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Abstract— We consider the random graph induced by the
random key predistribution scheme of Eschenauer and
Gligor under the assumption of full visibility. We report on
recent results concerning a conjectured zero-one law for
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special cases.

Keywords: Wireless sensor networks, Key predistribution,
Random key graph, Connectivity, Zero-one laws.

I. I NTRODUCTION

It is envisioned that security will be a key issue in wireless
sensor networks given that they are usually deployed in hostile
environments. Because traditional methods have been found
inadequate for such networks, the following random key
predistribution scheme proposed by Eschenauer and Gligor [6]
has instead received some attention: Before the deployment
of network, each sensor is independently assignedK distinct
cryptographic keys which are selected at random from a pool
of P keys. TheseK keys constitute the key ring of the
node and are inserted into its memory. Two sensor nodes can
then establish a secure link between them if they are within
transmission range of each other and if their key rings share
at least one key; see [6] for implementation details.

Under the assumption offull visibility, namely that nodes
are all within communication range of each other, the con-
straint of being within transmission range is always in effect
and a secure link can be established between two nodes
whenever their key rings have at least one key in common.
This notion of adjacency induces therandom keygraph
K(n; (K, P )) on the vertex set{1, . . . , n} where n is the
number of sensor nodes; see Section II for precise definitions.

It is natural to seek conditions onn, K and P under
which K(n; (K, P )) is a connected graph with high proba-
bility – Such conditions might be helpful in dimensioning
this distribution scheme in the context of wireless sensor
networks. As explained in Section III, this search has lead to
conjecturingthe following zero-one law for graph connectivity
in K(n; (K.P )): If we scale the parametersK andP with n
according to

K2
n

Pn
=

log n + αn

n
, n = 1, 2, . . . (1)

for some sequenceα : N0 → R, then

lim
n→∞

P [K(n; (Kn, Pn)) is connected]

=





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(2)

This conjecture appeared independently in [1], [11].
Progress has recently been made on this conjecture by the

authors [13] and by others [1], [4]. The proof of our main
results is rather long and technically involved, and is therefore
omitted given the page limitations; it can be found in [13]
with an outline available in [12]. Instead, we discuss a number
of situations that are not considered in [13] for which the
conjectured zero-one law can be easily recovered. In that sense
this short paper should be viewed as a complement to the
papers [12], [13].

The rest of the paper is organized as follows: In Section II
we formally introduce the class of random key graphs. Section
IV is devoted to a brief review of recent results followed in
Section V by a key observation leading to the main results of
the paper. In section VII we report on the results regarding to
the conjecture for the case whereK andP are fixed. The case
wherelim supn→∞ Pn < ∞ is considered in Section VIII and
we conclude by the discussion of the case whereK = 2 and
Pn = nδ for some0 < δ < 1

2 in Section IX.

II. RANDOM KEY GRAPHS

The model is parametrized by the numbern of nodes, the
sizeP of the key pool and the sizeK of each key ring with
K < P . To lighten the notation we often group the integers
P andK into the ordered pairθ ≡ (P, K).

For each nodei = 1, . . . , n, let Ki(θ) denote the random set
of K distinct keys assigned to nodei. We can think ofKi(θ)
as anPK-valued rv wherePK denotes the collection of all
subsets of{1, . . . , P} which contain exactlyK elements –
Obviously, we have|PK | =

(
P
K

)
. The rvsK1(θ), . . . , Kn(θ)

are assumed to bei.i.d. rvs which areuniformly distributed
overPK with

P [Ki(θ) = S] =
(

P

K

)−1

, S ∈ PK (3)



for all i = 1, . . . , n. This corresponds to selecting keys
randomly andwithout replacement from the key pool.

Distinct nodesi, j = 1, . . . , n are said to be adjacent if they
share at least one key in their key rings, namely

Ki(θ) ∩Kj(θ) 6= ∅, (4)

in which case an undirected link is assigned between nodes
i and j. The resulting random graph defines therandom
key graphon the vertex set{1, . . . , n}, hereafter denoted by
K(n; θ).

For distinct i, j = 1, . . . , n, it is a simple matter to check
that

P [Ki(θ) ∩Kj(θ) = ∅] = q(θ) (5)

with

q(θ) =





0 if P < 2K

(P−K
K )

(P
K) if 2K ≤ P .

(6)

The caseP < 2K is clearly not interesting: It corresponds to
an edge existing between every pair of nodes, so thatK(n; θ)
coincides with the completely regular graphKn,n.

Random key graphs, which form a subclass in the fam-
ily of random intersectiongraphs, are also calleduniform
intersection graphs by some authors [1]. They have been
discussed recently in several application contexts, e.g., security
of wireless sensor networks [1] [4], clustering analysis [7] [8]
and recommender systems using global filtering [9].

With n = 2, 3, . . . and positive integersK andP such that
K ≤ P , let P (n; θ) denote the probability that the random
key graphK(n; θ) is connected, namely

P (n; θ) := P [K(n; θ) is connected] , θ = (K, P ).

III. O RIGINS OF THE CONJECTURE

As indicated earlier, we wish to selectP and K so that
P (n; θ) is as large (i.e., as close to one) as possible. In their
original work, Eschenauer and Gligor [6] approached this issue
as follows:
(i) Let G(n; p) denote the Erd̋os-Renyi graph onn vertices
with edge probabilityp (0 < p ≤ 1) [2], [5]. Despite strong
similarities, random key graphs arenot statistically equivalent
to Erd̋os-Renyi graphs. This is so because edge assignments
are correlated inK(n; θ) but independent inG(n; p). Yet,
setting aside this fact, they boldly replacedK(n; θ) by a proxy
Erdős-Renyi graphG(n; p) with p andθ are related through

p = 1− q(θ). (7)

This constraint ensures that link assignment probabilities in
K(n; θ) andG(n; p) coincide.
(ii) In Erdős-Renyi graphs the property of graph connectivity
is known to exhibit the following zero-one law [2]: If we scale
the edge assignment probabilityp according to

pn =
log n + αn

n
, n = 1, 2, . . . (8)

for some sequenceα : N0 → R, then

lim
n→∞

P [G(n; pn) is connected]

=





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(9)

(iii) Under the substitution (7), these classical results suggest
scaling the parametersK andP with n according to

1−
(
Pn−Kn

Kn

)
(

Pn

Kn

) =
log n + αn

n
, n = 1, 2, . . . (10)

for some sequenceα : N0 → R. In view of (9) it is then not
too unreasonable to expect that the following zero-one law

lim
n→∞

P (n; θn) =





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞
(11)

should hold.
Of course, for this approach to be operationally useful, a

good approximation to the right handside of (7) is needed.
Eschenauer and Gligor provided such an approximation with
the help of Stirling’s formula. However, as already indicated
by DiPietro et al. [3], [4], it is easy to check that

1−
(
P−K

K

)
(

P
K

) ' K2

P
(12)

under reasonable assumptions. Thus, if instead of scaling the
parameters according to (10), we scale them according to (1),
it is natural to conjecture that the zero-one law (11) should
still hold.

IV. RECENT RESULTS

We now turn to recently obtained results [1], [13] con-
cerning (1)-(2). To fix the terminology, any pair of functions
P, K : N0 → N0 is said to define ascaling, and we can always
associate with it a sequenceα : N0 → R through the relation

K2
n

Pn
=

log n + αn

n
, n = 1, 2, . . . (13)

We refer to this sequenceα : N0 → R as thedeviation function
associated with the scalingP, K : N0 → N0. A scalingP,K :
N0 → N0 is said to beadmissibleif

Kn ≤ Pn, n = 1, 2, . . . (14)

and
2 ≤ Kn (15)

for all n = 1, 2, . . . sufficientlylarge.
Blackburn and Gerke [1, Thm. 5] recently obtained the

following zero-one law which generalizes earlier results of Di
Pietro et al. [4, Thm. 4.6].

Theorem 4.1:Consider an admissible scalingK,P : N0 →
N0. Then, we always have

lim
n→∞

P (n; θn) = 0 if lim sup
n→∞

K2
n

Pn

n

log n
< 1. (16)



Under the additional assumption

n ≤ Pn (17)

for all n = 1, 2, . . . sufficiently large, we have

lim
n→∞

P (n; θn) = 1 if lim inf
n→∞

K2
n

Pn

n

log n
> 1. (18)

In the process of establishing this result, they also showed
[1, Thm. 3] that the conjectured zero-one law (1)-(2) indeed
holds in a special case.

Theorem 4.2:Consider an admissible scalingP, K : N0 →
N0 with deviation functionα : N0 → R determined through
(13), namely

4
Pn

=
log n + αn

n
, n = 1, 2, . . . (19)

If
Kn = 2, n = 1, 2, . . . (20)

then we have

lim
n→∞

P (n; (2, Pn)) =





0 if limn→∞ αn = −∞

1 if limn→∞ αn = ∞.
(21)

In Theorem 4.2 there are no constraints on the size of the
key pool. Equipped with this result, it is now a small step to
conclude that (1)-(2) does hold when2 ≤ Kn ≤ Pn whenever

Pn = o

(
n

log n

)
. (22)

The next result is due to Yağan and Makowski; it generalizes
Theorem 4.1, and complements Theorem 4.2. A complete
proof can be found in [13].

Theorem 4.3:Consider an admissible scalingP,K : N0 →
N0 with deviation functionα : N0 → R determined through
(13). We have

lim
n→∞

P (n; θn) = 0 if limn→∞ αn = −∞. (23)

On the other hand, if there exists someσ > 0 such that

σn ≤ Pn (24)

for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

P (n; θn) = 1 if limn→∞ αn = ∞. (25)

The condition (24) is weaker than the growth condition (17)
used by Blackburn and Gerke [1]. It is also easy to check that
Theorem 4.3 implies the zero-one law (16)-(18). Note that
Theorem 4.3 cannot hold if the condition (15) fails. This is a
simple consequence of the following simple observation.

Lemma 4.4:For any mappingP : N0 → N0 for which the
limit limn→∞ Pn exists, we have

lim
n→∞

P (n; (1, Pn)) =





0 if limn→∞ Pn > 1

1 if limn→∞ Pn = 1.
(26)

Proof. For n = 2, 3, . . . and any positive integerPn, the
graph K(n; (1, Pn)) is connected if and only if all nodes
choose thesamekey. This event happens with probability
P
−(n−1)
n . The conclusion is now immediate once we observe

that the conditionlimn→∞ Pn = 1 (resp. limn→∞ Pn > 1)
requires Pn = 1 (resp. Pn ≥ 2) for all n = 1, 2, . . .
sufficiently large owing toPn being integer.

V. A BASIC OBSERVATION

Assume given a pair of positive integersK andP such that
K ≤ P , and pickn = 2, 3, . . .. Now define the events

Cn(θ) := [K(n; θ) is connected]

and

An(θ) :=
[

All key rings have been
distributed in K(n; θ)

]
.

The eventAn(θ) is always empty under the condition

n <

(
P

K

)
. (27)

The next observation provides an easy condition for graph
connectivity in the random key graphK(n; θ).

Lemma 5.1:It is always the case thatK(n; θ) is connected
whenever all the key rings have been assigned, i.e.,

An(θ) ⊆ Cn(θ). (28)

Proof. Let ω be a sample that belongs to the eventAn(θ).
Pick two distinct nodes, sayi, j = 1, . . . , n. We need to show
that there is path between them inK(n; θ)(ω). If the key
rings Ki(θ)(ω) andKj(θ)(ω) have a non-empty intersection,
then the two nodes are adjacent and there is a one hop
path between them. On the other hand, if these key rings
do not intersect, then it must necessarily be the case that
2K ≤ P . Under these conditions it is possible to construct
an elementS of PK with the property thatS ∩Ki(θ)(ω) 6= ∅
and S ∩ Kj(θ)(ω) 6= ∅. Since all the key rings have been
distributed inK(n; θ)(ω) it follows that there exists a node,
say ` (possibly dependent onω), distinct from bothi and
j, such thatK`(θ)(ω) = S. As a result, nodesi and j are
connected by a two-hop path passing through`.

Corollary 5.2: OnAn(θ) the random key graphK(n; θ) has
diametereither 1 or 2. Indeed, as should be clear from the
proof of Lemma 5.1, we have

Diam[K(n; θ)] =





1 if P < 2K

2 if P ≥ 2K.
(29)

By virtue of Lemma 5.1, it is now natural to look for
the conditions for which the eventAn(θ) occurs with high
probability. For this purpose we first consider the complement



of An(θ) which corresponds to the event wheresomekey ring
hasnot been distributed, namely

An(θ)c = ∪S∈PK
[K1(θ) 6= S, . . . , Kn(θ) 6= S] .

As a result, by a union bound argument, we get

P [An(θ)c] ≤
∑

S∈PK

P [K1(θ) 6= S, . . . , Kn(θ) 6= S]

=
∑

S∈PK

(
n∏

i=1

P [Ki 6= S]

)

=
∑

S∈PK

P [K1 6= S]n

=
(

P

K

) (
1− 1(

P
K

)
)n

(30)

under the enforced assumptions on key ring selection.

VI. A N EASY ONE-LAW

Lemma 5.1 and the calculations following it suggest a very
simple strategy to obtain versions of the one law in random
key graphs. Consider an admissible scalingP,K : N0 → N0

such that (
Pn

Kn

)
≤ n (31)

for all n = 1, 2, . . . sufficiently large. On that range, from (30)
we get

P [An(θn)c] ≤
(

Pn

Kn

) (
1− 1(

Pn

Kn

)
)n

≤
(

Pn

Kn

)
e
− n

(Pn
Kn) (32)

by standard bounding arguments. The conclusion

lim
n→∞

P [An(θn)c] = 0 (33)

follows provided

lim
n→∞

(
Pn

Kn

)
e
− n

(Pn
Kn) = 0 (34)

under (31). This discussion readily leads to the following one
law.

Lemma 6.1:Consider an admissible scalingP,K : N0 →
N0 such that (31) holds for alln = 1, 2, . . . sufficiently large.
We have

lim
n→∞

P (n; θn) = 1 (35)

provided the condition (34) holds
In the next three sections we use Lemma 6.1 to derive

several zero-one laws under specific sets of assumptions.

VII. F IXED K AND P

The next result has a well known analog for Erdős-Renyi
graphs.

Lemma 7.1:For any given pairθ = (K, P ) with 2 ≤ K ≤
P , we havelimn→∞ P (n; θ) = 1.

The pairθ = (K, P ) with 2 ≤ K ≤ P corresponds to a
scaling whose deviation functionα : N0 → R is given by

αn := n
K2

P
− log n, n = 1, 2, . . .

so thatlimn→∞ αn = ∞. The conclusion of Lemma 7.1 does
not follow from either Theorem 4.1 or Theorem 4.3 since
conditions (17) and (24) are not satisfied withPn = P for
all n = 1, 2, . . .. The result is nevertheless a consequence
of Theorem 4.2; see comments following it as we note that
condition (22) holds.

We give two proofs of Lemma 7.1, both based on the
observation captured by Lemma 5.1.
Proof 1 – There is no loss of generality in assuming that
the rvs {Ki(θ), i = 1, 2, . . .} are all defined on the same
probability triple (Ω,F ,P). The definition

ν := inf (n = 1, 2, . . . : {K1(θ), . . . , Kn(θ)} = PK)

is then well posed (with the usual convention thatν = ∞ if
the defining set is empty). TheN?-valued rv so defined gives
the smallest value ofn for which all

(
P
K

)
possible key rings

are distributed inK(n; θ). It is easy to see thatν < ∞ a.s.
This is a consequence of the fact that for everyS in PK we
have

lim
n→∞

1
n

n∑

i=1

1 [Ki(θ) = S] =
(

P

K

)−1

a.s.

by the Strong Law of Large Numbers.
Now, for eachn = 2, 3, . . ., becauseK ≥ 2, the graph

K(n; θ) is connected wheneverν ≤ n, by Lemma 5.1, whence

P (n; θ) = P [Cn(θ) ∩ [ν ≤ n]] + P [Cn(θ) ∩ [n < ν]]
= P [ν ≤ n] + P [Cn(θ) ∩ [n < ν]] .

The desired conclusion is obtained upon lettingn go to
infinity in this last relation.

Proof 2 – It follows from (30) that

P [An(θ)] ≥ 1−
(

P

K

) (
1− 1(

P
K

)
)n

for all n = 1, 2, . . . sufficiently large to ensure that
(

P
K

) ≤ n.
The conclusionlimn→∞ P [An(θ)] = 1 is now immediate and
we get the result by making use of the inclusion (28).



VIII. T HE CASE limn→∞ Pn < ∞
Lemma 7.1 leads to a proof of the conjectured one law for

scalingsK,P : N0 → N0 with the property

P̄ := lim sup
n→∞

Pn = inf
n≥1

(
sup
m≥n

Pm

)
< ∞. (36)

Lemma 8.1:For any admissible scalingK, P : N0 → N0

satisfying (36). we havelimn→∞ P (n, θn) = 1.
Here as well we give two different proofs.

Proof 1 – Given the integer-valued nature of the sequence
{Pn, n = 1, 2, . . .} the finiteness assumption on̄P implies
that P̄ is itself a finite integer. As a result, there exists a finite
integern? such thatPn ≤ P̄ + 1 for all n ≥ n?.

Under the admissibility constraints (14) and (15),
there exists a finite number, sayL, of distinct pairs
(K?

1 , P ?
1 ), . . . , (K?

L, P ?
L) such that2 ≤ K?

` and 2K?
` ≤ P ?

`

for each` = 1, . . . , L with the property that

(Kn, Pn) = (K?
` , P ?

` ), n ∈ N`

whereN1, . . . , NL are disjoint and countably infinite subsets
of N0 with

∪L
`=1N` = {n??, n?? + 1, . . .}

for somen?? ≥ n? (so as to ensure set equality). Applying
Lemma 7.1 we obtain

lim
n∈N`

P (n; θn) = 1, ` = 1, . . . , L

where limn∈N`
indicates that the limit is taken withn

going to infinity along the subsequence defined byN`. The
conclusion limn→∞ P (n, θn) = 1 easily follows from the
fact that the setsN1, . . . , NL are disjoint and that the limit
points of theseL subsequences coincide.

Proof 2 – Under the finiteness condition (36) we have

lim sup
n→∞

(
Pn

Kn

)
< ∞

by admissibility of the scaling. Hence, both conditions (31)
and (34) hold, and the result follows from Lemma 6.1.

IX. SMALL KEY POOLS WITH Kn = 2
With Kn = 2, the condition (31) reads

Pn(Pn − 1)
2

≤ n (37)

for all n = 1, 2, . . . sufficiently large. Since the mappingt →
te−

2n
t is increasing on(0,∞), the convergence condition (34)

is implied by

lim
n→∞

P 2
ne
− 2n

P2
n = 0. (38)

This leads to the following one-law.
Lemma 9.1:Consider an admissible scalingP,K : N0 →

N0 satisfying (20) such that

Pn = O(nδ) (39)

for someδ in (0, 1
2 ). Then we have

lim
n→∞

P (n; (2, Pn)) = 1.

This is of course a weaker version of Theorem 4.2 but as the
discussion below shows, its proof is much simpler and comes
with the additional benefit of getting the underlying reason
of having connectivity whenPn is much smallerthan n–In
that case it is very likely that all of the possible key rings are
assigned!

As was the case with Theorem 4.2, Lemma 9.1 implies
limn→∞ P (n; θn) = 1 whenever

2 ≤ Kn ≤ Pn

for all n = 1, 2, . . . sufficiently large under the condition (39)
for someδ in (0, 1

2 ).

Proof. The condition (31) is automatically satisfied under
(39). Also there exist a constantC > 0 and a finite integern?

such that
Pn ≤ Cnδ, n ≥ n?.

On that range, we get

P 2
ne
− 2n

P2
n ≤ C2n2δe−2Cn1−2δ

and the desired conclusion is now immediate as we appeal to
Lemma 6.1.
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