safer UAV control software can be encompassed in the three following

categories: collision detection and avoidance, decision engine, and ground impact

hazard mitigation.

Collision detection and avoidance helps the aircraft avoid any mid-air colli-

sions. The International Civil Aviation Organization explains that the pilot-in-

command of a manned aircraft is responsible for detecting and avoiding potential

collisions and other hazards, so the same requirement is needed for unmanned air-

craft [10]. In addition, right-of-way rules will remain essential in collision detection

efforts by unmanned aircraft. Other avoidance requirements noted in [10] include

identifying and avoiding terrain, identifying and avoiding severe weather, and pro-

viding ”visual” separation from other aircraft. A 2012 Congressional Research Ser-

vice (CRS) Report detailed the required technology and standard procedures for safe

UAV control software. The report requires UAVs to have technology and standard

procedures for sensing and avoiding other air traffic under all possible scenarios,

including loss of communications [3]. In [8], the authors state a requirement driver

for any operation in the NAS will be its contribution to maintaining aircraft or UAV

separation during flight operations in the NAS. Furthermore, aircraft or UAV safety
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for a given phase of flight or surface maneuver is achieved by maintaining minimum

separation from other aircraft or UAV and nearby obstacles.

In addition to collision detection and avoidance capabilities, a UAV must have

the ability to make on-board decisions during times of unsafe conditions. A decision

engine allows the UAV to make mid-flight decisions related to fault detection, fault

mitigation course of action, control instability recovery, and risk assessment. Loh et

al. claims that to make UAVs safer, it requires substantiation on: (1) the identifi-

cation of hazards/failure conditions, causes, and effects, (2) assessment of risk, and

(3) validation and verification of safety requirements [8]. The fault detection com-

ponent assesses any potential faults or failures in the overall system. This includes

monitoring performance of each sensor, engine operation and structural integrity of

the main body and control surfaces, among other things. According to Valavanis,

model-based fault detection can be employed to monitor system functionality as

well as determining the severity and type of faults or failures [11]. Valavanis goes on

to say that if necessary, the fault detection can initiate an emergency maneuver. In

addition to fault detection and analysis, [9] cites simulating fault circumstances as

part of safety testing for a UAV. If a fault mode is detected by the decision engine

and an emergency landing is required, an emergency protocol is needed to deter-

mine the safest response. A review of protocol and requirements for this function is

provided in the next section, Section 1.4.2.

In addition to clear system requirements, a complete system architecture is

needed. [8] and [11] establish a need for clear and concise system architecture when

developing safer UAV control software. [8] cites the need for credible architecture
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by asserting that credible architecture forms the basis to conduct safety assessments

and to demonstrate requirements feasibility.

In developing the architecture, it is necessary to understand the state and lim-

itations of current architecture. Valavanis presents a literature review of challenges

in unmanned aircraft autonomy and presents system architecture for unmanned air-

craft based on the present challenges [11]. He also explains that there still exists a

major drawback when attempting to study, model, develop, and formalize design of

systems that operate in uncertain/dynamic environments. This leads to a clear need

for a system architecture to help formalize the development of unmanned systems

in uncertain environments. Valavanis claims the major challenge of autonomous

UAVs has been the level of on-board intelligence and the level of autonomy to be

achieved in order to facilitate mission planning, decision making, control execution,

data logging, real-time communication to a ground control station, and online mis-

sion modification. These capabilities are essential for autonomous operations of an

aircraft.

Based on these challenges, [11] established the following basic systems are re-

quired of any unmanned aircraft: complete navigation sensor-suite, higher level

mission planning and trajectory generation, sensor-based real-time control, fail-

ure detection and accommodation, vision capabilities, detect, see/sense-and avoid

(DSAA), pilot take-over or assisted flight, and communication capabilities. The

on-board sensors include an Inertial Measurement Unit (IMU) and Inertial Naviga-

tion System (INS), GPS, a magnetometer for heading information and an altimeter

and/or laser range finder for altitude measurements and precision landing capa-
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bilities. All of these functions can be comprised in the following three core parts

of a safer control software: collision detection and avoidance, decision engine, and

ground impact hazard mitigation.

While the works above present different parts of a complete requirements base-

line and system architecture, the literature still does not provide a clear and all-

encompassing requirements document or complete system architecture. This work

presents a clear set of requirements and complete high-level architectural documents

for the development of this software.

1.4.2 Ground Impact Hazard Mitigation

A large part of this thesis is focused on the development of models and al-

gorithms for safe UAV response to critical flight anomalies. Because of this, it is

necessary to perform a literature review of developing reachable footprint models,

generating ground risk profiles, and developing safest response algorithms.

A wide body of literature exists in assessing the collective risk UAVs pose,

both in-air [2] [12] [13], and on the ground [12] [13] [14] [15] [16] [17]. Ground

risk models can be categorized into the following: failure mode, impact location,

recovery, stress, exposure, incident stress, and harm [18]. Of these categories, the

most relevant to this work are failure and impact location models.

Characterizing failure modes is an important aspect in guarding against ground

impact because if a flight anomaly and the effect of that anomaly on the aircraft

states are known, then the aircrafts reachable ground footprint can be calculated
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using gliding flight equations. The failure mode determines the capabilities and

maneuverability of the aircraft, which must be considered when developing ground

footprint models. For UAVs, these modes may include actuator failures, sensor

failures, engine malfunction, loss of radio link and GPS, as well as structural damage

such as a broken propeller, wing, etc., caused by unanticipated flight events [4]. This

work focuses on two particular categories of fault modes: engine malfunction and

actuator failures.

Regarding impact location models, previous works have developed reachable

ground footprints. [19] investigated the ability of a fixed-wing aircraft to glide to a

designated emergency landing area. The authors in [20] and [21] use 6 DOF models

to develop ground impact models for determining the reachable ground envelope of

a UAVs, and [22] developed an emergency no-thrust flight trajectory plan. None of

these works, however, incorporate flight control software into these models. They

furthermore do not examine collective risk profiles that consider population data.

To understand the collective risk a UAV poses to a given area, accurate

population data can be used. Previous work has used census data or local tax

data [12] [13] [14] [15] [16]. However, such information can be hard to acquire and

can be largely unrepresentative of the true population count for a given area. [23]

used demographic population data for entire cities and states to generate population

data for use in developing collective risk profiles. Using data at such large scales can

result in great uncertainty when finer resolution population data is required. For

this reason, LandScan USA data was used to obtain accurate population data. The

LandScan USA dataset represents ambient population at 90 m resolution anywhere
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in the United States [24]. In previous literature, Landscan data has been used for

mapping global impacts from climate change, building and evaluating population

density models, mapping spread of dangerous diseases, and much more [25] [26] [27].

However, to our knowledge, LandScan data has never been used for the purpose of

determining the lowest risk ground impact point for a UAV experiencing a hazardous

flight anomaly.

While there has been development in collision detection and avoidance, de-

cision making, and ground impact hazard minimization, there is limited work on

integrating all three key modules into an all-inclusive flight control software. This

work aims at presenting all three modules and using an MBSE approach to integrate

all three with nominal UAV flight control software to create a safer and more robust

flight control software.

1.5 Outline of Thesis

This thesis takes an MBSE approach towards developing a safer flight control

software, with the goal of making UAVs safe enough to be integrated into the NAS.

The system of interest (SOI) for this thesis is developed and integrated with an

existing nominal flight control software in the upcoming chapters.

Chapter 1 introduces the problem that needs to be solved and establishes how

the SOI will help solve the problem. Additionally, it provides background on the

body of work already present to help solve the problem. Chapter 2 establishes the

system and simulation requirements and architecture for SARGM. It provides a
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combination of context level, system level, and simulation architectures to provide

a clear picture of the components of the SOI. Chapter 3 develops each of the three

elements, or modules, of SARGM. Discussion of the decision engine and collision

detection and avoidance will be at a high level because that work was developed by

other University of Maryland researchers, and is out of the scope of this thesis. De-

velopment of the GIHM module is at a low level and includes discussion of pertinent

algorithms, mathematical models, and factors that effect the output metrics.

After module development, Chapter 3 will also discuss how these modules will

integrate with each other, and with nominal UAV control software. This includes

showing a block diagram of information flows from each part of the all-encompassing

flight control software. Chapter 4 will present and discuss the results of software

tests. This includes key results from GIHM and end to end simulations of flight

missions with the GIHM module integrated with the nominal flight control software.

Finally, Chapter 5 will summarize results and provide conclusions and takeaways

from the work presented in this thesis. Furthermore, future work will be presented

to promote future development of this work.
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Chapter 2: Situational Awareness and Response Guidance Module

System Design

2.1 Overview

This chapter addresses the system requirements and preliminary design phases

of the life-cycle model (LCM). It establishes the high and low level requirements for

SARGM. In addition to requirements engineering, key architectural artifacts are

presented at the context, system, and simulation levels. These artifacts will be the

basis of requirements development and critical design phase execution.

2.2 System and Simulation Architecture

This subsection looks at context level and system level architectures for the

system and simulations. Block definition diagrams (BDDs) will show a definition

of the system and its environment in terms of its principal elements. Internal block

diagrams (IBDs) will show connections between block elements, identify elements

and interfaces between blocks established in the BDDs, and display internal struc-

tures of blocks. Activity diagrams will show logical data flow behavior, actions to

accomplish the stakeholder goals, and how the environment and user interact with
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the system. Use case diagrams (UCDs) will show top level functions that stake-

holders want and identify external interfaces. Finally, simulation architecture will

provide an overview of the structure and behavior of the simulation to aid in fu-

ture verification and validation activities. The architecture will aid in requirements

development, discussed in the next subsection.

2.2.1 Context Level Block Definition Diagram

Context level architecture is the highest level of architecture, which represent

all external entities that may interact with the system. Its architecture depicts the

system, with no details of its interior structure, surrounded by all its interacting

systems, environments and activities. The objective is to focus attention on exter-

nal factors and events that should be considered in developing requirements and

constraints [28].

Fig. 2.1 shows the context level BDD for SARGM. This figure helps us un-

derstand the high-level structure of the system’s domain, which is comprised of the

SARGM system block, user block, and SARGM environment block. Each of these

blocks are further decomposed into their components. The SARGM system block

is comprised of the collision avoidance, collision detection, ground impact hazard

mitigation, and decision engine blocks. The SARGM environment is comprised of

the UAV flight management software, sensors, ADS-B data, LandScan data, and

UAV flight states blocks.
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Figure 2.1: Context level BDD for SARGM.

2.2.2 Context Level Internal Block Diagram

Fig. 2.2 shows the context level IBD for SARGM. It helps identify and docu-

ment interfaces between SARGM and its environment. The diagram also identifies

information flows between blocks. For SARGM, the user sends the initial mission

plan data to SARGM and receives flight status updates from SARGM. SARGM

sends updated mission plan data to the SARGM environment and receives flight

data from the environment. The updated mission plan data are new waypoints that

must be navigated to. These new waypoints either help the UAV avoid mid-air col-

lisions or is a landing or crashing waypoint for a UAV experiencing a critical flight

anomaly. The flight data sent to SARGM is comprised of the updated UAV flight

states (velocity, GPS coordinates, altitude, Euler angles, Euler rates, etc.), sensor

data, ADS-B data, and LandScan data.
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Figure 2.2: Context level IBD for SARGM.

2.2.3 Context Level Use Case Diagram

Fig. 2.3 shows the context level UCD for SARGM. This diagram helps show

the scope of SARGM and provides a high-level description. The operator interacts

with the decision making element of SARGM by sending initial mission waypoints

to it. The LandScan data block provides a high-resolution population dataset to

GIHM. ADS-B data and sensors blocks provide data to the collision detection and

avoidance module. The UAV flight management software and UAV flight states

blocks interface with the decision making module. The decision making module

sends mission waypoints to the UAV flight management software and receives flight

states data from the UAV flight states block.

2.2.4 Context Level Activity Diagram

Fig. 2.4 shows the activity diagram with swim lanes for the SARGM system.

The diagram shows shows the sequences of activities associated with accomplishing
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Figure 2.3: Context level UCD for SARGM.

the system’s goal of safely operating a UAV. The activity diagram also shows the

high level logical flows starting from mission initialization and ending with mission

termination. Interface requirements are also depicted through the logical flows be-

tween the user, SARGM, and environment swim lanes. The user initiates the process

by generating the mission plan and mission flight envelope. The flight management

software housed in the environment swim lane executes the mission plan. Finally,

SARGM monitors flight performance and generates appropriate courses of action

when flight anomalies or potential mid-air collisions are detected.
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Figure 2.4: Context level activity diagram for SARGM. The black circle
represents the starting point and the black circle with a ring around it
represents the end point.

2.2.5 System Level Internal Block Diagram

Fig. 2.5 shows the system level IBD. The system level IBD shows how the

elements interact with each other to accomplish the system level capabilities. It

shows information flows between the SARGM elements, user, and environment.

The mission operator provides the mission plan data and recieves mission updates

from SARGM. The decision engine provides new priority mission waypoints to the

flight management software. These new waypoints are generated when collision
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avoidance is required or an immediate landing due to a critical flight anomaly is

required. Updated flight states, ADS-B data, sensor data, and LandScan data are

provided to the decision engine element.

Figure 2.5: System level IBD for SARGM.

2.2.6 Simulation Block Definition Diagram

This subsection provides the architecture for the simulations. This is required

for an MBSE process because it provides a framework for developing and evaluating

the design and considers the expected behavior of the simulations.

Fig. 2.7 shows the high level structure of the simulations used in verification

and validation activities. The diagram indicates the structure of the simulation

and its environment. The simulation domain consists of the SARGM simulation,

user, and environment. Each of those three blocks are further broken down into

their respective parts. The simulations are executed by a systems analyst using

MATLAB/Simulink.
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Figure 2.6: Simulation BDD for SARGM simulations.

2.2.7 Simulation Internal Block Diagram

Fig. 2.7 provides the simulation IBD, which shows the system boundary and

how the SOI (in this case the simulator) interacts with external systems. Note that

SARGM does not directly interact with the systems analyst (user) in the simula-

tions. The user provides input data (detailed in previous diagrams) to the computer.

The computer processes the input data and provides simulation input data to the

simulation. The simulation runs and provides output data in the form of graphical

and numerical outputs. Graphical outputs include trajectory, Euler angles, Eu-

ler rates, altitude, and control surface plots. Numerical outputs include run time,

decision making time, number and type of flight anomalies experienced, casualty
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expectation (fatalities per flight hour), and number of mid-air collisions detected

and avoided.

Figure 2.7: Simulation IBD for SARGM simulations.

2.3 System and Simulation Requirements

2.3.1 Requirements

With system and simulation architecture provided, requirements can now be

developed. To establish system functionality and interdependence, it is essential

to create a requirements baseline. This baseline can serve as a legal document

to be referred to throughout the system lifecycle. The requirements for SARGM

are established below and are divided into high level, low level, and simulation

requirements. High level requirements are for SARGM as a system and low level

requirements are for the three individual submodules.

1. SARGM High Level Requirements

1.1. SARGM shall have a collision detection and avoidance module.
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1.2. SARGM shall have a decision engine module.

1.3. SARGM shall have a ground impact hazard mitigation module.

1.4. SARGM shall reduce the rate of failure of a UAV to 1 accident per 100,000

flight hours [value TBR].

1.5. SARGM shall reduce the casualties per 100,000 flight hours of a UAV to

0.1[value TBR].

1.6. SARGM shall integrate with a nominal flight control software containing

a mission plan, a path planning module, 6-DOF aircraft model, and flight

controller.

1.7. SARGM shall detect any imminent mid-air collision within 300 m of the

UAV[value TBR].

1.8. SARGM shall update the mission plan with a new safest response ma-

neuver when a mid-air collision is detected.

1.9. SARGM shall diagnose UAV flight anomalies in real time during mission

execution.

1.10. SARGM shall update the mission plan with a new safest response ma-

neuver when a flight anomaly is detected.

1.11. SARGM shall make any mid-flight decision in less than 0.1 second [value

TBR].

2. SARGM Low Level Requirements

2.1. Collision Detection and Avoidance Requirements
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2.1.1. The collision detection and avoidance module shall detect static or

dynamic obstacles within 300 m of the UAV [value TBD].

2.1.1.1. The collision detection and avoidance module shall interface with

ADS-B data to obtain real time flight data of all aircraft in its

flight envelope.

2.1.2. The collision detection and avoidance module shall avoid at least 4

dynamic non-maneuvering threats whose velocities and trajectories

are known.

2.1.3. The collision detection and avoidance module shall avoid at least 4

static non-maneuvering threats.

2.1.4. The collision detection and avoidance module shall provide a safe

path that avoids detected threats.

2.1.5. The collision detection and avoidance module shall provide a path to

return to nominal mission trajectory after a threat is avoided.

2.1.6. The collision detection and avoidance module shall interface with the

6-DOF model of the nominal flight control software.

2.1.6.1. The collision detection and avoidance module shall obtain UAV

flight states (e.g., GPS coordinates, velocity, roll, pitch, yaw)

from the 6-DOF model.

2.1.7. The collision detection and avoidance module shall interface with the

decision engine by providing an updated mission plan in the form of

new waypoints.
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2.2. Decision Engine Requirements

2.2.1. The decision engine shall estimate the UAVs augmented state vector.

2.2.2. The decision engine shall diagnose occurrence of flight anomalies.

2.2.2.1. The decision engine shall identify occurrence of a stall.

2.2.2.2. The decision engine shall identify occurrence of ailerons control

surface failures.

2.2.2.3. The decision engine shall identify occurrence of rudder control

surface failure.

2.2.2.4. The decision engine shall identify occurrence of elevator control

surface failure.

2.2.2.5. The decision engine shall identify occurrence of engine failure.

2.2.2.6. The decision engine shall identify occurrence of communication

loss.

2.2.3. The decision engine shall monitor engine performance.

2.2.3.1. The decision engine shall calculate total flight time left based on

engine performance.

2.2.4. The decision engine shall obtain UAV flight states (e.g., GPS co-

ordinates, velocity, roll, pitch, yaw) from the 6-DOF model of the

nominal flight control software.

2.2.5. The decision engine shall identify root cause of flight anomalies.

2.2.6. The decision engine shall determine whether a detected flight anomaly

is critical.
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2.2.7. The decision engine shall interface with the ground impact hazard

mitigation module if an uncontrollable flight anomaly is detected.

2.2.8. The decision engine shall interface with the collision detection and

avoidance module if a mid-air collision is detected.

2.3. Ground Impact Hazard Mitigation Requirements

2.3.1. The ground impact hazard mitigation module shall interface with

the decision engine to determine which fault mode the UAV is expe-

riencing.

2.3.2. The ground impact hazard mitigation module shall obtain UAV flight

states (e.g., GPS coordinates, velocity, roll, pitch, yaw) from the 6-

DOF model of the nominal flight control software.

2.3.3. The ground impact hazard mitigation module shall predict the fea-

sible ground impact footprint (FGIF) real-time during mission exe-

cution.

2.3.4. The ground impact hazard mitigation module shall use the FGIF to

extract local population count map from LandScan dataset.

2.3.5. The ground impact hazard mitigation module shall process Land-

Scan local population count map to extract lowest hazard zones as a

candidate for crashing or landing.

2.3.6. The ground impact hazard mitigation module shall select the lowest

hazard response.

2.3.7. The ground impact hazard mitigation module shall generate a revised
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UAV flight plan to implement safest response when a critical flight

anomaly is detected.

3. SARGM Simulation Requirements

3.1. Simulation Capability Requirements

3.1.1. SARGM simulation shall calculate the casualty expectation when

requiring an emergency landing.

3.1.2. SARGM simulation shall calculate percentage of lives saved, compar-

ing where the aircraft would have landed with and without SARGM,

when requiring an emergency landing.

3.1.3. SARGM simulation shall navigate to the initial waypoints provided

by the user, unless a mid-air collision or flight anomaly is detected.

3.1.4. SARGM simulation shall provide a trajectory plot at the end of the

simulation.

3.1.4.1. SARGM simulation shall show the user the new landing waypoint

on the trajectory plot when requiring an emergency landing.

3.1.5. SARGM simulation shall provide an altitude plot at the end of sim-

ulation.

3.1.6. SARGM simulation shall provide a Euler angles plot at the end of

simulation.

3.1.7. SARGM simulation shall provide Euler rates plot at the end of sim-

ulation.
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3.1.8. SARGM simulation shall provide control surface plots at the end of

simulation.

3.1.9. SARGM simulation shall tell the user if the aircraft experienced any

flight anomalies.

3.1.10. SARGM simulation shall tell the user if the aircraft had to avoid any

aircraft or infrastructure.

3.2. Simulation External Interface Requirements

3.2.1. SARGM simulation shall interface with the user.

3.2.1.1. SARGM simulation shall process parsed LandScan data, speci-

fying the mission flight envelope, from the user.

3.2.1.2. SARGM simulation shall take in specific time and fault mode

type from the user before simulation execution.

3.2.1.3. SARGM simulation shall process number and location of dy-

namic and static obstacles from the user before simulation ex-

ecution.

3.2.1.4. SARGM simulation shall process total simulation time from the

user before simulation execution.

2.3.2 Measures of Effectiveness

With requirements developed, it is important to define key performance met-

rics that indicate success or failure of the system in meeting the stakeholder’s needs.

Measures of Effectiveness (MOEs) are crucial for any system because these are in-
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strumental in determining whether the system will meet the stakeholders’ needs.

More specifically, MOEs are measures designed to correspond to accomplishment

of mission objectives and achievement of desired results. They quantify the results

obtained by a system and may be expressed as probabilities that the system will

perform as required [29]. The SOI is evaluated by its successful completion of the

following MOEs:

• The system can monitor aircraft flight states.

• The system can determine whether the aircraft is experiencing a flight anomaly.

• The system can choose the lowest hazard response when experiencing a critical

flight anomaly.

• The system can safely avoid buildings and other aircraft during entire mission

duration.

• The system can detect dynamic non-maneuvering threats whose trajectories

and speeds are predictable by the sensor system.

• The system can detect static threats such as buildings, trees, etc.

• The system can avoid at least four [value TBR] simultaneous collisions that

are predicted.

• The system can generate new priority waypoints to avoid mid-air collisions

and collisions with humans on the ground.
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• The system can safely land the aircraft when experiencing any critical system

failure (engine failure, control surface failure, loss of communication link).
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Chapter 3: Situational Awareness and Response Guidance Module

Development and Integration

3.1 Overview

This chapter gives a top-level look into the collision detection avoidance and

decision engine elements of SARGM. Fig. 3.1 shows a block diagram of how the

three SARGM elements interface with the nominal flight control software. This

diagram also shows input/output data flows for each block in the control software.

This diagram is described in more detail in Section 3.5. Data and logical flows are

provided for the collision detection and avoidance element and high level functions

for the decision engine are established in this chapter. Following, detailed models

are developed for GIHM and uses of the models for various critical flight anomalies

are discussed. This chapter will end with discussion about how these three elements

of SARGM interface with nominal flight control software.

3.2 Collision Detection and Avoidance

This section provides a top level look at the collision detection and avoidance

algorithm developed by Zijie Lin for SARGM. Data flow and algorithm flow are
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Figure 3.1: Top-level architecture detailing SARGM integration with
nominal UAV flight control software, sensors, and databases. The nomi-
nal UAV flight control software is comprised of the path planning, control
system, and aircraft blocks. SARGM is comprised of all other blocks in
the diagram.

presented to provide a clear understanding of the requirements and inner-workings

of the algorithm. Then, high level model development and key implications of the

work are presented.

3.2.1 Algorithm Data and Logical Flows

Fig. 3.2 provides the response model for the collision detection and avoidance

module. The response model gives a black box approach as to what factors (inputs)

are required for the model and the resulting metrics (outputs) the model provides.

The model requires the following factors: UAV position, UAV flight states, UAV

minimum turn radius, sensor data, and obstacle heading. Given this input data, the

model computes the following metrics: computation time and avoidance waypoints.

The model monitors obstacle location, speed, and heading real-time to calculate
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Figure 3.2: Response model for the Flexible Window Avoidance (FWA)
collision detection and avoidance algorithm.

whether a mid-air collision is imminent. The avoidance waypoints are used to pro-

vide a trajectory for the UAV to avoid mid-air collisions and then guide the UAV

back to the original mission path.

Fig. 3.3 shows the collision detection and avoidance algorithm’s top level

logical flow as an activity diagram with swim lanes. The diagram also shows how the

elements of the collision detection and avoidance module interface with each other

and the UAV. After the mission is initiated, aircraft states data and sensor data are

sent to the collision detection element. The collision detection element analyzes the

flight states and sensor data and determines if an imminent collision is detected. If

a collision is detected, it determines whether there is a single or multiple obstacles

and if each obstacle is static or dynamic. The collision detection and avoidance

module allows for detection and avoidance of 4-5 dynamic and static obstacles at

once. The collision avoidance element calculates time to collision and classifies each
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obstacle detected as urgent or not urgent. This is to prioritize avoidance efforts. The

aircraft’s required heading to avoid the obstacles is calculated, which is then used to

generate waypoints to avoid the obstacles. After those waypoints are generated, the

nearest reachable waypoint on the original mission plan is found. This allows for the

UAV to continue on its original mission plan after avoiding the obstacles. Finally,

the collision avoidance element generates the new mission plan by combining the

waypoints to avoid collision and waypoints generated to return to the original path.

These waypoints are sent to the UAV’s mission planner for execution. The average

computation time of the collision detection and avoidance module is 0.0056 seconds.

3.3 Decision Engine

The role of the decision engine in SARGM is to act as the monitoring system

that predicts and diagnoses anything that can go wrong with the UAV throughout its

mission. This includes fault detection, fault effects prediction, and control-instability

and stall recovery. In addition to these functions, the decision engine sends the new

mission waypoints, generated by the collision detection and avoidance and GIHM

modules, to the UAV’s mission planner. This requires interfacing with the collision

detection and avoidance module and GIHM module to determine which new mission

waypoints it should send to minimize the risk of the UAV.

The decision engine is being developed by Lina Castano at the University of

Maryland. Current efforts have focused on fault detection and controlled descent

of the UAV in the presence of critical flight anomalies, or fault modes. Faults are
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Figure 3.3: Activity diagram for the collision detection and avoidance
algorithm. The black circle represents the starting point and the black
circle with a ring around it represents the end point.
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defined as unpermitted deviations of at least one characteristic property or parame-

ter of the aircraft system from the acceptable or standard condition [30]. Faults are

classified according to where they occur in the system (i.e. sensors, actuators and

other components). Faults can also be classified as abrupt, incipient, or intermit-

tent, with respect to their time characteristics. The primary fault investigated in

this work is abrupt power system failure because of its prevelance in today’s UAV

failures [31]. In addition, stuck control surfaces (rudder, elevator, and ailerons) were

subjects of initial fault investigation.

For fault mode detection, the decision engine monitors actuator commands

for the rudder, ailerons, and elevator, and UAV flight states (airspeed, Euler angles,

angle of attack, etc.). These factors are used in the determination of whether the

UAV is experiencing a fault mode. Once a fault is detected, the fault is characterized

as critical or noncritical, where critical flight anomalies are defined as failures that

require immediate UAV descent or a flight anomaly that will prevent the UAV from

completing its mission safely.

3.4 Ground Impact Hazard Mitigation

Once a critical flight anomaly is diagnosed by the decision engine, the GIHM

module determines the lowest hazard response. This section provides a detailed look

into the models, collective risk profiles, and decisions required for GIHM. GIHM’s

primary function is to provide the safest landing or crash point for a UAV in the

presence of an critical flight anomaly. First, data flow and algorithm logical flow
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are presented to provide a clear understanding of the high level functions and data

flows involved with GIHM. Following, the models are derived and fault modes and

safest response considerations are introduced and incorporated into the models.

GIHM also interacts with the decision engine and collision detection and avoid-

ance elements by the following: the decision engine diagnoses critical fault modes

and provides that data to GIHM, and the collision detection and avoidance module

interfaces with GIHM by avoiding buildings and other infrastructure during emer-

gency descent. GIHM is unique compared to the current body of work because

GIHM integrates specialized reachable footprint models with a high spatial resolu-

tion dataset in LandScan to generate accurate ground risk profiles. Furthermore,

GIHM algorithms are integrated with flight control software to show how a UAV

can maneuver to the new waypoints provided by GIHM for many different critical

flight anomalies.

3.4.1 Algorithm Data and Logical Flows

Fig. 3.4 provides the response model for GIHM. GIHM requires UAV position

data, UAV flight states data (airspeed, Euler angles, angle of attack), which fault

mode the UAV is experiencing (fault modes will be discussed in the next section),

and LandScan data. The LandScan data is required to produce collective risk profiles

because it provides high resolution population data. GIHM provides the following

outputs: casualty expectation (fatalities per flight hour) and new priority mission

waypoints. These new priority mission waypoints are waypoints needed to guide the
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UAV to the safest landing or crashing zone.

Figure 3.4: Response model for GIHM. Factors are required data into
the model and metrics are output data of the model.

Fig. 3.5 shows the algorithm’s high level logical flow in the form of an activity

diagram with swim lanes. The diagram also shows how GIHM interacts with the

decision engine element of SARGM. After the mission is initiated, the decision

engine monitors the aircraft states data and sensor data. The data is analyzed

for a specified time iteration and the decision engine determines if a critical flight

anomaly is detected. If a critical flight anomaly is detected, the decision engine

categorizes the flight anomaly and sends that data to GIHM. GIHM chooses which

algorithm to use based on which flight anomaly was diagnosed. Depending on the

flight anomaly, the level of maneuverability of the UAV may change. From the

aircraft’s flight capabilities, a feasible ground impact footprint (FGIF) is generated.

The FGIF represents everywhere on the ground the UAV can maneuver to. After

the FGIF is calculated, LandScan data is integrated with the FGIF to generate
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collective risk profiles. These collective risk profiles show the expected fatalities on

the ground everywhere within the FGIF. GIHM then determines the lowest ground

impact waypoint by searching for the lowest collective risk waypoint. GIHM provides

this as the new priority mission waypoint to the mission planner. Finally, the UAV

executes the new mission plan by safely maneuvering the aircraft to that waypoint.

Figure 3.5: Activity diagram for GIHM. The black circle represents the
starting point and the black circle with a ring around it represents the
end point.
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3.4.2 Feasible Ground Impact Footprint Model Development

This section develops the models required to generate an aircraft’s FGIF. The

FGIF of an aircraft is everywhere on the ground where the UAV can reach. Due to

the choice of simulating a prevailing engine failure, glider equations are used for the

FGIF calculations. Fig. 3.6 depicts the FGIF concept and axis representation used

in development of the FGIF models. Variables dx and dy represent displacements in

the longitudinal and latitudinal direction, respectively, and dz represents displace-

ment in altitude. To calculate distance traveled in the x and y directions, gliding

flight equations were used to model UAV flight performance. These equations were

then iterated over an aircrafts 360o of maneuverability to obtain a full reachable

envelope.

Figure 3.6: Depiction of the FGIF and coordinate system. dx, dy, and dz
represent displacement in the longitude, latitude, and altitude directions,
respectively. The UAVs reachable footprint is represented by the semi-
circle labeled ’FGIF’.

42



3.4.2.1 Gliding Flight

Calculation of the FGIF requires the vehicles initial latitude, longitude, alti-

tude, airspeed, roll angle, pitch angle, and yaw angle. These values are obtained

from the UAV flight control software. The gliding flight equations are derived from

the following equations of motion in the aircrafts longitudinal, lateral, and vertical

axis respectively [19]:

m
dv

dt
= −mgsin(θ) −D + Tcos(θ), (3.1)

mgcos(θ)sin(φ) = mvψ̇cos(θ)cos(φ), (3.2)

mgcos(θ)cos(φ) − L− Tcos(θ) = −mvψ̇cos(θ)sin(φ), (3.3)

where φ, θ, and ψ are roll, pitch, and yaw angle, respectively. ψ̇ is the turn rate

of the aircraft, m is the aircraft’s mass, g is acceleration of gravity, D is drag, L is

lift, and T is thrust. From here we make the following assumption: for an engine

out case, we set T = 0, gliding flight. If a small angle approximation is used as a

result of a small glide angle (which is the case for most aircraft), the gliding flight

equations are simplified to:

0 = −mgsin(θ) −D, (3.4)

tan(φ) =
vψ̇

g
, (3.5)

mgcos(φ) − L = −mvψ̇sin(φ). (3.6)

These are the three primary equations of motion for gliding flight in the aircraft’s

longitudinal, lateral, and vertical axis.
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3.4.2.2 Footprint Calculation

There are two phases to gliding flight: a turning phase and a straight line

phase.

3.4.2.2.1 Turning Phase

During a turn, an aircraft’s airspeed will increase and height will decrease. To

calculate the height loss during the turning phase, we use

∆hturn = Larc
vsφ
vφ
, (3.7)

where vsφ is the sink rate of the aircraft in the turning phase, vφ is airspeed during

the turning phase, and Larc is the arc length of the circle made by the turn. vφ and

vsφ are calculated using the following equations:

vφ = vsec
1
2 (φ), (3.8)

vsφ = vssec
3
2 (φ). (3.9)

Larc is calculated using the following equations:

Larc = Rdψ, (3.10)

R =
v2

gtan(φ)
, (3.11)

where R is the radius of the circle and dψ is the total change in heading. dψ is

bounded between ±π to account for an aircraft’s ability to turn in the positive and

negative directions.
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An aircraft’s rate of sink, vs, is the amount of height loss per unit time the

aircraft is flying during gliding flight. vs is a function of the aircraft’s drag, weight,

and velocity through the following equation:

vs =
Dv

W
. (3.12)

To calculate drag, we can modify equations from [32], resulting in the following

expression:

D = 0.5Cdρ0v
2S, (3.13)

Cd = Cdo +
kC2

L

πAr
, (3.14)

where ρ0 is the density of air at sea level, S is the wing area, Cdo is the aircraft’s

profile drag, and k is the induced drag factor, determined by the aircraft wing

dimensions, configuration, Reynolds Number and Mach Number. Ar is the aircraft’s

wing aspect ratio and CL is the coefficient of lift.

To calculate CL, it was assumed that the airfoil was cambered and thin. With

these assumptions, he following equation was used to calculate CL:

CL = CLo + 2πα, (3.15)

where CLo is the aircraft’s coefficient of lift at zero angle of attack and α is the

aircraft’s angle of attack. This equation is valid for small angle of attack. Since

the aircraft is not approaching stall conditions, the aircraft’s angle of attack will be

within the linear region of the angle of attack vs. coefficient of lift relationship.

Once the height loss during the turning phase is calculated, we next determine

how far in the x and y directions the aircraft travels during the turning phase (dx,t,
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dy,t). Fig. 3.7 shows how dx,t and dy,t can be calculated based on simple geometric

ideas. From this figure, it is seen that

dx,t = Rsin(dψ), (3.16)

dy,t = Rcos(dψ). (3.17)

Figure 3.7: Glide range derivation representation, which includes the
turning phase and straight line phase.

With the total distance traveled during the turning phase known, the next

phase is straight level flight.

3.4.2.2.2 Straight Level Phase

Distance traveled during straight level flight (dx,s, dy,s) is calculated using

similar geometry to that of the turn phase:
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dx,s = Dglidesin(dψ), (3.18)

dy,s = Dglidecos(dψ). (3.19)

Total ground distance traveled in the straight level flight, Dglide, is calculated using

the following equation:

Dglide = (hi − ∆hturn)
v

vs
, (3.20)

where hi is the aircraft’s initial height before entering gliding flight. The loss of

height during a turn, ∆hturn, must not exceed the aircraft’s initial height, which is

an important condition when determining where the aircraft can maneuver to.

By adding total distances traveled during the turning and straight line phases,

the total distance traveled in each direction can be calculated. This results in the

final two equations for distance traveled in the xy directions during gliding flight:

dx = Rsin(dψ) +Dglidesin(dψ), (3.21)

dy = Rcos(dψ) +Dglidecos(dψ), (3.22)

where dx and dy are the coordinates at the end of the glide, relative to the initial

position and heading of the aircraft. The FGIF is simply comprised of all of the

possible dx and dy combinations that the aircraft can reach. It is important to note

that for this work it is assumed that there is no wind, which would otherwise have

an effect on the gliding performance of a UAV.

Finally, it is important to consider whether an aircraft can actually execute

the required turns when finalizing its FGIF. To account for the situation where
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the UAV reaches the ground during the turning phase, the following condition is

required: if ∆hturn > hi then the aircraft cannot execute that turn, resulting in the

corresponding dx and dy values being excluded in the FGIF.

3.4.2.3 Fault Modes and Safest Response

3.4.2.3.1 Fault Modes

Faults are defined as unpermitted deviations of at least one characteristic

property or parameter of the aircraft system from the acceptable or standard con-

dition [30]. Now that models are established for gliding flight, we investigate the

effects of four fault modes on gliding performance. The four fault modes investigated

are as follows:

1. Engine failure - UAV engine malfunction, resulting in no thrust.

2. Engine and rudder failure - UAV engine and rudder control surface failure.

Rudder control surface is stuck at the deflection it had when the fault was

detected.

3. Engine and elevator failure - UAV engine and elevator control surface failure.

Elevator control surface is stuck at trim deflection value.

4. Engine and ailerons failure - UAV engine and ailerons control surface failure.

Ailerons control surfaces are stuck at trim deflection value.

The impact of a fault can be small but it could also lead to overall system

failure. After failure detection, a safe autonomous system needs to be able to classify
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the fault into an appropriate category in order to mitigate its effects. Faults are

classified according to where they occur in the system, i.e. sensors, actuators and

other components. Faults can also be classified as abrupt, incipient, or intermittent,

with respect to their time characteristics.

In this work, we have considered an abrupt power system fault and a com-

bined abrupt power system/actuator fault. The first actuator fault implemented in

simulation consists of a rudder surface that got stuck after servo failure and remain

at the deflection it had at the time of the fault. The second actuator fault consists

of an elevator surface that got stuck after a servo failure and remains at its trim

deflection value. Finally, the third actuator fault implemented in simulation consists

of ailerons surfaces that got stuck after a servo failure and remain at trim deflection

values [33]. Now we take a look at how the footprint may change depending on

which fault occurs.

Fault Mode 1, Engine Failure: In this fault mode, it is assumed that the

UAV cannot accelerate but can change its roll, pitch and yaw angles. Because of

this, the dx and dy equations derived above are used in their entirety to calculate

the FGIF.

Fault Mode 2, Engine and Rudder Failure: In this fault mode, it is

assumed that the UAV cannot accelerate but can change its heading using the

functioning ailerons. Even though the rudder is stuck at a at a specific deflection, it

is assumed the UAV may use its ailerons to adjust its heading. It was also assumed

the aircraft’s sideslip is minimal enough that it could still maneuver to various

headings. The validity of this assumption is explored in Section 4.3.2.2, where UAV
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trajectory and aircraft states plots are provided for the engine and rudder failure

fault mode. Because of these assumptions, dx and dy equations derived above are

used in their entirety to calculate the FGIF.

Fault Mode 3, Engine and Elevator Failure: In this fault mode, it is

assumed that the UAV cannot accelerate or change its angle of attack. The UAV’s

elevator is stuck at a specific deflection, resulting in the aircraft not having the

ability to change its angle of attack. This would result in constant Lift and inability

for the UAV to minimize its sink rate by changing its angle of attack. Because of

this, dx and dy equations derived above are used in their entirety to calculate the

FGIF, with the limitation of not being able to change Lift.

Fault Mode 4, Engine and Ailerons Failure: In this fault mode, it is

assumed that the UAV cannot accelerate or change heading, but can pitch. Because

the UAV cannot change heading, dψ = 0, resulting in only straight line flight because

the aircraft cannot execute a turning phase without heading control. From this, the

following modified gliding flight equations must be used to reflect that only straight

level gliding flight can be achieved:

dx = Dglidesin(
π

2
− ψ), (3.23)

dy = Dglidecos(
π

2
− ψ), (3.24)

Dglide = hi
v

vs
. (3.25)

The Dglide term was modified to exclude the ∆hturn term because the aircraft is

unable to turn. Notice that in the equations for dx and dy the dx,t and dy,t terms
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were removed because the aircraft is not turning while experiencing this fault mode.

This results in a straight line reachable footprint.

3.4.2.3.2 Safest Response

With a model developed for the FGIF, we next develop a procedure for choos-

ing the safest response. A searching algorithm was developed, which used the FGIF

and UAV’s current position to parse the LandScan USA data for the area in which

the UAV could maneuver to. It then extracts the local minimum population value

for which the UAV would pose the least collective risk. The LandScan USA con-

tains 90 m spatial resolution population data. [N.B. The LandScan USA dataset is

restricted for use by government agencies only. We use simulated data at this reso-

lution to show how this dataset can be integrated.] The data structure of LandScan

is a matrix whose rows and columns represent latitudinal and longitudinal coordi-

nates. The value of each matrix cell is the population for that range of geodetic

coordinates. LandScan data is used to generate a collective risk profile, which is

required when determining the safest response.

Collective risk, also known as casualty expectation (CE), describes the aggre-

gate risk that a UAV poses to a population of people. It is measured by expected

number of casualties per flight hour [20]. Collective risk is calculated using the

following equations [13]:

CE = PF · PD · AL · PK · s, (3.26)

AL = (Lair +DG+DS + 2B) · (W + 2B). (3.27)
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Definitions and the domain of variables for Eqns. 3.26 and 3.27 can be found

in Table 3.1. Probability of failure (PF ) is expected number of mishaps per flight

hour, population density (PD) is population count per square meter, probability

of a fatality (PK) is the probability of a piece of the UAV striking a pedestrian

and leading to a fatality, and shelter factor (s) is an estimate of how exposed a

population is to falling vehicles or debris, with a factor of 0 and 1 representing

completely sheltered and completely exposed, respectively. Lethal area (AL) is the

area of which a fatality may occur when a vehicle or debris falls. Length (Lair) and

width (W ) refer to the length and wingspan of the aircraft, respectively, buffer (B)

is a safety factor, glide distance (DG) is the distance traveled beginning when the

UAV is at an altitude of 6 ft and ending when it reaches the ground, and distance

to stop (DS) is the total distance from when the UAV reaches the ground to when

it comes to a complete stop. Because it is assumed that the UAV will crash and not

land, DS = 0. Additional research is required to consider landing zones for a UAV.

Lethal area, length, width, glide distance, and distance to stop are all spe-

cific to the aircraft and aircraft dynamics. The upper range of population density

is determined by the highest population density in the United States, located in

Guttenberg, New York City. The resulting casualty expectation values can be as

low as 0 fatalities per flight hour and as high as 6.43 fatalities per flight hour. For

large airliners, the average casualty expectation is 0.01 fatalities per 100,000 flight

hours and that of small general aviation aircraft is 0.1 fatalities per 100,000 flight

hours [2]. However, the casualty expectation for a UAV will be much higher than

these values because casualty expectation is proportional to probability of failure,
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Table 3.1: Definitions of variables in casualty expectation equations. Starred term
domain values do not have a range of values because they are specific to the aircraft’s
dynamics. Representative values were given for the UAV simulated in this work.

Variable Definition Domain

CE casualty expectation [0, 6.43] fat/flt hr

PF probability of failure (0, 1]

PD population density per square meter [0, 0.022] pop/m2

AL lethal area 77.75 m2*

PK probability of fatality [0, 1]

s shelter factor [0, 1]

Lair length 1.83 m*

W width 1.41 m*

B buffer 1 ft

DG glide distance at 6 ft altitude 8.02 m*

DS distance to stop 0 m

and manned aircraft have very small probabilities of failure, 0.000064%, compared

to unmanned aircraft, 2.17% [6] [34]. This leads to a collective risk for small UAVs

that is expected to be nearly 100,000 times larger than that of a manned aircraft.

For the purposes of this thesis, probability of failure was assumed to be 0.0217,

consistent with the maximum probability of failure for a small UAV defined by

Sean et al. [34]. The population density was found by dividing the population

count from LandScan data by its respective area. The probability of fatality was

found using methods explained by Range Safety Group, which was a function of

the mass and speed of the aircraft [13]. A conservative shelter factor of 1 was used,

representing a fully exposed population. Glide distance was calculated using the

following equations [35]:

DG = tan(
Hp

γ
), (3.28)
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γ = tan−1(
Hp

d
), (3.29)

where γ is glide angle, Hp is the height of an average person and d is the distance

traveled from when the vehicle is at height Hp until when it hits the ground. This

glide distance is different than glide distance derived in Section 3.4.2.1 because this

is the glide distance starting when the vehicle is at height Hp, not its mission plan

height. By knowing the collective risk profile within the FGIF, the UAV is now able

to find the point of local minimum risk and decide if the safest response is to fly to

that minimum risk waypoint.

While LandScan data is always available, it may not always be required in

determining the safest response. If the mission endpoint is within the FGIF of

the aircraft then the UAV should naturally land at that waypoint as its the safest

response. Similarly, if the mission endpoint is not within the FGIF, but the mission

start is, then the aircraft should return to base.

3.5 Integration with Standard UAV Control Software

With all three modules of SARGM presented, we now discuss integration of

SARGM with nominal UAV control software. A 6-DOF flight simulation software

was implemented in Matlab/Simulink and interfaced with SARGM. Fig. 3.1 shows

the block flow diagram for the three elements of SARGM with nominal UAV control

software. The nominal flight simulation architecture contains a path planning block,

control system block, and aircraft block. The path planning block takes the initial

mission waypoints and calculates where the UAV needs to go to reach the waypoints.
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It also takes the system states as an input so that it can update where the UAV

needs to go. The control system block uses PID controllers to track altitude and

groundspeed, and takes the waypoint navigation requirements and outputs actuator

commands to the UAV. Finally, the aircraft block houses the 6-DOF UAV aircraft

model and takes in actuator commands to update the new system states.

The UAV states, generated from the aircraft block, are sent to the decision

engine. The decision engine uses this data and sensor data to determine whether the

UAV is experiencing a fault mode. In this work, a fault mode is detected when the

UAV aircraft states are outside of a predetermined nominal range. If a fault mode

is detected, the decision engine sends this information to GIHM, where it generates

new landing waypoints in the form of GPS coordinates. The GPS coordinates are

sent back to the decision engine and then to the UAV flight control software. These

new coordinates replace old mission waypoints.

Concurrently, the collision detection and avoidance block process the UAV

states data, in addition to sensor and ADS-B data, to determine if a mid-air collision

is imminent. If a mid-air collision is imminent, the block calculates an avoidance

path and a path back to the original mission waypoints. This allows for the UAV to

avoid the mid-air collision and then continue in its mission. Those sets of waypoints

are sent to the decision engine and then to the UAV flight control software for

implementation. The logic behind whether the collision detection and avoidance

block or GIHM block takes precedence in sending new priority waypoints was not

investigated in this work but will be the subject of future work.
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Chapter 4: Simulation Results and Discussion

4.1 Overview

This chapter presents simulation results from the GIHM models and end to

end simulations of GIHM integrated with nominal control software. The UAV sim-

ulated was a Talon 240. The GIHM simulations will establish relationships between

some UAV flight states and size and shape of the FGIF. The end to end simulations

will provide a look into how UAVs could minimize their ground risk when experi-

encing critical flight anomalies with the GIHM module. The chapter will finish with

discussion and implications of results.

4.2 Ground Impact Hazard Mitigation Results

Section 3.4.2.1 developed the models for generating a UAV’s FGIF. This sec-

tion provides a look into how the FGIF can change with different aircraft states

values.

Fig. 4.1 shows the FGIF of an aircraft traveling due north, experiencing fault

mode 1 (engine failure) at different heights. The aircraft’s initial position when

experiencing the fault mode is at the origin of the plots. It can be seen that as the
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(a) (b) (c)

Figure 4.1: Effect of aircraft height on FGIF for fault mode 1: (a) Alt=15
m, roll=35◦. (b) Alt=25 m, roll=35◦. (c) Alt=100 m, roll=35◦. The light
blue shaded area is the FGIF.

initial height of the aircraft increases, so does the FGIF (represented by the light

blue shaded area of each plot). This is because the aircraft is able to glide for a longer

time, resulting in a larger footprint. Also seen in 4.1, the FGIF’s shape changes. As

the initial height decreases, the UAV reaches the ground before changing its heading

to the full ±π radians of maneuverability.

Fig. 4.2 shows the FGIF of an aircraft traveling due north, experiencing fault

mode 1 at different roll angles. At smaller roll angles, the aircraft cannot execute

turns to larger heading changes fast enough. As a result, the aircraft cannot reach

those larger angles before before reaching the ground. This is seen in Fig. 4.2(a)

where the aircraft experiences the fault mode while at a small roll angle. Because

of this small roll angle, the FGIF is only part of a circle. As the roll angle increases,

the aircraft can more quickly maneuver to larger heading changes. This is seen in

Fig. 4.2(b) and Fig. 4.2(c) where the aircraft has a larger roll angle and can reach

the entire ±π range of heading change.
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(a) (b) (c)

Figure 4.2: Effect of aircraft roll angle on FGIF for fault mode 1: (a)
Alt=50 m, roll=5◦. (b) Alt=50 m, roll=10◦. (c) Alt=50 m, roll=25◦.
The light blue shaded area is the FGIF.

The FGIF of an aircraft experiencing the engine and rudder failure fault mode

would have very similar characteristics as the engine failure fault mode. This is

because when the rudder is out, the ailerons are able to change the heading of the

aircraft and allow for relatively straight line flight. However, there will be side slip

as a result of the rudder control being compromised. For this work, it is assumed

that the side slip is minimal enough to where the aircraft can still maneuver to the

calculated crash zone.

The FGIF of an aircraft experiencing the engine and elevator failure fault mode

would have a similar footprint compared to the engine failure fault mode. However,

the FGIF would only be comprised of the black outline (not shaded blue area) of the

FGIFs seen in Figs. 4.1 and 4.2. This is because with the elevator out the aircraft

is unable to change its angle of attack, so it is unable to change its orientation to

reach the shaded blue area. This results in fewer crash zone choices for the aircraft.

The FGIF of an aircraft experiencing the engine and ailerons failure fault mode
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would simply be a line. Because there is no turning phase for this fault mode, the

UAV cannot change its heading and therefore would only be able to fly at its current

heading. However, the aircraft can still change its angle of attack using its elevator,

which allows for a straight-line footprint to be made, rather than obtaining a single

impact point.

4.3 Integration Testing Results and Discussion

4.3.1 Problem Setup

In this case study, a Talon 240 fixed-wing UAV was modeled. The aerodynamic

characteristics used for the small UAV are seen in Table 4.1.

Table 4.1: Characteristics of the General Aviation UAV used in simulation.

Variable Definition Value

v aircraft velocity 20 m/s

αmax max angle of attack 6.25◦

m maximum take off weight 1.2 kg

Lw wingspan 1.4 m

Tw wing taper 1.95

AR wing aspect ratio 6.4

wc wing aerodynamic chord 0.22 m

airfoil wing airfoil SD7037

CLi, CDi, CMi Lift, Drag, Moment coeffs. derivs. from airfoil

The UAV’s nominal mission plan contains five waypoints and a home waypoint.

The waypoints approach the University of Maryland, and a given fault mode is

induced 25, 45, 63, 80, 90, and 110 seconds into the simulation. These times were
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chosen to obtain a wide range of flight scenarios with the UAV at different points

during its mission.

Model LandScan data was created in Matlab and was the same structure

as LandScan USA data, but with a resolution of 30 m. The finer resolution was

required to show the utility of GIHM for small UAVs because of the size of the

FGIF during simulations. Fixed blocks of higher population were created to mimic

higher population expected in clusters of buildings at the University of Maryland.

The dataset was preloaded into the UAV simulation and was parsed in real time

when a fault mode was detected.

4.3.2 Simulation Results and Discussion

4.3.2.1 Casualty Expectation Reduction

This section presents numerical results for the testing of GIHM. Table 4.2

summarizes casualty expectation results of simulations for all four fault modes at

six fault mode times. By comparing the average casualty expectation with GIHM to

the average casualty expectation without GIHM, we can conclude that the average

casualty expectation is 24.718 fatalities per 100,000 flight hours lower with the GIHM

module than without the module. This equates to an 97.3% decrease in fatalities per

flight hour. These CE values are within the expected range of CE values established

in Table 3.1. Note that the units in Table 3.1 for CE is fatalities per flight hour,

not fatalities per 100,000 flight hours. According to the FAA, a large airliner shall

have a casualty expectation of 1 fatality per 1,000,000 flight hours, which is still
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far below the average casualty expectation value for the UAV with GIHM. This

is because the probability of failure for this simulation is 2.17%, which is nearly

300,000 times higher than the probability of failure for a large airliner (0.000064%).

It is important to note that these results are specific to this mission configuration

and are dependent on population differences in the area in which its flying. If a

UAV is flying over a rural, low populated area, the percent decrease in fatalities per

flight hour as a result of GIHM would be less. From the results, it is concluded that

GIHM reduces casualty expectation of a UAV experiencing any of the four fault

modes presented in this thesis.

4.3.2.2 UAV Mission Simulations Results

With numerical results presented, it is important to show that the UAV can

maneuver to and reach the low hazard waypoint provided by GIHM. This section

provides the trajectory and aircraft states profiles for the simulated UAV. The trajec-

tory and aircraft states profiles are presented for when the UAV does not experience

any fault modes, and when the UAV experiences fault modes 1, 2, or 4. These results

will show the limitations and maneuverability of a UAV experiencing various fault

modes. They will also provide evidence that the FGIFs and low hazard waypoint

provided by GIHM accurately model where the UAV can glide to.

Fig. 4.3 and Fig. 4.4 show the flight simulation trajectory and altitude profiles

of the UAV under nominal operating conditions. The simulation terminates after

the UAV reaches the fifth (final) waypoint. Plots of trajectory show the relative
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Table 4.2: Simulation results comparing CE with and without the GIHM module
for all four fault modes at six different fault times. CE has units of fatalities per
100,000 flight hours.

Fault Mode Fault Time (s) CE With GIHM CE Without GIHM

1 25 0.000 9.690

2 25 0.000 9.690

3 25 0.426 15.250

4 25 1.124 13.940

1 45 0.024 13.350

2 45 0.024 13.350

3 45 0.072 67.450

4 45 2.709 62.560

1 63 0.017 61.650

2 63 0.017 53.900

3 63 0.277 60.280

4 63 1.124 54.130

1 80 0.017 15.760

2 80 0.017 15.760

3 80 0.524 13.239

4 80 3.698 13.780

1 95 0.017 19.400

2 95 0.017 19.400

3 95 1.403 16.960

4 95 4.509 3.928

1 110 0.000 18.140

2 110 0.000 18.140

3 110 0.043 15.860

4 110 0.639 4.336

Average 0.696 25.414

distance the UAV travels compared to the UAV’s home waypoint. On all of the

trajectory plots, the heat map represents population count in that node, with darker

nodes representing highly populated areas. The population heat map is pixilated
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because the data was generated using randomized values. The randomized values

were generated based on average population values in the University of Maryland

area. When LandScan USA data is used, it can easily be integrated and the heat

map of the population will be smoother and more accurate. From Fig. 4.3, it is seen

that the actual flight path of the UAV is very close to the shortest path, indicating

an effective trajectory control scheme. Fig. 4.5 shows the Euler angles and Euler

rates profiles for the nominal flight simulation. These will be used for comparison

to the flight states of the UAV experiencing the various fault modes.

Figure 4.3: UAV trajectory for when there is no fault mode detected.
The aircraft starts from the home waypoint at the origin and travels to
the waypoints in numerical order.

First, fault mode 1 was investigated. Fig. 4.6 and Fig. 4.7 show the simulated

flight trajectory and altitude profiles of the UAV experiencing the engine out (fault
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Figure 4.4: UAV altitude plot as a function of time for when there is
no fault mode detected. The numbered circles show the five mission
waypoints. The UAV begins on the ground at the start, climbs to 150
m, then descends back to the ground when approaching waypoint 5.

mode 1) flight anomaly 80 s after mission plan initiation. The trajectory plot shows

where the UAV would have landed compared to where it was able to maneuver.

From the heat map, the new landing waypoint is in a less populated spot compared

to the old landing point. At 80 s, as the UAV just passes waypoint 3, the engine

out fault mode is detected, which results in the change of heading and change in

mission plan. Fig. 4.7 also shows the throttle profile of the UAV experiencing fault

mode 1 80 s after mission initiation. At 80 s, the throttle is at 0, which is consistent

with the condition of the engine out case. From the altitude and trajectory plots,

it can be concluded that the UAV found a minimum ground impact point and is

flying to that point. A safety factor of 30 m was included so the UAV does not

land right next to the highly populated cluster of buildings. Fig. 4.8 shows the
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Figure 4.5: UAV Euler angles and rates profiles for when there is no
fault mode detected. Angles are in radians. The dashed line on the
Euler angle plots show the controller commands and the solid line shows
the actual aircraft states.

Euler angles and Euler rates for the UAV experiencing fault mode 1 80 s after flight

initiation. Note the significant change in Euler angles at time 80 s. This is a result

of the aircraft changing its heading to fly to the new priority waypoint generated by

GIHM.

Fig. 4.9 shows the finish mission functionality of GIHM when the end waypoint

is within the FGIF. Fig. 4.9 shows the simulated flight trajectory of the UAV
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experiencing the engine out (fault mode 1) flight anomaly 110 s after mission plan

initiation. This simulation shows the UAV flying to its mission endpoint because

that endpoint is within the calculated FGIF. The beginning and end waypoints are

assumed to have casualty expectation values of 0, which is why the UAV will always

return to base or finish mission if those points are within its FGIF. This result is

also reflected in Table. 4.2, where the recorded value of CE with GIHM for fault

mode 1 at fault time 110 s was 0 fatalities per flight hour.

Figure 4.6: UAV trajectory for when fault mode 1(engine failure) is
detected at 80 s. The aircraft starts from home at the origin and travels
to the waypoints in numerical order until the fault mode is detected.
”New landing waypoint” is the waypoint sent by GIHM and ”old landing
waypoint” is where the UAV would have landed without GIHM.

Fault mode 2 was also investigated at a time of 80 s to compare flight per-

formance to that of the UAV experiencing fault mode 1 at a time of 80 s. Fig.

4.10 shows the simulated flight trajectory for the UAV experiencing fault mode 2
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Figure 4.7: UAV altitude and throttle command profiles for when fault
mode 1(engine failure) is activated at 80 s. The numbered circles show
the mission waypoints, with the one labeled ’new’ representing the new
low hazard waypoint generated by GIHM. The red circle represents when
the fault mode was detected. The aircraft starts on the ground, climbs
to reach waypoint 1, then descends when the fault mode is detected at
80 s.

(engine and rudder failure) 80 s after simulation initiation. At 80 s, the UAV is just

past waypoint 3, when the decision engine detects a stuck rudder control surface

and engine failure. The UAV is still able to change its heading using its ailerons,

as indicated by the turn executed by the UAV to reach the new minimum hazard

waypoint. Fig. 4.11 shows the altitude, throttle, and rudder profiles for fault mode

2 detection at 80 s. The altitude plot shows the UAV experiences fault mode 2 at

80 s, which is why the aircraft begins its descent at 80 s. The throttle and rudder

profiles show the throttle of the UAV is 0 after 80 s and the rudder is stuck at a

deflection of approximately 0.1 radians. Fig. 4.12 shows the Euler angles and Euler

rates for the UAV experiencing fault mode 2 80 s after flight initiation. Note the
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Figure 4.8: UAV Euler angles and rates profiles for when fault mode
1(engine failure) is activated at 80 s. Angles are in radians. The dashed
line on the Euler angle plots show the controller commands and the solid
line shows the actual aircraft states. The aircraft has drastic changes in
all three Euler angles when the fault mode is detected at 80 s because
of the maneuvers made by the UAV to reach the low hazard waypoint.

change in Euler angles at time 80 s, which is a result of the aircraft changing its

heading to fly to the new low hazard waypoint generated by GIHM.

Next, we look at UAV performance when fault mode 4 is detected. Fig. 4.13

and Fig. 4.14 show the simulated flight trajectory and altitude profile of the UAV

experiencing the engine and ailerons out (fault mode 4) flight anomaly 63 s after

mission plan initiation. At 63 s, the UAV is almost at waypoint 3. At 63 s, the
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Figure 4.9: UAV trajectory for when fault mode 1(engine failure) is
activated at 110 s. The aircraft starts from home at the origin and travels
to the waypoints in numerical order until the fault mode is detected.
”New landing waypoint” is the waypoint sent by GIHM and ”old landing
waypoint” is where the UAV would have landed without GIHM.

engine ailerons fault mode is detected, which results in the change in mission plan.

Fig. 4.14 also shows the throttle and rudder profiles of the UAV experiencing fault

mode 4 63 s after mission initiation. From the altitude and trajectory plots, it can

be concluded that the UAV found a minimum ground impact point and is flying to

that point. The new priority waypoint is at the same heading as the UAV when

the fault mode was detected because the UAV is unable to change its heading due

to the ailerons being stuck. The trajectory plot shows where the UAV would have

landed compared to where it was able to maneuver to. From the heat map, the

UAV is able to change its pitch angle to guide the aircraft to the ground before it
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Figure 4.10: UAV trajectory for when fault mode 2 (engine and rudder
failure) is activated at 80 s. The aircraft starts from home at the origin
and travels to the waypoints in numerical order until the fault mode is
detected. ”New landing waypoint” is the waypoint sent by GIHM and
”old landing waypoint” is where the UAV would have landed without
GIHM.

crashes in the highly populated group of buildings, which is where the UAV would

have landed without GIHM.

Fig. 4.15 shows the Euler angles and Euler rates for the UAV experiencing

fault mode 4 63 s after flight initiation. Note the change in pitch angle and pitch rate

at time 63 s. This is a result of the aircraft changing its orientation to descend to

the new priority waypoint generated by GIHM. Notice that the roll and yaw angles

remain unchanged after the fault mode is detected. This is because the UAV cannot

change its yaw or roll angles because of its malfunctioning ailerons. Simulation
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Figure 4.11: UAV altitude, throttle, and rudder command profiles for
when fault mode 2 (engine and rudder failure) is detected at 80 s. The
numbered circles show the mission waypoints, with the one labeled ’new’
representing the new landing waypoint generated by GIHM. The red
circle represents when the fault mode was detected. The aircraft starts
on the ground, climbs to reach waypoint 1, then descends when the fault
mode is detected at 80 s.

plots were provided only for fault modes 1, 2, and 4 because these show the most

interesting results.

Computation time for the GIHM module ranges between 0.01 s and 0.04 s on

a 2015 MacBook Air with 1.6 GHz I5 processor, depending on which fault mode

the UAV is experiencing. Fault modes that allow for heading changes require more

computation time because of the added amount of data points in the FGIF. From

the plots, it is concluded that when a fault mode was detected, GIHM calculated

71



Figure 4.12: UAV Euler angles and rates profiles for when fault mode 2
(engine and rudder failure) is detected at 80 s. Angles are in radians.
The aircraft has changes in all three Euler angles when the fault mode
is detected at 80 s because of the maneuvers made by the UAV to reach
the low hazard waypoint.

the lowest casualty expectation impact waypoint and was able to maneuver to that

point. The new waypoints for all trajectory plots successfully avoided the highly

populated areas, while the aircraft would have landed on the edge of the highly

populated zones if the UAV had not used the GIHM module.
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Figure 4.13: UAV trajectory for when fault mode 4 (engine and aileron
failure) is detected at 63 s. The aircraft starts from home at the origin
and travels to the waypoints in numerical order until the fault mode is
detected. ”New landing waypoint” is the waypoint sent by GIHM and
”old landing waypoint” is where the UAV would have landed without
GIHM.
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Figure 4.14: UAV altitude, throttle, and rudder command profiles for
when fault mode 4 (engine and aileron failure) is detected at 63 s. The
numbered circles show the mission waypoints, with the one labeled ’new’
representing the new landing waypoint generated by GIHM. The red
circle represents when the fault mode was detected. The aircraft starts
on the ground, climbs to reach waypoint 1, then descends when the fault
mode is detected at 63 s.
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Figure 4.15: UAV Euler angles and rates profiles for when fault mode 4
(engine and aileron failure) is detected at 63 s. Angles are in radians.
The aircraft has changes in pitch angle, but not roll or yaw angles when
the fault mode is detected at 63 s because of the maneuvering limitations
imposed by the fault mode.

75



Chapter 5: Conclusion

5.1 Conclusion

This work provided the architecture to combine a collision detection and avoid-

ance module, decision engine, and ground impact hazard mitigation module, which

is a big step towards developing UAV flight control software safe enough for UAVs

to fly in the NAS. A preliminary decision engine was presented, which could detect

engine and control surface fault modes by monitoring UAV flight states real-time.

A high-level look into a collision detection and avoidance algorithm was presented

to show how it will integrate with the nominal flight control software.

This work also combined a reachable ground footprint model with a precise

spatial resolution population dataset, all while integrating with a flight simulation

software that included a 6-DOF aircraft model, path planning, and autopilot control.

Understanding the footprint for a UAV experiencing flight anomalies is an important

first step in safer UAV control software. However, existing ground footprint models

of UAV decision making either do not take into account population density in the

reachable footprint, or the population density data accuracy needs to be improved.

A precise population dataset is an important addition to reachable ground footprint

models because the UAV now possesses the ability to quantify its ground impact
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after determining everywhere it can land. GIHM successfully decreases the casualty

expectation of a small UAV by an average of 24.718 fatalities per 100,000 flight

hours, which is a 97.3% decrease in casualty expectation. The development of the

four fault modes allowed for a basis of investigation into where a UAV might land

given the restrictions that specific fault modes induce and how the UAV can reduce

casualty expectation for those flight anomalies.

5.2 Future Work

This thesis has provided an initial foundation for which UAV technology can

become safe enough to allow for their integration into the NAS. However, there is

still work to be done in regards to refinement of current models and integration of

all parts of SARGM with nominal UAV control software. The GIHM module has

already begun the integration phase, but has more integration testing and refine-

ment to go. Furthermore, additional fault modes need to be explored. This includes

generating reachable footprints for an aircraft that has a functioning engine. A func-

tional engine allows for use of maximum glide ratio gliding equations to generate the

maximum reachable footprint. Additionally, the GIHM algorithm needs to include

landing zone determination logic, as opposed to selecting only crash sites. This will

require integration of a topology database with the current decision algorithm used

in GIHM. LandScan USA also provides data on daytime vs. nighttime population in

the USA, which could help provide more accurate collective risk profiles and assist

in decision making for when to perform missions.
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Future work for the collision detection and avoidance module includes integra-

tion with the nominal UAV control software, and developing and integrating sensor

models to allow for generation of sensor data when simulating collision detection and

avoidance functionality during integration tests. Future work for the decision engine

module includes interface testing between the collision detection and avoidance and

GIHM modules. Detection of fault modes from sensor data needs further develop-

ment and additional integration testing is required for full implementation of the

decision engine with the nominal UAV control software. Furthermore, instability

recovering tactics need to be researched to execute various flight control instabil-

ity mitigation maneuvers during flight anomalies before diagnosing a critical fault

mode. Finally, extensive hardware testing is required for verification and validation

of the system design. This includes hardware testing of the individual modules of

SARGM, and the fully integrated, all-encompassing flight control software package.
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