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Topological Synthesis of Epicyclic
Gear Trains

In this paper, a random number technique for computing the value of a linkage
characteristic polynomial is shown to be an effective method for identifying isomor-
phic graphs. The technique has been applied to the topological synthesis of one-
degree-of-freedon, epicyclic gear truins with up to six links. All the permissible

graphs of epicyclic gear trains were generated by a systematic procedure, and the
isomorphic graphs were identified by comparing the values of their corresponding
linkage characteristic polynomials. It is shown that there are 26 nonisomorphic rota-
tion graphs and 80 displacement nonisomorphic graphs from which all the six-link,
one-degree-of-freedom, epicyclic gear trains can be derived.

Introduction

One of the most important stages in mechanical design is the
conceptual phase, i.e., the creation of a mechanism to satisfy a
desired functional requirement. Traditionally, this is ac-
complished by the designer’s intuition and experience. One at-
tempt to help designers in this conceptual phase is to generate
atlases of mechanisms grouped according to their functions.
For example, references [1-4] contain a variety of mechanism
configurations that can be used as an aid for the design of
epicyclic gear trains. However, the design methodology does
not insure the identification of all the design alternatives nor
does it result in an optimum design.

Recently, however, there has been considerable interest in
the creation of mechanisms in a systematic manner [5-23]. A
promising approach is to separate the structure of a
mechanism from its function. Then, kinematic structures of
the same type, i.e., same degree of freedom, number of links,
and nature of the desired function, are enumerated
systematically with the aid of graph theory. Finally, each
kinematic structure obtained is sketched and evaluated
according to the functional requirements of a mechanism [14].
This method of synthesis has been successfully applied to the
creation of variable-stroke mechanisms by Freudstein and
Maki [15, 16].

The application of graph theory to the synthesis of epicyclic
gear trains was first investigated by Buchsbaum [6],
Buchsbaum and Freudenstein [7], and Freudenstein [11].
However, due to the complexity of the problem involved, the
investigation was limited to epicyclic gear trains with up to five
links. An inspection of existing automotive transmissions in-
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dicates that most of the automatic transmission gear trains
belong to the six-link, epicyclic gear train family. Therefore,
there is a need to extend the theory to include mechanism
structures with six or more links. Most recently, Ravisankar
and Mruthyunjaya computerized the synthesis procedure
given by Buchsbaum and Freudenstein and were able to derive
geared kinematic chains with up to six links [23].

In this paper, we shall first review some fundamental graphs
theories established by Buchsbaum and Freudenstein [7] and
Freudenstein {11], and then introduce a new method for iden-
tifying isomorphic graphs.! Finally, all the permissible six-
link, one-degree-of-freedom, epicyclic gear trains will be
generated in graphical form using an alternative systematic
procedure.

Assumptions

Following the same guidelines of Buchsbaum and Freuden-
stein, we shall consider only those one-degree-of-freedom
epicyclic gear trains which obey the following assumptions:

Al. The mechanism shall obey the general degree-of-
freedom equation, i.e., no special proportions are required to
insure the mobility of an epicyclic gear train.

A2. The mechanism shall be planar and its joints binary.

A3. The rotatability of all links shall be unlimited.
Mechanisms with partial mobility or partially locked struc-
tures shall be excluded.

Ad4. Each gear must have a turning pair on it axis, and each
link in a gear train must have at least one turning pair in order
to maintain constant center distance between each gear pair.

ISee reference [11] for the definition of graph isomorphism, rotational
isomorphism, and linear isomorphism.

Discussion on this paper will be accepted at ASME Headquarters until December 12, 1986.
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(a). Functional Representation of a Simple
Epicyclic Gear Train.
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(b). Graph Representation of Fig. 1(a).

(c). Rotation Graph of Fig. 1(a).

Fig. 1 Representations of an epicyclic gear train

Representations of an Epicyclic Gear Train

Functional Representation. Functional representation of
an epicyclic gear train refers to the conventional schematic
drawing of the mechanism. Figure 1(a@) shows the functional
representation of a simple epicyclic gear train where the two
meshing gears, numbered 2 and 3, rotate about the two
parallel offset shafts, labeled a-a and b-b, respectively, that
are supported by the carrier, numbered 1.

Graph Representation. In a graph representation, links
are denoted by vertices and joints by edges. The edge connec-
tion between vertices corresponds to the pair connection bet-
ween links. In order to distinguish a turning-pair connection
from a gear-pair connection, turning pairs are represented by
thin edges and gear pairs by heavy edges. For this reason, the
thin edge is also called the turning-pair edge and the heavy
edge the geared edge. Furthermore, the thin edges are labeled
according to their axis locations. A graph made of thin and
heavy edges is sometimes referred to as a bicolored graph since
the two different edges can also be represented by two dif-
ferent color codes. A bicolored graph without labeling its thin
edges is called an unlabeled graph. Figure 1(b) shows the
graph representation of the mechanism shown in Fig. 1(a),
where vertices 1, 2 and 3 correspond to links 1, 2, and 3; the
thin edges 1-2 and 1-3 correspond to the turning pairs con-
necting links 1 and 2, and 1 and 3; the edge labels @ and b
correspond to the joint-axis locations ¢ — @ and b - b; and the
heavy edge 2-3 corresponds to the gear-pair connection be-
tween links 2 and 3, respectively.

2

Rotation Graph Representation. A rotation graph is
defined for each graph by deleting the turning-pair edges and
the transfer vertices and labeling each geared edge with the
symbol for the associated transfer vertex [11]. Figure 1(c)
shows the rotation graph of the mechanism shown in Fig. 1(a).
Note that Ravisankar and Mruthyunjaya [23] used a slightly
different definition for the rotation graph.

Fundamental Rules of a Graph

The following fundamental rules have been established for
the graphs of one-degree-of-freedom; epicyclic gear trains
which obey the aforementioned assumptions [7, 11]:

F1. For an rn-link, one-degree-of-freedom, epicyclic gear
train, there are n vertices, n— 1 turning-pair edges, and n-2
geared edges.

F2. The subgraph formed by deleting all the geared edges is
a tree.

F3. Any geared edge added to the tree forms a fundamental
circuit (f~circuit) having one geared edge and several turning-
pair edges.

F4. The number of f-circuits equals the number of geared
edges.

F5. There can be no circuit formed exclusively by turning-
pair edges. Otherwise, either the circuit is locked or the
rotatability of the links is limited.

F6. All vertices must have at least one incident edge which
represents a turning pair.

F7. Each turning-pair edge can be characterized by a level
which identifies the location of its axis in space.

F8. The differential degree-of-freedom of any circuit must
be at least one; for an f-circuit, it is equal to the number of
vertices in the circuit minus two.

F9. In each f~circuit there is one vertex, called the transfer
vertex, such that all edges on one side of the transfer vertex are
at the same level and edges on the opposite side of the transfer
vertex are at a different level.

F10. We also restrict ourself to graphs for which two
turning-pair edges having a common level must intersect at a
common vertex.

Linkage Characteristic Polynomial

Linkage Adjacency Matrix. The linkage adjacency matrix
of a kinematic chain was first defined for planar linkages by
Uicker and Raicu [19]. In this investigation, the definition was
modified to include kinematic chains with gear pairs. The ver-
tices of a graph are numbered sequentially from 1 to », and the
adjacency matrix, A4, is defined as a square matrix of order n
with its elements, A(}, j), defined as follows

1 if vertex i is connected to vertex j
by a turning-pair edge,

g if vertex i is connected to vertex j Q)
by a geared edge,

0 otherwise (including i =j).

A, )=

For example, the adjacency matrix of the graph shown in Fig.

1(b) is given by
01 1 '
A= |10 g @)
1 g0
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The adjacency matrix is symmetric, i.e., A(i, j)=A(, .
From fundamental rule F1, it follows that an # X n adjacency
matrix contains 2(2n — 3) nonzero elements of which 2(n—1)
elements have the value of ‘1’ and 2(» — 2) elements have the
value of “‘g’’.

Linkage Characteristic Polynomial. The linkage
characteristic polynomial of a kinematic chain was first in-
vestigated by Uicker and Raicu [19] and subsequently more
fully explored by Yan and Hall [20, 21] and Yan and Hwang
[22]. In this paper, the linkage characteristic polynomial, p(x,
2), of an epicyclic gear train is defined to be the determinant of
the matrix (x/ - A), where x is a durnmy variable and 7 is a unit
matrix of the same order as the adjacency matrix, A4, i.e.

plx, g)=det (xI—A) 3)

For example, the linkage characteristic polynomial of the
mechanism shown in Fig. 1(@) is given by

x -1 -1
pix, )= | -1 x —g| =x"-Q+gHx-2g “
-1 —g X

It has been shown that a necessary condition for two
kinematic chains to be isomorphic to each other is for the two
mechanisms to have identical linkage characteristic
polynomials. Uicker and Raicu [19] presented a computa-
tional method, and recently, Yan and Hall [20] developed an
inspection technique for the derivation of the coefficients of
characteristic polynomials. Both methods can be used to
derive the characteristic polynomial of a planar linkage.
However, the process of identifying isomorphic graphs
becomes very tedious and slow when there are a large number
of complicated linkages to be identified. First, we have to find
coefficients of the polynomials and then compare the
polynomials term by term.

In this paper, a more efficient method was applied. The
method assigns a random noninteger number (real or com-
plex) to each of the x’s and g’s and then evaluates the value of
the determinant of the matrix (x/— A). Since the probability
for two different polynomials to yield identical values with
random values of x and g is nearly zero, we conclude that this
random number technique can be used to identify isomorphic
graphs.

Systematic Synthesis Procedure

Based on the foregoing fundamentals, it is possible to
systematically synthesize kinematic structures of epicyclic gear
trains for any given number of links. Buchsbaum and
Freudenstein [7] and Freudenstein [11] enumerated all the per-
missible noncolored graphs; i.e., no distinction between the
thin and heavy edges, for geared kinematic chains with up to
six links. For each of the noncolored graphs enumerated, they
tried to find structurally distinct ways of coloring the graphs;
i.e., of choosing the heavy edges. They were able to develop
bicolored graphs for epicyclic gear trains with up to five links.
A methodology was outlined and an attempt was made to
develop kinematic structures for epicyclic gear trains with six
or more links, but it was not successful due to the complexity
of the problem. An alternate approach is described next.

Instead, we start with known unlabeled graphs called the
generic graphs. In view of the fundamental rule F1, we con-
clude that starting from a given unlabeled graph, each time we
increase the number of vertices by one, both the numbers of
turning-pair edges and geared edges also increase by one. The
new turning-pair edge can be connected between the added
vertex and any one of the existing vertices of the generic
graph; the geared edge can be connected between the added
vertex and any one of the remaining vertices. Hence, poten-

tially, n(n—1) unlabeled graphs of n+1 vertices can be de-
rived from a known unlabeled graph of »n vertices. However,
some of these graphs may be rejected due to violation of the
previously mentioned fundamental rules, and others may be
isomorphic to one another and should be ¢liminated to avoid
duplication. So the number of nonisomorphic unlabeled
graphs is usually less than n(n—1).

This procedure can be automated by a computer program
using the notations of linkage adjacency matrix and linkage
characteristic polynomial defined by equations (1) and (3). We
start with a given linkage adjacency matrix of order n. Each
time we increase the number of vertices by one, we add a row
and a corresponding column to the given adjacency matrix.
First, we initialize all the added elements in the new row and
column to zero. Second, we set an element in the new row, ex-
cluding the diagonal element, and the corresponding element
in the new column to 1. Third, we set another element in the
new row, excluding the previous chosen element and the
diagonal element, and the corresponding element in the new
column to g. This results in a linkage adjacency matrix of
order n+ 1 which represents the graph of a new gear train. The
process is repeated until all possible combinations are ex-
hausted. Finally, graph isomorphism is checked by evaluating
the determinant of the linkage characteristic polynomial de-
fined by equation (3). In this paper, the values of x and g were
chosen to be 0.7682415 and 1.8152379, respectively. All the
isomorphic graphs identified by using this random number
technique were checked manually and not a single contradic-
tion was found.

The process is similar to the conventional method of design-
ing gear trains where the designer begins with a rather simple
gear train and increases the complexity by adding one gear at a
time. Each time he adds a new gear, he adds not only a gear
mesh to the mechanism but also a journal bearing to support
the added gear.

Using this method to enumerate unlabeled graphs, fun-
damental rules F1 to Fé are automatically satisfied. Hence, a
substantial number of redundant graphs encountered by
Buchsbaum and Freudenstein were avoided [7]. We may sum-
marize the procedure for the systematic synthesis of epicyclic
gear trains as follows:

1 Enumerate all the permissible unlabeled graphs of n+1
vertices for each known unlabeled graph of n vertices. There
are n(n-1) possible combinations.

2 Check for graph isomorphism by comparing the linkage
characteristic polynomials to obtain a set of nonisomorphic
unlabeled graphs. Remember that some of them could be rota-
tionally isomorphic [11].

3 Identify the transfer vertices by inspection or by using the
Boolean algebra technique developed by Freudenstein [11].

4 Eliminate graphs that violate the fundamental rules
F7-F9.

5 Transform the remaining graphs into rotation graphs and
check for rotational isomorphism. Among two rotationally
isomorphic graphs, the one with fewer ways of labeling its
edges is considered as a subset of the other and, therefore, is
eliminated from further consideration. This results in a set of
rotationally nonisomorphic graphs.

6 Repeat Steps 1-5 again for each rotationally nonisomor-
phic graph of n+1 vertices enumerated.

7 Label each of the rotationally nonisomorphic graphs in as
many ways as possible to obtain a set of displacement
nonisomorphic graphs [11].

Graph Enumeration

Using the aforementioned procedure, rotationally
nonisomorphic graphs were enumerated for epicyclic gear
trains with up to six links. The following describes the se-
quence of enumeration.

Journal of Mechanisms, Transmissions, and Automation in Design 3
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Fig. 2 Six possible graphs derived from Fig. 1(b), but only three are
nonisomorphic

Three-Link Chains. We begin with the most fundamental
three-link chain. The only possible three-link epicyclic gear
train is shown in Fig. 1 where the three vertices are connected
together by two turning-pair edges and one geared edge.

Four-Link Chains. There are 3 X 2=6 possible ways to
add an additional vertex to the graph of three-link chain
shown in Fig. 1(b). This can be accomplished by connecting
the additional vertex to any one of the three existing vertices
by a turning-pair edge and to any one of the remaining two
with a geared edge. The six possible graphs are shown in Fig. 2
where vertices 1, 2, and 3 designate the original vertices of the
three-link chain and 4 the added vertex. However, Fig. 2(c) is
isomorphic with Fig. 2(a), Fig. 2(d) is isomorphic with Fig.
2(b), and Fig. 2(f) is isomorphic with Fig. 2(e). Therefore,
there are only three nonisomorphic unlabeled graphs.

After identifying the transfer vertices, rotation graphs of
Figs. 2(a), 2(b), and 2(e) were derived as shown in Figs. 3
(a-¢), respectively. It can be shown that Fig. 3(b) is isomorphic
with Fig. 3(c). Hence, Fig. 2(b) is rotationally isomorphic with
Fig. 2(e). Because Fig. 2(e) has fewer ways of labeling its edges
than Fig. 2(b), it was eliminated from further consideration.
Hence, we obtained only two rotationally nonisomorphic
graphs as shown in Fig. 4. Note that we are not concerned with
the labeling of the edges at this point since labeling the edges
simply affects the axis-location of the mechanism.

Five-Link Chains. There are 4 X 3 = 12 possible ways to
add an additional vertex to each of the rotationally
nonisomorphic graphs shown in Fig. 4. Since there are two
rotationally nonisomorphic graphs of four-link chains, a total
of 2 x 12 = 24 possible graphs can be generated for five-link
chains.

A computer program was designed to enumerate all these
possible graphs systematically. The program also applied the
linkage characteristic polynomial to check for graph isomor-
phism. Eleven out of the 24 graphs were initially found to be
nonisomorphic, one of which was rejected because of the
violation of fundamental rule F9. The remaining ten were then
transformed into rotation graphs and checked again for rota-

4

(a). Rotation Graph of Fig. 2(a).

o -O -0
3 2 4

(b). Rotation Graph of Fig. 2(b).

O
2

©Q

-0
4

(c). Rotation Graph of Fig. 2(e).

Fig. 3 Rotation graphs of Figs. 2 (a, b, €)

3 2 3 2

4100 4200
F

OO o0
2 3 2 3
2 2 2 3
O O——0 O O
4 1 5 4 1 5
5101 5102
2 4
O 8
1 4
1
1 1 1 1
O OO
2 3 5 3 2 5
5103 5201
1 1 1 4 1 1
O OO O e Qo)
5 3 2 4 5 3 2
5301 5302

Fig. 5 Nonisomorphic rotation graphs of five-link chains
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5 3 2 4
5301

5302
Fig. 6 Rotationally nonisomorphic graphs of five-link chains

tional isomorphism. Finally, six nonisomorphic rotation
graphs were obtained as shown in Fig. 5. The corresponding
rotationally nonisomorphic graphs are shown in Fig. 6. The
result is in complete agreement with that of Freudenstein [11].
In Fig. 6, graph ID 5302 can be labeled in two different ways
which results in two rotation graphs, one of which is identical
to that of graph ID 5301 and the other results in a rotationally
nonisomorphic graph which can only be differentiated by
labeling the edges. For this reason, graph ID 5302 is labeled as
shown in Fig. 6.

All the graphs shown in Figs. 5 and 6 were identified by a
four-digit number. The first digit denotes the number of ver-
tices, or links, contained in the graph. The second denotes the
gear-pair connection topology. For example, graphs ID 5101,
5102, and 5103 all have two interconnected geared edges and a
separated geared edge. The last two digits are used as a serial
number to identify the graphs. Obviously, two rotation graphs
must have the same type of gear-pair connection in order to be
isomorphic.

Six-Link Chains. There are 5 X 4 = 20 possible ways to
add one additional vertex to each of the rotationally
nonisomorphic graphs shown in Fig. 6. Since there are six
rotationally nonisomorphic graphs of five-link chains, a total
of 6 X 20 = 120 possible graphs can be generated. Again, all
the 120 possible graphs were generated systematically and
checked for isomorphism by the computer program. Sixty-
three graphs were initially found to be nonisomorphic. Seven
were rejected because of the violation of fundamental rule FS.
The remaining graphs were then transformed into rotation
graphs and checked for rotational isomorphism. As a result,
we obtained 26 nonisomorphic rotation graphs as shown in
Fig. 7. Each rotation graph in Fig. 7 was given an ID number
similar to that of five-link chains. Finally, the corresponding
rotationally nonisomorphic graphs were labeled in as many
ways as possible. As a result, 80 displacement nonisomorphic
graphs were obtained as shown in Fig. 8. Note that the present
method excludes all the graphs that have several geared edges
forming a loop.?

The conversion of labeled graphs into mechanisms was

2Ravisankar and Mruthyunjaya obtained 27 nonisomorphic rotation graphs,
one of which has four geared edges forming a loop and does not produce any
labeled graph.

5 5 5
2 2 1
212 1 218 1 1] 2
o—0 O—0
4 1 62 3|4 1 62 3|2 3 61 4|
6101 6102 6103 ?
2 2 2 2 2 2 ;
o——o0—0 OO0 O———O0——0 '
4,1,5 4,.1,5 4,1,5 |
o~ o——2° Owe—0——v Oy ;
3 2 6 3 2 &6 2 3 6 |
6201 6202 6203 i
2 3 2 5 11
e OO O—O—C e e—
4 1 5 4 1 .6 2 3_5
1 4 1 1 2 "2
o————o o————0 —_0n 5
3 2 6 2 3 5 1 4 6 |
6204 6205 6206 |
1 1
o—— o—o 1
2 3 2 3 3
2 2 2 2 2 5 3 2v 2
5 1 4 6 5 1 4 6 5 1 4 86
6301 6302 6303 J
2 2 2
1 4 1 4 1 4
1 1 5 11 1 1 1 2
O—eO——O—0 O e Qs
5 3 2 6 2 3 5 6 2 3 5 6
6304 6305 6306
4 4 6
1 1 4
1 1)1 4 111 1 1] 4
6 3 2 5 6 3 2 5 4 2 3 5
6401 6402 6403
6
5
1111 1 1 1 8 1115
5 3 2 4 |5 32 48 5 3 2 4 6
| 6404 6501 6502
i
11 1.1 4 11 3 4 1 1 5
5 32 4 6|5 32 46 |5 32 46
6503 6504 6505
4 4 11

Oy O—0—0
' 6 5 3 2 4
\ 6506

6601 ‘

Fig. 7 Nonisomorphic rotation graphs of six-link chains

discussed in detail in references [6, 7, 11]. Each geared edge in
Fig. 8 can be made of three different gzar meshes; namely, ex-
ternal to external, external to internal, and internal to external
gear meshes. Since there are four geared edges in each graph
of the six-link chains, every labeled graph can generate 3 X 3
% 3 X 3 = 81 functional mechanisms. Potentially, 80 x 81
— 6480 mechanisms can be generated from the graphs shown
in Fig. 8. However, many of the gear trains may be isomorphic
to one another due to the symmetry. So the actual number of
nonisomorphic gear trains is much less than 6480. Although it

Journal of Mechanisms, Transmissions, and Automation in Design 5



6301-1 6301-2 6301-3
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6401-3

65
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Fig. 8 Rotationally nonisomorphic graphs of six-link chains
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Fig. 8 Continued

is beyond the scope of this investigation, it is anticipated that
many new, novel gear trains can be revealed from these
graphs.

Summary

It has been shown that the random number technique for
computing the value of the linkage characteristic polynomial is
an effective method for identifying isomorphic graphs. All the
permissible graphs of one-degree-of-freedom, epicyclic gear
trains with up to six links were generated by an alternative

6601-4

Fig. 8 Continued

systematic procedure, and the isomorphic graphs were iden-
tified using the random number technique. It is shown that
there are 26 nonisomorphic rotation graphs and 80 displace-
ment nonisomorphic graphs from which all the six-link, one-
degree-of-freedom, epicyclic gear trains can be constructed.
The results are in complete agreement with those of
Ravisankar and Mruthyunjaya.
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