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Abstract—We consider the random graph induced by the for some sequence : Ny — R, then
random key predistribution scheme of Eschenauer and

Gligor under the assumption of full visibility. We report on JLH;O]P’ [K(n; (Kn, Pn)) is connected]
recent results concerning a conjectured zero-one law for 0 if lim, .o a, = —00
graph connectivity, and provide simple proofs for some _ @)
special cases. 1 if lim, . ay, = +00.
Keywords: Wireless sensor networks, Key predistribution,
Random key graph, Connectivity, Zero-one laws. This conjecture appeared independently in [1], [11].
Progress has recently been made on this conjecture by the
. INTRODUCTION authors [13] and by others [1], [4]. The proof of our main

It is envisioned that security will be a key issue in WireIeSrsesults is rather long and technically involved, and is therefore
sensoneturks guen ht ey are sl deployed i osffEE er 1 e Iistens 1 an e fund 10
environments. Because traditional methods have been fou gq . s ! .

inadequate for such networks, the following random Ked situations that are not considered in [13] for which the
predistribution scheme proposed by Eschenauer and Gligorgﬁ
has instead received some attention: Before the deploym M ers [12], [13]
of network, each sensor is independently assighRedistinct Pap ' '

cryptographic keys which are selected at random from a poolThe rest qf the paper is organized as follows: In Section_ Il
of P keys. TheseK keys constitute the key ring of the Ve formally introduce the class of random key graphs. Section

node and are inserted into its memory. Two sensor nodes ns devoted to a brief review of recent results followed in

then establish a secure link between them if they are withj petion V by a key observation leading to the main results of

transmission range of each other and if their key rings sh Paper. In section VIl we report on the re_sults regarding to
at least one key: see [6] for implementation details. the conjecture for the case whekeand P are fixed. The case

Under the assumption dfill visibility, namely that nodes wherelim sup,, ... P < 1S considered in Section Vil and
-_ o we conclude by the discussion of the case whire- 2 and

are all within communication range of each other, the Sl 0<6<LinSection IX

straint of being within transmission range is always in effect™ — ne 10T SOme < 0 < 3 Ih Section 1A

and a secure link can be established between two nodes T

whenever their key rings have at least one key in common.

This notion of adjacency induces thendom keygraph The model is parametrized by the numbepof nodes, the

K(n; (K, P)) on the vertex sef{1,...,n} wheren is the sizeP of the key pool and the siz&" of each key ring with

number of sensor nodes; see Section Il for precise definitiods.< . To lighten the notation we often group the integers

It is natural to seek conditions on, K and P under P andX into the ordered paif = (P, K).

which K(n; ([(7 P)) is a connected graph with h|gh proba- Foreachnode=1,...,n, let K7(9) denote the random set

bility — Such conditions might be helpful in dimensioningdf K distinct keys assigned to nodeWe can think off; (0)

this distribution scheme in the context of wireless sensdp anPx-valued rv wherePy denotes the collection of all

networks. As explained in Section Il, this search has lead $obsets of{1,..., P} which contain exactlyk elements —

conjecturingthe following zero-one law for graph connectivityObviously, we havéPyx| = (). The rvsKy(0), ..., K, (0)

in K(n; (K.P)): If we scale the parameteds and P with n ~ are assumed to bei.d. rvs which areuniformly distributed

according to over Pg with

jectured zero-one law can be easily recovered. In that sense
short paper should be viewed as a complement to the

. RANDOM KEY GRAPHS
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for all i = 1,...,n. This corresponds to selecting keydor some sequence : Ny — R, then
randomly andwithout replacement from the key pool.

Distinct nodes, j = 1,...,n are said to be adjacent if they nler;oP [G(n;pn) is connected]
share at least one key in their key rings, namely 0 if limpy_oee y = —00
= C)
Ki(0) N K;(0) # 0, (4) 1 if lim, oo oy = +00.

in which case an undirected link is assigned between nodgg Under the substitution (7), these classical results suggest
i and j. The resulting random graph defines trendom scaling the parameter® and P with n according to

key graphon the vertex sefl,...,n}, hereafter denoted by P K
K(n; 6). LUk n) _logntan
o L . -t = ., n=1,2... (10)
For distincti,j = 1,...,n, it is a simple matter to check (K") n
that 5

for some sequence : Ny — R. In view of (9) it is then not

P[Ki(6) N K;(0) = 0] = (6) ®) 100 unreasonable to expect that the following zero-one law
with ] 0 if lim,_ o o, = —00
0 iF P < 2K lim P(n;6,) = (11)
W)=\ (7 ©® 7 L if Timy o0 v = 00
Ky
oy 2K P should hold.

Of course, for this approach to be operationally useful, a
d isting bet ir of nod p 0good approximation to the right handside of (7) is needed.
an edge existing between every pair of nodes, soltiat ) Eschenauer and Gligor provided such an approximation with

coli:?ciddes Wth the corr]npletﬁ_lyhrefgular gralbgh,ln. in the f the help of Stirling’s formula. However, as already indicated
andom key graphs, which form a subclass in the fa y DiPietro et al. [3], [4], it is easy to check that

ily of random intersectiongraphs, are also calledniform

The caseP < 2K is clearly not interesting: It corresponds t

intersection graphs by some authors [1]. They have been 1 (P;(K) N K? 12
discussed recently in several application contexts, e.g., security B (IF;) - p (12)

of wireless sensor networks [1] [4], clustering analysis [7] [8] ) . )

and recommender systems using global filtering [9]. under reasonable assumptions. Thus, if instead of scaling the
With n = 2,3, ... and positive integer& and P such that Parameters accordi.ng to (10), we scale them according to (1),

K < P, let P(n;0) denote the probability that the randonit is natural to conjecture that the zero-one law (11) should

key graphK(n;6) is connected, namely still hold.
P(n;0) :=P[K(n;0) is connected], 6= (K,P). IV. RECENT RESULTS
We now turn to recently obtained results [1], [13] con-
[1l. ORIGINS OF THE CONJECTURE cerning (1)-(2). To fix the terminology, any pair of functions

As indicated earlier, we wish to seleé and K so that ©»& : No — No is said to define acaling and we can always
P(n;0) is as large (i.e., as close to one) as possible. In th&pSociate with it a sequenee: No — R through the relation

original work, Eschenauer and Gligor [6] approached this issue K2  logn+a,

as follows: P . """ 1,2,... (13)
(i) Let G(n;p) denote the Erfis-Renyi graph om vertices

with edge probabilityp (0 < p < 1) [2], [5]. Despite strong
similarities, random key graphs anet statistically equivalent
to Erdds-Renyi graphs. This is so because edge assignm
are correlated inkK(rn;6) but independent inG(n;p). Yet, K,<P, n=12... (14)
setting aside this fact, they boldly replac&dr; 6) by a proxy

Erd6s-Renyi graptG(n; p) with p and@ are related through and

We refer to this sequenee: Ny — R as thedeviation function
associated with the scaling K : Ng — Ny. A scalingP, K :
elﬁ?s_) Ny is said to beadmissibleif

2<K, (15)
=1-—q(6). 7
b a(0) " for all n =1,2,... sufficientlylarge.
This constraint ensures that link assignment probabilities inBlackburn and Gerke [1, Thm. 5] recently obtained the
K(n;0) andG(n; p) coincide. following zero-one law which generalizes earlier results of Di

(i) In Erdds-Renyi graphs the property of graph connectivityietro et al. [4, Thm. 4.6]. o _
is known to exhibit the following zero-one law [2]: If we scale Theorem 4.1:Consider an admissible scalitg P : No —
the edge assignment probabilityaccording to No. Then, we always have

. K?
M7 n=1,2,... (8) lim P(n;0,) =0 if limsup—”i < 1. (16)

Pn = n n— 00 n— oo Pn logn



Under the additional assumption
Proof. Forn = 2,3,... and any positive integeP,, the

n< by (A7) graph K(n: (1, P,)) is connected if and only if all nodes
foralln = 1,2, ... sufficiently large, we have choose thesamekey. This event happens with probability
K2 n Pn_("_l). The conclusion is now immediate once we observe
lim P(n;60,)=1 if liminf—=-"— >1. (18) that the conditionlim,, .., P, = 1 (resp.lim, . B, > 1)
nee n—oe Py logn requires P, = 1 (resp. P, > 2) for all n = 1,2,...

. . sufficiently large owing taP,, being integer.
In the process of establishing this result, they also showeg ylarg 9 9 9 u

[1, Thm. 3] that the conjectured zero-one law (1)-(2) indeed
holds in a special case.

Theorem 4.2:Consider an admissible scalify K : Ny — V. A BASIC OBSERVATION
Ny with deviation function : Ny — R determined through  Assume given a pair of positive integeis and P such that
(13), namely K < P, and pickn = 2,3, .... Now define the events
% _ logn+ O‘n7 n=1,2,... (19) C,(0) := [K(n;0) is connected
- n
If and _
A, (0) = All key rings have been
Kp=2 n=12... (20) n9)= | distributed in K(n;0) |
then we have The eventA,, (0) is always empty under the condition
0 if lim,_ oo Oty = —00 P
lim P(n: (2, Py)) = (21) n < ( ) @7
o 1 if lim,— e @y, = 00. K

) ) The next observation provides an easy condition for graph
In Theorem 4.2 there are no constraints on the size of tB@nnectivity in the random key gragii(n; ).
key pool. Equipped with this result, it is now a small step t0 | eryma 5.1/t is always the case that(n; ) is connected
conclude that (1)-(2) does hold when< K, < P,, whenever  nenever all the key rings have been assigned, i.e.,

n
P,=o <1Ogn> . (22) An(6) C Cp(6). (28)

The next result is due to é@n and Makowski; it generalizes
Theorem 4.1, and complements Theorem 4.2. A complete

proof can be found in [13]. Proof. Letw be a sample that belongs to the eveni(9).
Theorem 4.3:Consider an admissible scalifyK : N, — Pick two distinct nodes, sayj = 1,...,n. We need to show

N, with deviation functionn : N, — R determined through that there is path between them K(n; 0)(w). If the key

(13). We have rings K,(0)(w) and K;(0)(w) have a non-empty intersection,

_ then the two nodes are adjacent and there is a one hop
Jim P(n;0,) =0 if lim, oo an = —00.  (23) path between them. On the other hand, if these key rings
. . do not intersect, then it must necessarily be the case that
On the other hand, if there exists some- 0 such that 2K < P. Under these conditions it is possible to construct

on < P, (24) an elementS of Pk with the property thats N K;(0)(w) # 0

- and S N K;(0)(w) # 0. Since all the key rings have been

foralln =1,2,... sufficiently large, then we have distributed inK(n; #)(w) it follows that there exists a node,
lim P(n;6,) =1 if lim,_e0 ap = 00. (25) say (¢ (possibly dependent ow), distinct from bothi and
n—0o0 J, such thatK,(f)(w) = S. As a result, nodes and j are
connected by a two-hop path passing throdégh [ ]

The condition (24) is weaker than the growth condition (17)
used by Blackburn and Gerke [1]. It is also easy to check that
Theorem 4.3 implies the zero-one law (16)-(18). Note that Corollary 5.2: On A,,(¢) the random key grapK(n; ¢) has
Theorem 4.3 cannot hold if the condition (15) fails. This is diametereither 1 or 2. Indeed, as should be clear from the
simple consequence of the following simple observation. Pproof of Lemma 5.1, we have

Lemma 4.4:For any mapping® : Ng — Ng for which the 1 if P<2K
limit lim,,_, . P, exists, we have Diam[K (n; §)] = (29)
0 if lim,—oo Py >1 2 if P>2K.
lim P(n;(1,P,)) = (26) By virtue of Lemma 5.1, it is now natural to look for
e 1 if lim, oo P, = 1. the conditions for which the eve,,(6) occurs with high

probability. For this purpose we first consider the complement



of A,,(0) which corresponds to the event whe@mekey ring VIl. FIXED K AND P

hasnot been distributed, namely
The next result has a well known analog for &seRenyi

An(0)° = Usepy [K1(0) # S, ... Kn(0) # 5. graphs.
Lemma 7.1:For any given paif = (K, P) with2 < K <
As a result, by a union bound argument, we get P, we havdim,, o, P(n;0) = 1.
The paird = (K, P) with 2 < K < P corresponds to a
P[AL(0)]] < Z P[K(0) #S,...,Kn(0) # 5] scaling whose deviation functiom : Ny — R is given by
SEPK
n K2
_ Z <HP[K175S]> ozn::n?—logn7 n=12,...
SePr \i=1 )
n so thatlim,,_, - a,, = co. The conclusion of Lemma 7.1 does
- Z P[Ky # 5] not follow from either Theorem 4.1 or Theorem 4.3 since
S€Px . conditions (17) and (24) are not satisfied wihy = P for
P 1 all n = 1,2,.... The result is nevertheless a consequence
- (K) 1= @ (30) of Theorem 4.2; see comments following it as we note that
condition (22) holds.
under the enforced assumptions on key ring selection. We give two proofs of Lemma 7.1, both based on the
observation captured by Lemma 5.1.
VI. AN EASY ONE-LAW Proof 1 — There is no loss of generality in assuming that

the rvs {K;(0), ¢ = 1,2,...} are all defined on the same
Lemma 5.1 and the calculations following it suggest a vegyrobability triple (€2, ,P). The definition
simple strategy to obtain versions of the one law in random

key graphs. Consider an admissible scalligs : Ny — Ny vie=inf(n=1,2,...: {K:(0),...,K,(0)} = Pk)
such that
P, is then well posed (with the usual convention that oo if
<Kn> =n (1) the defining set is empty). Tﬁé*-valulead rv so defined gives

the smallest value of for which all (;) possible key rings
forall n = 1,2, ... sufficiently large. On that range, from (30)are distributed inK(n; 6). It is easy to see that < co a.s.
we get This is a consequence of the fact that for everyn Px we
have

P[An(6n)]

I
/~
B
~
VRS
=
|

~—~
R
—
~__—

I li:mr(-(e)—S]— P\
ngr;oni:1 i =5=x a.s.

< (P")e_(P’;) (32)
K, by the Strong Law of Large Numbers.
Now, for eachn = 2,3,..., becauseK > 2, the graph
K(n; 8) is connected whenever< n, by Lemma 5.1, whence

by standard bounding arguments. The conclusion

A PAn(6)] =0 B3 pus) = PICL6) v <))+ P[Ca(6) N1 < 1]
follows provided = Py <n]+P[Ca(f)N[n <v]].
) P ,m The desired conclusion is obtained upon lettinggo to
Jim ( n>e “n) =0 (34) infinity in this last relation. n

under (31). This discussion readily leads to the following one
(31) y g Proof 2 — It follows from (30) that

law.
Lemma 6.1:Consider an admissible scaliig K : Ng — P n
Ny such that (31) holds for aft = 1,2, ... sufficiently large. P[A,(0)] > 1— ( ) 1— L
We have (K)
lim P(n;6,) =1 35 .
o (n56n) (35) for all n = 1,2, ... sufficiently large to ensure thi;’z) < n.

The conclusiorim,, .., P [A4,(0)] = 1 is now immediate and

provided the condition (34_) holds .we get the result by making use of the inclusion (28). &
In the next three sections we use Lemma 6.1 to derive

several zero-one laws under specific sets of assumptions.



VIIl. THE CASElim,,_,oo P, < 00 for someé) in (0, %). Then we have
Lemma 7.1 leads to a proof of the conjectured one law for lim P(n;(2,P,)) =1

scalingsk, P : Ny — Ny with the property

) <.

This is of course a weaker version of Theorem 4.2 but as the
discussion below shows, its proof is much simpler and comes
with the additional benefit of getting the underlying reason

P :=limsup P, = inf (sup P, (36)

n— oo n>1 m>n

Lemma 8.1:For any admissible scalinff, P : Ng — Ny
satisfying (36). we havém,, .o, P(n,0,) =1
Here as well we give two different proofs.

of having connectivity whenP,
that case it is very likely that all of the possible key rings are

is much smallerthan n—In

. . |
Proof 1 — Given the integer-valued nature of the sequen(fp'és'gned

{P,, n =1,2,...} the finiteness assumption ah implies
that P is itself a finite integer. As a result, there exists a finit
integern* such thatP,, < P + 1 for all n > n*.

Under the admissibility constraints (14) and (15)for alln=1,2.
there exists a finite number, say, of distinct pairs for somes in

(K%, Py),..., (K5, Pf) such that2 < K7 and2K; < P}
for each? = 1, ..., L with the property that

(Kn, Pn) = (K[, P;), neN;

Proof.
(39). Also there exist a constaét > 0 and a finite integen*

As was the case with Theorem 4.2, Lemma 9.1 implies
gmnﬁoo P(n;6,,) =1 whenever

2<K, <P,
. sufficiently large under the condition (39)

0.3)

The condition (31) is automatically satisfied under

such that

where Ny, ...,
of Ny with

Ny, are disjoint and countably infinite subsets

*

PngCn‘s, n>n".

On that range, we get

UL Ny = ™ n* 41,

for somen** > n* (so as to ensure set equality). Applying
Lemma 7.1 we obtain

—an 1-28
P2€ P2 S 02n25e—20n

and the desired conclusion is now immediate as we appeal to

Lemma 6.1. |
lim P(n;6,) = {=1,...,L
neNy
where lim,cy, indicates that the limit is taken with REFERENCES
going to Inflmty along the SUbsequence deflnedMN The [1] S.R. Blackburn and S. Gerke, “Connectivity of the uniform random

conclusionlim,, 1 easily follows from the

P(n,6,)
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Wk, ) S 5]
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With K,, = 2, the condition (31) reads (8]
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