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Artificial insemination (AI) has been developed in multiple felid species as a tool 

for retaining gene diversity in threatened or endangered populations.  Yet, pregnancy 

success remains low (< 5%) following AI in most felids, particularly in species that 

spontaneously ovulate.  This failure has been attributed to variable ovarian status at the 

time of insemination and adverse residual effects caused by exogenous gonadotropins 

used to induce ovulation.  Using the domestic cat as a research model, a new AI 

regimen that incorporated short-term ovarian suppression with oral progestin 

(altrenogest; ALT) before ovulation induction was investigated.  The hypothesis was that 

oral progestin priming would prevent spontaneous ovulation, improve ovarian 

responsiveness to exogenous gonadotropins and mitigate adverse effects caused by 

persistent gonadotropin actions.  Specific objectives were to: (1) increase fundamental 

understanding of the mechanisms controlling ovarian function; and (2) characterize how 

oral progestin priming prior to exogenous gonadotropin treatment influences ovarian 

responsiveness, fertilization, early embryonic development and luteal function in the cat.   

Fecal hormone monitoring was used to establish an ALT dosage that provides 

rapid, reversible ovarian suppression with no residual effects on estrous cyclicity.  With 

this information, the influence of progestin priming on ovarian responsiveness to 

exogenous gonadotropin dosage was investigated.  Priming increased ovarian sensitivity 



  

to gonadotropins, supporting the use of lower dosages for ovulation induction.  Next, in 

vivo fertilization success and in vitro early embryonic development was characterized 

following laparoscopic, intrauterine AI in cats treated with ALT.  Progestin-primed 

females demonstrated a good ovarian response to ovulation induction and more 

consistent embryonic development, compared to cats treated with gonadotropins alone.  

Furthermore, endocrine data revealed that normal luteal progesterone levels were 

maintained only in queens primed with the oral progestin.  Finally, histology and 

quantitative RT-PCR were used to characterize the differential effects on luteal function 

observed.  Aberrant CL progesterone production was not associated with changes in 

ovarian morphology, or the expression of six specific genes associated with luteal 

function and progesterone biosynthesis.  Overall, these studies increased knowledge of 

domestic cat reproductive physiology and improved understanding of ovarian 

suppression for enhanced AI efficiency in felids.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 

PRIMING WITH ORAL PROGESTIN BEFORE OVULATION INDUCTION FACILITATES 
OVARIAN FUNCTION IN THE CAT (FELIS CATUS) 

 
 

by 
 
 

Rosemary Aileen Bauer 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
 
Professor Mary Ann Ottinger, Chair 
Adjunct Professor JoGayle Howard 
Professor Tom Porter 
Associate Professor Carol Keefer 
Professor James Dietz 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© Copyright by 

 
Rosemary Aileen Bauer 

 
2007 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For my parents, who believed in me every step of the way. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 ii  

ACKNOWLEDGEMENTS 

 

I was fortunate to have two advisors to guide me through this process with 

unending encouragement and enthusiasm.  JoGayle, your dedication to this field is 

unmatched by anyone I have met - I am so grateful for the many opportunities you have 

afforded me over the past six years.  Mary Ann, you kept me on track while giving me 

the freedom I needed to conduct this research project - I cannot thank you enough for 

your support.  To my committee members at University of Maryland, Drs. Tom Porter, 

Carol Keefer and Jim Dietz - thank you for your helpful advice and input on my 

dissertation research.  I also would like to recognize Dr. Theo Colborn, who gave me my 

first job in wildlife conservation and was instrumental in my decision to attend graduate 

school.   

I would like to thank my numerous mentors at the Smithsonian’s National Zoo 

and its Conservation and Research Center (CRC), who were instrumental in developing 

my skills as both a scientist and an advocate for conservation during my Ph.D. program: 

Drs. David Wildt, Katey Pelican, Buddha Pukazhenthi, Adrienne Crosier, Nucharin 

Songsasen, Pierre Comizzoli, Janine Brown and Steven Monfort.  You all have played a 

role in my training and I am so grateful for your guidance and support.  And to the team 

of colleagues at CRC who assisted with my doctoral research - I thank Lena May Bush, 

Cathi Morrison, Stacey Wise, Michele Sommers, Lisa Ware, David Kersey, Nicole 

Abbondanza, Karen Steinman, Nicole Presley, Wynne Collins, Ryan Berger, Kate 

MacKinnon and Bernardo Mesa.  I also thank my colleagues at the University of 

Maryland- Brandon Sitzmann, Laura Ellestad, Nikki Thompson and Meredith Barton - for 

their assistance and expertise during the later phases of my research.  

I am lucky to have a terrific group of friends who provided me with constant 

laughs, much-needed diversions, food, and even a roof over my head at times during 



 iii  

graduate school.  To Jessica Kersey, who I met on the day I moved to Front Royal- you 

always reminded me to take time for myself and as a result I managed to stay (relatively) 

sane throughout this process- thank you!  I also thank Dessa Dal Porto, Allison Clay, 

Adrienne Crosier, Lisa Ware, Jordana Meyer, Warren Lynch, Ryan Berger, Dave Kersey 

and Jonathan Aaltonen for filling my times outside of the lab at CRC with great times and 

happy memories.  And to my St. Mary’s girls, who always believed I could do this, even 

during the times when I wasn’t so sure myself - I am so grateful for your friendship and 

loyalty.  

Quite simply, I could not have completed this Ph.D. program without the love and 

support of my family.  I know leaving a great job to go work in a poop lab didn’t make 

much sense, but you never questioned my decision and you were always there for me.  

Mom and Dad- from the time I was a child, you fostered my interest in science and told 

me I could do anything I put my mind to.  I also thank my brother Michael for his ability to 

make me laugh in almost any situation and for saving me during many a computer crisis.  

To my second family, the Stewarts, thank you so much for your encouragement during 

this process.  And finally, to Chad Stewart - I never thought I would meet someone to 

share my life with in Front Royal, but then one day I looked up from my desk and there 

you were.  Through this all you have been my strongest ally and my greatest source of 

resilience - thank you so much for your love, patience and understanding.   

 
 
 

 

 

 
 
 
 
 



 iv  

TABLE OF CONTENTS 
 
 
List of Tables ……………………………………………..…………………………….……      v  
 
 
List of Figures ……………………………………………………………….………………      vi 
 
 
List of Abbreviations …………………………………………….……………………….…    viii 
 
 
Chapter I: Introduction and Literature Review ……………………………….…….       1 
 
 
Chapter II: Oral Progestin Induces Rapid, Reversible  

Suppression of Ovarian Activity in the Cat ……………………………..    39 
 
 
Chapter III:  Oral Progestin Priming Eliminates Spontaneous Ovulation and  

Increases Sensitivity to Exogenous Gonadotropins in the Cat ………..   65 
 
 
Chapter IV:  Oral Progestin Priming Before Exogenous Gonadotropins  

and Artificial Insemination Enhances Early Embryonic  
Development and Luteal Function in the Cat ……………………………  99  

 
 

Chapter V: Molecular and Morphological Characteristics Associated with Luteal 
Insufficiency in the Cat ……………………………………………...…….  128 

 
 
Chapter VI:  Summary and Future Directions ……………………………………………  153 
 
 
Appendices…………………………………………………………………………………… 164 
 
 
References…………………………………………………………………………………… 184 
 
 
 

 

 

 

 
 
 



 v  

LIST OF TABLES 
 
 
Table 2.1 Domestic cat reproductive traits before altrenogest treatment,  

assessed by longitudinal fecal steroid analyses.  ………………………   56 
 
Table 3.1 Domestic cat reproductive traits before exogenous hormone treatment  

in induced versus spontaneous ovulators, assessed by longitudinal  
fecal steroid analyses ………………………………………….………..…   86 

 
Table 3.2 Ovarian response to low and high dosages of exogenous gonadotropins 

in altrenogest-primed versus unprimed females, as assessed by 
laparoscopic examination on Day 2 (Day 0 = day of hCG) ……………   87 

 
Table 3.3 Estrous cycle traits before and after exogenous gonadotropin treatment  

in altrenogest-primed and unprimed females, as assessed by  
fecal steroid monitoring …………………….………………………………  88 

 
Table 4.1   Sperm traits from two males used as artificial insemination donors …. 118 
 
Table 4.2 Laparoscopic ovarian response on the day of artificial insemination in 

altrenogest-primed versus unprimed females ………...…………………119 
 
Table 5.1 Gene primer sequences used for qRT-PCR analyses…………………  144 
 

 

 

 

 

 

 

 

 

 

 

 



 vi  

LIST OF FIGURES 
 
 
Figure 2.1 Influence of altrenogest on longitudinal fecal estrogens    ………….  57-58 
 
Figure 2.2 Influence of altrenogest dosage on number of fecal estrogen  

peaks before, during and after treatment   ……………………………      59 
 
Figure 2.3 Effect of altrenogest dosage on baseline fecal estrogens and baseline 

fecal progestins before, during and after treatment …………….……      60 
 
Figure 2.4 Representative fecal steroid profiles before, during and after  

altrenogest treatment  ………………………………………………..…  61-62 
 
Figure 2.5 Comparison of inhibition duration following altrenogest treatment ……  63 
 
Figure 2.6 Variation in return to follicular activity following treatment with  

altrenogest    …………………………………………………………….…    64 
 
Figure 3.1 Day 2 laparoscopic ovarian grading system ……………………………    89 
 
Figure 3.2 Effect of low and high gonadotropin dosages on diameter of fresh  

corpora lutea and number of mature follicles on Day 2.  ….……..……    90 
 
Figure 3.3 Accessory corpora lutea development observed in representative 

laparoscopic photos of the right ovary from the same individual on  
Day 2 and Day 17 …………………………………………………………    91 

 
Figure 3.4 Representative fecal steroid profiles in altrenogest-primed females 

treated with LOW (50 IU eCG/37.5 IU hCG) gonadotropins……………  92 
 
Figure 3.5 Representative fecal steroid profiles in unprimed females treated  

with LOW (50 IU eCG/37.5 IU hCG) gonadotropins ………………… 93-94 
 
Figure 3.6 Representative fecal steroid profiles in cats treated with HIGH  

(100 IU eCG/75 IU hCG) gonadotropins ………………………….……..   95 
 
Figure 3.7 Corpora lutea histomorphology on Day 17 ………………………………  96 
 
Figure 3.8 Histomorphology of ovarian follicles observed on Day 17 ……………… 97 
 
Figure 3.9 Luteal progesterone concentration in individual corpora lutea  

recovered on the day of ovariohysterectomy (Day 17 post-hCG  
or natural breeding) ………………………………………………………...  98 

 
Figure 4.1 Laparoscopic ovarian grading system used to determine suitability  
 for AI ………………………………………………………………………… 120 
 
Figure 4.2 Representative photos of an unfertilized oocyte and embryos  

recovered in the oviduct on Day 5  ………………………………………  121 
 



 vii  

Figure 4.3 Embryonic stage on the day of oviductal flush (Day 5 post-hCG) …… 122 
 
Figure 4.4 Representative photos of an unfertilized oocyte in  

metaphase II and blastocysts cultured in vitro …………………………  123 
 
Figure 4.5 Luteal progesterone concentration in corpora lutea recovered on  

Day 5 post-hCG in altrenogest-primed and control cats………………   124   
 
Figure 4.6 Corpora lutea histomorphology on Day 5 ………………………………  125 
 
Figure 4.7 Histomorphology of ovarian follicles observed on Day 5 ……………… 126 
 
Figure 4.8 Oviductal and uterine histomorphology on Day 5 ……………………… 127 
 
Figure 5.1 Schematic representation of the genes chosen for qRT-PCR  

analyses and their involvement in progesterone biosynthesis  
in the domestic cat ………………………………………………………… 145 

 
Figure 5.2 RNA gel electrophoresis of representative domestic cat corpora  

lutea RNA extracts ………………………………………………………..   146 
 
Figure 5.3 Representative histomorphology of ovarian follicles ………………….   147 
 
Figure 5.4 Corpora lutea surface area expressed in pixels (x103) following  

ovariohysterectomy on Day 5 or Day 17 ………………………………..  148 
 
Figure 5.5 Corpora lutea central cavities observed on Day 5 ………………..…...  149 
 
Figure 5.6 Luteal cell density on Day 5 and Day 17 ……………………………….   150 
 
Figure 5.7 Relative mRNA expression of steroidogenic acute regulatory protein 

(sTAR), cholesterol side-chain cleavage enzyme (CYP11A1) and  
3-beta hydroxysteroid dehydrogenase (3β-HSD) ……………………… 151 

 
Figure 5.8 Relative mRNA expression of progesterone receptor (PR), prolactin 

receptor (PRLR) and luteinizing hormone receptor (LHR)  …………… 152  
 
Figure 6.1.   Influence of oral altrenogest priming and exogenous gonadotropins  

on ovarian morphology and function in the domestic cat……………… 163 
 
 
 
 

 

 

 



 viii  

LIST OF ABBREVIATIONS 

 
3β-HSD 3-beta hydroxysteroid dehydrogenase 
 
AI  artificial insemination 

ALT  altrenogest 
 
BSA  bovine serum albumin 
 
cDNA  copy deoxyribonucleic acid 
 
CH  corpora hemorrhagica 
 
CL  corpus luteum or corpora lutea 
 
CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1; scc 
 
DNA  deoxyribonucleic acid 
 
E  estradiol or estrogens 
 
E1S  estrone sulfate 
 
EC  estrogen conjugate 
 
eCG   equine chorionic gonadotropin 
 
EIA  enzyme immunoassay 
 
ERα  estrogen receptor alpha 
 
ET   embryo transfer 
 
FCS  fetal calf serum 
 
FSH  follicle stimulating hormone 
 
GAPDH glyceraldehyde 3-phosphate dehydrogenase 
 
GnRH  gonadotropin releasing hormone 
 
i.m.  intra-muscular 
 
IU  international unit 
 
IVF   in vitro fertilization 
 
LH  luteinizing hormone 
 



 ix  

LHR  luteinizing hormone receptor 
 
MHC  major histocompatibility complex 
 
mRNA  messenger ribonucleic acid 
 
NCBI National Center for Biotechnology Information 
 
OD  optical density  
 
P  progesterone or progestins 
 
PBS  phosphate-buffered saline 
 
PG  pregnane 
 
PR  progesterone receptor 
 
PRLR  prolactin receptor 
 
qRT-PCR quantitative real-time reverse transcriptase polymerase chain reaction 
 
RIA  radioimmunoassay  
 
RT-PCR reverse transcriptase polymerase chain reaction 
 
scc  side chain cleavage enzyme 
 
SEM  standard error of the mean 
 
sTAR  steroidogenic acute regulatory protein 
 
UFO  unfertilized oocyte 
 
UTJ  uterotubal junction 
 
VEGF  vascular endothelial growth factor 
 
 
 
 
 
 



1 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Overview 

 

The domestic cat (Felis catus) is a valuable research model for understanding 

complex reproductive mechanisms and developing assisted breeding techniques for 

endangered felids.  The cat also plays an important role in human biomedical and 

genetics studies.  Indeed, domestic cat research provides a unique opportunity to 

document previously uncharacterized physiological processes and apply these data in 

applications relevant to felid reproduction, animal conservation and human health.          

Developing safe and effective approaches to sustaining populations of 

endangered cats is a priority of conservation biologists and the zoological community 

(Wildt and Roth, 1997; Swanson, 2006).  Equally important is the value in maintaining 

feline biomedical models that exhibit reduced reproductive capacity (Howard et al., 

1992c; Critser and Russell, 2000).  In cats, prominent methods used to assist 

reproduction include artificial insemination (AI) and in vitro fertilization (IVF) followed by 

embryo transfer (ET).  These techniques circumvent mate incompatibility and poor 

breeding performance, reduce the need for costly animal transfers and provide the 

potential for introducing new genes from genetically valuable individuals into breeding 

populations (Howard, 1999).  

Offspring have been produced in the cheetah (Howard et al., 1992b), ocelot 

(Swanson et al., 1996b), clouded leopard (Howard et al., 1996), tiger (Donoghue et al., 

1993), puma (Barone et al., 1994b), leopard cat (Howard, 1991), snow leopard (Roth et 

al., 1997a) and tigrina (Swanson and Brown, 2004) using a minimally-invasive 

laparoscopic intrauterine AI technique first developed in the domestic cat (Howard et al., 
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1992a).  IVF and ET also have been successful in felids, resulting in births in the tiger 

(Donoghue et al., 1990), African wild cat (Pope et al., 2000), ocelot (Swanson and 

Brown, 2004), caracal (Pope et al., 2001), fishing cat (Pope et al., 2006a) and domestic 

cat (Goodrowe et al., 1988b).  These assisted breeding techniques also have been used 

to develop and refine methods for maintaining populations of domestic cat models for 

hereditary disease (Swanson et al., 2000; Magarey et al., 2006).   

Despite success with assisted reproduction in felids, incidence of pregnancy 

following AI and IVF/ET remains inconsistent (Pelican et al., 2006b).  Much of this 

variability can be related to the two ovulation mechanisms observed in individuals of the 

Felidae: induced or spontaneous ovulation.  Spontaneous ovulation can be continuous 

(e.g. ovulation following each follicular phase) or intermittent.  The cheetah and ocelot 

are induced ovulators and demonstrate AI efficiencies of approximately 45% and 25%, 

respectively (Swanson et al., 1996b; Howard et al., 1997).  In contrast, AI success is 

less than 5% in clouded leopards and 0% after eight attempts in the fishing cat, both 

spontaneous ovulators (Howard et al., 1996; Bauer et al., 2004).  IVF/ET in fishing cats 

has provided only marginally better success (< 10%) (Pope et al., 2006a).   

Spontaneous ovulation frequently leads to an inconsistent ovarian response after 

exogenous gonadotropin stimulation for AI or oocyte retrieval.  Subsequently, 

establishment of pregnancy is more difficult to achieve.  However, other factors also 

must be considered when uncovering the etiology of pregnancy failure following 

ovulation induction and assisted reproduction, demonstrated by low (< 5%) AI success in 

the tiger, an induced ovulator (Graham et al., 2006).  In addition to inconsistent ovarian 

response, causes for pregnancy failure can include poor oocyte and/or sperm quality, 

ovarian hyperstimulation, ancillary folliculogenesis, abnormal endocrine dynamics and 

procedural errors. 
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Short-term ovarian suppression before ovulation induction may improve assisted 

reproduction in felids.  This approach has been used in humans (Burry et al., 1991; 

Barbieri and Hornstein, 1999), marine mammals (Robeck et al., 2004; Robeck et al., 

2005), the cow (Patterson et al., 1997; Xu and Burton, 1999), horse (Lofstedt, 1988), pig 

(Wood et al., 1992) and sheep (Deligiannis et al., 2005).  The temporary down-regulation 

of follicular activity can enable a more uniform ovarian response at the time of 

insemination, oocyte retrieval or embryo transfer.  There also is evidence that agents 

used for ovarian suppression mitigate adverse effects caused by gonadotropin 

administration (Kol, 2004; Oshima et al., 2004).  Several exogenous hormones have 

been used in mammals to down-regulate follicular activity, including progestins, 

prostaglandins and GnRH analogs.  In the cat, progestins are optimal for ovarian 

suppression, compared to GnRH analogs or prostaglandins (Wildt et al., 1979b; Pelican 

et al., 2005).  Furthermore, progestins have been used successfully to suppress ovarian 

activity before assisted breeding without negatively affecting subsequent ovarian 

response to exogenous gonadotropins or oocyte quality (Pelican et al., 2001; Pelican et 

al., 2007).  However, the influence of progestin priming on ovarian sensitivity to 

gonadotropin dosage, in vivo early embryonic development and implantation following AI 

has not been previously studied in the cat.  

  Understanding the factors regulating pregnancy establishment in the cat 

following progestin priming, ovulation induction and assisted reproduction could improve 

these techniques.  This research project employed a multi-disciplinary approach aimed 

at investigating these techniques more closely in the context of four distinct studies.  In 

Study 1, the effect of different dosages of an oral progestin (altrenogest; ALT) on ovarian 

activity was evaluated in the domestic cat.  In Study 2, the influence of progestin priming 

on ovarian sensitivity to exogenous gonadotropins was investigated through 

assessments of ovarian responsiveness, endocrine dynamics and corpora lutea (CL) 
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function.  Study 3 focused on characterizing in vivo fertilization efficiency, subsequent 

early embryonic development, and ovarian morphology and function following progestin 

priming and AI.  In Study 4, archived reproductive tissues were assessed to understand 

differences in ovarian form and function using histology and gene expression analyses.  

The overall goal of these studies was to increase understanding of fundamental feline 

reproductive physiology and provide the data necessary to develop refined hormone 

regimens for ovulation induction in the cat.  Results from these studies also can be used 

to modify assisted reproduction techniques in both wild felids and domestic cat 

biomedical models.  

   

The Domestic Cat Model 

 

 Biomedical research.  The domestic cat is a research model for understanding 

mechanisms of disease and developing appropriate therapies.  Cats exhibit numerous 

physiological abnormalities that parallel human conditions, such as obesity (Hoenig, 

2006), retinal degeneration (Seeliger and Narfstrom, 2000), islet amyloidosis (Hoenig et 

al., 2000), cardiomyopathy (Fox et al., 2000), pulmonary fibrosis (Williams et al., 2004), 

filariasis (Grenfell et al., 1991), drug-induced hypersensitivity reactions (Uetrecht, 2005), 

asthma (Norris Reinero et al., 2004; Kurucz and Szelenyi, 2006) and cancer (Rohn et 

al., 1996; McNiel, 2001; Porrello et al., 2006).  Furthermore, they serve as a model for at 

least 40 heritable human disorders (O'Brien et al., 2002), including diabetes mellitus 

(Rijnberk et al., 2003; Henson and O'Brien, 2006), mucopolysaccharidosis (Haskins et 

al., 1983), spinal muscular atrophy (He et al., 2005), polycystic kidney disease (Lyons et 

al., 2004), mucolipidosis (Mazrier et al., 2003), glycogen storage disease (Fyfe et al., 

1992) and Niemann-Pick disease (Somers et al., 2003).  Feline models also have been 

utilized for the development and evaluation of novel disease treatments including bone 
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marrow transplantation (Simonaro et al., 1999), gene therapy (Ellinwood et al., 2004; 

Vite et al., 2005; Casal and Haskins, 2006) and enzyme replacement (Byers et al., 

2000).   

The domestic cat has been studied extensively because it can contract an 

acquired immunodeficiency syndrome (AIDS) similar to that in humans (Willett et al., 

1997).  The progressive decline in immune function associated with this disease is the 

result of infection with feline immunodeficiency virus (FIV), a complex lentivirus that 

shares similar transmission and pathogenesis characteristics with human 

immunodeficiency virus (HIV) (Burkhard and Dean, 2003).  The FIV model has enabled 

numerous in vivo investigations that are relevant to HIV/AIDS research, including studies 

on cytokine modulation (Dean et al., 2006), vaccine development (Dunham, 2006), 

perinatal transmission (Johnson et al., 2001; Weaver et al., 2005; Jayaraman and 

Haigwood, 2006) and transmission via semen and artificial insemination (Jordan et al., 

1996; Jordan et al., 1998).  Feline infectious peritonitis virus (FIP) and feline leukemia 

virus (FeLV), which are prevalent in feral cat populations, also have been studied to 

provide increased understanding of viral pathogenesis and immune response (Hardy et 

al., 1980; Weiss and Scott, 1981; Miyazawa, 2002; de Groot-Mijnes et al., 2005).  The 

discovery that domestic cats are susceptible to avian influenza A (H5N1), either through 

consumption of infected birds or direct contact with an infected conspecific, has sparked 

interest in uncovering the role cats play in H5N1 transmission among poultry farms and 

from poultry to humans (Kuiken et al., 2004; Rimmelzwaan et al., 2006).  The cat also 

serves as a research model for severe acute respiratory syndrome (SARS) and may be 

useful for testing new antiviral drugs under development to combat this corona virus 

(Martina et al., 2003).    
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 Genetics research.  The cat is an important model for interpreting the function 

and regulation of the human genome (O'Brien et al., 1999; O'Brien et al., 2001).  While 

murine models have been the focus of much genetic research, the cat genome is three 

to four times less rearranged than the mouse or rat genome, compared to humans 

(O'Brien et al., 2002).  As a result, the feline genome displays high levels of syntenic 

conservation relative to humans (Murphy et al., 2000) and serves as a useful reference 

for comparative genome analyses (Murphy et al., 2007).  Cats also have been the 

subject of extensive molecular and evolutionary study of the major histocompatibility 

complex (MHC) (O'Brien and Yuhki, 1999), a cluster of loci encoding for immune 

response on the surface of most cell types.  The high levels of DNA sequence homology 

between the human, murine and feline MHC are striking (Yuhki et al., 2003).  Equally 

interesting are comparisons in MHC diversity among different species of the Felidae 

family (O'Brien, 1994).  Studies suggest that reduced allelic diversity at the MHC (via 

inbreeding) is correlated with increased susceptibility to infectious disease and 

congenital defects in the cheetah (Acinonyx jubatus), Asiatic lion (Panthera leo persica) 

and Florida panther (Puma concolor coryi) (O'Brien and Yuhki, 1999).   

 Genetic analyses have been used to characterize population dynamics and 

genetic variation in highly elusive species or subspecies where limited information exists.  

In the case of the Tanzanian leopard (Panthera pardus), microsatellite analyses of pelt 

samples revealed high genetic variation and a stable effective population size, indicating 

that this species was actually less susceptible to ecological disruptions that had plagued 

other carnivores in the same habitat (Spong et al., 2000).  The development of feline 

microsatellite maps for genetic studies (Menotti-Raymond et al., 2003) also has led to 

interesting applications in the field of human forensics (O'Brien et al., 2002).  In one 

case, a murder suspect was implicated because his pet cat’s hair was positively 

identified on a leather jacket stained with the victim’s blood (Menotti-Raymond et al., 
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1997).  Advances in genetic techniques also have enabled a more comprehensive 

understanding of the phylogeny and divergence of living species within the Felidae 

family (Mattern and McLennan, 2000; Johnson et al., 2006).   

 

Infertility research.  There is evidence that domestic cat research could increase 

understanding of certain human infertility disorders.  Their placental morphology is 

different, but cats share similar mechanisms of trophoblast invasion during the early 

stages of implantation, making them an interesting model for understanding the 

requirements of human pregnancy establishment (Carson et al., 2000).  The cat 

placenta, like the human placenta, is capable of explant regrowth in culture and could 

prove useful for studying placental function (Jones et al., 2005).  Cats also serve as an 

animal model for studying lentivirus-induced reproductive failure (Coats, 2005; Weaver 

et al., 2005).  Additionally, following ovulation induction with exogenous gonadotropins 

the queen can exhibit poor embryo quality, ovarian hyperstimulation and alterations in 

oviductal transport, similar to human females (Roth et al., 1997b; Graham et al., 2000).   

In males, domestic and non-domestic cats can display teratospermia, a 

phenomenon also observed in humans, where greater than 40% of sperm in serial 

ejaculates are structurally abnormal (Howard, 1993; Pukazhenthi et al., 2001).  The 

etiology and implications of teratospermia in felids have been assessed at both the 

macrocellular and subcellular level, providing a useful database of information on this 

disorder (Howard et al., 1990; Howard et al., 1991; Howard et al., 1993a; Pukazhenthi et 

al., 1996; Pukazhenthi et al., 1998a; Pukazhenthi et al., 1998b; Pukazhenthi et al., 1999; 

Penfold et al., 2003).  Efforts to characterize molecular mechanisms regulating 

spermatogenesis and spermiogenesis in normo- versus teratospermic cats have been 

initiated and are yielding valuable information (Pukazhenthi et al., 2006b).  Additionally, 

technologies aimed at restoring fertility, such as testis xenografting (Snedaker et al., 
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2004) and spermatogonial stem cell transplantation (Kim et al., 2006), are under 

development (Pukazhenthi et al., 2006a).  Xenografting of testis tissue from a domestic 

cat donor to an immunodeficient mouse host has resulted in complete feline 

spermatogenesis (Snedaker et al., 2004).  Such advances could benefit similar research 

in humans to identify options for safeguarding fertility before cancer therapy.   

 

 Zoological applications.  Most of the 39 wild cat species are classified as 

endangered in all or part of their native range (Wozencraft, 2005).  Wild felid populations 

are declining primarily due to habitat loss, poaching, pollution and viral epidemics 

(Nowell and Jackson, 1996).  One result of such decline is poor gene flow, which leads 

to inbreeding depression and, ultimately, risk of extinction (O'Brien, 1994).  An 

extensively studied example of this phenomenon is the cheetah, which underwent a 

significant population bottleneck ~10,000 years ago.  Today, the cheetah exhibits low 

genetic heterozygosity (O'Brien et al., 1983) and males consistently produce a high 

proportion of structurally abnormal sperm (> 70% per ejaculate) (Wildt et al., 1993; 

Crosier et al., 2007).  Similar evidence of inbreeding depression and teratospermia is 

observed in the Florida panther, a subpopulation of the puma, which has low levels of 

genetic diversity due to concurrent geographic isolation and significant population 

decline (Barone et al., 1994a).  Conservation attention also has been directed at the 

critically-endangered Iberian lynx (Lynx pardinus), which has suffered the effects of a 

severe population bottleneck coupled with rapid reductions in population size (Johnson 

et al., 2004).    

 The domestic cat is an important model for improving the reproduction, 

management and conservation of wild felids.  Basic research in the domestic cat can be 

valuable when a limited number of non-domestic individuals are available for study 

(Wildt and Roth, 1997).  Additionally, this research is often necessary to ensure the 
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safety and efficacy of new techniques before they are applied in endangered individuals.  

Accordingly, domestic cats have been studied extensively to evaluate techniques, 

including gamete/embryo cryopreservation, AI, IVF/ET and non-invasive fecal hormone 

monitoring (Brown, 2006; Swanson, 2006), which ultimately enhance reproductive 

success in a host of wild felids. 

 

Felid Reproductive Physiology 

 

 Female domestic cats.  Free-ranging queens are seasonally polyestrous, long-

day breeders with onset of puberty generally occurring at seven to 10 months of age 

(Concannon, 1991; Tsutsui et al., 2004b).  Photoperiod, geographic location, breed and 

environment have been implicated in regulating pubertal onset and seasonality in the 

female cat (Goodrowe et al., 1989; Tsutsui et al., 2004b).  Maintaining queens in 

photoperiod-controlled conditions (12-h light:12-h dark daily) allows year-round cycling 

(Wildt et al., 1979a).  Although historically classified as induced (reflex) ovulators, 

requiring cervical stimulation during estrus to elicit ovulation, a high incidence of 

spontaneous ovulation (either intermittent or constant) has been observed in both group-

housed and single-caged queens in a laboratory setting (Lawler et al., 1993; Gudermuth 

et al., 1997; Pelican et al., 2005).  Spontaneous ovulation also has been observed in 

non-domestic felids, including the fishing cat (Moreland et al., 2002), clouded leopard 

(Brown et al., 1995), lion (Graham et al., 1993), margay (Moreira et al., 2001) and 

leopard (Brown et al., 2001).  The etiology and physiological mechanism regulating 

spontaneous ovulation in cats is poorly understood and warrants further investigation.  

Age, non-sexual physical interactions, self-stimulation, uterine pathology and 

pheromonal influences all have been implicated (Gudermuth et al., 1997).  Additionally, 
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there may be an evolutionary component to this phenomenon (Lariviere and Ferguson, 

2003).    

 Numerous studies have examined behavioral, endocrine and physiological traits 

across the feline estrous cycle.  Proestrus is short (1-2 days) and characterized by the 

presence of flat, clear ovarian follicles, vaginal cornification and increasing serum 

estradiol (Shille et al., 1979; Wildt et al., 1999; Bristol-Gould and Woodruff, 2006).  The 

female generally becomes more active during proestrus but refuses copulation attempts 

by the male (Goodrowe et al., 1989).  During estrus (typically 6 to 7 days), serum 

estradiol increases to > 20 ng/ml as advanced follicular development occurs in several 

dominant follicles (> 2 mm in diameter) (Wildt et al., 1999).  During estrus, the female 

becomes receptive to the male and exhibits a variety of behaviors that serve to attract 

potential mates and facilitate breeding, including tail deviation, lordosis, rolling, 

increased vocalizations and foot-treading (Tsutsui and Stabenfeldt, 1993).  Queens will 

allow up to 30 matings in a 36 hour period and have been observed to breed for as long 

as six consecutive days (Concannon and Verstegen, 1999).  After successful mating, the 

uterotubal junction and the uterine crypts serve as sperm reservoirs (Chatdarong et al., 

2004).  Sperm reservoirs also have been observed in other species of domestic and 

laboratory animals, but are usually located in the oviductal isthmus (Suarez, 1998; 

Suarez, 2002).  

 Following estrus, unmated queens that do not ovulate enter a period of anestrus 

(also termed interestrus; typically 7 to 21 days), characterized by cessation of estrous 

behaviors, follicular atresia and a decline in serum estradiol levels (Wildt et al., 1999; 

Bristol-Gould and Woodruff, 2006).  In contrast, mated queens undergo complex 

neuroendocrine responses culminating in a coitus-induced luteinizing hormone (LH) 

surge, final follicular maturation and ovulation.  Sharp increases in serum LH occur 

within five minutes of intromission (Goodrowe et al., 1989).  Timing of ovulation post-
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copulation varies greatly (24 to > 52 h), where delaying coitus until later in estrus 

typically results in a shorter interval to ovulation.  The LH surge and ovulation rarely 

occur if mating is restricted to just one copulation (Wildt et al., 1980).  Immediately 

following ovulation (metestrus), prominent corpora hemorrhagica (CH) are observed on 

the ovaries that give rise (via luteinization) to progesterone-producing CL.  CL dominate 

during diestrus and high levels of serum progesterone are maintained.  

 Following ovulation, non-pregnant cats exhibit elevated serum progesterone for 

36-38 days (Paape et al., 1975; Wildt et al., 1999), whereas pregnant cats display 

elevated serum progesterone for the duration of gestation (63-67 days).  Luteal phase 

length and fecal progestin concentrations are similar following spontaneous versus 

coitus-induced ovulation (Graham et al., 2000).  In non-pregnant cats, CL remain visible 

for 35-44 days (Wildt et al., 1981) until luteolysis and formation of luteal scars on the 

ovary.  In pregnant cats, CL appear to be the primary source of progesterone throughout 

gestation, although the placenta has been implicated in progesterone production during 

late pregnancy (Verstegen et al., 1993).  Indeed, maintenance of pregnancy is possible 

following ovariectomy at Day 55 (Concannon and Verstegen, 1999).  Relaxin production 

by the fetoplacental unit begins around Day 20, peaks at Day 35 and gradually declines 

until parturition (Stewart and Stabenfeldt, 1985; Klonisch et al., 1999).  Prolactin may be 

luteotrophic in the cat and is first detected around Day 35, sharply increasing just before 

parturition (Banks et al., 1983; Tsutsui and Stabenfeldt, 1993).  After parturition (2-6 

kittens), the CL remain intact throughout lactation and regress ~ 2 months postpartum 

(Goodrowe et al., 1989).  Return to estrus following pregnancy is typically observed 4 

weeks after normal weaning; if the kittens are weaned prematurely, estrus is 

reestablished within 6 to 8 days (Concannon and Verstegen, 1999).              

 Early embryonic development, implantation and placentation have been 

characterized in the cat.  Each ovulated oocyte has an ~ 70% chance of undergoing 
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successful fertilization and surviving to implantation following natural breeding (Swanson 

et al., 1994).  After fertilization in the mid to proximal oviduct (ampulla), embryos migrate 

through the uterotubal junction, entering the uterus as morulae or early blastocysts on 

Day 5 or 6 (Day 0 = first copulation) (Denker et al., 1978b; Swanson et al., 1994).  

Transuterine embryo migration has been observed, where the greater the disparity in CL 

number between ovaries, the higher the incidence of relocation within the uterus (Tsutsui 

et al., 1989; Swanson et al., 1994).  The uterine epithelium begins to undergo 

decidualization in the immediate vicinity of each blastocyst by Day 12, indicating early 

pre-implantation interactions between the endometrium and conceptus (Denker et al., 

1978a).  Attachment and implantation of hatched blastocysts occurs by Day 14 (Denker 

et al., 1978a; Concannon, 1991) and, like human implantation, involves invasion of the 

uterine epithelium by the trophoblast (Boomsma et al., 1991; Carson et al., 2000).   

 Similar to most carnivores, cats possess a zonary, endotheliochorial placental 

structure that has been well characterized both developmentally and morphologically 

(Leiser, 1982; Leiser and Koob, 1993; Leiser and Kaufmann, 1994; Walter and 

Schonkypl, 2006).  Maternal-fetal blood flow is established via a simple crosscurrent 

system (Leiser and Kaufmann, 1994).  By Day 22, the fetal heart rate is detected and 

organogenesis has begun (Nelson and Cooper, 1975; Concannon, 1991; Concannon 

and Verstegen, 1999).  Numerous studies have used ultrasonography to diagnose and 

evaluate pregnancy in queens from as early as Day 10 (Zambelli et al., 2002a; Zambelli 

and Prati, 2006), providing a database of fetal and placental morphological norms from 

early (Zambelli et al., 2002b) to late (Zambelli et al., 2004) gestation.  The fetal skull and 

spine are radio-opaque by Day 38 and radiography remains a useful tool for confirming 

pregnancy and determining litter size in late gestation (Concannon and Verstegen, 

1999). 
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 Male domestic cats.  Sperm can be recovered from the testes of male kittens as 

early as 5 months of age; however, most normal young males begin to show sexual 

maturation and sperm production by the age of 8 months (Tsutsui et al., 2004a).  Free-

ranging toms generally complete puberty by 12 months of age, indicated by the advent 

of complete spermatogenesis, mating behaviors and the emergence of 100-200 

androgen-dependent spines on the penis (Goodrowe et al., 1989).  Sperm production 

does not appear to be seasonally influenced (Spindler and Wildt, 1999; Wildt et al., 

1999).  Factors related to spermatogenesis have been elucidated in the domestic cat, 

including seminiferous epithelial cycle length, testis morphology, daily sperm production, 

DNA replication and germ cell apoptosis (Blanco-Rodriguez, 2002; Franca and Godinho, 

2003).  Eight stages of the seminiferous epithelium cycle have been characterized in the 

cat, with a cycle length of 10.4 days, indicating that the total duration of 

spermatogenesis, from A-spermatogonia to fully-differentiated spermatozoa, is 

approximately 7 weeks (Franca and Godinho, 2003).   

 Outbred domestic cat males produce a high proportion (> 70%) of structurally-

normal sperm in a typical ejaculate (Howard, 1992; Wildt et al., 1999).  However, 

teratospermia (production of > 60% pleiomorphs per ejaculate) has been observed in 

both domestic and non-domestic felids (Wildt et al., 1988; Howard, 1993).  For example, 

Florida panthers, clouded leopards, and cheetahs typically have less than 20% normal 

spermatozoa (Pukazhenthi et al., 2006b).  Commonly observed sperm abnormalities in 

cats include head and midpiece defects, cytoplasmic droplets, bent flagella, bent 

midpieces and tightly coiled flagella (Howard, 1992; Howard, 1993).  In multiple felid 

species, malformed sperm have been linked to decreased genetic variability, which in 

turn leads to low fertility (Pukazhenthi et al., 2001).  Structurally-malformed domestic cat 

spermatozoa exhibit abnormal sperm function and reduced ability to penetrate the zona 

pellucida and fertilize an oocyte (Howard et al., 1991; Howard et al., 1993a).  Even 
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normal spermatozoa from a teratospermic donor are compromised, displaying 

decreased ability to undergo acrosome reaction, capacitation, penetration of the zona 

pellucida and fertilization of conspecific oocytes (Howard et al., 1991; Howard et al., 

1993a; Long et al., 1996).  There is evidence that teratospermic males may compensate 

with higher sperm output, as evidenced by increased sperm concentration, testes 

volume, more germ cells per Sertoli cell and reduced germ cell loss during 

spermatogenesis compared to normospermic individuals (Howard et al., 1990; Neubauer 

et al., 2004).  Poor nutrition has been implicated as one cause for low sperm 

concentrations and morphological abnormalities (Swanson et al., 2003; Howard and 

Allen, 2007).   

 Mean serum testosterone, FSH and LH concentrations for both normospermic 

and teratospermic cats have been documented (Howard et al., 1990).  However, limited 

information is available on the temporal patterns in circulating levels of these hormones.  

Plasma testosterone rapidly increases at 8 months of age, reaching a peak of ~ 2.6 

ng/ml by 10 months of age in outbred cats (Tsutsui et al., 2004a).  Teratospermic males 

have similar FSH and LH concentrations compared to normospermic males, but serum 

testosterone levels are lower (Howard et al., 1990).  Species-specific differences in 

serum testosterone values also have been documented for several non-domestic 

species, including the cheetah, leopard, tiger, puma, ocelot, margay and tigrina (Wildt et 

al., 1988; Morais et al., 2002; Genaro et al., 2007).  

 

 Gonadal control.  Manipulating felid reproduction has two important applications: 

(1) contraception; and (2) ovarian control for assisted reproduction.  The latter will be 

explored in detail later in this chapter.  Indeed, while this research project focuses on 

assisted reproduction, many cats are capable of producing offspring prolifically.  

Alternatives to euthanasia and surgical sterilization for control of rampant pet 
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overpopulation remain a focus of significant interest and research (Kutzler and Wood, 

2006).  For optimal genetic management of zoo animals, there is a need for 

contraception that is safe and effective, as well as reversible (Jewgenow et al., 2006).  

Methods for inhibiting fertility in felids can include same-sex housing, disruption of 

gamete production, fertilization or implantation, and direct termination of pregnancy 

(Burke, 1982; Munson, 2006).   

Cats are most commonly contracepted through the administration of exogenous 

hormones that directly interfere with folliculogenesis or spermatogenesis.  These 

hormones act primarily to disrupt the hypothalamic-pituitary-gonadal (HPG) axis, 

although additional modes of action at the level of the female reproductive tract (e.g. 

altering endometrial tone, influencing cervical mucous secretion, etc.) are known to 

occur in many species (Burris, 1999).  In females, the progestin implants levonorgestrel 

(Norplant®) (Baldwin et al., 1994; Looper et al., 2001) and melengesterol acetate (MGA) 

(Munson, 2006) and the oral progestins megestrol acetate (Ovaban®) (Øen, 1977; 

Romatowski, 1989) and medroxyprogesterone acetate (Provera®) (Munson, 2006) have 

been used for contraception in domestic and non-domestic felids.  Duration of ovarian 

suppression and return to estrus following removal vary by drug and dosage.   

While progestins are highly effective at contracepting domestic and non-domestic 

queens, long-term use has been associated with a host of health problems including 

infertility, mammary cancer, uterine cancer, endometrial hyperplasia, pyometra and 

diabetes (Hinton and Gaskell, 1977; Kollias et al., 1984; Munson and Mason, 1993; 

Munson et al., 2002; Munson, 2006).  To combat these problems, alternative means for 

contraception are currently under investigation.  Exogenous androgens have been 

studied for their ability to suppress follicular phase in domestic cats (Gardner et al., 

1985), but adverse effects including increased aggression and masculinization have 

prevented widespread use.  GnRH agonists have shown promise in both male and 
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female felids.  Leuprolide acetate (Lupron®) and deslorelin effectively suppress ovarian 

activity in females (Munson et al., 2001; Munson, 2006).  Deslorelin also has been used 

to down-regulate spermatogenesis in cheetahs (Bertschinger et al., 2006).  Finally, 

immunocontraception with anti-GnRH vaccines has shown promise but requires further 

investigation (Levy et al., 2004; Robbins et al., 2004). 

Disruption of pregnancy after gamete production can be achieved through the 

prevention of sperm-egg interactions in some species.  Several vaccines have been 

developed that target the zona pellucida antigens required for sperm binding to the 

oocyte.  One such vaccine, a porcine zona pellucida (PZP) derivative (SpayVac®), has 

been studied in the domestic cat with unimpressive results (Gorman et al., 2002; Levy et 

al., 2005).  While cats display high anti-PZP titers following vaccination, they do not 

display a significant reduction in fertility.  Safety of these PZP vaccines, which have been 

associated with adjuvant-related sarcomas, also make their use undesirable in felids 

(Munson, 2006).  Development of a feline-specific ZP vaccine currently is ongoing 

(Ringleb et al., 2004).   

Termination of pregnancy has been used in some cases as a means for 

contraception, albeit very rarely in zoo felids.  In domestic cats, pregnancy termination 

can be achieved through the use of drugs including prostaglandins (Nachreiner and 

Marple, 1974), a combination of cabergoline (a dopamine agonist) and cloprostenol (a 

prostaglandin) (Onclin and Verstegen, 1997) and the progesterone antagonist 

aglepristone (Georgiev and Wehrend, 2006). 

 

Tools for Assessing Reproductive Potential 

 

 Female fertility assessments.  Reproductive potential can be assessed in 

females using several minimally-invasive techniques.  Documenting presence or 
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absence of estrous behavior as an index of fertility is of limited use because some felids 

do not readily display outward signs of estrus (Shille et al., 1979; Wielebnowski and 

Brown, 1998).  Conversely, females with significant uterine pathology or reproductive 

abnormalities can continue to display cyclic estrous behaviors.  Generally, a more 

detailed, direct examination of the reproductive tract is necessary.  Laparoscopic 

examination of the ovaries, oviducts and uterus is a common approach (Wildt et al., 

1977).  This surgical procedure is performed under general anesthesia using a 5 to 10 

mm laparoscope inserted through a small incision cranial to the umbilicus to visualize 

the abdominal cavity.  A two mm Verres probe, which is used to insufflate the abdominal 

cavity with air before the laparoscopic exam, serves as a reference point for obtaining 

dimensions of reproductive organs and ovarian structures.   

 A less invasive technique, which provides reduced information compared to 

laparoscopy, is ultrasonography.  Ultrasound imaging can diagnose pregnancy, provide 

reproductive tract dimensions and uncover certain pathologies.  However, ultrasound 

technology is not advanced enough, at least in the domestic cat, to assess ovarian 

activity (e.g. number of follicles vs. CL) or diagnose more subtle uterine pathologies such 

as mild cystic endometrial hyperplasia (Baker, 2007).  Hysterography, where a contrast 

medium is injected transcervically to subsequently visualize the reproductive tract via 

radiography, has shown promise as a nonsurgical alternative to laparoscopic 

examination (Chatdarong et al., 2005).  Finally, more direct evaluation of oocyte quality 

and function is possible through laparoscopic oocyte retrieval and subsequent evaluation 

of in vitro developmental competence and fertilization (Goodrowe et al., 1988b).  

 

 Male fertility assessments.  In males, evaluation of fertility potential is possible 

through semen collection and analysis.  Semen can be recovered by electroejaculation 

or an artificial vagina, and also by flushing the reproductive tract post-castration or post-
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mortem (Howard et al., 1986; Howard, 1992).  Electroejaculation in the domestic cat 

typically yields a 100-200 µl ejaculate containing 30-50 million sperm (Wildt et al., 1999).  

An artificial vagina yields a lower volume ejaculate (50-60 µl) but higher concentration 

compared to electroejaculation (Tanaka et al., 2000a).  In addition to performing 

conventional semen analyses (motility, forward progressive status, concentration, 

morphology, etc.), the ejaculate also can be assessed for functional competence using a 

variety of techniques (Wildt et al., 1992; Howard, 1993), including the zona-free hamster 

ovum and zona-intact cat oocyte penetration bioassays (Howard et al., 1991).  While raw 

sperm in a fresh ejaculate rapidly deteriorates, dilution in culture medium can extend 

viability considerably (Howard et al., 1986).  Furthermore, domestic and non-domestic 

felid sperm contain numerous microbes and require washing with culture medium to 

remove seminal plasma and bacteria prior to AI, IVF and sperm cryopreservation 

(Howard et al., 1993b).  Sorting of X and Y- chromosome-bearing felid spermatozoa via 

high speed flow cytometry has been performed with relatively high accuracy (~ 85%) and 

may prove useful in assisted reproduction applications (Spinaci et al., 2007). 

 

 Fecal hormone monitoring.  Traditional approaches to monitoring endocrine 

function rely on serial blood sampling (Wildt et al., 1981); however, many animals are 

difficult to restrain without anesthesia and easily stressed during blood collection (Brown 

et al., 1994).  Because stress can perturb reproductive function (Graham and Brown, 

1996; Breen et al., 2005), the development of non-invasive hormone monitoring 

techniques has been valuable for assessing reproductive and adrenal activity in a host of 

mammals including ungulates, primates and carnivores (Brown et al., 1997; Brown, 

2006).  This approach utilizes recently excreted products (typically urine, feces or saliva) 

that can be obtained with no deleterious effect on the animal.  In addition to eliminating 

potentially stressful blood collections, fecal and urinary analyses provide a pooled 
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hormone value, rather than a peak or nadir which may not be representative of the 

overall physiological response (Brown et al., 2001).    

 In cats, steroid hormones are excreted almost exclusively (> 95%) in the feces 

(Shille et al., 1990; Brown et al., 1994).  Using high performance liquid chromatography 

and gas chromatography/mass spectrometry, it has been demonstrated that estradiol is 

excreted in nearly equal amounts as unconjugated estrogen metabolites (estradiol 17β 

and estrone) and non-enzyme-hydrolyzable conjugates (primarily estrogen sulfates) 

(Brown et al., 1994).  In contrast, and unlike most other species for which information is 

available, progesterone is excreted primarily as unknown conjugated metabolites in cat 

feces.  Unconjugated progestins, which account for ~ 20% of fecal progesterone 

metabolites, include several pregnenolone epimers. 

 Hormone extraction techniques have been developed and validated for felids to 

concentrate and isolate steroids from individual fecal samples.  In cats, fecal samples 

are first frozen and lyophilized (freeze-dried).  The most prominent extraction method 

involves boiling the dried feces in a 90% ethanol solution (Brown et al., 1994).  Enzyme 

immunoassays (EIA) or radioimmunoassays (RIA) then are used to quantify fecal 

estrogens and progestins in the resulting extract.  These extraction methods also have 

proven successful for monitoring androgens (Brown et al., 1996a) and corticoids 

(Graham and Brown, 1996) in several felid species.  Fecal steroid hormone monitoring 

has been employed to characterize baseline reproductive function (Brown et al., 2001), 

identify mode of ovulation (Moreira et al., 2001; Moreland et al., 2002), assess response 

to assisted reproduction hormone treatments (Brown et al., 1995; Pelican et al., 2005), 

determine correlations between adrenal activity and perceived stress (Terio et al., 1999; 

Wielebnowski et al., 2002) and evaluate incidence of reproductive seasonality (Brown et 

al., 2002; Morais et al., 2002; Morato et al., 2004) in domestic and wild felids.  

Pregnancy detection using fecal hormone monitoring remains difficult due to the inherent 
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“lag time” associated with sample processing and the fact that a non-pregnant luteal 

phase can last one half to two thirds the duration of pregnancy in felids.  Furthermore, 

fecal progestin concentrations during pregnancy versus a non-pregnant luteal phase can 

not be distinguished.  Thus, a positive pregnancy diagnosis can’t be made until very 

close to parturition using fecal hormone analysis alone.  A urinary canine relaxin 

radioimmunoassay has been successful in diagnosing pregnancy within 3-4 weeks after 

mating in the domestic cat and leopard (de Haas van Dorsser et al., 2006).     

 

Assisted Reproduction Techniques in Felids 
 
 
 Ovulation induction.  Ovarian stimulation using exogenous hormones generally 

requires that two consecutive physiological events occur: (1) stimulation of follicular 

recruitment, selection and dominance (folliculogenesis); and (2) stimulation of final 

follicular maturation and ovulation.  These exogenous hormone regimens must mimic 

the endogenous actions of FSH and LH, respectively.  In multiple felid species, the most 

common exogenous hormone used to induce folliculogenesis is equine chorionic 

gonadotropin (eCG; also known as pregnant mare’s serum gonadotropin or PMSG), 

which initiates the follicular phase with a single intramuscular injection (Pelican et al., 

2006b).  Exogenous porcine FSH also has been used for this purpose in the domestic 

cat (Goodrowe et al., 1988a) and several wild felids (Phillips et al., 1982; Pope et al., 

1993; Crichton et al., 2003).  However, FSH treatment requires multiple injections over a 

course of several days and can result in high numbers of cystic-appearing follicles that 

fail to ovulate (Goodrowe and Wildt, 1987).  Efforts to characterize the amino acid 

sequence of tiger FSH eventually may lead to a felid-specific follicle-stimulating 

gonadotropin, yet the need for frequent daily injections remains a significant roadblock, 

particular in applications with wild felids (Crichton et al., 2003).  After follicular activity 
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has been induced, various hormones can be used to complete follicular maturation and 

induce ovulation, including human chorionic gonadotropin (hCG), gonadotropin-releasing 

hormone (GnRH) or exogenous porcine LH (Goodrowe and Wildt, 1987; Howard, 1999; 

Crichton et al., 2003).  

 A single injection of eCG and hCG has become the regimen of choice in both 

domestic cats and their non-domestic counterparts (Roth et al., 1997b; Howard, 1999).  

These drugs are preferred over regimens involving multi-day injections, particularly in 

stress-sensitive wild felids where each treatment becomes progressively more 

challenging to administer as the cat anticipates the next injection.  Interestingly, eCG 

and hCG dosages are largely species-specific.  For example, the ~ 10 kg ocelot requires 

500 IU eCG to stimulate adequate follicular development, whereas the ~ 20 kg clouded 

leopard requires only 100 IU eCG (Swanson et al., 1996b; Howard et al., 1997).  

Furthermore, a trend has been observed in several South American felid species, where 

decreased sensitivity to gonadotropins is observed (Swanson and Brown, 2004).  The 

optimal interval between eCG and hCG continues to be studied; however, an interval of 

80-84 hours is currently used (Donoghue et al., 1992).   

 

 Artificial insemination.  Vaginal insemination is moderately effective in domestic 

cats; however, high concentrations of spermatozoa are necessary to achieve acceptable 

pregnancy rates (> 50%) and results can be highly variable (Tanaka et al., 2000b; 

Tsutsui, 2006).  An additional consideration is that anesthesia is required to perform AI 

in most felids.  Yet, anesthesia is known to inhibit ovulation in the cat, making vaginal 

insemination of little use in zoological applications (Howard et al., 1992a).  Transcervical 

insemination, which is currently under development in the cat, poses similar challenges 

but could show promise in the future (Zambelli and Cunto, 2005b; Zambelli and Cunto, 

2005a).   
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 A laparoscopic AI technique was developed in felids to combat the limitations of 

vaginal and transcervical insemination (Howard et al., 1992a).  The laparoscope allows 

direct visualization of ovarian response and enables intrauterine sperm deposition using 

a catheter inserted through the body wall and directly into the uterine lumen.  This 

procedure must be timed carefully to ensure that anesthesia induction and insemination 

occurs after ovulation, yet within the fertilization lifespan of the ova (~ 14 h post-

ovulation).  The eCG/hCG regimen in combination with post-ovulatory laparoscopic AI 

using fresh or frozen-thawed spermatozoa has been used to successfully produce 

offspring in domestic (Howard et al., 1992a) and non-domestic felids including the 

cheetah (Howard et al., 1992b), clouded leopard (Howard et al., 1996), tiger (Donoghue 

et al., 1993), puma (Barone et al., 1994b), leopard cat (Howard, 1991), snow leopard 

(Roth et al., 1997a), tigrina (Swanson and Brown, 2004) and ocelot (Swanson et al., 

1996b).    

 

 In vitro fertilization and embryo transfer.  Multiple studies have been conducted to 

develop techniques and elucidate culture media requirements for successful oocyte in 

vitro maturation (IVM), IVF and ET in the domestic cat.  These studies have served as 

the foundation for successful IVF/ET in the tiger (Donoghue et al., 1990), African wild cat 

(Pope et al., 2000), ocelot (Swanson and Brown, 2004), caracal (Pope et al., 2001), and 

fishing cat (Pope et al., 2006a).  Oocytes are harvested either from freshly excised 

ovaries (post-ovariohysterectomy or post-mortem) or via ovarian stimulation followed by 

pre-ovulatory laparoscopic follicular aspiration (Goodrowe et al., 1988b).  Optimal 

temperature and culture conditions for IVM have been studied extensively, and most 

immature cat oocytes complete nuclear maturation in vitro within 32 h of culture 

(Johnston et al., 1989; Pope et al., 1993; Wood et al., 1995).  Circannual declines in 
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oocyte quality and maturation stage at the time of harvest can be mitigated by altering 

culture conditions (Comizzoli et al., 2003). 

 Following IVM and IVF with high quality sperm, a 60 to 80% fertilization success 

has been achieved (Johnston et al., 1989).  Intracytoplasmic sperm injection (ICSI), a 

modification to traditional IVF in which a single sperm is injected directly into an ovum, 

also has been successful in the cat (Gomez et al., 2000; Comizzoli et al., 2006).  One of 

the greatest challenges following IVF in cats is the apparent morula to blastocyst 

developmental block that is observed (Roth et al., 1994). This block does not appear to 

be concurrent with the transition from maternal to zygotic control of development, which 

occurs by the 5-8 cell stage (Hoffert et al., 1997).  Studies have shown that co-culturing 

cat embryos with conspecific companions can enhance in vitro development and 

increase the likelihood of survival to the blastocyst stage (Spindler and Wildt, 2002; 

Spindler et al., 2006).  Furthermore, a feline-optimized culture medium was developed to 

elucidate the specific metabolic requirements for successful embryo culture, with the 

ultimate goal of increasing incidence of blastocyst formation following IVF (Herrick et al., 

2007).  Despite the continued challenge to improve felid embryo culture, transfer of both 

early stage embryos to the oviduct (Goodrowe et al., 1988b) and morulae/blastocysts to 

the uterus (Pope et al., 1993) of synchronized embryo recipients has resulted in 

pregnancies in the domestic cat.    

 

 Cryopreservation of gametes and embryos.  Significant strides have been made 

in cats to develop and refine techniques for long-term cryopreservation of biological 

materials including gametes and embryos (Wildt, 1997; Wildt and Wemmer, 1999).  The 

development of ‘genome resource banks’ is an important tool for enhancing 

management of populations with low heterozygosity, as well as maintaining an insurance 

policy against extinction should a catastrophic event occur in the animal’s native range 
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(Wildt, 2000).  There also is growing support for the use of cryopreserved materials to 

maintain lines of rare biomedical models (Critser and Russell, 2000).   

 In cats, sperm cryopreservation techniques have been developed and refined to 

reduce membrane damage and minimize rapid osmotic changes during cooling, freezing 

and thawing.  This is achieved through the carefully-timed addition of cryoprotective 

agents to fresh ejaculates, typically glycerol in an egg yolk buffer, before storage in liquid 

nitrogen (Luvoni, 2006).  Rates of cooling, thawing and cryoprotectant removal have 

been refined to improve sperm motility and minimize membrane damage post-thaw 

(Pukazhenthi et al., 2002).  However, studies also have demonstrated that teratospermic 

ejaculates are more vulnerable to cold-induced damage compared to normospermic 

ejaculates (Pukazhenthi et al., 1999; Pukazhenthi et al., 2000), and techniques aimed at 

optimizing sperm cryopreservation in teratospermic individuals continue to be refined.  

The use of conspecific, frozen-thawed spermatozoa for AI has resulted in the successful 

birth of offspring in the domestic cat (Platz et al., 1978), ocelot (Swanson et al., 1996b),  

cheetah (Howard et al., 2002) and leopard cat (Howard, 1991).  Cryopreservation of 

epididymal sperm also is feasible post-castration or post-mortem; however fertility of the 

resultant sperm is variable and some studies indicate increased susceptibility to freezing 

damage (Hay and Goodrowe, 1993; Tebet et al., 2006). 

 Oocyte cryopreservation remains a significant challenge in cats, largely due to a 

high surface area to volume ratio in the ovum which makes them vulnerable to osmotic 

stress and membrane damage (Luvoni, 2006).  An alternative approach is 

cryopreservation of whole ovarian follicles or ovarian cortex samples, which has shown 

promise in preliminary studies (Jewgenow et al., 1998; Jewgenow and Paris, 2006).  

Techniques for freezing immature oocytes using novel cryoprotectant protocols also are 

under development (Comizzoli et al., 2004).  Embryo cryopreservation has been more 

successful than oocyte freezing in felids (Pope et al., 1993; Pope, 2000).  Using slow, 
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controlled-rate cooling methods, transfer of in vitro derived frozen-thawed embryos has 

resulted in live births in the domestic cat (Pope et al., 1994), ocelot (Swanson and 

Brown, 2004), African wild cat (Pope et al., 2000) and caracal (Pope et al., 2006a).   

 

Challenges to Assisted Reproduction Success 
 
 
 Ovarian response and the endocrine environment.  Despite significant efforts to 

develop and refine assisted reproduction techniques in domestic and wild felids, the 

incidence of pregnancy following AI remains variable across species (0% to ~ 50%).  

There are multiple factors implicated in AI failure, from poor ovarian response at the time 

of AI (Day 2 post-hCG) to failure of the embryo(s) to successfully attach during the 

critical peri-implantation period (~ Day 12).  Variable ovarian response to exogenous 

gonadotropins is a common observation in cats (Roth et al., 1997b; Graham et al., 

2000).  Some of this variability is attributed to administration of gonadotropins during the 

luteal phase, where presence of functional CL at the time of the AI can attenuate ovarian 

response and lead to ovulation failure.  This is common in species that spontaneously 

ovulate (Howard et al., 1997; Bauer et al., 2004).  Even if ovulation does occur, elevated 

progesterone levels at the time of ovarian stimulation have been associated with lower 

pregnancy rates following IVF/ET in other species (Kolibianakis et al., 2004).  

Alternatively, when exogenous gonadotropins are given during follicular phase, several 

follicular cohorts of inconsistent age and maturation phase can result; ovulation of these 

follicles in response to exogenous gonadotropins is, therefore, variable.  Whether 

oocytes exhibit decreased ability to undergo fertilization as a direct result of ovarian 

stimulation is not well characterized in the cat (Roth et al., 1994).  In several species, 

exposure to exogenous gonadotropins has been associated with poor oocyte quality 

(Moor et al., 1985; Hyttel et al., 1986; Yun et al., 1987).   
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 Following AI, disruptions in the maternal environment are common and can be 

linked, in part, to residual effects of eCG and/or hCG in the cat (Swanson et al., 1997).  

Pharmacokinetic data demonstrate that eCG and hCG persist in domestic cat circulation 

for at least 120 hours and 96 hours, respectively.  This persistence in circulation 

supports ancillary follicular growth after the initial folliculogenic surge (Donoghue et al., 

1992; Swanson et al., 1996a).  Secondary (and even tertiary) cohorts of follicles can 

ovulate, leading to ancillary CL formation and further disruption of endocrine dynamics.  

Attempts to neutralize residual eCG and hCG have been ineffective at preventing 

secondary follicular and CL development (Swanson et al., 1996a).  Oral melatonin pre-

treatment only marginally reduced the incidence of secondary follicular development 

(Graham et al., 2004).  Additionally, repeated eCG/hCG treatment is associated with 

immunologically-mediated refractoriness to ovarian stimulation (Swanson et al., 1995a).  

Alternating gonadotropin regimens between eCG/hCG and porcine FSH/LH has 

successfully mitigated immunological complications in ocelots and tigrinas (da Paz et al., 

2006); however, avoidance of gonadotropin overuse is likely to be a more optimal long-

term strategy (Swanson et al., 1995a).    

 Specific endocrine perturbations known to occur following gonadotropin 

stimulation in cats include sustained high fecal estrogens and abnormally-elevated fecal 

progestins (Graham et al., 2000).  The implications of these altered endocrine patterns 

are not fully understood.  Protracted serum estradiol has been associated with 

diminished embryo development in the cat (Goodrowe et al., 1988a; Gonzalez-Bulnes et 

al., 2003).  Hyper-elevated levels of serum progesterone are associated with poor 

embryo quality (Swanson et al., 1995b), but have not been directly associated with 

decreased fertility (Roth et al., 1997b) in the cat.  Yet, fecal hormone analyses indicate 

that abnormal ovarian steroid patterns are not associated with changes in embryo quality 

or developmental stage (Graham et al., 2000).  Thus, further study is needed to clarify 
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this relationship.  In cows, abnormally high progesterone following IVF/ET is linked to 

decreased conception rates (Nogueira et al., 2004).  One hypothesis to explain this 

phenomenon is that early exposure to high progesterone can accelerate down-regulation 

of progesterone receptors in the endometrium and endogenous prostaglandin release (a 

luteolysin in cows) (Mann et al., 1998).  Whether a related mechanism may occur in cats 

remains to be determined.   

 

Early embryonic development and oviductal transport.  The influence of 

exogenous gonadotropins on early embryonic mortality has been characterized in the 

cat (Roth et al., 1995).  While eCG/hCG administration does result in more unfertilized 

oocytes and fewer high-quality blastocysts compared to naturally-bred controls, good 

quality embryos can be obtained from gonadotropin-stimulated cats.  It is likely that 

residual hCG, more so than eCG, plays a role in early embryo mortality.  This is 

supported by observations that embryo quality is improved in naturally-bred cats treated 

with eCG, compared to cats treated with both eCG and hCG and then artificially 

inseminated (Roth et al., 1997b).  The specific mechanisms by which residual 

gonadotropin effects may influence embryo quality demand further investigation in felids.  

In mice, superovulation is associated with delayed embryo development and abnormal 

blastocyst formation both in vivo and in vitro (Ertzeid et al., 1993; Ertzeid and Storeng, 

2001; Van der Auwera and D'Hooghe, 2001).  Similar observations have been made in 

the rabbit (Molina et al., 1991) and hamster (McKiernan and Bavister, 1998).   

The amount of time the domestic cat embryo remains in the oviduct before 

transversing the uterotubal junction is long (144-168 h) compared to most species, 

including the rabbit (56-62 h), mouse (72 h) and human (60-70 h) (Croxatto and Ortiz, 

1975).  Duration of oviductal transport is influenced by exogenous hormone treatment in 

the cat, where embryos produced by naturally-mated queens reach the uterus sooner 
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than embryos produced following gonadotropin stimulation and AI (Graham et al., 2000).  

This may be related to the finding that estradiol is a key regulator in oviductal transport 

(Croxatto and Ortiz, 1975; Roblero and Garavagno, 1979; Bigsby et al., 1986; Zenteno 

et al., 1989).  More specifically, endogenous ovarian steroids (both estradiol and 

progesterone) are implicated in smooth muscle contraction of the oviduct (Nozaki and 

Ito, 1987).  Accordingly, prolonged elevations in fecal estrogens in the cat are negatively 

correlated with the proportion of embryos recovered in the uterus, versus the oviduct, 5 

days after AI (Graham et al., 2000).  This is further supported by the observation that 

administering exogenous estradiol retards embryo transport in the cat (Herron and Sis, 

1974).  Interestingly, this regulatory mechanism is largely species-specific.  Exogenous 

estrogen accelerates embryo transport in the rat, whereas it has no influence on 

transport in the hamster (Croxatto, 2002).  Exogenous progesterone does not appear to 

influence rat ovum transport (Fuentealba et al., 1987) and also is capable of 

antagonizing the effects of exogenous estrogen on the oviduct (Fuentealba et al., 

1988b).   

 

Implantation.  Implantation involves a carefully orchestrated series of events 

within the uterine lumen that culminate in the establishment of one or more maternal-

fetal units.  Following hatching of the blastocyst from its zona pellucida in the uterus, the 

embryonic trophectoderm must establish contact with the endometrium (Carson, 1999; 

Carson et al., 2000).  This process involves embryonic attachment (apposition and 

adhesion) followed by trophoblastic invasion of the uterine epithelium (Carson, 1999).  

Successful implantation depends on precise coordination of embryonic development and 

uterine morphology, as well as steroid, cytokine and growth factor release.   

In cats, little is known about the influence of exogenous hormone administration 

on implantation success.  Beyond anecdotal evidence of low litter size following 
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gonadotropin stimulation and AI in felids, no distinct associations have been made 

between ovarian stimulation protocols and implantation failure.  In the mouse, ovarian 

hyperstimulation inhibits embryo implantation (Fossum et al., 1989).  Specifically, 

gonadotropin stimulation has been associated with delayed implantation, fetal death, 

prolonged gestation, and low birth weight (Ertzeid et al., 1993; Ertzeid and Storeng, 

2001).  Gonadotropin administration also is associated with decreased post-implantation 

viability in the hamster (McKiernan and Bavister, 1998).  In humans, a similar 

relationship between ovarian stimulation and poor endometrial receptivity has been 

demonstrated (Gidley-Baird et al., 1986; Forman et al., 1988; Devroey et al., 2004).  

Remarkably, very little research has been conducted to elucidate the specific causes for 

implantation failure in humans following IVF and other assisted reproduction procedures 

(Devroey et al., 2004) or in females with endometriosis (Giudice et al., 2002). 

 

Improving Assisted Reproduction with Estrous Cycle Control 

 

Fundamentals of estrous cycle control.  Ovarian suppression prior to ovulation 

induction and AI or IVF is a common strategy in mammals, including humans, to provide 

a more synchronized ovarian response at the time of assisted reproduction.  Control of 

the estrous cycle typically is performed by: (1) disruption of CL function; or (2) direct 

suppression of follicular activity (Foxcroft, 1999).   

CL function can be disrupted in many species using exogenous prostaglandins, 

which lyse active CL and return the animal to follicular activity at a predictable time 

interval (Lofstedt, 1988; Schiewe et al., 1991; Fralix et al., 1996; Xu and Burton, 1999; 

Whitley and Jackson, 2004).  Prostaglandins can be used alone or in conjunction with 

progestins, and may or may not be followed by exogenous ovarian stimulation.  In cats, 

however, CL disruption using prostaglandins is not feasible for assisted reproduction 
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applications, because cats are refractory to prostaglandins up to day 40 post-ovulation 

(Shille and Stabenfeldt, 1979; Wildt et al., 1979b).  Indeed, the mechanisms and 

hormonal control of luteolysis are poorly understood in the cat, making disruption of CL 

function an impractical approach.   

 Alternatively, follicular activity can be directly suppressed by administering GnRH 

analogs, which act directly at the level of the pituitary gland, or progestins, which act via 

negative feedback on the hypothalamic-pituitary-gonadal axis.  These approaches have 

proven successful in felids (Pelican et al., 2006b).  After temporary inhibition, a new 

cohort of synchronized, early antral follicles develops.  These young follicles are under 

limited endogenous gonadotropin control and are believed to be highly susceptible to 

ovarian stimulation by exogenous gonadotropins (McGee and Hsueh, 2000).  

Understanding the changes in ovarian sensitivity to exogenous gonadotropins following 

down-regulation is poorly documented and could benefit from further investigation.   

 

 Ovarian inhibition using GnRH analogs.  GnRH analogs act primarily at the level 

of the pituitary to inhibit ovarian activity; however, direct gonadal actions are observed in 

some species (Conn et al., 1999).  GnRH agonists elicit a biphasic endocrine response.  

Initially, GnRH agonists stimulate ovarian activity by inducing an increase in FSH and/or 

LH secretion via liberation of stored gonadotropins (Shalev and Leung, 2003).  This 

activity often culminates in ovulation.  After the initial surge, continued administration of 

the agonist leads to down-regulation of gonadotropin production and gonadotropin 

receptor expression, ultimately resulting in suppression of ovarian activity.  The pituitary 

remains refractory to GnRH action until the agonist is discontinued or voided from 

circulation.  In contrast, GnRH antagonists provide more immediate ovarian suppression 

through competitive binding of the GnRH receptor (Janssens et al., 2000).  This, in turn, 

inhibits FSH and/or LH secretion and down-regulates GnRH receptors on the pituitary.  
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The resultant suppression of ovarian activity is rapid and reversible (Shalev and Leung, 

2003).  This approach has been used routinely in conjunction with AI or IVF and ET in 

humans (Albano et al., 1999; Barbieri and Hornstein, 1999).   

GnRH analogs have been used in felids for short-term ovarian suppression 

before assisted reproduction with some success.  The GnRH antagonist antide provides 

reversible inhibition of ovarian activity in the domestic cat (Pelican et al., 2005).  

Furthermore, antide-treated cats display similar oocyte quality and in vitro fertilization 

rates following gonadotropin stimulation, compared to untreated controls (Pelican, 2002).  

Use of the GnRH agonist leuprolide (Lupron®) in clouded leopards has been far less 

promising.  While leuprolide does suppress ovarian activity, its use before gonadotropin 

stimulation leads to a high incidence of ovulation failure (Pelican et al., 2006a).   

 

 Ovarian inhibition using progestins.  Progestins are widely used in multiple 

species to synchronize estrous activity before assisted reproduction, including humans 

(Gonen et al., 1990; Burry et al., 1991), cetaceans (Robeck et al., 2004; Robeck et al., 

2005), non-domestic ungulates (Monfort et al., 1993; Thompson and Monfort, 1999; 

Morrow et al., 2000), the cow (Stegner et al., 2004) , horse (Webel and Squires, 1982), 

goat (Fonseca et al., 2005) and pig (Wood et al., 1992).  These compounds act via a 

mechanism similar to endogenous progesterone, providing constant negative feedback 

at the level of the hypothalamus (primarily) and pituitary gland (Romagnoli and 

Concannon, 2003).  This results in attenuated gonadotropin release, disruption of the 

hypothalamic-pituitary-gonadal axis and suppression of ovarian activity until removal of 

the progestin.   

In cats, the progestin implant levonorgestrel (Norplant®) has been investigated 

for its ability to improve response to exogenous gonadotropins before IVF (Pelican et al., 

2002).  Following removal of levonorgestrel, cats display increased embryo yield with no 
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negative effect on oocyte quality or in vitro fertilization success, when compared to 

untreated females.  Similar observations have been seen in humans, where oral 

contraceptives are used before ovarian stimulation and IVF to prevent spontaneous LH 

surges with no observed deleterious effects on subsequent ovarian response (Gonen et 

al., 1990; Burry et al., 1991).  Studies using levonorgestrel in clouded leopards and 

fishing cats confirm the efficacy of progestin implants for improving consistency of 

ovarian response to exogenous gonadotropins, but AI attempts with this regimen have 

not resulted in pregnancies (Pelican and Howard, 2003; Bauer et al., 2004).  The two 

potentially-stressful surgical events required for insertion and removal of the implant may 

be one cause for reduced fertility following AI using this approach.   

 

 Altrenogest.  The oral progestin altrenogest (ALT; Regu-Mate®) has been used 

in horses (Webel and Squires, 1982; Lofstedt and Patel, 1989), livestock (Kraeling et al., 

1981; Wood et al., 1992), and marine mammals (Robeck et al., 2004; Robeck et al., 

2005) to temporarily suppress ovarian activity and synchronize return to follicular activity.  

Additionally, ALT can provide pregnancy support in mares (Hinrichs et al., 1999) and 

bitches (Root Kustritz, 2001).  In horses, ALT typically is administered for 14-15 days, 

which coincides with the mean duration of the equine luteal phase (Lofstedt and Patel, 

1989; Bollwein et al., 2004).  This strategy is employed because any functional CL 

already present on the ovary should regress within 2 weeks, thereby ensuring that the 

animal is fully down-regulated by the time of ALT removal.  After ALT treatment 

concludes in the horse, ovulation typically is observed within 9-11 days (Lofstedt and 

Patel, 1989).  Studies on long-term use of ALT in mares have detected no changes in 

body composition or behavior (Hodgson et al., 2005). In pigs, the drug is used in a 

manner similar to horses to synchronize follicular phase in sows and gilts with no 

deleterious effects on subsequent ovarian function (Diehl et al., 1986; Guthrie et al., 
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1997; Estienne et al., 2001).  ALT also has been effective for providing estrous cycle 

synchronization in killer whales and dolphins before trans-cervical AI, resulting in the 

birth of live calves in both species (Robeck et al., 2004; Robeck et al., 2005).  Indeed, 

the extensive use of ALT in a variety of mammal species, including the dog, lends 

support to its study in cats for estrous cycle control.   

 

Assessing Reproductive Potential Following Assisted Reproduction 

 

Ovarian morphology and function.  Ovarian morphology is an important indicator 

of reproductive potential following assisted reproduction.  For example, presence of 

fresh CL (e.g. CH) near the time of insemination is a prerequisite to pregnancy.  

Conversely, older CL at the time of AI almost certainly hinders establishment of 

pregnancy because of the significant disruption to the endocrine milieu.  What is not as 

well understood is how the proportion of CL versus follicles at the time of insemination 

influences pregnancy success in felids.  Furthermore, the influence of exogenous 

gonadotropins used in assisted reproduction on ovarian ultrastructure has yet to be 

correlated with subsequent fertility.  Changes in ovarian histology throughout early 

pregnancy have been characterized in the naturally-bred cat, serving as a useful 

database of information for future comparative analyses (Roth et al., 1995).     

Ovarian function following assisted reproduction can be assessed indirectly by 

monitoring fecal steroid hormone fluctuations in felids.  It also can be evaluated more 

directly by measuring progesterone levels in CL tissue following ovariohysterectomy.  

Queens with poor fertility have consistently higher CL progesterone levels following 

ovulation compared to high fertility females; however, these differences are not seen 

after Day 4 of gestation (Swanson et al., 1995b).  Furthermore, gonadotropin treatment 

has not been associated with changes in CL progesterone production in the cat (Roth et 
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al., 1997b).  In contrast, ovarian stimulation is correlated with abnormal luteal function in 

sheep.  Specifically, lower CL weight, decreased progesterone content and reduced 

ability of the CL to secrete progesterone in vitro are observed (McNeilly et al., 1981).  

Pre-treating sheep with progestins before ovarian stimulation appears to mitigate these 

luteal deficiencies (Hunter et al., 1986).  LH receptor expression also has been 

measured in the cat CL across early pregnancy, but does not appear to be correlated 

with fertility (Swanson et al., 1995b).  Characterizing feline ovarian steroid receptor 

expression during early pregnancy, which has been done in multiple species including 

the baboon (Hild-Petito and Fazleabas, 1997), llama (Powell et al., 2007) and cow 

(Berisha et al., 2002), may also serve as an interesting indictor of pregnancy potential.  

 

Oviductal morphology and function.  Ultrastructure of feline oviductal tissue is not 

well characterized in the cat.  In the rat, changes in the proportion of secretory versus 

ciliated cells lining the ampullae are observed across the estrous cycle (Shirley and 

Reeder, 1996).  Similar cyclic patterns of cell expression are observed in the dog 

(Steinhauer et al., 2004), goat (Abe et al., 1999), sheep (Murray, 1996) and rabbit 

(Anzaldua et al., 2002).  These changes in cell proportions appear to be regulated by 

alterations in ovarian steroid levels (Bareither and Verhage, 1981).  Oviductal histology 

also has been studied in the rabbit following hCG treatment, indicating that changes in 

non-ciliated secretory cell expression occur following gonadotropin treatment (Bondi et 

al., 1997).  

Techniques for assessing oviductal function have been developed in multiple 

mammal species.  One factor of particular interest is the expression of steroid receptors 

during early pregnancy.  While estrogen receptor (ER) and progesterone receptor (PR) 

expression has not been characterized in the cat oviduct, it has been assessed across 

the estrous cycle and during pregnancy in human and non-human primates (Brenner 
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and Slayden, 1994), the rat (Okada et al., 2003), cow (Ulbrich et al., 2003) and sheep 

(Garcia-Palencia et al., 2007).  In these species, changes in ER and PR expression 

patterns are correlated with alterations in oviductal function (Jansen, 1984) and 

regulation of egg transport (Fuentealba et al., 1988a).  Furthermore, in sheep, treatment 

with exogenous progestins leads to a reduction in ER alpha and PR expression in 

oviductal and uterine cells (Garcia-Palencia et al., 2007).  Exogenous estradiol also 

appears to differentially influence ER and PR expression patterns in sheep, leading to an 

initial reduction in receptor concentrations, subsequently followed by receptor up-

regulation (Rodriguez-Pinon et al., 2005).   

 

Uterine morphology and function.  Uterine histology can serve as an important 

indicator of fertility in multiple species (Psychoyos and Martel, 1985). However, there are 

no strong correlations between pregnancy success and histological characteristics in 

naturally-bred cats.  Females with significant abnormal uterine pathology are capable of 

normal ovarian function and can produce high-quality embryos (Roth et al., 1995).  

Exogenous hormone treatment (gonadotropins or steroid hormones) influences uterine 

and endometrial histological characteristics in a variety of species including the rat (Stein 

and Kramer, 1989), human (Kolb et al., 1997), dog (Dhaliwal et al., 1999) and rabbit 

(McCarthy et al., 1977).  In rats, for example, exogenous hormones alter cell types 

throughout the endometrium, including the surface epithelium, glandular epithelium and 

underlying stromal cells.  These alterations have been linked to implantation failure and 

fetal loss (Stein and Kramer, 1989).   

Several markers of uterine function have been studied in the cat.  Uterine ER and 

PR expression has been characterized following steroid treatment and across pregnancy 

(Li et al., 1992a).  Early embryonic development in naturally-bred cats (presumably 

concurrent with the shift to progesterone dominance) results in down-regulation of ER 
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and PR in the uterus without alterations in receptor distribution (Li et al., 1992a).  This is 

similar to observations in the dog, where high serum estradiol leads to an up-regulation 

of both receptor types, and high serum progesterone leads to down-regulation 

(Vermeirsch et al., 1999; Galabova-Kovacs et al., 2004).  Thus, changes in the hormonal 

milieu brought about by exogenous hormone therapy could, in theory, result in altered 

expression of ER and PR not conducive to establishment of pregnancy.  Administrating 

exogenous estrogens and progestins does appear to influence receptor expression in 

cat uterine tissue, but the specific regulatory mechanisms remain to be tested (Li et al., 

1992a).   

Cytokines, growth factors and other proteins have been implicated in uterine 

function and the implantation process.  In cats, these proteins include a progesterone-

dependent protein (PDP) that is high in pregnant cats only until Day 16 of gestation 

(Boomsma and Verhage, 1987) but remains elevated in pseudopregnant females for up 

to 5 weeks post-coitus (Boomsma et al., 1991).  Further characterization of this PDP in 

cat uterine flushings (Li et al., 1991) and the pregnant cat uterus (Li et al., 1992b) 

determined that the protein is cathepsin L, which also has been implicated in mouse 

implantation (Reese et al., 2001).  A feline estrogen-dependent protein (CUPED) is 

produced in response to estradiol fluctuations (Murray et al., 1986), and a similar protein 

has been found in the uterine flushings of the ferret, dog and baboon (Scalzo et al., 

1990).  Other proteins expressed in the cat uterus include transforming growth factor 

alpha, epidermal growth factor (EGF), EGF receptor and insulin-like growth factor 

binding protein-1 (Boomsma et al., 1994; Boomsma et al., 1997).  Finally, one growth 

factor yet to be characterized in the cat uterus but of particular interest in the 

implantation process is vascular endothelial growth factor (VEGF) (Das et al., 1997).  

VEGF induces vasculogenesis and angiogenesis, both key requirements for successful 

placentation and embryo survival.  In primates, endometrial VEGF is regulated by ER 
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and PR ligands (Greb et al., 1997).  VEGF also is an important regulator of angiogenesis 

in the ovary (Kaczmarek et al., 2005).   

Clearly, although several implantation-associated proteins have been identified in 

the cat, there is a need to characterize gene expression more comprehensively to 

understand how these various factors act alone or in concert to influence the peri-

implantation environment.  Overall, determining the presence or absence of these 

factors during critical time points in the implantation process could serve as useful 

markers for pregnancy and placental health (Paria et al., 2001).  Techniques for 

characterizing factors produced by the feline conceptus itself are under development 

(Thatcher et al., 1991).  Microarray analyses have been used to comprehensively 

characterize uterine gene expression across the estrous cycle and during pregnancy in 

the mouse (Reese et al., 2001; Bethin et al., 2003; Tan et al., 2003) and human (Kao et 

al., 2002; Bethin et al., 2003).  Microarray technologies now are being developed using 

domestic cat reproductive tissues, and ultimately may serve to better identify specific 

molecular markers of uterine receptivity and embryo implantation for which further 

analyses can be conducted in the future.  

 
 
Summary of Objectives  
 
 

The primary objective of this dissertation research was to understand how oral 

progestin priming before exogenous gonadotropin administration and AI influences 

endocrine dynamics, ovarian responsiveness, fertilization success, early embryonic 

development and peri-implantation morphology and function in the cat.  The studies 

were designed to assess whether oral progestin priming can mitigate adverse fertility 

effects known to occur in cats following exposure to exogenous gonadotropins.  Specific 

objectives were to: (1) assess the influence of different ALT dosages on endocrine 
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function and ovarian suppression; (2) evaluate the influence of progestin priming on 

ovarian sensitivity to exogenous gonadotropins; and (3) compare fertilization rates, early 

embryonic development and ovarian morphology and function in progestin-primed 

versus unprimed queens following AI.  Overall, these studies provide a foundation for 

developing refined hormone regimens that may be used to enhance AI efficiency in a 

host of wild cats, including endangered species.  There also are potential applications in 

contraception research for both feral cats and zoo populations.  Finally, because the 

domestic cat is an emerging model for infertility research, these data may be useful for 

studying the influence of exogenous hormones on reproductive function in humans.   
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CHAPTER 2 

 

ORAL PROGESTIN INDUCES RAPID, REVERSIBLE SUPPRESSION OF OVARIAN 

ACTIVITY IN THE CAT 

 

Abstract 

 

 The influence of oral progestin (altrenogest; ALT) on ovarian activity was 

characterized in the domestic cat using non-invasive fecal steroid analyses.  Queens 

were assigned to one of four treatments administered for 38 consecutive days: (1) 0 

mg/kg ALT (control; n = 5 cats); (2) 0.044 mg/kg (LOW; n = 5); (3) 0.088 mg/kg (MID; n = 

6); and (4) 0.352 mg/kg (HIGH; n = 6).  Fecal estrogens and progestins were quantified 

for 60 days before, 38 days during and 60 days after ALT treatment.  The initiation of 

follicular activity was suppressed in all cats receiving ALT, whereas ovarian activity was 

not suppressed in the control group.  Females (n = 11) exhibiting baseline fecal 

estrogens at ALT initiation remained at baseline, whereas females (n = 6) with elevated 

fecal estrogens completed a normal estrogen surge before returning to baseline by Day 

6 of treatment and remaining suppressed.  All cats receiving ALT entered a follicular 

phase following withdrawal of the drug; however, MID cats displayed a more 

synchronized (P < 0.05) return to follicular activity compared to HIGH cats.  LOW queens 

displayed a return to activity that was similar (P > 0.05) to both MID and HIGH cats.  

Females (n = 2) that did not demonstrate follicular activity before ALT exhibited at least 

two estrogen surges in the 60 days following treatment.  Mean baseline fecal estrogens 

and progestins were higher (P < 0.05) after ALT in HIGH but not LOW or MID cats when 

compared to pre-treatment values.  Before treatment with ALT, fecal progestin profiles 

revealed a lower incidence of spontaneous ovulation (2 of 13; 15.4%) in the study 
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population, compared to previous studies in laboratory-housed queens (~ 50%).  Results 

demonstrate that: (1) ALT therapy induces rapid suppression of ovarian activity in the 

cat; (2) ALT does not influence the characteristics of a follicular phase existing at 

treatment initiation; and (3) ovarian suppression is reversible upon cessation of ALT 

therapy.  This study provides the foundation for future research aimed at using progestin 

priming to improve exogenous gonadotropin regimens for assisted reproduction in felids. 

 

Introduction 

 

 Endangered felids have benefited from the development of assisted reproduction 

technologies designed to increase capacity for genetic management in ex situ 

populations (Wildt and Roth, 1997).  These techniques, which include artificial 

insemination (AI) and in vitro fertilization (IVF) followed by embryo transfer (ET), have 

emerged as tools for increasing reproductive efficiency in wild felid species (Howard, 

1999; Swanson, 2003).  A laparoscopic intrauterine AI technique has been successful 

for producing live offspring in the cheetah (Howard et al., 1992b), clouded leopard 

(Howard et al., 1996), tiger (Donoghue et al., 1993), puma (Barone et al., 1994b), 

leopard cat (Howard, 1991), snow leopard (Roth et al., 1997a), tigrina (Swanson and 

Brown, 2004) and ocelot (Swanson et al., 1996b).  While AI efficiency is ~ 50% in the 

cheetah using fresh sperm (Howard et al., 1997),  success remains low (< 5%) in 

species including the clouded leopard (Howard et al., 1997) and tiger (Graham et al., 

2006).  Attempts have not been successful to date in the fishing cat (Bauer et al., 2004) 

or Pallas’ cat (Brown et al., 2002). 

 The etiology of pregnancy failure following assisted reproduction is poorly 

understood; however, some contributing factors have been documented.  It is well 

established that the exogenous gonadotropins used to stimulate the ovary before AI can 
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perturb the maternal environment in the cat (Swanson et al., 1996a; Graham et al., 

2000).  Most gonadotropin regimens in felids involve the administration of species-

specific dosages of equine chorionic gonadotropin (eCG) to initiate folliculogenesis 

followed by human chorionic gonadotropin (hCG) to induce ovulation.  However, studies 

have demonstrated that eCG and hCG share dual roles in the cat ovary, promoting both 

folliculogenesis and ovulation (Wildt et al., 1978; Goodrowe and Wildt, 1987; Swanson et 

al., 1997).  Thus, when eCG and hCG are administered in combination, ancillary ovarian 

structures and abnormal estrogen elevations can result (Brown et al., 1995; Swanson et 

al., 1996a; Roth et al., 1997b; Graham et al., 2000).  These physiological disruptions 

parallel similar observations in the cow (Alcivar et al., 1992), sheep (Gonzalez-Bulnes et 

al., 2003) and mouse (Fossum et al., 1989) following ovarian stimulation.    

The unpredictable feline estrous cycle makes timing assisted reproduction a 

significant challenge.  Historically considered to be induced ovulators (Wildt et al., 1980), 

investigations have determined that both laboratory-housed domestic cats and a wide 

range of wild felid species, including the fishing cat and clouded leopard, exhibit 

spontaneous ovulation with no discernable pattern or consistency (Lawler et al., 1993; 

Gudermuth et al., 1997; Graham et al., 2000; Brown et al., 2001; Moreira et al., 2001; 

Moreland et al., 2002; Pelican et al., 2005; Brown, 2006).  Spontaneous ovulation and 

the existence of mature corpora lutea (CL) at the time of ovulation induction generally 

lead to unpredictable and often poor ovarian responses to exogenous gonadotropins 

(Pelican et al., 2006b).  Heightened follicular activity and the presence of preovulatory 

follicles at the time of exogenous gonadotropin administration can have similar 

implications.  

 A quiescent ovary at the time of ovulation induction is advantageous, increasing 

the likelihood of a consistent and uniform ovarian response and diminishing the risk of 

an altered endocrine milieu during the critical peri-implantation period.  This is evident in 
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the cheetah, an induced ovulator that also is known to display periods of anestrus.  

Cheetahs demonstrate a ~ 50% success rate following exogenous gonadotropin therapy 

and AI (Howard et al., 1992b; Howard et al., 1997).  In the ocelot, also an induced 

ovulator, incidence of pregnancy following AI is ~ 25% (Swanson et al., 1996b).  For 

species exhibiting spontaneous ovulation, such as the clouded leopard and fishing cat, 

AI success is significantly compromised (Pelican et al., 2006b).   

Inconsistent ovarian response can be mitigated through temporary ovarian 

suppression before ovulation induction.  This approach synchronizes early follicle 

cohorts that are subsequently highly susceptible to ovarian stimulation with exogenous 

gonadotropins (McGee and Hsueh, 2000).  Short-term ovarian suppression also has 

been linked to decreased incidence of ovarian hyperstimulation (Kol, 2004).  Temporary 

ovarian inhibition has been used successfully in humans (Albano et al., 1999; Barbieri 

and Hornstein, 1999), domestic livestock (Lofstedt, 1988; Wood et al., 1992; Deligiannis 

et al., 2005) and wild ungulates (Monfort et al., 1993; Morrow et al., 2000) to synchronize 

follicular activity and improve ovarian response for AI. 

 Previous investigations confirmed the efficacy of a progestin implant 

(levonorgestrel, Norplant®) for short-term suppression of follicular activity and 

spontaneous ovulation in the domestic cat (Pelican et al., 2005).  However, return to 

follicular activity following levonorgestrel implant removal is highly variable in the cat, 

ranging from ~ 2 weeks to greater than 2 months.  Additionally, use of levonorgestrel 

implants requires two anesthesia events (for insertion and removal), which is an 

impractical approach for applications in wild felids.  The oral progestin altrenogest (ALT; 

Regu-Mate®) has been used in dogs (Root Kustritz, 2001) to maintain pregnancy, and in 

horses (Lofstedt and Patel, 1989), pigs (Wood et al., 1992), killer whales (Robeck et al., 

2004) and bottlenose dolphins (Robeck et al., 2005) to synchronize follicular activity 

before assisted reproduction or natural breeding.  This study evaluated the efficacy of 
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three dosages of ALT for short-term inhibition of ovarian activity in the domestic cat 

using non-invasive fecal steroid monitoring.  The hypothesis was that oral progestin 

would provide rapid, reversible inhibition of ovarian activity in a dose-dependent manner, 

with a consistent return to cyclicity following removal.     

 

Materials and Methods 

 

Animals  

 Thirteen adult (1-5 year old) female domestic cats were housed at the 

Smithsonian’s National Zoological Park’s Conservation and Research Center (CRC).  

Queens were maintained individually in stainless steel cages (0.5 m3) under artificial 

fluorescent illumination (12L:12D) during the ~ 14 month study.  All cats were provided a 

dry commercial diet (Purina ONE®, Nestlé Purina PetCare Co., St. Louis, MO) and had 

continual access to water, toys, perches and bedding.  Cats were housed in accordance 

with the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory 

Animal Resources, 1996), and all research activities were approved by the CRC’s 

Institutional Animal Care and Use Committee (IACUC; # 05-25) and the University of 

Maryland IACUC (R-06-06). 

 

Altrenogest administration 

 Duration of ovarian cycle inhibition was based on the domestic cat luteal phase 

length (36-38 d) (Brown et al., 1994; Pelican et al., 2005).  This strategy was employed 

to ensure lysis of functional corpora lutea (if present) and promote complete ovarian 

quiescence by the time of treatment removal.  The study was conducted in two time 

periods (Trial 1 and Trial 2) separated by a 4 month interval where resumption of 
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follicular activity was confirmed by fecal hormone analyses.  Each cat was randomly 

assigned to two different treatments, and treatment combinations were assigned to 

balance potential carry-over effects between Trials 1 and 2.    

ALT oral suspension (2.2 mg/ml; Intervet Inc., Millsboro, DE) was stored at room 

temperature in an opaque container.  In a preliminary study, the colorless, odorless 

suspension was determined to be palatable to domestic cats.  During each trial, ALT 

was administered daily in 5 g wet food (Friskies®; Nestlé Purina PetCare Co.) for 38 

consecutive days.  In Trial 1, cats were assigned to one of four daily ALT treatments: (1) 

0 mg/kg (n = 3 cats); (2) 0.088 mg/kg (n = 3); (3) 0.176 mg/kg (n = 3); and (4) 0.352 

mg/kg (n = 4).  Based on results from Trial 1, the 0.176 mg/kg treatment was removed 

and replaced with a lower dosage (0.044 mg/kg).  In Trial 2, cats were assigned to one 

of four daily ALT treatments: (1) 0 mg/kg (n = 2); (2) 0.044 mg/kg (n = 5); (3) 0.088 

mg/kg (n = 3); and (4) 0.352 mg/kg (n = 2).  For both trials, each cat was weighed 

(range, 2.3 to 4.9 kg) the day before treatment initiation to calculate dosages (range, 

0.05 to 0.78 ml ALT daily).             

 

Fecal hormone extraction  

 Over the course of the study, fecal samples were collected daily (if present), 

sealed in plastic bags labeled with the individual’s name and the date, and stored at -

20˚C.  Fecal samples from 60 days before, 38 days during and 60 days after each ALT 

treatment period were extracted to isolate and concentrate estrogens and progestins 

using a validated protocol for domestic cats (Brown et al., 1994).  Briefly, individual fecal 

samples were lyophilized, pulverized and 0.18 to 0.2 g of dry fecal powder was boiled in 

5 ml of 90% ethanol for 20 minutes.  During the boiling process, 100% ethanol was 

added as needed to maintain approximate pre-boil volumes.  After centrifugation (500g, 
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20 min), the supernatant was recovered and the pellet resuspended in 5 ml of 90% 

ethanol, vortexed for 30 seconds and re-centrifuged at 500g for 15 minutes.  The first 

and second supernatants were combined, dried under air, and reconstituted in 1 ml 

methanol.  Methanol extracts were briefly vortexed and placed in a sonicator for 15 

minutes to free particles adhering to the glass tube.  Each extract was diluted 1:10 in 

steroid dilution buffer (0.2 M NaH2PO4, 0.2 M Na2HPO4, 0.15 M NaCl; pH 7.0) and stored 

in polypropylene tubes at -20°C until enzyme immunoassay (EIA) analyses.   

 

Estrone sulfate EIA 

A single antibody estrone sulfate (E1S) EIA was used to quantify estrogen 

metabolites in all fecal extracts (Stabenfeldt et al., 1991).  This assay cross-reacts with a 

broad range of estrogen metabolites previously identified in domestic cat feces by high 

performance liquid chromatography (Brown et al., 1994).  Specifically, the assay 

employed a polyclonal antibody (R583; 1:1,500; C. Munro, University of California, 

Davis, CA) produced against estrone-3-glucuronide dissolved in coating buffer (0.015 M 

Na2CO3, 0.035 M NaHCO3, pH 9.6), added to 96-well, flat-bottom microtiter plates 

(Nunc-Immuno, Fisher Scientific Inc., Pittsburgh, PA) and incubated overnight at 4˚C.   

Plates were washed (0.05% Tween 20 in 0.15 M NaCl solution) to remove un-adsorbed 

antibody and 0.025 ml steroid assay buffer (0.2 M NaH2PO4, 0.2 M Na2HPO4, 0.15 M 

NaCl, 2.0 g/L BSA, pH 7.0) was added to each well and maintained at room temperature 

for 2 to 5 hours.  Next, 0.05 ml diluted sample (range, 1:100 to 1:500) or  E1SO4 standard 

(range, 1.95-500 pg; Sigma-Aldrich Chemical Co., St. Louis, MO) was added to wells in 

duplicate immediately followed by 0.05 ml estrone sulfate horseradish peroxidase 

(1:20,000; C. Munro).  Following a 2 hour incubation at room temperature, plates were 

washed and 0.1 ml substrate (0.04 M ABTS, 0.5 M H2O2 in a 0.05 M citric acid solution) 

was added to each well.  Optical densities (OD) were read using a microplate reader 
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(MRX, Dynex Technologies, Chantilly, VA) at 405nm when 0 pg standard wells reached 

an OD of 0.9 to 1.  Serial dilutions of domestic cat feces yielded a displacement curve 

that was parallel to the standard curve (R2 = 0.99).  Recovery of known amounts of 

E1SO4 standard added to a pool of domestic cat fecal extracts (1:400) was 70.4% ± 

4.1% (y = 0.82x – 3.3; R2 = 0.99).  Intra-assay variation was < 10% and inter-assay 

variation was 10.3% and 13.4% at 30% and 70% binding, respectively (n = 124 plates).  

Sensitivity for this assay was 2 pg/well.   

 

Pregnane EIA 

A single antibody pregnane (Pg) EIA was utilized to quantify progesterone 

metabolites in every other fecal extract (Schwarzenberger et al., 1991; Graham et al., 

2001).  This assay cross-reacts with a broad range of progesterone metabolites 

previously identified in domestic cat feces by high performance liquid chromatography 

(Brown et al., 1994).  The procedures and assay reagents were the same as described 

previously for the E1S assay unless otherwise noted.  The EIA relied upon a monoclonal 

antibody (CL425; 1:10,000; C. Munro) in coating buffer that was added to 96-well, flat-

bottom microtiter plates (Nunc-Immuno) and incubated overnight.  Plates were washed 

and 0.05 ml diluted sample (range, 1:2000 to 1:6000) or progesterone standard (range, 

0.78 to 200 pg; Sigma-Aldrich) was added to wells in duplicate immediately followed by 

0.05 ml enzyme conjugate (progesterone-3CMO horseradish peroxidase; 1:40,000; C. 

Munro).  Following a 2 hour incubation, plates were washed, 0.1 ml substrate was added 

to each well and OD were read.  Serial dilutions of domestic cat feces yielded a 

displacement curve that was parallel to the standard curve (R2 = 0.99).  Recovery of 

known amounts of progesterone standard added to a pool of domestic cat fecal extracts 

(1:1600) was 65.9% ± 11.9% (y = 1.03x – 5.4; R2 = 0.99).  Intra-assay variation was < 
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10% and inter-assay variation was 12.8% and 16.8% at 30% and 70% binding, 

respectively (n = 68 plates).  Sensitivity for this assay was 1 pg/well.  

 

Statistical analyses 

 For each individual, baseline fecal estrogen concentrations were determined 

using an iterative process in which all values exceeding the mean plus two standard 

deviations (SD) were removed from the data set.  The average was then recalculated 

and the elimination process repeated until no values exceeded the mean plus two SD 

(Brown et al., 1994; Pelican et al., 2005).  The final mean obtained through this process 

was considered the baseline mean for that animal, and all values removed from the data 

set during the iterative process were classified as elevated.  Duration of the follicular 

phase was defined as the number of consecutive days where estrogens were elevated 

(minimum 3 days), and the highest fecal estrogen value within an array of elevations 

was the peak for that follicular phase.  Estrous cycle length was calculated as the 

number of days between fecal estrogen peaks with no subsequent elevation in fecal 

progestins.  Baseline progestin concentrations were determined using a similar iterative 

process, except the mean plus 1.5 SD was used.  Values greater than twice the 

progestin baseline were considered elevated for that individual.  1.5 SD was chosen for 

progestins because 2 SD was too sensitive to differentiate baseline from elevations.  A 

luteal phase was defined when progestin levels rose above baseline and remained 

elevated for at least 3 consecutive weeks.  Luteal phase length was the total number of 

days progestins remained above baseline.  Following treatment, return to follicular 

activity was calculated as the number of days from ALT removal until the first day fecal 

estrogens were above baseline for that individual.       

 Data from Trials 1 and 2 were combined for data analyses to compare: (1) 0 

mg/kg ALT daily (n = 5 cats, control); (2) 0.044 mg/kg (n = 5, LOW); (3) 0.088 mg/kg (n = 
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6, MID); and (4) 0.352 mg/kg (n = 6, HIGH).  Treatment differences were evaluated for 

the 60 days before (PRE), 38 days during and 60 days after (POST) ALT treatment.  

Estrous cycle traits (duration of follicular phase, mean estrogens/follicular phase, peak 

estrogens/follicular phase, estrous cycle length, baseline and mean estrogens, baseline 

and mean progestins) were calculated for each individual and then averaged within each 

treatment.  To normalize the iterative process, only the 38 days before, during and after 

ALT treatment were used when determining baseline fecal steroid concentrations.  Data 

within treatment across time were evaluated using a mixed model repeated measures 

ANOVA followed by least significant difference (LSD) mean comparisons.  A toeplitz 

variance-covariance structure was chosen for repeated measure analyses based on: (1) 

low number of parameters; and (2) acceptable fit for the residuals.  Data between 

treatments within a single time interval were analyzed using a mixed model one-way 

ANOVA followed by LSD mean comparisons.  When necessary, data were corrected for 

non-normal distribution before ANOVA using log transformations (Sokal and Rohlf, 

1994).  Differences in the range of return to follicular activity among treatments were 

compared using a F-test for variance in Excel 2003 (Microsoft Corporation, Redmond, 

WA).  All other analyses were performed using SAS 9.1.3 (SAS Institute Inc., Cary, NC).  

Data are presented as mean ± SEM.   

 

Results 

 

Estrous cycle characteristics before treatment 

 Estrous cycle characteristics for the 60 days before treatment showed that the 

duration of the follicular phase ranged from 3-17 days (Table 2.1).  The interval between 

consecutive estrogen peaks (estrous cycle length) varied extensively (range, 7 to 43 

days).  Frequency of the follicular phase, estrous cycle length, mean estrogens/ follicular 
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phase, peak estrogens/ follicular phase and baseline progestins did not differ (P > 0.05) 

among treatment groups before ALT or placebo administration.  However, baseline 

estrogen metabolites were higher in LOW (P < 0.05) compared to HIGH cats, and similar 

(P > 0.05) to MID cats during the pre-treatment period.  Additionally, follicular phase 

duration was longer (P < 0.05) in LOW and HIGH compared to control cats before ALT 

treatment.  Incidence of spontaneous ovulation before and after treatment was 15.4% 

(two of 13 cats).  Luteal phase length could not be characterized because in all cases 

elevated progestins extended beyond the time period subject to fecal hormone analyses.  

 

Influence of altrenogest dosage on estrous cycle characteristics 

 A comparison of fecal estrogen profiles during ALT or placebo treatment 

demonstrated that no female receiving ALT initiated follicular activity during treatment, 

whereas all control cats exhibited follicular activity at least two times during placebo 

administration (Fig. 2.1).  Consequently, number of estrogen peaks was similar (P > 

0.05) in control cats across time periods, but lower (P < 0.05) during ALT treatment at all 

dosages assessed (Fig. 2.2).  Additionally, HIGH cats displayed fewer (P < 0.05) 

estrogen peaks before (1.5 ± 0.4 peaks/60 days) versus after (2.7 ± 0.2 peaks/60 days) 

treatment.  Baseline estrogens were elevated (P < 0.05) in HIGH cats after ALT (195.7 ± 

15.4 ng/g dry feces) compared to before treatment (164.1 ± 6.9 ng/g) (Fig. 2.3A).  

Baseline progestins also were elevated (P < 0.05) in HIGH cats after ALT (3.2 ± 0.3 μg/g 

dry feces) compared to before treatment (2.6 ± 0.2 μg/g) (Fig. 2.3B).  In contrast, 

baseline estrogens and progestins were similar (P > 0.05) across time in LOW and MID 

cats.  An increase (P < 0.05) in baseline estrogens was observed in control cats during 

placebo treatment (Fig. 2.3A).   

 Two females did not display follicular activity before ALT treatment; however, 

both exhibited at least two follicular phases in the 60 days following treatment (Fig. 
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2.4A).  Females (n = 11) demonstrating follicular activity before ALT treatment but 

exhibiting baseline estrogen levels at ALT initiation remained at baseline (Fig. 2.4B), 

whereas females exhibiting follicular activity on Day 1 of treatment (n = 6) returned to 

baseline by Day 6 and remained inhibited (Fig. 2.4C).  In the six females displaying 

follicular activity at treatment initiation, duration of the follicular phase (7.7 ± 2.0 days), 

mean fecal estrogens (315.0 ± 21.9 ng/g feces) and peak fecal estrogens (395.2 ± 47.2 

ng/g feces) were similar (P > 0.05) to estrous cycle characteristics preceding treatment 

initiation.  Following ALT treatment, all cats demonstrated a return to follicular activity in 

the LOW (8.2 ± 1.8 d post-ALT withdrawal), MID (12.5 ± 0.9 d) and HIGH (16.0 ± 4.0 d) 

treatments (Fig. 2.5).  However, a more synchronized (P < 0.05) return to follicular 

activity was observed in MID (range, 10 to 16 d) compared to HIGH (range, 9 to 35 d) 

cats, with intermediate variation (P > 0.05) in the LOW cats (range, 2 to 12 d; Fig.2.6). 

 

Discussion 

 

 Exogenous progestin therapy has proven effective for contraception and 

inhibition of follicular activity in felids previously (Baldwin et al., 1994; Looper et al., 

2001; Pelican et al., 2005).  To our knowledge this is the first study to evaluate the effect 

of varied oral progestin dosages on ovarian cycle characteristics in the cat using non-

invasive fecal hormone analyses.  These results demonstrate the efficacy of oral 

progestin for short-term, reversible inhibition of ovarian activity with no observed side 

effects.  Consistent with previous studies using progestin implants for ovarian 

suppression, oral progestin did not alter follicular activity already in progress.  The use of 

fecal samples proved advantageous over blood sampling for assessing differences in 

the dose-response relationship among treatments, eliminating stressful collections that 

may have disrupted reproductive function and confounded results (Graham and Brown, 
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1996).  Furthermore, fecal hormone monitoring revealed a lower incidence of 

spontaneous ovulation (15.4%) in this laboratory-housed domestic cat population 

compared to historical data (~ 50%) (Pelican et al., 2005).   

 Given the large body of literature available on the use of progestins for ovarian 

cycle control, we correctly hypothesized that oral ALT would inhibit follicular activity in 

the domestic cat.  The mechanism for this inhibition is consistent with previous research 

on progestin implants in the cat (Pelican et al., 2005), where oral progestin prevented 

initiation of follicular activity, but had no influence on follicular activity that was in 

progress at the time of treatment onset.  These results indicate that ALT acts only to 

prevent initial recruitment of small antral follicles but is unable to override selection and 

dominance of mature follicles when that process is already underway.  Because follicular 

recruitment is primarily under the influence of high FSH and low LH, whereas follicular 

selection is regulated by low FSH and increasing LH, it is possible that ALT is acting 

directly at the level of the pituitary and/or ovary to differentially influence FSH and LH 

release and/or follicular dynamics.  However, previous studies in the mare indicate that 

ALT has little or no effect on LH production (Squires et al., 1983).  Potential actions on 

inhibin and/or activin also must be considered.  Additionally, oral progestin appears to 

provide a priming effect on the ovary of anestrous cats, as indicated by the return to 

consistent follicular activity following treatment in previously acyclic females.  This could 

lead to interesting applications in wild felids that demonstrate ovarian ‘shut down’ for 

unknown reasons, where a return to estrous cyclicity is required to facilitate natural 

breeding.  

 We hypothesized that ovarian suppression with ALT would increase in a dose-

dependent manner, yet results indicated abolishment of follicular activity at even the 

lowest dosage assessed.  It is probable that the threshold dosage of ALT required for 

ovarian suppression in the cat falls below the range of dosages assessed.  This 
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threshold is not believed to be size-dependent, since a lower ALT dosage is required in 

the horse (0.044 mg/kg) versus the dog (0.088 mg/kg) (Lofstedt and Patel, 1989; Root 

Kustritz, 2001).  Fecal hormone profiles in the cats administered the lowest dosage did 

appear to demonstrate some indications of breakthrough follicular activity; however, this 

could not be statistically differentiated from baseline values.  These results indicate that 

a dosage of 0.044 mg/kg is likely close to the minimum dosage necessary to suppress 

follicular activity in the cat.  The highest dosage assessed, while effective, did result in 

an increase in baseline estrogens and progestins following removal of the drug.  This 

shift in baseline estrogens is consistent with similar observations in the cat following 

treatment with the progestin implant levonorgestrel (Pelican et al., 2005).  While the 

implications for this baseline shift remain unknown, it could possibly influence 

implantation success if used in conjunction with assisted reproduction.  Thus, the 

currently-utilized dosage for dogs (0.088 mg/kg) was the optimal dosage in domestic 

cats, with no indications of breakthrough cycling or alterations in baseline hormone 

levels following treatment. 

 This study demonstrated two associations between ALT dosage and return to 

follicular activity following removal of the drug.  First, a positive relationship between 

dosage and mean duration of suppression was observed, where the interval from end of 

treatment to the follicular phase numerically increased as dosage increased.  A similar 

correlation has been observed in pigs (Kraeling et al., 1981).  While the 

pharmacokinetics of ALT have not been examined in the cat, this finding could be 

explained by dose-dependent differences in drug persistence in circulation.  Second, we 

hypothesized that oral progestin generally would provide a more consistent return to 

cyclicity when compared to implant formulations.  Instead, results indicated that dosage 

played a large role in determining the variability of estrous cycle return.  For example, 

the high dosage yielded far greater variability in return to cyclicity (9-35 days) than the 
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mid-range dosage (10-16 days).  Synchronization with ALT proved superior to 

levonorgestrel in the cat, particularly when comparing return to follicular activity in the 

mid-range ALT dosage (10-16 days) to six levonorgestrel implants (11-79 days) (Pelican 

et al., 2005).  The use of ALT in cats supports similar observations in livestock species, 

where return to follicular activity can be timed within days following ALT cessation.  This 

is evident in the horse, where ovulation typically is observed nine to 11 days after 

stopping ALT (Lofstedt and Patel, 1989).   

 Through daily fecal collection, a more precise assessment of the timing of ALT 

effects on ovarian activity was possible.  In a laboratory-housed population of animals, 

daily blood sampling is feasible, however invasive procedures are known to perturb 

reproductive function (Graham and Brown, 1996).  In addition to reducing stress, fecal 

hormone analyses provide a pooled steroid value excreted over several hours, rather 

than a peak or nadir that may not be representative of the overall physiological response 

(Brown et al., 2001).  Fecal steroid hormone monitoring has previously been employed 

in cats to assess chorionic gonadotropin dosages (Brown et al., 1995; Graham et al., 

2000), and to evaluate the efficacy of oral melatonin administration for prevention of 

ovarian hyperstimulation (Graham et al., 2004).  This study further supports this 

application, indicating that fecal hormone analysis alone can provide adequate data to 

make informed decisions on optimal dosage of an exogenous hormone.   

 This population of domestic cats had a low prevalence of spontaneous ovulation 

(15.4%) compared to laboratory-housed queens assessed in earlier studies.  

Spontaneous ovulation rates ranging from 35-87% have been reported  (Lawler et al., 

1993; Gudermuth et al., 1997; Pelican et al., 2005).  Domestic cats previously housed in 

the CRC colony have demonstrated a spontaneous ovulation rate of 56.3% (Pelican et 

al., 2005).  Within that population, four cats were unpaired and two (50%) exhibited 

spontaneous ovulation.  Incidence of spontaneous ovulation has been attributed, in part, 
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to stressful events, interactions with cage-mates and visual and olfactory cues from 

adjacent males (Concannon, 1991; Gudermuth et al., 1997).  Cats in the current study 

were housed individually with olfactory and auditory contact with males.  It also has been 

hypothesized that increased age may trigger ovulation (Lawler et al., 1993).  The current 

study supports this finding, since both spontaneous ovulators were in the oldest age 

class assessed (6 years of age), however this should be considered conservatively 

given the low number of cats assessed.  The low incidence of spontaneous ovulation 

does not appear to be attributed to previous reproductive history in this study, since one 

spontaneous ovulator had previously produced offspring and one had not.   

 The safety of exogenous progestins also is an important consideration, 

particularly if the ultimate goal is application in wild felids.  Commonly used progestins in 

domestic and non-domestic cats have included melengestrol acetate (MGA),  megestrol 

acetate (Ovaban®) and levonorgestrel (Norplant®) (Lofstedt and Patel, 1989; 

Romatowski, 1989; Baldwin et al., 1994; Romagnoli and Concannon, 2003; Pelican et 

al., 2005).  However, administration of certain progestins for numerous years, most 

notably MGA, has been associated with increased incidence of pyometra and uterine 

neoplasia in cats (Munson and Mason, 1993).  Newer progestin formulations have aimed 

at decreasing these side effects.  For example, levonorgestrel implants inhibit follicular 

activity and spontaneous ovulation in the domestic cat with no observed adverse 

reactions (Baldwin et al., 1994; Looper et al., 2001).  The present study was the first to 

demonstrate that short-term treatment with ALT can provide effective ovarian 

suppression in domestic cats with no known deleterious effects.  Whether long-term or 

continual intermittent treatment with ALT is safe in domestic and non-domestic cats 

remains to be determined.         

 In conclusion, short-term treatment with three different dosages of ALT induced 

rapid and reversible inhibition of follicular activity in the cat.  These findings provide the 
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necessary foundation for further investigations into the use of ALT prior to assisted 

reproduction in felids.  Ongoing studies are evaluating whether an ALT-treated ovary 

exhibits altered sensitivity to exogenous gonadotropins, and whether ALT pre-treatment 

might mitigate adverse endocrine effects known to occur following ovarian stimulation in 

the cat.   
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Table 2.1.  Domestic cat reproductive traits before altrenogest treatment,  
assessed by longitudinal fecal steroid analyses (n = 13 females).  

 
 
 Duration of follicular phase (days)   5.3 ± 0.4 
 
 Estrous cycle length (days)    20.6 ± 1.8 
 

Number of follicular phases/ 60 days   2.1 ± 0.3 
 

Baseline estrogens (ng/g feces)   194.8 ± 12.5 
 
 Peak estrogens (ng/g feces)    401.8 ± 26.2 
 

Mean estrogens/follicular phase (ng/g feces) 331.5 ± 16.5   
  

 Baseline progestins (µg/g feces)   2.8 ± 0.2   
 
  
 Values are means ± SEM.   
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Fig. 2.1.  Influence of altrenogest (ALT) on longitudinal fecal estrogens.  Queens were 
assigned to: (A) 0 mg/kg ALT (control); (B) 0.044 mg/kg (LOW); (C) 0.088 mg/kg (MID); 
and (D) 0.352 mg/kg (HIGH).  Black bars indicate the 38 day treatment period.  
Individual animals within each treatment are represented by different line markers.   
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Fig. 2.2.  Influence of altrenogest dosage on number of fecal estrogen peaks (mean ± 
SEM) before (solid), during (open) and after (hatched) treatment.  Within a treatment, 
means with different superscripts differ (P < 0.05).  
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Fig. 2.3.  Effect of altrenogest dosage on: (A) baseline fecal estrogens; and (B) baseline 
fecal progestins before (solid), during (open) and after (hatched) treatment (mean ± 
SEM).  Within a treatment, means with different superscripts differ (P < 0.05).  
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Fig. 2.4.  Representative fecal steroid profiles before, during and after altrenogest (ALT) 
treatment.  Profiles include: (A) a female demonstrating follicular activity only after ALT 
treatment; (B) a female exhibiting baseline fecal estrogens at the time of ALT treatment 
initiation; and (C) a female exhibiting follicular activity at the time of ALT treatment 
initiation.  Asterisks indicate each follicular phase and the solid bar represents the 38 
day treatment period.   
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Fig. 2.5.  Comparison of inhibition duration following altrenogest (ALT) treatment.  Cats 
received: (A) 0.044 mg/kg ALT (LOW); (B) 0.088 mg/kg (MID); and (C) 0.352 mg/kg 
(HIGH).  Bars represent inhibition during the treatment period (hatched), inhibition 
following removal of altrenogest (solid), and follicular activity (open).  Numbers within 
bars represent interval (days) from ALT removal to the first follicular phase. 
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Fig. 2.6.  Variation in return to follicular activity following treatment with altrenogest 
(ALT).  Cats received 0.044 mg/kg ALT (LOW); 0.088 mg/kg (MID); and 0.352 mg/kg 
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CHAPTER 3 

 

ORAL PROGESTIN PRIMING ELIMINATES SPONTANEOUS OVULATION AND 

INCREASES SENSITIVITY TO EXOGENOUS GONADOTROPINS IN THE CAT 

 

Abstract   

  

 The impact of pre-treatment with oral progestin (altrenogest; ALT) before 

ovulation induction on ovarian morphology and function was examined in the domestic 

cat.  A population of queens known to exhibit induced or spontaneous ovulation was 

assigned to two dosages of exogenous gonadotropins with and without ALT priming: (1) 

ALT + 100 IU equine chorionic gonadotropin (eCG) + 75 IU human chorionic 

gonadotropin (hCG; n = 7 cats; ALT HIGH); (2) 100 IU eCG + 75 IU hCG (n = 7; HIGH); 

(3) ALT + 50 IU eCG + 37.5 IU hCG (n = 5; ALT LOW); or (4) 50 IU eCG + 37.5 IU hCG 

(n = 5; LOW).  Ovarian response and gonadotropin-induced ovulation were assessed by 

laparoscopy on Day 2 (Day 0 = day of hCG) and graded on a scale of one to four (1 = 

excellent; 2 = good; 3 = fair; 4 = ovulation failure).  Spontaneous luteal activity was 

abolished in all 12 ALT-primed cats, whereas five of 12 (41.7%) unprimed cats had old 

corpora lutea (CL) on Day 2.  All cats given ALT had a Grade 1 or 2 ovarian response, 

compared to only 50% of females given gonadotropins alone.  Suboptimal ovarian 

response and ovulation failure were observed in LOW but not ALT LOW queens (P < 

0.05), demonstrating an increased sensitivity to eCG/hCG in the progestin-primed ovary.  

Longitudinal fecal hormone profiles from a subset of queens (n = 19) demonstrated that 

the estrogen surge following gonadotropin-induced ovarian stimulation (7.3 ± 0.9 days) 

was similar (P > 0.05) in all groups compared to pre-treatment values (6.1 ± 0.6 days).  

The interval from hCG administration to the first day of sustained elevated fecal 
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progestins also was similar (P > 0.05) among treatments, averaging 4.8 ± 0.3 days after 

hCG.  On Day 17, laparoscopy was conducted to assess ovarian activity and corpora 

lutea (CL) morphology compared to Day 2.  Then, ovariohysterectomy was performed 

and ovaries prepared for histology and luteal progesterone quantification.  ALT did not 

prevent ancillary folliculogenesis and ovulation following the initial gonadotropin-induced 

ovarian response.  Luteal progesterone measured in all treatments compared to a 

natural estrus/coitus-induced ovulation group spayed at a corresponding time point (n = 

6 cats) revealed that CL progesterone was abnormally low (P < 0.05) in LOW, ALT HIGH 

and HIGH cats compared to ALT LOW and naturally-bred cats.  Overall, this study 

demonstrated that oral progestin priming prevents spontaneous ovulation, provides a 

consistent ovarian response to ovulation induction, increases sensitivity to exogenous 

gonadotropin dosage and supports normal luteal progesterone production.   

 

Introduction 

 

The domestic cat (Felis catus) is a valuable research model for investigating 

endocrine mechanisms important for optimizing assisted reproduction in rare wild felids.  

One technique developed in the cat that has been particularly successful is artificial 

insemination (AI), a critical tool for managing genetically-isolated populations (Wildt and 

Roth, 1997; Howard, 1999).  AI circumvents breeding incompatibility, a common problem 

in zoo felids (Brown et al., 1995), while providing the potential for introducing new genes 

from wild populations into captive breeding programs via frozen sperm (Howard, 1992).  

Using a laparoscopic intrauterine AI technique, offspring have been produced in the 

cheetah (Howard et al., 1992b), clouded leopard (Howard et al., 1996), leopard cat 

(Howard, 1991), ocelot (Swanson et al., 1996b), puma (Barone et al., 1994b), snow 

leopard (Roth et al., 1997a), tiger (Donoghue et al., 1993) and tigrina (Swanson and 
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Brown, 2004).  However, overall incidence of pregnancy following AI remains remarkably 

low in many wild felids (< 10%) (Pelican et al., 2006b). 

Much of the etiology of AI failure can be traced back to the unique reproductive 

physiology of the female cat.  Although classically considered induced ovulators (Wildt et 

al., 1980; Goodrowe et al., 1989), there is evidence of intermittent spontaneous 

ovulation in many wild felids (Brown, 2006) and in domestic cats (Lawler et al., 1993).  

Indeed, a strong correlate to poor AI success in felids is spontaneous ovulation and an 

accompanying inconsistent ovarian response to exogenous gonadotropins before AI 

(Howard et al., 1997).  This variability is attributed to administration of gonadotropins 

during the luteal phase, where functional corpora lutea (CL) can attenuate ovarian 

response or lead to ovulation failure (Pelican et al., 2006b).  Alternatively, if exogenous 

gonadotropins are given concurrent with a natural estradiol surge, follicular cohorts of 

inconsistent age and oocyte maturation stage can result.  Ancillary folliculogenesis and 

ovulation (Swanson et al., 1996a), immunologically-mediated refractoriness to repeated 

exogenous gonadotropin exposure (Swanson et al., 1995a), an abnormal endocrine 

milieu (Brown et al., 1994), delayed oviductal transport (Graham et al., 2000) and poor 

embryo quality (Goodrowe et al., 1988a) also can mitigate reproductive success after 

gonadotropin stimulation.           

Short-term ovarian suppression before AI or timed breeding routinely is used in 

spontaneous ovulators across multiple genera, including the human (Burry et al., 1991; 

Barbieri and Hornstein, 1999), cow (Patterson et al., 1997), pig (Wood et al., 1992), 

horse (Lofstedt, 1988), sheep (Deligiannis et al., 2005), sable antelope (Thompson and 

Monfort, 1999), scimitar-horned oryx (Morrow et al., 2000), killer whale (Robeck et al., 

2004) and bottlenose dolphin (Robeck et al., 2005).  This strategy temporarily down-

regulates ovarian activity, thereby enabling a more uniform ovarian response at the time 

of insemination, oocyte retrieval or embryo transfer.  Down-regulation before 
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gonadotropin stimulation also can reduce ovarian hyperstimulation in some species (Kol, 

2004; Oshima et al., 2004).  Indeed, one of the few wild felid species with a relatively 

high AI success rate (~45%), the cheetah, is an induced ovulator which frequently 

experiences periods of prolonged acyclicity (Brown et al., 1996b).  These periods of 

anestrus provide an endogenous mechanism for ovarian suppression that results in a 

more consistent ovarian response to exogenous gonadotropins and higher pregnancy 

success following AI (Howard et al., 1992b; Howard et al., 1997).   

Manipulating the ovarian cycle can be accomplished with various exogenous 

agents that differentially act on the hypothalamic-pituitary-gonadal (HPG) axis.  In the 

cat, progestins are optimal for ovarian suppression compared to GnRH analogs or 

prostaglandins (Wildt et al., 1979b; Pelican et al., 2005).  Progestins primarily act at the 

level of the hypothalamus and the pituitary, providing negative feedback that leads to 

attenuated gonadotropin release and suppression of ovarian activity (Burris, 1999; 

Romagnoli and Concannon, 2003).  In cats, progestin implants have been used 

successfully to down-regulate ovarian activity without negatively affecting subsequent 

ovarian response to exogenous gonadotropins or oocyte quality (Pelican et al., 2001; 

Pelican et al., 2007).  The oral progestin altrenogest (ALT) also has been used in cats 

for ovarian suppression (Chapter 2), as well as in other domestic and non-domestic 

animals prior to assisted reproduction or timed breeding including the horse (Lofstedt 

and Patel, 1989), pig (Wood et al., 1992), killer whale (Robeck et al., 2004) and 

bottlenose dolphin (Robeck et al., 2005). 

This study evaluated the effect of short-term oral progestin priming on 

subsequent ovarian response to equine chorionic gonadotropin (eCG) and human 

chorionic gonadotropin (hCG) in the domestic cat.  Multiple endpoints associated with 

ovarian function and morphology were examined.  We hypothesized that: (1) oral 

progestin priming would prevent spontaneous ovulation and result in a more 



 69 

synchronized ovarian response to gonadotropins compared to unprimed females; (2) the 

down-regulated ovary would exhibit an altered dose-dependent sensitivity to 

gonadotropins; (3) progestin priming would reduce accessory CL formation; and (4) 

priming would mitigate adverse effects on ovarian morphology and function associated 

with exogenous gonadotropin treatment.   

     

Materials and Methods 

 

Animals  

 Thirty adult (1-3 year old) female domestic cats were housed at the 

Smithsonian’s National Zoological Park’s Conservation and Research Center (CRC) 

during the ~ 14 month study.  These cats were part of a research population known to 

exhibit intermittent spontaneous ovulation (Graham et al., 2000; Pelican et al., 2005).  

Queens were maintained alone (n = 11) or in pairs (n = 19) in stainless steel cages 

(minimum 0.5 m3 of space per female) under artificial fluorescent light (12 L: 12 D).  

Three proven breeder males (1-7 years old) were housed in an adjacent room in 

individual runs (> 1 m3 of space per male).  All cats were provided a dry commercial diet 

(Purina ONE®, Nestlé Purina PetCare Co., St. Louis, MO).  Paired females were briefly 

separated daily and one cat from each pair received 5 g canned food (Friskies®; Nestlé 

Purina) with green food dye (Icing Colors, Wilton Industries, Woodbridge, IL) that served 

as a marker to differentiate fecal samples.  All research activities were approved by the 

CRC’s Institutional Animal Care and Use Committee (IACUC; #05-25) and the University 

of Maryland IACUC (R-06-06).   
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Exogenous hormone administration and natural breeding  

Queens (n = 24) receiving exogenous hormones were randomly assigned to four 

treatments: (1) ALT + 100 IU eCG + 75 IU hCG (n = 7 cats; ALT HIGH); (2) 100 IU eCG 

+ 75 IU hCG (n = 7; HIGH); (3) ALT + 50 IU eCG + 37.5 IU hCG (n = 5; ALT LOW); or 

(4) 50 IU eCG + 37.5 IU hCG (n = 5; LOW).  To account for potential variability across 

time, treatments were blocked by day with one alternating, matched pair (ALT HIGH 

versus HIGH; or ALT LOW versus LOW) beginning treatment on the same day.  

Subjects were previously naïve to exogenous hormones, and procedures were aligned 

to the day of hCG, termed Day 0.  The oral progestin ALT (Regu-Mate®; Intervet Inc., 

Millsboro, DE) was administered at a dosage of 0.088 mg/kg daily (Chapter 2) in 5 g 

canned food for 38 days, whereas unprimed females received wet food only.   

Lyophilized eCG (Sigma-Aldrich Corporation, St. Louis, MO) and hCG (Sigma-Aldrich) 

were solubilized in sterile, preservative-free saline to a concentration of 250 IU/ml and 

stored in individual syringes at -20°C until use.  Three days after the last ALT dose or 

randomly in unprimed females, cats received a single intramuscular (i.m.) injection of 

eCG to induce follicular activity (Day -3).  This was followed 80 hours later by a single 

i.m. injection of hCG to stimulate final follicular maturation and ovulation (Day 0).   

A group of queens demonstrating natural estrus and coitus-induced ovulation 

was used to compare luteal progesterone concentrations with the exogenous 

gonadotropin groups.  Females (n = 6) were monitored daily for signs of behavioral 

estrus including lordosis, tail deviation, vocalization, rubbing and rolling.  Beginning on 

Day 2-4 of behavioral estrus, a proven breeder male was introduced for natural breeding 

and allowed to mate three times a day (one intromission per encounter) in three hour 

intervals for two consecutive days (Wildt et al., 1981).  The first day of breeding was 

denoted Day 0.   
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Laparoscopic assessment of ovarian response on Day 2 

 A laparoscopic ovarian exam was performed 36-40 hours after hCG (Day 2) in all 

gonadotropin-treated queens, which corresponds to the interval when post-ovulatory 

intrauterine artificial insemination is typically performed in the cat (Howard et al., 1992a).  

Females were anesthetized with a single i.m. injection of 10 mg/kg ketamine 

hydrochloride (Ketaved; Vedco Inc., St. Joseph, MO) combined with 1 mg/kg 

acepromazine maleate (Phoenix Pharmaceuticals, Inc., St. Joseph, MO) and anesthesia 

was maintained with isoflurane inhalant gas (Phoenix Pharmaceuticals).  Following 

induction, cats were placed in dorsal recumbancy and examined laparoscopically (Wildt 

et al., 1977).  Briefly, the surgical table was tilted to an angle of ~ 45 degrees with the 

animal’s head down, and a two mm Verres probe was inserted through the abdominal 

wall to insufflate the abdomen with room air.  Next, a five mm trocar-cannula was 

inserted midline cranial to the umbilicus.  A five mm laparoscope containing an 

integrated camera system (Olympus Surgical and Industrial America, Orangeburg, NY) 

was inserted through the cannula to visualize the abdominal cavity, including the entire 

reproductive tract.  Using the two mm Verres probe for reference, all ovarian structures 

were counted, described, measured and photographed.  CL that were white and well-

vascularized were termed ‘old’, and cats with old CL on Day 2 were classified as 

spontaneous ovulators.  CL that were pink or red with developing vascularization were 

termed ‘fresh’, and presumed to be the result of gonadotropin stimulation.  Follicles > 2 

mm in diameter and demonstrating mild to moderate vascularization were classified as 

‘mature’.  Overall ovarian response for gonadotropin-induced ovulation was graded on a 

scale of 1 to 4:  (1) excellent; multiple fresh CL and no follicles > 2 mm (Grade 1); (2) 

good; mixed cohort of fresh CL and follicles > 2 mm (Grade 2); (3) fair; variable-aged CL 

including fresh and old (Grade 3); and (4) poor; ovulation failure (Grade 4; Fig. 3.1).  The 
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Verres probe also was used to measure ovarian dimensions, oviductal diameter and 

uterine diameter, and ovarian volume was calculated using the formula for testes volume 

(length x width2 x 0.524) (Howard et al., 1990). 

 

Laparoscopy, ovariohysterectomy and tissue processing on Day 17 

On Day 17, all naturally-bred females and a subset of gonadotropin-treated 

queens (n = 4 to 5 cats per treatment) were subjected to a laparoscopic exam to assess 

ovarian activity and CL morphology compared to Day 2.  Ovarian structures were 

counted, described, measured and photographed as described above.  These queens 

then were immediately prepared for a routine ovariohysterectomy.  Reproductive organs 

were moistened with saline-soaked sponges during the procedure and immediately 

processed upon removal.  From one ovary, whole CL were excised and individually 

weighed.  The ovary with more CL was chosen to maximize recovery of luteal tissue.  

Half of these CL were flash frozen in liquid nitrogen for progesterone quantification.  The 

remaining ovary was bisected, and one hemi-ovary was fixed in 4% paraformaldehyde 

(Fisher Scientific Company, Pittsburgh, PA) for histology.  Fixed hemi-ovaries were 

embedded in paraffin within 1 week by a commercial company (HistoServ, Rockville, 

MD), sectioned at 5μm and stained with hemotoxylin and eosin.   

 

Fecal collection and extraction 

Daily fecal samples were collected from ALT HIGH (n = 5), HIGH (n = 5), ALT 

LOW (n = 5) and LOW (n = 4) queens beginning 60 days prior to treatment initiation and 

ending on the day of ovariohysterectomy.  Samples were placed in individual plastic 

bags and stored at -20°C until processing.  Using a protocol previously validated for the 
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domestic cat (Brown et al., 1994), lyophilized fecal samples were crushed to a fine 

powder and 0.18 to 0.2 g of dry fecal matter was boiled in 5 ml of 90% ethanol for 20 

minutes.  Following centrifugation (500g, 20 min), the supernatant was recovered and 

the pellet resuspended in 90% ethanol and vortexed for 30 seconds.  Following a 

second centrifugation (500g, 15 min), supernatants were combined, dried under air, and 

reconstituted in 1 ml methanol.  Methanol extracts were vortexed briefly and placed in a 

sonicator for 15 minutes to bring any particles affixed to the vessel wall into solution.  

Extracts were immediately diluted in steroid dilution buffer (1:10; 0.2 M NaH2PO4, 0.2 M 

Na2HPO4, 0.15 M NaCl, pH 7.0) and stored in polypropylene tubes at -20˚C until 

enzyme immunoassay (EIA) for estrogens and progestins.   

  

Estrogen conjugate EIA 

A single-antibody estrogen conjugate (EC) EIA was used to quantify estrogens in 

fecal extracts (Robeck et al., 2004).  The polyclonal antibody (anti-EC R522-2; 1:20,000; 

C. Munro, UC Davis, CA) cross-reacts with a broad range of estrogen metabolites 

present in domestic cat feces (Brown et al., 1994).  The antibody was dissolved in 

coating buffer (0.015 M Na2CO3, 0.035 M NaHCO3, pH 9.6), added to 96-well, flat-

bottom microtiter plates (Nunc-Immuno, Fisher Scientific) and incubated overnight at 

4°C.  Plates were washed (0.05% Tween 20, 0.15 M NaCl) to remove un-adsorbed 

antibody, and 0.025 ml steroid assay buffer (0.2 M NaH2PO4, 0.2 M Na2HPO4, 0.15 M 

NaCl, 2.0 g/L BSA, pH 7.0) was added to each well and maintained at room temperature 

for 30 minutes to 2 hours.  Next, 0.05 ml sample (range, 1:100 to 1:1,000) or estrone-B-

glucuronide standard (range, 0.78 to 200 pg; Sigma-Aldrich) was added to wells in 

duplicate immediately followed by 0.05 ml enzyme conjugate (E1G horseradish 

peroxidase; 1:15,000; C. Munro).  After a 2 hour incubation period at room temperature, 
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plates were washed and 0.1 ml substrate (0.04 M ABTS, 0.5 M H2O2 in a 0.05 M citric 

acid solution) was added to each well.  Optical densities (OD) were read using a 

microplate reader (MRX, Dynex Technologies, Chantilly, VA) at 405nm when 0 pg 

standard wells reached an OD of 0.9 to 1.  Serial dilutions of domestic cat feces yielded 

displacement curves that were parallel to the standard curve (r = 0.99).  Recovery of 

known amounts of estrone-B-glucuronide standard added to a pool of domestic cat fecal 

extracts (1:500) was 51.2 % ± 15.0% (y = 0.89x – 3.9; R2 = 0.99).  Intra-assay variation 

was < 10% and inter-assay variation was 8.0% and 9.8% at 30% and 70% binding, 

respectively (n = 82 plates).  Assay sensitivity was ~ 1 pg/well.  

 

Pregnane EIA 

A single monoclonal antibody (CL425; 1:10,000; C. Munro) pregnane (Pg) EIA 

was employed to quantify progestin metabolites (Chapter 2).  Similar to the EC EIA, the 

assay was conducted in 96-well, flat-bottom microtiter plates (Nunc-Immuno).  After 

overnight incubation with the antibody at 4°C, plates were washed to remove 

unadsorbed antibody, and 0.05 ml sample (range, 1:2,000 to 1:50,000) or progesterone 

standard (range, 0.78 to 200 pg; Sigma-Aldrich) was added to wells in duplicate 

immediately followed by 0.05 ml enzyme conjugate (progesterone-3CMO horseradish 

peroxidase ; 1:40,000; C. Munro).  Following a 2 hour incubation, plates were washed 

and 0.1 ml substrate added to each well.  Optical densities (OD) were read at 405nm 

when 0 pg standard wells reached an OD of 0.9 to 1.  Intra-assay variation was < 10% 

and inter-assay variation was 7.8% and 14.8% at 30% and 70% binding, respectively (n 

= 95 plates).   
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CL progesterone RIA 

 Luteal progesterone concentration was measured in individual CL using a 

radioimmunoassay (RIA) previously validated for the domestic cat (Swanson et al., 

1995b).  Briefly, flash-frozen CL were thawed, individually homogenized in 2 ml PBS 

(0.02 M NaH2PO4, 0.03 M Na2HPO4, 0.15 M NaCl, pH 7.0) using a ground-glass 

homogenizer and decanted into a glass tube.  Homogenates were diluted in 3 ml 100% 

ethanol, vortexed for 1 min and boiled for 20 min.  During the boiling process, 100% 

ethanol was added to maintain approximate pre-boil volumes.  Following centrifugation 

(500g, 20 min), the supernatant was recovered and the pellet resuspended in 2 ml 

ethanol.  Tubes were placed in a sonicator for 15 min to free residual luteal pellet 

adhered to the glass tube, vortexed for 1 min and re-centrifuged (500g, 15 min).  The 

first and second supernatants were combined, dried under air and resuspended in 1 ml 

methanol.  Methanol extracts were diluted 1:10 in PBS and stored at -20°C.  Thawed 

extracts were diluted (range, 1:200 to 1:1,000) and analyzed using a solid-phase 125I 

progesterone RIA kit (Coat-a-Count; Diagnostic Products Corporation, Los Angeles, 

CA).  Intra- and inter-assay variation was < 10%.    

 

Statistical analyses 

 For fecal hormone data, baseline estrogen concentrations were calculated for 

each individual using an iterative process in which all values greater than the mean plus 

two standard deviations (SD) were eliminated.  The mean of the remaining values was 

recalculated and the process repeated until no values exceeded the mean plus two SD 

(Brown et al., 1994; Pelican et al., 2005).  All values removed during the iterative 

process were considered elevated, and the final mean obtained through this process 

was denoted the baseline for that animal.  Baseline progestin concentrations were 
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determined using a similar iterative process, except the mean plus 1.5 SD was used.  

Values greater than twice the progestin baseline were considered elevated from 

baseline.  1.5 SD was chosen for progestins because 2 SD was too sensitive to 

differentiate baseline from elevations.   

 For each individual, duration of the follicular phase was calculated as the number 

of consecutive days when fecal estrogens remained elevated, and the highest estrogen 

value within an array of elevations was the peak for that follicular phase.  The end of a 

follicular phase was determined when estrogens returned to baseline for more than 2 

days.  The luteal phase was defined when progestin levels rose above baseline and 

remained elevated for at least 3 consecutive weeks.  Luteal phase length was the total 

number of days progestins remained above baseline.  The end of a luteal phase was 

determined when progestins returned to baseline for at least 4 days.  Anovulatory 

estrous cycle length during the pre-treatment period was calculated as the number of 

days between fecal estrogen peaks with no elevation in fecal progestins following the 

first peak.   

 Estrous cycle traits (duration of follicular phase, mean fecal estrogens/follicular 

phase, peak estrogens/follicular phase, estrous cycle length, baseline and mean 

estrogens, baseline and mean progestins) were summarized by treatment and also 

between induced versus spontaneous ovulators.  Fecal data among treatments at a 

single time interval (pre-treatment versus gonadotropin-stimulated) were analyzed using 

a two-way factorial ANOVA followed by a Tukey-Kramer honestly significant difference 

(HSD) multiple comparison test, whereas data summarized for induced versus 

spontaneous ovulators at a single time interval were compared using a one-way 

ANOVA.  Within treatment or ovulation mechanism (induced versus spontaneous), 

follicular data was compared before and after gonadotropin stimulation using paired t-

tests.   
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 Laparoscopic ovarian data were summarized within each treatment and 

compared using a two-way factorial ANOVA followed by HSD mean comparisons.  Main 

effects (ALT and gonadotropin dosage) were interpreted only when interactions were not 

present.  CL progesterone concentrations were analyzed using a 2x3 ANOVA followed 

by HSD mean comparisons.  Numbers of CL on Day 2 vs. Day 17 were compared using 

paired t- tests.  When necessary, data were corrected for non-normal distribution before 

ANOVA.  All analyses were performed using JMP IN 5.1 (SAS Institute Inc., Cary, NC) 

and differences were significant at P < 0.05.  Trends were noted when the P value 

ranged from 0.05 to 0.1.  Data are presented as means ± SEM.   

 

Results 

 

Estrous cycle characteristics before treatment 

 Fecal hormone monitoring demonstrated that eight of 19 (42.1%) females 

exhibited at least one spontaneous luteal phase during the 60 day pre-treatment period 

(Table 3.1).  Of these females, six were subsequently randomly assigned to receive 

ALT, and two were not.  Follicular phase duration ranged from 2-19 days and was similar 

(P > 0.05) in spontaneous vs. induced ovulators, with an overall mean of 6.1 ± 0.6 days.  

Ovulation mechanism did not influence (P > 0.05) baseline estrogens (144.5 ± 8.4 ng/g 

feces), mean estrogens during the follicular phase (246.2 ± 15.2 ng/g) or peak estrogens 

during the follicular phase (290.9 ± 14.4 ng/g).  Mean anovulatory estrous cycle length 

was 18.3 ± 1.3 days (range, 5 to 28 d).  In those females demonstrating luteal activity, 

the luteal phase spanned 25-44 days.  Baseline fecal progestins were higher (P < 0.05) 

in spontaneous versus induced ovulators (Table 3.1).   
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Influence of altrenogest on ovarian response to gonadotropins 

 On Day 2, five of 12 (41.7%) unprimed cats exhibited old CL indicative of 

spontaneous ovulation before ovarian stimulation.  None of the 12 ALT-primed females 

had old CL on Day 2 or evidence of spontaneous ovulation (Table 3.2).  All cats given 

ALT had a good-to-excellent ovarian response on Day 2 (Grade 1 or 2), compared to six 

of twelve (50%) females given gonadotropins alone.  Ovarian grade was similar on Day 

2 among ALT HIGH, HIGH and ALT LOW, and improved (P < 0.05) compared to LOW 

queens (Table 3.2).  Fewer (P < 0.05) fresh CL were observed on Day 2 in LOW 

compared to ALT HIGH cats (Table 3.2).  Fresh CL were smaller (P < 0.05) on Day 2 in 

cats receiving high dosages of gonadotropins (Fig. 3.2A).  On Day 2, more (P < 0.05) 

mature follicles were observed in cats treated with low gonadotropin dosages (Fig. 

3.2B).  Accessory CL development (Fig. 3.3) was observed in a high proportion of 

females in all treatment groups, with 75-100% of females exhibiting more CL on Day 17 

compared to Day 2.  However, there was no increase (P > 0.05) in the mean number of 

CL from Day 2 to Day 17 within or among treatment groups.   

  

Fecal hormone dynamics during exogenous hormone treatment 

 At the time of ALT initiation, four females had elevated fecal progestins (Fig. 

3.4A).  Luteal phase duration and mean progestins during these ALT-associated luteal 

phases fell within the range of normal values observed in untreated females.  While ALT 

did not influence an existing luteal phase, all females had returned to baseline by 

cessation of ALT treatment.  Similarly, two females had elevated fecal estrogens at the 

time of ALT initiation.  Those females exhibited a follicular phase of normal duration and 

magnitude before returning to baseline and remaining suppressed for the remainder of 

treatment (Fig. 3.4B).  On the day of eCG administration, three of nine (33.3%) unprimed 

cats had elevated fecal estrogens, and two of nine (22.2%) unprimed cats had elevated 
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fecal progestins (Fig. 3.5 A-B). Overall, 100% of ALT-primed cats exhibited baseline 

fecal estrogens and progestins at the time of eCG compared to only 44.4% of unprimed 

individuals.  These elevations observed in unprimed females at the time of eCG led to 

inconsistent ovarian responses on the day of laparoscopy, including ovulation failure 

(Fig. 3.5 C-D).        

 Estrous cycle traits following exogenous gonadotropin treatment were compared 

to pre-treatment values (Table 3.3).  No significant differences were observed across 

time, between treatments or between ALT-primed and unprimed individuals.  In 

unprimed females, peak estrogens during the follicular phase (P = 0.09) showed a trend 

towards increasing following gonadotropin treatment, compared to unstimulated cycles 

(Fig. 3.6).  This relationship was not observed in cats primed with ALT.  There also were 

trends associated with gonadotropin dosage, where cats receiving HIGH gonadotropins 

(regardless of priming status) showed higher mean estrogen values during the follicular 

phase (P = 0.10) and peak estrogens during the follicular phase (P = 0.07).  Ovulation 

mechanism (spontaneous versus induced) during the pre-treatment period did not 

influence (P > 0.05) fecal estrogen dynamics following exogenous gonadotropin 

treatment, compared to pre-treatment values.     

 

Ovarian histology and luteal progesterone  

 On Day 17, histological sections revealed diverse ovarian dynamics in all 

treatment groups.  CL were large with smooth edges, primarily polygonal cells and no 

central cavities (Fig. 3.7A).  CL with centrally-located vacuoles were observed in two 

females (Fig. 3.7B).  These vacuoles were distinct from the irregular central cavities 

observed immediately post-ovulation in felid corpora hemorrhagica (CH) (Roth et al., 

1995).  Regressing CL, the product of spontaneous ovulation before ovarian stimulation, 

were smaller in size with an irregular shape and multiple lipid vacuoles (Fig. 3.7C).  
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Primordial, primary, secondary and tertiary follicles also were observed in ovarian 

sections across treatment groups (Fig. 3.8).   

 Differences were observed in CL progesterone production among the 

gonadotropin-treated groups and the natural estrus/coitus-induced ovulation cats.  Mean 

(± SEM) progesterone in individual CL was abnormally low (P < 0.05) in LOW (86.4 ± 

11.7 ng/mg), ALT HIGH (118.7 ± 6.6), and HIGH (118.5 ± 6.3) cats, compared to ALT 

LOW (158.5 ± 12.9) and naturally-bred cats (185.2 ± 17.8; Fig. 3.9).   

  

Discussion 

 

 This study was significant because it supports the use of oral progestins before 

exogenous gonadotropin treatment in the domestic cat.  Oral progestin prevented 

spontaneous ovulation, and laparoscopic ovarian data confirmed that response to eCG 

and hCG was less variable when preceded by a regimen of ALT.  Non-invasive fecal 

steroid monitoring further substantiated this assertion, demonstrating multiple adverse 

scenarios in unprimed females that were prevented by ovarian down-regulation with ALT 

prior to gonadotropin stimulation.  This study also established the foundation for 

examining proposed mechanisms for ovarian sensitivity in the progestin-treated cat.  

These findings support the use of lower eCG and hCG dosages in future applications, 

thereby lessening adverse fertility effects associated with their persistence in circulation 

following ovulation induction.  Perhaps the most remarkable finding was that CL 

progesterone production is impeded in unprimed, gonadotropin-treated individuals, but 

can be mitigated with oral progestin priming. 

 In conducting this study, we were able to increase our understanding of how oral 

progestins act on the feline hypothalamic-pituitary-gonadal axis to suppress reproductive 

steroid production, subsequently halting folliculogenesis.  Our data lend support to 
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previous work which has shown that both oral progestins (Chapter 2) and progestin 

implants (Pelican et al., 2005) prevent novel follicular recruitment in the domestic cat.  

However, progestin priming is unable to override or even attenuate a follicular phase 

when it is already in progress.  This is consistent with findings in other species, where it 

has been demonstrated that the role of endogenous progestins in folliculogenesis is 

minimal (Drummond, 2006).  Instead, we suspect that ALT acts differentially on GnRH, 

FSH and LH production (as well as other yet-unknown regulators of reproductive steroid 

production) to influence these dissimilar responses (Chapter 2).  In other mammalian 

species, a multitude of paracrine factors (Monniaux et al., 1997; Hillier, 2001), as well as 

actions by the oocyte itself (Eppig, 2001), have been implicated in regulation of follicular 

development.   

 The current study supported previous findings that progestin priming prevents 

spontaneous ovulation by eliminating novel folliculogenesis (Pelican et al., 2005; Pelican 

et al., 2007).  However, it does not affect the duration or amplitude of an existing luteal 

phase.  Understanding the underlying mechanism(s) for this action is impeded by a lack 

of comprehensive information on luteotrophic and luteolytic agents in the domestic cat 

(Goodrowe et al., 1989; Verstegen et al., 1993).  LH is one factor implicated in luteal 

function in the cat, suggesting that progestins act more at the level of the hypothalamus, 

versus the pituitary, to mediate ovarian suppression (Pelican et al., 2007).  This is 

observed in the mare, where ALT has little or no effect on LH production (Squires et al., 

1983).  Prolactin also has been named a luteotrophic factor in the cat (Verstegen et al., 

1993), suggesting that lactotroph cells are not likely to be influenced by oral progestin 

priming.  Regardless of the mechanism, the duration of progestin priming used in this 

study was adequate to allow a return and maintenance of baseline estrogens and 

progestins by the time of ovulation induction.  Based on the results, a shorter duration for 

progestin priming would be insufficient and a longer duration unnecessary.  
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 This research has provided a greater understanding of ovarian sensitivity to 

exogenous gonadotropins in the cat.  Across wild felid species, variable sensitivity to 

gonadotropin dosages has long been a significant roadblock to developing successful 

ovulation induction and AI protocols.  Effective gonadotropin dosages are not based on 

animal weight.  For example, why does the ~10 kg ocelot require 500 IU eCG to 

stimulate adequate follicular development when only 200 IU eCG is sufficient for the ~35 

kg cheetah? (Swanson et al., 1996b; Howard et al., 1997). Genetics and ovulation 

mechanism (spontaneous versus induced) both are suspected factors in this 

phenomenon.  The most striking support for a genetic component is an interesting 

relationship that has been observed in neotropical felid species in South America, where 

decreased ovarian sensitivity to gonadotropins is observed across the Leopardus genus 

(Swanson and Brown, 2004).  Data relating ovarian sensitivity to ovulation mechanism 

are equally convincing.   

 In domestic cats, differential sensitivity to gonadotropins can relate back to the 

ovulation mechanism of that particular individual, where cats primed with either 

endogenous progestins (via spontaneous ovulation) or exogenous progestins (via 

progestin implants) are subsequently more sensitive to exogenous gonadotropins 

(Pelican et al., 2007).  Our current data support this finding, as does research in wild 

felids, where induced ovulators such as the tiger (Graham et al., 2006) and ocelot 

(Swanson et al., 1996b) generally require much higher dosages compared to 

spontaneous ovulators like the clouded leopard (Brown et al., 1995) and fishing cat 

(Bauer et al., 2004).  Follow-up studies will be required to confirm these findings in other 

species and to investigate the molecular basis for this phenomenon.  Of particular 

interest would be to characterize changes in endogenous steroid and gonadotropin 

receptor populations, if any, following varied exogenous hormone regimens (Pelican et 

al., 2007). 
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 The interaction between oral progestin priming and exogenous gonadotropin 

treatment and its subsequent effect on luteal sufficiency was an important endpoint 

examined in this study.  While previous studies in the cat demonstrated that luteal 

progesterone concentrations are similar following exogenous gonadotropin treatment 

compared to those reported in naturally-mated queens (Swanson et al., 1995b; Roth et 

al., 1997b), the current study does not support these findings.  Instead, both 

gonadotropin dosage and progestin priming appear to influence subsequent luteal 

function.   

 It is not surprising that exogenous gonadotropins affected luteal function, given 

similar observations in humans following ovulation induction (Tavaniotou et al., 2001; 

Tavaniotou et al., 2002).  However, data also showed that progestin priming mitigates 

luteal insufficiency caused by exogenous gonadotropins.  This appears to be a species-

specific finding, since progestin pre-treatment has been linked to reduced luteal 

steroidogenesis in other species (Hunter et al., 1986).  While the control of luteal 

progesterone production is not well-characterized in the cat, key regulators in other 

species include LH, prolactin, estradiol, growth hormone, androgens and progesterone 

(Berisha et al., 2002; Niswender, 2002; Stocco et al., 2007).  Future studies will be 

needed to characterize expression of these factors in cats following exogenous hormone 

treatment and also to examine correlations, if any, between ovarian morphology and 

subsequent luteal function.  More direct effects on cholesterol biosynthesis and the 

steroidogenic pathway also should be examined (Drouineaud et al., 2007).   

 Finally, our finding that ALT did not to reduce ancillary folliculogenesis and 

ovulation observed on Day 17 was unexpected, since progestin implants mitigate this 

phenomenon in the cat (Pelican, 2002).  However, despite observations of ancillary 

ovarian activity in all treatment groups, there were no subsequent effects on either the 

duration of the gonadotropin-associated follicular phase or the shift to progestin 
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dominance following ovulation.  Some alterations were observed in cats receiving higher 

gonadotropin dosages, and these trends are consistent with a previous report in the cat 

that documented endocrine perturbations (sustained estrogen elevations,  abnormally-

elevated fecal progestins) following gonadotropin stimulation with comparable dosages 

(Graham et al., 2000).  It should be noted that mean progestins during the gonadotropin-

induced luteal phase could not be characterized in the current study because females 

underwent ovariohysterectomy ~ 2 weeks after the start of that luteal phase.  While 

specific effects of accessory CL development on fertility require further investigation, 

ancillary follicles and CL have been loosely associated with disruptions to the maternal-

fetal environment during early pregnancy (Graham et al., 2000).  Whether progestin 

priming can eliminate these potential disruptions remains to be determined.  

 In conclusion, the ultimate goal of any ovulation induction protocol for AI is to 

mimic a natural follicular and luteal phase as closely as possible without affecting the 

delicate endocrine balance during early embryonic development, endometrial 

remodeling and implantation.  This study demonstrated that oral progestin priming 

eliminates spontaneous ovulation and enables a consistent ovarian response to 

ovulation induction in the cat.  Furthermore, an ovulation induction regimen has been 

determined that enables CL progesterone production that is comparable to naturally-

bred cats.  Taken together, these results support the use of oral progestin priming in 

combination with minimal exogenous gonadotropin dosages for ovulation induction in the 

domestic cat.  Research is underway to examine the impact of this regimen on incidence 

of fertilization and implantation following AI.  Concurrent with this, parallel studies are 

planned to characterize the relationship between progestin priming and exogenous 

gonadotropins in the context of molecular control of luteal function in the cat.   
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Table 3.1.  Domestic cat reproductive traits before exogenous hormone treatment in induced versus spontaneous ovulators, 
assessed by longitudinal fecal steroid analyses (n = 19 queens).  
 
 
 
                 Induced (n = 11)   Spontaneous (n = 8) 
 
 
 
Anovulatory estrous cycle length (days)   16.3 ± 1.1     20.5 ± 2.4   
 
Baseline estrogens (ng/g feces)    148.2 ± 12.8    139.4 ± 10.1 
 
Duration of follicular phase (days)    5.5 ± 0.9    6.9 ± 0.8 
  
Mean estrogens/follicular phase (ng/g feces)  253.6 ± 21.1    237.0 ± 22.8 
 
Peak estrogens/follicular phase (ng/g feces)   301.1 ± 21.2    278.2 ± 19.0 
     
Baseline progestins (µg/g feces)    2.4 ± 0.2 a    5.5 ± 0.9 b 
 
Duration of luteal phase (days)         -----     35.4 ± 2.9  
   
Mean progestins/luteal phase (µg/g feces)        -----     13.8 ± 2.5    
 
Peak progestins/luteal phase (µg/g feces)        -----     27.2 ± 7.1    
 
 
Values are means ± SEM.  Within a row, means with different superscripts differ (P < 0.05).  
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Table 3.2.  Ovarian response to low and high dosages of exogenous gonadotropins in altrenogest (ALT)-primed versus unprimed 
females, as assessed by laparoscopic examination on Day 2 (Day 0 = day of hCG). 
 
 
      ALT LOW (n = 5) LOW (n = 5)  ALT HIGH (n = 7) HIGH (n = 7) 
 
Ovarian grade     1.8 ± 0.2 a  3.2 ± 0.4 b  1.4 ± 0.2 a  1.9 ± 0.3 a  
 
Total no. of fresh and old CL/cat  12.4 ± 4.3  6.4 ± 2.3   15.1 ± 2.9   15.9 ± 1.4  
  
Proportion of cats w/ fresh CL  5/5 (100%) a  3/5 (60%) b  5/7 (100%) a  5/7 (100%) a 
  
No. of fresh CL/cat    12.4 ± 4.3 a,b  2.8 ± 1.4 b  15.1 ± 2.9 a  14.1 ± 2.4 a,b 
 
Diameter of fresh CL (mm)   3.6 ± 0.2  3.8 ± 0.1  2.8 ± 0.2  3.2 ± 0.2 
 
Proportion of cats w/ old CL   0/5 (0%) a  3/5 (60%) b    0/7 (0%) a  2/7 (28.6%) a,b 
 
No. of old CL/cat    0   3.6 ± 1.8  0   1.7 ± 1.1 
 
Total no. of follicles/cat   4.8 ± 1.5  7.6 ± 1.7  3.7 ± 1.0  4.6 ± 1.6 
 
Proportion of cats w/ mature follicles  4/5 (80%)  2/5 (40%)  2/7 (28.6%)  3/7 (42.9%)  
     
No. of mature follicles/cat   3.4 ± 0.9   1.4 ± 1.2   0.9 ± 0.6   1.6 ± 0.9  
 
Ovarian volume (mm3)   217.3 ± 23.4  200.5 ± 27.0  188.2 ± 13.6  217.5 ± 55.1 
 
Oviduct diameter (mm)   3.1 ± 0.3  3.7 ± 0.5  2.9 ± 0.2  2.8 ± 0.3 
  
Uterine horn diameter (mm)   7.0 ± 0.4  6.7 ± 0.5  6.6 ± 0.3  6.1 ± 0.4 
 
Values are means ± SEM except for proportional data. Within rows, means with different superscripts differ (P < 0.05). 
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Table 3.3.  Estrous cycle traits before and after exogenous gonadotropin treatment in altrenogest (ALT)-primed and unprimed 
females, as assessed by fecal steroid monitoring.   
 
 

Pre-treatment    Gonadotropin-induced  
  

 
 
ALT-primed females (n = 10) 
 
Duration of follicular phase (days)    6.9 ± 0.8     6.2 ± 0.8   
 
Mean estrogens/follicular phase (ng/g feces)  223.5 ± 17.8    242.5 ± 26.9   
 
Peak estrogens/follicular phase (ng/g feces)   272.1 ± 15.5    321.0 ± 45.6  
 
 
 
Unprimed females (n = 8) 
 
Duration of follicular phase (days)    5.1 ± 0.9     7.8 ± 1.5   
 
Mean estrogens/follicular phase (ng/g feces)  274.7 ± 23.2     429.4 ± 96.1   
 
Peak estrogens/follicular phase (ng/g feces)   314.3 ± 24.4    625.2 ± 170.4  
 
 
Values are means ± SEM.  Means were compared among treatments and across time (P > 0.05).  One female from the unprimed 
group was excluded because she had no ovarian activity prior to gonadotropin stimulation.  
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 1     2     3       4 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1.  Day 2 laparoscopic ovarian grading system.  Ovarian response and 
gonadotropin-induced ovulation was categorized as (1) excellent, multiple fresh corpora 
lutea (CL) and no follicles > 2 mm (Grade 1); (2) good, mixed cohort of CL and follicles > 
2 mm (Grade 2); (3) fair, variable-aged CL (Grade 3); or (4) poor, ovulation failure 
(Grade 4).  Solid arrow denotes fresh CL, dashed arrow denotes mature follicles and 
double-lined arrow denotes old CL from a previous ovulation.    
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Fig. 3.2.  Effect of low and high gonadotropin dosages on (A) diameter of fresh corpora 
lutea (CL); and (B) number of mature follicles on Day 2.  Data were combined for ALT-
primed and unprimed individuals.  Means with different superscripts differ (P < 0.05). 
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Fig. 3.3.  Accessory corpora lutea (CL) development observed in representative 
laparoscopic photos of the right ovary from the same individual on (A) Day 2 and (B) Day 
17.   
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Fig. 3.4.  Representative fecal steroid profiles in altrenogest (ALT)-primed females 
treated with LOW (50 IU eCG/37.5 IU hCG) gonadotropins.  Queens were observed: (A) 
exhibiting elevated progestins at the time of ALT initiation; and (B) exhibiting elevated 
progestins before the time of ALT initiation.  Asterisks indicate a follicular phase, solid 
bar represents ALT treatment and side-by-side arrows denote eCG/hCG injections.  Axis 
was based on baseline hormone concentration for each individual.     
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Fig. 3.5.  Representative fecal steroid profiles in unprimed females treated with LOW (50 
IU eCG/37.5 IU hCG) gonadotropins.  Queens were observed (A) exhibiting elevated 
progestins at the time of eCG; (B) exhibiting elevated estrogens at the time of eCG; (C) 
exhibiting elevated estrogens at the time of eCG and subsequent ovulation failure; and 
(D) exhibiting elevated progestins at the time of eCG and subsequent ovulation failure.  
Asterisks indicate a follicular phase and side-by-side arrows denote eCG/hCG injections.  
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Fig. 3.6.  Representative fecal steroid profiles in cats treated with HIGH (100 IU eCG/75 
IU hCG) gonadotropins. (A) An unprimed HIGH female exhibiting elevated fecal 
estrogens following exogenous gonadotropins (note the scale on the y axis) and (B) an 
altrenogest (ALT) HIGH female exhibiting normal fecal estrogens following exogenous 
gonadotropins.  Asterisks indicate a follicular phase, solid bar represents ALT treatment 
and side-by-side arrows denote eCG/hCG injections. 
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Fig. 3.7.  Corpora lutea (CL) histomorphology on Day 17.  (A) CL at this time point were 
large and expansile with no central cavity, smooth edges and a uniform population of 
polygonal cells.  (B) In two females, CL with central vacuoles were noted.  (C) 
Regressing CL were noted in several cats demonstrating spontaneous ovulation before 
ovulation induction.  These CL were irregularly-shaped with prominent lipid vacuoles 
spanning the luteal tissue.  Bar represents 100 μm.      

A 

C 
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Fig. 3.8.  Histomorphology of ovarian follicles observed on Day 17.  (A) Mixed 
populations of primordial and primary follicles were frequently observed in the ovarian 
cortex.  (B) A secondary follicle with several granulosa cell layers surrounding the 
oocyte.  (C)  A tertiary follicle with well-differentiated granulosa and theca cells and a 
large, distinct antrum.  Bar represents 100 μm.  
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Fig. 3.9.  Luteal progesterone concentration in individual corpora lutea recovered on the 
day of ovariohysterectomy (Day 17 post-hCG or natural breeding; NB).  Cats undergoing 
hormone treatment were administered low (50 IU eCG/37.5 IU hCG) or high (100 IU 
eCG/75 IU hCG) gonadotropins with or without altrenogest (ALT) treatment.  Means with 
different superscripts differ (P < 0.05).  
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CHAPTER 4 

 

ORAL PROGESTIN PRIMING BEFORE EXOGENOUS GONADOTROPINS AND 

ARTIFICIAL INSEMINATION ENHANCES EARLY EMBRYONIC DEVELOPMENT AND 

LUTEAL FUNCTION IN THE CAT  

 

Abstract  

 

 The effect of pre-treatment with oral progestin (altrenogest; ALT) before ovulation 

induction and artificial insemination (AI) was evaluated in the domestic cat to determine 

consequences on fertilization, early embryonic development and luteal progesterone 

production.  Queens were randomly assigned to: (1) ALT + 50 IU equine chorionic 

gonadotropin (eCG) + 37.5 IU human chorionic gonadotropin (hCG; n = 8 cats; ALT); or 

(2) 50 IU eCG + 37.5 IU hCG (n = 8; control).  Ovarian response was assessed 2 days 

after hCG; queens with fresh corpora lutea (CL) were inseminated in utero with fresh 

sperm.  ALT priming enabled a consistent ovarian response to ovulation induction, 

whereas 25% of controls had variable-aged CL on Day 2.  Ovariohysterectomy and 

oviduct flushing was performed on Day 5 to recover embryos and unfertilized oocytes 

(UFOs).  Individual CL were enucleated from one ovary and assayed for progesterone 

concentration.  Between treatments, no difference (P > 0.05) in the number of UFOs 

recovered was observed.  ALT embryos ranged in developmental stage from two to 16 

cells, while control embryos ranged from two to eight cells.  The distribution of embryos 

across developmental stages differed (P < 0.05) between treatments, with more 

consistent development observed in ALT-primed females.  Following in vitro culture, 

none of the 2-4 cell embryos progressed to morula.  Of the remaining embryos at 5-16 

cells, 86.7% of ALT and 62.5% of control embryos (P > 0.05) developed to morulae or 
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blastocysts.  Luteal progesterone was higher (P < 0.05) in control (72.4 ± 5.8 ng/mg) 

versus ALT (52.2 ± 5.5 ng/mg) cats, and also higher than historical data from pregnant 

naturally-bred cats at a corresponding time interval (~ 50 ng/mg).  In total, these data 

provide evidence for enhanced ovarian response and improved embryonic development 

following short-term ALT priming prior to ovulation induction and AI in the domestic cat.   

 

Introduction 

 

 Most of the 39 species in the Felidae family are threatened by extinction because 

of habitat loss and anthropogenic pressures (Seidensticker and Lumpkins, 1991; 

Wozencraft, 2005).  Sustaining healthy ex situ populations of these endangered felids is 

a high priority of conservation specialists and the zoological community (Swanson, 

2006).  Equally important is the value in maintaining rare domestic cat biomedical 

models used to advance our understanding of diseases including HIV/AIDS, obesity and 

diabetes (O'Brien et al., 2002). 

While free-ranging cats have a reputation for reproducing prolifically, this is not 

the case for domestic and wild felids in managed breeding programs.  These cats often 

experience genetic or behavioral incompatibility (Wildt and Roth, 1997), and the disease 

status of certain domestic cats used in biomedical research can compromise 

reproductive performance (Magarey et al., 2006).  Assisted reproduction techniques can 

be used to help maintain gene diversity in these populations.  Accordingly, protocols for 

laparoscopic artificial insemination (AI) and in vitro fertilization (IVF)/ embryo transfer 

(ET) have been developed and refined for multiple cat species (Howard, 1999; Pelican 

et al., 2006b; Pope et al., 2006b).  In theory, assisted reproduction combats reduced 

reproductive performance while allowing the introduction of under-represented genes 

into genetically-stagnant populations (Pukazhenthi and Wildt, 2004).  Yet in practice, 
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incidence of pregnancy following assisted reproduction is too low in most felids (< 5%) to 

impact gene diversity, with the exception being the cheetah (Howard et al., 1997).   

Low pregnancy success following assisted reproduction is largely attributed to 

variable reproductive dynamics observed across members of the Felidae family.  

Although historically considered induced ovulators, many felid species (including the 

domestic cat) exhibit spontaneous ovulation with no discernable pattern of predictability 

(Brown, 2006).  Intermittent spontaneous ovulation has a considerable negative impact 

on ovulation induction and assisted reproduction success, since individuals within the 

same species displaying divergent ovulation strategies can respond very differently 

when receiving the same ovarian stimulation regimen (Pelican et al., 2007).  Much of this 

inconsistency in ovarian response is associated with the administration of gonadotropins 

during the luteal phase, when either variable-aged corpora lutea (CL) or failure to 

ovulate in response to exogenous gonadotropins results (Pelican et al., 2006b).  

Conversely, individuals undergoing ovulation induction during a pre-existing state of 

heightened follicular development are at risk for ovarian hyperstimulation.  Thus, it is not 

surprising that felids with the highest pregnancy success after AI (cheetah, ocelot) also 

are species that are strict induced ovulators.  In cheetahs, intermittent periods of 

anestrus marked by prolonged ovarian quiescence are observed, which allows for a 

consistent response to exogenous gonadotropins (Howard et al., 1992b; Swanson et al., 

1996b).   

Even when ovulation induction coincides with a period of interestrus in cycling 

cats and results in a good ovarian response, numerous factors can lead to pregnancy 

failure following AI.  Some of these factors are easily controlled for, such as poor sperm 

quality, while other factors including reduced oocyte quality, delayed oviductal transport, 

ancillary folliculogenesis/ovulation and abnormal endocrine dynamics are more difficult 

to manage (Pelican et al., 2006b).  Prolonged actions of exogenous gonadotropins 
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(equine chorionic gonadotropin; eCG and human chorionic gonadotropin; hCG) after 

ovulation induction are known to influence these factors and impair fertility (Brown et al., 

1995; Roth et al., 1997b; Swanson et al., 1997; Graham et al., 2000).  Subsequently, it 

appears that limiting exposure to exogenous gonadotropins may be beneficial.  Short-

term treatment with the oral progestin altrenogest (ALT) suppresses folliculogenesis and 

prevents spontaneous ovulation in the cat (Chapter 2).  Oral progestin priming also 

enables a consistent ovarian response to ovulation induction and increases ovarian 

sensitivity to exogenous gonadotropins, allowing for lower dosages of eCG/hCG for 

ovarian stimulation (Chapter 3).  However, it is not clear if progestin priming affects 

pregnancy success, or if progestins are capable of mitigating adverse effects attributed 

to the prolonged action of exogenous gonadotropins.    

The current study was designed to evaluate the effects of oral progestin priming 

and ovulation induction on AI success in a research population of domestic cats known 

to exhibit induced or spontaneous ovulation (Chapter 3).  This population serves as an 

excellent model for wild felids that spontaneously-ovulate.  Specific effects of oral 

progestin priming were evaluated relative to: (1) in vivo fertilization success and 

oviductal transport; (2) in vitro early embryonic development; and (3) luteal progesterone 

production following AI.  Data also were compared to historical data from naturally 

estrual, mated queens at a corresponding time interval (Roth et al., 1994; Swanson et 

al., 1994; Swanson et al., 1995b).  This study contributes to our overall objective of 

understanding feline ovarian function and embryonic competence following exogenous 

hormone stimulation, to ultimately improve assisted reproduction protocols in domestic 

and non-domestic felids. 
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Materials and Methods 

 

Animals  

 Sixteen adult (1-3 years) female domestic cats were housed under artificial 

fluorescent illumination (12L:12D) and provided dry food (Purina ONE®, Nestlé Purina 

PetCare Co., St. Louis, MO) with ad libitum water.  Ten queens were nulliparous and six 

were proven breeders.  Two proven males (4-5 years old) were housed individually in an 

adjacent room.  Research activities were approved by the CRC’s Institutional Animal 

Care and Use Committee (IACUC; # 05-25) and the University of Maryland IACUC (R-

06-06).  Housing was in accordance with the Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, 1996).  

 

Exogenous hormone administration 

Queens were randomly assigned to: (1) ALT + 50 IU eCG + 37.5 IU hCG (n = 8; 

ALT); or (2) 50 IU eCG + 37.5 IU hCG (n = 8; control), and none had been previously 

exposed to exogenous progestins or gonadotropins.  Treatment groups were blocked by 

parity and replicated over time with pairs (ALT versus control) undergoing gonadotropin 

stimulation, AI, spay and embryo culture on the same day.  ALT oral suspension (0.088 

mg/kg; Regu-Mate®; Intervet Inc., Millsboro, DE) was administered daily in 5 g wet food 

(Friskies®; Nestlé Purina) for 38 days; controls received wet food only (Chapter 2).  

Lyophilized eCG (Sigma-Aldrich Corporation, St. Louis, MO) and hCG (Sigma-Aldrich) 

were solubilized in sterile, preservative-free saline to a concentration of 125 IU/ml and 

stored frozen in individual syringes at -20°C until use.  Three days after the last ALT 

treatment, cats received 50 IU eCG intra-muscularly (i.m.; Day -3) followed 80 hours 

later by 37.5 IU hCG i.m. (Day 0). 
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Semen collection and analysis 

 Semen was collected using a standard electroejaculation protocol from two 

proven breeder males on each day of AI (Howard, 1992).  Briefly, males were 

anesthetized with a single i.m. injection of ketamine hydrochloride (5 mg/kg; Ketaved; 

Vedco Inc., St. Joseph, MO) combined with xylazine (1-2 mg/kg; AnaSed; BenVenue 

Laboratory, Bedford, OH).  A one cm rectal probe delivered three series of low voltage 

electrical stimuli to the accessory sex glands (30 stimuli/series).  Semen was collected 

into a warmed, sterile vial and immediately diluted in 25 mM Hepes-buffered Ham’s F10 

culture medium (Irvine Scientific, Santa Ana, CA) supplemented with 0.284 mg/ml 

glutamine, 0.026 mg/ml pyruvate, 130 IU/ml penicillin, 0.13 mg/ml streptomycin, 0.26 

mg/ml neomycin (Sigma-Aldrich) and 5% (v:v) fetal calf serum (FCS; Irvine; HF10).  An 

aliquot (3-5 μl) of raw semen from Series 2 was removed before dilution in HF10 and 

fixed in 0.3% glutaraldehyde (pH 7.4, 340 mOsm) and 4.0% paraformaldehyde (Fisher 

Scientific Company, Pittsburgh, PA) for morphology and acrosome assessments, 

respectively.  Following semen collection, males received subcutaneous fluids and 0.1 

mg/kg yohimbine (Yobine; Lloyd, Shenandoah, IA) for reversal of anesthesia.  A 

minimum 1 week interval was allowed between consecutive semen collections.          

 Diluted aliquots were immediately assessed under phase contrast microscopy 

(100x) for sperm motility (0 to 100%) and forward progressive status (scale; 0-5, 0 = no 

movement, 5 = rapid, forward progression).  Aliquots displaying less than 70% motility or 

a status lower than three were discarded.  Sperm concentration was determined by 

diluting 5 μl sample in a red blood cell counting chamber (Unopette; Becton Dickinson 

and Co., Franklin Lakes, NJ) and then counting using a hemocytometer (Howard, 1993) 

(Table 4.1).  Ejaculates from each male were pooled, centrifuged (300g, 8 min) and re-

suspended in ~ 200 μl fresh HF10.  The supernatant was re-centrifuged (300g, 8 min), 
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and the second sperm pellet was combined with the re-suspended sperm.  Additional 

HF10 was added as needed to obtain a final volume of 420 μl.  A 20 μl aliquot was 

removed for final assessments of the sample for AI (sperm concentration, motility, 

status, morphology, acrosomal integrity; Table 4.1), and the remaining 400 μl was 

divided into two equal aliquots for two AI, maintained at ambient temperature and 

shielded from light until insemination. 

 Sperm fixed in 0.3% glutaraldehyde were assessed for structural morphology 

using phase contrast microscopy at 1,000x (Howard, 1993).  A total of 200 sperm per 

aliquot were classified either as normal or as having one of the following abnormalities: 

(1) head defects including macrocephaly, microcephaly, bicephaly, bent neck or 

damaged acrosome; (2) midpiece anomalies including bent midpiece, bent midpiece 

with cytoplasmic droplet, midpiece aplasia or damaged midpiece; or (3) flagellar 

deformities including tightly coil flagellum, bent flagellum without cytoplasmic droplet, 

bent flagellum with cytoplasmic droplet, proximal cytoplasmic droplet or distal 

cytoplasmic droplet.   

 Sperm fixed in 4% paraformaldehyde were stained with Coomassie blue to 

assess acrosomal integrity (Crosier et al., 2007).  Briefly, fixed sperm were centrifuged 

for 8 min at 2000g, and the sperm pellet was gently resuspended in 500 μl 0.1 M 

ammonium acetate.  The suspension was re-centrifuged, washed two additional times in 

ammonium acetate (8 min, 2000g) and the supernatant was removed to leave a final 

volume of ~ 50 μl.  The suspension was split and smeared onto two microscope slides, 

dried on a 37°C slide warmer, flooded with Coomassie blue stain (Fisher Scientific) in 

solution (Larson and Miller, 1999) for 90 s and rinsed thoroughly with deionized water.  A 

coverslip was mounted on the dried slide (Permount; Fisher Scientific), and slides were 

maintained overnight at 20°C before long-term storage at 5°C.  For each sample, 100 

spermatozoal acrosomes were assessed under bright-field microscopy at 1,000x.  
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Acrosomes were categorized as either: (1) intact; uniform blue stain encompassing the 

entire acrosomal region; (2) damaged; patchy blue staining pattern; or (3) non-intact; no 

stain observed in the acrosomal region.   

 

Laparoscopic AI 

 Thirty-six to 40 hours after hCG, queens were anesthetized with an i.m. injection 

of 10 mg/kg ketamine hydrochloride combined with 1 mg/kg acepromazine maleate 

(Phoenix Pharmaceuticals, Inc., St. Joseph, MO).  A surgical plane of anesthesia was 

maintained with isoflurane gas (Phoenix Pharmaceuticals), and the cat was placed in 

dorsal recumbancy for laparoscopic AI (Wildt et al., 1977).  In brief, the surgical table 

was tilted with the animal’s head down, and a two mm Verres probe was inserted 

through the abdominal wall to insufflate the abdomen with room air.  Next, a five mm 

trocar/cannula was introduced midline cranial to the umbilicus, and a five mm 

laparoscope with an integrated camera system (Olympus Surgical and Industrial 

America Inc., Orangeburg, NY) was inserted through the cannula to visualize the 

reproductive tract.   

Using the two mm Verres probe for reference, all ovarian structures were 

counted, described, measured and photographed taking care not to disrupt the fimbriae 

and oviduct (possibly containing ovulated oocytes).  CL that were white and well-

vascularized were termed ‘old’, and cats with old CL on Day 2 were classified as 

spontaneous ovulators.  CL that were pink or red with developing vascularization were 

termed ‘fresh’, and presumed to be the result of gonadotropin stimulation.  Follicles > 2 

mm in diameter and demonstrating mild to moderate vascularization were classified as 

‘mature’.  Overall ovarian response for gonadotropin-induced ovulation was graded on a 

scale of 1 to 4:  (1) excellent; multiple fresh CL and no follicles > 2 mm (Grade 1); (2) 
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good; mixed cohort of fresh CL and follicles > 2 mm (Grade 2); (3) fair; variable-aged CL 

including fresh and old (Grade 3); and (4) poor; ovulation failure (Grade 4; Fig. 4.1).  The 

Verres probe also was used to measure ovarian dimensions, oviductal diameter and 

uterine diameter, and ovarian volume was calculated using the formula for testes volume 

(length x width2 x 0.524) (Howard et al., 1990). 

Following assessment of ovarian response, queens with fresh CL were 

inseminated in utero (Howard et al., 1992a).  A second five mm cannula was inserted 

midline caudal to the umbilicus, and a five mm Babcock grasper with ratchet handle was 

inserted through the cannula to stabilize the uterine horn and bring it to the body wall for 

intrauterine AI.  A 20-gauge feline indwelling catheter was inserted percutaneously 

directly into the uterine lumen for intrauterine sperm deposition.  An aliquot (100 μl) of 

washed sperm in a 1 ml syringe was delivered through PE 10 silastic tubing inserted 

through the catheter.  The procedure then was repeated in the contralateral uterine horn.     

 

Ovariohysterectomy and tissue processing 

On Day 5 post-hCG, females underwent routine ovariohysterectomy using the 

same anesthesia protocol described previously for laparoscopy.  Reproductive tissues 

were covered in sterile saline-soaked sponges during the procedure and maintained at 

37°C after removal.  The ovary was removed at the base, the mesosalpinx tissue 

carefully dissected to elongate the oviduct, and a hemostat was placed at the utero-tubal 

junction.  The oviduct was flushed retrograde from the isthmus to the infundibulum using 

5 ml warmed (37°C) Hepes-buffered Ham’s F-10 medium with bovine serum albumin 

(BSA; 4 mg/ml) via a latex-free syringe and 25 gauge needle (Roth et al., 1997b).  

Oviducts were flushed 4-6 times in alternating order into individual sterile Petri dishes.  

Transverse sections of oviduct and uterus were fixed in 4% paraformaldehyde.  Whole 
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CL from one ovary were excised and individually weighed.  The ovary with more CL was 

chosen to maximize recovery of luteal tissue.  Half of these CL were flash frozen for 

progesterone quantification.  The remaining ovary was bisected, and one hemi-ovary 

was fixed in paraformaldehyde.  Fixed ovary, oviduct and uterus samples were 

embedded in paraffin by a commercial company (HistoServ, Rockville, MD), sectioned 

midway through the specimen at 5μm and stained with hemotoxylin and eosin.   

 

Embryo culture and staining 

The oviductal flush medium was thoroughly searched to locate unfertilized 

oocytes (UFOs) and embryos.  Viable embryos (2 cell or greater) were immediately 

placed in culture (Roth et al., 1994).  Embryos were assessed for developmental stage 

at the time of flush and categorized as: (1) 2 cell; (2) 3-4 cell; (3) 5-8 cell; or (4) 9-16 cell.  

These categories were chosen to encompass each cell division from 2 to 16 cells.  

Based on the total number of embryos recovered (maximum 5 embryos/drop; minimum 

10 μl medium/embryo), 10-50 μl culture drops were prepared under mineral oil using 

equilibrated Ham’s F10 culture medium (no HEPES; Irvine Scientific) supplemented with 

0.284 mg/ml glutamine, 0.026 mg/ml pyruvate, 100 IU/ml penicillin, 100 IU/ml 

streptomycin and 5% (v:v) FCS.  Embryos in the flush media were washed three times in 

culture medium, transferred to drops and placed in an incubator (38.5°C; 5% CO2 in air).  

Developmental progression was noted 2 and 4 days post-flush.  On Day 4 of culture (or 

Day 2, if the embryo showed no signs of progression during the first 2 day period), 

individual embryos were washed three times in culture medium to remove residual 

mineral oil, dried at room temperature on a microscopic slide and fixed overnight in 

ethanol.   Embryos were stained directly with Hoechst 33342 (1 μg/ml in PBS; Sigma) 

(Comizzoli et al., 2004).  Stained nuclei were examined under epifluorescence to 
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determine final cell number.  UFOs were fixed in 2.5% paraformaldehyde at 37°C for 30 

minutes on the day of ovariohysterectomy and stored at 4°C for subsequent staining.  

Fixed oocytes were rinsed in 5% FCS in phosphate buffered saline (PBS) for 30 minutes 

at 20°C and stained with Hoechst as described above to determine chromatin status.             

 

Statistical analyses 

All percentage data were arcsine transformed before analysis.  Laparoscopic 

ovarian data and CL progesterone concentrations were analyzed by one-way ANOVA 

followed by Tukey-Kramer honestly significant difference (HSD) multiple comparison 

tests.  A chi-square contingency test was performed to compare the distribution in 

developmental stages between treatments on the day of flush.  Differences in initial (day 

of flush) and final (post-culture up to 4 days) stage of embryonic development were 

compared between treatments using non-parametric Wilcoxon rank-sum tests.  All 

statistical analyses were performed using JMP IN 5.1 (SAS Institute Inc., Cary, NC), and 

data were expressed as mean ± SEM.          

 

Results 

 

Ovarian response at AI 

 On the day of AI, evidence of spontaneous ovulation was not observed in any 

ALT-primed cat, whereas two of eight controls (25%) had old CL indicating an ongoing 

luteal phase at the time of ovarian stimulation (Table 4.2).  Both control females with old 

CL also had fresh CL, presumed to be the result of exogenous gonadotropin treatment.  

Mean ovarian grade, number of follicles and number of fresh CL did not differ (P > 0.05) 

between treatments (Table 4.2).  Fifty percent of cats in both treatment groups had at 
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least one mature, vascularized follicle on Day 2 at the time of post-ovulatory AI.  

Ovulation failure was observed in two of eight (25%) ALT and one of eight (12.5%) 

control females; thus, a total of 6 ALT females and 7 controls were inseminated.  

Although sperm output varied by day, there was no correlation with fertilization success, 

with all females receiving a minimum of 12.8 x 106 motile fresh sperm.  Mean ejaculate 

traits of the pooled sperm samples for AI are summarized in Table 4.1.  

 

Embryo recovery and culture 

 On Day 5, overall recovery (total number embryos and oocytes divided by 

number of CL) was 68.9 ± 21.7% in ALT cats and 67.4 ± 16.3% in controls.  Embryos 

were recovered from five of six (83.3%) ALT cats and five of seven (71.4%) controls (P > 

0.05; Fig. 4.2).  ALT embryos ranged in developmental stage from two to 16 cells, while 

control embryos ranged from two to eight cells.  The distribution of embryos across 

developmental stages differed (P < 0.05) between treatments, with more consistent 

development observed in ALT-primed females (Fig. 4.3).  UFOs were retrieved in 66.7% 

of ALT cats and 71.4% of controls, and the mean number of UFOs was similar (P > 0.05) 

in ALT (2.5 ± 1.2) versus control cats (2.7 ± 1.9).  Of the total number of UFOs 

recovered, five of 14 ALT oocytes and 4 of 15 control oocytes had reached metaphase II 

(Fig. 4.4A).  The remaining UFOs were degenerate, with an absence of chromatin and 

fragmented cytoplasm.  Following culture in vitro, none of the 2-4 cell embryos 

progressed to morula.  Of the remaining embryos, 86.7% of ALT and 62.5% of control 

embryos progressed to morulae or blastocysts (Fig. 4.4 B-C).  In one spontaneously-

ovulating cat, one 2-4 cell embryo was recovered but did not develop in culture.  No 

UFOs or embryos were recovered from the other spontaneous ovulator.    
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CL progesterone and reproductive histology 

 Luteal progesterone was abnormally higher (P < 0.05) in controls (72.4 ± 5.8 

ng/mg) then ALT cats (52.2 ± 5.5 ng/mg), compared to historical data from pregnant 

naturally-bred cats (~ 50 ng/mg; Fig. 4.5) (Swanson et al., 1995b).  Representative 

histological sections revealed variable ovarian dynamics in both treatment groups.  Many 

CL on Day 5 had irregular margins with a visible, open central cavity and a mixed 

population of fusiform and polygonal cells (Fig. 4.6A).  The fusiform cells lay 

perpendicular to and radiated outward from the cavity before transitioning to a population 

of predominantly polygonal cells.  In some females, corpora hemorrhagica (CH) were 

seen (Fig. 6B).  These CH were relatively smaller in size with a blood-filled central cavity 

(a remnant of the antrum) and predominantly fusiform cells.  Regressing CL were 

observed in both spontaneous ovulators in the control group (Fig. 6C).  These older CL 

were morphologically-distinct from the younger CL, demonstrating prominent lipid 

vacuoles throughout the structure and irregular borders.  Diverse follicular morphology 

was observed.  All females demonstrated varied numbers of primordial and primary 

follicles populating the ovarian cortex (Fig. 4.7A), and many had at least one tertiary 

follicle with a large antrum and visible oocyte (Fig. 4.7B).  Follicular atresia was 

observed in some cats (Fig. 4.7C).  Representative oviduct and uterine cross-sections 

also were obtained from each individual (Fig. 4.8).       

 

Discussion 

 

This study provides evidence that oral progestin priming before ovulation 

induction and AI not only prevents spontaneous ovulation in the cat, but also supports 

early embryonic development and luteal progesterone production that is comparable to 

naturally estrual, mated queens.  Progestin priming cultivates a maternal environment 
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that is improved compared to individuals receiving exogenous gonadotropins only.  

Through the experimental design, we were able to gather important information on the 

critical pre-implantation period by assessing markers of both ovarian function and 

fertilization success, while maintaining our ability to continually monitor developmental 

competence of embryos in vitro after recovery.  This study also has provided valuable 

tissue samples that can be used for future gene expression analyses designed to 

undercover the underlying mechanisms of luteal function and oviductal transport during 

early pregnancy in the cat.  

Determining that ovarian response to exogenous gonadotropins was similar 

between progestin-treated and control females was unexpected, since previous work 

demonstrated that ALT-primed cats have an improved ovarian grade following ovulation 

induction compared to unprimed individuals when using a regimen of 50 IU eCG/37.5 IU 

hCG (Chapter 3).  The relatively low incidence of spontaneous ovulation in the current 

study (25%) versus the previous study (41.7%; Chapter 3) is one explanation for this 

disparity, and is likely attributed to random chance.  The finding that two of eight cats in 

the ALT group failed to ovulate in response to exogenous gonadotropins was not 

observed in the previous study.  The two progestin-primed cats exhibiting ovulation 

failure displayed follicular growth but no pre-ovulatory follicles on Day 2, suggesting that 

hCG dosage may have been insufficient in these individuals to promote final follicular 

maturation and ovulation.  Alternatively, eCG dosage may have been inadequate to 

develop these follicles to a point where they were responsive to hCG.  Ovarian 

sensitivity to exogenous gonadotropins is different in induced versus spontaneous 

ovulators, but this variable sensitivity is mitigated by progestin pre-treatment (Pelican et 

al., 2007).  Thus, it is more likely that subtle individual differences in ovarian sensitivity to 

near-threshold levels of exogenous gonadotropins caused this unusual response.  
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Understanding the mechanisms regulating altered ovarian sensitivity will require further 

investigation.     

Whether oocytes exhibit decreased ability to undergo fertilization as a direct 

result of ovarian stimulation is not well characterized in the cat (Roth et al., 1994).  In 

some domestic livestock and rodents, exposure to exogenous gonadotropins has been 

linked to poor oocyte quality (Moor et al., 1985; Hyttel et al., 1986; Yun et al., 1987).  In 

the cat, exogenous gonadotropin treatment is associated with more unfertilized oocytes 

and fewer high-quality blastocysts following AI compared to naturally-bred queens, but 

good quality embryos still can be obtained and an ~ 50% pregnancy rate achieved after 

AI (Howard et al., 1992a; Roth et al., 1995).  This may explain why litter size in felids 

undergoing assisted reproduction is generally smaller compared to their naturally-bred 

counterparts.  In the current study, the mean number of embryos and unfertilized 

oocytes recovered on Day 5 (~ 108 hours post-hCG) was similar between treatments, 

and data were comparable to numbers recovered from naturally estrual, mated queens 

at a similar time point (100 hours post-coitus; mean 3.3 ± 0.8 embryos and 1.1 ± 0.6 

UFOs) (Swanson et al., 1994).  Our observations are in sharp contrast to data in cats 

receiving higher dosages of exogenous gonadotropins (100 IU eCG/75 IU hCG) followed 

by AI and pre-implantation ovariohysterectomy, where mean embryo yield is 17.8 ± 5.6 

(Roth et al., 1997b).  This is more than five times the current findings.  Furthermore, cats 

with these excessive yields had higher proportions of fragmenting or degenerating 

embryos.  This study supports the use of progestin priming and relatively lower 

gonadotropin dosages for AI, since embryo yields and subsequent viability are likely to 

be far more consistent with naturally-bred queens.   

This study’s focus on the oviduct, versus the uterus, was warranted by previous 

work investigating in vivo early embryonic development in both natural-bred and 

gonadotropin-treated cats (Swanson et al., 1994; Graham et al., 2000).  We expected 
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embryos to be in the oviduct on Day 5 regardless of exogenous hormone treatment, and 

our findings were consistent with this hypothesis.  Indeed, the amount of time the 

embryo remains in the oviduct before traversing the uterotubal junction is quite long in 

the cat (144-168 h) compared to species including the rabbit (56-62 h), mouse (72 h) 

and human (60-70 h) (Croxatto and Ortiz, 1975), making it a critical environment to 

investigate.   

Exogenous gonadotropin treatment has been associated with delayed oviductal 

transport, where embryos produced by naturally-mated queens reach the uterus sooner 

than embryos produced following gonadotropin stimulation and AI (Graham et al., 2000).   

In the current study, we were unable to directly assess oviductal transport, but in vivo 

developmental rates were investigated, which is likely an important indicator of overall 

oviductal health and function.  Development appeared somewhat retarded in both 

treatments compared to historical data, where 9-16 cell embryos are expected by Day 5.  

Yet overall embryonic development was more consistent in progestin-primed queens, 

compared to unprimed individuals.    

Uncovering the key factors regulating developmental competence of embryos in 

vivo may be possible with follow-up gene expression studies in oviductal tissue.  Of 

particular interest would be the expression of exogenous steroid receptors, as well as 

additional factors associated with steroid actions in the oviduct.  For example, estradiol 

is a key regulator of oviductal function (Croxatto and Ortiz, 1975; Roblero and 

Garavagno, 1979; Bigsby et al., 1986; Zenteno et al., 1989) and can retard embryo 

transport (Herron and Sis, 1974) and alter oviductal cell function (Bareither and Verhage, 

1981) in the cat.  Subsequently, understanding the influence of exogenous 

gonadotropins on estradiol production, alone or concomitant with progestins, may be an 

important mechanism to investigate.  There also is strong evidence of auto-regulatory 
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actions by the embryo itself on oviductal function in other species (Croxatto, 2002) that 

are still unstudied in the cat.  

Developmental competence in vitro following embryo recovery was reduced in 

this study compared to historical data from naturally-bred cats, where 85-92% of 

embryos produced in vivo progress to morulae or blastocysts (Roth et al., 1994).  Based 

on the total numbers of morulae/blastocysts produced, progestin-primed embryos 

appeared to perform better in culture than control embryos, but significant variability 

within individuals did not allow for a statistical difference between treatments.  The 

apparent morula to blastocyst block observed in in vitro-produced embryos was not a 

factor in the current study (Johnston et al., 1991; Roth et al., 1994).  In rodents, 

superovulation is associated with delayed embryo development and abnormal blastocyst 

formation both in vivo and in vitro (Molina et al., 1991; Ertzeid et al., 1993; McKiernan 

and Bavister, 1998; Van der Auwera and D'Hooghe, 2001), but there is no strong 

evidence for this in cats based on our results.    

 Luteal function was another key endpoint investigated in this study and will be 

the subject of significant follow-up work using archived tissue samples obtained during 

data collection.  Results showed a relationship between progestin pre-treatment and 

luteal progesterone production following ovulation induction and AI.  While progestin-

primed individuals had CL progesterone concentrations comparable to historical data 

from pregnant naturally bred queens, controls displayed higher concentrations 

previously seen only in low fertility cats at a corresponding time point (Swanson et al., 

1995b).  This could be attributed to decreased consistency of the ovarian response in 

cats treated with exogenous gonadotropins alone.  That higher levels of luteal 

progesterone are actually detrimental to fertility during early pregnancy is an interesting 

finding, particularly since these differences are only seen until Day 6 of gestation 

(Swanson et al., 1995b).  Indeed, these observations demonstrate the considerable 
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effects that subtle differences in the maternal environment can have on fertility.  They 

also serve as the foundation for future studies designed to investigate luteal function 

more closely in the context of cholesterol biosynthesis, steroidogenesis and hormone 

receptor expression.  Furthermore, these data can be used to guide timing of 

progesterone supplementation following assisted reproduction.  

Taken together, these findings support the incorporation of a short-term regimen 

of oral progestin before ovulation induction and AI in the cat.  The ability to integrate the 

present results with previous findings in naturally-bred cats permitted several important 

comparisons that would not have been possible otherwise.  While a strong link between 

progestin priming and improved AI success could not be made in this study, data 

support that it is no more detrimental than the effects of a gonadotropin-only regimen.  At 

the least, achieving improved ovarian response at the time of AI makes this protocol 

worthwhile for future use.  An important follow-up to this study will be to examine the 

influence of oral progestin priming on the peri-implantation maternal environment and 

incidence of implantation following AI.   
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Table 4.1.  Sperm traits from two males used as artificial insemination donors (n = 8 
pooled ejaculates). 
 
 
 
Variable       Mean ± SEM 
 
 
Sperm concentration/ml (x106)    126.6 ± 15.1   
  

Sperm motility (%)      76.3 ± 1.6 
 
Sperm forward progressive status a    3.9 ± 0.1  
 
Morphologically-normal sperm (%)    47.7 ± 1.2 

 

Sperm acrosomal integrity (%) b 

  

Intact       76.5 ± 1.0 
  

Damaged      18.9 ± 1.0 
 
 Non-intact      4.6 ± 0.7  
 
Total motile sperm      22.2 ± 2.1 
inseminated per female (x106)  

 
 
 
a Forward progressive status rated on a scale of 0-5, with 0 being no                        
movement and 5 being rapid, forward progression.  
b Acrosomal integrity was assessed using Coomassie blue stain                                    
under bright-field microscopy.  
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Table 4.2.  Laparoscopic ovarian response on the day of artificial insemination in 
altrenogest (ALT)-primed versus unprimed females. 
 
  
      ALT (n = 8)  Control (n = 8)  
     
 
Ovarian grade     2.3 ± 0.4   2.3 ± 0.4   
    
Total no. of CL/cat    5.5 ± 1.5   6.6 ± 1.5  
 
Proportion of cats w/ fresh CL  6/8 (75%)  7/8 (87.5%) 
 
No. fresh CL/ cat    5.5 ± 1.5   6.0 ± 1.5  
 
Diameter of fresh CL (mm)   3.7 ± 0.1  3.5 ± 0.2 
 
Proportion of cats w/ old CL   0/8 (0%)  2/8 (25%)  
   
No. old CL/cat     0   0.6 ± 0.5  
  
Total no. follicles/cat    4.9 ± 2.3  4.8 ± 1.8 
 
Proportion of cats w/ mature follicles  4/8 (50%)  4/8 (50%)    
 
No. mature follicles/cat   1.3 ± 0.6  3.0 ± 1.5 
 
Ovarian volume (mm3)   170.3 ± 11.5  225.0 ± 46.1 
 
Oviduct diameter (mm)   2.7 ± 0.3  3.0 ± 0.2 
 
Uterine diameter (mm)   6.7 ± 0.2  6.6 ± 0.4 
 
  
With the exception of proportional data, values are means ± SEM.  Means and 
percentages were similar (P > 0.05) among treatments.   
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 1     2     3       4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1.  Laparoscopic ovarian grading system used to determine suitability for AI.  
Ovarian response and gonadotropin-induced ovulation was categorized as (1) excellent, 
multiple fresh CL and no follicles > 2 mm (Grade 1); (2) good, mixed cohort of fresh CL 
and follicles > 2 mm (Grade 2); (3) fair, variable-aged CL (Grade 3); or (4) poor, 
ovulation failure (Grade 4).  Solid arrow denotes fresh CL, dashed arrow denotes mature 
follicles and double-lined arrow denotes old CL from a previous luteal phase.  Females 
displaying a Grade 4 response were not inseminated.     
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A B 

D C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.2. Representative photos of (A) an unfertilized oocyte and (B-D) embryos 
recovered in the oviduct on Day 5.  Embryos ranged in developmental stage from (B) 2-4 
cell, (C) 5-8 cell and (D) 9-16 cell on the day of flush.  
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Fig. 4.3.  Embryonic stage on the day of oviductal flush (Day 5 post-hCG).  The 
distribution of embryos at each developmental stage differed (P < 0.05) between 
altrenogest (ALT)-primed (solid) and control (hatched) cats.   
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   A                              B                                              C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.4.  Representative photos of an unfertilized oocyte (UFO) in metaphase II and blastocysts cultured in vitro.  UFOs were 
examined with Hoechst fluorescent dye to determine chromatin status at the time of flush (A).  Following culture, blastocysts were 
identified using light microscopy (B) and cell numbers were confirmed with Hoechst staining (C).    
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Fig. 4.5.  Luteal progesterone concentration in corpora lutea recovered on Day 5 post-
hCG in altrenogest (ALT)-primed (solid) and control (hatched) cats.  Means with different 
superscripts differ (P < 0.05).    
 
 
 
 
 
 
 
 
 
 
 

a
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Fig. 4.6.  Corpora lutea (CL) histomorphology on Day 5.  (A) Most CL had irregular 
margins, a visible central cavity filled by fibrosis and a mixed population of fusiform and 
polygonal luteal cells.  (B) Corpora hemorrhagica were observed in some females, 
presumed to be the result of ancillary folliculogenesis and ovulation.  (C) Regressing CL 
were noted in controls demonstrating spontaneous ovulation before ovulation induction.  
Bar represents 100 μm.       
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Fig. 4.7.  Histomorphology of ovarian follicles observed on Day 5.  (A) Mixed populations 
of primordial and primary follicles were observed in the ovarian cortex.  (B) A tertiary 
follicle with distinct granulosa and theca cells and a large antrum.  (C) Follicles 
undergoing atresia.  Note the absence of an ovum and hypertrophy of surrounding cells.  
Bar represents 100 μm.           



 127

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.8.  Oviductal and uterine histomorphology of cats on Day 5.  Representative 
cross-sections of oviduct (A) and uterus (B) were obtained from each individual.     
 

 

 

B 
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CHAPTER 5 

MOLECULAR AND MORPHOLOGICAL CHARACTERISTICS ASSOCIATED WITH 

LUTEAL INSUFFICIENCY IN THE CAT 

 

Abstract 

 

Pregnancy success after assisted reproduction remains low in felids treated with 

equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) to 

induce folliculogenesis and ovulation.  Exogenous gonadotropins have been linked to 

abnormal corpora lutea (CL) progesterone production in the cat.  However, short-term 

priming with the oral progestin altrenogest (ALT) before ovulation induction mitigates 

luteal insufficiency.  To characterize this differential response, specific cellular and 

molecular indicators of luteal function were examined in archived ovarian tissue from 

queens in Studies 2 and 3 assigned to: (1) ALT + eCG/hCG (n = 11 cats); (2) eCG/hCG 

only (n = 12); or (3) natural estrus/natural breeding (n = 6; NB).  Ovaries were removed 5 

or 17 days post-hCG in ALT + eCG/hCG and eCG/hCG cats, whereas all NB cats were 

ovariectomized on Day 17 (Day 0 = 1st day of breeding).  Ovaries were assessed for 

histological parameters and candidate gene expression in luteal tissue.  Ovarian 

sections contained both primary and atretic follicles, and many individuals (~50% overall) 

had at least one tertiary, pre-ovulatory follicle.  On Day 5, 50% of cats had at least one 

CL with a residual central cavity, whereas no central cavities were observed by Day 17.  

CL surface area and luteal cell density were similar (P > 0.05) among treatments on Day 

5 and 17.   Candidate genes associated with luteal function and examined by 

quantitative real-time RT-PCR included estrogen receptor alpha (ERα), progesterone 

receptor (PR), luteinizing hormone receptor (LHR), prolactin receptor (PRLR), 

steroidogenic acute regulatory protein (sTAR), cholesterol side-chain cleavage enzyme 
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(CYP11A1), and 3-beta hydroxysteroid dehydrogenase (3β-HSD).  No differences (P > 

0.05) in gene expression were found among treatments at either time point.  Over time, 

increases (P < 0.05) in LHR and decreases (P < 0.05) in 3β-HSD gene expression were 

not correlated with changes in CL progesterone.  Overall, this study demonstrates that 

aberrant CL progesterone production following exogenous gonadotropin treatment is not 

associated with gross changes in ovarian morphology or altered expression of the 

candidate genes targeted in this experiment.  Moreover, these data suggest that the 

functional basis for CL insufficiency is complex and related to additional factors that may 

be revealed by more extensive gene profiling experiments.   

 

Introduction   

 

Artificial insemination (AI) has been used in multiple felid species as a tool for 

maintaining gene diversity in rare and critically endangered populations (Howard, 1992; 

Wildt and Roth, 1997).  Yet the incidence of pregnancy failure remains high (> 90%) in 

most species following AI, preventing a significant impact on population genetics 

(Swanson, 2006).  Attempts to determine the underlying basis for AI failure have led to 

no single causal agent.  Instead, multiple contributing factors have been identified, 

including spontaneous ovulation and inconsistent ovarian response to ovulation 

induction (Pelican et al., 2007), ancillary folliculogenesis and secondary ovulation 

following gonadotropin treatment (Swanson et al., 1996a), an abnormal endocrine milieu 

during early pregnancy (Brown et al., 1994), delayed oviductal transport (Graham et al., 

2000) and poor embryo quality (Goodrowe et al., 1988a).  All of these observations have 

been linked to the routine use of equine chorionic gonadotropin (eCG) to induce 

folliculogenesis and human chorionic gonadotropin (hCG) to induce ovulation before AI 

in felids.     
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Pre-treatment (priming) with progestins before ovulation induction and AI has 

proven effective for mitigating several adverse effects on fertility in the domestic cat.  

Priming with the oral progestin altrenogest (ALT) temporarily suppresses ovarian activity, 

improves ovarian response to ovulation induction and supports normal peri-ovulatory 

steroid hormones, early embryonic development, and oviductal transport (Chapters 3 

and 4).  These findings are critical for assisted reproduction in felids that spontaneously 

ovulate, such as the clouded leopard or fishing cat.  In these species, ovarian control is 

required to ensure that AI is timed to coincide with ovulation (Pelican et al., 2006b).   

Even queens with excellent ovarian response to ovulation induction still 

frequently fail to get pregnant, suggesting that a post-ovulatory mechanism, such as 

luteal malfunction, could be involved.  Indeed, previous work has shown that corpus 

luteum (CL) progesterone production is compromised following exogenous gonadotropin 

treatment in the cat (Chapters 3 and 4).  Similar observations have been made in 

livestock and humans following ovarian stimulation (McNeilly et al., 1981; Tavaniotou et 

al., 2001).  Interestingly, oral progestin priming before exogenous gonadotropins 

facilitates CL progesterone production, resulting in levels similar to naturally-bred cats 

(Chapters 3 and 4).  These data provide an interesting dichotomy that warrants further 

investigation.  

The primary function of the CL is to serve as the site of progesterone 

biosynthesis, and the CL is believed to be the sole source of progesterone during early 

pregnancy in the cat (Paape et al., 1975; Verstegen et al., 1993).  Although it has not yet 

been documented in the cat, it is likely that the CL also produces androgens and 

estradiol, similar to other species (Stocco et al., 2007).  Furthermore, it is clear that the 

CL is not an autonomous structure, but one that receives complex, carefully orchestrated 

endocrine and immune signals which impact progesterone secretion (Niswender, 2002).  

The CL also is heavily influenced by mediators of luteal formation and regression, 
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although these agents are poorly characterized in felids (Concannon and Verstegen, 

1999).  Prolactin is one known luteotrophic agent (Banks et al., 1983).  Prostaglandins, 

which are common luteolysins in other species, do not appear to regulate luteal 

regression, at least during the first 40 days post-ovulation (Shille and Stabenfeldt, 1979), 

and can also have luteotrophic activity in the cat (Wildt et al., 1979b).  

This study was designed to examine morphological and molecular variables 

associated with CL regulation and function to understand how progestin priming before 

ovulation induction maintains normal progesterone biosynthesis.  Ovarian samples were 

assessed from domestic cats spayed during the early (Day 5) or mid (Day 17) luteal 

phase that were: (1) naturally-bred; (2) treated with oral progestin (ALT) + eCG/hCG; or 

(3) treated with eCG/hCG only.  Histology was used to characterize ovarian morphology 

and identify differences among treatments.  Molecular endpoints examined were limited 

to candidate gene expression of known or proposed regulators of progesterone 

biosynthesis, compared using real-time RT-PCR (qRT-PCR).  Evaluating the effects of 

exogenous hormones on luteal function could provide a critical link to improving AI 

success in endangered felids.   

 

Materials and Methods 

 

Animals and experimental design  

Twenty-nine adult (1-3 year old) female domestic cats were part of an 

established research population that demonstrates both spontaneous and induced 

ovulation (Pelican et al., 2005).  Queens were housed alone (n = 6 cats) or in pairs (n = 

23 cats), while males (n = 3) were housed individually in an adjacent room.  Cats 

remained under a 12-h light: 12-h dark artificial light cycle throughout the study and were 

fed a dry commercial diet (Purina ONE®, Nestlé Purina PetCare Co., St. Louis, MO) with 



 132

water ad libitum.  All research activities were approved by the Smithsonian’s National 

Zoological Park Institutional Animal Care and Use Committee (Protocol #05-25) and the 

University of Maryland IACUC (R-06-06).   

In Experiment 1, all cats underwent ovariohysterectomy on Day 5 (D5; Day 0 = 

day of hCG).  Queens (n = 13) were randomly assigned to: (1) ALT + eCG/hCG (n = 6; 

D5 ALT + eCG/hCG); or (2) eCG/hCG (n = 7; D5 eCG/hCG).  In Experiment 2, females 

underwent ovariohysterectomy on Day 17 (D17; Day 0 = day of hCG or first day of 

breeding).  Queens (n = 16) were randomly assigned to: (1) ALT + eCG/hCG (n = 5; D17 

ALT+ eCG/hCG); (2) eCG/hCG (n = 5; D17 eCG/hCG); or (3) natural breeding (n = 6; 

D17 NB).   

 

Treatments and tissue collection 

Exogenous hormone treatments and the natural breeding protocol have been 

described previously (Chapter 3).  Briefly, the oral progestin ALT (0.088 mg/kg; Regu-

Mate®; Intervet Inc., Millsboro, DE) was administered daily in wet food (Friskies®; Nestlé 

Purina) for 38 days.  Lyophilized eCG (Sigma-Aldrich Corporation, St. Louis, MO) and 

hCG (Sigma-Aldrich) were solubilized in sterile, preservative-free saline and stored 

frozen in individual syringes at -20° C until use.  Three days after stopping ALT or at a 

chosen day in unprimed females, cats received 50 IU eCG intra-muscularly (i.m.; Day -3) 

followed 80 hours later by 37.5 IU hCG i.m. (Day 0).  Females assigned to breed 

naturally (n = 6) were monitored daily for signs of behavioral estrus including lordosis, 

foot treading, vocalization, rubbing and rolling.  A proven breeder male was introduced 

on the second or third day of behavioral estrus and allowed to mate three times a day in 

3 hour intervals for 2 consecutive days (Wildt et al., 1981).   
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Following routine ovariohysterectomy on Day 5 or 17, CL from one ovary were 

excised and individually weighed.  The ovary with more CL was chosen to maximize 

recovery of luteal tissue.  Half of the CL were immediately placed in RNAlater (Ambion 

Inc., Austin, TX), maintained at 4°C overnight and then stored at -80°C.  The second 

ovary was bisected and one hemi-ovary was fixed in 4% paraformaldehyde (Fisher 

Scientific Company, Pittsburgh, PA) before paraffin embedding by a commercial 

company (HistoServ, Rockville, MD). 

  

Ovarian histology 

Paraffin blocks were step-sectioned and four equally-spaced 5 μm sections 

across the ovary were stained with hemotoxylin and eosin by HistoServ.  For each 

section, presence or absence of primary, tertiary and atretic follicles was noted.  Primary 

follicles were identified as an oocyte surrounded by small, poorly-differentiated cell 

layers; tertiary follicles had a visible oocyte, well-differentiated granulosa and theca cells 

and a large, distinct antrum; and atretic follicles lacked an oocyte and showed evidence 

of hypertrophy and irregular follicular margins.  Surface area of individual whole CL and 

CL central cavities (if present) were measured with IP Lab for Windows Version 3.5.1 

software (Scanalytics Inc., Fairfax, VA).  These structures were outlined with the region 

of interest (ROI) freehand drawing tool and the number of pixels contained within the 

outline was recorded.  An indirect measure of cell density was obtained by capturing 

TIFF images of each CL in each section at 200x and then overlaying the image with a 

uniform square grid in Microsoft Office PowerPoint 2003 (Microsoft Corporation, 

Redmond, WA).  All nuclei contained within the grid were counted, and cell density was 

expressed as the number of nuclei per unit area.   
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RNA extraction 

Total RNA was extracted from individual CL samples stored in RNAlater.  

Samples were thawed and approximately 20 mg luteal tissue was disrupted and lysed 

with a guanidine isothiocyanate-containing buffer using a rotor-stator homogenizer.  

RNA was isolated using a silica-gel membrane column kit according to the 

manufacturer’s protocol (RNeasy Mini Kit; Qiagen; Valencia, CA).  DNase digestion was 

performed during RNA extraction (RNase-Free DNase Set; Qiagen).  Following isolation 

and purification of the RNA, the final product was eluted in 40μl RNase-free water and 

immediately stored at -80°C.  Concentration of individual RNA samples was determined 

using a spectrophotometer at 320 nm (GeneQuant II; Amersham Pharmacia Bio Tech, 

Piscataway, NJ).  RNA integrity was confirmed by gel electrophoresis, using an agarose 

formaldehyde gel prepared with 1% agarose, 3% formaldehyde and 1X MOPS buffer 

(20mM MOPS, 5mM NaOAc, 1mM EDTA) in water.  The 1 μg RNA samples from 18 

randomly-selected samples were diluted in an RNA loading buffer containing ethidium 

bromide (Sigma); samples and two DNA molecular weight ladders (Sigma) were heated 

to 95°C for 5 minutes, loaded onto the gel and run at 190 V.  The gel was read on an 

ultraviolet transilluminator (Fig. 5.2).   

 

Primer design 

With the exception of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

primers were designed using published mRNA transcripts in the National Center for 

Biotechnology Information (NCBI) GenBank database.  If a domestic cat sequence was 

not available for the gene, a canine or bovine transcript was chosen.  These sequences 

were run through BLAST in the Ensembl genome browser (ensemble.org) against the 

whole feline genome, and a novel feline-specific gene transcript was obtained.  Primers 

were designed using PrimerExpress software (Applied Biosystems, Foster City, CA).  A 
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total of 300-500 basepairs of the mRNA transcript close to the 3’ end and spanning more 

than one exon (if possible) were analyzed for suitable primers in PrimerExpress using 

specified parameters.  Forward and reverse primers were chosen based on low penalty, 

length of primer (19-21 bp), amplicon length (100-120 bp) and low guanine/cytosine 

content (Table 5.1).  Primers were cross-checked in the Ensembl genome browser to 

ensure that they fell on the forward and reverse strands of the sequence of interest.  The 

cat GAPDH primer sequences had been previously published (Kipar et al., 2001).  All 

primers were commercially obtained (Invitrogen, Carlsbad, CA), reconstituted in 

nuclease-free water to a 100μM stock solution and stored at -20°C.   

 

qRT-PCR 

Two step quantitative real-time RT-PCR (qRT-PCR) was performed to measure 

levels of mRNA in extracted CL tissue.  Total RNA (~1μg) was reverse transcribed using 

a 50 μM anchored oligo dT primer (Sigma) and Superscript III reverse transcriptase 

(Invitrogen) according to the manufacturer’s protocol.  Briefly, RNA was combined with 

the oligo dT primer and 10mM dNTPs in nuclease-free water.  Samples were vortexed, 

heated to 65°C in a thermocycler (Gene Amp PCR 9700; Applied Biosystems) for 5 min 

and maintained on ice for at least 1 min.  Reverse transcriptase, 0.1 M DTT, 5X strand 

buffer and 40 U/μl RNAse inhibitor (RiboLock; Fermentas Life Sciences, Glen Burnie, 

MD) were added to the sample and mixed gently with a pipette.  A ‘no RT control’ was 

produced by combining a pooled RNA sample with all components except the reverse 

transcriptase.  Samples were brought to 50°C in a thermocycler for 60 min followed by 

70°C for 15 min to deactivate the reaction.  cDNA was diluted 1:5 in nuclease-free water 

and stored at -20°C. 

qRT-PCR was performed for the seven genes of interest using a SYBR green 

double-stranded DNA detection method (Fig. 5.1).  Genes chosen were estrogen 



 136

receptor alpha (ERα), progesterone receptor (PR), luteinizing hormone receptor (LHR), 

prolactin receptor (PRLR), steroidogenic acute regulatory protein (sTAR), cholesterol 

side-chain cleavage enzyme (CYP11A1), 3-beta hydroxysteroid dehydrogenase (3β-

HSD) and a housekeeper gene (GAPDH).  For each gene, cDNA samples (1 μl) were 

added to individual wells of a 96 well PCR optical plate (Bio-Rad Laboratories, Hercules, 

CA) in triplicate and a mix containing 10 μl iQ SYBR Green Supermix (Bio-Rad), 0.8 μl 

10 μM forward primer, 0.8 μl 10 μM reverse primer and 7.4 μl nuclease-free water was 

added to each well.  The plate was sealed, centrifuged briefly and run in a Bio-Rad 

iCycler.  PCR cycling parameters were 40 cycles of 95°C for 15 sec (denaturation) and 

60°C for 1 min (anneal/extend) followed by a melt curve analysis.  With the exception of 

ERα, all assays had a single melt curve peak.  Mean intra-assay variation was 2.7% 

(range, 0.2 to 11.7%).  Cycle thresholds (Ct) for each sample were corrected for 

background contamination using the formula Ct (no RT control) – Ct (sample).  No differences in 

GAPDH housekeeper expression were observed among treatments (mean Ct 19.5 ± 

0.1; P > 0.05).  Thus for each sample, mRNA levels were normalized to GAPDH 

expression by subtracting the corrected Ct for GAPDH from the corrected Ct value for 

each gene of interest ( Ct).  Relative mRNA expression then was calculated by 

transforming the Ct values to linear scale (2 Ct).   

 

Statistical analyses 

 For each experiment, data were summarized within treatment and compared 

using a one-way ANOVA followed by LSD mean comparisons if significant differences (P 

< 0.05) were observed.  The experimental design also allowed for comparisons over 

time (D5 vs. D17) in ALT + eCG/hCG and eCG/hCG only queens, which were performed 

using a two way factorial ANOVA.  Main effects (time and treatment) were interpreted in 

the absence of a significant interaction.  Post-hoc power analysis was performed for 
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gene expression data sets when trends (P = 0.05 to 0.2) were observed.  By defining 

power (0.95) and using the known treatment means and mean residual error, requisite 

sample sizes were obtained.  All data are presented as means ± SEM, and statistical 

analyses were performed using JMP IN 5.1 (SAS Institute, Cary, NC). 

 

Results 

 

Ovarian histology 

 In Experiment 1 (Day 5 ovariohysterectomy), one control queen was excluded 

due to incomplete ovarian sections, resulting in a total of six cats per treatment for 

analysis.  Females in both groups had primordial and primary follicles in the ovarian 

cortex (Fig. 5.3A).  Tertiary follicles were observed in two of six (33.3%) D5 ALT+ 

eCG/hCG and three of six (50%) D5 eCG/hCG cats (Fig. 5.3B).  All females displayed at 

least one follicle undergoing atresia (Fig. 5.3C).  On Day 5, CL surface area did not differ 

(P > 0.05) between treatments (Fig 5.4A).  CL central cavities were observed in an equal 

number of cats (50%) in each group, and the surface area of these cavities was similar 

(P > 0.05) between treatments (Fig. 5.5).  In those cats displaying a central cavity, the 

cells closest to the cavity were predominantly fusiform, while cells radiating outward from 

the cavity were primarily polygonal.  Conversely, in those CL without a central cavity, 

nearly all luteal cells were polygonal.  Overall luteal cell density also was similar (P > 

0.05) between treatments (Fig. 5.6A).    

 In Experiment 2 (Day 17 ovariohysterectomy), one naturally-bred queen was 

removed due to incomplete sections, allowing for a final comparison of five cats per 

treatment.  Similar to observations on Day 5, all females had primordial and primary 

follicles in the ovarian cortex, as well as follicles undergoing atresia.  Tertiary follicles 

were observed in 40% of D17 ALT + eCG/hCG and D17 eCG/hCG, and 60% of NB cats.  
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Central cavities were not observed in any CL on Day 17 and overall CL surface area did 

not differ (P > 0.05) among treatments (Fig 5.4B).  Luteal cell density also was similar (P 

> 0.05) among treatments (Fig. 5.6B).  When comparing histological parameters over 

time, luteal cell density decreased (P < 0.05) between Day 5 and 17 in ALT + eCG/hCG 

(88 versus 52 cells per unit area) and eCG/hCG cats (102 versus 54 cells per unit area).    

    

CL gene expression 

 Of the original 29 queens, five were immediately excluded due to absent or 

insufficient CL tissue.  An additional three females were removed following qRT-PCR 

analyses due to consistently low or undetectable mRNA expression for all genes of 

interest, including the GAPDH housekeeper gene.  Therefore, data were analyzed from 

a total of 21 queens as follows: D5 ALT + eCG/hCG, n = 4; D5 eCG/hCG, n = 5; D17 

ALT + eCG/hCG, n = 5; D17 eCG/hCG, n = 3; and D17 NB, n = 4.   

 Within each time point assessed, no differences (P > 0.05) in sTAR, CYP11A1 or 

3βHSD expression were observed among treatments (Fig. 5.7).  Over time, 3βHSD 

mRNA decreased (P < 0.05) in both treatment groups assessed.  ERα could not be 

accurately detected in any treatment on Day 5 or 17.  PR, PRLR and LHR gene 

expression was consistent among treatments (P > 0.05) within each of the two time 

points (Fig. 5.8).  However, there was a trend (P = 0.052) towards increased expression 

of LHR in eCG/hCG cats, compared to ALT + eCG/hCG cats, on Day 5.  Power analysis 

indicated that a sample size of 9 cats per treatment would have been needed to 

adequately characterize this relationship.  Naturally-bred cats showed a trend towards 

increased PR (P = 0.17) and PRLR (P = 0.15) on Day 17, compared to eCG/hCG and 

ALT + eCG/hCG females.  In this case, sample sizes of 10 and 12 cats per treatment, 

respectively, would have been required to detect a significant difference.  Over time, 

LHR expression increased (P < 0.05) in both treatment groups assessed.    
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Discussion  

 

 Studies aimed at understanding the causes of reproductive failure following 

assisted reproduction in felids generally have focused on poor ovarian responsiveness 

and reduced gamete/embryo viability following ovulation induction (Pelican et al., 

2006b).  However, we have shown that CL progesterone biosynthesis is compromised 

following treatment with exogenous gonadotropins, suggesting that progesterone levels 

may be insufficient to maintain pregnancy in cats following AI (Chapters 2 and 3).  This 

study represents the first analysis of specific histological and molecular markers of luteal 

function in the cat after treatment with: (1) a traditional eCG/hCG protocol used before 

AI; (2) a novel protocol that incorporates ovarian priming with oral progestin prior to 

eCG/hCG; or (3) natural breeding.  By investigating how these treatments differentially 

act to influence cellular and subcellular characteristics in the ovary, we have gained new 

insight into how ovulation induction influences subsequent luteal morphology and 

function in the cat.       

In the present study, we determined that altered patterns of luteal progesterone 

biosynthesis generally do not correlate with changes in ovarian ultrastructure.  All cats 

exhibited varied follicular states throughout the ovarian cortex during the luteal phase, 

ranging from primordial to antral, that were not influenced by treatment with exogenous 

gonadotropins or progestins.  These dynamic follicular characteristics are consistent with 

what is seen in naturally-bred, pregnant cats during early pregnancy (Roth et al., 1995).  

Furthermore, follicular waves of development during the luteal phase are common in 

other species (Roche, 1996).  In cats, it is unknown what influence these follicles play in 

an environment dominated by the CL.  This could be the subject of an interesting follow-

up study.     
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The uniformity in CL surface area and luteal cell density observed among 

treatments suggests that the eCG/hCG regimen does not impair the process of CL 

formation and luteal cell differentiation.  The predominance of polygonal luteal cells on 

Day 17 and a mixed population of polygonal and fusiform cells on Day 5 observed 

across treatments also has been documented in naturally-bred queens at similar time 

points (Roth et al., 1995).  Histologically, small and large luteal cells are not easily 

differentiated in the cat, as they are in many other species (Fields and Fields, 1996; 

Niswender et al., 2000).  It is interesting that luteal cell density did decrease over time, 

but only in queens treated with gonadotropins alone.  However, in ewes and cows, such 

shifts in cell density are normal (Niswender et al., 1994).  Without a comprehensive, 

normative database on luteal cell density across time in untreated queens, it is difficult to 

draw conclusions from this finding.   

 To our knowledge, this study is the first quantitative assessment of gene 

expression in the domestic cat CL using real-time RT-PCR.  In choosing specific genes 

to target, we focused on known or presumed regulators of progesterone biosynthesis 

and general luteal function (Niswender et al., 2000; Stocco et al., 2007).  We did not 

detect estrogen receptor alpha mRNA at either time point, regardless of treatment.  It is 

possible the primer design was flawed; however, circulating progesterone can 

significantly down-regulate ER (Niswender et al., 2000).  Indeed, while ER expression in 

the ovary is generally up-regulated during follicular growth (Drummond, 2006), detection 

of ER in the CL during the luteal phase is highly species-specific.  For example, ERα is 

largely undetected during the luteal phase in baboons and monkeys (Hild-Petito and 

Fazleabas, 1997; Duffy et al., 2000), detected only during the early luteal phase in cows 

(Berisha et al., 2002) and highly expressed throughout the luteal phase in rats (Telleria 

et al., 1998).  This could be related to the differential role estradiol plays in luteal 

maintenance across species.  ERβ also is expressed in the CL of some species (Duffy et 
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al., 2000).  Thus, it is entirely possible that this receptor could simply be the more 

actively expressed ER subtype in domestic cat luteal tissue.  A follow-up to this study 

would be to test the ERα primer in ovarian tissue across the follicular phase of the felid 

estrous cycle, when there is a strong physiological indication for ERα expression.  

 Progesterone and prolactin receptor mRNA was detected consistently across 

treatments on both Day 5 and 17 and their expression was not altered by exogenous 

gonadotropins or progestin priming.  These findings were not surprising, given the critical 

roles both progesterone and prolactin play in maintenance of luteal function in the cat 

(Verstegen et al., 1993).  We can deduce from this that domestic cats undergoing 

assisted reproduction are expressing adequate concentrations of PR and PRLR to 

maintain luteal integrity.  Furthermore, detection of PR in the CL demonstrates that 

progesterone biosynthesis likely involves an autoregulatory mechanism in the domestic 

cat.  Such a mechanism has been characterized in other species (Hild-Petito and 

Fazleabas, 1997; Berisha et al., 2002).  The trend towards increased PRLR and PR in 

naturally-bred cats on Day 17 could be attributed to pregnancy in three of four NB cats, 

whereas no cats undergoing exogenous hormone treatment were pregnant.  Fetal 

and/or maternal factors, such as cytokines, could be responsible for the upregulation of 

PRLR and PR during early pregnancy.   

 LHR mRNA expression was consistent among treatments during the early and 

mid-luteal phase.  On Day 5, the trend for LHR mRNA to increase in cats treated with 

exogenous gonadotropins correlates with our previous finding that CL progesterone is 

abnormally high on Day 5 (Chapter 4).  In many domestic animals, LH enhances 

progesterone synthesis (Niswender, 2002), so an increase in LHR at this time point 

could be related to this mechanism.  This is further supported by the observation that 

LHR mRNA increases over time, regardless of treatment, which again correlates with 
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increases in CL progesterone concentrations observed from the early to mid-luteal 

phase.   

 Steroidogenic acute regulatory protein mRNA expression was chosen for 

analysis because it is the rate-limiting step in steroidogenesis, bringing cholesterol from 

the outer to inner mitochondrial membrane for subsequent enzymatic conversion 

(Niswender et al., 2000).  sTAR has been detected in the CL of multiple species, 

including the human (Devoto et al., 2001; Sierralta et al., 2005), cow (Pescador et al., 

1996) and rat (Stocco et al., 2001).  The present study confirmed that sTAR mRNA is 

consistently expressed among treatments during the early to mid-luteal phase, 

suggesting that the cholesterol substrate is reaching the inner mitochondrial membrane 

and is available for conversion to progesterone.  Thus, exogenous gonadotropin 

treatment, alone or in combination with progestin priming, does not appear to alter the 

availability of cholesterol substrate within the CL.  

 The enzymatic pathway involved in converting cholesterol to progesterone also 

was not compromised in cats treated with exogenous gonadotropins or progestins.   

 Expression of CYP11A1, the side-chain cleavage enzyme required for pregnenolone 

formation, was consistent among treatments.  3βHSD, the final enzyme required for 

progesterone formation, also was consistently expressed.  While there was a significant 

decrease in 3βHSD over time, it did not correlate with progestin priming.  Research in 

rodents has shown that 3βHSD expression is regulated by both prolactin and 

gonadotropins (Martel et al., 1990; Martel et al., 1994).  The current study does not 

support an influence of eCG, hCG or ALT treatment on sTAR, or the major enzymes 

involved in progesterone biosynthesis, in the domestic cat.      

In summary, this study provides new insight into the underlying mechanisms 

dictating maintenance and regulation of luteal function in the domestic cat.  Overall, it 

demonstrates that aberrant CL progesterone production observed following exogenous 
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gonadotropin treatment: (1) is not associated with gross changes in ovarian morphology; 

and (2) can not be linked to altered expression patterns of several candidate genes 

associated with normal luteal function.  Post-hoc power analyses suggest that increased 

sample sizes may be necessary to improve detection of subtle differences in gene 

expression using the current technique.  Overall, these data illustrate the need for more 

comprehensive gene profiling experiments (e.g. microarrays) in the domestic cat CL, 

which could be designed to simultaneously investigate gene expression levels for 

thousands of genes acting alone or in concert to regulate normal luteal function.  In 

doing so, we may be able to increase our understanding of the exact mechanism or 

mechanism(s) responsible for reproductive failure following assisted reproduction in 

felids.  
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Table 5.1.  Gene primer sequences used for qRT-PCR analyses.  
 
 
GENE   Forward (5’- 3’)    Reverse (5’- 3’)    Amplicon (bp) 
 
 
3-β HSD  TACCAACCCCCCTTTAACCG  TGAAGAGTGGCTCATACCCCA  103    
 
sTAR   CGAGCAGAAAGGCATCATCAG  TGAGCAGCCACGTGAGTTTG  101 
 
Cyp11A1  GGATCGCTGAGCTCGAGATG  TGAGGTTGAATATGGTGCCCA  102 
 
PRLR   CAGGATCCGCAAGCTCAAAA  CGTGAAGGAGGCCAGGTCTT  105 
 
LHR   CAATTCTTGCGCCAATCCATT  CCCGATGTTTACAGCAGCCA  101 
 
PR           TTATCCTTTCCCGAGCACTGA  GAGCAGAGGTTTCACCGTCC  101 
 
ER   CACCTACCAAGGAAGATGGCA  TCCCTACCCCCATCACTTTTC  106 
 
GAPDH  GCCGTGGAATTTGCCGT   GCCATCAATGACCCCTTCAT   82 
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Site of Steroidogenesis:  Inner Mitochondrial Membrane 

within a Luteal Cell 
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Fig. 5.1.  Schematic representation of the genes chosen for qRT-PCR analyses and their 
involvement in progesterone biosynthesis in the domestic cat.   
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Fig. 5.2.  RNA gel electrophoresis of representative domestic cat corpora lutea RNA 
extracts.  DNA molecular weight ladders were loaded in lanes 1 and 20 and individual 
samples were loaded in lanes 2-19.  The two distinct white bands are 28S and 18S 
ribosomal RNA. 
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Fig. 5.3.  Representative histomorphology of ovarian follicles.  (A) Primordial and primary 
follicles in the ovarian cortex.  (B) A tertiary follicle with distinct granulosa and theca cells 
and a large antrum.  (C) Follicle undergoing atresia.  Bar represents 100 μm.       
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Fig. 5.4.  Corpora lutea (CL) surface area expressed in pixels (x103) following 
ovariohysterectomy on (A) Day 5 or (B) Day 17.  No differences (P > 0.05) were 
observed among treatments.     
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Fig. 5.5.  Corpora lutea central cavities observed on Day 5 (A).  Central cavity surface 
area was similar (P > 0.05) among treatments (B).  Bar represents 100 μm.       
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Fig. 5.6.  Luteal cell density on Day 5 (A) and Day 17 (B).  Within time period, cell density was similar among treatments (P > 0.05). 
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Fig. 5.7.  Relative mRNA expression of (A) steroidogenic acute regulatory protein 
(sTAR), (B) cholesterol side-chain cleavage enzyme (CYP11A1) and (C) 3-beta 
hydroxysteroid dehydrogenase (3β-HSD).  Within each gene and each time point, no 
differences were observed among treatments (P > 0.05).   
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Fig. 5.8.  Relative mRNA expression of (A) progesterone receptor (PR), (B) prolactin 
receptor (PRLR), and (C) luteinizing hormone receptor (LHR).  Within each gene and 
each time point, no differences were observed among treatments (P > 0.05).  
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CHAPTER 6 
 
 

SUMMARY AND FUTURE DIRECTIONS 
 

 
Summary 
 
 
 

Assisted reproductive techniques, such as artificial insemination (AI), in vitro 

fertilization/embryo transfer (IVF/ET) and gamete cryopreservation, are important tools 

for retaining gene diversity in endangered felids in ex situ breeding programs.  They also 

ensure a contingency plan should something catastrophic occur to the remaining in situ 

population.  Yet in practice, the benefits of assisted reproduction remain largely steeped 

in theory for felids, due to low pregnancy success following AI and IVF/ET using current 

approaches.  While assisted reproduction is not a panacea for wildlife conservation, it 

does serve an important purpose in the management of captive populations.  Indeed, 

there are several examples where the use of assisted reproductive techniques has made 

positive impacts on genetic health, and in some cases, even species survival 

(Pukazhenthi and Wildt, 2004).  

Over the past 30 years, the diverse Felidae family has taught us many important 

lessons about its unusual reproductive physiology.  It is the only known taxon to display 

individual differences in ovulation mechanism, where some felid species demonstrate 

induced ovulation and other species can, but do not always, exhibit intermittent 

spontaneous ovulation (Bakker and Baum, 2000).  Furthermore, ovarian sensitivity to 

exogenous gonadotropins used before AI or oocyte retrieval is highly variable among 

felid species and does not appear to be correlated to body weight or inter-species 

relatedness (Howard, 1999).  As a result, translating assisted reproduction protocols 

developed largely in livestock and humans to cats has been enormously challenging.  

There have been a few AI success stories, notably in cheetahs and ocelots, but overall 
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efficiency still remains well below 50% (Pelican et al., 2006b).  Much of this failure 

relates back to inconsistent ovarian response at the time of AI or oocyte retrieval, 

observed most often in spontaneous ovulators.  Overall, these lessons have taught us 

that the prerequisite to improving assisted reproduction in felids is to increase our 

fundamental understanding of their unique reproductive mechanisms. 

This dissertation project used a domestic cat research model to characterize 

reproductive parameters in response to a novel ovulation induction protocol, developed 

to combat several adverse effects associated with the currently accepted regimen.  The 

primary objective was to understand how priming with oral progestin before ovulation 

induction influences endocrine dynamics, ovarian responsiveness, fertilization success, 

early embryonic development and peri-implantation ovarian morphology and function.  

We hypothesized that oral progestin would suppress ovarian activity, enable a more 

consistent ovarian response to exogenous gonadotropins and improve reproductive 

efficiency, compared to unprimed cats treated with gonadotropins alone.  Specific 

objectives were to: (1) assess the influence of oral progestin (altrenogest; ALT) dosage 

on endocrine function and ovarian cyclicity; (2) evaluate the influence of progestin 

priming on ovarian responsiveness and sensitivity to exogenous gonadotropin dosage; 

and (3) characterize how progestin priming before ovulation induction and AI affects 

fertilization rates, early embryonic development, ovarian morphology and luteal function.     

 The first step in testing our hypothesis was to evaluate the effect of three 

targeted oral ALT dosages on ovarian cycle characteristics in the cat using non-invasive 

fecal hormone analyses.  This approach was successful, and we demonstrated that oral 

ALT provides rapid, reversible inhibition of ovarian activity with no observed side effects.  

We were not surprised, given the vast body of literature on progestin use in felids.  

Consistent with studies using progestin implants for ovarian suppression (Pelican et al., 

2007), oral progestin did not alter follicular or luteal activity already in progress but did 
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prevent initiation of folliculogenesis and ovulation.  Furthermore, queens treated with the 

oral progestin showed a more uniform interval of estrous cycle return after removal of 

the progestin (10-16 days), compared to previous studies with progestin implants.  

Overall, this study determined an effective ALT dosage (0.088 mg/kg) that provides 

short-term ovarian suppression with no observed residual effects following return to 

estrous cycling.  

 With the oral progestin dosage established, our next objective was to determine 

whether a progestin-primed ovary displays altered sensitivity to exogenous gonadotropin 

dosage (eCG/hCG).  Laparoscopic reproductive examinations confirmed that ovarian 

response to eCG and hCG was less variable, and more consistent with a natural cycle, 

when preceded by short-term (38 day) treatment with ALT.  Non-invasive fecal steroid 

monitoring further substantiated these findings, demonstrating multiple adverse 

scenarios in unprimed females, such as recent spontaneous ovulation, that were 

prevented by progestin priming.  This study also confirmed that a progestin-primed ovary 

exhibits increased sensitivity to eCG/hCG dosage.  This was an exciting finding, given 

the long list of adverse effects associated with exogenous gonadotropin use (Graham et 

al., 2000).  It meant that exogenous gonadotropin dosages could be halved (50 IU 

eCG/37.5 IU hCG) when used in conjunction with ALT, producing an excellent ovarian 

response while, in theory, reducing adverse fertility effects associated with eCG/hCG 

persistence in circulation.   

 Perhaps the most remarkable finding of the second study was the discovery that 

corpora lutea (CL) progesterone production during the mid-luteal phase (Day 17 post-

hCG) is significantly lower in unprimed individuals, compared to ALT-primed and 

naturally-bred cats.  Previous studies have been unable to make this link between 

exogenous gonadotropin use and luteal insufficiency (Roth et al., 1997b).  In contrast, 

this study showed that the eCG/hCG regimen has a pronounced effect on luteal function 
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that can be mitigated with progestin treatment, but only in combination with relatively low 

eCG/hCG dosages (which, in turn, are possible only with progestin priming).  This 

finding supports the hypothesis that pregnancy failure may be occurring well after AI.  

Overall, results from the second study endorsed the use of oral progestin priming in 

combination with low exogenous gonadotropin dosages for ovulation induction in the 

domestic cat. 

 With the ovulation induction protocol optimized (ALT + 50 IU eCG + 37.5 IU 

hCG), the next study aimed to examine the impact of this regimen on incidence of 

fertilization and early embryonic development following AI.  Three days following 

laparoscopic intrauterine AI, embryos were recovered in a high proportion of both 

progestin-primed and unprimed females treated with low dosages of gonadotropins.  

While no differences in in vivo fertilization or in vitro embryonic development could be 

elucidated, a difference in the distribution of embryonic developmental stages on the day 

of recovery was observed between treatments.  We were surprised that the variation in 

ovarian response observed between treatments did not translate into more differences in 

embryonic viability.  This could be due to high levels of inherent variability among 

individuals, or it could be a true physiological phenomenon.  In the third study, we also 

demonstrated that low dosages of eCG/hCG negatively impact CL progesterone 

production during the early luteal phase (Day 5 post-hCG), and that progestin priming 

once again mitigates this effect.  Taken together, results from this third study supported 

the routine incorporation of a short-term oral progestin regimen before ovulation 

induction and AI in the cat.   

 The final phase of this research was to take one of our most interesting findings, 

aberrant CL progesterone biosynthesis in gonadotropin-treated cats, and attempt to 

characterize its underlying mechanism using advanced histological and molecular 

techniques.  This analysis was important because our data suggested that progesterone 
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levels may be insufficient to maintain a pregnancy in cats following AI using the currently 

accepted gonadotropin regimen.  We wanted to know what was causing this, and 

whether it was something that could be addressed through a modified protocol.  Thus, 

using archived ovarian tissues from Studies 2 and 3, we compared markers of luteal 

function in (1) the low dosage eCG/hCG protocol used before AI; (2) the low dosage 

eCG/hCG protocol that incorporated pre-treatment with ALT; and (3) natural breeding.   

This final study provided new insight into the underlying mechanisms dictating 

maintenance and regulation of luteal function in the domestic cat.  Overall, it 

demonstrated that aberrant CL progesterone production is not associated with gross 

changes in ovarian morphology.  Differences in CL progesterone were not linked to 

altered expression patterns of six candidate genes associated with general luteal 

function and progesterone biosynthesis.  While differences in LHR and 3β-HSD were 

seen over time, these changes were not influenced by progestin pre-treatment.  

However, a post-hoc power analysis showed that sample size was likely too low for the 

genes assessed to adequately detect significant differences between treatments.  

Overall, these experiments clearly illustrated the need for follow-up and more 

comprehensive gene profiling experiments to answer these questions (such as 

microarrays or differential display) in domestic cat luteal tissue, which could be designed 

to simultaneously investigate gene expression levels for thousands of genes acting 

alone or in concert to regulate ovarian function.   

The influence of exogenous hormones on ovarian morphology and function in the 

domestic cat is summarized in Fig. 6.1.  The ultimate goal of any ovulation induction and 

AI protocol is to mimic a natural follicular and luteal phase as closely as possible without 

affecting the delicate endocrine balance during early embryonic development, 

endometrial remodeling and implantation.  While exact adherence to a natural cycle is 

impossible, these studies have opened the door for the refinement of improved ovulation 
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induction protocols in a host of wild felids.  We have introduced a new ovulation 

induction regimen that shows great promise for future applications.  These data also 

could assist contraception research in both feral cats and zoo populations.  Finally, 

because the domestic cat is an emerging model for infertility research, these data may 

be useful for studying the influence of exogenous hormones on reproductive function in 

humans.   

 

Future Directions   

 

As the old adage goes, for every question answered, at least 10 more are raised.  

This dissertation research project was no exception.  While we gained new 

understanding of domestic cat reproductive physiology, we also were frequently 

reminded that whole animal research is challenging due to high levels of variability 

among individuals.  This research raised many important findings that warrant further 

investigation.  It also demonstrated several key areas of basic research that deserve 

more attention in the domestic cat.  In the context of wildlife conservation, it identified 

several basic and applied research projects that could strengthen one of the overall 

missions of our laboratory at the Smithsonian’s National Zoo’s Conservation and 

Research Center: to effectively document the diverse reproductive physiology of 

endangered felids.   

 The logical next step to this dissertation research project would be to investigate 

whether cats treated with ALT + eCG/hCG and artificially inseminated can achieve 

implantation.  Concurrent with this, it would be important to confirm that queens primed 

with ALT can maintain pregnancy following natural breeding on the first cycle following 

progestin removal.  Embryo data from Study 3 demonstrated that even unprimed 

gonadotropin-treated cats are capable of producing high-quality embryos.  This suggests 
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that luteal function and/or uterine receptivity are the more influential causes of 

pregnancy failure following assisted reproduction.  This link between exogenous 

gonadotropins and implantation failure has been made in other species (Stein and 

Kramer, 1989).  In doing so, we also would also be able to investigate uterine 

morphology and function in relation to exogenous hormone treatment, an area of focus 

that remained largely unstudied in the current project.  As part of this uterine study, 

hormone receptors and growth factors associated with decidualization, vascularization 

and cell proliferation should be assessed.   

It is entirely possible that our modified ovulation induction protocol incorporating 

ALT priming will not make a measurable improvement on overall assisted reproduction 

success in the domestic cat.  Instead, this protocol may need to be optimized further.  It 

may be necessary to alter intervals between ALT and eCG and/or eCG and hCG in a 

series of comparative trials.  Results from these trials could be assessed with a 

combination of non-invasive fecal hormone monitoring and laparoscopic examinations.  

Or, we also may need to revisit alternate gonadotropin regimens for ovulation induction 

altogether, if follow-up studies indicate that ALT is unable to fully override adverse 

effects caused by eCG and hCG.  There have been efforts to characterize the amino 

acid sequence of tiger FSH, which may eventually lead to a felid-specific follicle-

stimulating gonadotropin (Crichton et al., 2003).  While promising, this regimen would 

need to be modified to ensure minimal injections (particularly important for wild felids 

that must be darted) and limited residual effects by the exogenous gonadotropins in 

circulation.     

Progesterone supplementation is common in other species after assisted 

reproduction (Tavaniotou et al., 2001), and has been used successfully in tigers 

following IVF and ET (Donoghue et al., 1990).  Based on our results, a pilot project in 

domestic cats using exogenous progestin supplementation after AI for luteal support is 
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warranted.  This would be relevant primarily in cats treated with gonadotropins alone, 

which have a documented deficiency in progesterone biosynthesis, although it also 

would be interesting to observe the effects of such a regimen on ALT-primed cats.  It 

would require careful consideration of both duration of treatment and dosage.  In 

particular, when to initiate treatment and also when to withdraw treatment to allow for 

normal parturition would need to be optimized.  It is likely that an oral progestin, possibly 

ALT, would be a good candidate for supplementation because an oral drug is easily 

administered and does not require anesthesia at the start or end of treatment that is 

needed for progestin implants.     

This project also highlighted several unanswered questions and research needs 

related to basic domestic cat reproductive physiology.  Previous studies have built a 

strong database of endocrine, embryo and luteal characteristics in the naturally-bred 

queen during the early luteal phase and after implantation (Roth et al., 1994; Swanson et 

al., 1994; Roth et al., 1995; Swanson et al., 1995b).  Yet there still remains a large gap 

in knowledge during the critical peri-implantation period and also during folliculogenesis 

and ovulation.  More studies are needed to characterize oviductal transport, factors 

required for normal oviductal function and the oviduct to uterine transition experienced 

by embryos around Day 6 in the naturally-bred queen.  It also is important to understand 

maternal-fetal communication in this species, and the direct and indirect roles the 

embryo likely plays in regulating reproductive function before, during and after 

implantation.   

To answer these questions, a repository of tissues (ovary, oviduct, uterus, CL, 

follicle, oocyte, embryo) from domestic cats naturally-bred versus treated with 

exogenous hormones needs to be built for multiple time points surrounding ovulation, 

fertilization and the window of endometrial receptivity.  By performing broad gene 

expression analyses in these tissues, we would gain new insight into the cellular and 
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subcellular mechanisms regulating reproductive function in the cat.  In addition to 

steroidogenic enzymes and hormone receptors, areas of study also could include 

cytokines (e.g. growth factors), embryonic factors and other regulators of cell 

proliferation and death.  Should brain tissue become available from any of these cats, 

we could explore hormone production in the hypothalamus/pituitary and neuropeptide 

expression.  Furthermore, it is possible that changes in reproductive functionality can be 

attributed to post-transcriptional and/or post-translational modifications that are not 

detectable through gene expression analyses.  Thus, studies using 

immunohistochemistry to localize and quantify key proteins involved in reproductive 

function also would be useful.         

Many studies have documented spontaneous ovulation in both domestic and 

non-domestic felid species, but little is known about the mechanisms regulating this 

unique difference observed in ovulation strategy.  Is there an evolutionary component?  

Are there other cues (seasonal, auditory, pheromonal, visual, tactile, etc.) involved?  Are 

these cues more prevalent in a captive environment? To answer these questions, an 

experiment designed to look more specifically at neuroendocrine function and regulation 

in induced versus spontaneous ovulators throughout the estrous cycle would be needed.  

A domestic cat colony, like the one at the Conservation and Research Center, would 

serve as a useful resource for this study because of the differential ovulation strategies 

displayed among individuals.      

Another factor to consider, which is particularly relevant in captive populations of 

endangered felids usually skewed towards older individuals, is the influence of age on 

reproductive function.  Felids are believed to reproduce throughout their lifetime, 

although evidence suggests that this may not be the case and, at the least, it is likely 

that reproductive efficiency does decline over time.  This is evidenced in breeding 

records from several species of captive wild felids held in North American zoos.  
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Already, work is being conducted in the cheetah to examine the influence of age on 

oocyte quality, in vitro fertilization success and uterine health.  Similar studies are 

needed in other species, including the domestic cat.  

And finally, with the information gathered from our domestic cat research model, 

we have preliminary information useful for initiating studies in endangered wild felids.  

Short-term treatment with ALT will need to be tested, both for safety and efficacy, in 

these species.  ALT dosage studies are already underway in two felids of particular 

interest, the clouded leopard and fishing cat, which both have a documented history of 

spontaneous ovulation.  Furthermore, exogenous gonadotropin dosages previously 

effective in these species will likely need to be revised to account for the incorporation of 

progestin treatment, based on our findings of increased ovarian sensitivity in domestic 

cats to exogenous gonadotropins.  Whether these findings translate into success for wild 

felids remains to be determined, and it will be exciting to see how this field progresses in 

the coming years.  Overall, it is our hope that this dissertation research has provided a 

strong foundation for ongoing basic and applied research studies in both domestic and 

non-domestic felids.   
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Fig. 6.1.  Influence of oral altrenogest (ALT) priming and exogenous gonadotropins on ovarian morphology and function in the 
domestic cat.  Arrows denoted with a (+) denote a positive influence, arrows with a (-) denote a negative influence and arrows with a 
(?) denote an inconclusive influence, compared to normative data from natural estrus/naturally bred queens.   

0

100

200

300

400

500

600

700

800

900

1000

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10
Day from hCG

Es
tro

ge
ns

 (n
g/

g 
fe

ce
s)

0

10

20

30

40

50

60

70

80

90

100

Pr
og

es
tin

s 
(μ

g/
g 

fe
ce

s)

Gross ovarian morphology 

Ovarian microstructure 

ALT + eCG/hCG  

Ovarian steroid production 
(including luteal progesterone) 

Luteal gene expression 

eCG/hCG alone  

eCG/hCG alone  

ALT + eCG/hCG  

+  

+  

+  

+  

-  -  

  ?  

?  



164 

Appendix A: Fecal Extraction and Enzyme Immunoassay (EIA) Protocols 
 
Fecal Hormone Extraction 
 
1. Dry individual bags of feces in a lyophilizer, crush to a fine powder with a rubber 

mallet and store powder in labeled plastic tubes at -20°C.  
2. Whenever possible, include all samples from an individual cat on the same 

extraction. If multiple extractions are needed (> 108 samples), avoid splitting the 
extraction near critical time points in the study.  

3. Weigh 0.18 to 0.2 g of dried feces into numbered 16x125mm glass tubes.  Record 
the exact weight of each sample. Avoid hair, litter or other debris. 

4. Add 4.5 ml absolute ethanol (ETOH) and 0.5 ml distilled water (DW) to each tube 
and vortex briefly. 

5. Boil tubes in a hot water bath (95°C) for 20 min.  Add ETOH as needed to prevent 
the samples from boiling dry. 

6. Bring the volume of the extract up to approximate pre-boil levels with ETOH and 
centrifuge at 500g for 20 min. 

7. Pour off the supernatant into a second set of identically labeled 16x125mm tubes. 
8. Add 4.5 ml ETOH and 0.5 ml DW to the original tubes (containing the fecal pellets) 

and vortex each tube for 30 seconds. Centrifuge at 500g for 15 minutes. 
9. Add the second supernatant to the first supernatant. Dry supernatants under air until 

no liquid remains in the tube.  You will be left with solid fecal extract adhered to the 
sides of the glass tube.   

10. Resuspend the dried down fecal extracts in 1 ml methanol, vortex briefly and 
sonicate for 20 min to bring extract adhered to the glass tube into solution.  

11. Remove 200 μl extract and add to 1.8 ml EIA dilution buffer (1:10 dilution).  Store in 
individually-labeled polypropylene tubes at -20°C.  

 
 
Estrone Sulfate (E1S) EIA 
 
1. Plate coating  
• Add 33.3 μl polyclonal anti-EC R583 stock (1:10, -20°C) to 5 ml coating buffer 

(working dilution, 1:1500). 
• Dispense 50 μl antibody solution per well into 96 well NUNC Maxisorb plates.  Do 

not coat Column 1 (blanks to test for non-specific binding).  
• Gently tap plate, cover with an acetate plate sealer and incubate overnight at 4°C. 
2. Plate washing and buffering 
• Wash plate 5 times with EIA wash solution using a Dynatech plate washer. 
• Blot plate thoroughly on a paper towel to remove excess wash solution. 
• Immediately add 25 μl EIA assay buffer to each well and maintain plate at 20°C for 2 

to 5 hours.  
3. Standards 
• Dilute standard stock (500 pg/well or 10 ng/ml; stored at -20°C) serially 2-fold using 

200 μl stock plus 200 μl EIA assay buffer and mix well. 
• Resultant standard values are 500, 250, 125, 62.5, 31.25, 15.12, 7.8, 3.9, and 1.95 

pg E1So4/well. Standards are stable for 2 weeks at 4°C. 
4. Samples and controls (26 samples per plate) 
• Dilute samples in EIA buffer to the appropriate dilution.   
• Use prepared house E1S controls (C1 and C2). Controls are designed to bind at ~ 

30% and 70%.   
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5. Enzyme conjugate 
• Just prior to plate loading, prepare estrone-glucuronide-horseradish peroxidase by 

adding 50 μl E1S-HRP stock (1:100,  4°C) to 5ml EIA buffer in a glass scintillation 
vial (working dilution, 1:20,000).  

6. Plate loading 
• Add 50 μl standard, sample, or control per well in duplicate as quickly and accurately 

as possible.  
• Immediately add 50 μl E1S-HRP to each well.  
• Cover the plate and incubate at 20°C for 2 hours. 
7. Substrate and plate reading 
• After the 2 hour incubation, wash the plate and blot dry. 
• Combine 40 μl 0.5 M H2O2, 125 μl 40 mM ABTS and 12.5 ml citrate buffer in a 

plastic beaker and mix well. 
• Add 100 μl substrate to all wells and maintain on a plate shaker. 
• Read optical density of each well using a Dynex MRX plate reader. Take the final 

reading when zero standard wells reach an OD of 0.9 to 1. 
 
 
Estrogen Conjugate (EC) EIA 
 
1. Plate coating  
• Add 25 μl polyclonal anti-EC R522-2 stock (1:100, -20°C) to 5 ml coating buffer 

(working dilution, 1:20,000). 
• Dispense 50 μl antibody solution per well into 96 well NUNC Maxisorb plates.  Do 

not coat Column 1 (blanks to test for non-specific binding).  
• Gently tap plate, cover with an acetate plate sealer and incubate overnight at 4°C. 
2. Plate washing and buffering 
• Wash plate 5 times with EIA wash solution using a Dynatech plate washer. 
• Blot plate thoroughly on a paper towel to remove excess wash solution. 
• Immediately add 25 μl EIA assay buffer to each well and maintain plate at 20°C for 1 

to 5 hours.  
3. Standards   
• Dilute standard stock (200 pg/well or 4 ng/ml; stored at -20°C) serially 2-fold using 

200 μl stock plus 200 μl EIA assay buffer and mix well. 
• Resultant standard values are 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78 pg 

estrone-B-glucuronide/well. Standards are stable for 2 weeks at 4°C. 
4. Samples and controls (26 samples per plate) 
• Dilute samples in EIA buffer to the appropriate dilution.    
• Use prepared house EC controls (C1 and C2). Controls are designed to bind at ~ 

30% and 70%.   
5. Enzyme conjugate  
• Just prior to plate loading, prepare estrone-glucuronide-horseradish peroxidase by 

adding 33.3 μl EC-HRP stock (1:100,  4°C) to 5ml EIA buffer in a glass scintillation 
vial (working dilution, 1:15,000).  

6. Plate loading 
• Add 50 μl standard, sample, or control per well in duplicate as quickly and accurately 

as possible.  
• Immediately add 50 μl EC-HRP to each well.  
• Cover the plate and incubate at 20°C for 2 hours. 
7. Substrate and plate reading 
• After the 2 hour incubation, wash the plate and blot dry. 
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• Combine 40 μl 0.5 M H2O2, 125 μl 40 mM ABTS and 12.5 ml citrate buffer in a 
plastic beaker and mix well. 

• Add 100 μl substrate to all wells and maintain on a plate shaker. 
• Read optical density of each well using a Dynex MRX plate reader. Take the final 

reading when zero standard wells reach an OD of 0.9 to 1. 
 
 
Pregnane (Pg) EIA 
 
1. Plate coating  
• Add 25 μl monoclonal anti-CL425 (1:50, -20°C) to 5 ml coating buffer (working 

dilution, 1:10,000). 
• Dispense 50 μl antibody solution per well into 96 well NUNC Maxisorb plates.  Do 

not coat Column 1 (blanks to test for non-specific binding).  
• Gently tap plate, cover with an acetate plate sealer and incubate overnight at 4°C. 
2. Plate washing  
• Wash plate 5 times with EIA wash solution using a Dynatech plate washer. 
• Blot plate thoroughly on a paper towel to remove excess wash solution. 
3. Standards   
• Dilute standard stock (200 pg/well or 4 ng/ml; stored at -20°C) serially 2-fold using 

200 μl stock plus 200 μl EIA assay buffer and mix well. 
• Resultant standard values are 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78 pg 

progesterone/well. Standards are stable for 2 weeks at 4°C. 
4. Samples and controls (26 samples per plate) 
• Dilute samples in EIA buffer to the appropriate dilution.    
• Use prepared house Pg controls (C1 and C2). Controls are designed to bind at ~ 

30% and 70%.   
5. Enzyme conjugate 
• Just prior to plate loading, prepare progesterone-3CMO-horseradish peroxidase by 

adding 25 μl Pg-HRP stock (1:100,  4°C) to 5 ml EIA buffer in a glass scintillation vial 
(working dilution, 1:40,000).  

6. Plate loading 
• Add 50 μl standard, sample, or control per well in duplicate as quickly and accurately 

as possible.  
• Immediately add 50 μl Pg-HRP to each well.  
• Cover the plate and incubate at 20°C for 2 hours. 
7. Substrate and plate reading 
• After the 2 hour incubation, wash the plate and blot dry. 
• Combine 40 μl 0.5 M H2O2, 125 μl 40 mM ABTS and 12.5 ml citrate buffer in a 

plastic beaker and mix well. 
• Add 100 μl substrate to all wells and maintain on a plate shaker. 
• Read optical density of each well using a Dynex MRX plate reader. Take the final 

reading when zero standard wells reach an OD of 0.9 to 1. 
 
 
 
 
Source: Brown, J., Walker, S., and Steinman, K. 2005. “Endocrine Manual for the 
Reproductive Assessment of Domestic and Non-Domestic Species”.  2nd Edition.  
Conservation and Research Center Endocrine Research Laboratory, Front Royal, VA. 
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Appendix B: EIA Validation 
 
Before relying on EIA results, validation was required.  Estrogen and progestin 
antibodies were chosen based on published HPLC analyses which have characterized 
the primary steroid metabolites present in domestic cat feces.  In the second study 
(Chapter 3), the estrogen EIA was switched from E1S to EC because E1S was no longer 
commercially available.  For each assay, a parallelism and accuracy/recovery check 
were performed.  
 
 
Parallelism    
 
1. Pool an equal amount of fecal extract from multiple samples taken from several cats. 

Samples should reflect the full range of concentrations expected. 
2. Dilute pool serially two-fold in assay buffer (1:10, 1:20, 1:40, 1:80, 1:160, etc.)  
3. Run diluted pool samples on the appropriate EIA.  
4. Plot the % binding of samples by choosing an arbitrary concentration for the neat 

sample and then halving the concentration for each subsequent dilution. Plot the 
standard curve on the same axes.  

5. If the sample curve parallels the standard curve, then one can deduce that the 
hormone(s) contained in the sample is immunologically-similar to the hormone 
contained in the standards and therefore can be measured proportionately.  

6. Parallelism is also used as a starting point for determining what dilution unknown 
samples should be run at. In general, choose the dilution where the pool bound at 
approximately 50%. 

 
 
Accuracy/Recovery Check 
 
1. Make a sample pool.  If possible, use samples that have a low concentration of 

hormone (e.g., for progestins, use samples from the follicular phase).  
2. Spike aliquots of pooled sample (100 µl) with an equal amount (100 µl) from each 

standard. Analyze the spiked samples as unknowns using the assay of interest.  The 
sample pool also needs to be analyzed without added standard to determine the 
amount of endogenous hormone present.  

3. Calculate the “Amount Expected” and “Amount Observed” for each standard. 
“Amount Expected” is (known standard concentration / 2).  “Amount Observed” is 
(concentration obtained from assay results – endogenous hormone concentration). 

4. Determine the % Recovery for each standard: (Amount Observed/Amount 
Expected)*100 

5. Plot “Amount Observed” vs. “Amount Expected” and conduct a linear regression 
analysis.  Slopes > or < 1 suggests an over or under estimation of hormone mass, 
respectively.  This analysis tests for potential interference caused by substances 
contained within the biological sample that are independent of specific antigen-
antibody binding. This test also indicates the degree to which the measured 
concentration corresponds to the true concentration of a substance.  

 
 
Source: Brown, J., Walker, S., and Steinman, K. 2005. “Endocrine Manual for the 
Reproductive Assessment of Domestic and Non-Domestic Species”.  2nd Edition.  
Conservation and Research Center Endocrine Research Laboratory, Front Royal, VA. 
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EC Parallelism
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Pregnane Parallelism 
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Appendix C: Sperm Protocols 
 
 
Electroejaculation 
 
1. Prepare HF10 sperm collection media, filter using a 0.22 µm filter into a sterile 

culture tube and maintain at 37°C.  
2. After anesthesia induction, examine testes and measure length and width with 

laboratory calipers. Calculate testis volume.  
3. Prolapse penis and clean with gauze pad moistened with saline. Lubricate a 1 cm 

rectal probe, insert into the rectum and position the electrodes ventrally.  Apply 
gentle ventral pressure during electroejaculation. 

4. Place a warmed, sterile collection vial over the penis.   
5. Deliver 3 series of electrical stimulations (30 stimulations/series):  

a. Series 1 = 10 stims at 2 volt, 10 stims at 3 volts, 10 stims at 4 volts 
b. Series 2 = 10 stims at 3 volts, 10 stims at 4 volts, 10 stims at 5 volts 
c.    Series 3 = 15 stims at 4 volts, 15 stims at 5 volts 

6. Between each series, ‘rest’ the male for 3-5 minutes and exchange semen vials.   
 
 
Semen Evaluation and Preparation of AI Dose 
 
1. After each series, measure the total semen volume with a pipettor and transfer into a 

warmed, sterile Eppendorf tube. 
2. Dilute semen slowly (drop-wise) with an equal volume of 37°C HF10.  Remove 3 µl 

and observe several fields under phase contrast microscopy to evaluate sperm 
percent motility (0-100%) and sperm forward progression status (scale 0-5; 5 = best).   

3. For sperm morphology and acrosome assessment, remove 8 μl raw semen from 
Series 2 and divide between vials of 0.5 ml 0.3% glutaraldehyde (pH 7.4, 340mOsm) 
and 4% paraformaldehyde. Store fixed samples at 4°C.   

4. After electroejaculation is complete, combine all aliquots to determine sperm 
concentration of the overall ejaculate.  Insert 5 µl diluted sperm into an Unopette red 
blood cell vial and mix well.  Allow vial to stand at room temperature ~ 5 minutes to 
kill sperm.  Fill hemocytometer on both sides of unit and allow sperm to settle into 
one plane.  Count sperm in the four large corners of the hemocytometer (16 squares 
per corner) and multiple by the dilution factor (usually 2). 

5. For AI, combine diluted samples from the two males, gently mix and assign an 
overall percent sperm motility and forward progression status.    

6. Centrifuge combined sample for 8 min at 300g.  Remove supernatant and re-
suspend sperm pellet in fresh Ham’s F10.  Re-centrifuge the supernatant and add 
the second sperm pellet to the AI dose.  Add HF10 as needed to achieve a final AI 
volume of ~ 200 μl per cat.    

7. Evaluate final AI dose for motility, status and concentration.  Fix sperm for 
morphology and acrosome assessments.  

 
 
Sperm Morphology Assessment  
 
1. To assess morphology of sperm fixed in 0.3% glutaraldehyde, prepare a wet mount 

slide with 1-2 μl sperm.  Examine 200 sperm/aliquot under oil (1,000x) using phase-
contrast microscopy.   
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2. Categorize sperm as normal or abnormal due to: (1) head defects including 
macrocephaly, microcephaly, bicephaly, bent neck or damaged acrosome; (2) 
midpiece anomalies including bent midpiece, bent midpiece with cytoplasmic droplet, 
midpiece aplasia or damaged midpiece; or (3) flagellar deformities including tightly 
coil flagella, bent flagella without cytoplasmic droplet or bent flagella with cytoplasmic 
droplet.  

 
 
Acrosome Assessment 
 
1. To assess acrosomal integrity in sperm fixed in 4% paraformaldehyde, centrifuge the 

fixed sperm at 5000 rpm for 8 min, carefully remove and discard the supernatant, 
add 0.5 ml 0.1M Ammonium acetate to the pellet and gently resuspend the sperm.  
Repeat this procedure twice.   

2. After the last centrifugation, remove the final supernatant, leaving behind 30-50 μl of 
the supernatant.  Gently tap the tube to resuspend the sperm mixture.   

3. Make short smears with the sperm mixture on 2 labeled, frosted slides.  Air-dry or 
place on a slide warmer until dry.   

4. Apply 20-40 μl of Coomassie blue stain solution to the slide and incubate at ambient 
temperature for no longer than 90 seconds.   

5. Wash the slides with 4-5 ml of distilled water and air-dry.  
6. Apply a drop of Permount mounting medium to the slide and place a clean coverslip 

over the smear.  Allow the mounting medium to dry overnight.  
7. Evaluate the slide under oil using bright field optics, counting a minimum of 100 

sperm.   
8. Categorize sperm acrosome as being: (1) intact; uniform blue stain encompassing 

the entire acrosomal region; (2) damaged; patchy blue staining pattern; or (3) non-
intact; no stain observed in the acrosomal region.   

 
 
Source: Howard, J.G. and Pukazhenthi, B. 2003. “Protocol for Reproductive Assessment 
of Male Felids”.  Smithsonian’s National Zoo Gamete Laboratory, Washington, DC.   
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Appendix D: Protocol for Reproductive Tissue Processing 
 
 
1. Following ovariohysterectomy, cover tract with saline-moistened sponge and 

transport to lab. Quickly photograph tract and take measurements with handheld 
calipers.  

2. Dissect out mesosalpinx tissue to elongate oviduct. If flushing oviduct (Day 5 spay), 
place hemostat at the UTJ and flush each oviduct retrograde into Petri dish (25g 
needle- 5 ml oviduct flushing medium).  Repeat 4-6 times in alternating order.  

3. Under the dissecting scope, search each dish for oocytes/embryos.  
4. If unfertilized oocytes present, fix for staining:    

a. Wash 3x in embryo culture medium and transfer to a clean, labeled slide with 
minimal liquid.  

b. Space oocytes/ embryos around the slide and AIR DRY for several minutes.   
c. Immerse in 100% ethanol at RT.  
d. Store slides at 4°C (sample side up) until staining.  

5. If embryos present, immediately transfer to culture. Based on the total number of 
embryos recovered (maximum 5 embryos/drop; minimum 10μl media/embryo), 
prepare 10-50 μl culture drops under mineral oil using equilibrated embryo culture 
medium.  Wash embryos three times in culture medium, transfer to drops and place 
in an incubator (38.5°C; 5% CO2 in air).   

6. Process the following oviduct samples, being sure to label each sample specifically:  
Oviduct Transverse Cross Sections (right and left side)   
a. Place in Cassette: 4% Paraformaldehyde 
b. Place in Tissue Mold: TBS cryoprotectant  
c. Place in cryovial: Flash freeze  
d. Place in cryovial: RNA Later 

7. Cut through the uterine bifurcation over a Petri dish. Trim any rough edges and 
dissect out the mesometrium if necessary to straighten each uterine horn.  

8. Process the following uterine samples, being sure to label each sample specifically:  
Uterine Transverse Cross Sections (right and left side)   
a. Place in Cassette: 4% Paraformaldehyde 
b. Place in Tissue Mold: TBS cryoprotectant  
c. Place in cryovial: Flash freeze  
d. Place in cryovial: RNA Later 
Endometrium (right and left side) 
a. Place in cryovial: Flash freeze  
b. Place in cryovial: RNA Later 

9. Record number of follicles and CL on each ovary and take ovarian measurements.  
Take the ovary with fewer CL and bisect longitudinally.  Place one hemi-ovary in  
4% Paraformaldehyde and the other in TBS cryoprotectant.  

10. Dissect out CLs from second ovary and weigh. Flash-freeze half of the CLs and 
place the other half in RNAlater.  
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Appendix E: Protocol for Corpora Lutea (CL) Progesterone Assay 
 
 

CL Extraction 
 
1. Following ovariohysterectomy, recover one half of the total number of CL from one 

ovary using curved dissection scissors to gently tease out and release the CL. 
2. Weigh CL, place in 2 ml cryovial and plunge into liquid nitrogen. Store at -80° C.  
3. Thaw CL at ambient temperature and place in ground glass homogenizer.  Add 1 ml 

PBS buffer and gently homogenize into solution for 2 min. Decant into a labeled 
16x125 mm glass extraction tube. Rinse sides of homogenizer with 1 ml buffer to 
recover any residual tissue and decant into same extraction tube.  Rinse 
homogenizer with 100% ethanol and dry before proceeding to the next CL.  

4. Add 3 ml absolute ethanol to each extraction tube and boil for 20 min. Add 100% 
ethanol as needed during boiling to maintain pre-boil volumes. 

5. Centrifuge at 500g for 20 min and decant supernatant into a new extraction tube. 
6. Resuspend luteal pellet in 2 ml absolute ethanol, place in sonicator for 20 min to free 

adhered tissue from the glass tube and vortex for 1 min. 
7. Re-centrifuge at 500g for 15 min.  
8. Combine both supernatants, dry completely under air and then redissolve in 1 ml 

methanol. Place in sonicator for 20 min.   
9. Dilute CL extract to a concentration of 1:10 (200 μl sample in 1.8 ml buffer). Store at 

-20° C until analysis.  
 
 
P4 RIA 
 
1. Remove Coat-a-Count® progesterone RIA kit from storage at 4°C so it is at ambient 

temperature before use.  
2. Dilute CL extracts as needed in PBS.  
3. Label 2 antibody-coated tubes each for the following: standards (A, 0.05, B, C, D, E, 

F, G), controls (DPC 4-6) and each sample. Label 2 non-coated tubes each for the 
total count and NSB. 

4. Add 50 μl of Standard A to the NSB and A tubes. 
5. To create the additional standard, add 70 μl of both A and B standards to a glass 

tube, and vortex. (this tube will be the 0.05 standard). 
6. Add 50 μl each of standards (0.05, B, C, D, E, F,G), controls and samples to the 

appropriately-labeled tube. 
7. Add 500 μl of the 125I progesterone tracer to each tube, mix well and incubate at 

ambient temperature for three hours. 
8. Pour off all tubes, except totals, making sure there is no liquid left in the tubes. 
9. Load tubes into gamma counter (CRC Protocol 5).  
 
 
Source: Swanson WF, Roth TL, Brown JL, Wildt DE. 1995. Relationship of circulating 
steroid hormones, luteal luteinizing hormone receptor and progesterone concentration, 
and embryonic mortality during early embryogenesis in the domestic cat. Biology of 
Reproduction 53(5):1022-1029. 
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Appendix F: Protocol for RNA Extraction of Luteal Tissue 
 
 
1. Prepare the area where the RNA extraction will take place. Clean all equipment and 

hands with RNAase Zap® prior to starting and throughout the procedure.  
2. Prepare the Qiagen RNeasy® Mini Kit. Add 44 μl molecular grade 100% ethanol to 

the Buffer RPE concentrate. Also, prepare the working Buffer RLT by adding 10 μl β-
Mercaptoethanol per ml of Buffer RLT stock in the fume hood.  This working solution 
is stable at RT for 1 month.  

3. Prepare the Qiagen DNase stock solution by dissolving DNase I in 550 μl of the 
RNase free water provided. Mix gently- do not vortex. DNase stock can be stored in 
single-use (90 μl) aliquots at -20°C for up to 9 months. Thawed aliquots are stable 
for 6 weeks at 2-8°C- do not re-freeze.   

4. For each run (8 samples per run), remove the domestic cat CL samples stored in 
RNAlater from the -80°C freeze and maintain on ice.  

5. Isolate ~ 20 mg of tissue from the RNAlater and record the exact weight.  
6. Place tissue in a 2 ml flat bottom microcentrifuge tube.  Add 600 μl Buffer RLT and 

homogenize tissue immediately for 40 seconds using a rotor-stator homogenizer.  
7. Proceed to the next sample. Before first use and between each sample, clean the 

homogenizer by running the blade thru 1) 50 ml DEPC water; 2) 50 ml 70% ETOH; 
and 3) 50 ml chloroform.  Wipe and dry blade.  

8. Centrifuge for 5 minutes at maximum speed (13,000 RPM). 
9. Pipet supernatant to a new 2 ml microcentrifuge tube. Do not transfer the pellet or 

any lipid layer on the surface of the supernatant.  
10. Add 1 volume (~600 μl; adjust for any lost volume) of molecular grade 70% ethanol 

and mix by pipetting. Continue immediately to the next step.  
11. Add 700 μl ethanol mixture to an RNeasy mini column placed in a 2 ml collection 

tube. Close the tube gently and centrifuge for 30 seconds at >8,000g.  Discard the 
flow-through. Repeat as needed with the additional volume using the same column 
and collection tube.   

12. Perform DNase Digestion.  Pipet 350 μl Buffer RW1 into the column and centrifuge 
for 15 s at > 8,000g (> 10,000 RPM).  Discard the flow-through.   

13. Add 10 μl DNase I stock solution to 70μl Buffer RDD. Mix gently by inverting the 
tube.  

14. Pipet 80 μl DNase I incubation mix directly onto the RNeasy silica-gel membrane 
and maintain at RT for 15 minutes.  

15. Pipet 350 μl Buffer RW1 into the column, centrifuge for 15 s at >8,000g .  Discard the 
flow-through.  

16. Transfer the column to a new 2 ml collection tube and pipet 500 μl Buffer RPE onto 
the column. Close tube, centrifuge for 15 s at >8,000g and discard the flow-through.  

17. Add another 500 μl volume of Buffer RPE to the column and centrifuge for 2 minutes 
18. Move filter to a new collection tube and discard flow-through tube. Centrifuge at full 

speed for 1 min.  
19. To elute, transfer the column to a final 1.5 ml collection tube and pipet 40 μl RNase-

free water directly onto the silica-gel membrane.  Close tube and centrifuge at 
>8,000g for 1 min.  

20. Place RNA extract on ice immediately.  
 
 

Source: RNeasy® Mini Kit protocol, Qiagen Corporation.   
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Appendix G: Protocol for Primer Design 
 
 
1. After identifying the genes of interest, check the NCBI nucleotide sequence database 

(www.ncbi.nlm.nih.gov) to determine whether an mRNA sequence exists for 
domestic cat. If not, choose the most closely related species (canine, bovine).   

2. Take this sequence and BLAST it in the Ensembl Genome Browser 
(www.ensembl.org) against the cat genome.     

3. From the results page, go to the “Contig” view of the best match (top of the list).  
Check the sequence for gene homology with other species. Click on the novel gene 
projection to obtain the cat transcript sequence.  

4. Choose the final sequence to be used for primer design. It should be approx 300-500 
basepairs, as close to the 3’ end of the transcript as possible, and span more than 
one exon if possible.   

5. Copy this sequence into PrimerExpress®.  Use the RT-PCR template for primer 
design and choose the following parameters: 

a. Temp:  Minimum 57°C, Maximum 63°C, Optimal 60°C 
b. GC Content:  Min 40, Max 60; 0 residues 
c. Primer length: Min 19, Max 21, Opt 20 
d. Annealing temp: Min 75°C, Max 85°C 
e. Amplicon length: Min 100, Max 120  

6. Search for primers and choose the best pair of forward and reverse primers, based 
on low penalty, length of primers and amplicons and G/C content.  

7. Check the primers in Ensembl’s BLAST program. Run a BLAST on both 
simultaneously.  Input into BLAST as follows: 

 >cyp11a1_Forward 
 GGATCGCTGAGCTCGAGATG 
 >cyp11a1_Reverse 
 TGAGGTTGAATATGGTGCCCA 
8. Cross-check to make sure these primers fall on the forward and reverse strands of 

the sequence of interest.  
9. Order primers (0.025 nm; desalted).  
10. Upon arrival, reconstitute in nuclease-free water to a 100μM stock solution and store 

at -20°C.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
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Appendix H: Protocol for Two-Step Real Time RT- PCR 
 
 
RNA Quantification Using the GeneQuant II Spectrophotometer 
 
1. Choose the following in the set up menu: 

• Path Length: 10 
• Read at: 320 nm 
• Dilution factor: 100 
• Setup factor: RNA 

2. Dilute samples 1:100 (1 μl sample in 99 μl water). Prepare 90 μl water blank.  
3. Start with the blank. Put 90 μl in the cuvet, check for air bubbles, press Set/Ref and 

follow the directions to calibrate.  
4. Empty cuvet, rinse with water and pat dry. Be careful not to drop the cuvet or touch 

the front or back where the windows are.   
5. Continue with each sample. Record the absorbance at 260 and 280, the ratio (should 

be greater than 1.5) and the sample concentration.  
 
 
RNA Formaldehyde Gel Electrophoresis 
 
1. Prepare gel mold by cleaning components thoroughly and spraying down with RNA 

Zap. Place the spacers and comb in the mold.  
2. Dissolve agarose in water by heating in a microwave. Cool to touch (approx. 50°C).  
3. In hood, add 10X MOPS and formaldehyde to agarose mixture. Mix and immediately 

poor into gel mold. Allow to set and then remove spacers and comb.  
4. Prepare running buffer (1X MOPS). Add to entire mold.  
5. For each sample, place ~1 μg RNA in tube (volume will vary). Add RNA loading 

buffer containing EtBr (Box 1A, -20°C) 2:1 based on your maximum volume (e.g. if 
largest sample volume is 3 μl, add 6 μl loading buffer to all samples). Also prepare 2 
ladders in this manner (Box 3I; -80°C). Gently mix and centrifuge briefly.  

6. Heat samples to 95°C in a dry warming block for 5 minutes. Load samples onto gel 
and run at 190V. Stop when the dye is approx 2/3 down the gel. Read on the UV 
transilluminator. Two distinct bands (28S and 18S rRNA) should be seen. 

 
 
Reverse Transcription Using SuperScript III (Invitrogen) 
 
1. Add to a nuclease-free 0.5 ml microcentrifuge tube: 

0.5 µg - 1 μg RNA 
1 μl 50 μM anchored oligo-dT primer* 
1 μl 10 mM dNTPs  
nuclease-free water to 13 μl.   
*Make a premix of primer and dNTPs and add 2 μl per tube 

2. Quick spin, vortex to mix and quick spin again. Heat to 65oC in the thermocycler for 5 
minutes and incubate on ice for at least one minute. 

3. Quick spin and add: 
4 μl 5X first strand buffer* 
1 μl 0.1 M DTT 
1 μl RNAse inhibitor (40 U/μl) 
1 μl SuperScript III RT (200 U/μl) 
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* Make a supermix and add 7 μl per tube 
4. Prepare a no-RT control by adding all components to a pool of 1 μg RNA except the 

SuperScript III reverse transcriptase.  
5. Mix gently with a pipette and quick spin.  In the thermocycler, incubate at 50oC for 60 

minutes and then 70oC for 15 minutes to inactivate the reaction.  
6. Add 80 μl nuclease-free water to the cDNA to make a 1:5 dilution. Store cDNA at      

-20oC until use. 
 
 
SYBR Green PCR 
 
1. In a Bio-Rad 96 well PCR plate, dispense 1 μl of each cDNA sample in triplicate. 

Also prepare 1 water sample and 3 no-RT reaction samples to check for potential 
contamination.  

2. Add 19 μl PCR mastermix to each well using an automated repeater: 
10 μl iQ SYBR Green Supermix (Bio-Rad) 
0.8 μl 10 μM forward primer 
0.8 μl 10 μM reverse primer 

3. Seal the plate carefully and quick spin. 
4. Set up the iCycler/MyiQ with the appropriate protocol: 95oC for 3 min.; 40 cycles of 

95oC for 15 sec then 60oC for 1 min; 95oC for 1 minute, 55oC for 1 minute; melt curve 
analysis (80 cycles of 55oC,95oC). 

 
 
Source: University of Maryland: T.E. Porter Laboratory Protocols 
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Appendix I: Recipes for Commonly-used Reagents 
 
 
EIA COATING BUFFER (1 liter; pH 9.6) 
Na2CO3 (Anhydrous)            1.59 g  
NaHCO3      2.93 g  
Milli-Q H2O    1000 ml 
 
 
EIA ASSAY BUFFER (1 liter; pH 7.0)  
Stock A (0.2M NaH2PO4)  27.8 g/l dH2O; USE 195 ml 
Stock B (0.2M Na2HPO4)  28.4 g/l dH2O; USE 305 ml 
NaCl    8.7 g 
BSA    1.0 g  
Milli-Q H2O    500 ml 
 
 
EIA DILUTION BUFFER (1 liter; pH 7.0)                
Equal to Assay Buffer without BSA 
 
 
EIA WASH CONCENTRATE (1 liter; dilute 1:10 for working solution) 
NaCl                                                   87.66 g      
Tween 20    5 ml   
Milli-Q H2O    1000 ml     
 
 
EIA SUBSTRATE BUFFER (1 liter; pH 4.0)            
Citric acid (anhydrous)       9.61 g  
Milli-Q H2O    1000 ml 
 
 
EIA ABTS (40 mM; 25 ml) 
ABTS      0.55 g 
Milli-Q H2O      25 ml 
Wrap in foil- light sensitive 
 
 
EIA HYDROGEN PEROXIDE (0.5M; 8 ml) 
H2O2 (30% Solution)     500 μl 
Milli-Q H2O    8 ml 
 
 
RIA PRESERVATIVE-FREE PBS (5 liters; pH 7.0)   
Disodium phosphate              23 g   
Monosodium phosphate    13.55 g 
Sodium chloride      44 g 
Milli-Q H2O    5 L 
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SPERM COLLECTION MEDIUM (10ml; filter sterilize; HF 10) 
Hepes-buffered Ham’s F-10  9.2 ml  
Pyruvate stock (28.4 mg/ml)  100 μl  
Glutamine stock (2.6 mg/ml)  100 μl  
Pen/Strep/Neo stock (in 10ml)  130 μl  
5% Fetal Calf Serum   500 μl  
 
 
AMMONIUM ACETATE (600 ml; 0.1 M; pH 9.0) 
Ammonium acetate   4.62 g 
Milli-Q H2O    550 ml 
 
  
COOMASSIE BLUE WORKING STAIN (100ml) 
Methanol    50 ml 
Glacial acetic acid   10 ml 
Milli-Q H2O    40 ml 
Coomassie Blue G-250   0.22 g  
 
 
OVIDUCT FLUSH MEDIUM (50ml; filter sterilize) 
Hepes-buffered Ham’s F-10  50 ml 
BSA (embryo culture grade)  0.2 g   
 
 
EMBRYO CULTURE MEDIUM (5 ml; filter sterilize) 
Ham’s F-10 (no Hepes)  4.6 ml  
Pyruvate stock (28.4 mg/ml)   50 μl  
Glutamine stock (2.6 mg/ml)   50 μl  
Pen/Strep stock (in 10ml)    50 μl  
5% Fetal Calf Serum   250 μl  
 
 
10X MOPS (1 liter; pH 6.5-7.0) 
0.2 M MOPS    42 g        
0.05 M NaOAc   16.67 ml of 3M   
0.01 EDTA    20 ml of 0.5M   
Bring to a final volume of 1L using dH20.  Wrap in foil- light sensitive.    
 
 
FORMALDEHYDE GEL 
Final Concentration   Mini Gel   Medium Gel 
1% Agarose    0.3 g agarose   2 g agarose 
1X MOPS    3 ml of 10X MOPS  20 ml of 10X MOPS  
3% Formaldehyde   2.4 ml of 37%   16 ml of 37% 
Water     24.6 ml   164 ml 
 

 
Source: Conservation and Research Center: Endocrine and Gamete Laboratory 
Protocols; University of Maryland: T.E. Porter Laboratory Protocols 
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