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1. The Problem and Main Results.
Consider the linear stochastic system

de (t) = Az (¢)dt + gBix(t)dNi(t), (1.1)

1 ==0

z(0) =z, € R" \ {0}, t >0,

on the underlying probability space (Q, F', P) with A and B; constant n X n real
matrices, and { N;(t), ¢t >0}, ¢=1,..,m, independent Poisson processes - specifically,
one dimensional counting process with intensity X; > O and right-continuous paths.
N;(t) € {0,1,2,...} counts the number of occurrences in [0,{]. We are interested in the
almost sure stability properties of the solutions of (1.1). That is, if |-| is any norm on
IR™ (||-|| is the induced matrix norm), we would like to characterize the asymptotic

exponential growth rate

lim —t—log[ —M] (1.2)

tTe0 2y
if it exists.

This problem is the analog of the one considered by Khas 'minshii {1] and Pinsky [2]
for diffusion processes, and by Loparo and Blankenship [3] for systems with jump process
coeflicients. Like previous results, the expression given here for the growth rate is not an
explicit, readily computable one, except in simple cases. The stability properties of the
moments of the solution of (1.1) were considered by Marcus [4] [5] (see also [6]). Explicit
stability criteria are possible for the moments. Related results on the optimal control and

scheduling of systems with Poisson noises are given in [7](8}]. See also [9].

The system (1.1) is interpreted in terms of the integral equation

t m ¢
z(t) =12, + [Az(s)ds + 3 [Biz(s)dN;(s) (1.3)
) .

1 =10

with the stochastic integral defined by the calculus explained in [5] [10}%. Let

{T;, J > 1} be the interarrival times and t;:Tf + Tf be the occurrence time for

hwe could also treat some of the more complicated point process models in [5] [10], but the main ideas
are best conveyed by the simple case considered here



the Poisson process N;(¢). Then

[Biz(s)dN;(s) 2 | n) '
° S Bt Ni(6)=1.

j=1

(1.4)

Now, let {r;, j>1} be the interarrival times of the sum  process
N(&)y=N(t)+ - - +N,(t) with intensity X\==X; + - -+ + X, , and p; be the process
indicating which /N; under went an increment at the occurrence time
t]- =T+ -+ T We assume the probability of multiple, simultaneous jumps is zero.
The process {x(t), t > O} exists, has right continuous paths, and jumps at tj, =12,

If we set D; =I+B;, then
a(t) = exp (A(t-tne)Dry,, *~° Dyeap(Ar)z, (1.5)

This expression is the bhasis of our treatment of the almost sure stability problem.
Its composition as a product of random matrices directed our attention to the work of
Furstenberg and Kesten [12], Grenander [13] and Furstenberg {15]-[18] on the limits of

products of random matrices.

Our main result is based on the following observations. First, for each 1 =1i,...,m,
the {T]z Jj >1} are independent and exponentially distributed with parameter A;. The
random processcs {Tj, By, J >1} depend in a complex way on
{7’; i=1,...,m, j>1}. However, {r;, ¢ >1} and {u;, j=>1} are independent and
form independent, identically distributed sequences. This follows from the presumed
independence of the {N;(t), i=1, ..., m }, and will be shown in section 3. As a conse-

quence, we have the following:



Theorem (Stability). Consider the system (1.1) with the stated assumptions on

the processes N;(t), 1=1,...,m. Then

s 1 Ary Arn
r = kh-{réo_" IL log ; 'Dwe ...Dule ’ < 00 (1.6)
exists and
o . ]. . AT‘. ATI
—— klgr;o? log [ ‘Duke D € a.s. (1.7)

The quantity r is the asymptotic exponential growth rate of the process z (¢); that

is,

—%%))—IL ~ e t large

IHence, r > 0 implies almost sure instability and r < 0 corresponds to almost sure

asymptotic stability. This result is proved in section 3 (Theorem 3.5).

It is possible to obtain a more detailed description of the long term behavior of
{x(t), t > O} by examining the behavior of products of random matrices acting on

specific initial states 2 (0) = 0. The key questions are: Does the limit of

%log HDMeAT" ce DuleATlon

exist? If it does, how is it related to the rate r in (1.7)? To treat these questions, we
generalize some results of Furstenburg, IKesten, Grenander and others on random walks
on semi-simple Lie groups to general semi-groups (not necessarily groups since the terms
D; may be singular). This analysis is given in section 4. The main result is as follows

(Theorem 4.14):

Suppose p is the measure on the Borel sets B (IR" ><") defined by



wI) & P {D#le’”1 €r}, I € BUR"™").
Let SG be the closed semi-group generated by the support of p, i.e.
SG 2 smallest closed semi—group containing {D; et o<t <oo,i=1,...,m }.
Let v be an invariant measure for u; i.e., a solution of the integral equation

By V="V (1.8)

Let (), be the collection of extremal invariant probability measures of p on

M 2 S™1U{o).

Theorem For all v € Q,,

(o]
r, & Ekifflog | D; exp (At u e dt duv(u) < oo (1.9)

i=1 M O

and

Jim EN (1.10)

lim —t—log[-JL(t—)—L] = A7, a.S.

for all x,€F 2, an ergodic component corresponding to v € Q4. Indeed, there are only

inite different values, say, r{<ro< - - <rj=r,l<n. Furthermore, if U E O con-
» 1 2 i =~ ’ e v
[4]

tains a basis of IR™, then the system (1.1) is asymplotically stable almost surely +f r, <O,
while the system (1.1) is asymptotically unstable if r ;>0. In case r;<<0 and r; >0, then

the stability of the system depends on the initial state x .

To apply these theorems to a specific problem, one must determine r or at least its
sign; or, more generally, the collection (), must be constructed and r, computed. If the
semi-group SQ is transient or irreductble, then r, will be independent of v (even though

there may be many ergodic components). (See Theorem 4.10 and Corollary 4.11.) In this



case a theorem of Furstenburg ([15], Theorem 8.6) may be used to determine the sign of
r, = r. Application of this result to specific systems requires a close analysis of the

geometric structure of the semi-group associated with those systems. Several examples

arc given in the next section to illustrate the techniques.

Two final results of interest in engineering practice concern the occurence of “‘large
deviations” in the paths of { z (¢), £ >0 } of a stable system (1.1) and the ability to sta-
hilize a system like (1.1) with feedback controls.

The following result is proved in section 5.

Theorem (Large deviations). If the system (1.1) is asymptotically stable with

r, < 0, then there exist constants M (2,2 ) and r, X < v << 0 such that

P{sup |2(s)| 2 R} < M@oR)e™, 120 (1.11)

The constants may be determined rather precisely, see equation (5.6) for details.
The following result is proved in section 6.
Theorem (Stabilization). The control system with state and control dependent
Poisson noises
dr (t) = Az (£)dt + Bu(t)dt + Cx(t)dN,(t) + Du(t)dN,(t) (1.12)

s stabilized by the linear feedback control u(t) = — Kax(t) almost surely where K s

any matriz such that

o0

Xy [log (T4 C )eA-BIOE e = gy (1.13)
0

o0
+ Ny [log |[({-DK)e@ Bt |1e =2 dt < 0
0

where \; 1is the intensity of N;(t) and N\ s the intensity of N (¢) = N(t) + No(t). If



D =0 (no control dependent noise) and (A ,B) is controllable, i.e.,
rank [B,AB,.., A" 'B] = n

then (1.12) is stabilized by any malriz K for which the eigenvalues of A —BK lie to the left

of Re(s) == ~ X|log|{/+C ||| in the complex plane.

2. Examples and Applications.

We would like to use some examples to show how to apply our theorems to deter-
mine stability properties of specific systems. As we shall see, in many cases, it is hard to
find the necessary invariant measure because it is associated with an integral equation

with shift arguments. It is difficult to evaluate a solution from this, although it exists.

Example 2.1. Consider the simple system

E w

-1 «
dz (t) = [ o k] z(t)dt + [ o 1 ] x (t)dN(t) (2.1)
where N (t) is a Poisson process with intensity A > 0. Then

coswt sinwt

eprt:ekt [ ],w>0

—sinwt coswt

01
D=1 + B =« 1 0 , a£0.

In this case, De?A! 7éeAtD and
SG = smallest semi-group containing {DeAt, 0<t < oo}

where p is the probability measure on SG with density function he ‘“M, £ >0 at each
element De?. Since D is non-singular, we can take M = S° the unit circle. In order

to solve v = p . v, we let ' € Borel set B(S9),



vl) = [ xp(goz)du(g)du(e)
SG % §°

x

= [v(exp (~At)D ) Ne M dt. (2.2)
0

For x € T, x = (cos 0, sin0) T for some § > 0 and let

coswt ~sinwt] 1 [O 1 ] [ cosft ]

. o S R 7
y ==eap(AL)D Tz = ¢ [ sinwt coswt 10

o sind

1 " [ — sin{wt —0) }
== —e .
o cos(wt —8)

Let ¢ be an angle between the y and x;-axis. Then

tan¢g == ——% = — cot(wt-0). (2.3)
Differentiating (2.3), we get
sec’pd ¢ = — csc*(wt-0)d 0,
so that from (2.3)
dé - esci(wt —0) = csc?(wt —0) —_1
do sec’ 1+cot*(wt —0)

Suppose v has density function f (0), 0 < § < 27x. Thus from (2.2),

dé

7 e “Mdt = {f (B)ne ~ M dt (2.4)

JO =[5

and so

[(0) = 1 0<o<ar
21

satisfies (2.4). Since SG is transitive on S, then the Haar measure v(§) with density {(8)

is a unique invariant measure of p. Thus,



ro= [ log |goex | du(g)dv(z)

SG xS
— f]log DeAt COSO] Xe -ae L dodt
sind 27
00 2
cor sin(0 — wt )
— ookt Y
o {{1% ae [cos(0—wt)] P d 0dt
(v ¢}

= [log | ae® | Xe ~M dt
0

k
= log | « +oe—
lal + 5

Consequently, if £ < — X log|a|, the system (2.1) is asymptotically stable, while for £ >

- >\log|a/[, the system (2.1) is asymptotically unstable.

Example 2.2 (Harmonic oscillator with damping).

Let y(¢) be a point process, regarded as the formal derivative of a Poisson process

N (t) with intensity A. Consider the second order system

F() + oy()E(t) + wihky (D)]z(t) =0

2(0), z(0) given, { >0, w>0, k >0.
Let 2,(t) = wz (t), 2a(t) — 2 (t) and 2 (£) = [z,(t), zo(t)]T. Then

0 w 0 O
de (t) = [ w0 ] z(t)dt + k z(8)dN (1)
w

-1

wz (0)
z(0) = [ z.(O) given.

Set

(2.5)

(2.6)



[ ()(U] 0 O
A: . , B: ﬁ
w

and

10 coswt sinwt
D=1I+58= k , eapAt = —sinwt coswt
Let SG be the smallest closed semi-group containing {De ALy >0}. The probability

measure g on SG has density e ~ M, t >0 at each element De?!. Since D is singular,

we take M = S° U {0}. It is easy to see that the only invariant set is

—k —w k
E = |p — s , ],P2 [ ],(0,0)}
l ' \/w2+k2 \/w2»+/v2 Vi k2 \/w2+k2

with invariant measure v of p being defined by

v(P;) = ¢ =1, 2 and p(0) = 0.

w[»—‘

Note that SG o S®=F is invariant, so that the stability of the transient set
F = S°\ E also depends on r, though E does not span IR®. (See section 4.) Now, we

calculate r, = r as follows.

r,= [ log | gz |dplg)duz)

SG XM
, 0
LS At Y
;Efogll)e P; | he Mdt
2,200
F k
- flog coswt — —sinwt | Ne ~M dt
0 w
" 2
— l f log Coszout — 2_/C‘COS(Ut Sinwt + Lsinzwt XC — Nt dt
2% w w?



o .2 .2 .
lf —1— k ! A—)cos‘zwt - isianut e ~ M dt
2% 2 2 w? W
&0 2 .2
L flog —1—(1+ k + —k—)cos(f_’wt +a) | he "M di
2 2 2 2
< 0 ~ w w
[o0)
== —1— —1— [H————-] -+ lflog;[l + cos(2wt +a)]xe ~ M dt (2.7)
) 2 .
where
y wk s T
tan @ = ————— | — ;Saﬁ—é— .
(W* - k?)
Let
o0
- f gll4cos (2wt +a)] X e “M dt
0
" A
= f log[l+cos t]-2m e ~ME=d/20 gy (2.8)
2w
(41
Using the fact
m
flog(1+cos t)dt = — mlog2,
0
we have
B+en
[ log(1+cos t)dt = —27log2,  B.
g

A
Thus, let p = —,
2w

4

2mp log2

00 .
) 2 L
I, > -27p log2 Y e T

j=0

and

10



o0 . -2np
) o -pjem . _ a_¢
I, < -2mp log2 szle 27p log2 T (2.10)
___ 2mp log2
627!'1) - 1
Thus, from (2.7), (2.8), (2.9) and (2.10), we have
0g2 ;? 12
_omploer o Liggl Ky oo Tplog2 (2.11)
1 — e =" 2 2 w® e

Ilence, it & < w, r, < 0. What happens for & > w? We have to calculate £ from

(2.11) to determine the sign of r,. From (2.11), if

log

Lo |
l~:>[)—'

2 ~2mp

Il+£] > TP log?2
w 1 -

or

1
9 2
1~ e =™
then r, > O and the system (2.6) is asymptotically unstable; while for
2 o)
Llog—l— 1+k— < ________7:}? log2
2 2 w? e“™ -1
or
1
2 g2 2
k < w QQXD H_’]TZ?__.I.SP_H_ — 1 , (213)
s 627rp -1

we have r, < 0 and the system (2.6) becomes asymptotically stable.

Example 2.3 (Randomly coupled harmonic oscillators) (cf. (25] for m==1).
Let yij(t), i, j=1,...,m, be independent processes which are regarded as formal deriva-

tives of independent Poisson processes [V;;(t) with intensities A respectively.

ij

11



Consider the following stochastic system of m coupled harmonic oscillators.

T) F owln(t) = X by ()2 (L) (2.14)
j=1

z; (0), z.z-(()) given, { >0, w; >0, 1 =1, ..., #.

Let @o; 4(1) = wz; (t), 24, (1) = z.i(t) and 2 = [z, ..., a;g,m}T, Then in standard
notation
m
i, =1
where

0 Wi
A =diag {4, ..., A4,} A = { — W ]’
2

and all the entries of Bij are zero except the entry egq; o5 4 = —— . Set

Note that tr(A ) = 0 and det(D;;) = 1, so we have D;; et € SL(2m). We can define a

m
measure g on SL (2m) with density X;;e MO > 0,0\ = 33 A\ at each element
i,7=1

DijeAt. In this case, it is difficult to determine an invariant measure because the
corresponding integral ecquation is hard to solve. However, we can use Furstenberg’s

theorem (Theorem 4.12) to show the rate r > 0. Let
G = smallest subgroup containing {Di]- e, 0< t <oo, i,5==1,..,m}
— smallest subgroup containing {D;;, 1,7 =1,...,m; et o<t < 0o}.

oy 2 —
Then ¢ may not be transitive on S2m-1If we assume no two w; are equal, then the

commutant 2 of the smallest subgroup Gl containing {em, t 20} is isomorphic to ™,

12



i.e.

T € = if
T = diag {Ty, ..., Th}
with
[ ;B ]
Ti == */J)i o; , Oli, ﬁi E IR.
Since TeAt = ¢4 T, and T and e are normal, they preserve their eigenspace. Thus,
the invariant subspaces V of G are of the form IR]-QJl X - X IRjQ[, l<m.

Before verifying the hypotheses of Furstenberg’s theorem, we need a non-

degeneracy assumption:

(A) For any index set J = {j;, ..., J}, | <m, there exists an ¢ ¢ J such that

by 5% 0 for some k € J.

— : b;
By assumption (A), = b;; 5% 0 so that the entry ey ¢ (D) = j—i tends to
w.

%
infinity as y§ — co. Thus, (' is not compact.
Let an index set J = {j,, ..., j;}. By assumption (A), o ¢ & J such that

by 4 Oforsome k € J. Then Dy V (U V. Hence, G is irreducible.

Note that G, is connected. There is no finite index subgroup of G'y. Thus, any
finite index subgroup I1 of G must contain G; and some mixed powers of {Di]- }. More-
over, the irreducibility of G is due to sufficiently more non-zero entries of Di]-, not the

exact value b;;, so H is also irreducible.

i

In the cases where some w; are equal. The commutant 3 properly contains €™ and

the invariant subspaces of G, are much more complicated.

13



Conscquently, by Theoremn 4.12, r, == r > 0 and z ({) grows exponentially a.s.

This implies that all the states of all subsystems grow exponentially.

Remark. It assumption (A) does not hold, the system can be subdivided into
proper subsystems {Ei }, which have property (A), and 3. States of 3; grow exponen-
tially a.s. Dby the above arguments. The remaining subsystem 5] depends on 3, and its
state thus grows exponentially a.s. Hence, the system of n coupled harmonic oscillators

is asymptotically unstable.

In Brockett and Blankenship’s paper [23], it was noted that any finite state, con-

tinuous time Markov processes (FSCT Markov processes) with infinitesimal transition

probabilities matrix A == {a;; };"; ., defined by
p=Ap (2.16)
where p; is the probability that z = z;, the g th state, can be modeled by a stochastic

differential equation of the form

§
dz () = 33 ¢;(2)dN;(¢) (2.17)
i=1
where z(t) € Z={zy, . .., 2z, } C €, é=m(m -1). ¢;(z) are polynomials with degree

m -1 interpolating exactly at points of Z such that

{ 0 , 22
(z) = 1< i< m-1
RO RS S, <i<
( 0 , 2Kz,
¢i(z):lz1 Zg , 2 == 2, e m

{ 0 , 2z,

m+1 < i < 2(m-1 (2.18)
Zi(m-1)+1 — Fe , F T Zg '— < A )

$i(2) =

14



J 0 ,Z%zm

l i (m-1)® T “m ’

(m—-1)*+1 <17 < m(m-1)

and /V; are independent Poisson processes with intensity A;, respectively, defined by

a; 4y , 1< < m-1
@0 , L =m
N = { G (mot)ie , m41 <1 < 2(m-1) (2.19)

a , (m =121 <0 < m(m-1).

i—(m-1)%,m

Let

and observe that (l(zk) can be expressed as

1
dz" (1) = 33 8z )dN; (¢)

1=1

where qbik(z) is also a polynomial of degree m —1 such that replacing every Z; on the

k

right hand side of (2.18) by z;. Then there are constant matrices M; such that

~ ) ~
dz(t) == E Mi <z (lNi(t ) (220)

1=1
If we consider a particular class of stochastic system as defined by
de = A(z)adt + C(z)dt (2.21)

where A (z) and C'(2) are polynomials of 2, then
1y 0 0 1
i) = (o am) L)

15



We introduce the tensor product as usual

N
—
—
R
e

—
N
X
wN !
I
ISR
>

2 (1)

Using the stochastic calculus for point processes, we can obtain a differential equation of

the form

. L § o~ -
de — Aadt + ) B;adN; (2.22)
1=1

where A | Bi are constant matrices. If we let

0 0...0

0 0...0

1% = 171 3

0 0...0

then # == Ra. Since z(t) stays in the finite set Z, the stability of (2.21) can be

obtained from that of (2.22), since our theory may be used to compute the rate r, for

(2.22)

Example 2.4 (Random telegraph wave).

Let z(¢t) be random telegraph wave which takes on the value set 7 == {—1, 1} with

transition probability satisfying
d [ P } [ - A A ] [ D1 ]
_(Zt— pa) A= D

18



Then the differential equation for z(f) becomes

dz (t) = —22 (¢ )dN (t) (2.23)

z(0) = +1
where N (t) is a Poisson process with intensity X. If we consider the state process

de(t) =1k + wz(t)] z(t)dt (2.24)

2(0) =12, w>0, ¢t >0,
then using (2.23), (2.24) and the fact z%(¢t) = 1, we get

d(zz2)y=dz 2 + zdx (2.4

o

ro

@3]
g

= —2z22dN + z(k+wz)zdt

= wzdt + kzadt — 2zzdN.

Combining (2.24) and (2.25), we have

d[zi]:[ﬁali][gz)‘“+[g_2][;]dN(t), (2.26)

Then,

cosh wt sinh wt
sinh wt cosh wt |

eapAt = el [

[o 7]
D=1+B=1, ,]-

Let SG be the smallest closed semi-group containing {De??, 0< t <co} and the meas-

ure p is defined on SG with density Xe —A t >0 at each element De?t . The
corresponding invariant measure v is difficult to calculate exactly and may not be unique
since SG is not transitive on the circle S°. However, SG is irreducible. By Theorem

4.12, the rate r is independent of v.

17



Let

A . [ cosh wl sinh wt
X(t)=De™ =c¢ _sinh wt — cosh wi

then

HA ) e = e™ (cosh 2wt + sinh 2wt P2 = PALES

and

r, = [ log[{X(£)[lshe Mg
0

o}

== f (k +w)t Ne -t
0

Again, we calculate

cosh w(t ;—tg) sinh w(t—f o) ]

k(¢ 1’“2)[
sinh w(t ~t5) cosh w(t —¢ 2)

X (L)X (vy) == ¢

with

X (X (e = e Flrttd [cosh w(t~tg) + sinh w(fy~? 2

k{t,+t t~ty
— e (ty 2)6(*’(1 2)

bl

so that

Q00

e jo‘jo‘ 10gHX(t2)X(t1)H2 Ne _Mldtx e —MthQ

oGCO

= [kttt # W(t e N idty Ne “Mege,
00

18



Lo
>

In general,

© o0
r, o= f - f log | X (4) -+ X (¢t )]s ke"“ldtl o >\67M‘dt,
0 0
l— + i, [ is odd
A
l*k—, [ is even.
A
Thus
i Ty k
r == hm _— = —
[ | \

From (2.26), we know that stability of (2.24) is equivalent to that of (2.26). Hence, the
system (2.24) is asymptotically stable for £ < 0 while it is asymptotically unstable for &
> 0. This result shows that the random telegraph process z(t) does not affect the sta-

bility of the corresponding deterministic system.

3. Products of Random Matrices and Almost Sure Stability

In this section we shall derive the expression for the asymptotic exponential growth

rate for paths of the solutions of system (1.1). We begin with a result on a general sto-

chastic Banach algebra with ||']] as a norm.
ag
Lemma 3.1 (Polya & Szego [11]). Let {¢;} C IR and o 2 Z?f—/iL S If
A
ap < ap + q, then lim — = « and a 7% + oo .
koo k

19



Proof. Let ay, =0. Then
a S ay A+ og < o0 < kay
or

1
';a/c < ay

which implies that o << +co . Ifa > — o0, let € > 0. Choose [ so that Lal <@ + €.

Fach integer & > [ can be written as Kk =q¢/+r, 0<r <[-1, ¢ 20, ¢,r integers. Let

c & max{|aol, [ay], . g} < oo
Then
" Gyl +r qa; + a, a ay a c
- k gl+r — ql+r T ko= 1 k

c a . . .
Now, choose k >[—] + 1, we have o < T < « + 2¢. Since € is arbitrary, we know
P :

ag
that T converges and the limit is «w. If o« = — oo, a similar argument shows that
4y
~ — — oo as k — oo.

QED

The following theorem is adapted from Grenander [12 pp. 161}

Theorem 3.2. If {X;}2, are independent and identically distributed stochastic
elements i«  Banach  algebra  with E  log®||X ]| <0c0, where

log" |1 X, ]| & max {0, log||X ||}, then the limat

r A lim L E log||X; -+ - X, || < o0 (3.1)
koo k
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exists and

r:ﬁ;iloglle”-X1H<oo a.s. (3.2)
koo k
Proof. Let
ap 2 Flog||X, - - X,]| as

Note that ¢ are either finite or they are — co after some k,. In the latter case, r =

oo. In case r > — oo, then o are finite for every £ and we use the stationarity of

{X;}. Evidently,

oy = B log|| Xy oo - X
S Elog ([[Xypqy - Xl X -+ X0 (D
= Flog [| Xy - Xpyall + E log [1X; -+ X ]|

== + (67N

T | . .
By Lemma 3.1, the limit —A— o exists and is equal to r, where

r o= inf —E log||X; - X,
ok
with —oco < r < co. Next, let

1 4 7
& 2 - log || X - - X[l
If r > — o0, let ¢ > 0O be given. Choose [ so that Ll o; <<r +€. Once again, any integer
k > 1 can be expressed as k==¢/+s5,0 < s < [-1.
1
& = " log|| X - - X,

1 7 7
< N [loglllk "')‘ql+1H + log||qu "'X(q—1)l+1|| +

21



+ tog|[X, - X, ]

< gloslXe o Xgnll = ol IXy - Xl
+ illog[[X,~-~X1|| . (3.3)
By the strong law of large numbers, the quantity in brackets tends to
—11—E log||X; - - - Xq|| as ¢ — o as.,
ie. =1 ¢ such that ¢ > ¢, implies
1 1 1 -]
7T log || Xy - Xgayall + T log|[X; - - 'X1||!
< 17E log||X; - - X,|| + e
<r + 2 (3.4)
If P{log [|X; -+ X,,]| = - oo} > 0, then o} == - o0, and so, r = - oo which is
a contradiction. Since E log”|]1X,||<<co and {X;} are i.i.d., we have
log|| Xy - Xy || <logl|X || + -+ log||Xyp|] < o0 as. (3.5)
Thus,
|log || Xy - Xpgal] | < oo as.,
so that for £ large enough, we have
%mg Xy - Xl < € as (3.6)

From (3.3), (3.4) and (3.6), we have
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for k large enough. Since ¢ is arbitrary, we have

lim & < r as. (3.7)
k—o0
Now let
K
Ay ileogHXH‘TlogHX Xyl =o
Then for {X;} iid., we have
LA 1 .
TORAN =7, E L5 log 1A [| - - Elog 1Yy - Xl
= I log ||X]] ~ - oy
k
— E log |[|X || - r ask — oo.
Let
A A limAy.
koo
Then by the strong law of large numbers, we have
A= FElog ||X,|] - lim &.
k—o0
Applying Fatou’s lemma, we obtain
E A =Flog||X,|| - E lim &
k—o0
S lim E Alc
Ic_:oo
= FE log ||X,|| - .
Therefore, £ lim €, > r. Combining with (3.7), we have the result kh_m & =1 as.
k —c0 -0
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If r = — o0, by the strong law of large numbers, we have
1 1 1
P [—1 log|| Xy - Xyl + N log||X; -+ X ]]]
— T log|]X; - X,[] as g — oo,

From (3.3) and (3.5), we know that
£, — —oo a.s.

QED

Remark. A similar theorem for products of random matrices was proved by

Furstenberg and IKesten [12] who obtained the result lim &, = r under the weaker
k—00

assumptions that ||X; || are stationary and metrically transitive by slightly different
arguments. We will develop a more general theory for products of random matrices act-

ing on initial vectors in next section.

Before proving the main theorem of this section, we need some elementary results

for independent Poisson processes.

Lemma 3.3. If {N;(¢),1=1, ..., m} are independent Poisson processes with
intensity \;, i=1, ..., m, respectively, then N(t)=N(t)+ - +Ny,(t) s also a
Poisson process with intensity X = Ny + - + X, . Let p; denote the index ¢ for

which N; increases at the time 1, + - - - +71;. Then {p;, § >1} are independent and

identically distributed as
. oo
P uy=i)==- i 21 (3.8)

Furthermore, {7;, By, 1, >1} are independent.
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Proof. Let {T; 7 >1} be the interarrival times for N;(f), i=1,..m and
{7‘]-, ]'21} be the interarrival times for the sum process N(t). Then for each i,
{T}, jzl} are independent and exponentially distributed with parameter X;. The

m

assumption that N (t), ..., N, (f) are independent implies that 'r]-ll, ..., Ty are

independent. Now, we prove (3.8) by induction. First,

Plp,=1, 1,<t]

=P [Tli<t, Tf<rlj, 7 E{L, . om\ {7}

¢

O
-\ -
= [dz; ;e 0T f dz; N; e 1%
0 J#i g,
t
-\ -
:f(ll'i >\i€ s r[ € 1%
o J i
t
N
= f >\i€ i (lil)i
0
¢ Y
= 1 —e
X ( )
Now, we assume the kth step is true,
N . . k >‘ij — At
Plug=vy, i<ty 5 pp=1, 1y <t} =[] X r-e ) (3.9)
i—=1

For the collection {¢,, ..., %} C {1 ,., m}, let j,, ..., 7, be distinct integers such
that {j,, ..., Jp } = {41, - - ., % ). Without loss of generality, we can assume ¢,==j,
and 2 =j, . Let [; Dbe the number of i, € {iy, ..., 4} such that 4, = j,. If j, € {1
v my \ {7y, o, J, ) set lj =0. Now, we define r; as follows. Let r; be the first
index such that ¢;==ty== - ==, =7, and ir1+17éj1, and let r, be the index such that

Zrﬁ—l sem e ez 2r1+r.3 7é Zr1+r2+1: etc.

25



Now we prove the (k-+1)th step.
Plp=1,, 1,<ty; -

. —_— . e — 1
e, T <<Up 5 Mg 1™ % Tk b

T i iy iy i iy, 4 i . _
= P[T1 et <y, < AT )< s

J 7 i [ 1 i J J
O R e e N VAARTRTIE i SE s /LRI R S i ol P
Ip b+ 1 Ip
Y % q q _ .
T < ot Voge{t..m I\ {G 1}
i, i 0 i i j j
= P[O<T1 <ty ..., 0<T <ty T Ty Ty Ty 1+,..+T,.11 P

j i i i j j i i

7 s k41 k41 k+1 k41 k1Y,

(R T (r M P ST T <y (P AT ) T ),
? k+1 k+1 Jp E41

) i .
Tl"“+...+rlh":ﬂ - (qu+...+T[;])<T[;I+1, Vvooge{r,om I\ {1}
»

7 2
; tu t11+1+(111+'“+zr11)
7 el N eap (h; 2 del2n; exp(-h: al?
= TT Jde, " Njeap (hj v,) 2 %N, eap (Nj,247)
u==1 0

] J
il bote, 11

] 7 t {
by + (277 +ota P (2 T kg P
Iy Y1

T 41 . 1
f dzl;kﬂ"‘l >\1/c+1 exp (_>\Zl:+1 L ]+1)
t .
xip 7}_“:%_;5[];) —(z;’”+1+...+z,k+1)
Iy VES!
0
) def, N, exp (— 14)
H f lq+1 q p( >\q .qu +1 ) (310)

3 3 t
CFIn 0 B - (e e
RS g
Set

yl=1al + -+
We calculate the tail of the above integration as follows:

7 Y+l
by F 07— w
Ip

RS

I(z) & f dx,i"“ N

i
. F+1
L, 1 exp (-X;
£+l

; T

41 by, T )
p %1

wto-u

Iy Y41
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[ee]

: .q . ¢
H f dlgq+1 Ngeap (-2, ol )
g%, yltk+1+1 — oyt
et g
b1 yr -yt
Ty Yl )
i H i
o Lk . RSt . k41 ;
e | dl[’;;+1+1 Ni,,, €xp (mxi’fﬂll'm“ ) TI eap =X, (Uz‘H oyl
y[’p _ yl'kﬂ 474 !
1y et
J t
G +y? -yt
Iy RS ] .
i [ H
— e . k41 . b )
= f ‘13«1, +1 xi,‘+1 exp (_>\xl, 1) 11 eap =X, (Ul, - )]
; 0y £+1 £ +1 ¢ Ai k41 !
wr -yt ke
Iy RS

\; . . .

b R N7 J 1 .

= (e M eap N T T emp N (P - )
A Ip £+ (I#ikﬂ e+l 7

>\ik+l My it q
= (1-e ) IT exp N (w” — vl
A 0, 2 !

N e "
g T et
470 yzjz -y

From the final result of (3.10) and (3.11), we get

1
¢ L 1+1+y, 11

ry o . . . .
= T [ da Njeap (gl [ dwi® ng, eap ((hjpi0)

u=1 0 11
Y|
o0

q N N xd Ny RAER

11 f dzlq+1+1 q €%P (- q zlq+1) N (1-e )
175, w? -yl
JP q

7 J J J J J J
= Plo<r <ty ...,0<7, <ty 5 b P P g R ATREEE
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7 i1 -\t
T AT (r'+ +qu)<Tl +1>\/L ([7é]p X (1-e¢ D)
»
7 -

= Pluy=iy, 1y<<ty; s pe=tlp, Tp <t ]- )’iﬂ (1-e¢ M"'H)

k1 >\
Y

= 1 )
j=1

by the induction hypothesis. Thus, we have proved (3.9) for any integer k.

Let t; —o0, 1 =1,...,k, we obtain

) _ k )‘i,
Pluy=1y, ..., pme=4%)= 11 _ (3.12)
J=1 A
Thus,
, . m m
b“"k:%]: 2 E P“lezl;--~;ﬂk:3k]
T =1 1y==1
m m k >\
== E
ik~1:1 Zl——l ]Ll
m m k >\
S s
=1 fp=1 j=2
N (3.13)
Since k is arbitrary, we have
) k >\ k .
P[Mlzzl) LR :u’]c :Z]c [I —>‘\“‘ - HP[H‘j:Zj]r
=1 ]'__—_]_

so that {/_Lj} are independent and identically distributed as (3.13). Also from (3.9), we

get

Plry<ty, ..., 7 <t]= E Pluy=ty, ry<t, ;- =1, 7p <t}

L =1

T|Ms
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m m EoON;

t ERY
= 3 3 [[—0-e ")
1 =1 11==1 j=1 A
k -\, .
— T (e 7). (3.14)
J=1
Thus,
Plr,<t,]=— lm Plrn<t,,..., 7T 1<Ul._,, T <<l
[Th <<ty ] S [ <<ty, y Ther<tpoy T <l (3.15)
7 =1,k-1
— Nt
=1 - F
From (3.14) and (3.15), we have
A k Xt k
Plr<tt,, .. ., <t]= H(l»—e ) = fj Pr;<t;]
J=1 j=1

This shows that {T]-} are independent and exponentially distributed as in (3.15) with
intensity N . Consequently, N(f) is a Poisson process with parameter A . Furthermore,

any collections of {7; }, {yt; } are independent by (3.9), (3.13) and (3.15).

QED
Lemma 3.4. lim L N() =X as.
t—oo t
k
Proof. Let ¢ = 3 7; be the waiting time for k renewals. N(¢) is the number
=1
of occurrences in {0,¢]. Then iy < & < Ey()41, SO that
¢ 4
N() < t N(t)+1 (3.16)

N(t) = N() N(t)

Since
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k k
P(N(t)Y<k) = EO\—”— e M 0 as t—oo,

izo k!

it follows that N(t) — + oo as ¢ — oo a.s. By the strong law of large numbers, we

have
im tN(l)——— T—l a.s
t—00 N () o
and
¢ t
lim ACOLEY = lim N )+ ~N(t)+1 = —1— a.s.
t—co N(t) t—oo N(t)+1  N(t) A
Thus, by (3.16), the result follows
lim t = a.s

QED

We are now in a position to prove the main result.

Theorem 3.5. Consider the stochastic system (1.1) with the staled assumptions on

the processes N; (), t=1, ..., m. Then
ro2 klznooln E log 'D#ke"’*...l)“le"" . < oo (3.17)
exists and
r o= Eo—% log ‘DMGAT"...DuleAT1 a.s. (3.18)

Consequently, if r < 0, then the system (1.1) s asymptotically stable almost surely. If

r > 0, 1t 15 unstable.
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Proof. By Lemma 3.3, we know that {r; }, {§; } are i.i.d. and any collections of

. A .. .
them are independent, so that {D u, © T‘} forms an i.i.d. sequence. Evidently,

B 10g+]|Dﬂ16ATlH < E log+(HDulHeHAHTI)

< Lolog™[|D ||+ (1A £ (7)

(32 log™[ID; || + [|4|]) < oco.

1=1

< L
DN
By Theorem 3.2, r exists and (3.18) holds. Also,

log |z (t)| = log | exp [A (t-ty )ID i€ (A TN D, eap (A )z, |
< log |zo| + log |leap [A (E-ty)]]]

+ log [|D,, emp (ATyey) - - Dy exp (A (3.19)
Since iy < ¢ <ly)pp then 0 <&~ iy < T4 and P (7 )<<oo) = 1, so that
1 1
” log |lexp [A (t =ty || < n log |lexp (A Ty (1y41) ||
1
< v HA H TN (t)+1

— 0 as f — + oo «a.s.

and for z 540,

lim—l-log|zol = 0.
t—o00

By (3.18), we have

— 1
tlmoIoT log ||D i () €FP (ATn@y) - - Dyeap (A 1]

N(t)
t

- 1
= lim

t—oo N (1) log ”D“N(t)ezp (ATngy - Dyeap (A ] -

= r A a.s.
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Thus from (3.19), we obtain

T 1
lim =log |z ()| <rX as. (3.20)
t—o0 ¢ -

Since we can take a time sequence { =7, + -+ 4 7, and for any ball B(R) =

{2 € R", |2 | <R}, wehave
sup lim + log la(t)| =rX\ as.
zo€ B(R)t—oo 1

Hence, if r < 0, then |2 (¢)] — 0 as. for any initial state. If r > 0, then =2,

such that

lim |z ()| =0 a.s.
{ —00

and then the system (1.1) is unstable.
QED

Remark. 1In the critical case r = 0, we have to investigate the order of

log |z (t)]. We conjecture that it is unstable.

4. Random Walks and Almost Sure Stability.

In the previous section, we derived an almost sure stability theorem based on the
asymptotic growth rate of products of random matrices. In this section we are
interested in the behavior of random products of matrices acting on initial states z, i.e.,

does the limit of

1 A A
” log [|D, ¢ T - Dye 2ol
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exist? If it does, is it equal to the rate r computed in the last section? In order to
obtain a more precise result, we would like to treat random products of matrices in some
way as random walks on the sphere. Results for random walks on semi-simple Lie
groups are known in . Furstenberg’s papers [15], [16] and [18], sce also [14] and [17] for
related results. Multiplicative ergodic results of products of non-singular matrices can
also be found in [19] and [20], see also [21]. In this section, we generalize these to general

semi-groups, since the terms D; arising in our model may not be non-singular,

Consider SG  as a topological semi-group of n X n real matrices such that
(91,92) = 9199 91 92 € SG, is continuous in the matrix norm sense. Let u be a regu-
lar probability measure on SG. Without loss of generality, we will assume SG is the

FAN

closed semi-group generated by the support of u . Define a SG action on M £ Sty

0}, where S™ ! is a unit sphere in IR". If ¢ € SG, 2 € M, then
g

[

oz ||

if ||gz || >0
(4.1)

0 else

where gz is the product of a matrix ¢ and a vector z € R".

Definition. A regular, Borel, probability measure v on M is said to be an

invariant measure of pif p L v=1v, le.

[ J(gox)du(g)dz) = [f (z)d(z)

SG XM M

for any continuous function f on M. We denote v(f ) £ ff (2)d (z).
M
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Remark. The measure 7 which has support {O} is always an invariant measure of
.
Lemma 4.1. [f there exisis an z, € ™1 such that g © 9120540,

g; € suppp, t.e. 0¢& SG, then there exists an invariant probability measure v 4 U

of p on M with supp v C s

Proof. Let v, be any probability measure on M such that vo({zo}) = 1 and
. L k-t
vo(M\{z,}) = 0. Consider the sequence v, == T E Vo k >1 where pt s i-fold

convolution of g. For each coutinuous function f on M, we have

vl f )= [ (z)dv; ()
M

= —L | S (g5 gr02)d pulg;) - - dplg)d ve(a).
z:O SG X - X SGXM

t fimes

= — }J f (g g0z0)dplg;) - - dplgy) (4.2)
z*OSGX s XSG

1 times

Since M is compact, f is bounded by its sup norm ||f ||<oco, so that
v (f )] < ||/ ||, ¥ k. By the Banach-Alaoglu Theorem, there exists a subsequence

v;—v, a probability measure, in the sense vy (f ) — v(f ) for each continuous f on M.

Since

[+1 1

L Vier ™7 Vo — Iy

1
= (V41— V) + T (V41— Vo) = 0,

as | — oo, we have p v =v. Finally, if 0 ¢ SG, then from (4.2), we see that

v;({0}) = 0, so that v({0}) = 0.

QED
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Remark. 1If every element in supp u is non-singular, then the conclusion of Lemma

4.1 holds.

Let ¢ be a collection of all the invariant probability measures of u. Then @ is
non-empty convex and compact in the weakx* topology. By the Krein-Milman Theorem,
@) is equal to the closed convex hull of @, the set of its extreme elements. Let {XZ} be

independent SG -valued random variables with common distribution . We define
Wiu) & X - - X, u €M (4.3)

and a random walk when W, (u) is projected on M. Let Z, be a random variable which

is independent of {X; } and has distribution v € @, We define a random process as fol-

lows
Zk é_— "Yk' o] Zk—l' (44)

By induction Z; has distribution pgv=v, k>1. {Z,} is stationary since
{Z¢, Zyyr, -, Zpim ) is determined by the distribution v of Z; and the transition

probability

e

Be = pybd,, 2 € M

which is independent of k. Since X}, is independent of {X;, Z,, ..., X, Z,, Zo}, it
is easy to check {Xjy,., Z;} is a stationary Markov process. We have the following

lemma.

Lemma 4.2. If v is an extremal invariant probability measure of p, then the
corresponding process {Z; } is ergodic in the sense that invariant random variables of the
shift operator w.r.t. the above process are constant. Thus, the ergodic theorem holds,

€.,
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k
lim — ¥ /(&) =ul) as (4.5)

k—o0

for any continuous function f on M. In addition, if v*, v’ € Q4. then cither vo = v”

or they are mutually singular.

Proof. If {7} is not ergodic, then from {22, Chapter X, Theorem 1.1, pp. 460],
there exists a non-constant bounded invariant random variable which is a measurable
function of Z,, say ¢(Z,). By stationarity, ¢(Z,) = ¢(Z,), k >1. Since we can
translate and multiply ¢ by constants without violating the measurability of ZO, we can

assume € < ¢ < 1-¢ for some ¢ > 0 and ¢ is not a constant function. Let v, be such

that dv, 2 ¢dv. Then

pen(f )= [ [ (gox)é(z)d u(g)d v(z)
SG x M
=E ([ (Z)HZo)
= [ (f (Z1)¢(Z1))
= [f (z)¢(z)d v(z)
M

= v (f).

Let ¢ & f¢(a;)d v(z). Since 0 << ¢ << 1. Then 0<<c¢ <1 and L v, € Q. In the
M ¢

same manner, let v, be such that dv, 2 (1-¢)dv. Then

; Vv, € Q. Since ¢ is not
—c

constant, —1— v, % v. But,

1
1-c

V=1, FVy=2¢ (]7 vy + (1-c)( Vy)

which contradicts the extremality of v . By the strong law of large numbers [22

’
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Chapter V, Theorem 6.1, pp. 219], we have the desired result (4.5). Now, if
v, € Qg v Fr and B = supp v’ (supp v” F §, then there exists B, C B such

that v (B,)s4v” (B,). From (4.5), we have for u € B,

vi(B,) = hm I E X, (X; - - Xjou)=rv"(B)
— 00

{=1

which is o contradiction. Thus, supp v/ (supp v” is of mecasure zero w.r.t. both v/ and

v”. Hence v/ and ¢” arc mutually singular.

QED

Remark. Since {X;} is i.id., then {X;} is ergodic by [22, Chapter X, Theorem
1.2, pp. 460]. If {Z; } is the process corresponding to v € @, then {Z; } is also ergodic
by Lemma 4.2, so that {(Xk+1, Zk)} is a stationary Markov ergodic process. Hence, we

can apply the ergodic theorem {22, Chapter V, Theorem 6.1, pp. 219] to conclude that

. 1
lim —
k—oo Kk

HE/*

f (X, Zi 1) = pXv(f) as. (4.6)

for all f defined on SG X M such that uXv(f *)<oo, where f © == %( [ [ 1+1).

Lemma 4.3. Ifv € @, then E = supp v s a closed invariant set, i.e., SGo E C

E. Conversely, if I is a closed invariant set, then ={ v € @ such that suppv C E .

Proof. If v=1p x Vs le

[/ @)y = [ [(gox)dulg)dv() (4.7)
M SGxM
for all continuous funetion f on M. Let E — supp v and
{9 € SG | goE CFE}. (4.8)
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Consider f = xg. Then (4.7) becomes

1= [ xplgox)dp(g)du(z).

SG XE
Thus, u(H) = 1. Since [ is closed, /{ is a closed sub semi-group in SG'. Since SG is
the smallest closed sub semi-group that can support g , we have H = SG and EF is an

invariant set. Conversely, if I is a closed invariant set in M, let Vo be any probability

measure on M with support contained in IY. Then

Nk *I/O(E) = f Xploy - g02)dplge) - dplg)dyy(a) =1
SG X - XSGXE

k times

for SG o £ C E. Thus supp (p* xY0) C E. By the argument used to prove Lemma

k-1

1 ; . .
4.1, vy & EE“Z*VO“" v, say, and p, v = v. Since supp vy C E,\k, and E is
1=0

closed, we have supp v C E.
QED

Lemma 4.4. If SG is transitive on S™ ™', ie., go = y always has a solution g €

L then Qo \ {T} has at most one invariant measure vy of p such

SG for all z, y € 8™
that supp vy = S™ ..
Proof. If Jvg € Q4 \ {7}, let £ = supp v,. Then E is an invariant set. Since

SG is transitive on %', we have E D s™ ! Since ¥ € @, and different invariant

probability measures of p in (), are mutually singular, we have supp v, = s,
QED

Remark. We have established the one to one correspondence between an invari-

ant probability measure v and an invariant set £, S supp v. If v € @, then the

38



interior of [9, are disjoint. Let [ = s\ U B, Wecall I' a lransient set. Thus,
re Qo

we have a partition of ™! into invariant sets {£7,} and a transient set [7. Since [7 can-

not contain an invariant set, every states in [ will eventually go to U [, by actions
ve Qg

of SG.

Remark. IFrom Lemma 4.3, we know that p has a unique invariant probability

-1 . . C . . n—-1
measure on S™ Lifr there is only one distinct invariant set on S .

Combining the above leminas, we obtain a key result.

Theorem 4.5. Let SG be a closed sub semi-group of n X n  matrices and
v E Qg be an extremal invariant probability measure of p on M = st U {o}. Assume

that

f log™ | gu | d p(g)dv(u) < oo

SG M
and let
r, = f log | gu | d pu(g)dv(u) < 0. (4.9)
SG M

If {X; } ds id.d. with common distribution p, then we have almost all u € supp v,

lim % log | Wi(w)| ==r, as. (4.10)

k=00
Proof. Consider

) log | XppiZp | 12 (@) ] =1
/ (xfk+114k) - {

- OO ,Zk(W):O

on SG X M. Then f A(Xy.,.Z,) is integrable by assumption. Since {Xj 4.7} } is

eregodic, the law of large numbers tells us
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= uXv(f )= 1m —1/: E J(X, 7 ) as.

k —00 ~
. 1 - -
= lim —log|X, - X,Z,| as (4.11)
koo k
| Z;(w)| == 1 for all 7 and w . Note that once

The last equality is easy to check if
= 0, we have Z;(w) == 0 for all [ > 1, so that both sides of last cquality of (-+.11)

Zi (W)
are — oo. Hence ((1.10) holds tor almost all v &€ supp v
QED
Remark. If u € supp v such that (4.10) holds, then for any o 7é 0, we have
. 1 . 1
lim —log | Wi(au)| = tim = [log| Wy(u)| + log|a|] (4.12)
kE—oo k oo k
= lim " logl Weu)y| + o0
=7, as
Definition. Let v € @\ {7} be an extremal invariant probability measure of p
We call
B {u € suppv | u satisfies (4.10) a.s. },

an ergodic component of the process {X; ., Z; } and

FO A SI\(UE),

a {ransient component .

Lemma 4.6. Let vy, vy € Qo \ {U} corresponding r,, ro, respectively. If

r, < ry, then
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lim % log | Wi(oqu, +apus) | < ry (4.13)

k-0
Joru, € E2, u, € B and |a;| + |as| > 0.

Proof. Case (i) r, > —oco. From (4.10), we know that for each ¢ > 0, there

exists a T(e) > 0 such that | Wi(o;u)| < |y | eFi +E), 1 =1,2, for all £k > T(e).

Thus,

| Wilaqu, + asus) | < JagWiu) | + | aaWi(us)|
< o | PR | avy | eFlreto
< ag| + Jan)e "7,
Letting ¢ | 0. we have the result.
’ Case (ii) — co == r, < r,. Then for each ¢ > 0, =} T(¢) > 0 such that
| Wilaqu )| = o | | Weu)| < Jole
and
| Wilagug) | = o | | Witug) | < [ap]e="?

for k> T(e). Hence,

P W (o, +agug) | < |ogWilu) | + | agWy(uy) |

< Jagle + Jayle 2"

<(Jay| + Jag])etl=??

for k£ sufficiently large. As e | 0, we have the same result.
Case (iii) ro = —o0o. For each N > 0, =} 'T(/N) > 0 such that
| ‘Vk ((_Yl' ’Ui) ! = l a; l l ;’Vk(’lli) i S I vy l 6_kN, i:1,2,

for k > T(N). Thus,
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N eN

| Wi(oqu, + apuy) | < IO‘1|‘3_Ic + 10‘2i6~1L

= (o | + |a2\)€_kN-

As N — oo, we have the desired result (4.13).
QED
Lemma 4.7. There are at most n ergodic components E;° corresponding to

different values of r; withv; € Q4 \ {7}.

Proof. Choose arbitrary [ ergodic components Eio corresponding to different r,,

i=1, ..., [. We claim the set {u; }, where u; € I;°, are independent. Without loss of
. 1-1

generality, we can assume 7y < r, < .-+ < r;. Suppose =1 < I, u; = 3 oy
i=1

Then Lemma 4.6 unplies

r, —

i im ijlo@l WiCu)) | <max{ry, ..., r,}=r

1
k*}OO
which is a contradiction. We complete the proof by noting that there are only n

. n-1
independent vectors on S .

QED
Lemma 4.8. Let v, vy, € Qu\ {U} withr,<r, Then
lim —11:- log | Wi(au, + agug)| > 1y (4.14)
P,
foru, € EQ, us € 3 and 0,540, Thus,
lim + log | Wi(ayu, + aguy)| = r,. (4.15)

ko0
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Proof. If a; = 0, (4.14) is trivially satisfied, so we assume a; 5 0.
Case (i) ry > co. From (4.12) and ¢ > 0, | T(e) >0 such that k > T(e), we have
for o; 50, 1 = 1,2,
k
| Wi(ou,) | <e (ot

| Wilaqug) | > ¢ 2 7. (4.16)

. . 1
Without loss of generality, we can assume ¢ << = (rg—ry). Letb=1ry — r, — 2¢ > 0.
Thus

| Wiloguy + aguy) | = | Wilawus) | — | Wiloquy) |
2 6k(r2—e) _ ek(r1+5)
Z(l . e*5)6k(r2“5)

for k& > 1. Letting ¢ | 0, we have (4.14).

Case (il) 7, = —o0. For each ¢ > 0, o I'(¢) > 0 such that whenever & > T(e),

we have | W, (ayu,)] < € and (4.16) holds. Hence,

k(ro—e€) _ 6! > cek('“z*f)

| Wiloquy + aquy)| > e

for some ¢ > 0. By letting ¢ | 0, we have (4.14). Consequently, we know (4.15) with

Lemma 4.6 and (4.14).

QED

Lemma 4.9. Letv, 54 v, € Q \{U} withr, =7, If |a,| + |ay| > 0 and

u, € EX, uy € EQ, then

lim + log | Wi(ayu, + apuy)| = ry=r,. (4.17)
k—oo k
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Proof. First note that if ro = — o0, then (4.17) is true by Lemma 4.6. Now

assume r,>-00. Without loss of generality, we can assume o;70, a,5%0. Since

| Wy (uy) | == 6kr'+o(k). i==1, 2, then,
| Wilagu, + agug) | > | ag| | Wilua)| - oy | | Wi (uq) |
= (Jag| e®® = Jay[)e"®)
If o (k) has no finite limit as & — oo, then (4.14) holds for all «;, 7 = 1, 2 and Lemma

4.6 implies (4.17). Since v, 7% vy, £ (M E; = 0, so that {u,, u,} spans a two dimen-

sional subspace D in IR". Suppose lim o (k)= a < co. We finish our proof by not-
k00

| oy |
ing that for those v == o u, + wy,u, with —I———l = e, u can also expressed in terms
Qg

of other two vectors in DD such that (4.17) holds.

QED

Theorem 4.10. If SG is irreducible in the sense that SG cannot have a non-trivial

invariant subspace in IR™ | then r, is independent of v € Qo \ {T} and the limit in (4.10)
holds for all u £ 0.

Proof. Let v € Q¢ \ {V} and so p,v = v. By the assumptions on SG, v cannot
be supported on a linear subvariety on s"™', ie. a proper subspace of IR" projected on
s®™ ' 7Thus, 4 {u,, ..., u,}, an independent set in s™! | such that
1 W B -

lim zlogl ()| =r, as. =1, ...,n

k—00

By Theorem 3.5 and L.emma 4.6, we have
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sup lim 1 log | Wi(u)| == lim L log
U0 k—ou k k—oo k

XXl = <y (418)

Let v° € Qo 1t u € F2, then (4.18) implies r,- < 7,. We can reverse the order of
v and v° to get the equality r,.- = r, = r. Thus, the rate is independent of the choice

of an extremal measure. By Lemma 4.9, (4.10) holds for all u 0.

QED

Corollary 4.11. If SG is transitive on S " and v € Q, \ {D} eaists, then (4.10)

holds for all w5~ 0 .

Proof. The result follows from Theorem 4.10 by noting that transitivity of SG on

s™ 1 implies irreducibility of SG .

QED

In general, it is hard to determine an invariant measure and calculate the exact
value r, by integration. But in many cases, we can dectermine stability of a given sys-
tem if we know the sign of r,. At this stage, we state a known result of Furstenberg in

[15, Theorem 8.6, pp. 426] without proof.

Theorem 4.12. Let G, generated by the support of u, be a non-compact subgroup

of SL(n). If either condition
(1) all subgroups of G of finite index are trreducible
or

(i) G is connected and wrreducible

45



is satisfied, thenr,=1r >0, \* v € Q,\ {7}

Corollary 4.13. Lel the group G, generated by the support of 1 be semi-simple in

GL(n). If G is non-compact and irreducible, thenr, =r > 0 v € Q,.

Remark. If SG is in GL (n), then let G be the group generated by the support

of pp and SG C G. Then
1 7 7 1 1 - e .
% log | X -+ - Xyu | = —l-c—logl Yo - Yyu | + — log | det (X - - - Xy) [4.19)

where

Y, X
- 4.20
; sgn(det X;) | det X; | 1/n ( )

belongs to SL (n) if either det X; > 0, /¢ or n is odd. Moreover, if the corresponding

G in SL{(n) of & satisfies  conditions of  Theorem  4.12, then
lim —z— log| Y, -+ - Y,u| >0forall u 5% 0. In addition, if |det(X;)| > 1, then we
k—o00

know the limit (4.19) is greater than zero.

Finally, we can use Lemma 3.3 to obtain a more precise result than Theorem 3.5

for system (1.1).

Theorem 4.14. Consider the system (1.1) with the assumptions slated in section 8

on the processes N;(t), i=1,...,m. Let u be a measure on R" *" defined by

A

p) & P {D,e € ry, r € BrR"") (4.21)

and SG be the closed semi-group generated by the support of u, t.e.,

SG = smallest semi—group containing {D;e™, 0<t <oo, i=1,...,m}.
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Consider Q, a collection of extremal invariant probability measures of j on M. Then

,= 3 >\iff log | Dyetu e ™ dt dv(u) < oo, v E Q, )\ {7} (4.23)

r
i=1 Mo
and
lim L log—l—x(t—)L = Ar, a.s., (4.24)
t—co ¢ | 24 |
for all z,€ES. There are only  finite different values, say
ry<rg< - <r, 1 <n. Inaddition, of UE? contains a basis of R™, then the

system (1.1) us asymplotically stable almost surely if r; < 0 while the system (1.1) s
asymptotically unstable almost surely if v, > 0. In case r; < 0 and r; > 0, then the

stability of the system depends on the initial state x .

Proof. Let

Wi (zy) == DMCAT" SR Dﬂchrlwo. (4.25)
Ifl’oE EVO)VE 620’
A(t-t
log |2 (t) ] == log | et N(‘))lwzv(t)(l‘o) |

< A [lrvyen + log | W) |,
so that using Lemma 3.4 and Theorem 4.5,

1

Him l-log|:v(t)| < lim & HA [lrn(ye + lim )
t—c0 ¢ t—oo & t =00 t

0 log | Wy |-
=0 + r,\ as. (4.26)

On the other hand, using | e z | > e AL | z |, we have
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loglz(t)] =2 = [lA |ltnyer + log| Wiay(zo) |-

Thus,
1 1 ) 1 N()
lim — log | = (¢ > - lim— |14 |7 + lim log | W z ‘
im = lz(t) | = Jim = HA 7wy N g Whayzo) | "
=0 + r,\ a.s. (4.27)

From (4.26) and (4.27), we prove (4.24). By Lemma 4.7, there are at most n ergodic
components corresponding to different values ry < rp << -+ <1, [ < n. If uE?
contains a basis of IR", then the asymptotic growth rate associated with any initial state
is one of the r; by an argument similar to the proof of Theorem 4.10. Thus, the last

result just follows from (4.24).
QED

Remark. Il SG is transitive, then there is at most one ergodic component. If SG
is only irreducible, there may be many ergodic components, but r, is independent of the
choice of v € @, \ {T}. Stability of the system (1.1) depends on the sign of the rate r .
If {£.} doesnot contain a basis of IR", there is no result corresponding to (4.10) for
u € FO, the transient component. The behavior of transient states must be investi-

gated individually. An example will illustrate the difficulty.

Consider

Then
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10 » -1 0
expAt = . , D=1 + B = .
—e 1
It can be shown that the unique invariant probability measure v 74 U of i1 concentrates
on two points P, = (0,1) and P, == (0, -1) on the circle with probability v(P,) =

The corresponding rate r, == O because trajectories starting at I, or P,

V(P ,) =

o |

are fixed. But trajectories starting at transient states in F*= S \ {P,, P,} go to

infinity with rate = 1.

5. Large Deviations of Asymptotically Stable Systems.

In this scction, we assume the system (1.1) is asymptotically stable with r, < 0

and the same assumptions as in the previous sections. Now for z, € El?, we have

lim Llogﬂt—l:ryk << Q.
t—oo ¢ ]l()‘

Then for each € > O with 7, X\ + €<0, = T(€) > 0 such that for { > T(e), we have
ltloglx(t)l < r,N + € <0. (5.1)
Since the sample path of z (¢)is piecewise right continuous with finite jumps during any
finite interval, = M ,(¢) > 0 such that
|2 (t)] < M,(e) as. \f t € [0, T(e)].
Let
ruNF e)T(e)}.

M (e) == max {1, M () e

Then
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l2(t)] < M@ e ™ 9T < M) "N vt e o, ).

so that with (5.1)

ryNF et

la(t)] < Mle) ¢! a.s. for all ¢ >0. (5.2)

Thus, from the Markov inequality, we get

P(lzt)] >r)y< ZLle)] o M cora
o - R

- I
We would like to obtain a similar result for large deviations,
P (glgﬂx(s)[ >R)Y< M(e, 24 R)e™, t >0,
where 0 > v > r,\. Problems of this kind with wide band noise were considered in
(24].
Beftore going further, we note that if ¢;(.,s) are F-measurable where
F, = o-algebra generated by {N;(7), 0<7<s, (=1, ...,m}

and {Ni (T)} are independent Poisson processes with intensity \;, respectively. Then

t
b f‘li (w,s)dN ; (w,s)

1=10
is a martingale because IN; has independent increments, where
Ni(w,s) 2 N;(ws) - N\ s
In addition, we need to construct integrable martingales in exponential form as in the

following lemma.

Lemma 5.1. Let 8 >0
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t
m

mgl) =3 fai (w,s )cU\N/i (w,s)

i=10

and

¢
m

<mg(t)= = 3N f{cxp (Ba; (w,s)) = 1~ Ba;(w,s)]ds.

7 =1 4]
Then exp [m 4(t) — <<my(t)>] is an integrable martingale with mean equal to one.
Proof. Let yg(t) = exp (mg(t) — <mg(t)>). Then
t

¢
yg(t) = exp{ - E)xif(eﬂa‘~1)ds -+ Zf,@ai dN; }

i=1 0 1=10

& eap [z ()]

Thus, using the differential rule for point processes, we get
m ﬂ(l m
dy (£) = yp(t)= 33Ny (e -D))dt + 33 feap (zp(t)+Ba;) — eup (2 g(E NN (1)

=1 i=1

_ —}% N @yt + 3 (7 1) eap (2 o0 )AN; (1)

=1 i==1

3y (") y )N (1)

i=1

and so
t —
Ba,
ya(t) =1 + [ (™" =1) yp(s)dNi(s).
0
We have IV yg(t) = 1 and the result follows immediately from the above discussion.

QED



Remark. Note that ¢”® — 1 - Ba; > 0. It follows that <<mg(lf)> is non-

decreasing. We call <im g(¢)> the increasing process associated with m g(¢).

Now, we return to the problem of large deviations. Let
p=log (1)
and

. x(t)
le(t)]

Then

T m
dp(t) — [Qfa(;—)] Az (t)dt + Soflog|z(E)+Ba(t)| — log|z(t)]1dN;(t)

=1

=M mo (BT
lx(t)|2/l(t)t + igllog lﬂi(t),l_ (1)
= o)t Ao)dt + fj log | D;0(t) | dN;(t)
7=1
where
D, =1 + B;.
Let
Lp(t) 2 )T Aow) + f; \;log | D; 0(t) | .
§==1
Then
t m ¢ N
p(t) = p(0) + [Lp(s)ds + 33 [log |D;0(s)|dN;(s). (5.3)
(] {=10

The last term
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t P
m g(t) 2 E ﬁflog | D;0(s) | dN ;(s)

is a zero mean, right continuous martingale and

m 4
Emf()= % N\ JE log® | D;0(s) | ds.

i==1 0

m
= < (32 Nilog®||D; | )t.

=1
From the lemma in [24, p.459], we know that

—lt-ml(t)—+0 as t — oo a.s.

Thus in (5.3)

t
lim —l—pr(s)ds == lim £ r,A <0 a.s. {5.4)
t—oo o tooco I

In the same manner used to derive (5.2), we know = C'(¢€) such that

t
pr(s)ds S (rox+et + Ce) as. t >0
0
and r, X + €<0. The increasing process corresponding to m ﬁ(t), g >0is

¢
<mg(t)> = .Exif[wi()(s)]ﬂ ~ L - Blog | D; 0(s )| |ds.

1=1 4]

We will use the integrable martingale eap [mg(f) ~ <<mg(t)>] with mean 1 to derive

the large deviation result following the technique used in [24]. Let
[t] = integral part of ¢

(t) = fractional part of ¢
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and

m

Mp= s {SNIID0]7 = 1 - flog| Di0]]} < oo. (5.5)
T =1
Then
Plsuplz(s)| >RV < O:P ' >R
{supla(s)| 2 }_ng L N LA Ol 2y

o0
= P su lo > RlogR
j—_g-)[t] {jS 8—(t€<1‘+1ﬁ g]x(s)| =flog }

for any 8 > 0, and

J=< sf(%<j+1{mog I z(s) | } S J< si?&jﬂbﬂlog l z(s) 1 — log l To I

s

~ [Liog|a(n|dr}

8

+ su log | + L1 . d
J'sz(t§)<j+1{ﬁ[ &l 7ol { og|a(n|drl}

< SU

< s Almgls) - <mgls)>]

+ Bllog[zo| + (r, X +e)(j+(t))

+ C(e) + Mg(j+(1)+1))}.

Hence, using the martingale inequality, we get

P >R
{jgsf(?€<j+1|x(s)|— }

=1 { i< 3_3(%’<j+1{exp [mg(s) — <mgls)>]} >

exp (Bllogl — log | 70| ~ (ruh + G H(E) — C(e) = Myj+(t)+D)) }

54



p
[ | 20| ) o (T O HOE O T+ )41)

B
] . C(e)+ig Qo Fer F g +(t)

We can choose f > 0 as small as we like in (5.5) so that

B =r, N + € + M3<O'

Thus,
ind l Lo ? Ce)+Mp .
P {suplz(s)| >R} < %) [ ] e B o BT +()
52t = LR
i B (et B
= [ 2] ] ¢ MBI >0, (5.6)
R 1 — C’Y(ﬂ,e) -

Consequently, we have proved the following theorem.

Theorem 5.1. If the system (1.1) s asymptotically stable with r <0, then = con-

stant M(z o I, €, B) and 0 > (B, €) > r, X such that

P {széplx(s)|ZR} < Mz R,e B) eP9 ¢t >0
s>t

6. Stabilization.

In this section, we examine the control problem of stabilizing a linear system with

Consider the linear system with

Poisson noise disturhances using feedback controls.

state- and control-dependent noises.
+ Bu(t)dt + Cx(t)dN(t) + Du(t)dN(t) (6.1)

2(0) == 2,

dz (t) = Az (£)dt
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where A ,C are constant n X n matrices; B ,D are constant n X m matrices; N,(¢)
and N,(t) are independent Poisson processes with intensities A; and X, respectively.

We want to stabilize the above system (6.1) by feedback control

w(t) = — Kz(t) (6.2)

with K a constant m X n matrix. Substituting (6.2) into {(6.1), we obtain

dz (t) = (A -BK)a (t)dt + Ca(¢)dN(t) — DKz (f)dNy(t). (6.3)
Now, let ¢, = C', 'y = — DK and {p; } be a random process with values {1,2} such
that p; = j means that Nj(tz-) increases at the occurrence times {ti} for the sum pro-

cess IV (t) == N,(t) + Ny(t) as before. Then the state trajectory is

z(t) = cap (A -BK)l -ty +C ))exp (A-BK)tn@gy -

BN

(4O Jeap (A -BK)1, 2

where {Ti} are the interarrival times of the sum Poisson process N(t) with intensity

N = A; + Ao Stability depends on the Lyapunov characteristic number

r (K ) =X\ [ [log | (I+C)eap (A -BK)t 4| e did u(z,)
Mo

+ Nof [log | (I-DK Yeap (A-BK)t z4| e dtd n(z) (6.4)
Mo

where v is a normalized extremal solution of

o0

UC) = N\, [ [ xp((I+CYeap (A-BK Ytox) e~ dtd ()
"o
+ Nof [xr((I-DK Yeap (A -BK )t oz ) e " dtd () (6.5)
ro

for all T in the Borel sets of M = S" ' U {0} and x is the characteristic function with
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values {0,1}. Let

r(K) = klilnoo% E logl|(U+C, )exp (A-BIO)r, - - - ([+C ), exp (A -BK ) []. (6.6)

From (6.4) and (6.6), we know that r (IK) < r (). We would like to have r (l{) << 0

for some [{ . It is suflicient to have

L log||(I+C ), Yexp (A -BK)m ||

[ee]

= Ny [log | [(/+C Yeap (A -BK )t || e ~™ dt
0

[e¢]

+ nglogll(I—DK)cxp (A-BK)t || e~ dt (6.7)
0
< 0

for some matrix . Thus, we have proved the following theorem.

Theorem 6.1. Consider the system (6.1). If condition (6.7) s salisfied for some

constant matriz I, then the feedback control uft) = - Kz(t) can stabilize the system

almost surely.

Remark. Suppose D = 0. If (A ,B) is controllable in the sense that
rank (B ,AB,.., A" 'Bl=n
then we can locate the modes of the system arbitrarily by suitable I{. Thus,

E log||(I+C)ezp (A -BK )r||
o0

= X [log||(I+C Yexp (A -BK )t || e M dt
4]

[ee]

< log||[+C || + [log|leap (A-BK)t || xe "M dt
]
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o)

<log|[[+C || + [ot Ne Mt
0

— log||[+C || + % (6.8)

where we can find K so that the eigenvalues of A -BIC lie to the left of o < -\| log

||I+C]|| in the complex plane. Actually, if |[/+C || < 1 we can choose ¢ << 0. Thus

(6.8) is less than 0 and condition (6.7) is satisfied.
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