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Sulfur, present in the environment in the form of sulfur dioxide and hydrogen sulfide,

can produce failure in electronics. In particular, copper, which is used extensively in

electronic products, is subject to corrosion in the presence of sulfur. This thesis

examines the corrosion of copper under the Flowers of Sulfur (FoS) test at varying

temperatures and durations. The FoS test setup, described in ASTM B809, was

initially designed to evaluate surface finish porosity, but this setup may have boarder

application. To expand the applicability of the FoS test, it is important to characterize

the test environment. To this end, a systematic study of copper corrosion was

conducted through weight gain measurements of copper coupons that were subjected

to FoS test environments. From the test results, a model was developed that correlates

copper sulfide thickness to temperature and time under the FoS test. This model can

be used to determine test conditions given a target field environment.
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Chapter 1: Introduction to Corrosion

1.1 Corrosion and Electronics

Corrosion can be defined as the “destructive attack of a metal by chemical reaction

with its environment” [1]. In a corrosion process, the pure metal is “destroyed”; it no

longer exists after it forms corrosion products. Mechanical methods of destruction,

such as abrasion, are not considered corrosion, as corrosion is a chemical process.

Corrosion is caused by the flow of electrons in metal [2]. This can occur from one

region of a metal to another region of that same metal or from one metal to another

metal. This flow occurs as the result of an electrolyte being present between two areas

with a potential between them. In cases where the electrolyte is water, anodic

dissolution is the governing corrosion process [3]. Metal dissolves as ions into the

water film formed on the metal surface, and then reacts with dissolved contaminants

to form corrosion products [4]. These corrosion products have different properties

than the base metal, which can lead to reliability concerns. An example of corrosion

on a copper coupon is seen in Figure 1.

Figure 1. Copper coupon before (A) and after (B) a corrosive
exposure
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Copper is commonly used in electronic systems due to superior mechanical,

electrical, and thermal properties [2]. It is soft and malleable, meaning that it is easily

machined. It also has excellent thermal and electrical conductivity. In electronics,

copper is used in applications where these superior electrical and thermal properties

are leveraged. It is used in printed circuit boards to create electrically conductive

paths between components mounted on the boards. Copper is also commonly used in

wires and connectors to create electrical connectivity. However, copper is susceptible

to atmospheric corrosion by sulfur-containing gases. Figure 2 provides an overview

of the formation of copper sulfide corrosion product.

Atmospheric corrosion is a concern for copper-containing electronics in a variety of

environments [1]. Industrial, marine, tropical, and urban environments may contain

pollutants and moisture that can attack exposed metal on electronics. Power plants,

petroleum refineries, iron-smelting facilities, mines, pulp-processing facilities, and

Figure 2. Copper corrosion in a sulfur-containing atmosphere
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sewage treatment plants all have corrosive environmental sulfur present in the field

environment.

The corrosivity of any given environment can be affected by several different

parameters in that environment [5]. The level of moisture found in an environment or

the amount of humidity can have a significant effect on the rate of corrosion [6].

Contaminant level also has an effect on the rate of corrosion in different

environments [7]. The presence of different contaminants can further complicate the

rate of corrosion in a given environment [8]. Humidity, temperature, and contaminant

level all contribute to the corrosivity of an environment.

1.2 Laboratory Corrosion Testing for Electronics

Laboratory corrosion testing for electronic products can serve several purposes.

Corrosion tests can be carried out as part of failure analysis to replicate failures in

order to identify failure sites and understand failure mechanisms. Corrosion tests can

be carried out to analyze a group of parts, either to screen out bad parts or to compare

different designs. These different uses for corrosion testing of electronics are

summarized in Figure 3.

Corrosion
Testing

Failure
Replication

Part
Analysis

Failure
Site

Failure
Mechanism

Lifetime
Testing

Pass/Fail
Screening

Figure 3. Applications for Laboratory Corrosion Testing
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Electronic parts and systems fail in the field due to corrosion [10]. Corrosion testing

of electronics is used to understand where, how, and why these failures occur.

Devices that fail in the field can end up being damaged in multiple places, making

failure analysis difficult. Laboratory testing allows for controlled exposure that is

used to create failures in similar parts. Traditional failure analysis is carried out on

laboratory-failed parts in order to identify weak points that can become failure sites

[31]. Analyzing laboratory-failed parts is useful in understanding corrosion failure

mechanisms .

Laboratory corrosion tests can also be used to examine parts during the research or

manufacturing steps of the product design process [11]. Depending on the

application, corrosion susceptibility can be a concern during the design of an

electronic part or system. During prototyping, several designs can be compared using

corrosion tests of varying severity. The severity of these tests can be correlated with

different lifetime conditions in the field. Depending on how well the different designs

are able to resist corrosion, they can be rated. Corrosion susceptibility then becomes

one of the design factors that can be used when selecting which design to use. This

applies not only to evaluating individual parts, but complete assemblies. If the

application environment is more well established, laboratory corrosion testing can be

used to screen parts [12]. Tests can be calibrated based on the purpose of the exposure

in order to create a pass or fail system.
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1.3 Corrosion Test Methods

Several laboratory test methods exist in order to perform corrosion testing. As

discussed above, these different test methods can have different uses based on the

goal of the test. The Mixed Flowing Gas (MFG), Flowers of Sulfur (FoS), and Clay

Test are all methods that have been used in the literature to generate corrosive test

environments. The following sections give a brief overview of these methods.

1.3.A. Mixed Flowing Gas Test Method

The Mixed Flowing Gas test method was developed to replicate corrosion

mechanisms observed in the field [7,10]. The test involves placing samples into a

fixed volume that has a heater to raise the air temperature and fans for circulation. A

mixture of corrosive gases (Hydrogen Sulfide, Sulfur Dioxide, Nitrogen Dioxide, and

Chlorine) is flown through the chamber in order to corrode the samples. A humid air

supply is used to add moisture into the MFG test environment. Sensors can be used to

monitor the chamber and adjust test parameters such as concentration, temperature,

and humidity. A schematic of the MFG is seen in the Figure 4 below. Figure 5 shows

samples placed into the MFG chamber used in the research carried out at CALCE.
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Figure 4. Schematic of the MFG Test

The MFG test has been widely used in corrosion testing of electronics [3,5,6,10,15-

21]. In most cases, the MFG is used as a lifetime test, where laboratory testing can be

correlated to field conditions. In some cases, the MFG can be used as part of a

pass/fail screening [31]. For these methods, the severity of the test must be fixed to a

specific condition known to accelerate the failure mechanism that the test is meant to

Figure 5. Samples in the MFG chamber at
CALCE
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be addressing. To achieve the goal of the MFG being a flexible test, several standards

have been created that can be used to correlated the severity of the test to different

field conditions.

Several different standards for running the MFG have been created, as seen in Table

1. The earliest MFG test conditions were created by William Abbott of Battelle Labs.

In the Battelle test conditions, 2 days in chamber is supposed to correlate to 1 year in

field [13]. The Battelle Environmental classification goes from least (Class I) to

most(Class IV) corrosive environment. As Class I is a mild test condition, no MFG

accelerated lab setup is given for that environment.

Electronic Industries Association (EIA) published their own set of MFG test

conditions in EIA-364-65. This document used the three Battelle classes, but also

provided modified versions for the class II and class III environments that included

the addition of Sulfur Dioxide to catalyze the corrosion process. The addition of the

sulfur dioxide changes the time correlation as 5 days in chamber is supposed to equal

3 years in field for the IIA and IIIA test conditions.

International Electro-technical Commission (IEC) also put out a set of standards to be

used to test metallic coatings and electronic products. IEC Test Method 1 can be used

as a corrosion test for gold plantings over reactive metals such as silver and copper.

IEC Test Methods 2 and 4 are for electronic products in moderate corrosive

environments, such as telecommunication centers and most office environments. IEC
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Test Method 3 is appropriate for more severe corrosive environments, such as

electronic products deployed in industrial environments.

Telcordia and IBM both have developed corrosion test methods that are not correlated

with specific accelerations, but are meant to be representative of application

environments with varying severity. The Telcordia method has test conditions for

indoor and outdoor telecommunication applications. IBM’s G1 test condition is

designed to replicate a generic business environment.

1.3.B. Flowers of Sulfur Test Method

The Flowers of Sulfur test(ASTM-B809) is a corrosion test method published by the

American Society for Testing and Materials (ASTM) to be used in pass/fail porosity

Table 1. Test Conditions for the MFG
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testing [22]. The test involves suspending test samples in a sealed glass chamber.

Elemental sulfur, the namesake Flowers of Sulfur, is placed inside the sealed chamber

underneath the samples. In addition to the sulfur source, a Potassium Nitrate salt

solution is placed in the chamber. This solution is a saturated salt solution in

deionized water. The entire chamber is placed into an oven which is heated to 50 °C.

As the oven heats up, the solid elemental sulfur releases sulfur vapor into the

chamber. As the salt solution is heated up, moisture is released into the chamber

volume. The salt solution is saturated, meaning that the chamber will reach a known

humidity for a fixed temperature. As described in the ASTM-B809 standard, the test

is run for a 24 hour period, after which the test samples are removed. A schematic of

the FoS test is seen in Figure 6 below, while Figure 7 shows an image of the setup.

Figure 6. Schematic of the Flowers of Sulfur Test
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1.3.C. Clay Test Method

Clay Testing is a corrosion test method that has been used to replicate field failures in

the laboratory [23]. The method involves placing samples in a sealed container

containing modeling clay. The modeling clay is moistened and heated in a microwave

before and periodically during the exposure. The warm, moist clay serves both as a

sulfur and humidity source. This setup can generate corrosion on printed circuit

boards [24]. There is not a standard for carrying out this test method and several

approaches have been documented in the literature [23,24]. A schematic of the clay

test is seen in Figure 8 and a picture of an actual test is seen in Figure 9 [24].

Figure 7. Picture of the ASTM-B809 FOS Test setup
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Clay

Samples

Sealed Container

Figure 8. Schematic for Clay Test

1.3.D. Comparison of Corrosion Test Methods

As mentioned previously, each of these methods has advantages and disadvantages. A

brief comparison of these corrosion test methods is in the table below. The MFG

allows for multiple sulfur sources and the inclusion of chlorine. Temperature and gas

concentration are independently controlled, and the fans in the chamber ensure that

Figure 9. Picture of a clay test carried out at CALCE
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air flows over the samples. However, the MFG is the most difficult of the three to

setup, as it requires specialized equipment and facilities, and requires periodic

monitoring while it ramps up and even when it is running. The FOS however is

simpler to setup and has the advantage of having pure elemental sulfur as the sulfur

source. Since the FOS is carried out in an oven, the temperature of the FOS can be

much higher than the other two test methods. Additional advantages to the FOS that

make it appealing as a corrosion test include a simple setup, and few consumables.

However, in the FOS there are no oxidation accelerants such as Nitrogen Dioxide.

There is also an inverse relationship between temperature and humidity that can end

up being a problem at very high temperatures (>90°C). The clay test method is the

easiest to setup, as it does not require a special chamber or even an oven. Clay is a

realistic sulfur source that can provide both moisture and sulfur. However the clay

test setup needs constant reheating and can only be carried out at a low temperature.

Table 2. Comparison of Methods
Method Advantages Disadvantages

MFG

- Multiple sulfur sources
- Independent conc./temperature
- Can have chlorine
- Forced convection

- Difficult to setup
- Requires monitoring

FOS
- High maximum temperature
- Pure elemental sulfur

- No oxidation accelerants
- Inverse Temperature/Humidity

Clay
- Simple setup
- Realistic sulfur source

- Constant reheating
- Low temperature
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1.4 Classification of Corrosive Environments

Corrosion of copper coupons in test environments is used to assess the severity of the

environment, either by comparison to environmental standards or field data [9].

Research has been done on classification of corrosive environments [10] and

standards exist for the use of copper coupons as witness samples for corrosive test

environments [14]. The relationship between copper film thickness and various

environmental factors is well documented in the literature [6].

Different classification schemes exist, based on different classification schemes. The

Battelle classification is based on correlating MFG exposures to corrosion levels in

the field [13]. The development of this method used cathodic reduction to determine

film thickness. Table 3 shows the Batelle classification for corrosive environments

based on corrosion film thickness of copper.

Table 3. Battelle corrosion classes for environment severity
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The International Society for Automation (ISA) created ISA Standard 71.04-1985 for

classification of corrosive environments when carrying out corrosion monitoring [25].

These classifications allows users to determine the corrosive potential of a particular

environment towards electronic equipment. The standard describes two different

methods of environmental characterization: concentration monitoring and reactivity

monitoring. Concentration monitoring is carried out by measuring the contaminants

in an environment, while reactivity monitoring is carried out by measuring the

thickness of the corrosion film formed on a sample of exposed copper using weight

gain measurements. The classes described in the ISA standard have also been adopted

by the American Society of Heating, Refrigerating and Air-Conditioning Engineers in

their guidelines for suitable data center environments [26]. The classes outlined in the

ISA standard are presented in Table 4.

Table 4. International Society for Automation (ISA) corrosion classes

International Society for Automation (ISA)

Severity Level 30 Day film thickness

G1 – Mild <30 nm

G2 – Moderate 30 to 100 nm

G3 - Harsh 100 to 200 nm

GX - Severe >200 nm
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Several methods exist for quantifying the thickness of the copper corrosion film.

Weight gain techniques rely on using a measurement of the weight change of

corroded samples to calculate the expected film thickness based on a known

relationship between weight gain and film thickness. In some methods, and in this

thesis, copper coupons are weighed before and after exposure and the change in

weight is used to calculate the corrosion film thickness. In other methods, quartz

crystal microbalances are used to measure the changing weight of a copper membrane

in real time. The change in weight is converted to a thickness estimate using

assumptions about composition and uniformity.

The major drawback of this method is that there are assumptions about the corrosion

film that go into the calculations that are known to be flawed. There is an assumption

in calculating the corrosion film thickness from weight gain that the corrosion product

is uniform over the entire exposed surface. As surface corrosion tends to occur more

frequently at imperfection in the metal surface, this is almost never the case. There is

also another assumption that the corrosion product is uniform for the entirety of the

corrosion film. Corrosion is a surface phenomenon and the composition of the

corrosion film can vary with depth.

Weight gain alone can be used as a corrosion metric. The major limitation is that the

samples must be a fixed geometry and that the preparation of different samples

should be easily reproducible. Reporting weight gain for fixed samples is more direct

than using the weight gain and a series of assumptions to calculate an estimated
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equivalent thickness. Another drawback that would need to be considered is that

weight gain alone requires a pre-exposure and post-exposure measurement. If

corrosion film thickness is used to classify an environment, one of the other methods

described later on can be used to calculate the thickness, but this is not the case with a

weight gain-based classification system. Nonetheless, as corrosion film thickness is

used in the literature to classify corrosive environments conversion from weight gain

to film thickness are made in this paper.

Another commonly used method for corrosion thickness measurement is cathodic

reduction. In this method, the reactions that form the corrosion process is reversed by

applying a bias in an ionic solution. After the corrosion product has been reversed, the

current drawn from the power source changes. The amount of charge used in this

reversal can be used to estimate the thickness of the corrosion layer. This method has

been demonstrated to underestimate corrosion film thickness. As the reduction is

carried out, areas with a thinner film have copper exposed faster. This is what

terminates the chemical reaction part of the process and thus may end up leaving

areas with corrosion product still available.

A final method used to measure copper coupon corrosion thickness is profiliometry.

In this technique an ion milling process is used to remove the corrosion film on a

select area of a corroded sample until the bare metal is exposed. Optical or contact

profiliometry can be used to measure the height of the corrosion film. While this is
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the most direct method to measure corrosion film, the time and financial costs of

carrying out ion milling make it unpopular.

Figure 10. Methods for measuring corrosion thickness

In this paper copper film thickness is calculated using the weight gain of copper

coupons placed into several different FOS environments. These measurements are

used to examine the relationship between test temperature, test duration, and film

thickness gain. A model is created for calculating expected copper film thickness,

which can be used in tandem with corrosion standards or field data to categorize the

severity of different FOS test environments.
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Chapter 2: Flowers of Sulfur Testing

2.1 Early History of Flowers of Sulfur (FOS) Testing

The Flowers of Sulfur Test method as described in this thesis refers specifically to the

Flowers of Sulfur Test Method [ASTM B809] created by the American Society for

Testing and Materials (ASTM) [22]. As stated in the standard, this test method was

designed to evaluate the porosity of metallic coatings. This test is not designed to

look at copper and silver films, but instead is used to evaluate how well films plated

over those metals protect copper and silver (sec. 1.2).

This test environment is different than the Mixed Flowing gas test environment in

that sulfur vapor is used as the corrosive sulfuric reactant (sec. 4.1). This is in contrast

to the MFG test, where sulfur-containing gases such as SO2 and H2S are used. The

standard states that the test is used to simulate humid indoor atmospheric tarnishing,

but acknowledges that the chemistry and the properties of corrosion films formed in

the test environment may not resemble corrosion products from the field (sec 4.3/sec

5.3). The test is designed to be used on samples of different geometries, and is

suitable for irregular surfaces (sec 5.7). However, ASTM makes it clear that the test is

intended to evaluate porosity, and cannot be used to evaluate product performance or

time to failure without additional information (sec 5.9).
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2.2 Use of the FOS for Corrosion Testing of Electronics

In the literature, the use of the FOS test has been expanding. Early work using the test

focused on porosity testing for surface finishes. This surface finish testing expanded

into using the test for evaluating conformal coatings used to protect surface finishes

[27, 28]. Flowers of Sulfur testing has gained considerable interest is the

identification of susceptibility of silver-containing chip resistors to failure due to the

formation of silver sulfide [29]. As seen in the figure below, chip resistors have an

inner electrode layer that is made of silver. This silver layer is susceptible to corrosive

attack in sulfur-containing environments. Either through cracking or separation of the

protective layers, sulfur in the atmosphere can reach the inner electrode and corrode it

away, causing resistor failure [30]. When the Mixed Flowing Gas (MFG) test failed

to produce corrosion on chip resistors, researchers began searching for alternative

accelerated corrosion tests that could prove suitable for replicating the failure

mechanism. The FOS has been successful in replicating this failure mechanism in

laboratory environments [31].

Figure 11. Chip resistor (Failure sites highlighted)
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2.3 Contemporary work with the FOS

As of the writing of this thesis several different groups have taken an interest in

adaptations of the ASTM FOS test method. International Electronics Manufacturing

Initiative (iNEMI) has been carrying out FOS tests in a modified chamber as seen in

Figure 12 [32,33]. In this setup, the samples are mounted to printed circuit boards that

are attached to a motor in the test vessel. The motor spins the boards with the samples

above containers with the salt solution and elemental sulfur.

In the iNEMI test vessel, the speed of the motor was varied as well as the salt solution

in order to change the corrosivity of the test environment. As the mean air velocity

was increased from zero to 1.3 m/s, the copper corrosion rate rose from 2000 to

12000 Å/day [31]. In this test setup, tests were carried out with Potassium Chloride

instead of the Potassium Nitrate used in the ASTM FOS Standard. Copper corrosion

rates were observed to be higher in the Potassium Nitrate FOS setup(~2000 Å/day

compared to 800 Å/day copper corrosion rate). This corrosion test is being developed

Figure 12. iNEMI Modified Flowers of Sulfur Setup
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as a screening method for printed circuit boards with surface finished that may have

flux residue that acts as a contaminant. The IPC 3-11g committee is working on a

screening method for chip resistors based on the ASTM FOS test setup. The

absorption of sulfur by printed circuit boards placed into the FOS is being examined

as a concern with the test.

2.4 Corrosion Modeling for the Flowers of Sulfur Test

Corrosion models usually represent the amount of corrosion, in this case the film

thickness as a function of environmental factors and a time term [3,5,8]. The

environmental factors can include a wide variety of different parameters, such as

temperature, humidity, sulfur concentration, and the concentrations of any other

oxidizing agents in the atmosphere [5]. This time term is usually a power function of

time, with the power ranging from .5 to 1 [8]. For diffusion-limited reactions, the

constant approaches .5 for longer time scales [3]. Equation 1 below shows corrosion

film thickness (Θ) [in nm] as a function of environmental factors (ε) and time (t).

Θ = f(ε)*tn [1]

Temperature, humidity, sulfur concentration and time are all environmental factors

that affect the amount of corrosion that occurs in the FOS test environment. For these

FOS tests, only temperature and time are independent parameters. Figure 13 shows

the factors expected to influence copper corrosion and the relationship of humidity

and sulfur to temperature.
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Figure 13. Factors contributing to corrosion in the FOS

If the only effect of increased temperature is driving the reaction of sulfur with the

copper, the increase in corrosion product would follow an exponential relationship

with temperature [16]. However, increasing the temperature of the FOS test vessel

decreases the relative humidity in an atmosphere controlled by a saturated salt

solution in a polynomial manner [17]. This was verified for the FOS vessel used in

this thesis by measuring humidity in a FOS test without sulfur. The results can be

seen in Figure 14. Figure 15 shows the data from this experiment plotted along with

data from the literature [17]. A second order exponential fit that passes through the

intercept at the value provided in the literature is shown.
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Figure 15. Humidity data fit with data from [17]
Further, higher temperatures cause a power law increase in the concentration of sulfur

vapor within the FOS test environment [18]. The linear relationship between

changing these two factors and the effect on corrosion is documented in the literature

for gas testing [6]. The literature also shows an expected power law relationship

between increasing test time in a controlled corrosive environment [3,5,8].

Figure 14. Humidity as a function of Temperature



24

Table 5. Relationships between Environmental Factors
Factor Temperature Relationship Corrosion Relationship
Temperature --- Exponential
Humidity 2nd order Polynomial Linear (RH>60%)
Sulfur Concentration Power Linear
Time --- Power Law
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Chapter 3: Experimental Setup

3.1 Test Samples

Copper coupons test samples were used in the Flowers of Sulfur Testing. Coupons

were made of Oxygen-Free High Conductivity Copper (OHFC). They were prepared

as described in ASTM B810 [9]. A .5 mm thick copper sheet was cut into 12.5 mm by

12.5 mm squares. A 2.5 mm diameter hole was cut into each coupon in order to hang

them. A schematic of a sample coupon can be seen in the figure below.

Figure 16. Copper coupon Schematic (Dimensions in mm)

Samples were cleaned prior to exposure in order to remove any surface oils,

particulates, or oxide build up. Cleaning method 2 in ASTM B810 was used [9]. As
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described in the method, coupons were cleaned by sequential rinses, with 10 second

drying periods in between. Coupons were first rinsed in n-Hexane for two minutes.

This was followed by a 15 second rinse in Alphametals Lonco Flux 3355-11. The

final steps in cleaning were two 15 second rinses in deionized water and a 15 second

rinse in methanol. After this cleaning, coupons were allowed to air dry for an hour

before being weighed. The table below summarizes the cleaning procedure.

Table 6. Cleaning steps for copper coupons
Step Fluid Duration (Seconds)

1 n-Hexane 120

2 Air 10

3 Flux 15

4 Air 10

5 Deionized Water 15

6 Air 10

7 Deionized Water 15

8 Air 10

9 Methanol 15

10 Air 60

Coupons were weighed before and after the Flowers of Sulfur exposure. Both before

and after the exposure the coupons were allowed to equilibrate for an hour as

described in the standard. Coupons were weighed three times each, with the reported

weight being an average of these three measurements. Weighing was done on a

microbalance with precision to a tenth of a milligram. Between each set of weight

measurements the microbalance was calibrated.
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3.2 Flowers of Sulfur Setup

Flower of Sulfur (FOS) Testing was carried out as described in ASTM B809-95 [22].

A 10 liter glass desiccator was used as outlined in the standard. A saturated potassium

nitrate [>99%, Fisher Scientific] salt solution (200 g KNO3 in 200 mL H2O) was

placed in the bottom of the test vessel. Sublimed sulfur [Fisher Scientific] was placed

into a 15 cm diameter petri dish that was on top of the salt solution. The samples for

each test were suspended over the sulfur source in the center of the desiccator. Tests

were carried out by placing the test vessel in an oven [AH-205, BMA] until the

temperature measured using a thermocouple in the vessel reached the target

temperature. The figure below shows the FOS test vessel with samples.

Samples
Sulfur source

Salt solution

Figure 17. FOS Test Vessel



28

3.3 Test Matrix

The ASTM Flowers of Sulfur test as described in [22] is run at 50 degrees Celsius for

a 24 hour duration. In order to increase the severity of the test environment, the

duration of the test and the temperature of the oven were taken to elevated values.

Tests were run at several elevated oven temperatures (75 °C, 85 °C, 95 °C, and 105

°C) in addition to the standard temperature (50 °C). The standard test duration (1 day)

and extended duration (5, 10, and 15 day) tests were carried out. The complete test

matrix can be seen in the figure below.

Figure 18. Test Matrix (Tested Conditions Colored)
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Chapter 4: Results

4.1 Corrosion Thickness Calculations

The average copper coupon weight gain for each test condition was converted to

copper corrosion film thickness. This was done using the surface area of the copper

coupons and a known relationship between weight gain to thickness relationship (1

μg/cm2 = 89 Å as detailed in Appendix 1). This relationship assumes a copper sulfide

corrosion film, and has been verified experimentally. The result of this calculation

can be seen in Figure 19 and Figure 20. Both of these graphs are plotted on

logarithmic scales in order to better represent the data. In both of these graphs there is

overlap of test groups, especially at lower durations and temperatures. In order to

verify that the different test groups were indeed statistically different, an ANalysis Of

Variance Analysis(ANOVA) was carried out as described in the next section.

Figure 19. Experimental results as a function of Temperature



30

4.2 ANalysis Of VAriance(ANOVA) for Experimental Data

An ANalysis Of Variance Analysis(ANOVA) was carried out for the different

experimental test groups. F-tests were carred out, comparing each test group to each

other test group. P-values were recorded, and a cutoff of .1 was used in the following

analysis. The data can be seen in Table 7 (a larger version is in Appendix 3).

Highlighted values are p-values greater than the .1 cutoff.

The data for the tests at each temperature were compared to each other test at that

temperature, as seen in Table 8. It can be observed that for each test above 50ºC, the

Table 7. P-Values for ANOVA Analysis (P-values>.1 are
Highlighted)

Figure 20. Experimental Results as a function of Time
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different tests appeared to be distinct based on variance. The natural conclusion for

this is that the lower temperature test (in this case the 50ºC test) resulted in less

discernable corrosion. However, as seen in the table, a comparison of the 15 day and

1 day tests at 50 ºC had a p-value that was deemed as acceptable. For the 50ºC test

condition, caution should be made with regards to tests shorter than 15 days.

Table 8. ANOVA Results - Fixed Temperature (p-values)
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The data for the tests carried out for each duration was also examined in detail. As

seen in Table 9, there were two places where the tests could not be seen as different

based on variance. For the lower temperature tests (<95ºC) that were within 25º of

each other, the p-values were greater than the .1 cutoff. This is consistent with the

idea that at lower durations and lower temperatures the variance of the corrosion

process could be the large enough to affect the results of the test. A similar issue is

seen in the 10 day tests at higher temperatures.

Table 9. ANOVA Results - Fixed Duration (p-values)
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A comparison of fixed temperature and duration tests to the baseline (50ºC for 1 day)

is seen in Table 10. In order to reach a test that was discernable from the standard

test, the temperature had to be raised to 85ºC for a 1 day test.

4.3 Corrosion Thickness as a Function of Temperature

A variety of fits were examined for the corrosion film thickness as a function of

temperature. Table 11 shows the R2 for these fits for the 1 Day and 10 Day data sets.

These two data sets were used as they were the only complete ones. Looking at the

table, it is clear that an exponential fit for temperature had the best fit.

Assuming that the direct temperature effect is dominant, corrosion film thickness for

a fixed duration can be written as equation 2, agreeing with the exponential fit. For

Table 10. ANOVA Results - Baseline Comparison

Table 11. Corrosion fits for temperature
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the FOS test environment, the temperature effect on corrosion film thickness was able

to be modeled using this relationship that comes from the effect of temperature

increasing reaction rate. An exponential fit for the 1 day test duration has a high

correlation with experimental data (R2 = .98) as does the 10 day test duration(R2 =

.96) as seen in Figure 21. Increasing the temperature of the FOS test environment

increased corrosion film thickness, meaning that the corrosivity of the FOS can be

increased. Harsher testing environments lead to reduced testing time when using the

FOS for part screening. Equation 2 shows corrosion film thickness (Θ) [in nm] as a

function of temperature (T) [in °C].

Θ = αeBT [2]

Figure 21. Corrosion Film Thickness as a Function of Temperature

In order to examine the accuracy of using an exponential fit to extraplote for the

expected values at higher temperatures, additional analysis was carried out. The value

at the 105°C temperature was estimated using an exponential fit that only used the

lower temperatures. This was done using the 1 day and 10 day data sets. The result of
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this fitting, and the minimum and maximum experimental measurements are seen in

Figure 22 and Table 12. The initial-value fit using temperature is good for the 1 day

data sets, but not as good for the 10 day data set. In the 10 day data set, the fit

overestimates the amount of corrosion. This may hint that there is something, such as

a diffusion-limit that reduces the amount of corrosion in cases where the corrosion

film is thicker.

Table 12. Data for initial-value temperature fits

Expected Actual
Calculated Min Max

1 Day 2769.5 2762 3279
10 Day 171962 63772 84850

Figure 22. Initial-value temperature fits
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4.4 Corrosion Thickness as a Function of Time

A variety of fits were examined for the corrosion film thickness as a function of time

as well. Table 13 shows the R2 for these fits for the 50°C and 85°C data sets. These

two data sets were used as they were the only complete ones. Looking at the table, it

is clear that an exponential fit for time had the best fit.

Theoretically, the time term is could fit a power law based on the literature for a

diffusion controlled corrosion process [34]. However, as shown in Table 13, a power

law does not provide a good fit for the FOS test data. Instead, an exponential fit is

much more suitable as seen in Figure 23 (R2=.98 for 50C, R2=.99 for 85C). This may

be because the corrosion in the FOS may not reach a diffusion-limited state within the

15 day duration that was the maximum duration for this study. The exponential

relationship with time may hint at an autocatalytic effect for corrosion in the FOS, but

further investigation is needed. Looking at Figure 23, we can see that the model,

when extrapolated to time equal to zero, gives a value for corrosion thickness. This

Table 13. Corrosion fits for time
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inconsistency with the actuality of no film formation at time equals zero cautions

against extrapolating this model for time less than 24 hours.

Figure 23. Corrosion Film Thickness as an exponential function of time.

Additional analysis was carried out similar to the high temperature analysis in order

to examine the accuracy of using an exponential fit to extraplote for the expected

values at higher test durations. The corrosion film thickness at the 15 day duration

was estimated using an exponential fit that only used the lower duration tests. This

was done using the 50°C and 85°C data sets. The result of this fitting, and the

minimum and maximum experimental measurements are seen in Figure 22 and Table

12. The initial-value fit using time is good for the 50°C data set, but not as good for

the 85°C data set. In the 85°C data set, the fit slightly overestimates the amount of

corrosion. This may hint that there is something, such as a diffusion-limit that reduces

the amount of corrosion in cases where the corrosion film is thicker.
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Table 14. Data for initial-value temperature fits
Expected Actual

Calculated Min Max
50°C 1436 434 1688
85°C 123221 102814 115835

For shorter duration tests, this exponential fit is not needed. One and five day data for

the 85°C and 105°C could be fit using a linear fit as seen in Figure 25. Linear models

are commonly used for the first stage of some corrosion process [4] [6] [34]. The data

for the 50°C test was not included as the effect of variance was too great as discussed

earlier.

Figure 24. Initial-value time fits
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4.5 Comparison of Experimental and Theoretical Corrosion Rates

As detailed above, the corrosion thickness in the FOS can be experimentally modeled

as an exponential function. This experimental rate can be compared to a theoretical

reaction rate for the formation of copper sulfide. Possible processes that will be

considered are summarized in Table 15. These are summaries as there are multiple

ways that the reactants can lead to the products (For example, the breakdown of

sulfur can go through a variety of different sulfur vapors).

Table 15. Summary reactions for FOS
Reaction Summary

Oxidation of Copper Cu(m) → Cu+ + e-

Breakdown of Sulfur S8 → S2-

Formation of Copper Sulfide 2 Cu+ + S2- → Cu2S

Figure 25. Linear fits for low-duration data
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Several assumptions must be made in order to identify a rate-limiting factor based on

these processes. The first is that the oxidation of copper metal is uninhibited by the

formation of the copper sulfide film. This assumption can be made as the

experimental data showed no drop-off in corrosion rate. If the corrosion film inhibited

the creation of copper ions, there would be a terminal thickness after which no copper

could be accessed. Within the time frame of this paper, it appears this phenomenon is

not dominant. Another major assumption that can be made is that the breakdown at

sulfur is not limited. In the vapor region of the FOS, sulfur vapor can exist in a

variety of states (S8, S7, S6, S5, S4, S3, or S2,). If can be assumed that these vapor

states find an equilibrium at a fixed temperature, such as in the FOS [35]. If it is

assumed that this equilibrium in the vapor is maintained with the equilibrium in the

water layer formed on the copper, then we can ignore the possibility that the

breakdown of sulfur is the rate-controlling factor. Looking at the Table 15, we can see

that eliminating the oxidation of copper and the breakdown of sulfur as controlling

factors leaves the formation of copper sulfide as the expected rate-limiting factor.

Reaction rates for copper and sulfur-containing contaminants are assumed to be

constant for fixed environments in the literature [6-8]. Based on the concentration of

sulfur and other parameters, the rate can be seen to vary from .002-4.08 μg/cm2–hr in

MFG laboratory tests described in [6]. In the FOS test results in this thesis, corrosion

rates were 1.15-35.9 μg/cm2–hr. FOS testing resulted in higher corrosion rates than

those typical in the literature as those atmospheric tests are not carried out at elevated

temperatures. Constant corrosion rates presented in the literature would be expected

to lead to corrosion being a linear function of time [8]. However, this is not the case
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in the FOS. This may be because the concentration of sulfur available for reaction in

the water layer formed in the FOS changes as a function of time. Additional testing

would need to be carried out to confirm this hypothesis.

4.6 Corrosion Modeling for the Flowers of Sulfur Test Environment

Combining the exponential relationship for temperature and the exponential

relationship for test duration, equation 3 is created for corrosion film thickness (Θ) [in

nm] as a function of temperature (T) [in °C] and time (t) [in hours]

Θ = X(eYT*eZt) [3]

Fitting the experimental data to this model, values can be found for the coefficients

(X=4.27e10, Y=50583, Z=.0114). This model has a very strong correlation

coefficient (R2 = .951).

Figure 26. Model for film thickness as a function of time and temperature
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The two-parameter model for corrosion film thickness that is both an exponential

temperature and test duration seems to be a good fit when looking at the wide span of

experimental data. However, when we examine the theoretical implications of

extending such a model, we find that there are obvious issues with assuming that the

model captures all effects at its boundaries.  If we calculate the derivative with

respect to time assuming a fixed temperature, we find that dΘ/dt = XZeYT(eZt). As t

increases, the corrosion film thickness increases exponentially. As we know that there

is a maximum amount of corrosion that can occur on the coupon, we know that this is

a problem. Similarly, taking the derivative with respect to temperature with a constant

duration we can find dΘ/dT = XYeZt(eYT). As test temperature increases, the

corrosion film thickness increases exponentially as well. This too is in conflict with

the idea of a maximum amount of corrosion in the FOS.

4.7 Applying the two-parameter model for FOS testing

This two-parameter model for FOS testing can be used to determine what test

conditions to use based on expected field conditions. Figure 27 shows the process for

using the method provided in Appendix 4.

The first step is to quantify the corrosion rate from field conditions. In this case, let us

say that coupons place into our field environment gained 20 nm/month. The expected

Figure 27. Process for applying the 2-parameter FOS model
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corrosion can be calculated as a result of a life time. For this case study, let us say that

our part should last 15 years and that the corrosion growth is linear. This would make

us set our expected film thickness, Θ = 15yr x 12mo/yr x 20nm/mo = 3600 nm.

The next step is to select test parameters to fix. For this case study, let us say that we

would like to have tests at 60°C, 80°C, and 100°C. Using the fixed parameters, find

the other test parameter. In this case, we use equation 4 with Θ =3600 nm, and T set

to 60°C, 80°C, and 100°C. Using these parameters, we find test times of 236, 129,

and 22 hours respectively.

The final step is for each test condition set, todetermine if it satisfies the limitations

in the application notes. Looking at the notes, we see that the 100°C is below the

minimum duration (22 hours<24 hour minimum). This means that while the 60°C or

80°C test would be fine, a 100°C test using the FOS is not recommended.



44

Chapter 5: Conclusions

5.1 Contributions

The major contribution of this thesis was the development of a model for the effects

of increased temperature and test time on copper corrosion rates of the FOS test. This

model can be used to control the FOS test environment, based on target field

environment and expected exposure period for durations up to 15 days and

temperatures from 50°C to 105°C.

In order to create this model, two experimental relationships for the FOS were

examined. The work in this thesis established that increasing test temperature in the

FOS environment can be modeled by an exponential function from 50°C to 105°. It

was also determined that the effect of test duration on the FOS can be modeled by an

exponential function for the first 15 days. The corrosion process is concentration-

limited.

5.2 Summary of Results

Flowers Of Sulfur (FOS) Testing at higher temperatures and for longer durations that

those outlined in ASTMB809 has been shown to increase the amount of corrosion

creating in the FOS test environment. Both parameters have been shown to be able to

increase the amount of corrosion observed on copper coupons by orders of

magnitude. High temperature testing using the FOS can increase the acceleration of

laboratory corrosion tests, resulting in shorter test durations. This elevated corrosion

rate can result in higher test throughput, which is valuable for component and device

manufacturers for whom the FOS serves as a suitable test environment. Longer
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duration testing has been shown to increase the amount of corrosion seen in a non-

linear manner. While this is very interesting finding, it is important to note that this

may not be applicable for corrosion processes where the reaction is material limited.

This thesis demonstrated that a two parameter model can be used to model the

corrosion rate in the FOS test environment. An exponential term is able to handle the

effect of the temperature effect. Another exponential relationship is able to capture

the effect of increasing the duration of the test for the different temperatures. This

model is useful as a guideline for how the conditions of the FOS test can be changed

to increase the corrosivity of the test environment. This should prove to be a valuable

tool for the adaptation of the FOS test for component testing.

5.3 Future Work

The work presented in this thesis provides the opportunity for additional testing that

can be used to expand understanding of the Flowers of Sulfur test environment. As

explained earlier, the exponential time term for this model does not allow for

extrapolation below the 24 hours that was the minimum tested duration. Investigation

of the FOS test at lower temperatures could be useful in expanding the lower bounds

of this model. It is also possible that including other parameters such as humidity and

concentration in the model may be able to adjust the model to solve this issue.

As discussed in previous sections, the single parameter models overestimate

corrosion at higher temperatures and test durations. At these places, it is also the case
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that the corrosion film is the thickest. It is expected that as the corrosion film

thickness grows the ability to attack the underlying copper is restricted. However, the

experimental data in this thesis did not show the power law relationship expected if

this is the case. The model presented did have some issues with the edges of the

boundary conditions, however not enough data has been gathered to create a model

that also captures this effect. Additional, longer duration tests and higher temperature

would need to be carried out to capture this effect.

Different salt solutions change the relative humidity as a function of temperature.

Attempting to use this model for a different salt solution could demonstrate the effect

of humidity on the FOS test. Alternatively, changing the surface area of the sulfur in

the chamber should change the amount of corrosion. A series of studies could look at

how exposed sulfur affects the thickness model.
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Appendices

Appendix 1: Converting copper coupon weight gain to corrosion film thickness

Weight gain of copper coupons in a corrosive environment can be converted to film

thickness using the information provided in Table 16.

Table 16. Material Properties for Cu, S, and Cu2S
Property Value

Atomic Weight – Cu 63.6
Atomic Weight - S 32.0

Density - Cu2S 5.6 g/cm3

Using the data in the above table, the following conversions can be made:

Copper mass gain of 1 μg = (2(63.6)+32.0)/32.0 μg of Cu2S

= 4.97 * 10-6 g of Cu2S

= (4.97 * 10-6 g)/(5.6 g/cm3)

= .89* 10-6 cm3 of Cu2S

Thus, for a normalized gain per unit area:

Copper mass gain of 1 μg/ cm2 = .89* 10-6 cm of Cu2S

= 89 Å of Cu2S
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Appendix 2: Weight Gain Data for Different Flowers of Sulfur Test Conditions

Weight gain and thickness data for the different Flowers of Sulfur test conditions can

be found in the tables below. Table 17 below shows normalized weight gain averages

for samples placed in each test condition.

Table 17. Normalized weight gain for the FOS tests
Normalized Weight

Gain (mg/g)
Test Duration (Days)

1 5 10 15

Temperature
(°C)

50 0.130 0.190 0.395 0.565
75 0.415 0.760
85 0.468 2.903 9.805 54.082
95 0.986 32.032
105 1.451 9.964 38.146

Table 18 below shows the average initial weight for each of the FOS test conditons

which was used in calculating the film thickness.

Table 18. Average Initial Weight for the FOS tests
Initial Weight (g) Test Duration (Days)

1 5 10 15

Temperature
(°C)

50 0.697 0.703 0.675 0.669
75 0.694 0.706
85 0.688 0.702 0.698 0.698
95 0.698 0.679
105 0.702 0.688 0.695

Table 19 below shows the average initial weight for each of the FOS test conditons

which was used in calculating the film thickness. This was calculated using the data

from Table 17, Table 18, and Table 19.

Table 19. Corrosion Film Thickness for the FOS tests

Corrosion Test Duration (Days)
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Thickness (nm) 1 5 10 15

Temperature
(°C)

50 263 386 772 1093
75 833 1552
85 932 5896 19788 109152
95 1990 62953
105 2948 19843 76758
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Appendix 3: Corrosion in High Temperature Flowers of Sulfur Test Conditions

High Temperature Flowers of Sulfur test environments are useful in corrosion testing

of electronics. The higher temperature creates a harsher test environment, which us

useful for screening or identifying the failure site. Two Flowers of Sulfur tests were

run at different conditions. A 12 day test was done at 75 °C (.8 mg/g Copper Coupon

Weight Gain) and a 10 day test was done at 105 °C (39.4 mg/g Copper Coupon

Weight Gain). Table 20 summarizes the two test conditions.

Table 20. FOS Test Conditions for part testing
Test Duration (Days) Temperature (°C) Weight Gain (mg/g)

A 12 75 .8
B 10 105 39.4

Several surface finishes were placed into these test environments in order to examine

how increasing the test temperature of the FOS increased the amount of corrosion

observed. Boards plated with Electroless Nickel Electroless Palladium Immersion

Gold (ENEPIG), Immersion Silver (ImAg), and Organic Solder Preservative (OSP)

were placed into the two test environments. Also, mounted chip resistors were placed

into the two test environments.

Figure 28 below shows that the increase in temperature did not appear to affect the

amount of corrosion observed on ENEPIG plated copper. Figure 29 shows that the

temperature increase did not appear to change the amount or presence of corrosion on

ImAg finish boards either.
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Pre-exposure (75°C) Post-exposure (75°C)

Pre-exposure (105°C) Post-exposure (105°C)

Figure 28. ENEPIG boards in high temperature FOS tests

Pre-exposure (75°C) Post-exposure (75°C)
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Pre-exposure (105°C) Post-exposure (105°C)

Figure 29. ImAg boards in high temperature FOS tests

However, increasing the temperature of the FOS test did have an effect on the

corrosion of OSP finished boards. As seen in Figure 30, increasing the temperature of

the FOS increased the amount of corrosion observed. These results are consistent

with the fact that OSP breaks down at high temperatures.

Pre-exposure (75°C) Post-exposure (75°C)
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Pre-exposure (105°C) Post-exposure (105°C)

Figure 30. OSP boards in high temperature FOS tests

Increasing the temperature of the FOS test also had an effect on the corrosion of chip

resistors. As seen in sdasd, increasing the temperature of the FOS increased the

amount of corrosion observed. The outgrowths were confirmed to be silver sulfide

using Energy Dispersive Spectroscopy (EDS).

Post-exposure (75°C) Post-exposure (75°C)
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Post-exposure (105°C) Post-exposure (105°C)

Figure 31. Chip resistors in high temperature FOS tests

High temperature FOS testing (above 75°C) is useful for corrosion testing of OSP

finished boards and chip resistors. Increasing FOS test temperatures above 75° did

not change the appearance of corrosion products on ENEPIG or ImAg finished

boards.
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Appendix 4: ANalysis Of Variance
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Appendix 5: Method for using applying model to FOS testing for electronics

Introduction

The Flowers of Sulfur (FOS) test can be used to carry out lifetime testing for

electronic components that are subjected to sulfur-driven corrosion in their field

environment. This document outlines the apparatus and method for selecting test

parameters based on achieving a desired target.

The major assumptions of this test is that sulfur-driven corrosion is the main

component of the corrosion process observed on fielded samples. Energy Dispersive

X-ray Spectroscopy (EDS) can be performed on fielded samples in order to verify

that the corrosion products are sulfur-based. In cases where there are other

contaminants that appear to affect the corrosion of the electronic part, this test may

not be representative of the field environment, but instead may serve as an estimate

for what would happen if the corrosion film seen in the field were only caused by

sulfur-driven corrosion.

Test Setup

The test setup described below was selected to be easily reproducible in order to have

consistent results. Figure 32 shows a schematic of the test setup. A 10-liter glass

desiccator is used as the test vessel. Sublimed sulfur (from Fisher Scientific) is placed

into a 15 cm diameter petri dish that is placed on the bottom of the desiccator dish. A

saturated potassium nitrate (>99%, Fisher Scientific) salt solution (200 g KNO3 in

200 mL H2O)  is poured into a 15 cm diameter petri dish that is placed on the bottom
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of the desiccator. Samples are hung from a stand that is placed in the center of the test

vessel. This stand and the sample hangers should be made of a non-reactive material,

such as glass. Samples should be kept 7.5 cm from the sulfur source, 2.5 cm from the

side walls of the chamber, and 1 cm from other samples. The test vessel is placed into

an over that can achieve the target temperature for the target duration.

Selecting Test Conditions

The test time and temperature for the FOS test is selected based on expectations for

the expected field condition. The amount of corrosion expected in a particular field

condition can be monitored using copper witness coupons in the environment and

measuring the corrosion film thickness. Using field data, an estimate of the corrosion

film thickness (Θ) can be determined. Either the test temperature (T in °C) or the test

duration (t in hours) can be fixed, and the other can be determined using Equation 4.

Figure 32. Flowers of Sulfur Test Schematic
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Θ = 2.3*e.0706T*e.0132t

Equation 4. Corrosion thickness for FOS temperature and duration

Application Notes

Test conditions should not be used if they fit into any of the following criteria as the

method described in this document has either not been tested or has been found

insufficient as an estimate. Test conditions should be rejected if they have (1) test

temperatures outside of a 50C to 105C range, (2) test durations less than one day or

longer than 15 days, or (3) a 1 day Test duration with a test temperature below 90°C
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