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Abstract. We discuss a general framework for recovering edges in piecewise smooth functions
with finitely many jump discontinuities, where [f ](x) := f(x+)− f(x−) �= 0. Our approach is based
on two main aspects—localization using appropriate concentration kernels and separation of scales
by nonlinear enhancement.

To detect such edges, one employs concentration kernels, Kε(·), depending on the small scale ε.
It is shown that odd kernels, properly scaled, and admissible (in the sense of having small W−1,∞-
moments of order O(ε)) satisfy Kε ∗ f(x) = [f ](x) + O(ε), thus recovering both the location and
amplitudes of all edges. As an example we consider general concentration kernels of the formKσ

N (t) =∑
σ(k/N) sin kt to detect edges from the first 1/ε = N spectral modes of piecewise smooth f ’s. Here

we improve in generality and simplicity over our previous study in [A. Gelb and E. Tadmor, Appl.
Comput. Harmon. Anal., 7 (1999), pp. 101–135]. Both periodic and nonperiodic spectral projections
are considered. We identify, in particular, a new family of exponential factors, σexp(·), with superior
localization properties.

The other aspect of our edge detection involves a nonlinear enhancement procedure which is
based on separation of scales between the edges, where Kε ∗ f(x) ∼ [f ](x) �= 0, and the smooth
regions where Kε ∗ f = O(ε) ∼ 0. Numerical examples demonstrate that by coupling concentration
kernels with nonlinear enhancement one arrives at effective edge detectors.
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1. Introduction. We discuss a general framework for recovering edges from the
spectral projections of piecewise smooth functions. Our approach for edge detec-
tion is based on two fundamental aspects—localization to the neighborhood of the
edges using appropriate concentration kernels and separation of scales by nonlinear
enhancement. Both the locations and amplitudes of all edges are recovered.

Let SNf(x) denote the spectral projection of a piecewise smooth f . Given SNf ,
one can accurately reconstruct f away from its discontinuous jumps, e.g., [10], [14,
sect. 2.1], as well as up to the discontinuities [11]. In either case, an a priori knowledge
of the location of the edges and their amplitudes is required. This issue was treated in
recent literature; consult [1], [5], [13], [15]. In [7], we unified several types of treatments
as special cases of appropriate concentration kernels, specifically those discussed in [1]
and [13]. Here we improve on these results in both generality and simplicity. To this
end, let [f ](x) := f(x+)− f(x−) denote the local jump function and let us consider a
concentration kernel Kε(·), depending on a small scale ε. It is shown that odd kernels,
properly scaled, and admissible (in the sense of having small W−1,∞-moments of order
O(ε); see eq. (2.5)), recover both the locations and the amplitudes of the jumps so
that

Kε ∗ f(x) = [f ](x) +O(ε).(1.1)
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Thus, Kε tends to “concentrate” near the singular support of f .

Differentiation of ε-supported mollifiers is one example for local concentration
kernels outlined in section 2.2.1. In section 2 we also address the issue of detecting
edges in global Fourier projections. Given the first 1/ε = N Fourier modes, we seek
concentration kernels of the form

Kσ
N (t) = −

N∑
k=1

σ

(
k

N

)
sin kt.

It is shown that if the concentration factors σ(ξ) ≡ ξµ(ξ) are normalized so that∫
µ(ξ)dξ = 1, then Kσ

N (t) is an admissible concentration kernel, Kσ
N ∗ SNf(x) →

[f ](x), and the following error estimate holds:

∣∣∣∣∣ πN
N∑

k=−N

µ

( |k|
N

)
f̂kike

ikx − [f ](x)

∣∣∣∣∣ ≤ Const · logN

N
.

The nonperiodic case is studied in section 3. The analogous results for the Chebyshev
case (consult Corollary 3.2) are written as

∣∣∣∣∣π
√

1− x2

N

N∑
k=1

µ

(
k

N

)
f̂kT

′
k(x)− [f ](x)

∣∣∣∣∣ ≤ Const · logN

N
.

The special cases of Fourier concentration factors σα(ξ) ∼ sinαξ and σp(ξ) = pξp

were considered earlier in [1], [7], [9], [13], and [15]. Our general framework motivates
a new set of C∞

0 -exponential concentration factors which yield superior localization
properties away from the detected edges.

While (1.1) refers to the asymptotic behavior of the concentration kernel as a
function of the small parameter ε ↓ 0, it is essential to recover the exact locations of the
edges of f for the accurate reconstruction of f . In section 4 we discuss another essential
aspect of edge detection, namely, nonlinear enhancement. To this end, one introduces
a critical threshold, Jcrit, for the amplitude of admissible edges and an enhancement
exponent, p, to amplify the separation of scales in (1.1) between the edges, where
Kε ∗f(x) ∼ [f ](x) �= 0, and the smooth regions where Kε ∗f(x) = O(ε) ∼ 0. Consider
the enhanced kernel

Kε,J [f ](x) =

{
Kε ∗ f if ε−p/2|Kε ∗ f(x)|p > Jcrit,
0 otherwise.

Clearly, with p large enough, one ends up with a sharp edge detector where Kε,J [f ](x) =
0 at all but O(ε)-neighborhoods of the jump discontinuities. In this sense, the enhance-
ment procedure actually “pinpoints” the location jump discontinuities, allowing an
accurate reconstruction of f . The particular case p = 2 corresponds to the quadratic
filter studied in [12], [22], in the special context of concentration kernels based on
localized mollifiers.

2. Edge detection by concentration kernels.

2.1. Concentration kernels. We want to detect the edges in piecewise smooth
functions. Assume that f(·) has jump discontinuities of the first kind with well-defined
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one-sided limits, f(x±) = limx→x± f(x), and let [f ](x) := f(x+)− f(x−) denote the
local jump function. By piecewise smoothness we mean1

Fx(t) :=
f(x + t)− f(x− t)− [f ](x)

t
∈ BV [0, δ] ∀ x.(2.1)

In practice one encounters functions f(x) with finitely many jump discontinuities,
and (2.1) requires the differential of f(x) on each side of the discontinuity to have
bounded variation. For example, if f ′(x±) are well defined (for finitely many jumps),
then (2.1) holds.

We will detect the edges in such piecewise smooth f ’s using smooth concentra-
tion kernels, K(t) = Kε(t), depending on a small parameter ε. Such kernels are
characterized by

Kε ∗ f(x)−→[f ](x) as ε → 0.(2.2)

Thus the support of Kε ∗ f(x) tends to “concentrate” near the edges of f(x). One
recovers both the location of the jump discontinuities as well as their amplitudes.

To guarantee the concentration property of Kε, we seek odd kernels,

Kε(−t) = −Kε(t),(2.3)

which are normalized so that ∫
t≥0

Kε(t)dt = −1 +O(ε)(2.4)

and which satisfy the main admissibility requirement∣∣∣∣
∫
t

tKε(t)φ(t)dt

∣∣∣∣ ≤ Const · ε||φ||BV .(2.5)

Remarks.
1. For example, if Kε(t) concentrates near the origin so that its first moment

does not exceed ∫
t

|tKε(t)|dt ≤ Const · ε,(2.6)

then it is clearly admissible in the sense that (2.5) holds. We note that our
admissibility condition also allows for more general oscillatory kernels, Kε(t),
where (2.6) might fail, yet (2.5) is satisfied due to the cancellation effect of
the oscillations. Consult (2.17) below.

2. Observe that the admissibility requirement (2.5) generalizes both properties
P3 and P4 in the definition of admissible kernel [7, Def. 2.1].

We state our main result as follows.
Theorem 2.1. Consider an odd kernel Kε(t), (2.3), normalized so that (2.4)

holds, and satisfying the admissibility requirement (2.5). Then the kernel Kε(t) sat-
isfies the concentration property (2.2) for all piecewise smooth f ’s, and the following
error estimate holds:

|Kε ∗ f(x)− [f ](x)| ≤ Const · ε.(2.7)

1Here and below we use BV [a, b] to denote the space of functions with bounded variation, endowed

with the usual seminorm ‖φ‖BV [a,b] :=
∫ b
a |φ′|dx.
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Proof. Using the fact that Kε(t) is odd, we have

Kε ∗ f(x) = −
∫
t≥0

Kε(t)(f(x + t)− f(x− t))dt

= −
∫
t≥0

tKε(t)
f(x + t)− f(x− t)− [f ](x)

t
dt− [f ](x)

∫
t≥0

Kε(t)dt.

Applying (2.4) yields

Kε ∗ f(x)− [f ](x) = −
∫
t≥0

tKε(t)Fx(t)dt +O(ε).(2.8)

By our assumption in (2.1), Fx(t) is BV and it is therefore bounded. Consequently,
in the particular case that the moment bound (2.6) holds, the first term on the right
of (2.8) is of order O(ε), yielding

|Kε ∗ f(x)− [f ](x)| ≤ Const ·
∫

|tKε(t)|dt +O(ε) = O(ε).

In the general case, Fx(t) has bounded variation, and the admissibility requirement
(2.5) implies that the first term on the right of (2.8) is of order O(ε), and we conclude

|Kε ∗ f(x)− [f ](x)| ≤ Const||Fx(t)||BV · ε +O(ε) = O(ε).

2.2. Examples of concentration kernels.

2.2.1. Compactly supported kernels. Our first example consists of concen-
tration kernels which “concentrate” near the origin, so that (2.6) holds. We consider
a standard mollifier, φε(t) := 1

εφ(
t
ε ), based on an even, compactly supported bump

function, φ ∈ C1
0 (−1, 1) with φ(0) = 1. We then set

Kε(t) =
1

ε
φ′
(
t

ε

)
≡ φ′

ε(t).(2.9)

Clearly, Kε is an odd kernel satisfying the required normalization (2.4)

∫
t≥0

Kε(t)dt =
1

ε

∫
t≥0

φ′
(
t

ε

)
dt = −φ(0) = −1.

In addition, its first moment is of order∫
t≥0

|tKε(t)|dt = ε

∫
0≤s≤1

|s| · |φ′(s)|ds = O(ε),

and hence (2.6) holds. Theorem 2.1 then implies the following.

Corollary 2.2. Consider the odd kernel Kε(t) = φ′
ε(t), based on even φ ∈

C1
0 (−1, 1) with φ(0) = 1. Then Kε(t) satisfies the concentration property (2.2), and

the following error estimate holds:

φ′
ε ∗ f(x) = [f ](x) +O(ε).(2.10)
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2.2.2. The conjugate Dirichlet kernel. The conjugate Dirichlet kernel,

KN (t) = − 1

logN
D̃N (t), D̃N (t) :=

N∑
k=1

sin kt,

is an example of an oscillatory concentration kernel. Clearly, KN (t) is an odd kernel.
Moreover, the normalization (2.4) holds with ε ∼ 1

logN ,

∫ π

t=0

KN (t)dt = − 2

logN

∑
odd k’s

1

k
= −1 +O(ε), ε ∼ 1

logN
.

Finally, summing

D̃N (t) =

N∑
k=1

sin kt =
cos t

2 − cos (N + 1
2 )t

2 sin t
2

,

we find that the first moment of KN = −D̃N (t)/ logN does not exceed∫ π

t=0

|tKN (t)|dt ≤ Const · ε, ε =
1

logN
,

so that the requirement (2.6) is fulfilled.
Theorem 2.1 then yields the classical result regarding the concentration of conju-

gate partial sums, [2, sect. 42], [23, sect. II, Thm. 8.13],

− 1

logN
D̃Nf(x) = [f ](x) +O

(
1

logN

)
.(2.11)

We note in passing that in the case of the Dirichlet conjugate kernel, KN (t) does
not concentrate near the origin, but instead (2.6) is fulfilled thanks to its uniformly
small amplitude of order O(1/ logN). The error, however, is only of logarithmic order;
consult [7, sect. 2].

2.2.3. Oscillatory kernels: General concentration factors. To accelerate
the unacceptable logarithmically slow rate of the Dirichlet conjugate kernel in (2.11),
we consider a general form of odd concentration kernels

Kσ
N (t) := −

N∑
k=1

σ

(
k

N

)
sin kt,(2.12)

based on concentration factors σ( k
N ) which are yet to be determined. Clearly Kσ

N (t)
is odd. Next, for the normalization (2.4) we note that∫ π

t=0

Kσ
N (t)dt = −2

∑
k odd

σ( k
N )

k
∼ −

∫ 1

0

σ(x)

x
dx.

In fact, the above Riemann’s sum amounts to the midpoint quadrature, so that for
σ(ξ)
ξ ∈ C2[0, 1], one has

∫ π

t=0

Kσ
N (t)dt = −2

∑
k odd

σ( k
N )

k
= −

∫ 1

0

σ(ξ)

ξ
dξ +O

(
1

N2

)
,(2.13)



1394 ANNE GELB AND EITAN TADMOR

and thus (2.4) holds for normalized concentration factors σ(ξ),∫ 1

0

σ(ξ)

ξ
dξ = 1.(2.14)

Consult [7] for further refinement concerning the assumed regularity of σ(·) (We note
that σ(·) is rescaled here with an additional factor of −π compared to [7].)

Finally, we address the admissibility requirement (2.5) (and in particular (2.6)).
To this end, we proceed along the lines of [7, Assertion 3.3], utilizing the identity
(abbreviating ξk = k

N )

2 sin(t/2)Kσ
N (t) ≡

N−2∑
k=1

(σ(ξk)− 2σ(ξk+1) + σ(ξk+2))
sin (k + 1)t

2 sin(t/2)

− (σ(1)− σ(ξN−1))
sinNt

2 sin(t/2)
+ (σ(ξ2)− σ(ξ1))

sin t

2 sin(t/2)

+ σ(ξ1) cos
t

2
− σ(1) cos

(
N +

1

2

)
t

=: I1(t) + I2(t) + I3(t) + I4(t)− I5(t).(2.15)

This leads to the corresponding decomposition of Kσ
N (t)

Kσ
N (t) = Rσ

N (t)− σ(1)

2

cos (N + 1
2 )t

sin t
2

.

Here, Rσ
N (t) consists of the first four terms on the right-hand side of (2.15),∑4

j=1 Ij(t)/2 sin(t/2), and it is easily verified that each one of these terms has a
small first moment satisfying (2.6) (and consequently, (2.5) holds); i.e.,∫ π

t=0

|tRσ
N (t)|dt ≤ Const · ||σ||C2[0,1]

logN

N
.(2.16)

For example, using the standard bound | sin(kt)/2 sin(t/2)| ≤ min{k, 1/t}, the contri-
bution corresponding to the first term, I1(t), does not exceed

∫ π

t=0

∣∣∣∣t I1(t)

2 sin(t/2)

∣∣∣∣ dt ≤ max |σ′′|
N2

N−2∑
k=1

[∫ 1/N

t=0

+

∫ π

t=1/N

] ∣∣∣∣ sin(kt)

2 sin(t/2)

∣∣∣∣ dt = O
(

logN

N

)
.

Similar estimates hold for the remaining contributions of I2, I3, and I4. In particular,
since σ(ξ)/ξ is bounded, |σ(1/N)| ≤ O(1/N), and hence

∫ |tI4(t)/2 sin(t/2)|dt =
O(1/N).

Finally, the admissibility of the fifth term on the right of (2.15) is due to standard
cancellation which guarantees that (2.5) holds:∣∣∣∣σ(1)

2

∫ π

t=0

t
cos (N + 1

2 )t

sin t
2

φ(t)dt

∣∣∣∣ ≤ Const · σ(1)

N
||φ||BV .(2.17)

It is in this context of spectral concentration kernels that admissibility requires
the more intricate property of cancellation of oscillations. Summarizing (2.13), (2.16),
and (2.17), we obtain as a corollary an improved version of the main result in [7,
Thm. 3.1] regarding spectral edge detection using concentration kernels, Kσ

N (t). In
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particular, since Kσ
N (t) are N -degree trigonometric polynomials, one detects the edges

of the piecewise smooth function f(x) directly from its spectral projection SN (f) :=∑N
k=−N f̂ke

ikx,

Kσ
N ∗ f ≡ Kσ

N ∗ SN (f) = iπ

N∑
k=−N

sgn(k)σ

( |k|
N

)
f̂ke

ikx.

Corollary 2.3. Consider the odd concentration kernel (2.12)

Kσ
N (t) = −

N∑
k=1

σ

(
k

N

)
sin kt,

σ(ξ)

ξ
∈ C2[0, 1].

Assume that σ(·) is normalized so that (2.14) holds:∫ 1

0

σ(ξ)

ξ
dξ = 1.

Then Kσ
N (t) admits the concentration property (2.2), and the following estimate holds:

|Kσ
N ∗ SN (f)− [f ](x)| = Const · logN

N
.(2.18)

Remark. One can relax the regularity on the concentration factor σ(·) [7]. Corol-
lary 2.3 is a generalization of [7, Thm. 3.1];2 in particular, the error estimate (2.18) is
valid throughout the interval, including at the location of the jump discontinuities.

Let us introduce few prototypical examples of concentration factors σ(·) for the
detection of edges from spectral data. In this context we note that other detection
methods of discontinuities in periodic spectral data can be found in the works of
Eckhoff [5], [6] and of Mhaskar and Prestin, e.g., [15] and the references therein. We
note that our results apply to the nonperiodic expansions as discussed in section 3.2.2
below.

1. Trigonometric factors. We consider concentration factors of the form σ(ξ) =
σα(ξ) := sinαξ/Si(α) with the proper normalization Si(α) :=

∫ α

0
(sin η/η)dη.

The edge detector introduced originally by Banerjee and Geer [1] corresponds
to σπ(ξ); the general case is found in [7, sect. 3.2].

2. Polynomial factors. As a first example consider σ(ξ) = ξ. In this case,
Kx

N ∗ f = π
N SN (f)′, and Corollary 2.3 recovers Fejér’s result, [23, sect. III,

Thm. 9.3], with the following error estimate:

∣∣∣ π
N

SN (f)′ − [f ](x)
∣∣∣ ≤ Const · logN

N
.(2.19)

This is the first member of a whole family of polynomial concentration factors,
e.g., [7, sect. 3.4],

σ(ξ) = σp(ξ) := pξp,(2.20)

which correlate to concentration kernels satisfying (2.3), (2.4), and (2.5).

For odd p’s, Kσp

N ∗ f = (−1)[p/2]pN−pS
(p)
N (f); for even p’s, Kσp

N ∗ f =

2We note the different rescaling here of σ(·) by an additional factor of −π, compared with the
formulation in [7, Thm. 3.1].
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(−1)p/2pN−pH ∗ S
(p)
N (f), where H(x) = i

∑
sgn(k)eikx. These edge detec-

tors were introduced in [9] and were recently analyzed by Kvernadze in [13].
Corollary 2.3 yields∣∣∣∣∣ iπNp

N∑
k=−N

sgn(k)|k|pf̂keikx − [f ](x)

∣∣∣∣∣ ≤ Const · logN

N
.

The last error estimate is (essentially) first order. It is sharp. It was noted
in [7, sect. 3.4], however, that σp’s with higher p’s lead to faster convergence
rates at selected interior points, bounded away from the singularities of f .
This leads us to the next example.

3. Exponential factors. Polynomial concentration factors (of odd degree) corre-
spond to differentiation in physical space; trigonometric factors correspond
to divided differences in the physical space—consult the original derivation
in [1]. Our main result stated in Corollary 2.3 provides us with the frame-
work of general concentration kernels which are not necessarily limited to a
realization in the physical space. In particular, we seek concentration factors,
σ(·), which vanish at ξ = 0, 1 to any prescribed order,

dj

dξj
σ(ξ)∣∣∣

ξ=0

=
dj

dξj
σ(ξ)∣∣∣

ξ=1

= 0, j = 0, 1, 2, . . . , p− 1.(2.21)

The higher p is, the more localized the corresponding concentration kernel,
Kσ

N (·), becomes. Here is why.
Evaluating Kσ

N (t) at the equidistant points t� = 2π)/N ,

Kσ
N

(
2π)

N

)
= −

N∑
k=1

σ

(
k

N

)
sin

2πk)

N
,

we observe that Kσ
N (t�)/N coincide with the )-discrete Fourier coefficient of

σ(·); since σ(ξ) and its first p-derivatives vanish at both ends, ξ = 0, 1, there
is a rapid decay of its (discrete) Fourier coefficients, |σ̂�| ≤ Const · )−p,

|Kσ
N (t�)| ≤ Const · ‖σ‖Cp+1[0,1]

1

(Nt�)p
.

Thus, for t away from the origin, Kσ
N (t) is rapidly decaying for large enough

N ’s. Moreover, we claim an increasing number of moments of Kσ
N (·) vanish.

To this end we consider the odd moments of Kσ
N (·) (its even moments vanish,

of course). With ξk = k/N we find

∫ π

t=−π

tj ×
(
−

N∑
k=1

σ

(
k

N

)
sin kt

)
dt(2.22)

=
−2

N j

N∑
k=1

1

N

∫ πN

τ=0

τ jσ(ξk) sin(ξkτ)dτ

= ∼ ±2

N j

∫ 1

ξ=0

σ(ξ) · dj

dξj

∫ πN

τ=0

cos(ξτ)dτdξ, j odd.
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Integrate by parts; respectively, sum by parts the summation on the right of
(2.22). Thanks to (2.21) the boundary terms vanish and we have

∫ π

t=−π

tjKσ
N (t)dt ∼ 1

N j

∫ 1

ξ=0

dj

dξj
σ(ξ) · sin(πNξ)

ξ
dξ

=
1

N j

∫ 1

ξ=0

dp−j

dξp−j

(1

ξ

dj

dξj
σ(ξ)

) sin(πNξ)

(πN)p−j
dξ = O

(
1

Np

)
,

j < p, p odd.

As an example, we consider the exponential concentration factors

σexp(ξ) = Const · ξe 1
αξ(ξ−1) , Const =

∫
exp

( −1

αη(η − 1)

)
dη(2.23)

normalized so that
∫ 1

ξ=0
σexp(ξ)/ξdξ = 1. Here, the C∞

0 [−1, 1] concentration

factor σexp(ξ) vanishes exponentially at both ends; ξ = 0, 1 so that (2.21)
holds for all p’s. Figures 3 and 4 confirm the improved localization of these
exponential concentration factors.

4. Band pass filter. Bauer [3] has considered a family of what he termed as
“band pass filter,” η( k

N ), supported in the range of middle frequencies, say,
suppη ⊂ [1/4, 3/4]. We note in passing that these are special cases of p-order
admissible concentration factors (see (2.21)), although the normalization used
in [3, eq. (1.35)],

∫
η(x)/x sin(πx)dx = 1, prevented the recovery of the

amplitude of the jumps.
To demonstrate the detection of edges by the concentration factors outlined above,

consider the following two examples of discontinuous f ’s (defined on [−π, π]):

fa(x) := −sgnx·cos
(x
2
(2 + sgnx)

)
, fb(x) :=




cos(x− x
2 sgn(|x| − π

2 )), x < 0,

cos( 5
2x + xsgn(|x| − π

2 )), x > 0.

In both cases, fa(x) and fb(x) are recovered from their Fourier coefficients using the
Fourier partial sums SN [f ](x), and we wish to recover their jump discontinuities

[fa](x) =




−2, x = 0,

0 else,
[fb](x) =




±√
2, x = ±π

2 ,

0 else.

Figures 1 and 2 demonstrate the use of trigonometric and polynomial concentra-
tion factors for the detection of edges from Fourier spectral data.

As noted in [10, sect. 3.4], polynomial factors of higher degree yield improved
results away from the jump discontinuities. Indeed, the corresponding concentration
kernels, Kσp

N (·), have additional vanishing moments. In the limit, one arrives at
exponential factors, Kσexp

N (·); Figures 3 and 4 demonstrate the edge detection of
these factors in Fourier expansions SNfa(x) and SNfb(x). The improved localization
is evident, due to the faster convergence rate in the smooth parts of f ’s. In particular,
the superiority of the exponential factors is illustrated in the figures on the left, when
compared with the first-order accurate polynomial concentration factor, σp=1(ξ) =
ξ. At the same time, Gibbs oscillations can be noticed in the vicinity of the jump
discontinuities.
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Fig. 1. Trigonometric concentration factor σ(ξ) = sin ξ
Si(1)

for (left) fa(x), where the exact jump

value is [f ](0) = −2 and (right) fb(x), where the exact jump values are [f ](±π
2
) = ±√

2.
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[f](x)

Fig. 2. Jump value obtained by the polynomial concentration factor σp=1(ξ) = ξ for (left) fa(x)
and (right) fb(x).
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Fig. 3. Edge detection using the exponential concentration factor σ(ξ) = 3exp( 1
6ξ(ξ−1)

) (left)

σexp vs. σp=1 for S40fa(x) and (right) σexp for SNfa(x) with N = 20, 40, 80 modes.



ENHANCED DETECTION OF EDGES IN SPECTRAL DATA 1399

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

σp1

σe

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

Fig. 4. Edge detection using the exponential concentration factor σ(ξ) = 3exp( 1
6ξ(ξ−1)

) (left)

σexp vs. σp=1 for S40fb(x) and (right) σexp for SNfb(x) with N = 20, 40, 80 modes.

3. Edge detection in nonperiodic projections. Consider a piecewise smooth
f(·). To simplify our presentation, we assume f experiences a single jump discontinu-
ity at x = c. The localization property of the appropriate concentration kernel in the
presence of a single jump applies to the case with finitely many jump discontinuities.
We begin with an alternative derivation of our results for the periodic case.

3.1. Revisiting the periodic case. If a 2π-periodic f(·) experiences a single
jump, [f ](c), then it dictates the Fourier coefficients decay [4],[23],

f̂k = [f ](c)
e−ikc

2πik
+O

(
1

k2

)
.

To extract information about the location of the jump from the phase of the leading
term, we examine the special concentration kernel, Kσ

N with σ(ξ) = ξ, where Kξ
N ∗

SN (f) = π
N SN (f)′,

π

N
SN (f)′ = π

N∑
k=−N

ik

N

{
[f ](c)

eik(x−c)

2πik
+O

(
1

k2

)}
(3.1)

= [f ](c)
1

2N

∑{
1 +O

(
1

k

)}
eik(x−c) = [f ](x) +O

(
logN

N

)
.(3.2)

Here we used the concentration property of the Dirichlet kernel localized at x = c:

1

2N

N∑
k=−N

eik(x−c) =




O
(

1

N |x− c|
)
, x �= c,

1, x = c.

The same property applies to the class of concentration factors, σ(ξ) := ξµ(ξ), such

that (2.14) holds,
∫ 1

0
µ(ξ)dξ = 1,

1

2N

N∑
k=−N

µ

( |k|
N

)
eik(x−c) =




O
(

1

N |x− c|
)
, x �= c,

1, x = c.
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It then follows that the corresponding Kσ
N in (2.12) is an admissible concentration

kernel, so that Kσ
N ∗ f(x) −→ [f ](x).

3.2. Nonperiodic expansions.

3.2.1. General Jacobi expansions. We begin with the Jacobi expansion of a
piecewise smooth f(·),

SN (f) =

N∑
k=0

f̂kPk(x), f̂k =

∫ 1

−1

f(x)ω(x)Pk(x)dx.(3.3)

Here Pk(x) are the Jacobi polynomials—the eigenfunctions of the singular Sturm–
Liouville problem

((1− x2)ω(x)P ′
k(x))

′ = −λkω(x)Pk(x), −1 ≤ x ≤ 1(3.4)

with corresponding eigenvalues λk = λ
(α)
k = k(k + 2α + 1). Different families of

Jacobi polynomials are associated with different weight functions ω(x) ≡ ωα(x) :=
(1 − x2)α. To simplify the computations, we assume that the Pk’s are normalized so
that ‖Pk(x)‖ω = 1.

As in the periodic case, integration by parts (against (3.4)) shows that a single
jump discontinuity, [f ](c), dictates the decay of the Jacobi coefficients,

(3.5)

f̂k =
−1

λk

∫ 1

−1

f(x)((1− x2)ω(x)P ′
k(x))

′dx = [f ](c)
1

λk
(1− c2)ω(c)P ′

k(c) +O
(

1

λ2
k

)
.

To extract information about the location of the jump, we consider the conjugate sum
of the form

π
√

1− x2

N

N∑
k=1

µ

(
k

N

)
f̂kP

′
k(x)(3.6)

= [f ](c)
π
√

1− x2(1− c2)ω(c)

N

N∑
k=1

µ

(
k

N

){
1

λk
+O

(
1

λ2
k

)}
× P ′

k(c)P
′
k(x),

corresponding to concentration factors σ(ξ) = ξµ(ξ). We shall focus our attention on
the particular case µ(ξ) ≡ 1,

(3.7)

π
√

1− x2

N
SN (f)′(x) =

π
√

1− x2

N

N∑
k=1

f̂kP
′
k(x)

= [f ](c)
π
√

1− x2(1− c2)ω(c)

N

N∑
k=1

{
1

λk
+O

(
1

λ2
k

)}
× P ′

k(c)P
′
k(x).

This is the nonperiodic analogue of the Fourier concentration kernel Kξ
N ∗ f with the

additional prefactor weight of
√

1− x2.
We want to quantify the localization property of the last summation. To this

end we note that if {P (α)
k (x)} are the Jacobi polynomials w.r.t. the weight function
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ωα(x), then {P ′
k(x)} are the Jacobi polynomials w.r.t. the modified weight function

ωβ(x) = (1 − x2)ωα(x) with β := α + 1: indeed, their ωβ-orthogonality follows from

integration by parts of (3.4) against P
(α)
k . Thus,

P
(α)
k

′(x) = Ck,βP
(β)
k−1, β = α + 1.

The coefficients Ck,β are determined by normalization, where by using (3.4) once more
we find

1 = ‖P (α)
k ‖2

ωα
= − 1

λk

∫ 1

−1

((1− x2)ωα(x)P
(α)
k

′)′P (α)
k (x)dx =

C2
k,β

λk
‖P (β)

k−1‖2
ωβ

,

and hence we set Ck,β =
√
λk, so that {P (β)

k−1} is the orthonormal family w.r.t. ωβ

weight. Inserted into the leading term of (3.7), we end up with a Jacobi kernel
associated with weight function ωβ(x) = (1− x2)β ,

π
√

1− x2

N
SN (f)′(x) ∼ [f ](c)

π
√

1− x2ωβ(c)

N
×

N∑
k=1

C2
k,β

λk
P

(β)
k−1(c)P

(β)
k−1(x)

= [f ](c)
π
√

1− x2ωβ(c)

N
×

N∑
k=1

P
(β)
k−1(c)P

(β)
k−1(x).

We rewrite this as

π
√

1− x2

N
SN (f)′(x) ∼ [f ](c)

π
√

1− x2ωβ(c)

N
×KN (c, x).(3.8)

By virtue of the Christoffel–Darboux formula, e.g., [19, Thm. 3.2.2], the kernel
KN (c, x) is given by

KN (c, x) =
kN−1

kN

P
(β)
N (x)P

(β)
N−1(c)− P

(β)
N (c)P

(β)
N−1(x)

x− c
,

kN−1

kN
∼ 1

2
,(3.9)

and it remains to quantify the concentration property of KN (c, x). To this end we

use the asymptotic behavior of P
(β)
N which is stated as3

P
(β)
N (x) ∼ min

(√
2

πωβ+1/2(x)
, Const ·Nβ+1/2

)
=

√
2

πωβ+1/2(xN )
,(3.10)

where xN := sgn(x) · min{|x|, 1 − Const/N} denotes the separation between the
interior and boundary regions. Using this to upper bound KN (c, x) in (3.9), we find

|KN (c, x)| ≤ 1

π
√

ωβ+1/2(cN )ωβ+1/2(xN )
× 1

|x− c| , x �= c.(3.11)

3The first term on the right of (3.10) follows from the classical asymptotic formula, e.g., [19,

Thm. 12.1.4], which tells us the behavior of the L2ω-normalized P
(β)
N (x) at the interior x = cos θ√

ωβ+1/2(x)P
(β)
N (x) ∼

√
2/π cos{Nθ + γ(θ)}, x = cos θ.

The second term on the right of (3.10) reflects the fact that as x approaches the ±1-boundaries, the

L2ω-normalized P
(β)
N (x) approaches its maximal value, e.g., [19, eqs. (4.7.3), (4.7.15)]

P
(β)
N (1) =

(
N + 2λ− 1

N

)√ Γ(N + 1)(N + λ)

π21−2λΓ(N + 2λ)
Γ(λ) ∼

√
Γ(N + 2λ)(N + λ)

N !
∼ Nλ, λ = β + 1/2.
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The upper bound on the right is in fact the leading term in the asymptotics of KN (c, x)
for large N ’s as long as −1 < x �= c < 1, e.g., [19, sect. 13.4]. Similarly, the behavior
at x = c yields

KN (c, c) ∼ N + Const

πωβ+1/2(c)
, −1 < c < 1.(3.12)

The desired concentration property now follows, similar to the localization of the
periodic Dirichlet kernel DN (x− c)/N in (3.3). We restrict our attention to interior
jumps, −1 < c < 1, so that for N large enough, cN = c, and (3.11), (3.12), and (3.8)
yield

(3.13)

π
√

1− x2ωβ(c)

N
×KN (c, x) ∼




O
( √

ωα+1/2(c)√
ωα+1/2(xN )

× 1

N |x− c|

)
∼ Nα+1/2

N
, x �= c,

1, x = c.

We summarize by stating the following.
Corollary 3.1. Let SN (f) denote the truncated Jacobi expansion (3.3) of a

piecewise smooth f , associated with a weight function ωα = (1 − x2)α, −1 < α ≤ 0.
Then π

√
1− x2SN (f)′(x)/N admits the concentration property

∣∣∣∣∣π
√

1− x2

N
SN (f)′(x)− [f ](x)

∣∣∣∣∣ ≤ Const · logN

N(1− x2)α/2+1/4
,(3.14)

−1 + Const · 1

N2
< x < 1− Const · 1

N2
.

It is instructive to examine the above discussion for the special case of Chebyshev
expansion corresponding to α = − 1

2 ,

SN (f)(x) =

N∑
k=0

′f̂kTk(x), f̂k =
2

π

∫ 1

x=−1

f(x)Tk(x)√
1− x2

dx.

(Observe that except for Chebyshev expansion, the concentration bound (3.13) dete-
riorates as we approach the boundaries, depending on whether |x| ∼ 1 for α > − 1

2 or
|c| ∼ 1 for α < − 1

2 .) The conjugate sum corresponding to (3.8) reads

π
√

1− x2

N
SN (f)′(x) ∼ [f ](c)

π

N

N∑
k=1

′ 2

πk2

√
1− c2T ′

k(c)
√

1− x2T ′
k(x).

In this case, we can sum the corresponding Chebyshev kernel: setting x = cos θ and
−1 < c = cos η < 1 we find

(3.15)

π
√

1− x2

N
SN (f)′(x) ∼ [f ](c)

2

N

N∑
k=0

′ sin(kη) sin(kθ)

= [f ](c)
1

N

[
DN (θ − η)−DN (θ + η)

]
=




O( 1
N ), x �= c,

[f ](c), x = c.
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3.2.2. Chebyshev expansion. Our discussion above on edge detection in the
nonperiodic expansions is based on expansion of the Jacobi coefficients to their leading
order in (3.5). More precise information is obtained using the general framework
introduced in the main theorem, Theorem 2.1.

Corollary 3.2. Let f(·) be a piecewise smooth function with Chebyshev expan-

sion SNf(x) ∼∑′
f̂(k)Tk(x). Consider the concentration factors, σ(ξ) := ξµ(ξ), with

µ(·) normalized so that ∫ 1

0

µ(ξ)dξ = 1, µ(ξ) ∈ C2[0, 1].

Then Kσ
N (t) ∗ f(cosθ) admits the concentration property (2.2), and the following esti-

mate holds: ∣∣∣∣∣π
√

1− x2

N

N∑
k=1

µ

(
k

N

)
f̂(k)T ′

k(x)− [f ](x)

∣∣∣∣∣ = Const · logN

N
.(3.16)

Proof. With a piecewise smooth f(x) defined over the interval [−1, 1] we utilize
the usual Chebyshev transformation x = cos θ, 0 ≤ θ ≤ π. We consider the even
extension f(cos θ), −π ≤ θ ≤ π. Using Theorem 2.1 along the lines of Corollary 2.3,
we find that the odd concentration kernel, Kσ

N (t), recovers the jumps of f(cos θ), i.e.,∣∣∣∣∣−
N∑

k=1

k

N
µ

(
k

N

)
sin(kt) ∗ f(cos θ)− [f ](cos θ)

∣∣∣∣∣ ≤ Const · logN

N
.

With T ′
k(x) = −k sin kθ/

√
1− x2, a straightforward computation shows the sum on

the left equals

−
N∑

k=1

σ

(
k

N

)
sin(kt) ∗ f(cos θ) = −π

N∑
k=1

′ k
N

µ

(
k

N

)
f̂(k) sin(kθ)

=
π
√

1− x2

N

N∑
k=1

µ

(
k

N

)
f̂(k)T ′

k(x)

and the result follows.
We turn to numerical examples. The following tables summarize our results for

the edge detection in Legendre expansion, corresponding to α = 0, and in Chebyshev
expansion, corresponding to α = −1/2. Scaled to the unit interval [−1, 1], we consider
fa(

x
π ) and fb(

x
π ). The results confirm the linear convergence rate stated in Corollary

3.1, both away from the jumps—consult Tables 1 and 2—as well as at the jump itself
(Table 3).

We note that the critical threshold must be very high for N = 20, 40 to eliminate
the artificial jumps. This indicates that 40 nodes are not enough to resolve the jumps
of fb(x) in either the Chebyshev or Legendre case.

It is clear from Tables 1 and 2 that convergence is nonuniform at the boundaries.

We have observed in our numerical experiments that the edge detector, π
√

1−x2

N SN [f ]′(x),
experiences larger oscillations near the boundaries which do affect the linear conver-
gence rate there. In this context we note the dependence of the error bounds on the
smoothness of f(

√
1− x2).

The first-order convergence is reconfirmed, in Table 4 below, when measuring the
L1-error away from the jumps discontinuities (and up to the boundaries).
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Table 1
Pointwise error estimate |π√1 − x2/NSN (fa)′(x/π) − [fa](x/π)| away from the jump discon-

tinuity at x = 0.

N Legendre expansion Chebyshev expansion
x = −.998 x = −.9805 x = .5 x = .75 x = −.998 x = −.9805 x = .5 x = .75

40 .192 .112 .135 .123 3.6E-2 7.1E-2 .121 .147
80 7.7E-2 3.8E-2 .16 1.3E-2 2.1E-2 5.9E-3 .145 2.4E-2
160 7.6E-3 4.0E-3 3.1E-2 5.6E-3 5.3E-3 8.7E-3 3.3E-2 1.6E-2

Table 2
Pointwise error estimate |π√1 − x2/NSN (fb)

′(x/π)− [fb](x/π)| away from the jump disconti-
nuities at x = ± 1

2
.

N Legendre expansion Chebyshev expansion
x = −.998 x = −.9805 x = .5 x = .75 x = −.998 x = −.9805 x = .5 x = .75

40 8.0E-2 7.4E-2 5.4E-3 .45 1.3E-02 1.5E-02 9.8E-02 .56
80 .15 1.55E-2 7.0E-4 .18 1.1E-02 1.3E-02 4.5E-02 .26
160 1.6E-3 7.2E-3 3.9E-4 .12 1.8E-03 4.6E-03 2.3E-02 .12

Table 3
Pointwise error estimate |π√1 − x2/NSN (f)′(c) − [f ](c)| at the point(s) of discontinuity, x = c.

Legendre Chebyshev
N fa(0) fb(−π/2) fb(π/2) fa(0) fb(−π/2) fb(π/2)
40 1.9E-02 8.5E-02 .187 1E-2 5.3E-2 6.2 E-2
80 1.4E-03 3.9E-02 .11 1E-2 4.7E-2 2.5E-2
160 1.3E-02 1.7E-02 5.5E-02 8.7E-3 1.1E-2 2.2E-2

Table 4
L1[−1, 1] − {c} error estimate |π√1 − x2/NSN (f)′(x) − [f ](x)| away from discontinuities.

N Legendre Chebyshev
f = fa f = fb f = fa f = fb

40 .16 .25 .156 .27
80 8.3E-2 .13 8.4E-2 .12
160 4.4E-2 6.8E-2 4.6E-2 6.9E-2

4. Nonlinear enhancement. The detection of edges in Theorem 2.1 is based
on separation of scales. Thus, consider for example a piecewise smooth f with finitely
many jump discontinuities at x = c1, c2, . . . , cn. If Kε is an admissible concentration
kernel, then |Kε ∗ f(x)| � 1 for x away from these jumps, whereas at x = cj , Kε ∗
f(x)x=cj

∼ O(1),

Kε ∗ f(x) =

{ O(ε), x �= c1, c2, . . . ,
[f ] (cj), x = cj .

(4.1)

The last statement refers to the asymptotic behavior of the concentration kernel
as a function of the small parameter ε ↓ 0. In this section we outline a new, nonlin-
ear enhancement procedure, which is easily implemented to “pinpoint” finitely many
edges in piecewise smooth f ’s.

To this end we enhance the separated scales in (4.1) by considering

ε−
p
2 (Kε ∗ f(x))p =

{ ∼ Const · ε p
2 , x �= c1, c2, . . . ,

([f ](cj))
p · ε− p

2 , x = c1, c2, . . . .
(4.2)
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By increasing the exponent p > 1, we enhance the separation between the vanishing
scale at the points of smoothness (of order O(ε

p
2 )) and the growing scale at the jumps

(of order O(ε−
p
2 )).

Next, one must introduce a critical threshold which will eliminate all the unac-
ceptable jumps. Only those edges with amplitudes larger than the critical threshold,

[f ](x) > J
1/p
crit

√
ε, will be detected. Thus J = Jcrit is a measure which defines the

small scale in our computation of edge detection. We note that J = Jcrit is data
dependent and is typically related to the variation of the smooth part of f .

Given this critical threshold, we form our enhanced concentration kernel Kε,J [f ]

Kε,J [f ](x) =

{
Kε ∗ f(x) if ε−

p
2 |Kε ∗ f(x)|p > Jcrit,

0 otherwise.
(4.3)

Clearly, with p large enough, one ends up with a sharp edge detector where
Kε,J [f ](x) = 0 at all but O(ε) neighborhoods of the jumps x = c1, c2, . . . . In practical
applications, a moderate enhancement exponent, p ≤ 5, will suffice. We consider two
examples.

1. The quadratic filter. Consider the peaked concentration kernel (2.9) Kε(t) =
φ′
ε(t). Then, with p = 2, one finds the so-called quadratic filter [12], [22],

where

(Kε ∗ f(x))2 = (φ′
ε ∗ f(x))2 → [f ]2(x).(4.4)

2. Enhanced spectral concentration kernels. We apply the procedure of nonlin-
ear enhancement in conjunction with spectral concentration kernels Kε =
Kσ

N (t) := −∑N
k=1 σ( k

N ) sin kt by considering the corresponding enhanced
spectral concentration kernel

Kσ
N,J =

{
Kσ

N ∗ SNf(x) if ε−
p
2 |Kσ

N ∗ SN (x)|p > Jcrit,
0 otherwise.

The enhanced spectral concentration kernel depends on four ingredients which
are at our disposal:
• The number of modes, N ;
• The enhancement exponent, p;
• The critical threshold, J ;
• The concentration factor, σ(ξ).

Figures 5 and 6 demonstrate the enhancement procedure to the spectral detection
of edges depicted earlier in the corresponding Figures 2 and 1.

We conclude with nonperiodic examples. In Figure 7 we show the detection of
a single edge in fa(x/π) from its Legendre expansion,

∑
(f̂a)kPk(x). The detection

in Chebyshev expansion is shown in Figure 8 for fb(x/π). In both cases we used an
enhancement factor p = 2 and a critical threshold J = 5.

5. Concluding remarks. Accurate reconstruction of piecewise smooth func-
tions from their spectral projections is plausible only when the location (and ampli-
tude) of the underlying jump discontinuities are known; consult [1], [7], [5], [6], [10],
[16], [21], [11], and references therein.

Theorem 2.1, and its Corollaries 2.3 and 3.1, provide the general framework for
the detection of edges from spectral data, in both periodic and nonperiodic cases.
The detection is based on admissible concentration kernels which include as particu-
lar cases classical examples of Fejér as well as additional examples in recent literature
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Fig. 5. Jump value obtained by applying the polynomial concentration factor σ(ξ) = ξ with
N = 40 with enhancement exponent p = 2 for (a) fa(x), where the exact jump value is [f ](0) = −2
and (b) fb(x), where the exact jump values are [f ](±π

2
) = ±√

2.
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Fig. 6. Jump value obtained by applying the trigonometric concentration factor σ1(ξ) = sin ξ
Si(1)

with N = 40 modes and enhancement exponent p = 2 for (left) fa(x), where the exact jump value
is [f ](0) = −2 and (right) fb(x), where the exact jump values are [f ](±π
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Fig. 7. Detection of edges in Legendre expansion of fa(x/π) with exact jump value is [fa](0) =
−2 (left) before and (right) after enhancement with p = 2 and J = 5.
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Fig. 8. Detection of edges in Chebyshev expansion of fb(x/π) with exact jump value is
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2 (left) before and (right) after enhancement with p = 2 and J = 5.

[1], [9], [13]. In particular, we introduce here a new family of exponential concentra-
tion kernels, (2.23), with a superior convergence rate away from the edges. A linear
convergence rate is observed near the detected edges. We also introduce a nonlinear
enhancement (4.3) procedure which enables one to “pinpoint” edges with amplitude
larger than a critical threshold.

Recently, the edge detection and enhancement method was applied to nonlinear
conservation laws [20], [8] as a postprocessing tool to improve the overall convergence
rate of the spectral viscosity solution. Since the edge detection occurs only at the
postprocessing stage, very little cost is added to the procedure yet the results are
dramatically improved. Future applications, in both one- and several-space dimen-
sions, will also include image processing, where edge detection is needed to denoise the
contamination by the O(1)-Gibbs oscillations in the neighborhoods of the undetected
edges.
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