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Bounds for the degrees in polynomial equations

*
Carlos A. Berenstein and Alain Yger

Let pl,...,pm be polynomials in n variables, with coefficients in
C,Z or other rings as indicated below. The purpose of this lecture is to

indicate some estimates of the degrees and, occasionally, of the size of the

coefficients of the polynomial solutions ql,...,qm of the equations
(1) Py *+..-*pa, = 1 (Bezout equation),
and

(2) p1q1+__,+pmqm=1.

More importantly, we would like to clarify the role of complex analysis
in a problem which is totally algebraic in nature.

I will not discuss the background and applications of the Bezout equation
since the reader can consult [B-S1] for that purpose. Let us only recall the
most recent results.

Assume that V = {z e C" : pl(z) = ..., = pm(z) =1} = o, deg p. = d,,

J J

d1 2 d2 zZ ... 2 dm. In 1987, Brownawell [B1] showed the existence of solu-

tions q; of (1) with the bound

2.n
< i <
(3) deg qj <n m1n{n,m}d1...dn <n dl'

His proof uses analytic methods and therefore requires that the coefficients

of pj (and qj) lie in a subfield of €. Recently Kollar [K] and Fitchas-

¢

Galligo [F-G] obtained the bounds:

3.x .
< (2
(4) deg qj < (2) dlﬁ..dn (Kollar),
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where x = number of indices 1 for which di = 2. Clearly this leads to

the bound
(4") deg qj < {max(B,dl)}n.
The bound of [F-G] is

(5) . deg q € 3d;...d..

In either case (4) or (5) the proof is completely algebraic and works over any
field of characteristic zero. This is the pattern, analytic methods may be
useful to guess or obtain a result about polynomial equations, but when a
purely algebraic proof is found, then the estimates are sharper and the field
of coefficiehts is not usually restricted to a subfield of C.

Let us recall that d? is the best possible estimate for the degrees of

the qj, as order of magnitude goes, given that there is an example showing

that max deg q; b2 d?-—d?_l [M-M] and [Ba-S].
J

The three above proofs are only existence proofs. Then the polynomials
qJ could be effectively found considering the Bezout equation as a system of

linear equations in the coefficients of qj. Namely, each polynomial can be
2

considered as a vector Qj of length (approximately) d? and (1) becomes

the system

Q 1
1 0
(8) (P, iP,i... iP )i | = |:],
1 2 omof A :
Q H
m 0

where Pj is the (Toeplitz) matrix of multiplication by pj. Therefore a
solution to the system of equations (6) exists if and only if V =g. This

provides a method to decide whether V = @, the number of operations is

2
n

1

approximately d (where factors depending only on n are disregarded).

In fact, one can do better. By a convenient modification of the work of



Christov, Grigori’ev and Vorobjov [GV], Regenar and Canny have recently shown
[R], [C] that there is an algorithm to decide whether a system of polynomial

equations

(7) 7 pl(x) = ... = pm(x) =0, xeR,

pj € Zlz], deg p\j <D, rhas a solution or not, with complexity M(mD)n,

where M depends on the size of the coefficients of the pj. Independently,
this result was obtained in [C-G-H] together with bounds on the complexity for
parallelizable algorithms.

Another consequence of the method (6) to solve the equation (1) is the
following. Let us recall that the (logarithmic) size of a rational number
r/s, written in reduced form, is 1log max(|rl,|s{). The size h(gq) of a
polynomial q € Q[z] 1is the maximum of the size of its coefficients. Suppose
that the polynomials pj in the Bezout equation (1) have size h(pj) < h.
Then, if V = @, there are solutions qj € Q[z] obtained via (8) for which

2
deg q d; and hiq,) < d, h,
where we are only giving an order of magnitude estimate for h(qj). In order
to improve on these estimates of size, one needs to explicitly exhibit polyno-
mials qj € Qlz] solving (1), i.e., given by a formula. Following a sugges-—
tion from [B-S2], and formulas recently obtained in [B-Y1], [B-G-Y], one can

show:

Theorem 1 [B-Y2]. Let Pys---sP € Zlz], deg pj <D, h(pj) <h, V=g

Then there exist qj € 0{z] solving the Bezout equation (1) such that

deg qj < nDn

h(q;) < c(n) D% (h+ log m).



This result is valid with D" replaced by dl"'dn and Z replaced by

0k[t1,...t£], Ok the integer ring of some extension k of the rationals.

It is clear that the constant c(n) (explicitly computable) and the
power 8n are not sharp. For that reason, it would be interesting fo obtain
this result by purely algebraic methods. The above proofs depend on‘Complex
Analysis and, in particular, on the theory of Multidimensional Residues
[B—G—Y].V On the other hand, even for generic situations one expects estimates
of the order Dn(h+1og m) for h(qj). We aléo note that this type of
estimate seems to go hand in hand with the estimates for complexity of the
decision problem "V =@ or not," reported above. It is plausible that
there should be a theorem relating the sizes of solutions to polynomial
equations to the complexity of finding them.

Let us turn now to the equation (2). This is only a new problem when
V # g, which we will assume henceforth. Let us assume that Pyr--sP €
Ciz], I = ideal generated by them, deg pj < D (bounds involving the degrees
dj can also be obtained). We will assume also that deg f = d, and f € I.
Therefore, we know that a solution S PERRRL of (2) exists. The question is
how to estimate the degrees of the qj, or more correctly, how to obtain qJ
with good degree estimates.

The difficulty arises out of an example of Mayr-Meyer [M-M], as refined

by Bayer-Stillman [Ba-S]. Given D,n (in fact D 2 5) they show the exis-

tence of polynomials Pyre--sPoiq of degree D, more precisely, they are
sums and differences of monomials, and f, 1linear homogeneous, such that f €
I(pl,...,pn+1) but whenever we write

n+1
=Y e,
pJqJ

J=1

it follows that



n

max deg q‘j =D

(In fact, the exponent they obtain is 2§/5.) The interest of these kinds of

estimates is, among others, that it implies that in general the standard bases
algorithm takes doubly exponential time to be completed. 7

On the other hand, Brownawell [B2] has introduced a‘very ingenious modi-
fication of Rabinowitsch’s trick and shown thét for any Pyse-sP if g

m

vanishes on V, deg g < D, then one can write

with s =< Dn and deg q, < p". 1In particular, that means that in the example
of Mayr-Meyer there are lots of compensations when we consider fs, s = D",
In fact, Philippon [P} has communicated to us that for that particular

example of [Ba-S], there exist bj of degree < D" such that

n+1

n E
= b.p..
Jp

J=1

It is plausible that this situation be time in general.
Using the same kind of analytic tools employed in Theorem 1, one can

prove the following results.

Theorem 2 [B-Y3]. Let Pyre- 5P € Z[zl,...,zn], fe I(pl,...,pm ), deg f =
d, deg pj <D and V be a discrete variety in Cn. Then there are -qj €

m
Clz] such that f e ijqj and

1

deg q; < c(n)(a+p™).

Theorem 3 [B-Y3]. Under the same hypothesis of Theorem 2, except that V

instead of being discrete is assumed to satisfy dim V = n-m, we obtain the



same conclusion as in the previous theorem.

Amoroso [A] has recently found an algebraic proof of Theorems 2 and 3
using Kollar’s method [K].

Note that uﬁder the above cdnditions of Theorems 2 and 3, the decision of
whether f € I(p,,...,p ) is of complexity o) if d <D.

Finally, we have a preliminary result that indicates that Philippon’s

remark about Mayr-Meyer’s example might not be altogether unusual.

Theorem 4 [B-Y4]. Let Pys---sP € C[z] be such that the singular set of V
is discrete, let f € I(pl,...,pm), deg f £ D, deg pj < D. Then there exist
q\j € C[z] such that
m
n
=Y,
pJqJ
J=1

and

deg qj < c(n)D™

It would be very interesting to know whether such a result holds in general.
I would like to conclude with some questions implicit in [B-S3]. They

require a kind of algebraic (non-linear) Hahn-Banach separation theorem.

Question 1. Let K be a convex closed cone in Cn, V an algebraic variety,
0 <dim V<n-1, VnK=g@g. Assume moreover that there exists ¢ > O,

N 2 0 such that
‘ . N
(8) dist(z,K)(1+{z|) 2 e for any =z € V.

(a) Is there a polynomial P such that V€ {P =0}, {P=0} nK =g,

and &’/,N’ such that

,

(8) dist(z,K)(1+|z])N >e’ >0 for any =z, P(z) =07

(b} Does there exist the polynomial P if we do not assume (8)7?



(c) Can one take N’ N?

0 or n-1 are trivial. If K =R" the

1l

The cases when dim V
statement without conditions (8) and (9) is trivial, but otherwise it is a

deep result of Lech (cf. [B-S31, for references and partial results).

Question 2. Let U be the open polydisk in Cn, V an algebraic variety,

0<dimV<n-1, VnU-=ga Does there exist a polynomial P such that

{P=0} 2V and {P =0} nU= g?

Can we do this construction purely algebraically?
Finally, let us mention that since this conference was given a report by
Teissier has touched in more detail upon some of the above algebraic problems

as well as our work, see [T].
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