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Technology scaling has led to growing concerns about reliability in micro-

processors. Currently, fault tolerance studies rely on creating explicitly redundant

execution for fault detection or recovery, which usually involves expensive cost on

performance, power, or hardware, etc. In our study, we find exploiting program’s

inherent redundancy can better trade off between reliability, performance, and hard-

ware cost.

This work proposes two approaches to enhance program reliability. The first

approach investigates the additional fault resilience at the application level. We

explore program correctness definition that views correctness from the application’s

standpoint rather than the architecture’s standpoint. Under application-level cor-

rectness, multiple numerical outputs can be deemed as correct as long as they are

acceptable to users. Thus faults that cause program to produce such outputs can

also be tolerated. We find programs which produce inexact and/or approximate

outputs can be very resilient at the application level. We call such programs soft

computations, and find that they are common in multimedia workloads, as well as



artificial intelligence (AI) workloads. Programs that only compute exact numerical

outputs offer less error resilience at the application level. However, all programs that

we have studied exhibit some enhanced fault resilience at the application level, in-

cluding those that are traditionally considered as exact computations–e.g., SPECInt

CPU2000.

We conduct fault injection experiments and evaluate the additional fault tol-

erance at the application level compared to the traditional architectural level. We

also exploit the relaxed requirements for numerical integrity of application-level cor-

rectness to reduce checkpoint cost: our lightweight recovery mechanism checkpoints

a minimal set of program state including program counter, architectural register file,

and stack; our soft-checkpointing technique identifies computations that are resilient

to errors and excludes their output state from checkpoint. Both techniques incur

much smaller runtime overhead than traditional checkpointing, but can successfully

recover either all or a major part of program crashes in soft computations.

The second approach we take studies value predictability for reducing fault

rate. Value prediction is considered as additional execution, and its results are com-

pared with corresponding computational outputs. Any mismatch between them is

accounted as symptom of potential faults and incurs restoration process. To reduce

misprediction rate caused by limitations of predictor itself, we characterize fault

vulnerability at the instruction level and only apply value prediction to instructions

that are highly susceptible to faults. We also vary threshold of confidence estima-

tion according to instruction’s vulnerability–instructions with high vulnerability are

assigned with low confidence threshold, while instructions with low vulnerability



are assigned with high confidence threshold. Our experimental results show benefit

from such selective prediction and adaptive confidence threshold on balance between

reliability and performance.
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Chapter 1

Introduction

1.1 Motivation

As CMOS technology scaling continues to enable faster transistors and lower

supply voltage, tremendous improvements have been brought to microprocessor per-

formance and power consumption. However, one of the most striking downsides of

these trends is that computer systems become significantly more susceptible to hard-

ware faults–particularly, soft errors (also known as transient faults). As intermittent

faults, soft errors arise from strikes by cosmic particles and radiation from packaging

materials, and are more seriously endangering system reliability as the number of

on-chip transistors keeps growing exponentially. It is estimated that a chip’s error

rate will scale in proportion to the number of devices–i.e., with Moore’s Law [2].

To detect or recover from faults, there are basically two kinds of approaches.

The traditional approach explicitly replicates program computation or program

state, and uses the replicated program copy to detect or recover fault corruptions.

For example, to detect potential faults, additional hardware structures such as pro-

cessor cores, hardware contexts, and functional units [3, 4, 5, 6, 7] can be utilized,

or alternatively, program code is duplicated during compiling stage [8, 9, 10], thus

program computational outputs can be compared and checked for corruption. In

addition, for recovering potential faults, checkpointing is usually adopted to create
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additional copies of program state. Such duplication of program state can then be

used for rolling back program execution once a fault is detected. Unfortunately, for

both fault detection and recovery, although such approach of explicit replication can

be very accurate, it usually incurs a significant cost on either performance, power,

or hardware expense, etc.

Contrastingly, a relatively new approach exploits programs’ inherent redun-

dancy to improve fault tolerance, such as the technique that use symptoms like

branch misprediction as indication of possible fault corruptions [11]. Another tech-

nique, which is called fault screening, identifies value space of instructions’ compu-

tation, and triggers recovery if the instructions’ future outputs are not within the

recorded space [12]. Compared to the traditional approach, these techniques do not

replicate program computation or state, hence they incur very low overhead. But

they are not perfect–either the fault checkers are too sensitive and catch false posi-

tives, or they can not recover all possible faults. We call such techniques probabilistic

fault tolerance. Although the probabilistic techniques cannot achieve failure-safe ex-

ecution, they are still very useful for most general-purpose systems which do not

need perfect fault coverage but are very sensitive to cost. For such systems, these

techniques can reduce fault rate with small cost.

In this thesis, we contribute to existing probabilistic techniques by exploiting

two new sources of inherent program redundancy to improve fault tolerance [13, 14].

First, we find that many programs compute much more precisely than necessary. Al-

though traditional approaches to evaluating correctness require numerical integrity

of architectural state, in many cases, it is not necessary for program state to be
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numerically correct. Instead, program data may tolerate some errors, or there may

exist multiple values which all lead to correct program execution from the user’s

standpoint. This program characteristic is highly application dependent but we

find it occurs frequently in application domains that involve sensing data, such as

multimedia and artificial intelligence (AI) workloads. In such workloads, as long as

programs’ final outputs meet user’s requirement, they are acceptable even if their

numerical values are different from their fault-free versions. For example, some pre-

cision loss in outputs is tolerable to users if their precision requirements are lower

than the datatypes supported by the programming environment or hardware archi-

tecture. Also, program solutions that are not optimal but still adequate from the

user’s standpoint can be accepted as well. In our study, we call such standard of

correctness which is evaluated from the user or application level as application-level

correctness. In contrast to the traditional definition that views correctness at the

architecture level, application-level correctness is examined at a higher level of ab-

straction, thus allowing the existence of multiple correct outputs. Faults that cause

program execution to be numerically incorrect, but still produce one of the outputs

that are acceptable to users, can be tolerated.

In addition to the data redundancy at the application level, program com-

putations can also show a high degree of redundancy–i.e., instruction streams and

their output results often exhibit repeatability. Such redundancy has been tradition-

ally exploited for increasing instruction-level parallelism (ILP) to improve program

performance. One of the best examples of this is value prediction which has been

widely studied for boosting program performance, but has not yet been applied to
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fault tolerance. In our study, we find value prediction can be used to detect faults–

prediction results can be compared against the actual computation results, with

comparison mismatches indicating potential data corruptions.

In our study, we find it is beneficial to exploit both sources of program’s in-

herent redundancy for fault tolerance enhancement. In particular, we exploit redun-

dancy at the application level for lightweight fault-recovery mechanisms–our selec-

tive checkpointing technique only checkpoints a small part of program state while it

can successfully recover a large portion or most of program crashes. We also exploit

value predictability for low-cost fault detection–we take value prediction as another

form of program execution, and compare the results of value prediction and actual

computation to detect potential faults. In addition, we implement experiments to

explore the tradeoff between performance and reliability impacts.

The following texts briefly introduce application-level fault tolerance (Sec-

tion 1.1.1) and value prediction (Section 1.1.2) that have initiated our work.

1.1.1 Application-level Fault Tolerance

First, as we have discussed, application-level correctness enables the numerical

redundancy of program state from user’s standpoint. Compared to the traditional

architecture-level definition of correctness, application-level correctness allows more

faults to be tolerable as long as the final outputs can be accepted by users. Al-

though such property of additional fault tolerance at the user level can be found

in many important workloads, the degree of tolerating faults is application-specific.
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Different programs have different characteristics, thus they may appear more or

less resilient to faults. For instance, multimedia programs process human sensory

and perception information and are highly fault resilient at the application level.

Another example is artificial intelligence (AI) workloads, which have shown more

significance recently [15]. AI is a vast research area and includes many branches

such as reasoning, inference, and machine learning. As we will discuss later, AI

algorithms also exhibit a great deal of fault tolerance at the application level. All

these programs, e.g., multimedia and AI programs, belong to a class of computa-

tions which we call soft computations [16, 17]. Soft computations compute on inexact

or approximate data. Their outputs are associated with certain forms of qualita-

tive representations, which are usually interpreted by users. Certain faults which

may change the numerical values of those outputs do not change the corresponding

qualitative answers, thus are tolerable to users. Compared to soft computations,

programs which requires numerically exact outputs in order to be correct, such as

traditional scientific computations, may offer much less amount of fault resilience at

the application level.

Although the degree of error resilience at the application level varies across

different applications, we find all programs that we have studied exhibit some en-

hanced fault tolerance from user’s standpoint, including those that are traditionally

considered as exact computations–e.g., SPECInt CPU2000. Such application-level

fault tolerance could be exploited to avoid overdesign and achieve better tradeoff

between system reliability and performance cost.
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1.1.2 Value Prediction-based Fault Detection

Prior studies have shown that program execution including its instruction and

data streams exhibits another kind of redundancy–repeatability. One example of

applying such inherent redundancy is value prediction, which predicts instruction

results by learning their past values, thus breaks true data dependency. Unfortu-

nately, although value prediction seems promising, its effectiveness is weakened due

to its high misprediction penalty, which turns to be even worse as processor pipeline

becomes deeper.

In our study, we find such predictability in computational outputs can be ex-

ploited to improve system reliability. Compared to other redundant-execution tech-

niques, the biggest advantage of applying value prediction for result comparison and

fault detection is, by exploiting program’s inherent redundancy, it avoids the need

for explicitly duplicating hardware or program execution, thus evades related area

and power demands or performance degradation. Although value predictor itself

requires some additional hardware, we find a relatively small predictor is effective

in detecting faults. In addition, compared to the traditional applications of value

prediction which mainly pursue performance speedup, in the field of fault tolerance,

it is acceptable to trade between performance and reliability impact, which brings

more chances for value prediction. For example, in case of value misprediction, we

adopt the idea of flushing pipeline to try to recover fault corruptions. Although

flushing degrades program performance, it improves reliability when fewer valid bits

become vulnerable during flushing and re-execution. Moreover, unlike traditional
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applications that require value prediction results at the early stage of pipeline, for

detecting faults, value prediction can wait until the end of execution stage. All

these render much flexibility for adapting value predictor design to improve fault

tolerance.

In addition, by characterizing fault vulnerability at the instruction level–i.e.,

sorting instructions by how much they contribute to a hardware structure’s fault vul-

nerability during program execution, we find for the hardware structures we have

studied, a small portion of instructions accounts for a major fraction of program

vulnerability. For example, for fetch buffer in our processor model, about 3.5%

instructions contribute to 53.9% of total AVF for SPEC2000 benchmark TWOLF.

Therefore, by selectively protecting such a small portion of instructions from fault

corruption, the overall reliability can be enhanced greatly, while program perfor-

mance is much less affected than protecting all the instructions. We apply such

idea into our experiments–selectively predicting the most vulnerable instructions–to

achieve better fault coverage with smaller performance impact.

To further reduce performance cost caused by value misprediction and the con-

sequent pipeline flush, we utilize confidence estimator which allows value prediction

only when there is enough confidence in its correctness. We also incorporate the

fact that instructions do not contribute equally to reliability, and vary confidence

threshold accordingly–instructions that are more susceptible to faults use lower con-

fidence threshold, and instructions that are less susceptible use higher confidence

threshold.
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1.2 Contributions

This dissertation makes the following contributions.

Complete Study on Application-Level Correctness. In this work, we present

our study on exploring definitions of program correctness and their impacts on fault

tolerance. To characterize program susceptibility under different correctness defini-

tions, we implement fault injection experiments and measure how many more faults

program can tolerate under application-level correctness, compared to the tradi-

tional architectural correctness. Our results show that for soft computations, about

45.8% of fault injections that lead to architecturally incorrect execution produce ac-

ceptable results under application-level correctness. For SPEC programs, a smaller

portion of architecturally incorrect faults, 17.6%, produce acceptable results at the

application level. Such results indicate the degree of program-level redundancy that

provides additional fault tolerance.

Analysis on Sources of Application-Level Fault Tolerance. As discussed

by Mukherjee et al [18] and Wang et al [19], there are sources of masking at the

microarchitecture level as well as architecture level which reduce the probability that

faults affect program’s output. Our study exposes another level of fault masking–

the application level–from user’s standpoint. By analyzing program characteristics

as well as how faults propagate, we identify several sources of redundancy at the

application level which render additional fault tolerance.

8



New Fault Recovery Techniques by Exploiting Application-Level Correct-

ness. We implement new fault recovery techniques by exploiting such additional

redundancy at the application level. One technique we propose is stack checkpoint-

ing which only saves program counter, architectural register file, and stack. Our

results show about 66.3% of program crashes in our multimedia and AI workloads

can be successfully recovered. Another mechanism we propose identifies program

state that are resilient to errors, which we call “soft” state. In our experiments,

we incrementally checkpoint state that are not marked as soft state and have been

updated during each checkpoint period. Our results show small additional perfor-

mance cost, compared to lightweight fault recovery, while almost all crashes in soft

computations are successfully recovered.

Characterizing Fault Vulnerability at the Instruction Level. In our study,

we characterize instruction’s vulnerability by computing the percentage of a hard-

ware structure’s average AVF (Architectural Vulnerability Factor) that an instruc-

tion relates to. We find that a small portion of instructions accounts for a major

fraction of program vulnerability. Thus, by selectively protecting such small portion

of instructions from fault corruption, the overall reliability can be enhanced greatly,

while program performance is affected much less compared to fully protection.

New Fault Detection Technique by Exploiting Value Predictability. We

apply value prediction for checking program computational results and consider mis-

prediction as symptom of potential fault. In our work, we only predict instructions

that have high vulnerability and squash pipeline on mispredictions to recover po-
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tential faults. To reduce possible fault positives that are caused by limitation of

value predictor itself, we implement confidence estimator to reduce misprediction

rate. In addition, by incorporating various vulnerability at the instruction level,

we propose adaptive confidence estimation–adjusting confidence threshold accord-

ing to instruction’s vulnerability. We analyze the impacts of value prediction and

confidence estimation on both aspects of program reliability and performance.

1.3 Road Map

The rest of the dissertation is organized as follows.

Chapter 2 explains the background of our study about hardware faults and

fault tolerance research.

Chapter 3 analyzes application-level correctness and characterizes fault sus-

ceptibility at the application level, compared to the traditional architectural level.

In Chapter 4, we present our lightweight fault recovery as well as soft-checkpointing

recovery techniques.

Chapter 5 discusses our fault detection technique with value prediction. We

apply our selective value prediction (by instruction vulnerability) and adaptive con-

fidence mechanisms to detect potential faults. We evaluate both reliability and per-

formance impacts of our technique. In addition, we also implement fault injection

experiments to compare with other related work.

Chapter 6 lists the prior work related to our study, covering soft computa-

tion, fault susceptibility characterization, analysis of fault-tolerance sources, fault
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detection and recovery techniques.

Finally, Chapter 7 concludes the dissertation and suggests the future research

directions.
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Chapter 2

Background

2.1 Hardware Faults

Hardware faults such as soft errors, lifetime reliability and process variation

problems, have always posed threats to normal functionality of semiconductor-based

digital systems. Such problems are becoming more serious as scaling in device size,

operating voltages and design margins continues. The following describes the nature

of these types of faults.

Transient Fault A transient fault, or soft error, is a signal or datum that is wrong,

but is not caused by hardware defect–mistake in design or construction, or broken

component. It is not a permanent failure–the occurrence of soft errors does not cause

permanent damage to hardware, and there is no implication on reliability reduction

of the system itself. On the contrary, it is temporary and intermittent fault, but

can still corrupt normal program execution.

Soft errors are mainly due to particle strikes such as alpha particles emitted

by decaying radioactive impurities in packaging and interconnect materials, ener-

getic neutrons and protons from cosmic rays, or thermal neutrons. When particles

travel through a semiconductor device, they release electron-hole pairs which can

be absorbed by transistor source and drain nodes and disturb the distribution of
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electrons there. If the disturbance is large enough, the state of a logic device–such

as an SRAM cell, a latch or a gate–can be changed from a 0 to a 1 or vice versa.

Soft errors have become a more challenging problem for future microprocessor

design. While the raw error rate per logic device remains small, a processor’s error

rate grows proportional to the number of transistors per chip which has kept scaling

with the rapid technology development [2].

Usually, soft errors are localized to a very small area of a chip, and only affect

the state of one logic node. This is known as a Single-Even Upset (SEU). We mainly

study this form of fault in our work.

Lifetime Reliability System lifetime reliability is impacted by wear-out based

failures, which are mainly caused by migration of metal atoms due to electro- or

mechanical stress, gate oxide wear down, or damage accumulated by thermal cy-

cling [20, 21].

Device scaling results in increased power density, and consequently, temper-

ature, which directly affect processor lifetime reliability. For example, the main

failure mechanisms including atom migration, gate oxide wear down and thermal

cycling, are adversely affected by increases in temperature, while the decreasing

feature size of interconnects accelerates failure rate due to electro-migration.

Process Variation Process variation is mainly caused by fluctuations in dopant

concentrations and device channel dimensions, which cause deviations in the man-

ufactured properties of the chip such as transistor size, threshold voltage or driving

capability, etc., thus affecting stability of circuit blocks [22].
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As devices scale with decreasing dimensions and growing transistor density,

device variation as well as the probability of deviations in longer critical path delay

increase, which will significantly affect performance, and more severely, compromises

reliability.

2.2 Fault Tolerance

Current fault tolerance research focuses primarily on characterizing fault sus-

ceptibility or developing fault detection and recovery techniques. This section dis-

cusses the nature of research in these areas.

2.2.1 Fault Susceptibility Characterization

To characterize a device’s susceptibility to faults, it is necessary to understand

how faults propagate in circuits after they hit devices. Traditionally, soft errors

were tackled within the context of memory cells, for which error detection and

correction circuits are widely used for protection. Combinational logic circuits, on

the other hand, have been found to be less susceptible to SEU due to the naturally

occurring masking effects: electrical masking, logical masking, and temporal (or

timing-window) masking. In particular, electrical masking attenuates affected signal

by the electrical properties of gates on the propagation path such that the resulting

pulse is of insufficient magnitude to be reliably latched; logical masking occurs when

the propagation of an SEU is blocked from reaching an output latch because off-path

gate inputs prevent a logical transition of that gate’s output; and temporal masking
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occurs when the erroneous pulse reaches an output latch, but it does not occur close

enough to when the latch actually samples its input.

Although these masking effects reduce the probability of soft errors to be

manifested, they are diminishing as device feature size decreases and circuits adopt

higher operating frequencies. As a result, recently more and more work has been

devoted to study the characteristics of fault susceptibility by building proper models

or implementing fault injection experiments, etc.

In addition to masking effects at the circuit level, there exist other sources

of masking such as those proposed by Mukherjee et al [18]. Mukherjee et al iden-

tified the effects of microarchitecture-level masking which come from mispeculated

instructions, predictor structure bits, and microarchitecturally idle bits. They also

identified masking effects at the architectural level–for example, faults on NOP

instructions, performance-enhancing instructions, dynamically dead code, and logi-

cally masked instructions. Faults on such microarchitecture structure and architec-

tural instructions do not affect program outputs.

To calculate fault susceptibility, there exist various metrics to specify Soft

error rate (SER). SER is the rate at which a device or system encounters or is

predicted to encounter soft errors. It is typically expressed as either the number of

failures-in-time (FIT), or mean-time-between-failures (MTBF). The unit adopted

for quantifying failures in time is called FIT, equivalent to 1 error per billion hours

of device operation. MTBF is usually given in years of device operation. To put it

in perspective, 1 year MTBF is equal to approximately 114,077 FIT.

MTBF can be further expressed as mean-time-to-failure (MTTF) and mean-
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time-to-repair (MTTR). Generally MTTR is ignorable compared to MTBF. Also

considering the fact that usually processor vendors have no control over factors

related to MTTR, MTTF is more frequently used for featuring fault susceptibility.

2.2.2 Fault Detection

Fault Detection is the process of discovering if a fault has occurred. Several

schemes exist to achieve fault detection. For example, error detection codes are

often used in data storage media, in which extra bits, referred to as check bits, are

utilized for storing information that is derived from data to be protected. Fault can

be detected by re-generating the check bits and comparing with the old check bits–a

mismatch on comparison indicates the occurrence of a fault. Examples of check bits

include parity bits, checksum, etc.

For more comprehensive comparison, dual modular redundancy (DMR) can be

employed at various levels to enable fault detection. DMR has duplicated elements

which work in parallel–the duplicated elements can range from replicated pipelines

within the same die to separate processors. At any time, all the replications of each

element should be in the same state: the same inputs are provided to each element,

and the same outputs are expected. To detect faults, the outputs of the replications

are compared using a voting circuit. A fault is detected when mismatch on output

comparison is captured. However, other methods are needed in addition to DMR

for recovery.
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2.2.3 Fault Recovery

Fault recovery is the process of limiting fault propagation and enabling the

service which restores system to an acceptable state. It can be accomplished in

two general ways. The first mechanism is forward-error recovery, in which enough

redundancy exists in the system to determine the correct operation. For example,

triple modular redundancy (TMR) utilizes three systems which perform the same

functions. Results of the three composing units are processed by a voting system to

produce a single output. Usually the voter is much more reliable than other TMR

components. When any one of the three systems fails–its result is different from

those produced by the other two systems. The remaining systems can correct and

mask the fault.

Another recovery mechanism is backwards-error recovery, which creates check-

points of system state and rollback program execution when an error is detected.

Checkpointing can be implemented by operating system, or at the user level, in-

corporating special checkpointing mechanism with the application program. It is

performed at a periodic interval by storing checkpoints to disk. If a failure occurs

which causes the application to be terminated prematurely, the stored (most-recent)

checkpoint can be used to restart the application–with the loss of computation dur-

ing a checkpoint interval.

To checkpoint an application, its state including values in memory, CPU regis-

ters, and the state of the operating system such as the file system, have to be saved.

Typically, the memory state can be divided into four parts: executable code, global
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variables, heap and stack. The global variables, heap and stack need to be stored

in checkpoint. As for the executable code, because it is usually unchanged since the

beginning of execution, it can be restored from the program’s executable file and

thus does not need to be saved every time.

To reduce checkpoint size as well as runtime overhead, incremental checkpoint-

ing uses page protection hardware to identify and only save the portion of pages that

have been updated since the previous checkpoint. Our recovery mechanism, which

is to be described in Section 4, is based on incremental checkpointing.

2.2.4 Partial Fault Detection/Recovery

Traditional fault-tolerance techniques aim at achieving perfect coverage–detecting

and recovering from all possible latent faults. However, for most systems such as

desktop computers or commodity servers, such high reliability is not necessary. On

the contrary, for those systems, performance and hardware cost appear to be more

crucial for customers. Thus recently, a lot of work has been committed to reducing

fault rate with low performance or hardware cost.
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Chapter 3

Application-level Fault Susceptibility

In this chapter, we present our work on characterizing programs’ fault sus-

ceptibility at the application level. We first discuss definitions of application-level

correctness (Section 3.1). Then we report our experimental methodology as well

as susceptibility results (Section 3.2). Lastly, we discuss various sources of fault

tolerance at the application level (Section 3.3).

3.1 Application-Level Correctness

This section presents our study on application-level correctness. We first dis-

cuss qualitative program outputs (Section 3.1.1). Then, we present various correct-

ness definitions which are used in our fault susceptibility experiments (Section 3.1.2).

3.1.1 Qualitative Program Outputs

Traditionally, program outputs are defined as all the numerical values that

are stored to memory at program completion. And program’s execution is said

to be correct as long as all the output values are the same as those obtained by

a fault-free execution. However, in many cases, only a small portion of the final

values need to be provided to users. Thus, state that are invisible to users do not

need to be correct. More interestingly, in a lot of cases, even the results that are
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presented to users do not need to be exact either. This commonly occurs in programs

computing results that are qualitatively interpreted by the user, such as multimedia

workloads which process human sensory information. In these programs, different

numerical results can lead to the same qualitative interpretation. Another example

is AI processing that applies artificial intelligence algorithms for reasoning, inference,

and learning, etc. These algorithms are approximate in nature, and errors in the

numerical answers may not affect the programs on drawing further conclusions(i.e.,

qualitative answers). For example, results of learning algorithms may be used for

classifying new datasets. Thus, numerically different results from learning could be

qualitatively correct if they lead to the same classification answers.

Not only soft computations like multimedia and AI programs have qualitative

outputs, but other general computations may also exhibit such properties. For

instance, many programs are designed to achieve the best performance, such as a

compression algorithm that tries to generate an output file as compact as possible.

However, the ultimate goal is to faithfully convert the compressed file back to the

original data. Hence, even if the compression process is not efficient and produces a

bigger compressed output, the user may still accept it if it leads to the same correct

result after decompression.

Furthermore, even qualitative answers can vary if they are acceptable at the

user(i.e., application) level. Considering multimedia applications again, outputs

which result in similar, although not the same, qualitative interpretation can be

deemed as correct as long as users are satisfied. The amount of acceptable error in

the output depends on users. This allows correctness to cease to be simply black or
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white; instead, we can speak of a degree of correctness determined by the amount

of tolerable error.

3.1.2 Correctness Definitions

Existing definitions of program correctness can be expanded by considering

solution quality interpreted at the user level. Below are possible correctness defini-

tions, listed in decreasing strictness.

I. Architectural state is numerically correct on a per-cycle (or per multiple-cycle)

basis.

II. Output state (i.e., architectural state visible after program completion) is

numerically correct.

III. Output state is qualitatively correct with high fidelity.

IV. Output state is qualitatively correct with acceptable fidelity.

Definitions I and II are two main traditional approaches used in fault toler-

ance research. They require program state, either intermediate or final results, to be

numerically exact compared to fault-free execution. Unlike the first two architecture-

level definitions, the remaining ones, definitions III and IV, are at the application

level, thus they are less strict. Both correctness definitions apply to programs pro-

ducing results that have a higher qualitative interpretation. More specifically, defi-

nition III requires outputs to be the same or very similar to the baseline output(i.e.,

high fidelity). The baseline output is defined as the result obtained from fault-free
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execution of a program. In other words, answers satisfying definition III do not

have noticeable quality degradation. Definition IV requires answers to have rel-

atively good fidelity compared to baseline solutions. Compared to definition III,

definition IV allows more tolerance of reduced answer quality.

As we have discussed in Section 3.1.1, programs with qualitative answers ex-

hibit more error resilience since their results are not directly tied to precise numerical

values. Errors in the numerical results may not be noticeable, or they may not signif-

icantly impact qualitative answers. Furthermore, under application-level correctness

definitions, i.e., definitions III and IV, the output acceptability can be customized

by users by varying the minimum fidelity necessary for a program output to be “ac-

ceptable.” Hence, users can accept more program outputs as “correct” by sacrificing

fidelity. Generally, the more tolerable the qualitative answer is to error, the more

reliable the program appears to be. As we will see in Section 3.2, this provides users

with a great opportunity to tradeoff solution quality for fault tolerance.

3.2 Fault Susceptibility Experiments

This section discusses the impact of application-level correctness on fault sus-

ceptibility. We conduct experiments to quantify how much more fault resilient

programs appear to be under application-level correctness compared to traditional

architecture-level correctness. We first present our experimental methodology in

Section 3.2.1, then discuss our results in Section 3.2.2.
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3.2.1 Experimental Methodology

To analyze program fault susceptibility under different correctness definitions

which have been described in Section 3.1.2, we perform statistical fault injection

experiments on selected benchmarks and analyze the effects of faults on a microar-

chitecture model. We also assume a Single Event Upset, or SEU, fault model,

throughout our experiments. In each fault injection experiment, a random single

bit flip fault is injected into the execution of one of the benchmarks. In order to

capture architectural effects of the faults more efficiently, we adopt the methodology

introduced by Reis et. al. [23] which uses a two-phase simulation technique. Similar

to [23], during the first fault injection phase, we inject faults into a detailed archi-

tectural simulator. Each time one fault is injected, we continue simulation until the

effects of the fault have been completely manifested in architectural state. Then, we

checkpoint the architectural effects, and continue to inject another fault. After we

have compiled the information across all the fault injections, in the second phase,

we use a simple functional simulator and replay each fault injection experiment that

has been recorded. More specifically, for each fault, we resume simulation with its

corresponding checkpoint, thus the architectural effects of the fault will keep prop-

agating while the program executes. In each simulation trial, we try to run the

program to completion. If the program does not crash, we evaluate its outputs un-

der both architecture- and application-level correctness. Note in our experiments,

we only evaluate program correctness with definitions II, III and IV introduced in

Section 3.1.2.
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Processor Parameters

Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 64-IFQ, 40-Int IQ, 30-FP IQ, 128-LSQ

Rename register / ROB 128-Int, 128-FP / 256 entry
Functional unit 8-Int Add, 4-Int Mul/Div, 4-FP Add, 2-FP Mul/Div
Memory port 4-Mem Port

Branch Predictor Parameters

Branch Predictor Hybrid 8192-entry gshare/2048-entry Bimodal
Meta Table / BTB / RAS Size 8192 / 2048 4-way / 64

Memory Parameters

IL1 config 64kbyte, 64byte block size, 2 way, 1 cycle latency
DL1 config 64kbyte, 64byte block size, 2 way, 1 cycle latency
UL2 config 1Mkbyte, 64byte block size, 4 way, 20 cycle latency
Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 3.1: Parameter settings for the detailed architectural model into which we
inject faults.

Table 3.1 lists the settings for our detailed microarchitectural simulator, which

is a modified version of the out-of-order processor model from Simplescalar 3.0 for

the PISA instruction set [24]. Our modifications to the original simulator include

detailed modeling of rename registers and issue queues. Moreover, we mainly look

at fault injection effects on three hardware structures: the physical register file, the

fetch queue, and the issue queue. For faults occurring on physical registers, they do

not have any architectural effect if the registers they attack are idle or belong to mis-

peculated instructions, or the instruction outputs have not been written back yet.

Hence, throughout all the fault injection experiments on the detailed simulator, we

do not checkpoint any fault that has no architectural effect. Besides physical regis-

ters, we also simulate faults on the fetch queue. In our model, each fetch queue entry

is comprised of instruction bits including opcodes, register addresses, and immediate
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specifiers. Faults may occur anywhere, but only those that attack non-mispeculated

instructions impact architectural state, and are recorded accordingly. Lastly, for the

issue queue, we model 6 fields per entry: instruction opcode, 3 register tags (2 source

and 1 destination), an immediate specifier, and a PC value. Similar to the fetch

queue, faults on the issue queue (except for register tag field), affect architectural

state when the entries belong to non-mispeculated instructions. For the source or

destination register tags in the issue queue, corruptions corresponding to mispec-

ulated instructions can still affect architectural state because the corruptions alter

data dependence (even potentially to non-speculative instructions). Corruptions in

the opcode and immediate fields of each entry behave similarly to faults on the fetch

queue, while faults on the PC value affect computation for branch target addresses.

For each benchmark, we perform 3 detailed simulation runs and inject faults

to the 3 hardware structures including physical register file, fetch queue, and issue

queue, separately. In each run, we randomly inject faults into a single hardware

structure one after another. The time before injecting another fault is determined

by a uniformly distributed random variable. We also skip the initialization phase of

each benchmark for fault injection.

Table 3.2 lists all the benchmarks we have studied, as well as their input

datasets, numerical outputs and qualitative outputs. The first three benchmarks,

G.721-D, JPEG-D, and MPEG-D, are multimedia workloads, and are taken from the

Mediabench suite [25]. All three algorithms perform lossy decompression on audio,

image, and video data, respectively. Then, there are three AI workloads: LBP, SVM-

L, and GA. Loopy Belief Propagation (LBP) [26] is a well-known message-passing
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Benchmark Input Numerical Output Qualitative Output

Multimedia

G.721-D clinton.pcm Decompressed Segmental Signal-to-Noise
Audio Datafile Ratio (SNRseg)

JPEG-D lena.ppm Decompressed Peak Signal-to-Noise
Image Datafile Ratio (PSNR)

MPEG-D mei16v2.m2v Decompressed Peak Signal-to-Noise
Video Datafile Ratio (PSNR)

Artificial Intelligence

LBP WebKB [30] Page Belief Values Web Page Class Types
SVM-L LIBSVM(a1a) [31] Support Vector Model Test Data Class Types
GA r16-0.1.in [29] Thread Schedule Best Scheduling Time

SPECInt CPU2000

164.gzip test Compressed File Decompressed File
256.bzip2 train Compressed File Decompressed File
175.vpr test Cell Placement Placement Cost

Table 3.2: Input, numerical and qualitative outputs computed by our benchmarks.

algorithm for approximate inference on large Markov networks. It is widely used in

coding theory and combinatorial optimization. SVM-L is the learning portion of a

Support Vector Machine algorithm, called SVMlight [27]. SVM-L learns the param-

eters for a support vector (SV) model on a training dataset. The model is then used

for classification on new datasets. The last AI program, GA, is a genetic algorithm

applied to multiprocessor thread scheduling [28, 29]. Based on a task dependence

graph, the algorithm searches for a thread schedule in which each thread is assigned

a task, and the overall execution time across all threads is minimized. Finally, the

SPECInt CPU2000 workloads we study include two lossless data compression algo-

rithms, 164.gzip and 256.bzip2, and a place-and-route program, 175.vpr. Note in

our experiments, we configure the vpr program to only perform placement.
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In Table 3.2, the second column specifies the input dataset used for each

benchmark. The inputs are selected so that they won’t result in extremely long

execution time since we have to run each fault injection trial to completion during

the second phase of our two-phase simulation methodology. The third column in

Table 3.2 reports the numerical outputs computed by each benchmark, and the last

column reports the corresponding qualitative outputs that we have observed. For the

three multimedia programs, the numerical outputs are the decompressed datafiles,

either in audio, image, or video format. These decompressed datafiles, when played

back to the user, are interpreted by his/her human sensation, either aural or visual.

To evaluate the overall output quality experienced by users, we adopt signal-to-noise

ratio (SNR), a common quality metric in signal processing. More specifically, we

use segmental SNR for G.271-D to evaluate audio signal quality, and peak SNR for

JPEG-D and MPEG-D for image/video signal quality evaluation. It is possible for

different numerical outputs–the decompressed datafiles–to result in indistinguishable

or similar experience for the user, which means similar SNR values.

Like the multimedia workloads, the AI workloads also have qualitative program

outputs. In LBP, for each node in the graph, the algorithm computes a probabil-

ity distribution function over the possible class types. The numerical outputs for

LBP are the probability values across all the nodes. The qualitative outputs are

classification answers derived from the nodes’ probability distribution–the numerical

outputs. In particular, LBP selects a class type for each node by choosing the most

likely class indicated by the biggest probability value across the entire probability

distribution. In SVM-L, the numerical outputs are the SV model parameters learned
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from the training dataset. To obtain the class types we want, we run a separate

SVM classifier (not listed in Table 3.2) that uses the SV model computed by SVM-L,

and perform classification on a test dataset. Like LBP, for SVM-L, computing the

classification answers is an extremely inexact process. Multiple numerical outputs

(belief values for LBP and SV model parameters for SVM-L) can lead to the same

(and hence, valid) classification answer. Lastly, for GA, the numerical output is

the thread schedule the program computes. In most cases, the computed thread

schedule is an approximation to the optimal answer. This is because the program

has a solution space which is too big to explore exhaustively in practice. Thus the

algorithm adopts a heuristic approach and produces a relatively good answer. The

thread scheduling cost can reflect how good the computed answer is. Thus it is pos-

sible that many thread schedules are adequate with acceptable cost. And any one of

these good enough answers represent a valid output from the user’s perspective. In

Table 3.2, we use the thread scheduling cost as the algorithm’s qualitative output.

More interestingly, even the three SPEC programs also allow multiple valid

outputs, although they are traditionally considered as exact computations. Both

the data compression programs, 164.gzip and 256.bzip2, are lossless algorithms and

have to compute exact decompressed datafiles. Nevertheless, there is flexibility in

how datafiles are compressed even though the compression algorithms themselves

are exact. In other words, the compressed file, which is a numerical output, could

be different and still lead to exactly the same datafile after decompression. We con-

sider the decompressed file as the programs’ qualitative result. Valid execution is

allowed to produce a different compressed file but the same original datafile must
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be re-produced after decompression. Hence we use the compression ratio to reflect

compression efficiency of each valid execution in our experiments. The vpr bench-

mark tries to find a cell block placement for a chip design. Like GA, vpr’s algorithm

is heuristic-based since finding an optimal placement (one that minimizes intercon-

nect distance) is intractable. Therefore, multiple cell block placements are valid. To

evaluate valid execution, we use a consistency check provided by the vpr code itself.

This function first checks whether a given placement for all the cell blocks is valid

(i.e., doesnot violate any design rules), and then if it is valid, the checker computes

the cost for the given placement. We use the computed cost as the output quality

for vpr.

All the numerical and qualitative outputs listed in Table 3.2 are used in

the second phase of our fault injection experiments to evaluate program execu-

tion correctness–under both architecture and application level, respectively. We

will present our results in the next section.

3.2.2 Fault Susceptibility Result

In the first phase of our fault injection experiments, we inject faults to the

detailed simulator and checkpoint the affected state. In all, our fault injection cam-

paign performs 156,205 fault injections–52,555 for physical register file, 52,229 for

fetch buffer, and 51,421 for issue queue across all the benchmarks. However, not

all faults result in visible architectural effects–only a small portion of the injected

faults affect program architectural state. Many faults are masked at the microarchi-
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tecture level. As discussed by Mukherjee et al [18], microarchitecture-level masking

is mainly due to faults that attack idle hardware resources, or hardware resources

occupied by mispeculated instructions.

Figure 3.1 breaks down all the fault injection experiments by whether they

are architecturally visible or not. In Figure 3.1, fault injection experiments on each

benchmark are grouped together, with each group consisting of three bars represent-

ing experiments on the physical register file, fetch queue, and issue queue, labeled

“R,” “F,” and “I,”respectively. The last 3 groups of bars report the average across

each category of benchmarks, i.e., the multimedia, AI, and SPEC benchmarks, re-

spectively. We can see that the degree of masking at the microarchitecture level

varies considerably across different benchmarks and hardware structures. But on

average, across all the hardware structures and all the benchmarks, only 17.3% of

injected faults (27,067 out of 156,205) become architecturally visible. Among all

the structures, the fetch queue exhibits the most sensitivity to faults, with 22.6%

faults being architecturally visible; while the register file and issue queue are less

sensitive, with 12.1% and 17.3% faults resulting in visible architectural effects, re-

spectively. Faults that are masked at the microarchitecture level produce exact

program outputs that are correct under both architecture- and application-level

correctness definitions.

Next, we evaluate program output correctness to further examine the archi-

tecturally visible faults. Figure 3.2 breaks down the outcome of all fault injection

experiments that have visible architectural effects. Note those outcomes are ob-

tained with our functional simulator and each experiment is run to completion if
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Figure 3.1: Breakdown of fault injections on architectural visibility.

possible. Figure 3.2 is presented in the same way as Figure 3.1, except that each

bar in Figure 3.2 is now broken down into 6 categories. The first category, labeled

“Architecture,” indicates the portion of experiments which have program outputs

that pass architecture-level correctness (definition II in Section 3.1.2). Naturally,

these outputs are also correct at the application level. The next two categories,

labeled “Application-High” and “Application-Good,” represent the portions of ex-

periments which have incorrect outputs under architecture-level correctness, but are

acceptable under application-level correctness (definition III and IV in Section 3.1.2,

respectively). In our experiments, we set the thresholds for “Application-High” and

“Application-Good” to be 1% and 5% error, respectively, when comparing programs’

qualitative outputs to fault-free execution. Exceptions are JPEG-D and MEPG-D,

for which “Application-High” means PSNR of the output is greater than 90dB, while
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Figure 3.2: Breakdown of program outcomes for architecturally visible fault injec-
tions.

“Application-Good” means PSNR is between 90dB and 50dB, when compared to the

original output. The next category, labeled “Incorrect”, reports those program out-

comes that are incorrect under both architecture- and application-level correctness.

Finally, the last two categories indicate experiments that cannot complete during

functional simulation: the category labeled “Crash” reports experiments which have

failed because of exception or hardware lockup, while the category labeled “Termi-

nate” reports trials in which programs have detected errors themselves and decided

to exit early. Note in our simulations, program lockups are detected via expiration

of watchdog timers that are set at the beginning of major loops in each benchmark.

From Figure 3.2, we see a large portion of architecturally visible faults lead

to correct program outputs under architecture-level correctness (i.e., the “Archi-

tecture” components). The last 3 groups of bars in Figure 3.2 show on average
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that architecture-level correctness is achieved in 50.4% to 60.0% of program outputs

across the 3 hardware structures for the multimedia and SPEC benchmarks, and

in 61.0% to 68.8% for the AI benchmarks. Those faults only affect architectural

state that are unnecessary for maintaining numerical integrity in our computations,

and become architecturally masked as program’s execution proceeds. In our bench-

marks, the primary source of architecture-level masking is logical and inequality in-

structions. These instructions seldom change their computation results despite data

corruptions to their input operands; thus, they are highly fault resilient. Similarly,

faults may also be masked by shift or bitwise operations. Other (less significant)

sources of architecture-level masking include dynamically dead code, NOP instruc-

tions, and Y-branches [19]. Additionally, we find memory operations also contribute

to fault masking, such as partial stores in which corruptions occur in part of the

data which is not stored to the memory, thus they have no impact on memory in-

tegrity; or load instructions which are supposed to load data which are common in

memory (for example, zero), therefore corrupted load addresses may point to other

locations which fortunately contain the same data value. Both microarchitecture-

and architecture-level masking have been previously observed by other fault suscep-

tibility studies [18, 32, 19].

For the remaining portions of experiments with final results produced, faults

are not masked at both microarchitecture and architecture levels, thus they do not

lead to numerically correct outputs. These faulty outcomes have traditionally been

considered incorrect under architecture-level correctness. In our study across all

benchmarks and all hardware structures, on average about 41.2% of architecturally
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visible fault injections are architecturally incorrect. However, we find among those

architecturally incorrect outcomes, a significant portion still yield fairly good solu-

tion quality. This is particularly true for soft computations, the multimedia and AI

benchmarks in our study. While these program outputs are incorrect numerically

(i.e., they are incorrect at the architecture level), they are completely acceptable

from user’s standpoint (i.e., they are correct at the application level). Overall,

45.8% of architecturally incorrect faults in our soft computations are tolerable un-

der application-level correctness.

More interestingly, not only soft computations, but also traditionally exact

computations, i.e., SPEC benchmarks in our study, exhibit enhanced fault resilience

at the application level. As the last group of bars in Figure 3.2 shows, for the SPEC

benchmarks, overall 17.6% of additionally acceptable faults are achieved across all

hardware structures. Although our results in Figure 3.2 show that SPEC bench-

marks offer less additional fault resilience at the application level compared to soft

computations, they still indicate that application-level correctness can generally help

to enhance program fault tolerance.

3.3 Sources of Fault Tolerance

Section 3.2.2 demonstrates that a significant portion of faults that lead to

numerically incorrect results are in fact perfectly acceptable to the user, and are

no longer perilous at the application level. There are many factors that enable

such additional error resilience. In our study, we find in addition to the existence of
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qualitative program outputs that have been discussed in Section 3.1.1, there are also

algorithmic properties that contribute to application-level fault tolerance. We have

identified the following properties which are common in applications, especially in

soft computations.

I. Redundancy. Computations that are iterative or that exhibit reduced preci-

sion (see below) often contain some degree of redundancy. Unlike dead code,

these redundant computations contribute to the application result, but may

not improve answer quality appreciably. Programs with redundant computa-

tions are more error resilient because the redundancy can mask faults.

II. Adaptivity. Many soft computing algorithms are already designed to deal

with errors. This is particularly common in algorithms that compute on noisy

or probabilistic data. Such soft computations include code to detect certain

forms of error, and adapt the computation accordingly. Therefore, they are

naturally error resilient.

III. Reduced Precision. Programs often have precision requirements that are

lower than the datatypes supported by the programming environment or hard-

ware architecture. Such computations are resilient to errors that modify data

values within the precision tolerance.

IV. Efficiency-aimed Computation. Some codes are designed for the goal of

improving program efficiency, and do not closely relate to result accuracy.

Corruptions on that kind of computation are tolerable in the sense that they

only impact program performance, not output correctness.
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V. Sub-Independence. Some algorithms are comprised of separate parts of

computations which do not depend on each other. Even if faults occur on some

parts of these computations, other parts could still execute normally, thus the

final results may still be acceptable if the overall disturbance is minor.

We find that these algorithmic sources of fault tolerance, together with qual-

itative program outputs, not only help to mask many architecturally unacceptable

faults so that they are now acceptable at the application level, but also contribute

to the feasibility of lightweight recovery techniques, which will be introduced next

in Chapter 4.
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Chapter 4

Fault Recovery by Exploiting Application-level Correctness

This chapter presents our work on fault recovery by exploiting application-

level correctness. First, Section 4.1 proposes a light-weight recovery technique by

only checkpointing the program counter, register file and stack, periodically. Then

Section 4.2 extends the technique by identifying “soft” state in programs and ex-

cluding them from checkpoints. In Section 4.3, both performance and cost of such

recovery mechanisms are reported.

4.1 Lightweight Fault Recovery

As discussed in Section 3.2.2, many architecturally incorrect faults are ac-

ceptable when examined at the application level. However, even after considering

application-level correctness, a large portion of faults still lead to incorrect program

execution–i.e., the “Incorrect,” “Crash,” and “Terminate” components in Figure 3.2.

Of these, by far the “Crash” component is the most significant portion. In all but

three bars (the “R” and “F” bars for gzip, and the “R” bar for bzip2), the “Crash”

component dominates. From Figure 3.2, we can see that across all benchmarks and

all hardware structures, on average crashes account for 80.8% of faults that are in-

correct at both the architecture and application levels. Techniques that can address

crashes will have a large impact on fault tolerance as fault rates keep increasing in
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the future. Additionally, the “Terminate” category of trials is similar to the “Crash”

category in the sense that both exit prematurely and have no or only part of out-

puts generated. The main difference between the two categories lies in whether the

application itself has been implemented to detect certain forms of errors and exits

early accordingly. Therefore, techniques that can address crashes may also be able

to deal with faults in the “Terminate” category as well. In this work, we only look

at recovering faults leading to program crashes; more work needs to be done for

specific applications in order to deal with program “Termination.”

In our mechanism, crashes manifest themselves as either exceptions or program

lockups. Program lockups are detected via expiration of watchdog timers that are

set at the beginning of major loops in each program. To recover from faults, we find

that lightweight checkpoints can be effective thanks to the existence of algorithmic

sources of fault tolerance, as well as qualitative program outputs discussed in Sec-

tion 3.3. Next, we will discuss our lightweight recovery technique in Section 4.1.1,

and then present our results in Section 4.1.2.

4.1.1 Lightweight Recovery Mechanism

Once a fault occurs and before it is detected, corruptions may propagate any-

where in the computation. While recovering all the modified data is necessary for

architecture-level correctness, it is overly conservative for application-level correct-

ness because soft computations, as a result of the algorithmic properties discussed

in Section 3.3, are resilient to data corruptions, and program outputs do not need
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to be numerically perfect.

To reduce checkpoint overhead, in our mechanism, we only checkpoint the

portion of state that is necessary for restarting program execution. More specifically,

we find that in most cases, only a valid PC, architected register file, and program

stack are enough for successful recovery. Once a crash is detected, we roll back

program state including PC, register file, and stack, to the nearest checkpoint, and

then restart the program–we do not touch other state such as program text, static

data, or heap during rollback. Our checkpoints are instrumented at the beginning

of the main controlling loops in our benchmarks.

Note, in our lightweight recovery mechanism, we checkpoint program state

heuristically, and it is possible that some state necessary for program restart are

not saved in our checkpoint, thus some crashes may not be recoverable. However,

the main advantage of our technique is that it is very cheap compared to a per-

fect fault tolerance technique which requires us to identify all the state that are

necessary to recover all possible crashes, and save them frequently enough. In our

technique, across all the benchmarks, the average checkpoint size is 3 Kbytes, and

only accounts for 0.4% of the total program state. Furthermore, our checkpoints are

incurred very infrequently since we only instrument checkpoints at the beginning of

the main controlling loops in each program: there are at least 400,000 instructions

between consecutive checkpoints. Moreover, as we can see in the next section, our

recovery mechanism is not only lightweight, but also very effective and can success-

fully recover a significant portion of crashes in many cases.
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4.1.2 Lightweight Recovery Results

We perform recovery for all crash trials (“Crash” component in Figure 3.2),

using the functional simulator which is instrumented with our lightweight checkpoint

mechanism. Each time a program crash is detected, as described in Section 4.1.1, we

rollback to the nearest checkpoint, restart execution, and try to run the benchmark

to completion. If the program doesnot crash again, we evaluate its outputs under

both architecture- and application-level correctness, just as we have done in Sec-

tion 3.2.2. Figure 4.1 breaks down the outcome of our recovery experiments. Each

bar, representing experiments on one hardware structure for one benchmark, is bro-

ken down into the same categories as Figure 3.2, except that there is no “Terminate”

category since none of our recovery experiments end in early program exit. The last

3 groups of bars in Figure 4.1 report the average breakdowns for the multimedia,

AI, and SPEC benchmarks, respectively.

First, Figure 4.1 shows that our lightweight recovery technique is helpful even

with traditional numerical correctness. A number of program crashes can be re-

covered successfully and generate exact outputs under architecture-level correctness

(i.e., the “Architecture” components). For soft computations, the multimedia and

AI benchmarks, on average about 3.8% to 17.7% of recoveries are architecturally

correct, while for SPEC programs, architecture-level correctness is achieved on av-

erage from 21.5% to 30.8% of all recoveries. By examining these experiments more

carefully, we find that in most cases, faults have not corrupted uncheckpointed state

between the time the fault occurs and its subsequent crash. Thus, our checkpoint

40



0%

20%

40%

60%

80%

100%

R F I R F I R F I R F I R F I R F I R F I R F I R F I R F I R F I R F I

Architecture Application-High Application-Good Incorrect Crash Terminate

G.721-D JPEG-D MPEG-D LBP SVM-L GA 164.gzip 256.bzip2 175.vpr
avg-

MEDIA
avg-AI avg-

SPEC

Figure 4.1: Breakdown of program outcomes for lightweight recovery of crashes.

can correct corruptions on state that have been checkpointed, and allows program

to complete with numerically perfect outputs.

Furthermore, our lightweight recovery technique can be even more helpful

under application-level correctness. Figure 4.1 shows that a significant number

of additional crashes can be recovered correctly with the application-level correct-

ness definitions (i.e., the “Application-High” and “Application-Good” components).

This is especially true for soft computations. Look at the average bars for the mul-

timedia and AI benchmarks in Figure 4.1. On average, about 34.8% to 73.8% of

recoveries are correct under application-level correctness, although their numeri-

cal outputs are incorrect under architecture-level correctness. Moreover, across all

hardware structures and all soft computations, an additional 52.6% of recoveries are

acceptable under application-level correctness. Combining both numerically correct
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and qualitatively correct recoveries, for soft computations, our lightweight recov-

ery technique allows on average about 66.3% of all crashes to complete correctly.

In addition, combining results from Figure 3.2, with our definition of application-

level correctness and lightweight recovery mechanism, for soft computations, about

92.4% of all architecturally visible faults are acceptable. That is, they still lead

to correct outputs at either the architecture or application level. However, for the

SPEC benchmarks, our lightweight recovery mechanism does not perform as well as

for soft computations. As shown in the last group of bars in Figure 4.1, at most an

additional 2.5% of all recoveries are acceptable under application-level correctness,

on top of the numerically correct recoveries. This shows again that soft computa-

tions are resilient to errors while exact computations like the SPEC benchmarks are

not.

In summary, application-level correctness can enhance program fault tolerance

even when infrequently checkpointing a small amount of program state. The ben-

efit is more significant for programs which have multiple valid outputs as well as

algorithmic properties for fault resilience (i.e., soft computations).

4.2 Soft Checkpoint Mechanism

As we have presented in Section 3.2.2, programs can tolerate more errors

under application-level correctness compared to the traditional architectural-level

correctness. Furthermore, Section 4.1.1 shows that in case of fatal faults, only

restoring a small set of program state can help program to restart and still generate
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acceptable outputs. However, our lightweight recovery mechanism is not perfect in

that it is not able to recover all the crashes even for soft computations (Section 4.1.2).

The problem is mainly caused by the fact that our lightweight checkpoints are

too simple to contain all the state necessary for program’s normal execution–i.e.,

faulty corruption of some state that are not included in the checkpoints can prevent

program from generating acceptable outputs. Thus, in order to achieve successful

recovery on most crashes, it is crucial to identify the portion of state that have

to be exact for proper program execution, or on the contrary, the portion of state

that are highly resilient to errors–omitting them from checkpoints does not sacrifice

program correctness at the application level. In this work, we call the latter “soft

state”, and refer to all other program state as “hard state”. For many applications

such as the soft computations in our study, soft state only constitute part of the

whole program state, thus rendering the possibility of selectively checkpointing hard

state to achieve smaller checkpoint size and cheaper recovery cost compared to

traditional full checkpointing. In addition, to maintain recovery performance via

soft checkpointing, hard state have to be identified throughout the whole program,

which requires complete and accurate code analysis. In our experiments, we bypass

such high requirement by identifying soft state and assuming all other program

state as hard state. Thus, incompleteness in our analysis only affects checkpointing

cost since less soft state are to be omitted from checkpoints, while the recovery

performance is not influenced.

In this section, we mainly present our study on two key issues in implementing

such soft checkpointing technique. First, Section 4.2.1 discusses how to identify
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soft program state. Then, Section 4.2.2 reports our checkpointing and recovery

mechanism.

4.2.1 Soft Program State

Soft state are those that can be inexact–in other words, their numerical values

can be different from fault-free execution–while programs can still generate valid

outputs. Once soft state are identified, checkpoint cost–either its size or performance

overhead, as well as fault recovery cost–can be improved by excluding the soft state

from checkpoints. Note the soft state we discuss here are not dead or read-only

data which have been explored in previous work such as [33, 34]. Unlike dead data

which comprise values that are irrelevant to program execution, or read-only data

which contain the same values since the last checkpoint, errors in soft state do

change program execution–usually they may cause program to produce numerically

different outputs. Those errors are intolerable under traditional architectural-level

correctness. However, at higher levels of abstraction, i.e. at the application level,

they may be tolerated if the corresponding outputs still fulfill user’s requirements.

To identify soft program state, generally there exist two approaches. The first

approach comes from the observation that most soft state directly relate to soft

program outputs, which are also referred to as qualitative outputs in Chapter 3

due to the qualitative nature of the results. Therefore, given information on soft

program outputs, backward dependence analysis can be applied to collect all possible

data that contribute to soft outputs. Although it is possible some state are error-
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resilient even if they do not directly compute soft outputs, such cases are not common

and most soft state can be identified in this fashion. The other approach, which

is easier to implement, relies on programmer’s knowledge to inspect the code and

identify data structures associated with soft outputs. Such approach is similar to the

technique proposed by [33, 34] in which programmer gives directions on excluding

or including memory regions to checkpoints. One concern with such approach is

that programmer may mistakenly mark non-error-resilient data structures as soft.

However, such mistakes can be avoided if the programmer is conservative in selecting

soft data. In our experiments, we take the second method and our results presented

in Section 4.3 show our technique is effective in checkpointing necessary state for

recovery.

In addition, in selecting soft state, we only examine heap data structures since

they are the main sources of soft program state across our benchmarks. Other

memory state including static data and stack are ignored in our analysis, though

the PC, register file, and stack are automatically included in the checkpoints (similar

to our lightweight checkpointing mechanism).

4.2.2 Soft Recovery Mechanism

As we have mentioned, our soft checkpoints include the PC, register file, and

stack–we save them fully at each checkpoint since their size is usually very small and

thus this introduces little overhead. In addition, our soft checkpoints also include

hard state existing in other parts of memory such as static data and heap. Unlike
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register file or stack, these memory regions generally involve huge amounts of data.

Hence, instead of using full checkpoints, we employ incremental checkpointing. In-

cremental checkpointing is traditionally one of the most efficient ways to checkpoint

program state. It works by maintaining a list of objects that have been updated

since the most recent checkpoint. To establish a new checkpoint, only the dirty

objects on the list are saved, thus eliminating redundant copies. After each check-

point, the list is cleared so that it can be used to track dirty objects for the next

checkpoint. In our mechanism, we only maintain the list to keep track of updates

on hard state.

Although ideally only updates on hard state are to be checkpointed, the gran-

ularity at which modifications of hard state are tracked impacts the size of the

checkpoints–usually the coarser granularity updates on hard state are examined,

the bigger the resulting checkpoints are, as well as the related performance over-

head. However, to achieve finer granularity, more hardware are required to maintain

the list of dirty objects. In our study, we track modifications of hard state at page

granularity, thus the hardware in TLBs for tracking dirty pages can be utilized for

our purpose. While this is cost effective, it also incurs some overhead since most

data objects are smaller than a page. We will discuss more about this later.

To distinguish modifications on hard state, we identify store instructions that

write to the data structures containing soft state. We refer to these store instruc-

tions as “soft stores”. All other stores not identified as soft stores are conservatively

assumed to update to hard state, and are identified as hard stores. The data struc-

tures for soft state are collected by examining the code and picking those structures
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that are associated with soft outputs (the soft outputs for our benchmarks are listed

in Table 3.2). Once soft stores have been identified, we mark them in our bench-

marks’ binaries so that they can be recognized at runtime. In our experiments,

this is achieved by creating new instructions with unused opcodes in the simulated

instruction set, and then replacing the original soft stores. As we will explain in the

next section, this enables our soft recovery technique to omit dirty pages which are

only touched by soft stores, thus saving checkpoint size and overhead.

4.3 Soft Recovery Results

In our experiments, we modified our detailed out-of-order simulator from

Chapter 3 to support incremental checkpointing. As our simulator does not model

TLBs which are normally used for incremental checkpointing, we track dirty pages

in the simulator itself instead. For every executed store instruction, our simulator

first checks whether it is a soft store or not; if it is not, the simulator then observes

which memory page the store writes to (assuming 4,096 bytes per memory page).

Once a memory page is found to be modified for the first time, the simulator ap-

pends its page number to a modified page list. At each checkpoint, the modified

page list is traversed and the recorded dirty pages are checkpointed using a copy

function. The copy function also checkpoints the PC, register file, and stack. In

addition, the copy function is executed at runtime and fully simulated, thus the

performance cost it incurs can be evaluated.

This section presents the results by applying our soft recovery mechanism to
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Bench Total Pages Dirty Pages Dirty Pages Dirty Blocks Dirty Hard Blocks

G.721-D 6 3 (0.50) 3 (1.0) 13 13 (1.0)
JPEG-D 222 14 (0.063) 7 (0.50) 369 146 (0.40)
MPEG-D 244 8 (0.033) 2 (0.25) 216 20 (0.093)
LBP 1906 1444 (0.76) 1 (6.9e-4) 33633 1 (3.0e-5)
SVM-L 237 34 (0.14) 19 (0.56) 578 359 (0.62)
GA 11779 46 (0.039) 38 (0.83) 349 46 (0.13)

Table 4.1: Checkpoint size statistics. “Total Pages” reports the total number of
memory pages allocated in each benchmark. “Dirty Pages” reports the average num-
ber of pages that are updated during one checkpoint period after program initiation,
which corresponds to the traditional incremental checkpoint size. (The numbers in
parentheses are fractions of the total pages.) “Dirty Hard Pages” reports the aver-
age number of pages in which non-soft blocks are updated during each checkpoint
period, corresponding to our soft-checkpoint size. And the numbers in parentheses
are fractions of the dirty pages. The last two columns, “Dirty Blocks” and “Dirty
Hard Blocks”, report the average size of updated memory–and the non-soft part,
separately–during one checkpoint period by the number of memory blocks. For the
latter, the numbers in parentheses are fractions of the dirty blocks.

the soft computations in our study–i.e., multimedia and AI workloads. We first

report the soft checkpoint cost, including checkpoint size and the impact of check-

pointing on program execution time (Section 4.3.1). Then, we demonstrate how

effective our soft checkpointing technique is in recovering program crashes. We also

discuss some observations from our experiments (Section 4.3.2).

4.3.1 Soft Checkpoint Cost

We evaluate two aspects of checkpoint cost–the size of checkpoints, as well as

the performance overhead they cause on each program. In order to compare our

soft checkpointing with the traditional incremental checkpointing, we first run each

benchmark on our detailed out-of-order simulator to acquire checkpoints assuming

no soft store instructions; then, we run each benchmark again and acquire check-
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points omitting modifications by soft stores. Note the checkpoint locations are the

same as those described in Section 4.1.1.

Table 4.1 presents the average size of checkpoints for each soft computation

program in our study. In the table, the column labeled “Total Pages” reports

the total number of memory pages allocated in each benchmark, excluding code

segment and stack. The column labeled “Dirty Pages” shows the average number of

pages that have been updated during one checkpoint period after program initiation

(the numbers in parentheses are the fractions over the total pages)–these numbers

reflect the size of traditional incremental checkpointing. On average, only 25.6% of

all the pages are modified between two checkpoints. In comparison to traditional

checkpointing, the column labeled “Dirty Hard Pages” reports the average number

of pages which have been modified by hard store instructions during each checkpoint

period–the numbers in parentheses are the fractions over the dirty pages. The table

shows for most of the soft computations, only saving memory pages that contain

updated hard data reduces checkpoint size significantly–for some benchmarks such

as LBP, almost all of the updated data are error-resilient, which results in extremely

small checkpoints compared to traditional incremental checkpoint. But for other

benchmark such as G.721-D, updated hard data are distributed through all of the

memory pages, thus there is no reduction on checkpoint size after considering data

softness. On average, soft checkpoints are about 52.3% of the size of conventional

incremental checkpoints.

Moreover, if we checkpoint at finer level of granularity–i.e., saving updated

data by memory blocks, our soft checkpointing mechanism can save even more. In
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Figure 4.2: Program execution time with traditional incremental checkpointing or
soft checkpointing technique.

Table 4.1, the columns labeled “Dirty Blocks” and “Dirty Hard Blocks” present

the average number of memory blocks that require copying under traditional incre-

mental checkpointing and our soft checkpointing technique, respectively. (For the

column labeled ‘Dirty Hard Blocks”, the numbers in parentheses are the fractions

over the dirty blocks.) Compared to checkpointing by memory pages, for most of

the applications, checkpointing by memory blocks results in smaller checkpoint size.

On average, the space required by soft checkpoints is only about 37.4% of what

incremental checkpoints need. However, as we have discussed, using smaller check-

point granularity incurs more hardware overhead, such as bits for recording update

status.

Because soft checkpointing requires much less data to be saved, its runtime
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overhead for saving checkpoints is also much smaller. Figure 4.2 shows our results

on performance overhead. For each benchmark, which corresponds to one group of

bars in the graph, we report the execution time (cycles) with traditional incremen-

tal checkpointing or our soft checkpointing technique, normalized to the original

(no checkpointing) program execution. The last group of bars exhibits the average

results across all the benchmarks. The graph shows for each application, comparing

the traditional and our checkpointing techniques, their runtime overhead is approx-

imately consistent with their checkpoint size reported in Table 4.1. On average,

the traditional incremental checkpointing incurs about 10.5% runtime overhead on

program execution, while our soft checkpointing technique only causes about 3.3%

overhead, which shows the benefit from the smaller size of our soft checkpoints.

4.3.2 Soft Recovery Performance

Not only does soft checkpointing cost less in terms of both space require-

ment and performance overhead, it also works effectively in recovering program

crashes. Recall in our mechanism, upon program crashes, we restore program state

with the latest soft checkpoint, and then resume program execution. We apply

soft checkpointing and recovery to all the program crashes from our fault injection

experiments, which are reported in Section 3.2.2. Figure 4.3 breaks down the pro-

gram outcomes of our fault recovery experiments. The results are presented in the

same manner as Figure 4.1 except we use soft checkpointing for recovery instead of

lightweight checkpointing. Also, we only evaluate soft computations here.
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Figure 4.3: Program outcomes breakdown for soft recovery of crashes.

Figure 4.3 shows with soft recovery, almost all the program crashes are recov-

ered and programs resume their execution until the end of these execution. The

portions of “Crash” after recovery are reduced greatly–at most 1.1% across the

benchmarks. Especially for multimedia applications, all the experiments can pick

up their execution until producing outputs after restoring soft checkpoint. In ad-

dition, among all the experiments generating outputs, the majority are counted as

correct under either architectural or application-level correctness. Look at the av-

erage bars listed in the last two groups in Figure 4.3. On average, about 79.2% to

98.8% of recoveries are correct at the application level. In particular, about 81.3% of

all the crashes in multimedia programs, or 98.0% for AI programs, are successfully

recovered to either architecturally correct or qualitatively correct, resulting in about

89.7% for successful recoveries across all hardware structures and all soft compu-
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tations. Compared with lightweight recovery reported in Figure 4.1, which has a

66.3% recovery rate under application-level correctness across all the experiments,

soft checkpointing successfully recovers an additional 23.4% of program crashes,

while its performance overhead is very low–about 3.3% as reported in Figure 4.2.

Although soft checkpointing appears very effective in recovery, it is still not

perfect in recovering all program crashes. In particular, Figure 4 shows a very

small number of recoveries (1.1% or less for all benchmarks) result in a second

crash. For these cases, we find checkpoints used for restoring program state contain

corrupted data. In our experiments, checkpoints are taken at the beginning of

main loop iterations. While recovery is triggered at program crashes–i.e., when

an exception or lockup is detected–a checkpoint may be taken after a fault occurs

but before it is exposed as a program crash, which causes the checkpoint to be

corrupted. In addition to crashes the second time around, some recoveries lead

to incorrect outcomes. Figure 4.3 shows that averaged over all three hardware

structures, about 18.7% and 1.1% of recoveries result in incorrect outcomes for the

multimedia and AI benchmarks, respectively. Although most of these incorrect

outcomes still exhibit good solution quality, this result indicates soft checkpointing

alone does not guarantee correct execution. In some cases, faults may corrupt some

unprotected soft state so that the solution quality is degraded sufficiently to make

the result unacceptable.

In addition to the problems of corrupted checkpoints and unacceptable solution

quality–the former can also appear in other checkpointing mechanisms, there exist

other limitations in applying soft checkpointing. First, only programs computing
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on soft data can benefit from such a mechanism. In our experiments, we mainly

study multimedia and AI workloads. We plan to study more application domains

in the future. Secondly, we find soft data do not tolerate errors equally. In other

words, some data may be extremely resilient to errors while some other data can

only allow a small deviation from exact execution. Such softness discrepancy affects

the effectiveness of soft checkpoint in recovery, and possibly makes it more complex

in determining what to checkpoint.
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Chapter 5

Fault Detection with Value Prediction

In previous chapters (Chapter 3 and Chapter 4), we have discussed our study

on program state redundancy at the application level. Our experimental results

show that programs–especially soft computations–can tolerate more errors if their

final state–their outputs–are interpreted from the user’s standpoint. We also imple-

ment a lightweight fault recovery technique by only checkpointing a small portion

of program state. In addition to our work on program state redundancy, we now ex-

plore another kind of redundancy which is also inherent to program execution–value

predictability. Value predictability is found to exist in instruction and data streams,

and has been widely studied to break true data dependence and improve program

ILP. In our work, we find it can also be exploited to improve program reliability,

more specifically, through low-cost fault detection.

In this chapter, we first introduce how we apply value prediction for fault de-

tection in Section 5.1. Here, we discuss our study on characterizing instructions’

vulnerability to faults as well as our methods in selecting instructions for fault pro-

tection. Then, Section 5.2 describes our experimental methodology, and reports both

the reliability and performance results. Next, Section 5.3 compares our technique

against fault screener [12], another technique that exploits the inherent redundancy

in programs to improve fault tolerance.
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5.1 Reducing Error Rate with Value Prediction

This section discusses in detail how value prediction is applied to reduce error

rate. First, Section 5.1.1 introduces the main value predictors that have been ex-

plored in the literature. Then, Section 5.1.2 discusses how we use value predictors to

check instruction results. Next, Section 5.1.3 briefly describes fault recovery. Lastly,

Section 5.1.4 quantifies instruction’s vulnerability to faults and proposes selectively

predicting instructions to mitigate performance loss.

5.1.1 Value Predictor Background

Value prediction has been widely studied to improve program performance

by breaking data dependence–instruction result is predicted and fed to dependent

instructions, which can then proceed speculatively, thus program ILP is enhanced.

To make a prediction, an instruction’s past results are recorded, and its next result

is predicted based on the recorded outcomes. So far, several hardware predictors

have been proposed for value prediction including last value prediction, stride pre-

diction, context prediction and hybrid prediction [35]. Each predictor differs in how

it encodes instruction’s past results and makes prediction accordingly.

Last Value Predictor Last value predictor works for instructions which produce

the same results for consecutive instances. It stores an instruction’s result produced

at the most recent time, and predicts the same value for the next time the same

instruction is encountered. Figure 5.1 shows the scheme of last value prediction.

In the predictor, the Value History Table (VHT) keeps the instructions’ up-to-date
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outcomes, which are stored in the “Value” field of each entry. The other field in

each VHT entry, labeled “Tag”, is used to identify the instruction mapped to that

entry. During each prediction, the program counter (PC) of the instruction to be

predicted is used after a HASH function to select an appropriate VHT entry, then

the data stored in the entry’s “Value” field is adopted as the predicted value. After

the instruction has finished its computation, its newest result is used to update the

“Value” field of the corresponding VHT entry.
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Stride Predictor Stride predictor captures the pattern of some instructions’ com-

putation that the results of their consecutive instances differ by a constant value.

Figure 5.2 shows the basic scheme of a stride predictor. Similar to last value predic-

tor, stride predictor also contains a VHT which contains instructions’ most recent

outcomes in field labeled “Value” as well a “Tag” field for instruction identification.

In addition, each VHT entry also contains a “Stride” field for storing the difference

between the stored outcome and its precedent, and a “State” for indicating the sta-

tus for making prediction with the stride. When a new instance of an instruction

is executed, the difference between the new value and the last-value field is written

into the “Stride” field, and the new value itself is written into the “Value” field. If

the same stride value is computed twice in a row, the corresponding “State” field

is marked as “steady”, and the predictor predicts the instruction’s next value as

the sum of the “Value” and “Stride” fields. When a computed stride differs from

the previously computed stride, its “State” field is marked as transient, and the

predictor stops making predictions until the stride repeats again.

Context-based Predictor Context predictor can capture more complex patterns

of instruction computation than last value predictor and stride predictor. Figure 5.2

illustrates the basic scheme of a context predictor. Different from last value predictor

and stride predictor, a context predictor consists of two tables–a VHT and a Pattern

History Table (PHT). For each instruction to predict, the VHT maintains the last

history-depth number of unique outcomes produced by the instruction in the “Value

History” field. The VHT also maintains a bit field, labeled “Value History Pattern
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(VHP)”, that encodes the pattern in which these outcomes occurred during the

last pattern-length dynamic instances of the instruction. During prediction, the

instruction’s VHP field is used to index the PHT. Each PHT entry contains several

frequency counters, one for each instruction outcome in the VHT. The counter with

the highest count indicates the most frequent successor value given the instruction’s

current value pattern. If the highest counter is above some threshold, then the

corresponding outcome in the “Value History” field is predicted for the instruction;

otherwise, no prediction is made. After an instruction has produced its actual

computation result, the corresponding PHT entry counter is incremented by an hit

bonus while the other counters in the same PHT entry are decremented by a miss

penalty. And the corresponding VHP field in the VHT is also updated to reflect the

instruction’s new outcome pattern.

Hybrid Predictor Hybrid predictor consists of two predictors, usually a stride

predictor and a context-based predictor. Prediction from the context predictor has
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more preference; if the context predictor cannot make a prediction, then the value

predicted–if any–by the stride predictor is selected. Hence, hybrid predictor can

perform better since it incorporates the abilities of both the stride and the context

predictor–it can predict instruction outputs that have not been seen, but conform

to a fixed stride pattern with outputs that have been produced; it can also predict

instruction outputs that have appeared, but conform to more complex patterns than

simply striding with other precedent output values.

5.1.2 Predictor-Based Fault Detection

To utilize value predictability for fault detection, instruction outputs are first

predicted and then compared with actual computational results. In contrast to

traditional applications of value prediction which require prediction results at the

early stages of the pipeline for breaking true data dependences, to compare with

computational results, prediction results are not needed until the writeback stage.

This relaxes the timing constraints for the prediction, enabling large and more so-

phisticated predictors for high prediction rate. Although aggressive predictors are

possible, we find simple predictors which incur low hardware overhead and low

power consumption can provide significant fault tolerance benefits. In our study, we

adopt a hybrid predictor which is composed of one stride predictor and one context

predictor. Prediction from the context predictor is selected first; if the context pre-

dictor cannot make a prediction, then the stride predictor is consulted to produce

a prediction.
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During each predictor comparison, the prediction and actual computation re-

sult will either match or differ. Each case has two possible interpretations. When

the results match, the first possibility is the predictor predicted the correct value.

In this case, no fault occurred since the instruction also produced the same correct

value. The second possibility is the predictor predicted the wrong value, but a fault

occurred such that the instruction produced the same wrong value. This case is

highly unlikely, especially under the assumption of Single-Event-Upset (SEU) fault

model in our study. Hence, if the prediction and actual computation result match,

we assume no fault has occurred, and thus, do not take additional action.

If the prediction and actual instruction result differ, the first possibility is the

predictor predicted the correct value. In this case, a fault has occurred since the

instruction produced a different value. The second possible interpretation is the

predictor predicted the wrong value, and the instruction either produced a correct

or wrong value (again, we assume a misprediction and incorrect result will never

match). Unfortunately, there is no way to tell which of these cases has occurred, so

we can only assume that there is the potential for a fault. In our study, we always

assume conservatively that a fault has occurred, and initiate recovery by squashing

the pipeline and re-executing the squashed instructions in the hopes of correcting the

fault. During re-execution, if the instruction produces the same result, then we know

with high probability that the original instruction did not incur a fault. If no fault

occurred (the most likely case), the pipeline flush was unnecessary, and performance

is degraded. (However, as we will see in Section 5.1.3, such “unnecessary” flushes

can actually improve reliability in many cases).
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To reduce the performance degradation caused by false positives, we use con-

fidence estimation to limit predictions to instructions that have high confidence. In

our experiments, we employ the confidence estimator described in [1]. We associate

a saturating counter with each entry in the value predictor table. A prediction is

made only when the corresponding saturating counter is equal to or above a certain

threshold. If the prediction turns out to be correct (the match case), the saturating

counter is incremented by some value. If the prediction turns out to be incorrect

(the mismatch case in which the original and re-executed results are the same),

the saturating counter is decremented by some value. Given confidence estimation,

since it is the confidence threshold that determines which instructions to predict ul-

timately, we can tradeoff the number of false positives with the number of predicted

instructions (and hence, the fault coverage) by varying the confidence threshold.

Section 5.2 will discuss how we select confidence thresholds.

In addition, we assume both the stride and context predictors used in our work

can always make predictions for the selected instructions by their writeback stage.

Such assumption is based on the small size of the predictors (see predictor param-

eters in Section 5.2.1)–our predictors are smaller or equal to the value predictors

adopted in other work [1, 35, 36], which have to make predictions by the issue stage

for the purpose of boosting performance. Hence there will be no timing-related

problems when integrating our predictors into existing CPU pipelines.
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5.1.3 Fault Recovery

When an instruction’s prediction result differs from its computed value, it is

possible that some fault has occurred before or during the instruction’s execution.

To recover from the fault, it is necessary to roll back the computation prior to

the fault, and re-execute. For such purpose, checkpoint is usually used to restore

processor state, which unfortunately involves certain hardware or software support

as well as performance cost. In our work, we take a simpler approach and perform

roll back by flushing from the pipeline the potentially corrupted instructions. After

flushing, we re-fetch and re-execute from the flush point. (A similar mechanism for

branch misprediction recovery can be used for our technique).

Note our recovery mechanism is not perfect. It can only correct fault cor-

ruptions that occur on predicted instructions, or instructions that are downstream

from a mispredicted instruction (which would incur flush including the mispredicted

instruction, as well as all subsequent instructions). If a fault attacks a non-predicted

instruction that is not flushed by earlier mispredicted instructions, then even if the

fault propagates to an instruction to be predicted later on, recovery would not roll

back the computation early enough to re-execute all the faulty instructions. How-

ever, even with this limitation, we find our technique is still quite effective.

Because soft errors are rare, most recoveries are triggered by the mispredictions

of the value predictor. As mentioned in Section 5.1.2, such false positives can degrade

performance. However, they can also improve reliability. Often times, re-executed

instructions run faster than the original instructions that were flushed (the flushed
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instructions can prefetch data from memory or train the branch predictor on behalf

of the re-executed instructions). As a result, the re-executed instructions occupy the

instruction queues for a shorter amount of time, reducing their vulnerability to soft

errors compared to the original instructions. This effect is particularly pronounced

for instructions that stall for long periods of time due to cache misses. Hence, while

false positives due to mispredictions can degrade performance, this degradation often

provides a reliability benefit in return. The next section describes how we can best

exploit this tradeoff.

5.1.4 Analysis of Instruction Vulnerability

In order to reduce the chance of mispredictions and unnecessary squashes, we

not only apply confidence estimation (as described in Section 5.1.2), but also limit

value prediction to instructions that are most closely related to overall program

reliability–in other words, protecting those instruction can potentially benefit pro-

gram reliability the most. This section describes how we assess the reliability impact

of different instructions.

Recently, to reason about hardware reliability, many computer architects have

used Architectural Vulnerability Factor (AVF), which is proposed by Mukherjee et

al [18]. AVF captures the probability that a transient fault in a processor structure

will result in a visible error in program final outputs. It provides a quantitative way

to estimate the architectural effect of fault derating. To compute AVF, bits in a

structure are classified as being related to architecturally correct execution (ACE
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bits), or not (un-ACE bits). Only errors in ACE bits can possibly cause output

errors. A hardware structure’s AVF is on average the percentage of ACE bits that

occupy the hardware structure throughout program execution.

To identify ACE bits and compute AVF, instructions must first be distin-

guished as ACE or un-ACE. [18] proposed a conservative method–bits (instructions)

are ACE unless they can be proved otherwise. The authors identified 5 architectural

un-ACE sources including NOP instructions, performance-enhancing instructions

(e.g., prefetches), predicated-false instructions, dynamically dead code, and logical

masking.1 Among ACE instructions, we make the key observation that they are not

equal in affecting system vulnerability. Instead, each instruction’s residence time in

hardware structures determines its reliability contribution. As stated by Weaver, et

al. [37], the longer time an instruction spends in the pipeline, the more it is exposed

to sources of soft errors such as neutron and alpha strikes, and hence, the more sus-

ceptible it becomes to faults. To minimize the long residency of ACE instructions,

they proposed squashing instructions that incur long delays such as cache misses.

We extend this idea by quantifying fault vulnerability at the instruction level, and

selectively protecting the instructions that are more susceptible to faults.

To characterize fault vulnerability of each ACE instruction, we measure the

fraction of overall AVF it contributes. More specifically, for the hardware structures

1Although bits for ACE instructions are not necessarily ACE themselves, (e.g., logical masking

may cause some bits of ACE instructions to be un-ACE), we find it is quite related between

the statistics of ACE instructions and AVF estimation. In our study, we use the change in the

percentage of ACE instructions to reflect the impact on system reliability.
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Figure 5.4: Accumulative Percentage of AVF and Instruction Count in Fetch Buffer
on TWOLF.

in our study–e.g., fetch buffer and issue queue, we first collect the residence time

of each ACE instruction. Next, we sort instructions by their residence time, and

compute their corresponding contribution to the structure’s total AVF. Then, we

plot the cumulative percentage of ACE instructions as well as their cumulative AVF

percentage.

Our study shows that a very small number of instructions account for a ma-

jority of the AVF in hardware structures. Figure 5.4 illustrates the distribution

of ACE instructions in fetch buffer for benchmark TWOLF from SPEC2000 suite.

In Figure 5.4, the X-axis represents the accumulated fraction of total instructions.

Each point along the X-axis stands for a group of instructions which have the same

residence time in fetch buffer; groups of instructions with longer residence time are

displayed first. The Y-axis in the graph represents the corresponding accumulated
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percentage of AVF or dynamic instructions–the top curve represents AVF while the

bottom curve represents instruction count. From the graph we can see at the begin-

ning (leftside of the graph), both the instruction count and their AVF portions are

almost zero, indicating that there are few instructions with extremely long residence

time. Then, as instructions with shorter latency are counted in, their AVF portion

also gets bigger, while the latter increases much faster till the first marked point

(on the left of the graph). The marked points (the two points each on the left side

of its curve) show that about 3.5% of instructions corresponds to about 53.9% of

average AVF for the hardware structure. Afterwards, the increase in AVF portion

turns much slower as the number of instructions increases. Therefore, a small set of

instructions–3.5% in the example–consists of a large AVF fraction. Those instruc-

tions are much more susceptible to faults than the remaining ones –illustrated by

the marked points on the right side of the curves, the majority of instructions (about

91.8%) exhibit a latency smaller than 40 cycles, and account for a relatively small

portion of the overall AVF (about 28.4%). We find similar behavior occurs for the

other benchmarks as well as for the other hardware structures. Such results show

that using our value predictor to target a small number of instructions–those with

very large latencies–is sufficient to provide the majority of fault protection. (As

mentioned in Section 5.1.2, our technique performs checking at instruction’s write-

back stage. By then the instruction’s latency is known. Hence, it can be determined

on time whether to check its computation or not.) This is good news since it will

minimize the performance impact of mispredictions. In addition, it’s up to design-

ers to decide which portions of instructions are susceptible enough to be protected,
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which provides desirable flexibility in system design.

In addition, our study also shows instructions exhibit different fault vulner-

ability at different hardware structures: while an instruction may stall for a long

time in one hardware structure, it may not stall for very long in other structures. In

other words, a single instruction can contribute differently to different structures’

vulnerability. Thus, an interesting question is how to select the smallest group of

instructions that will provide the largest benefit to the whole processor’s reliabil-

ity? In our work, we evaluate three different policies for determining instruction’s

vulnerability: the total residence time of an instruction from fetch to issue, from

dispatch to writeback, or from fetch to writeback. We will present our results in

Section 5.2.

5.2 Experimental Methodology and Results

In Section 5.1 we discussed our study on characterizing instruction vulnera-

bility. Our results show that a small set of instructions accounts for a big portion

of hardware vulnerability. We also qualitatively analyzed the impact of flushing

pipeline on value misprediction: flushing degrades performance, but in some cases

it may improve program reliability. We consider such tradeoffs in our design, and

use insights from both to drive value prediction and confidence estimation–the latter

ultimately determines which instructions will get predicted.

In this section, we present our experimental results of applying value prediction

to those highly vulnerable instructions for fault protection. Throughout our exper-
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iments, we have adopted two analysis techniques to estimate the reliability impacts

of our technique. The main method is AVF analysis, which has been discussed in

Section 5.1.4. The other method is fault injection, which has been traditionally–and

is still widely–used to evaluate system reliability. Compared to AVF computation,

the method of fault injection actually introduce faults into a hardware description

of a processor or radiation testing on a physical device, thus it makes it possible to

observe fault propagation and characterize fault coverage more accurately. However,

its nature of statistical sampling requires large amount of trials, which can cause

enormous experimental time and resources to be consumed. Contrastingly, although

AVF analysis can only provide a lower bound on the reliability of a processor design,

it performs much faster–it utilizes high-level performance model coupled with low-

level design information, and only needs one simulation run to obtain the reliability

estimate of the design. Since both analysis techniques have their own advantages

and disadvantages, we mainly employ AVF analysis to evaluate the reliability impact

of our technique (Section 5.2.2, Section 5.2.3, and Section 5.2.4). We also conduct

another group of experiments with fault injection (Section 5.2.5), and compare the

results from AVF computation and fault injection experiments(Section 5.2.6).

In more detail, Section 5.2.1 first introduces the processor model and the

benchmarks we use in our experiments. Then, in Section 5.2.2, we investigate the

potential of using value prediction to check the computations of highly vulnerable

instructions. We compare our approach with predicting all the result-producing

instructions. As we have discussed, with value prediction technique, we exploit pro-

gram’s inherent redundancy for result comparison and fault detection. In addition,
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Hybrid Value Predictor Parameters

VHT size / values per VHT entry 1024 / 4
PHT size / PHT counter threshold 1024 / 3

Confidence Estimator Parameters

saturation threshold 15
low / mid / high threshold 3 / 7 / 15

miss penalty / increment bonus 7 / 1

Table 5.1: Parameter settings for the detailed architectural model into which we
inject faults.

by identifying and protecting the most vulnerable instructions, we can potentially

limit performance degradation while maintaining comparable reliability gain. Next,

in Section 5.2.3, we incorporate the finding of various vulnerability across differ-

ent instructions, and propose adaptive threshold in confidence estimation. In Sec-

tion 5.2.4, we also discuss different policies for computing instruction latency, which

is used in selection for value prediction. At last, in Section 5.2.5, we employ fault

injection for another group of selective value prediction experiments. Section 5.2.6

presents the comparison between fault injection and AVF computation.

5.2.1 Simulator and Benchmarks

In our experiments, on top of the baseline detailed architectural simulator

shown in Table 3.1, we implement a hybrid value predictor including one stride

predictor and one context predictor–as described in [35]. We also implement a

confidence estimator as described in [1]. Both the value predictor and confidence

estimator are configured as specified by Table 5.1.

In addition, Table 5.2 lists all the benchmarks used in our experiments. These
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Benchmark Input Instruction Count

300.twolf ref 109546670
176.gcc 166.i 240000000
254.gap train.in 411061781
164.gzip input.compressed 192015257
256.bzip2 input.compressed 2346534735
253.perlbmk diffmail.pl 1000000000
197.parser ref.in 1404572471
181.mcf inp.in 500000000
175.vpr test 1512992144

Table 5.2: Benchmarks and input datasets used in our experiments.

benchmarks come from the SPEC2000 Integer suite. In the table, the column la-

beled “Input” specifies the input dataset used for each benchmark, and the column

labeled “Instruction Count” reports the number of instructions executed by each

benchmark–we start simulation after program initialization, so “Instruction Count”

does not include the benchmarks’ initialization part.

5.2.2 Value Prediction Experiments

We first present our experiments on applying value prediction without confi-

dence estimation to fault detection. We evaluate the impacts on both reliability and

performance when predicting all or a portion of result-producing instructions, which

we call full or selective prediction, respectively. Full prediction predicts an instruc-

tion as long as the predictor can make a prediction (as described in Section 5.1.1,

the predictors are unable to make predictions in some cases). Selective prediction

only predicts instructions that meet some minimum latency threshold–we measure

instruction’s latency from the fetch stage to the issue stage.

Figure 5.5 reports the percentage of result-producing instruction count (to the
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Figure 5.5: Average distribution of result-producing instruction count, as well as
their prediction and misprediction rate, across different latency range over all the 9
spec2000 integer benchmarks. Latency is measured from fetch to issue stage.

total number of executed instructions) across all instructions (labeled “total”) and

for different latency ranges, as well as the fraction of instructions from each category

(“total” and the different latency ranges) that are correctly predicted and mispre-

dicted. Every datapoint in Figure 5.5 represents an average across all the bench-

marks listed in Table 5.2. In the graph, the X-axis represents instruction latency

range, marked as increasing latency while the leftmost stands for the complete set of

result-producing instructions; the Y-axis represents either percentage of instruction

count, or the percentage of correctly predicted or mispredicted instructions. From

the graph, we see in total result-producing instructions account for about 81.4% of all

instructions. In particular, instructions with shorter latency–i.e., latency less than

5 cycles from fetch to issue stage–account for about 32.1% of all the instructions, or
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long-latency instructions. Latency is measured from fetch to issue stage. On value
misprediction, mispredicted instructions and all subsequent ones are flushed and
then re-fetch and re-execute.

41.4% of result-producing instructions. Moreover, these short-latency instructions

exhibit relatively good prediction rates–63.7% on average. In contrast, instructions

with longer latency (than 5 cycles) have slightly lower prediction rate–around 40%

to 50%. However, given the importance of these long-latency instructions to system

reliability, it is still worth to check their values through prediction.

We now measure the impact of value prediction on both program reliability and

performance. As we have discussed in Section 5.1.2, on each value misprediction,

the mispredicted instruction and all subsequent instructions are flushed from the

pipeline, and the program starts to re-fetch and re-execute from the flushed point.

Figure 5.6 reports the average IPC and AVF of fetch buffer and issue queue, config-
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ured as Table 3.1–by full or selective prediction. Each datapoint in the graph repre-

sents the average across all the benchmarks; the X-axis represents latency threshold

used for selective value prediction–only instructions that stay in the pipeline (mea-

sured from fetch to issue stage) longer than or equal to the corresponding threshold

are selected for value prediction; the Y-axis represents the AVF or IPC normalized

to the baseline values without prediction. The leftmost points in the graph (marked

as “pred all” on the X-axis) represent results from full prediction.

Figure 5.6 shows prediction-based fault protection can be very effective at

improving reliability (i.e., reducing AVF). The AVF for the fetch queue and issue

queue is reduced by as much as 96.0% and 89.8%, respectively (under full prediction)

compared to no prediction. This is due to both correct and incorrect predictions.

On a correct prediction, the value of the predicted instruction is checked, so the in-

struction is no longer vulnerable, and hence, does not contribute to the AVF of the

structures it occupies. On a misprediction, the pipeline is flushed. As discussed in

Section 5.1.2, re-execution after flushing is typically faster than the original execu-

tion, thus reducing the occupancy of ACE instructions in the hardware structures.

Both combine to provide the AVF improvements shown in Figure 5.6.

Unfortunately, these reliability improvements come at the expense of perfor-

mance. Figure 5.6 shows IPC can degrade significantly due to the penalty incurred

by mispredictions, particularly when a large number of instructions are predicted.

Under full prediction, IPC reduces by 55.1% compared to no prediction. But the

performance impact lessens as fewer instructions are predicted (moving towards the

right side of Figure 5.6). For example, when predicting instructions with latency
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greater than or equal to 5 cycles, the performance impact is less than 29.4%. Al-

though reliability improvement is not as great when predicting fewer instructions, it

can still be significant–we achieve a 84.0% and 56.5% reduction in AVF for the fetch

buffer and issue queue respectively at threshold latency of 5 cycles. Furthermore,

when predicting even fewer instructions, although both the performance and relia-

bility impacts become smaller, they do not reduce at the same pace. For example,

when predicting instructions with latency greater than or equal to 30 cycles, the

performance impact is less than 3.8%, while the AVF reduction for the fetch buffer

and issue queue can still achieve up to 74.9% and 39.2%, respectively.

In general, Figure 5.6 indicates there exists a tradeoff between reliability and

performance. The more instructions we predict, the larger the improvement in

reliability, but also the larger the degradation in performance. However, when we

focus the value predictor on long-latency instructions such as instructions with ≥

30-cycle latency, the performance loss is small while the reliability gain is still quite

large. This is because the longer the instruction latency, the smaller the impact

mispredictions will have on performance. Furthermore, the longer the instruction

latency, the more critical the instructions are from a reliability standpoint.

5.2.3 Confidence Estimation

As value misprediction causes pipeline squash which degrades program per-

formance, we integrate a separate confidence estimator with the value predictor to

reduce the number of mispredictions. Figure 5.7 reports the prediction and mispre-
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Figure 5.7: Average distribution of value prediction rate–with confidence
estimation–across different latency range over all the 9 spec2000 integer benchmarks.
Latency is measured from fetch to issue stage.

diction rates of our value predictor with confidence estimation for all instructions,

labeled “total”, and for instructions with different latency ranges (The graph is pre-

sented in the same way as Figure 5.5). The confidence estimator is configured as

Table 5.1. Compared with Figure 5.5, which has no confidence estimation applied,

Figure 5.7 shows our value predictor achieves fewer correct predictions–the reduction

ranges between 10% and 15%. This is because the confidence estimator prevents

predicting the less predictable instructions. As a result, the misprediction rate goes

down to almost 0 across all latency ranges. As Figure 5.7 shows, our confidence

estimator is quite effective at reducing mispredictions with only a modest dip in the

number of correct predictions.

Figure 5.8 shows the impacts of confidence estimation on the AVF of our

76



0

0.2

0.4

0.6

0.8

1

1.2

pred all pred

lat>=5

pred

lat>=8

pred

lat>=10

pred

lat>=15

pred

lat>=20

pred

lat>=30

pred

lat>=50

pred

lat>=100

A
V
F
 (
n
o
r
m
a
li
z
e
d
 t
o
 o
r
ig
in
a
l 
e
x
e
c
u
ti
o
n
)

AVF--issue queue

AVF--fetch buffer

IPC

Figure 5.8: Average AVF of 2 hardware structures and IPC (relative to original ex-
ecution) across 9 spec2000 integer benchmarks by applying value prediction to long-
latency instructions. Value predictor is complemented with a separate confidence
estimator. Latency is measured from fetch to issue stage. On value misprediction,
mispredicted instructions and all subsequent ones are flushed and then re-fetch and
re-execute.

hardware structures, as well as on IPC (the graph uses exactly the same format as

Figure 5.6). In Figure 5.8, we see IPC never degrades more than 4%, even when

performing full prediction. These results show confidence estimation is indeed ef-

fective at mitigating performance degradation. Unfortunately, applying confidence

estimation also brings down the reliability improvement. In particular, under full

prediction, the AVF for the fetch buffer and issue queue is now reduced by at

most 49.3% and 29.0%, respectively; under selective prediction, the AVF for the

fetch buffer and issue queue is reduced by about 43.1% and 23.4% for prediction

with baseline latency of 5 cycles, and 23.6% and 10.3% for prediction with base-
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line latency of 30 cycles, respectively. Such lower reliability improvements are still

exposed after taking performance loss into account. In all, by comparing reliabil-

ity and performance impacts between with confidence estimation (Figure 5.8) and

without confidence estimation (Figure 5.6), we see confidence estimation is helpful

in lessening performance loss due to mispredictions, but it also degrades reliability

improvement since it suppresses prediction of many instructions, thus reduces the

coverage achieved by the value predictor.

Thus far, we have applied confidence estimation uniformly across all eligible

instructions–i.e., we use a single confidence threshold to determine whether a par-

ticular instruction should be predicted or not. However, predicting all instructions

using a uniform confidence level may not be the best policy since instructions do

not contribute equally to program reliability. In particular, for longer latency in-

structions which are more susceptible to faults and thus contribute more to overall

reliability–they usually also incur less performance degradation during misprediction

recovery, it may be better to perform value prediction more aggressively. Conversely,

for shorter latency instructions which contribute less to overall reliability–they usu-

ally incur more performance degradation during recovery compared to instructions

with longer latencies, it may be better to perform value prediction less aggressively.

This suggests an adaptive confidence estimation technique has the potential to more

effectively tradeoff reliability and performance.

In our study, we modify our confidence estimation scheme to adapt the confi-

dence threshold based on each instruction’s latency. In particular, we employ three

different threshold levels, similar to what is proposed in [1]. (The thresholds for low,
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medium, and high confidence are 3, 7, and 15, respectively for a saturating value of

15). Instructions which latencies falls in certain ranges are assigned corresponding

confidence thresholds: we use the lowest confidence threshold for instructions that

incur a latency equal to or larger than 4 times the baseline latency; we use the

medium confidence threshold for instructions that incur a latency equal to or larger

than 2 times the baseline latency but smaller than 4 times the baseline latency; and

we use the highest confidence threshold for instructions that incur a latency equal

to or larger than the baseline latency but smaller than 2 times the baseline latency.

Here, the baseline latency is the minimum instruction latency that is considered for

prediction as given by latency-based selective prediction. (For example, if we only

predict instructions with latency 5 cycles or larger, then the low, medium, and high

thresholds are applied to instructions with latency in the ranges ≥ 20 cycles, 10-19

cycles, and 5-9 cycles, respectively).

We measure both reliability and performance impacts of combining latency-

based selective prediction with adaptive confidence estimation as described. Fig-

ure 5.9 reports the new AVF of our three hardware structures, as well as IPC,

averaged across all the benchmarks. The graph is plotted in the same format as

Figure 5.6 and Figure 5.8, except that now, each latency marked along the X-axis in

the graph represents the smallest (baseline) latency threshold–only instructions that

stay longer than the baseline latency are eligible for prediction, which is also associ-

ated with the highest confidence threshold; the corresponding medium and largest

latency thresholds are by default two or four times of the baseline latency, and

are associated with the medium or lowest confidence threshold, respectively. Only
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Figure 5.9: Average AVF of 2 hardware structures and IPC (relative to original
execution) across 9 spec2000 integer benchmarks by applying value prediction to
long-latency instructions. Latency is measured from fetch to issue stage. Confidence
threshold used for each prediction varies (high, medium or low threshold) according
to the instruction’s latency. On value misprediction, mispredicted instructions and
all subsequent ones are flushed and then re-fetch and re-execute.

instructions whose saturating counters meet the corresponding confidence thresh-

old are predicted. Comparing with the baseline confidence estimation technique

shown in Figure 5.8, Figure 5.9 shows that similarly, adaptive confidence estima-

tion incurs a relatively small performance degradation. For example, under selective

prediction, the performance degradation is about 9.4% for prediction with 5-cycle

baseline latency, and 2.4% for prediction with 15-cycle baseline latency. However,

adaptive confidence estimation achieves a much better reliability improvement (AVF

reduction) than the baseline confidence estimation, and approaches the reliability

improvement achieved by value prediction without confidence estimation shown in
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Figure 5.10: Average IPC and AVF of 2 hardware structures across 9 spec2000
integer benchmarks by varying threshold of confidence estimation according to in-
struction latency. Each set of values marked along X-axis contains three latency
thresholds, listed as lowest, medium, and highest threshold, and associated with
three confidence thresholds, respectively– the three confidence thresholds are se-
lected as described in [1].

Figure 5.6. For example, under selective prediction, the AVF for the fetch buffer

and issue queue is reduced by 79.6% and 50.9% for prediction with baseline latency

of 5 cycles, and 69.8% and 33.6% for prediction with baseline latency of 15 cycles,

respectively. Thus, by more aggressively predicting only the longer latency instruc-

tions, adaptive confidence estimation can cover the most critical instructions for

reliability without sacrificing too much on performance.

In addition to our 3-level confidence-threshold policy, we have also tried other

combinations of instruction latencies with confidence thresholds, which impacts on

reliability are exhibited in Figure 5.10. In Figure 5.10, the X-axis represents 5 sets of
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instruction latency threshold, while each set contains three latency thresholds, listed

as lowest, medium, and highest latency threshold. The three latency thresholds in

each set are associated with the three confidence thresholds as described above. The

association between latency and confidence threshold is: instructions which latencies

are equal to or longer than the highest latency threshold are assigned with the

lowest confidence threshold; instructions which latencies are shorter than the highest

latency threshold, but equal to or longer than the medium latency threshold are

assigned with the medium confidence threshold; while instructions which latencies

are shorter than the medium latency threshold, but equal to or longer than the lowest

latency threshold are assigned with the highest confidence threshold. Note the two

leftmost sets of latency threshold in the graph–(3, 5, 10) and (3, 20, 300)–belong to

full prediction since in our processor model, the smallest latency for an instruction

from fetch to issue in our processor model is 3 cycles. The other three sets of latency

threshold along the X-axis are for selective prediction. In particular, the middle set,

(5, 10, 20), satisfies our 3-level confidence-threshold policy as described before. In

addition, the Y-axis in Figure 5.10 stands for either IPC or AVF on one hardware

structure; each point in the graph stands for the average over experiments on all

the benchmarks in our study. Figure 5.10 indicates that full prediction (such as the

leftmost points in the graph) with varying confidence threshold has less advantage

on reliability gain when considering performance (IPC); on the contrary, selective

prediction–such as the datapoints in the middle of the graph with latency range (5,

10, 20)–results in less IPC reduction with good AVF gain. We adopt the set of (5,

10, 20) as the latency thresholds for the experiments in Section 5.3.
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5.2.4 Policy on Measuring Instruction Latency for Value Prediction

In the experiments presented so far, we measure each instruction’s residence

time from fetch to issue stage to determine its criticality for program’s fault vulnera-

bility. This can be implemented with a unified tag to keep the total processing time

of an instruction including fetch, dispatch, and issue. However, as value prediction

occurs at the end of execution stage (or the start of writeback), there exist other

choices for such criticality measurement. In our study, we compare three policies–

calculating instruction’s latency from fetch to issue, from dispatch to writeback, or

from fetch to writeback–for the resulting reliability and performance impacts.

We report reliability and performance impacts of using the three kinds of

processing time on our hardware structures: we use Figure 5.11 to show the new

AVF results and Figure 5.12 to show the new IPC results. In both graphs, policy

1 stands for latency computed from fetch to issue stage, policy 2 is for latency

from dispatch to writeback, and policy 3 is for latency from fetch to writeback

stage. The X-axis in the two graphs represents the same meaning as in Figure 5.6,

Figure 5.8, or Figure 5.9. From the graphs we can see, generally, there is no big

difference on issue queue among using different policy for computing instruction

latency, while for fetch buffer, incorporating fetch time–i.e., from fetch to issue or

fetch to writeback stage–ends up with more reliability gain than using dispatch to

writeback time. Such results are reasonable since fetch time directly indicates an

instruction’s vulnerability at fetch buffer, while it is counted in policy 1 and 3 but

ignored in policy 2. We stick to policy 1–counting instruction latency from fetch to
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Figure 5.11: Average AVF comparison of 3 policies for computing instruction
latency–instructions are selected by their latency for value prediction and confidence
estimation–on fetch buffer and issue queue (relative to original execution) across 9
spec2000 integer benchmarks. Policy 1 stands for latency computation from fetch
to issue stage, policy 2 is for latency from dispatch to writeback, and policy 3 is for
latency from fetch to writeback stage. The confidence threshold varies with instruc-
tion latency. On value misprediction, mispredicted instructions and all subsequent
ones are flushed and then re-fetch and re-execute.

issue stage–in Section 5.3.

5.2.5 Selective Value Prediction Experiments with Fault Injection

Thus far, we have investigated the reliability impact of our technique through

AVF analysis. As we have discussed, through AVF analysis, we can estimate the

system reliability very quickly–only one simulation round is needed. However, AVF

analysis is conservative and it can only provide a lower bound on the reliability

of the system design. Such conservatism mainly comes from a few sources. First,
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Figure 5.12: Average IPC comparison of 3 policies for computing instruction
latency–instructions are selected by their latency for value prediction and confidence
estimation–on fetch buffer and issue queue (relative to original execution) across 9
spec2000 integer benchmarks. Policy 1 stands for latency computation from fetch
to issue stage, policy 2 is for latency from dispatch to writeback, and policy 3 is for
latency from fetch to writeback stage. The confidence threshold varies with instruc-
tion latency. On value misprediction, mispredicted instructions and all subsequent
ones are flushed and then re-fetch and re-execute.

AVF analysis is typically conducted on a high-level performance timing model, thus

lacks for enough detail of the system design. Second, a system’s AVF is computed

by first identifying un-ACE bits as many as possible and then assuming all the

remaining bits are ACE. Thus, un-ACE bits that are not identified are all counted

as ACE, which causes the computed AVF result to be bigger than its actual value.

In addition, in analyzing the reliability impact of our technique, we count predicted

instructions as un-ACE (in addition to the un-ACE bits identified in [18]). This

is conservative because with value prediction, not only instructions that can be

correctly predicted are covered from faults, but also instructions that feed values
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to them may also have executed normally. For example, as we have mentioned,

for arithmetic instructions, their input data has to be unique if all other inputs

and outputs have certain values (correct prediction). Thus, instructions that have

produced the corresponding input values may also have executed properly, which

means the state bits that have contributed to the related computation of those

instructions are un-ACE, too. Omitting those un-ACE bits results in higher AVF

than the actual vulnerability of the system design.

To verify and compare with the AVF results, we conduct another group of

experiments through fault injection. The fault injection experiments are performed

on the same detailed architectural simulator that models a modern out-of-order

superscalar as described in Section 5.2.1. The simulator settings are also the same

as listed in Table 3.1. We set our value predictor so that it selectively predicts

instructions that stay equal to or more than 5 cycles in pipeline from fetch to

issue stage. As for confidence estimation, we adopt the set of latency threshold

(5, 10, 20) to associate with the highest, medium, and lowest confidence threshold,

separately (related analysis is discussed in Section 5.2.3). Since we choose the same

configuration for both the simulator and the value predictor, the performance impact

is the same as reported in Figure 5.9–i.e., the average IPC across all the benchmarks

listed in Table 5.2 is degraded by 9.4% relative to excution without value prediction.

To estimate the reliability impact, we inject faults into three hardware struc-

tures: the physical register file, the fetch queue, and the issue queue (IQ). Similar to

our previous work, we assume faults injected into a physical register will appear in

architectural state unless the register is idle or belongs to a mispeculated instruction.
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Benchmark Exec Time Inter Time Injects Regfile Fetch Issue

300.twolf 138292502 50000.0 2782 905 (0.32) 709 (0.25) 411 (0.15)
176.gcc 169540504 50000.0 3367 149 (0.05) 2327 (0.32) 210 (0.06)
254.gap 248111790 50000.0 8491 1391 (0.28) 652 (0.13) 480 (0.10)
164.gzip 93443879 50000.0 1899 441 (0.24) 279 (0.15) 284 (0.15)
256.bzip2 732651712 250000.0 2941 1132 (0.38) 1650 (0.56) 773 (0.26)
253.perlbmk 635694346 250000.0 2466 1272 (0.49) 782 (0.32) 393 (0.16)
197.parser 1065840259 250000.0 4301 1060 (0.25) 811 (0.19) 750 (0.18)
181.mcf 3733522703 250000.0 14877 4366 (0.29) 10363 (0.70) 5229 (0.35)
175.vpr 807673917 250000.0 3248 1016 (0.31) 202 (0.06) 388 (0.12)

Table 5.3: Detailed fault injection statistics for benchmarks used in our study. “Exec
Time” reports the execution time in cycles for each benchmark without value pre-
diction(original run). “Inter Time” reports the average time (cycles) between fault
injections. “Injects” reports for original run, the total number of faults injected into
the physical register file. The last 3 columns report the number of faults that fall on
non-speculative instructions or related resources for the physical register file, fetch
queue, and issue queue, respectively.

For the fetch queue, we allow faults to corrupt instruction bits (including opcodes,

register addresses, and immediate specifiers) and instruction address (PC). Faults

on PC for branch instruction may corrupt its computation. These faults manifest

in architectural state as long as the injected instruction is not mispeculated. Lastly,

for the IQ, we model 6 fields per entry: instruction opcode, 3 register tags (2 source

and 1 destination), an immediate specifier, and a PC value. Like the fetch queue,

faults in the IQ appear in architectural state for instructions that are not mispecu-

lated. Corruptions to the IQ opcode and immediate fields behave similarly to those

in the fetch queue. Corruptions to the register tags alter instruction dependences,

and corruptions to the PC value affect branch target addresses.

We perform fault injections across all the 9 SPEC2000 integer benchmarks

in our study, then compare reliability results of their original runs with those im-

plemented with value predictor. Table 5.3 presents fault injection information for
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the base-case runs of each benchmark. First, the column labeled “Exec Time” re-

ports for each benchmark’s base case, their measured execution time in cycles for

running a number of instructions (listed in Table 5.2) on our detailed out-of-order

simulator. In our experiments, we inject faults only after program initialization, so

“Exec Time” does not include the benchmarks’ initialization phase. After program

initialization, we perform fault injections on a single hardware structure. We per-

form 3 such injection runs on each benchmark to inject faults into the 3 hardware

structures (physical register file, fetch queue, and issue queue). During each run,

faults are randomly injected into a hardware structure one after another using a

uniformly distributed inter-fault arrival time. The column labeled “Inter Time” in

Table 5.3 reports the inter-fault arrival time (in cycles) used for each benchmark,

while the column labeled “Injects” reports the total number of injected faults for

the physical register file. (The number of injected faults for the other two hardware

structures is almost identical since they use the same inter-fault arrival time). For

program execution implemented with value prediction, their execution time varies

from executing the same instructions in their original runs due to flushes on mis-

prediction, which also causes different number of faults to be injected since we keep

the same inter-fault time for each benchmark.

Among all the faults injected, faults that attack idle hardware resources or

hardware occupied by mispeculated instructions have no impact on program execution–

they have been masked by the microarchitecture. We ignore these faults and only

simulate the remaining ones that somehow disrupt program control or data flow

computation. We continue simulation until faults are removed or the originally cor-
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Figure 5.13: Breakdown of fault injections on fetch buffer by applying our selec-
tive value prediction technique. The minimum latency threshold for prediction is
5 cycles, measured from fetch to issue stage. Confidence threshold used for each
prediction varies (high, medium or low threshold) according to the instruction’s la-
tency. On value misprediction, all the instructions in the pipeline are flushed and
then re-fetch and re-execute. Categories include faults that have no architectural
impact (“non-effective”), faults that cause program to crash or deadlock (‘fatal”),
faults that are removed during pipeline flushes before faulty instructions commit
(“flushed”), and faults that are not detected by value predictor before faulty in-
structions commit (“undetected”).

rupted instructions commit (for fault injection on physical register, we also check if

the latest instruction which updates the register value has committed). We define

the latter condition as “failure”. Such definition excludes fault masking effects from

software itself, which usually requires tracking until the end of program execution.

Instead, we focuses on faults’ architectural impact which examines the sensitivity of

value predictor to faults.

Figure 5.13 breakdowns all the fault injections on fetch buffer by their effects
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on program execution. In Figure 5.13, each group of bars represents experiments

on one benchmark, while the last group represents the average across all the bench-

marks. In each group, the bar labeled “original” represents the original execution,

while the bar labeled “dpred-sel5” represents the execution implemented with our

selective value prediction technique. Each bar contains four categories. The first

category, labeled “non-effective”, represents the portion of faults which cause no

architectural change compared to fault-free execution. For example, faults fall on

entry bits that are idle or contain speculative instructions, or the instructions are

non-speculative but the bits do not affect the computation, hence the faults are also

masked. The second category is labeled “fatal” and includes faults that cause pro-

gram to crash or deadlock. Then, the category labeled “flushed” represents faults

that are removed during pipeline flushes before faulty instructions commit. Lastly,

the category labeled “undetected” corresponds to faults that are not detected by

value predictor before faulty instructions commit. From the graph, we see the cat-

egory of “non-effective” consists of the majority of the fault injections–for original

program execution, on average about 77.0% of all the faults have no effect on pro-

gram execution, while for program execution with value prediction, about 92.2% of

all the faults have no effect. The higher rate of “non-effective” category is mainly

due to fault recovery in the value prediction technique–flushing the pipeline causes

more bits in the hardware to sit idle which therefore appear invulnerable to faults. In

addition to the faults that do not affect program execution, about 3.6% and 1.5% of

all the faults for program execution with and without value prediction, respectively

cause program crashes or deadlock before the corrupted instructions commit. These
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Figure 5.14: Breakdown of fault injections on issue queue by applying our selec-
tive value prediction technique. The minimum latency threshold for prediction is
5 cycles, measured from fetch to issue stage. Confidence threshold used for each
prediction varies (high, medium or low threshold) according to the instruction’s la-
tency. On value misprediction, all the instructions in the pipeline are flushed and
then re-fetch and re-execute. Categories include faults that have no architectural
impact (“non-effective”), faults that cause program to crash or deadlock (‘fatal”),
faults that are removed during pipeline flushes before faulty instructions commit
(“flushed”), and faults that are not detected by value predictor before faulty in-
structions commit (“undetected”).

faults can be detected by the system automatically. The remaining faults, about

19.3% for original program execution corrupt the computation of some instructions

which still manage to commit. Contrastingly, our value prediction technique suc-

cessfully detects and removes 2.9% of all the faults, resulting in 3.3% of the faults

to propagate outside the pipeline.

Figure 5.14 and Figure 5.15 show for issue queue and physical register file,

the breakdown of all the faults regarding their effect on program execution. Both
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Figure 5.15: Breakdown of fault injections on physical register file by applying our
selective value prediction technique. The minimum latency threshold for prediction
is 5 cycles, measured from fetch to issue stage. Confidence threshold used for each
prediction varies (high, medium or low threshold) according to the instruction’s la-
tency. On value misprediction, all the instructions in the pipeline are flushed and
then re-fetch and re-execute. Categories include faults that have no architectural
impact (“non-effective”), faults that cause program to crash or deadlock (‘fatal”),
faults that are removed during pipeline flushes before faulty instructions commit
(“flushed”), faults that occur on registers while the most recent instructions updat-
ing the registers have committed (“committed, can’t recover”), and faults that are
not detected by value predictor before faulty instructions commit (“undetected”).

the graphs are formatted similar to Figure 5.13, except that for physical register

file, when faults occur on one register, it is possible the latest instruction which

updates the corrupted register has committed, thus recovery–i.e., flushing pipeline

in our experiments–will not be able to restore processor state, thus we categorize

such cases as “committed, can’t recover”. Comparing with the average results on

fetch buffer which is shown in Figure 5.13, looking at program execution without

value prediction, for issue queue and physical register file, respectively, on average
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about 89.3% and 78.2% of all the faults occur on bits that have no impact on

program execution, and about 2.8% and 0.2% of all the faults cause program crash

or deadlock before the corrupted instructions commit, resulting in about 7.9% and

7.1% of the fault corruptions to propagate outside the pipeline (the “undetected”

categorty)–about 14.5% of the fault corruptions on physical register file belong to

“committed, can’t recover” category. Once value prediction is enabled, about 2.9%

and 2.4% of all the faults for issue queue and physical register file, respectively are

now cleared off the pipeline by our technique (the “flushed” category), resulting in

the portion of committed faults (labeled as “undetected”) to be reduced to 3.7% for

both issue queue and physical register file.

Figure 5.16 shows the overall MTTF which reflects the portion of faults that

have impacted some instructions’ computation while the corrupted instructions have

still committed. In Figure 5.16, results on each hardware structure are reported

separately. For each hardware structure, there are two groups of bars, representing

original program run and program runs with value prediction. The MTTF results

are reported as normalized to the original execution. From Figure 5.16, we see that

relative to original execution, our value prediction technique improves the average

MTTF across all the benchmarks to 6.23, 1.92 and 1.96 for fetch buffer, issue queue

and physical register file, respectively.
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Figure 5.16: Average MTTF over 9 benchmarks in fetch buffer, issue queue and
physical register file by applying our selective value prediction technique. The mini-
mum latency threshold for prediction is 5 cycles, measured from fetch to issue stage.
Confidence threshold used for each prediction varies (high, medium or low threshold)
according to the instruction’s latency. On value misprediction, all the instructions
in the pipeline are flushed and then re-fetch and re-execute.

5.2.6 Discussion about Fault Injection and AVF Computation

As we have discussed, as two main methods in estimating system reliability.

either fault injection or AVF computation has its own advantages and disadvantages.

AVF computation is fast–it only requires one simulation run to obtain the reliability

estimation of a processor design, but its results are conservative and can only provide

a lower bound on the system reliability. Contrastingly, fault injection experiments

can actually track fault propagation, and thus, provide an accurate estimation of

the system reliability. However, it also requires a large number of samples, which

usually means huge amount of computer time in order to get statistically accurate
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Figure 5.17: Fault coverage estimation for fetch buffer by fault injection experiments
and AVF computation.

results.

Wang et al [38] analyzed and compared both methods. In our study, we have

also employed both methods to estimate reliability impacts by ours or other fault

detection technique. It is interesting to compare their experimental results.

Figure 5.17 reports for each benchmark, the fault coverage on fetch buffer esti-

mated by fault injection experiments or AVF computation. To compute a hardware

structure’s fault coverage, given our fault injection results, we use the sum of the

portions of “non-effective”, “fatal” and “flushed” in Figure 5.13, Figure 5.14 and

Figure 5.15; with AVF computation, we refer a hardware structure is invulnerable–

covered from faults–at the probability of 1 minus AVF. In Figure 5.17, results on

each benchmark are represented with one group of bars, while the last group is

the average across all the benchmarks. In each group, the bars labeled “FI-orig”
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Figure 5.18: Fault coverage estimation for issue queue by fault injection experiments
and AVF computation.

and “AVF-orig” exhibit the fault coverage results on original program execution

by fault injection experiments and AVF computation, respectively, while the bars

labeled “FI-dpred” and “AVF-dpred” exhibit the results on program execution with

value prediction by fault injection or AVF computation. Figure 5.17 shows that

generally, fault coverage estimated by the fault injection experiments is higher than

AVF computation: on average, for original program execution and execution with

value prediction, fault injection estimates about 79.0% and 97.0%, while AVF com-

puation estimates about 76.6% and 96.9%, respectively. Hence, AVF computation is

2.4% and 0.2% more conservative than using fault injections for program execution

without and with value prediction, respectively.

Similarly, we report the fault coverage estimation on issue queue (Figure 5.18).

Figure 5.18 shows that AVF computation results in even more conservative fault
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coverage than fault injection experiments: on average, using fault injections results

in 92.0% and 96.2%, while AVF computation results in 75.2% and 90.7% of faults

to be covered for original program execution and execution with value prediction,

respectively. Hence, for issue queue, AVF computation is 16.8% and 5.5% more

conservative than fault injection campaign for program execution without and with

value prediction, respectively. The bigger difference of fault coverage results on issue

queue between fault injection and AVF computation is mainly due to the fact that

AVF computation is hard to analyze within one simulation pass for every bit in a

hardware entry, whether its corruption affects program execution or not; while the

method of fault injection actually introduces fault into processor state and tracks

fault propagation. Such disadvantage, exhibited as conservatism of estimated fault

coverage, is more exposed on issue queue than fetch buffer. For issue queue, its

entry contains more bits that are possible not to be used or affect instruction’s

computation–e.g., it has one separate 26-bit immediate specifier, while for fetch

buffer, the immediate data co-exists with other register tags.

5.3 Comparison with Fault Screening and Flush-on-L2-miss Tech-

niques

This section compares our technique with fault screening, as well as the tech-

nique of flushing on L2 misses to reduce soft-error rate. Fault screening is proposed

by Racunas et al [12], while flushing on L2 misses is proposed by Weaver et al [37].

To the best of our knowledge, fault screening is one of the most related work to
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our study in exploiting program’s inherent redundancy for fault tolerance. The

technique of flushing on L2 misses is similar to ours in that both explore the se-

lectivity on instruction vulnerability. In this section, Section 5.3.1 first summarizes

their techniques and discusses the main difference from ours. Then, Section 5.3.2

compares performance cost of the three techniques, and Section 5.3.3 compares re-

liability gain using fault injection experiments. Lastly, Section 5.3.4 analyzes the

sources of reliability gain.

5.3.1 Summary of Fault Screening and Flush-on-L2-miss Techniques

Racunas et al [12] proposed a technique called fault screening to detect value

perturbation and prevent possible faults. Their technique tries to identify valid

value space of an instruction’s output, which is done by recording its past values

as well as the value patterns. Future outputs that are not within the recorded

space are considered as potentially corrupted. Among various implementations pro-

posed in [12], the most practical one is called invariance-based screener. It works

by recording how the bit values of instruction results change throughout program

execution. Bits which keep the same values can be used to indicate future abnormal

events such as the occurring of soft errors. More specifically, in [12], the authors

keep track of bit invariance of memory instructions: a table with 1k bitmask entries

is created for store/load addresses, and another 512-entry table for data stored to

memory. Instruction address is used to index invariance table. Any change on the

bitmasks triggers pipeline flush to eliminate and recover from potential soft errors.
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The pipeline flush is achieved through branch recovery hardware. In addition, to

reduce the effect of destructive aliasing, the bitmask tables are reset regularly during

program execution.

It is very interesting to compare fault screener with our technique. The fault

screener “predicts” possible value space. It is easy to implement, and more impor-

tantly, the screener is able to make prediction on most instructions–usually for most

instructions, there always exist some bits that never change. However, its downside

comes from the same fact that on average it only predicts/protects a portion of bit

values, while unpredicted bits, which have changed values due to actual computa-

tion, are left for faults. On the contrary, our technique utilizes value prediction

to try to find out the exact values–including all the output bits–within the whole

data space. For an instruction output, all of its bits will be covered if the predictor

can make prediction–as a result, compared to fault screener, value prediction can

be more precise in capturing value discrepancy. Hence when detecting faults, if the

predicted value space by fault screener is much smaller than the whole data space,

it is very possible faults incur value perturbation and the screener catches them;

but value prediction technique can perform better than the screener if corrupted

values frequently fall outside the predicted space. Nevertheless, an advanced value

predictor usually involves more hardware, and its prediction rate can not compete

with bit-invariance screener either.

Weaver et al. [37] observed that the longer time an instruction spends in the

pipeline, the more it is exposed to sources of soft errors such as neutron and alpha

strikes, and hence, the more susceptible it becomes to faults. To reduce the time
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instructions sit in vulnerable storage structures, they proposed to selectively squash

instructions when long delays are encountered–more specifically, squash all the in-

structions following a load miss. Similar to their technique, our technique exploit

the fact that instructions are different on their contribution to system vulnerability–

we find a small portion of instructions account for a large fraction of system vul-

nerability. Furthermore, we quantify fault vulnerability at the instruction level,

and only apply value prediction to those instructions that are most susceptible to

faults–we evaluate an instruction’s vulnerability by its latency from fetch to issue

stage–and trigger recovery on mispredictions. Therefore, our technique covers more

long-latency instructions than load misses, and hence, better improves system reli-

ability with small additional performance degradation.

In addition, all the three techniques do not guarantee failure-free–it is hard for

them to detect or remove all possible faults. Even worse, both our technique and

fault screener may claim faults that do not exist (“false positive”): i.e., for value

prediction, every misprediction presents a false positive; for fault screening, every

natural bit-variation presents a false positive. For Weaver’s technique, it triggers

pipeline flush on L2 cachemiss no matter whether faults have actually occurred or

not. Thus, program performance is degraded when recovery is not necessary, which

is another important issue besides reliability impact. But as we have discussed pre-

viously, because we selectively predict instructions that have long residence time

in pipeline, re-execution during recovery on misprediction usually completes faster

than the original run, which leads to shorter exposure time of re-executed instruc-

tions to faults and thus improves program reliability indirectly. Our experimental
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Figure 5.19: IPC (relative to original execution) on 9 spec2000 integer benchmarks
with either value prediction, bit-invariance screening, or flushing on L2 miss im-
plemented. On value or bit-invariance misprediction, the whole pipeline is flushed
and then re-fetch after a 3-cycle penalty. On L2 miss, all the instructions following
the load miss are squashed from the pipeline and they start to be re-fetch after the
cache miss is resolved.

results below also show the reliability benefits from recovery for both techniques.

5.3.2 Performance Impact

Before we evaluate how the three techniques detect and recover from faults,

we examine their impacts on program performance. We use the same detailed ar-

chitectural simulator described in Section 5.2. The simulator settings are also the

same as listed in Table 3.1. We set our value predictor so that it selectively predicts

instructions that stay equal to or more than 5 cycles in pipeline from fetch to issue

stage. As for confidence estimation, we adopt the set of latency threshold (5, 10,

20) to associate with the highest, medium, and lowest confidence threshold, sepa-
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rately (related analysis is discussed in Section 5.2.3). In addition, we implement

the bit-invariance screener as [12], using two tables to store value bitmasks, one for

store/load addresses, another for store data. Each bitmask table has 1K entries and

each entry is 32 bits long. The screener only makes predictions on store/load in-

structions. For better investigation, we also implement two other forms of screeners:

one has infinite table-entries and predicts not only store/load instructions, but also

other instructions that produce outputs; the other one has limited table size–1K

entries, and it predicts both memory instructions and all other result-computing

instructions. In our experiments, to be consistent with the configuration in [12], on

each value misprediction or change in invariance bits, the whole pipiline is flushed

and program starts to re-fetch and re-execute from the top of the flushed instruc-

tions. In the experiments, we assume a 3-cycle penalty from when a misprediction

is detected until the first re-fetched instruction can enter the pipeline. To imple-

ment the flush-on-L2-miss technique, we mark a load instruction if it incurs L2 miss

once executed; the flag of each load instruction is checked in each processor cycle–

checking starts from the oldest load in the pipeline–and if a flag set is detected, all

the subsequent instructions after the load instruction are flushed from the pipeline;

the flushed instructions will start to be re-fetched after the cachemiss is resolved.

Figure 5.19 reports for the benchmarks listed in Table 5.2, the average IPC of

their basic runs and those with value prediction, bit-invariance screening, or flushing

on L2 miss. In Figure 5.19, each group of bars represents experiments on one bench-

mark, while the last group represents the geometric mean across all the benchmarks.

In each group, the bar labeled “original” represents IPC of the original execution;
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the bar labeled “dpred-sel5” indicates the IPC of execution with value prediction;

the other 3 bars are for experiments with bit-invariance screeners: the bar labeled

“ipred-perfect” reports IPC of execution with infinite-table-size screener; the bar

labeled “ipred1K-all” reports IPC of execution with 1K-entry-table screener–again,

experiments on both “ipred-perfect” and “ipred1K-all” predict memory instructions

and all other result-computing instructions; the next bar labeled “ipred1K-mem” is

for execution with 1K-entry-table screener and only predicts memory instructions,

as implemented in [12]; at last, the bar labeled “flushL2” exhibits IPC of execution

which flushes the pipeline on L2 miss. All the results in each group of bars are nor-

malized by the corresponding IPC of original run (hence the bars labeled “original”

are always 1).

The results show that program execution with value prediction runs the slowest–

on average, our technique degrades program performance by about 12.6%, while

fault screening technique results in much less performance cost: screening with infi-

nite table has about 0.1%, screening with 1K-entry table and predicting all memory

and other output-computing instructions has about 1.7%, screening with 1K-table

and only predicting memory instructions has about 1.5% degradation. For execution

in which L2 misses trigger pipeline flushes, the performance is degraded by 7.4%.

The bigger performance degradation of our technique is mainly due to the larger

number of pipeline flushes caused by value mispredictions.
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5.3.3 Fault Injection Results

As for reliability evaluation, unfortunately, it is hard to compute AVF for

execution with bit-invariance screening. This is because the screener only covers a

portion of output bits, which cannot indicate the correctness status of other bits

in processor such as control bits. Hence in our study, we implement fault injection

experiments to capture the techniques’ capability on fault detection.

In addition, [12] used a functional simulator to inject faults–faults are ran-

domly injected to all instructions’ output bits, then those that are caught by the

screener are recorded. We claim functional simulator is too simple for accurate fault

injection experiment. For example, as we have discussed before, the longer an in-

struction stays in processor, the more chances it is exposed to faults. Functional

simulation does not incorporate such timing effect. Hence we conduct fault injection

experiments on the detailed architectural simulator as used in Section 5.3.2. Fur-

thermore, we follow the same fault injection methodology as in Section 5.2.5, and

study reliability impact on the three hardware structures: the physical register file,

the fetch queue, and IQ.

Similar to the fault injection experiments in Section 5.2.5, for all the injected

faults, if they corrupt valid processor state, we track their propagation until faulty

instructions have been flushed or commit, or program crashes. Figure 5.20 break-

downs all the faults on the three hardware structures–fetch buffer, IQ and physical

register file–by their effects on program execution. For each benchmark, we report

fault injection results from 6 program runs on each of the three hardware structures–
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Figure 5.20: Breakdown of fault outcomes on fetch buffer, issue queue and physical
register file by applying value prediction, fault screening or flush-on-L2-miss tech-
niques. Categories include faults that have no architectural impact (“non-effective”),
faults that cause program to crash or deadlock (‘fatal”), faults that are removed dur-
ing pipeline flushes before faulty instructions commit (“flushed”), faults that occur
on physical register file but the latest instruction which updates the corrupted reg-
ister has committed (‘committed, can’t recover”), and faults that are not detected
by value predictor or bit-invariance screener before faulty instructions commit (“un-
detected”).

represented with a group of 6 bars, respectively: original program execution, pro-

gram execution with value prediction, program execution with fault screening that

has infinite table and predicts memory instructions as well as other instructions

producing outputs, program runs with fault screening that has 1K-entry table and

also predicts both memory and other result-computing instructions, program runs

with fault screening that has 1K-entry table and only predicts memory instructions,

and program execution with flush-on-L2-miss technique. Similar to Figure 5.15,

each bar contains five categories, labeled “non-effective”, “fatal”, “flushed”, “com-
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mitted, can’t recover” and “undetected”, respectively. Each category represents the

same class of fault injections as in Figure 5.15. From Figure 5.20, we see that fault

detection techniques successfully remove some number of faults from the pipeline:

for the three structures–fetch buffer, IQ and physical register file, value predic-

tion technique detects and removes 3.3%, 2.9% and 2.4%, respectively of all the

faults; fault screening with infinite table and predicting both memory and all other

result-producing instructions removes about 5.8%, 1.0% and 1.4%, respectively; fault

screening with 1K-entry table and predicting all memory and output-producing in-

structions removes about 5.4%, 1.2% and 1.2%, respectively; fault screening with

1K-entry table and only predicting memory instructions removes 4.2%, 1.2% and

0.7%; while flush-on-L2-miss technique removes about 0.2%, 0.1% and 0.1%, respec-

tively. As a result, in execution with fault detection techniques, less percentage of

faults can propagate out of the pipeline: for fetch buffer, IQ and physical register

file, the “undetected” portion is 19.3%, 7.9% and 7.0%, respectively for original

run; 2.9%, 3.7% and 3.7%, respectively for execution with value prediction; 13.4%,

6.9% and 5.6%, respectively for execution with fault screening which has infinite

table and predicts both memory and all other result-producing instructions; 13.2%,

6.8% and 5.9%, respectively for execution with fault screening which has 1K-entry

table and predicts all memory and output-producing instructions; 14.5%, 6.8% and

6.2%, respectively for execution with fault screening which has 1K-entry table and

only predicts memory instructions; 7.9%, 5.0% and 5.1%, respectively for execution

with flush-on-L2-miss technique. In addition, for all the faults on physical register

file, considering the part of the fault injections that occur on registers for which
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Figure 5.21: Average MTTF over 9 benchmarks in fetch buffer, issue queue and
physical register file by applying value prediction, fault screening, or flush-on-L2-
miss techniques.

the latest instructions that have updated the corrupted registers have committed,

the portion of faults that cannot be recovered by the fault detection techniques is

now 21.6%, 18.9%, 20.9%, 20.5%, 21.6% and 20.3% for original execution, execution

with value prediction, fault screening with infinite or 1K-entry table and predict-

ing both memory and all other result-producing instructions, fault screening with

1K-entry table and only predicting memory instructions, and execution with flush-

on-L2-miss technique, respectively. In all, our value prediction technique removes

the largest percentage of the injected faults, and hence results in the fewest faults

that propagate outside the pipeline.

With the faults’ breakdown shown in Figure 5.20, we report the current

MTTF–the percentage of faults that impact program execution but cannot be suc-
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cessfully detected and removed from pipeline by fault detection techniques–in Fig-

ure 5.21. In Figure 5.21, results on each hardware structure are reported separately.

For each hardware structure, there are six groups of bars, representing six differ-

ent program execution including original program run, and program execution with

either value prediction, fault screening or flush-on-L2-miss technique as we have

mentioned. For each type of program execution, there are two bars representing

average MTTF results across all the benchmarks of MTTF–MTTF results are nor-

malized to the original execution. Figure 5.21 shows that value prediction performs

the best in improving program reliability: for fetch buffer, IQ and physical register

file, value prediction improves their MTTF by about 6.23, 1.92 and 1.96, respec-

tively compared to the original execution; fault screening with infinite and predicting

both memory and all other result-producing instructions improves by about 1.48,

1.11 and 1.28, respectively; fault screening with 1K-entry table and predicting both

memory and all other result-producing instructions improves by about 1.37, 1.11 and

1.18, respectively; fault screening with 1K-entry table and only predicting memory

instructions improves by about 1.31, 1.10 and 1.13, respectively; flush-on-L2-miss

technique improves by 2.03, 1.46 and 1.37, respectively.

5.3.4 Fault Detection Analysis

Although bit-invariance screener may make prediction on more instructions

than value predictor, the latter performs better in our fault injection experiments.

This is due to various reasons. For example, instructions computing with immedi-
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ate values usually have more variance bits in their outputs–in other words, those

instructions have bigger value space to be predicted by bit-invariance screener, which

makes it harder for the screener to detect faults. Moreover, for fetch buffer and is-

sue queue, their immediate fields constitute big portions of each entry, thus appear

more vulnerable to faults. Compared to bit-invariance screener, value predictor per-

forms more sensitively: any difference between prediction and computation results

is considered as symptom of potential fault.

Another big source of fault detection by value prediction comes from the fact

that value predictor has lower prediction rate than bit-invariance predictor–faults

can be removed from pipeline by flushes caused by natural mispredictions. Although

such mispredictions also degrade program performance, the performance loss can be

justified by the reliability benefit because our technique selectively targets on long-

latency instructions.

Compared to flush-on-L2-miss technique, value prediction performs better be-

cause it covers more long-latency instructions than load misses. Prediction or flush-

ing on those vulnerable instructions improves system reliability while incurring small

additional performance degradation.
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Chapter 6

Related Work

This work is related to the following categories of research.

6.1 Soft Computation

Several researchers have studied soft computations. Breuer [39, 40] recog-

nized multimedia workloads can tolerate errors, and proposed exploiting this error

resilience to address manufacturing defects. Our definition of application-level cor-

rectness is similar to Breuer’s notion of “error tolerance” (ET) [39], which allows

chips that produce numerically incorrect results to be usable as long as their results

are acceptable to the users. The main difference is that Breuer exploited ET to

tolerate hardware defects for higher chip yield, whereas we identify application-level

correctness as one level of redundancy inherent to applications, and exploit it to

tolerate transient faults assuming all the hardware is functionally correct. Another

difference is that we further quantify the notion of “degree of acceptability” with

appropriate fidelity metrics and fault injection experiments to directly measure user

satisfaction.

Other soft computing research includes [41] by Liu et al in which they observed

certain image processing and tracking algorithms can be inexact. They exploited

this fact to improve task schedulability in real-time systems. Palem [42, 43] studied

110



probabilistic algorithms to build randomized circuits that are extremely energy ef-

ficient. Finally, Alvarez and Valero [44, 45] found that multimedia applications are

resilient to precision loss. They developed novel value reuse techniques for floating

point operations so that energy consumption is reduced greatly. In addition, Wang

et al. [19] identified some outcome-tolerant branches–called “Y branches”. They

presented the performance speedup by removing mispredictions on those branches.

Compared to all the previous studies, we exploit soft computations for enhancing

program reliability.

6.2 Fault Susceptibility Characterization

In characterizing soft error susceptibility, there are a great number of prior

studies to which our work is related. Among them, the most related are researches

which used detailed CPU models and measured the effects of soft errors by injecting

faults into their models. For example, Saggese et al [46] injected faults into a

DLX-like embedded processor; Wang et al. [47] injected faults into a CPU similar

to the Alpha 21264 or AMD Athlon; Kim and Somani [48] injected faults into

Sun’s picoJava-II; and Czeck and Siewiorek [49] injected faults into an IBM RT PC

processor. All of these fault susceptibility studies used gate- or RTL-level models,

and injected faults into the entire CPU. In contrast, our study uses a detailed

architecture model, and focuses fault injections on important hardware structures

such as physical register file, fetch queue, and issue queue.

Another main difference between our work and all previous studies on soft
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error susceptibility is the definition of correctness used to evaluate the effects of soft

errors. Previous work requires architectural state to be numerically exact for pro-

gram execution to be correct; in contrast, our work only requires program outputs to

be acceptable to the user. By evaluating correctness at a higher level of abstraction,

we measure the additional portion of soft errors that can lead to acceptable pro-

gram outputs. In addition, such notion of application-level correctness depends on

the characteristics of different applications, and thus needs specific fidelity metrics

for evaluation. It is also user-dependent for determining the amount of acceptable

errors in answer quality. All these distinguish our study from previous approaches.

6.3 Analysis of Fault-Tolerance Sources

Another related area to our work is in analyzing sources of fault-tolerance.

Previous research has noticed that not all faults result in visible effects. Shiv-

akumar et al [50] studied masking at the circuit level. They developed an elec-

trical and latching-window masking model, and predicted the impact of these cir-

cuit effects on soft error rates. Kim et al [51] studied logical masking. They pro-

pose “Susceptibility Tables” for logic gates that model the probability a soft error

will propagate through a combinational logic block. Mukherjee et al [18] identi-

fied microarchitecture-level masking (mispeculated instructions, predictor structure

bits, and microarchitecturally idle bits) as well as architecture-level masking (NOP

instructions, performance-enhancing instructions, dynamically dead code, and logi-

cally masked instructions). Wang et al [19] observed that certain conditional branch
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outcomes can be wrong without affecting program correctness (“Y branches”), which

is another form of architecture-level masking.

Our work differs mainly in that we take algorithm-level resilience into consid-

eration, such as the existence of multiple valid outputs and user-level interpretation.

We also explore algorithmic properties, such as redundancy, adaptivity, and reduced

precision, which greatly enhance program’s capability to tolerate errors. Such re-

silience exploration is helpful for both architecture- and compiler- design.

6.4 Fault-Tolerance Techniques

Traditional techniques like Error Correcting Code (ECC) and parity bits have

been widely adopted to protect various hardware structures, especially memory

units. However, these techniques are too costly and thus impractical to implement

on all logic units. Currently, researchers focus on developing new fault-tolerance

techniques to achieve effective fault detection/recovery, or improve system fault

susceptibility.

6.4.1 Fault Detection

To detect or recover from faults, designers typically introduce or utilize explicit

redundant execution in hardware. Faults are detected by comparing results from two

copies of program execution. For example, Horst et al [3] used one separate proces-

sor, while Austin [52] used an additional in-order processor, to recompute and verify

the computation results of the main out-of-order processor. To exploit the exist-
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ing architecture redundancy, Rotenberg [53] suggested simultaneous multithreading

(SMT) platform, while Sundaramoorthy and Purser [54] used chip multi-processor

(CMP) to execute the additional copy of program. Ray et al [6] proposed another

mechanism which relies on register renaming hardware to temporarily split instruc-

tion stream into multiple threads, and then verify their results.

To avoid expensive hardware cost, compiler-based approaches duplicate in-

structions on the software side, such as EDDI proposed by Oh et al [9] and SWIFT

by Reis et al [10]. To reduce the performance cost, Reinhardt and Mukherjee [5] pro-

posed an improved SMT-based approach which only checks instructions whose side-

effects exit the processor core. Reis et al [23] proposed to combine both hardware

and compiler based approaches for better tradeoff between reliability and hardware

cost.

Despite different implementation details, for both hardware and software ap-

proaches, extra redundancy is explicitly created–or existing redundancy is exerted

in addition to original program execution, which usually involves expensive perfor-

mance or hardware cost. In our work, we exploit program’s inherent redundancy

such as value predictability for redundant execution. By exploiting such inherent

redundancy, our technique achieves remarkable reliability improvement with much

small performance degradation.

Regarding to exploiting program inherent redundancy, one of the most related

work to ours is [12]. As described in Section 5.3.1, Racunas et al made use of

value perturbation to detect possible faults. Their technique tries to identify valid

value space of an instruction, which is done by keeping track of past results of that
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instruction. Future output that is not within the recorded value (pattern) space

is considered as potentially corrupted. Compared to their technique, we exploit

value predictability to enhance program reliability. The main difference between

value perturbation and value prediction is that value prediction tries to predict

an instruction’s result exactly. Output that is not equal to the predicted value is

considered as potentially corrupted. Although detecting value perturbation seems

easier, value prediction can be more precise in finding discrepancy. For example, an

instruction’s past value space can be so big that corrupted values by faults may still

fall in valid value space, and thus can’t be detected by value perturbation technique.

Our experiments in Section 5.3.3 compare the reliability impacts of both techniques,

and the results show the effectiveness of our technique.

6.4.2 Fault Recovery

Fault recovery is usually implemented as a complement to fault detection since

to recover from faults, they have to be detected first. Thus, although the perfor-

mance impact of fault recovery techniques is not crucial considering the fact that

they are incurred very infrequently, researchers still work hard to develop efficient

mechanisms. For example, Active-stream/Redundant-stream Simultaneous Multi-

threading (AR-SMT) proposed by Rotenberg [53], can achieve recovery since the

committed state of the redundant stream can be used as a checkpoint. Vijaykumar

et al [32] extended their SRT(Simultaneously and Redundantly Threaded) technique

for fault detection with recovery scheme. Their modifications included buffering in-
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structions from committing until the instructions’ outputs have been verified, plus

methods to avoid stalling instructions at commit while waiting for verification. Sim-

ilarly, Gomma et al [55] proposed hardware-assisted fault recovery for CMPs on the

basis of their Chip-level Redundantly Threaded (CRT) technique for transient-fault

detection. Compared to their techniques, our checkpoint recovery mechanism is ad-

vantageous as we only save part of program state thus performance cost incurred is

very small.

Our recovery mechanism also relates to the vast research area on checkpointing.

Checkpointing is widely used in systems such as parallel & distributed computing.

For example, Chandy and Lamport [56] proposed a global snapshot algorithm for

distributed systems, which is widely adopted and extended to minimize the over-

heads of coordination and context saving by a large number of studies, such as the

work by Kim and Park [57]. Ahmed et al [58] proposed to checkpoint process con-

text and global state based on visible cache line modifications for shared-memory

systems. Compared to their approaches, we focus on only checkpointing necessary

state for application-level correctness in uniprocessor systems. Thus our checkpoint

is very cheap but still effective–our lightweight recovery technique can allow a large

number of faults to be successfully recovered while our soft-checkpointing technique

can recover most of them.
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6.4.3 Reducing Fault Susceptibility

Besides designing more efficient techniques to detect and recover from faults,

researchers have also realized that reducing, but not eliminating, soft-error rate to

achieve less performance degradation is more desirable in some cases. For example,

many systems, such as commodity computers, do not need full or perfect coverage.

Based on this observation, Weaver et al [37] proposed techniques to reduce error

rate by either squashing instructions when long delays are encountered, or delaying

to signal faults until the corresponding instructions are determined not to be dy-

namically dead code. Gomma and Vijaykumar [59] adopted similar approach but on

an SMT platform, which only triggers redundant thread for fault detection during

low-ILP and L2 cache misses. They also proposed to detect faults during high-ILP

by instruction reuse.

Although their techniques are effective in reducing system vulnerability to

faults to some extent, the way they determine when to enable fault protection is

only by monitoring program performance. On the contrary, our checkpointing mech-

anism discounts computations that are inherently resilient to errors, while our fault

detection technique exploits value predictability for redundant execution and takes

value misprediction as symptom of potential faults, thus have much less overhead

on both hardware and performance.

In addition, our technique considers fault vulnerability at the instruction level,

which is absent from most existing techniques. By quantifying instruction’s vulner-

ability, we selectively protect instructions that are most susceptible to faults, thus
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reduce mispredictions and the related recovery cost, while still maintaining accept-

able reliability budget.

6.5 Symptom of Potential Faults

Wang et al [11] proposed the concept of fault symptom–hint at the presence

of soft errors. They exploited symptoms–such as branch misprediction and cache

misses–to trigger fault recovery mechanism. Similarly, Racunas et al made use of

value perturbation to prevent possible faults. Perturbation from the recorded value

space of an instruction is viewed as caused by soft errors, thus triggers correspond-

ing recovery mechanism. Similar to their work, we consider value misprediction as

implication of potential faults, and take recovery action–such as flushing pipeline

in our experiments–to try to remove and recover from faults. The main difference

between their work and ours is that we view value predictability as inherent redun-

dancy for comparing computational results. We also characterize fault vulnerability

at the instruction level, and propose selective prediction to reduce mispredictions

and the subsequent performance cost.
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Chapter 7

Conclusions

In this chapter, we first summarize the whole dissertation (Section 7.1), then

we enumerate our contributions to fault tolerance research (Section 7.2), and lastly,

we propose possible directions for future study (Section 7.3).

7.1 Summary and Conclusion

This work exploits program’s inherent redundancy for enhancing fault toler-

ance. First, we investigate additional fault resilience at the application level. We

explore definitions of program correctness that view correctness from the applica-

tion’s standpoint rather than the architecture’s standpoint. Traditionally, correct

program’s execution requires architectural state to be numerically perfect. However,

in many cases, even if program execution is not 100% numerically correct, it may

be completely acceptable if the answers can satisfy the user’s requirement. Hence,

faults which have caused such numerically faulty execution are no longer intolerable–

programs appear to be more tolerant at the user(i.e., application) level. We conduct

fault injection experiments and measure the additional fault tolerance at the appli-

cation level compared to the traditional architecture level. Our results show for soft

computations, about 45.8% of fault injections that lead to architecturally incorrect

execution are correct under application-level correctness. We also exploit the re-
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laxed requirements of application-level correctness to reduce checkpoint cost: our

lightweight recovery mechanism checkpoints a minimal set of program state, but

can successfully recovers a major part of program crashes in soft computations; our

soft-checkpointing technique identify computations that are resilient to errors and

excludes their outputs from checkpoint, thus can successfully recovers almost all of

program crashes in soft computations.

We also investigate another form of redundancy inherent in program–value pre-

dictability. We take value prediction as additional program execution and compare

with actual computation results–misprediction is considered as symptom of poten-

tial faults. To reduce misprediction rate caused by limitations of predictor itself, we

characterize fault vulnerability at the instruction level and only apply value predic-

tion to instructions that are highly susceptible to faults. We also vary threshold of

confidence estimator according to instruction’s vulnerability–instructions with high

vulnerability are assigned with low confidence threshold, while instructions with low

vulnerability are assigned with high confidence threshold. Our results show large

reliability gain with very small performance degradation of our selective prediction

mechanism.

7.2 Contributions

This dissertation makes the following contributions within the context of ex-

ploiting program’s inherent redundancy to enhance fault tolerance.

I. Traditional fault tolerance studies adopt strict correctness definitions and re-
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quire perfect numerical integrity of program execution. Such strict require-

ments ignore the flexibility to numerical values from user’s point of view, thus

cause overdesign of systems. Our work explores the numerical redundancy at

the application level–i.e., the existence of multiple numerical outputs which

can all be accepted by users. Such redundancy provides additional fault tol-

erance: faults that cause program to produce numerically different but ac-

ceptable outputs are also tolerable to users. We implement fault injection

experiments on a detailed architectural processor model, and measure the ad-

ditional fault tolerance at the application level, compared to the traditional

architectural level.

II. In our study of application-level fault tolerance, we mainly examine soft com-

putations including multimedia and AI. These areas have been rapidly devel-

oping and widely applied to our modern society. Our analysis shows there are

various sources of redundancy originated in the applications’ own characteris-

tics. Such algorithmic exploration helps understand the behavior of programs

in face of faults, and exposes more chances for cost-effective system design.

III. We implement new fault recovery techniques by exploiting the additional re-

dundancy at the application level. One technique we propose is lightweight

fault recovery which only checkpoints a minimal set of program state–program

counter, architectural register file, and stack. Another technique first identifies

computations that are resilient to errors, and then excludes state that store

their outputs from checkpointing. Such checkpointing mechanisms try to only
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save necessary state for fault recovery, and mainly rely on programs them-

selves to absorb fault corruption and still generate acceptable outputs. Thus

the cost is much smaller than the traditional full checkpointing mechanisms,

while our results show they are effective in fault recovery.

IV. In additional to studying application-level correctness, we study value pre-

dictability as another source of redundancy for fault tolerance enhancement.

We apply value prediction to check computational results and detect poten-

tial faults–we take value misprediction as symptom of fault occurring, and use

re-execution to try to remove faults from pipeline. By exploiting the inher-

ent redundancy in program–value predictability, we avoid expensive hardware

or performance cost by introducing redundant execution explicitly, which is

widely adopted by current fault tolerance research.

V. In order to reduce performance cost caused by additional fault recovery, we

characterize instruction’s vulnerability by computing the percentage of a hard-

ware structure’s average AVF that an instruction relates to. We find that a

small portion of instructions accounts for a major fraction of program vulner-

ability. Thus, by selectively protecting such a small portion of instructions

from fault corruption, the overall reliability can be greatly improved greatly

with relatively much less performance cost than full protection of all instruc-

tions. We also exploit such variation in instruction vulnerability to confidence

estimation of value prediction, and propose adaptive confidence threshold to

better trade off reliability gain and performance cost.
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7.3 Future Directions

In this dissertation, we show it is effective to reduce fault rate by exploiting

program’s inherent redundancy. We implement fault injection experiment and mea-

sure the additional fault tolerance provided by the relaxed correctness definition at

the application level. We also investigate the potential of utilizing value predictabil-

ity to check computational results and detect possible faults. We believe the ideas

presented in this work can be further studied.

I. In this dissertation, we study application-level correctness as well as the ad-

ditional fault tolerance it provides. We also implement cost-effective check-

pointing mechanisms in exploiting such numerical redundancy–i.e., multiple

numerical outputs can appear to be acceptable from user’s standpoint. There

exist more opportunities in this direction. For example, for fault detection, it

is not necessary to monitor the parts of program execution that are resilient to

errors since fault corruption on those parts can be absorbed by program itself

and acceptable outputs, although numerically different from fault-free execu-

tion, can still be produced. This can be achieved through either hardware (e.g.,

utilizing additional hardware thread or processor) or software (e.g., inserting

additional check code during compiler stage) approaches. Such mechanisms

can be more efficient and have less impact on program performance, compared

to protecting the whole program.

However, more practical ways of identifying fault-resilient computations or

program state have to be studied more carefully. In our soft-checkpoint exper-
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iment, we establish the set of soft state manually–first mark computations that

are resilient to errors, then track the state that store the corresponding output

values. This has to be transformed to more automatic methods. For example,

with some assistance from programmers, compilers may convert program code

and incorporate such knowledge about state softness.

In addition, the information on application-level fault tolerance can also be

applied to other fields such as compiler optimization. One key observation is

that the longer one instruction stays in the pipeline, the more vulnerable it

becomes [37]. On the other hand, our analysis shows that instructions which

process soft data, e.g., approximate data, are tolerant to faults. Therefore,

during program compilation, the compiler can transform code in a way that

instructions unrelated to soft data are optimized to stay the least amount of

time in the processor, while the remaining instructions can be scheduled less

efficiently. Moreover, because soft and non-soft data are often interleaved in

the memory, program can be scheduled so that instructions requesting memory

access for soft data are executed first and incur cache misses shortly, while the

following instructions for non-soft data will suffer little cache-miss penalty

since the shared memory blocks have been brought into cache. Thus, the

portion of execution time spent on fault-resilient computations is increased,

and program’s overall reliability is enhanced.

II. In our study, we characterize instruction’s vulnerability and find the major-

ity of program’s overall reliability relies on a small portion of executed in-
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structions. We exploit such observation in our experiments to reduce value

misprediction rate as well as the accompanying recovery cost. Such idea of

selective protection can be extended to other studies in which reliability and

performance cost can be traded by shifting more efforts to instructions that

are more susceptible to faults. For example, a redundant thread that is cre-

ated for checking computational results only needs to re-execute when program

proceeds slowly since that is the time instructions in pipeline are exposed to

faults for longer time and thus become more susceptible.

III. As we have discussed, flushing pipeline can possibly remove faults from prop-

agating to memory and becoming non-recoverable. Accompanied with the

reliability benefit is performance degradation by re-fetching and re-executing

instructions. However, if problems that cause program to run slowly–such as

cache misses or shortage of computation resources–have been resolved dur-

ing re-execution, program can then proceed faster than its original run, and

appear to be less vulnerable than without flushing. Thus it is possible perfor-

mance loss by flushing is made up with reliability gain, which can be perceived

by metrics that incorporating both reliability and performance such as MITF.

Therefore, it is interesting to explore more deeply the relations between flush-

ing and MITF benefit–i.e., identifying the set of instructions which can bring

the most MITF benefit if flushed.

Such study is also interleaved with our work on exploiting value predictability.

Predicting an instruction can benefit reliability without any performance loss,
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but has to pay other price such as power or more hardware for better prediction

accuracy. On the other hand, flushing an instruction may or may not benefit

the compromise between reliability and performance (i.e., MITF). Thus it will

be very useful to incorporate instruction’s predictability, together with the

impact on MITF by flushing, into the policy of selective protection.
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