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We develop a new multivariate Lévy correlation model which is formulated by

evaluating Lévy processes subordinate to the integral of a Wishart process. This

new model captures not only stochastic mean, stochastic volatility, and stochas-

tic skewness, but also stochastic correlation of cross-sectional asset returns while

still being analytical tractable. It is a multivariate extension of the time changed

Lévy process introduced by Carr, Geman, Madan and Yor, which can capture the

individual dynamics as well as the interdependencies among several assets.

In this dissertation, two different methods are employed to simulate paths

of the instantaneous rate of time change matrix A(t), followed by a Wishart pro-

cess. The simulation paths successfully display desirable clustering and persistence

features. In addition, we analyze the behavior of the joint log return distribution

generated in this new model and show that the model provides a rich dependence

structure. The option pricing problem involves computing the closed form of the

characteristic functions, which are usually not easily obtained in the multivariate



correlated case. In this thesis, we derive explicit forms of both marginal and joint

conditional characteristic functions by applying the ‘Matrix Riccati Linearization’

technique creatively. Our work is distinguished from existing multivariate stochastic

volatility models, with the advantage that it can deal with stochastic skewness ef-

fects introduced by Carr and Wu. Finally, we derive pricing methods for multi-asset

options as well as single asset options by using both simulation and Fast Fourier

transform methods. More important, this model can be well calibrated to the real

market. We chose options on two major FX currencies to perform the calibration

and remarkable consistency has been observed.
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grated Wishart Time Change . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Conditional Characteristic Function Derivation . . . . . . . . 47
3.3.3 The Explicit Laplace Transform for the Integrated Wishart

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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Chapter 1

Introduction

1.1 Background and Motivation

Correlation structure plays a crucial role in pricing multi-asset derivatives and

managing risks exposed to multiple financial assets. Appropriate correlation fore-

casts are important parameters in pricing models of structured financial instruments.

While there is a wide variety of literature on pricing of single-asset options in equi-

ty market, (e.g. Black-Scholes [8], Merton [51], Madan and Seneta [48], Kou [45],

Madan et al. [49], Prause [53], Hull, and White [41], Schoutens [56] , Cont and

Tankov [17] ), the amount of literature considering the multi-asset case is rather

limited. It is most likely due to the fact that the large numbers of state variables

and parameters used in the multivariate setting increase the complexity of a model.

On the other hand, since not only the individual assets but also their joint behav-

ior has to be taken into account, the model under consideration should be able to

be calibrated by real market prices without sacrificing flexibility and tractability.

However, this becomes challenging when dealing with multiple underlying cases.

In the financial market, it has become quite common that the payoff functions

of several structured products are determined by more than one asset or underly-

ing factor. In addition, due to the fact that most multi-asset options are traded

over the counter (OTC), it is much more difficult to obtain real price quotes com-
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pared to pricing a single asset options. The classical approach to model dependence

structures among multiple underlying is through constructing multivariate correlat-

ed Brownian motion based processes. Although this may seem to be the natural

way to build the dependence, it has been questioned by the well-documented heavy

tail phenomena of stock returns and the volatility skew effects observed in the op-

tions market. Therefore, many researchers have shown increasing interest in more

sophisticated models such as stochastic volatility models, (e.g. Heston [38], Hull

and White [41], Bates [5] [6] etc.) and infinite activity jump models (e.g. Lévy

models including the NIG model of Barndorff-Nielsen [2], the VG model of Madan

and Seneta [48], and the CGMY model of Carr, Geman, Madan and Yor [13]). Be-

sides these well developed models which successfully explain the dynamics of a single

price process, multivariate stochastic volatility modeling and multivariate Lévy pro-

cess modeling has also attracted considerable interest in option pricing over the last

few years. (See Gourieroux [34], Da Fonseca, Grasselli and Tebaldi [22], Con, and

Tankov [17], Luciano, Schoutens [47], Dimitroff, Lorenz and Szimayer [24], Hubalek

and Nicolato [40]).

There is lots of empirical evidence suggesting that both stochastic volatility

and jumps are needed in modeling. As asset prices jump, leading to non-Gaussian

daily return distributions, stochastic volatility models driven by Brownian motion

are not quite appropriate. In addition, return volatilities vary stochastically over

time and are clustered, which has not been captured in general Lévy processes.

Moreover, the correlation between assets’ returns and their volatilities (or leverage

effect) turns out to be stochastic. While many stochastic volatility models have well

2



explained the phenomena of volatility clustering and volatility persistence, they lack

the flexibility of considering the stochastic skewness effect introduced by Carr and

Wu [14]. Therefore, stochastic volatility is naturally extended to Lévy processes.

In a recent work, Carr, Geman, Madan and Yor [12] proposed an approach to

modeling stochastic volatility with Lévy processes by evaluating Lévy processes sub-

ordinate to the integral of a mean reverting process, for example, the Cox-Ingersoll-

Ross (CIR) process. This stochastic time-changed Lévy process is able to capture

the jumps, stochastic volatility, and leverage effect mentioned above simultaneously.

However, the framework considered in [12] is not able to capture the joint behavior

among several assets since its construction is under a single asset.

Furthermore, a vast literature focuses on modeling stochastic volatility effects

by evaluating return innovation driven by Brownian motions and volatility inno-

vation following a Wishart process, e.g., Gourieroux and Sufana [33], Da Fonseca,

Grasselli and Tebald [22] [23], Gourieroux, Jasiak and Sufana, [35], Gourieroux [34],

Benabid, Bensusan, and El Karoui [7], Buraschi, Porchia, and Trojani, [10]. Al-

though these models are multifactor or multivariate stochastic volatility extensions

of Heston’s [38] model, unfortunately none of them have been successfully calibrated

to the real market.

This dissertation presents a new multivariate Lévy correlation model formu-

lated by evaluating Lévy processes subordinate to the integral of a Wishart process.

As the Wishart process is considered to be a multivariate extension of the Cox In-

gersoll Ross (CIR) process, my work extends the time-changed Lévy process [12] to

a multi-asset version and is able to recapture the individual dynamics as well as the
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interdependencies among several assets. Our new model captures not only stochas-

tic mean, stochastic volatility, stochastic skewness, but also stochastic correlation of

cross-sectional of asset returns while still be highly analytical tractable. And more

importantly, it could be successfully calibrated to the market option prices varying

across both the strike and maturity dimensions.

1.2 Lévy Processes

Lévy processes, named in honor of Paul Lévy, have been used in mathematical

finance for many years. The well known Brownian motion is a purely continuous

Lévy process. The classic Black-Scholes model assumes the underlying asset price

follows a geometric Brownian motion with constant drift and volatility. Although the

Black-Scholes model is quite successful in explaining stock prices, it does have known

shortcomings. One of the main problems with the Black-Scholes model is that the

log returns of most financial assets do not follow a normal distribution. In addition,

the well-documented heavy tail phenomena of stock returns and the volatility skew

effect observed in real market also raises doubts about the traditional Black-Scholes

model. Therefore, non-normal Lévy processes have become increasingly popular

because they can describe features observed in financial markets more accurately

than diffusion models based on Brownian motion. Mandelbrot first studied the non-

normal exponential Lévy process in his paper [50] published in 1963. After that,

many models based on pure jump Lévy processes have been developed (e.g., variance

gamma (VG) model, normal inverse gaussian (NIG) model and CGMY model, etc.)
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These Lévy models incorporate jumps observed in stock prices and depict features

of stock prices such as heavy tails, skewness, and high kurtosis.

1.2.1 Definition and Properties

Definition 1.1. (Lévy process) A càdlàg1 stochastic process (Xt)t≥0 with X0 = 0

almost surely, defined on a probability space ( Ω,F ,P), is called a Lévy process if

the following properties are satisfied:

• X has independent increments: ∀ 0 ≤ t0 < t1 < ... < tn, the random variables

Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

• X has stationary increments: the distribution of Xt+h − Xt does not depend

on t for any t, h ≥ 0.

• X is stochastically continuous: ∀ε > 0, limh→0P (|Xt+h −Xt| ≥ ε) = 0.

We usually study the Lévy process through its characteristic functions instead

of its distributions. The Lévy-Khintchine formula provides the characterization of

infinitely divisible random variables through their characteristic functions. Before

we move on to the Lévy-Khintchine formula, we are going to explore the relationship

between Lévy process and infinite divisibility.

1.2.1.1 Infinitely Divisible Distribution

Definition 1.2. (Infinite divisibility) The law of a random variable X is in-

finitely divisible if for all n ∈ N there exist i.i.d. random variables X
(1/n)
1 , ..., X

(1/n)
n

1Càdlàg process is a stochastic process for which the paths are right continuous with left limits.

5



such that

X
d
=X

(1/n)
1 + ...+X(1/n)

n . (1.1)

Proposition 1.3. The law of a random variable X is infinitely divisible if and only

if for each n ∈ N, there exists X(1/n) such that

φX(u) = (φX(1/n)(u))n. (1.2)

Proposition 1.4. If X is a Lévy process, then Xt is infinitely divisible for each

t ≥ 0.

By Proposition 1.4, we can easily express the characteristic function ΦX(u) of

Lévy process Xt in a simple form.

Theorem 1.5. If X is a Lévy process, then

φXt(u) = E(eiuXt) = etψX1
(u) (1.3)

for each u ∈ Rd, t ≥ 0, where ψX1(u) is the characteristic exponent of the Lévy

process at unit time.

1.2.1.2 The Lévy-Khintchine formula

The connection between infinitely divisible distributions and the Lévy process-

es leads to the famous Lévy-Khintchine formula. This formula provides a complete

characterization of random variables with infinitely divisible distribution via their

characteristic functions and enables us to study Lévy processes through studying

infinite divisible distributions.
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Theorem 1.6. (Lévy-Khintchine formula) Let (Xt)t≥0 be a Lévy process on R.

Then the characteristic exponent ψX1(u) is given by

ψX1(u) = iγu− 1

2
σ2u2 +

∫
R\{0}

(
eiux − 1− iux1|x|≤1

)
ν (dx) (1.4)

with ∫
R\{0}

(1 ∧ x2)ν (dx) <∞ (1.5)

where γ ∈ R, σ2 ≥ 0 and ν is a measure on R\{0}.

The triplet (γ, σ2, ν) is called the Lévy triplet. From equation (1.4), we can

observe that a Lévy process can be decomposed into three independent components:

a deterministic drift, a continuous Brownian motion, and a pure jump process. We

call k(x) the Lévy density, if the Lévy measure is of the form ν(dx) = k(x)dx. More-

over, γ ∈ R is called the drift term, σ2 ∈ R+ the Gaussian or diffusion coefficient

and ν the Lévy measure.

Now, we consider the path properties of Lévy processes. The Levy triplet

(γ, σ2, ν) determines the path property of Lévy processes. For example, the Lévy

process is a pure jump process if σ2 = 0 (no diffusion part). If σ2 = 0, and∫
|x|≤1

ν (dx) < ∞, there are infinitely many jumps in any finite interval, and we

call the Lévy process is of finite activity. When
∫
|x|≤1

ν (dx) = λ = ∞ instead, the

mean arrival rate of jumps λ is infinity, and then the Lévy process is said to have

infinite activity. A Lévy process is a pure jump process with finite variation if it

satisfies σ2 = 0 and
∫
|x|≤1

|x|ν (dx) < ∞. In that case the characteristic exponent

can be re-expressed as

ψX1(u) = iγ′u+

∫
R\{0}

(eiux − 1)ν (dx) (1.6)
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where γ′ is a new drift coefficient. On the other hand, a pure jump Lévy is of infinite

variation when σ2 = 0 and
∫
|x|≤1

|x|ν (dx) =∞.

To see how the Lévy-Khintchine formula disintegrates into Brownian motion

and Poisson distribution terms, we introduce the Lévy-Itô decomposition theorem.

1.2.1.3 The Lévy-Itô Decomposition

Theorem 1.7. (Lévy-Itô decomposition) Let Xt be a Lévy process with triplet

(γ, σ2, ν), where γ ∈ R, σ ∈ R+ and let ν be a measure satisfying
∫
R\{0}(1 ∧

x2)ν (dx) < ∞. Then there exists a probability space (Ω,F ,P) on which the Lévy

process can be decomposed into four independent components as Xt = γt + Bt +

Nt +Mt, where γt is a constant drift, Bt is a Brownian motion, Nt is a compound

Poisson process with Nt =
∫ t

0

∫
|x|≥1

xµL(ds, dx), and Mt is a pure jump martingale

with Mt =
∫ t

0

∫
|x|<1

xµL (ds, dx)− t
∫
|x|<1

xν (dx). (µL denotes the random measure

counting the jumps of Mt)

It is easy to see that Nt counts the ’large jumps’ and Mt counts the small

jumps within the finite time interval [0, t]. Considering characteristic exponents and

the Lévy-Itô decomposition, we can split the Lévy exponent into three parts:

ψ(u) = ψ1(u) + ψ2(u) + ψ3(u) (1.7)

where

• ψ1(u) = iγu, linear or constant drift with parameter γ.

• ψ2(u) = 1
2
σ2u2, Brownian motion with coefficient σ.
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• ψ3(u) =
∫
R\{0}(e

iux − 1− iux1|x|≤1)ν (dx), compensated Poisson process.

Therefore, Brownian motion and Poisson based models are special cases of a general

Lévy process model.

1.2.2 Measure Change for Lévy Processes

Measure change is an crucial tool in connecting the physical measure with the

risk-neutral measure in financial mathematics. The well-known theorem is Girsanov

theorem, which shows how stochastic processes change under changes in measure.

Theorem 1.8. (Girsanov theorem) Let Wt be a standard Brownian motion on

(Ω,F ,P,Ft). Let Zt = eYt be an exponential martingale under P with Yt being of

the form:

Yt =

∫ t

0

Xs dWs −
1

2

∫ t

0

X2
s ds. (1.8)

Then, a new process W̃t defined by

W̃t = Wt −
∫ t

0

Xs ds (1.9)

is a Brownian motion under new measure Q, which is equivalent to measure P.

Moreover measure Q can be defined by the Radon-Nikodym derivative:

dQ
dP

∣∣∣
Ft

= Zt (1.10)

To change measures between two general Lévy processes, we have the sim-

ilar results which need to find equivalent martingale measures (for details refer

to [55] [17] [42]). We now state the partial extension of Girsanov’s theorem:
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Proposition 1.9. (Extension of Girsanovs theorem) If the Levy-type stochas-

tic integral Yt is given by

dYt = Gtdt+ FtdWt +Ht,xÑdt,dx +Kt,xNdt,dx, (1.11)

then Zt = eYt is a local martingale if and only if for t ≥ 0,

Zt = 1 +
∫ t

0
eYs−FsdWs +

∫ t
0

∫
|x|<1

eYs−(eHs,x − 1)Ñds,dx

+
∫ t

0

∫
|x|≥1

eYs−(eKs,x − 1)Ñds,dx.

(1.12)

The probability measure we use in pricing a contingent claim traded in the

real market is usually different from the statistical measure of the observed process.

In addition, by non-arbitrage pricing theory, all option pricing problems should be

treated under the risk-neutral measure. Therefore, Girsanov’s theorem is especially

important in the theory of financial mathematics as it tells how to convert from the

physical measure to risk-neutral measure.

1.2.3 The Lévy Market Model

The Lévy process has been used in financial modeling for a long time of period

due to its nice features and more flexible distribution, compared to Brownian motion.

Instead of modeling the log returns with a normal distribution, we replace it with a

Lévy process. The Lévy market model assumes the market consists of one riskless

asset (the bond) and one risky asset (the stock or index). The price process for the

riskless asset is given by Bt = ert, and the risky asset model is

St = S0e
Xt (1.13)
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where Xt can be any Lévy process, for example, a VG Lévy process, NIG process

and CGMY process. Except when Xt is a Brownian motion or a Poisson process,

the Lévy model in equation (1.13) leads to incomplete markets. Therefore, there

exist many different equivalent martingale measures in the Lévy market and one

needs to choose the risk-neutral one from these measures in order to price an option

under Lévy processes.

There are many ways to find an equivalent martingale measures, for instance,

the Esscher transform, the mean-correcting martingale measure, and indifference

pricing. We now introduce the mean-correcting martingale measure as one of the

most convenient choices. It is can be done by changing the parameter in an ap-

propriate way such that the discounted stock-price process becomes a martingale.

Assuming no dividend (q = 0), interest rate is r,and Xt is a Lévy process, St is a

martingale defined as

St = S0e
(r−q)t eXt

E(eXt)
. (1.14)

In equation (1.14), we can see that Xt is mean corrected by Xt + r − lnφ(−i).

1.2.4 Subordinated Lévy Process

The subordinated stochastic process was proposed by Clark in 1973 [16] as a

model to account for non-normality of returns. The return process X(t) was written

as a subordinated process X(t) = Z(T (t)), where T (t) is an increasing Lévy process

with independent and stationary increments, and T (t) is called a subordinator.

Theorem 1.10. (Subordinator) A subordinator is an increasing (in t) Lévy pro-
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cess. Equivalently, if T (t) is a subordinator then its Lévy triplet (γ, σ2, ν) must

satisfy ν(−∞, 0) = 0, σ = 0,
∫

(0,∞)
(x ∧ 1)ν(dx) <∞ and γ = b+

∫
(0,1)

xν(dx) > 0,

where b ≥ 0.

The pair (b, ν) is called the characteristics of the subordinator T (t).

Proposition 1.11. For each t ≥ 0, the Laplace transform of the subordinator T (t)

is:

E(e−uT (t)) = e−tψ(u), (1.15)

where ψ(u) = bu+
∫

(0,∞)
(1− e−ux)ν(dx), and the function ψ(u) is usually called the

Laplace exponent of the subordinator.

Subordinators play an important role in the construction of some Lévy pro-

cesses. Subordination enables us to construct a new Lévy processes through random

time change by an increasing Lévy process.2 For example, the VG process [48] is

a Brownian motion subordinated by a Gamma time change, the NIG process [2] is

a Brownian motion subordinated by a Inverse Gaussian process, and the stochastic

volatility Lévy process [12] is a Lévy process subordinated by the integration of a

CIR process.3

Now we discuss one of the popular Lévy processes, the VG process, which is

an important building block for this dissertation.

2The stochastic time changed Lévy process is discussed in Chapter 2.
3Lévy models with stochastic volatility is discussed in Chapter 2.

12



1.3 The Variance Gamma Process

The VG process was introduced and developed by Madan and Seneta [48] in

1990, and is one of the most popular Lévy models. As we discussed in previous

section, the VG process is a Brownian motion subordinated by a Gamma time

change, or a gamma time-changed Brownian motion. It is a pure jump process with

infinite activity.

1.3.1 Definition and Properties

1.3.1.1 The VG Process as Subordinated Brownian Motion

The VG process is a process with infinite activity and finite variation, and can

be considered as drifted Brownian motion evaluated at a random time given by a

Gamma process. It is defined as

Xt = θGt + σWGt (1.16)

where W = (Wt; t ≥ 0) is a Brownian motion with constant drift θ and volatility

σ. The independent subordinator Gt is a gamma process with unit mean rate and

variance rate ν.

The characteristic function of the V G(θ, σ, ν) law is obtained by conditioning

on the gamma time, and then applying the Laplace transform to get the uncondi-

tional characteristic function of simple form:

φV G(u; θ, σ, ν) = (1− iuθν +
1

2
σ2νu2)−1/ν . (1.17)
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This distribution is infinitely divisible and we can define the VG process X(V G) =

{X(V G)
t , t ≥ 0} as the process which starts at zero, has independent and stationary

increments and for which the increment X
(V G)
s+t −X

(V G)
x follows a V G( tθ, σ

√
t, ν/t)

law over the time interval [s, t+ s] [56].

The class of VG distributions is flexible to control both skewness and kurtosis.

Generally speaking, the parameter θ controls the skewness of the distribution: If θ =

0, the Lévy density distribution is symmetric with no skewness; negative skewness

is generated by negative values of θ. The parameter ν determines the kurtosis of the

distribution. And σ provides the control of volatility as in the Black-Scholes model.

1.3.1.2 The VG Process as Difference of Gamma Processes

Madan [49] showed that the VG process can be written as the difference of two

independent Gamma processes. The VG model with (C,G,M) as an alternative

parametrization is a special case of the CGMY model with Y = 0. With this

characterization, the Lévy density kV G(x) of a VG process is determined by:

kV G(x) =


C exp(Gx)/|x|, x < 0

C exp(−Mx)/x, x > 0

(1.18)

where

C = 1/ν > 0

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1

> 0

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1

> 0.
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With these parameters, the VG process X
(V G)
t (C,G,M) can be written as the dif-

ference of two Gamma processes:

X
(V G)
t (C,G,M) = G+

t (tC, 1/M)−G−t (tC, 1/G) (1.19)

Moreover, the characteristic function of X
(V G)
t can be written in terms of C,G,M

as follows:

φV G(u; C,G,M) = (
GM

GM + (M −G)iu+ u2
)C . (1.20)

1.3.2 The VG Stock Price Model

By replacing the Brownian motion in the Black-Scholes model with a VG

process, the risk neutral VG stock price model is written as:

St = S0 exp[(r − q)t+Xt(θ, ν, σ) + wt], (1.21)

where r is the continuously compound interest rate, q is the dividend, Xt is a VG

process, and w is a correction factor which helps to make the discounted stock price

a martingale. By choosing a mean-correcting measure as the risk-neutral measure,

we have

w = − lnφXV G(−i) =
1

ν
ln(1− θν − 1

2
σ2ν), (1.22)

and the characteristic function for the log return as:

φlnSt(u) = E(eiu(lnS0+(r−q)t)
φXV G(u)

[φXV G(−i)]iu
(1.23)

This equation (1.23) is used to calculate the VG option prices by the Fast Fourier

Transform (FFT) method.4

4FFT is introduced in the next section 1.4
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The density function of log stock price can be obtained and expressed in terms

of the modified Bessel functions of the second type [49].

Theorem 1.12. The density for the log return zt = ln(St/S0), when prices follows

the risk neutral VG stock process (1.14), is given as follows:

f(z) =
2 exp(θx/σ2)

ν1/νσ
√

2πΓ(t/ν)

(
x2

2σ2/ν + θ2

)t/2ν−1/4

Kt/ν−1/2

(
1

σ2

√
x2 (2σ2/ν + θ2)

)
(1.24)

where Kt/ν−1/2 is the modified Bessel function of the second type and

x = z − rt− t

ν
ln(1− θν − σ2ν/2). (1.25)

While the closed-form expression for pricing an European call option with

strike K is derived by Madan et al [49] (see Theorem 1.13), this expression involves

computing the Bessel function of the second type.

Theorem 1.13. The European call option price with strike price K on a stock under

the risk-neutral price process is given by

c(S0;K, t) = S0Ψ

(
d

√
1− c1

ν
, (a+ s)

√
ν

1− c1

,
t

ν

)

−Ke−rtΨ

(
d

√
1− c2

ν
, (as)

√
ν

1− c2

,
t

ν

)
,

(1.26)

where

d =
1

s
[ln

(
S0

K

)
+ rt+

t

ν
ln

(
1− c1

1− c2

)
],

a = − θ

σ
√

1 + (θ/σ)2 ν/2
,

c1 =
ν(a+ s)2

2
,

c2 =
νa2

2
,
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and the function Ψ is defined in terms of the modified Bessel function of the second

kind and the degenerate hypergeometric function of two variables.

Instead of computing the Bessel function, Carr and Madan provided a more ef-

ficient way to compute the option pricing using the Fast Fourier Transform (FFT) [11].

The FFT has been widely used in pricing options under Lévy process.

1.4 The FFT Method and Option Pricing

As an efficient approach of pricing European options, the Carr-Madan FFT

method has become a popular pricing tool. This method evaluates the value of an

option by applying the inverse Fourier transform to the characteristic function of

the log price. Given any characteristic function, the option value can be expressed

in a simple analytic form via the FFT approach. In other words, the only thing

required for using FFT is the closed form of the characteristic function. In the

previous section, we can see that the analytic formula of call option price involves

computing a numerical integration of the modified Bessel function of the second

type. This FFT method is much faster and become widely used for most of Lévy

and stochastic volatility models. We sketch the method as follows:

Let k = lnK (the log of the strike price), and let CT (k) be the value of a call

option with maturity T . The characteristic function of the risk neutral measure of

lnST (the log stock price) is denoted as φT (u). Then the Fourier transform considered

in [11] is:

ψT (ν) = exp(−αk)

∫ ∞
−∞

eiνkCT (k) dk. (1.27)
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where exp(−αk) is the damping factor needed to obtain a square integrable call pric-

ing function. By using the inverse transform, call prices can be obtained numerically

as

CT (k) =
exp(−αk)

π

∫ ∞
0

e−iνkψT (ν) dν (1.28)

and where an analytical expression for ψT (ν) is available in terms of φT (u):

ψT (ν) =
e−rTφT (ν − (α + 1)i)

α2 + α− ν2 + iν(2α + 1)
. (1.29)

We can approximate the integral in (1.28) using the trapezoidal rule, and

write:

CT (k) ≈ exp(−αk)

π

N∑
j=1

e−ivjkψT (νj)η. (1.30)

In order to take the full advantage of fast Fourier transform, N is usually

chosen to be a power of 2, and η is the step size for the grid of the characteristic

function, νj = (j − 1)η, j = 1, ..., N . Let a be the upper limit of the integration.

Then η = a/N . If λ is chosen to be the step size of the log strike k, then the log

strikes vary from −b to b on the grid of ku = −b+ λ(u− 1), u = 1, ..., N . Then CT

can be written approximately:

CT (ku) ≈
exp(−αk)

π

N∑
j=1

e−iλη(j−1)(ku−1)eibνjψT (νj)η. (1.31)

In addition, if λη = 2π/N , the call price is of the following form through

applying Simpson’s rule:

CT (Ku) =
exp(−αk)

π

N∑
j=1

exp

(
−i2π

N
(j − 1)(u− 1) + ibνj

)
ψT (νj)

ν

3
(3+(−1)j−δj−1),

(1.32)
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where δn is the Kronecker delta function,

δn =


1 n = 0,

0 n 6= 0.

We now recall the FFT, which is an algorithm for computing the following

sum

w(k) =
N∑
j=1

e−i
2π
N

(j−1)(u−1)x(j). k = 1, ..., N (1.33)

If we take x(j) = eibνjψT (νj)
ν
3
(3+(−1)j−δj−1) in equation (1.33), the equation (1.32)

can be written as:

CT (Ku) =
exp(−αk)

π

N∑
j=1

e−i
2π
N

(j−1)(u−1)x(j). (1.34)

Consequently, we may apply FFT to equation (1.34) to compute the call option

price efficiently. The option prices across all the strikes can be calculated via the

FFT method for only one single run, which makes the calibration of the model to

the real market data very fast.
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Chapter 2

Lévy Models with Stochastic Volatility

2.1 Overview

The Black-Scholes model has been widely used in pricing European-style op-

tions. It assumes the underlying asset price follows a geometric Brownian motion

with constant drift and volatility under risk neutral measure:

dSt = rStdt+ σStdBt, (2.1)

where r is the interest rate, Bt is the standard Brownian motion and σ denotes the

constant volatility over time t. However, the constant volatility assumption contra-

dicts the options data from the market. On the other hand, the well-documented

heavy tail phenomena of the stock returns and the volatility skew effect observed

in the option market also raises doubts traditional Black-Scholes model. There-

fore, more sophisticated models such as stochastic volatility models have attracted

considerable interest in option pricing.

There are at least two approaches of incorporating a volatility effect. The first

method is replacing the constant volatility parameter of Black-Scholes model with

stochastic volatility, and the volatility process is driven by a Brownian motion.(e.g.

Hull and White [41], and Heston [38]). Unlike from a constant volatility geomet-

ric Brownian motion model, the general stochastic volatility model deals with the
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volatility as another stochastic process:

dSt = µStdt+
√
νtSt dWt (2.2a)

dνt = αtdt+ βt dBt (2.2b)

where µ represents the mean rate return of the stock, νt is the volatility, Wt and Bt

are Brownian motions, and αt, βt are functions of νt. By assuming the volatility of

the underlying price is a stochastic process rather than a constant, this approach

can resolve the shortcoming of Black-Scholes model.

There exists lots of empirical evidence implying that not only stochastic volatil-

ity but also the jump effect should be taken into account in modeling. The main

feature missing from general Lévy processes introduced in Chapter One is the fac-

t that volatility varies stochastically and is clustered over time. Thus, stochastic

volatility is naturally extended to Lévy processes. Carr, Geman, Madan and Y-

or [12] construct a stochastic volatility Lévy process by evaluating a Lévy process

subordinated to the integral of a CIR process. Their approach is considered as an-

other way of incorporating the stochastic volatility effect. In this chapter, we are

mainly focus on the second method–Carr, Geman, Madan, and Yor’s approach.

2.2 The Stochastic Time Changed Process

One approach to build in stochastic volatility effects is to make time stochastic.

The mathematical concept of time changed stochastic processes can be regarded as

one of the standard tools for building financial models.
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Definition 2.1. (The Time-Changed Process) Given a stochastic process X =

(Xt)t≥0, sometimes referred to as the ‘base process’, the time-changed process Yt is

defined by:

Yt ≡ XTt , t ≥ 0, (2.3)

where T = (Tt) t≥0 is a non-negative, non-decreasing stochastic process not neces-

sarily independent of X.

The process Tt is referred to as time change, stochastic clock, or business time.

It reflects the varying speed of Yt.

The application of stochastic time change to asset pricing goes back to Clark [16].

In Clark’s model, the asset price is modeled as a geometric Brownian motion sub-

ordinated by an independent Lévy subordinator. He investigated the time-changed

process as Yt = BTt , where Xt = (Bt)t≥0 is standard Brownian motion in (2.3) and

Tt is an independent continuous time change.

2.2.1 Choice of Time Change

As we see in Definition 2.1, a time change Tt is a non-negative, non-decreasing

stochastic process. There are two popular classes of such processes chosen as a time

change in financial models: subordinators and absolutely continuous time changes.

In the finance literature, the terms subordinator and time change are sometimes

used synonymously. However, in probability theory, the term subordinator does

not include all time changes. Instead it describes a particular class of stochastic
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processes.5

Definition 2.2. (Absolutely Continuous Time Changes) The absolutely con-

tinuous time change is of the form:

Tt =

∫ t

0

ys ds, (2.4)

where y = (ys)s≥0 is a positive and integrable process, and is often called ‘instanta-

neous (business) activity rate’.

We note that Tt is always continuous, but ys can exhibit jumps.

A variety of possible stochastic processes can serve for the rate of time change.

Since time must increase, all processes modeling the rate of time change need to

be positive. Popular candidates for the instantaneous activity rate are the non-

Gaussian OU process [4] and the classical mean-reverting CIR process [20].

2.2.2 Mean-Reverting Process

Mean reversion is a mathematical concept sometimes used for stock investing,

but it can be applied to other assets. It can be thought of as a modification of the

random walk, where price changes are not completely independent as in random

walk, but rather related. In general terms, the essence of the concept is the assump-

tion that both a stock’s high and low prices are temporary and that a stock’s price

will tend toward its average price over time. In other words, the process which tends

to drift towards its long-term mean over time is called a mean-reverting process.

5Refer to the theorem in 1.10 for subordinator.
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Mean reverting processes have also been widely used in modeling stochastic

volatility. As has been observed by several authors such as Engle [28], Bates [5] [6],

Heston [38], and Barndroff-Nielsen and Shephard [4], volatilities estimated from time

series are usually clustered. The phenomenon is referred to as volatility persistence.

This persistence suggests that volatilities eventually move back towards the mean

or average.

2.2.2.1 The OU Process

The most basic mean-reversion model is the Ornstein-Uhlenbeck (OU)

process. The well known Vasicek [58] process is a model in which an instantaneous

interest rate follows an OU process. The OU process is widely used for modeling a

mean-reverting process. It is defined as follows:

Definition 2.3. (OU Process) The Ornstein-Uhlenbeck process xt is given by the

following stochastic differential equation:

dxt = θ(µ− xt)dt+ σ dWt (2.5)

where Wt is a standard Brownian motion on t ∈ [0,∞), θ > 0 is the rate of mean

reversion, µ represents the equilibrium value or the long-term mean of the process,

and σ > 0 is the volatility, and x0 > 0.

2.2.2.2 The CIR Process

The Cox-Ingersoll-Ross(CIR) process is a mean-reverting process. It was

introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross [19]
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as an extension of the OU process. In mathematical finance, the CIR process can

describe the evolution of interest rates, return volatilities, stochastic discount factors,

the difference between ask and bid prices, or latent risk factors. We now introduce

the dynamics and the distributional properties of this process.

Definition 2.4. (CIR Process) The Cox-Ingersoll-Ross process yt is defined by

the following stochastic differential equation(SDE):

dyt = θ(µ− yt)dt+ σ
√
yt dWt (2.6)

where Wt is a Brownian motion, and the parameters satisfy: θµ > 0, σ > 0.

This process is also called square root process due to the expression σ
√
yt for

the process volatility. The drift factor θ(µ − yt) is exactly the same as in the OU

process. It ensures mean reversion of yt towards the long-term value µ, with speed

of adjustment governed by the strictly positive parameter θ. The standard deviation

factor, σ
√
yt, avoids the possibility of negative yt for all nonnegative values of θ and

µ. If 2θµ > σ2, the process is strictly positive.

The CIR process belongs to the class of affine process, and exhibits the affine

property, which makes major contributions in deriving the closed form expression

of conditional Laplace transform of the CIR process. Before moving onto the ex-

plicit form of conditional Laplace transform of CIR process, we introduce the affine

property.

Definition 2.5. (Affine Function) Affine functions are vector-valued functions

of the form

f(x1, ..., xn) = A1x1 + ...+ Anxn + b (2.7)
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The coefficients can be scalars or matrices. The constant term is a scalar or a

column vector.

In equation (2.6), we note that the drift θ(µ− yt), and the volatility Vt(dyt) =

σ2yt dt are both affine functions of the process yt. Therefore, the CIR process is a

so-called affine process introduced by Duffie,and Kan [25].

Definition 2.6. (Affine Process) The Markov process X is called affine if

(i) it is stochastically continuous, with the state space D = Rm
+ × Rn, and

(ii) its Laplace transform has exponential-affine dependence on the initial state, or

in other words,it has the ‘affine property’: There exist functions φ and ψ, taking

values in C and Cm+n respectively, such that

Ex[e〈Xt,u〉] = exp(φ(t, u) + 〈x, ψ(t, u)〉︸ ︷︷ ︸
affine in x

) (2.8)

for all x ∈ D and for all (t, u) ∈ R+ × U , where U = {u ∈ C : Re〈x, u〉 ≤ 0 for all

x ∈ D}

In other words, an affine process is a stochastically continuous, time-homogeneous

Markov process Xt, with state space D = Rm
+ ×Rn, whose characteristic function is

an exponentially-affine function of the state vector.

Affine processes have attracted much interest, due to their wide applications

in mathematical finance. A variety of models fall into the class of affine models. The

classical Black-Scholes model [8], Heston model [38], Bates model [5] [6], Vasicek [58]

model, Barndorff-Nielsen and Shephard model [4], as well as many time-change

models for stochastic volatility such as Carr and Wu [12] are all affine. Moreover,
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all Lévy processes, the Lévy driven OU-processes [56], the CIR process [19], the

Wishart process [9]6 are based on affine processes.

Affine processes exhibit a high degree of analytic tractability. As the CIR

process is an affine, its Laplace transform is exponentially affine as in equation (2.8),

which can be derived in closed form.

Proposition 2.7. (Conditional Laplace Transform of the CIR Process)

If yt is a positive CIR process, its conditional Laplace transform is:

ψt,h(u) = E[exp(−uyt+h)|Ft] = exp[−a(h, u)yt − b(h, u)], (2.9)

where h ≥ 0, and the functions a, b satisfy the differential equations:
∂a(h, u)

∂h
= −ka(h, u)− η2

2
a(h, u)2,

∂b(h, u)

∂h
= kθa(h, u),

(2.10)

with initial conditions: a(0, u) = u, b(0, u) = 0.

The explicit solutions of the system in equation (2.10) are:
a(h, u) =

u e−kh

1 + 2k−1η2u[1− e−kh]
,

b(h, u) =
2kθ

η2
log

[
1 + u

η2

2k
(1− e−kh)

]
.

(2.11)

Proof: See Appendix. �

From equation (2.9), we see that the conditional Laplace transform of the CIR

process yt is an exponential affine function.

The CIR process can also be defined as a sum of squared Ornstein-Uhlenbeck

processes.

6The Wishart process is introduced in chapter 3.
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2.2.2.3 Link the CIR Process with the OU Process

Proposition 2.8. The sum of squares of J independent OU processes with iden-

tical parameters a, w2 is a CIR process as in Equation (2.6) with parameters: θ =

−2a, σ = 2w, θµ = Jw2. That is,

dyt = (2ayt + Jw2)dt+ 2wy
1/2
t dWt. (2.12)

If we consider an OU process xt defined by: dxt = axtdt + w dWt, the square

of this process yt = x2
t can be obtained by applying Ito’s formula. Then we get

dyt = (2ayt + w2)dt+ 2wy
1/2
t dWt.

More generally, if there are J independent OU processes with identical parame-

ters: dxjt = axjtdt + w dWjt, j = 1, ..., J, where Wjt, j = 1, ..., J, are independent

Brownian motions. The sum of these OU processes, yt = x2
1t + ...+ x2

Jt, is such that

dyt =
J∑
j=1

d(x2
jt) =

J∑
j=1

(2ax2
jt + w2) dt+

J∑
j=1

2wxjt dWjt,

or equivalently by aggregating the Brownian motions,

dyt = (2ayt + Jw2)dt+ 2wy
1/2
t dWt.

From the above equation, we can see that yt is a CIR process with parameters

θ = −2a, σ = 2w, θµ = Jw2.
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2.2.2.4 The Integrated CIR Time Change

Proposition 2.9. (The Integrated CIR Process) Let ys be a CIR process as in

definition 2.4. The integrated CIR process Y = {Yt, t ≥ 0} is given as

Yt =

∫ t

0

ys ds. (2.13)

Since yt is a positive process, Yt is an increasing process.

Proposition 2.10. (The Characteristic Function of the Integrated CIR

Process) The characteristic function of Yt (given y0) is explicitly given by

E[exp(iuYt)|y0] = φ(u, t; θ, µ, σ, y0) = A(t, u) exp(B(t, u)y0), (2.14)

where

A(t, u) =
exp (θ2µt/σ2)

(cosh(γt/2) + γ−1θ sinh(γt/2))2θµ/σ2

B(t, u) =
2iu

θ + γ coth(γt/2)

with γ =
√
θ2 − 2σ2iu.

2.3 The Lévy Stochastic Volatility Market Model

A stochastic time changed Lévy process, where the time-change process is giv-

en by a subordinator or an absolutely continuous time change, can be considered as

a Lévy process running on a new random clock. One can regard this new stochastic

clock as business time, and the original clock as calendar time. A more active busi-

ness day implies a faster business clock. Randomness in business activity generates

randomness in volatility [15].
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2.3.1 The Stochastic Volatility Lévy Process

A Lévy process subordinated to the integral of a mean reverting CIR process

was proposed by Carr, Geman, Madan and Yor [12] as a model to generate desired

volatility features. The basic intuition of their approach to stochastic volatility arises

from the Brownian scaling property. By virtue of this property, random changes in

volatility can be scaled to random changes in time, and thus random changes in

volatility can alternatively be captured by random changes in time.

2.3.1.1 Brownian Scaling Property

There is a well-known set of transformations of Brownian motion which pro-

duce another Brownian motion. One of these is the scaling property :

Proposition 2.11. (Scaling Property)

If W = {Wt, t ≥ 0} is a Brownian, then, for every c 6= 0, W̃ = {W̃t =

cWt/c2 , t ≥ 0} is also a Brownian motion.

From this property, one can see that Brownian scaling property relates changes

in scale to changes in time. Therefore, random changes in volatility can be repre-

sented by a random clock in time.

2.3.1.2 The Generic Stochastic Volatility Lévy Process

As defined in Chapter One, a Lévy process Xt has stationary independent

increments and its characteristic function is of the form:

E[eiuXt ] = etψX(u) (2.15)
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where ψX(u) is the Lévy exponent. The class of stochastic volatility Lévy processes

is defined as

Zt = XYt . (2.16)

where Y is independent of X. We can obtain a simple form of the characteristic

functions for these processes as follows:

E[eiuZt ] = E[e(Yt)ψX(u)] = φ(−iψX(u), t, y0; θ, µ, σ). (2.17)

where φ is defined as in Equation (2.14) and has a closed form.

2.3.2 The Stock Price Process

The risk-neutral stock price process is S = {St, t ≥ 0}, r is the constant

continuously compounded interest rate and the dividend yield is q. Let XYt be a

stochastic volatility Lévy process as described in Equation (2.16). Then the stock

price St at time t by mean-correcting argument is modeled as follows,

St = S0
e(r−q)t+XYt

E[eXYt ]
. (2.18)

Note that

E[eXYt ] = φ(−iψX(−i), t, y0; θ, µ, σ).

Then the characteristic function for the log of the stock price at time t is given by:

E[eiu ln(St)] = e(iu ln(S0+(r−q)t)) φ(−iψX(u), t, y0; θ, µ, σ)

φ(−iψX(−i), t, y0; θ, µ, σ)iu
. (2.19)
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Chapter 3

The New Multivariate Stochastic Lévy Correlation Model

3.1 An Overview

Correlation structure plays a vital role in multivariate modeling, since not on-

ly the individual assets but also their joint behavior should be taken into account.

The natural way to build the dependence structures among multiple underlying as-

sets is to construct multivariate Brownian motion based processes. However, the

well known shortcomings questioned this classical approach, and prevents it pricing

consistently. Therefore, more complex models, such as multivariate Lévy process

modeling and multivariate stochastic volatility modeling have been introduced to

financial modeling over the last few years. There are a vast literature on developing

multivariate Lévy processes (e.g. Con, and Tankov [17], Luciano and Schouten-

s [47], and Barndorff-Nielsen [3]). Although the dependence structures have been

successfully described in these multivariate models, resulting the return volatilities

are nearly constant. As real world volatilities vary stochastically over time and are

clustered, stochastic volatility has been extended to Lévy processes by Carr, Geman,

Madan and Yor [12] as mentioned in Chapter Two.

On the other hand, much literature focuses on modeling stochastic volatility

effects by evaluating return innovation driven by Brownian motion and volatility in-

novation following a Wishart process. (See Gourieroux and Sufana [33], Da Fonseca,
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Grasselli and Tebald [22] [23], Gourieroux, Jasiak and Sufana [35], Gourieroux [34],

Benabid, Bensusan, and El Karoui [7], Buraschi, Porchia, and Trojani [10].) Al-

though these models are multifactor or multivariate stochastic volatility extensions

of Heston’s [38] model, unfortunately none of them have been successfully calibrated

to the real market.

In Chapter Two we discussed the stochastic volatility for a Lévy process [12] ,

in which the Lévy process is subordinated to the integral of a CIR process. However,

this framework does not taken correlations into account. Thus it is not able to

capture the joint behavior of several assets. In this dissertation we build a new

multivariate stochastic Lévy correlation model which extends the time-changed Lévy

process [12] to a multi-asset version and which may able to recapture the individual

dynamics as well as the interdependencies between several assets.

We design a new Lévy correlation model, which can be considered as multi-

variate extension of the existing time-changed Lévy model [12]. To construct such

a complex model, the following questions need to be taken into account, which do

not have to be studied in single asset setting (Time-changed Lévy model [12]):

• How to allow flexible correlation dynamics with independent variation?

• How to allow each asset–economic shock–has its own business clock.

• How to model the co-movements of business clocks of multiple assets–economic

sources?

In this dissertation, the Wishart process has been applied as a base process

for modeling the instantaneous time change rate. Since the Wishart process is a
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multivariate extension of the Cox Ingersoll Ross (CIR) process, it may deal with

all questions listed above. Therefore, evaluating Lévy processes subordinate to the

integral of a Wishart process can be considered as a multivariate extension of the

stochastic volatility Lévy process proposed by Carr, Geman, Madan and Yor in [12].

Before discussing the construction of our new model, we now introduce the

Wishart process.

3.2 Wishart processes

Wishart processes were developed mathematically by Bru [9] in 1991, and

have recently been applied to finance by Gourieroux and Sufana [33] in 2004. Since

then, a large amount of literature has shown increasing interest in describing multi-

variate models with Wishart stochastic volatility matrices, in which the volatility-

covolatility matrices are driven by Wishart random processes. (See Da Fonseca,

Grasselli and Tebald [22] [23], Gourieroux, Jasiak and Sufana [35], Gourieroux [34],

Benabid, Bensusan, and El Karoui [7], Buraschi, Porchia, and Trojani [10].)

The Wishart process addresses the limitations of the CIR process and increases

the dimensionality of the risk by replacing a scalar volatility in CIR process with a

volatility-covolatility matrix. It is also a multivariate extension of the CIR process,

and allows us to model not only the dynamics of volatilities, but also the evolution

of covolatilities. Wishart processes are flexible enough to incorporate the volatility-

covolatility dynamics and enable a dynamic analysis of multivariate risk.
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3.2.1 Wishart Process and its properties

The standard Wishart distribution is a multidimensional generalization of the

χ2 distibution and is very useful for the estimation of the covariance matrices in

multivariate statistics [54].

Proposition 3.1. (Wishart Distribution) Let X1, ...Xn ∈ Rp be n independent

identically distributed Gaussian vectors with Xi ∼ N (0,Σ), i = 1, ..., n. The law

of the random matrix: S =
∑n

i=1XiX
T
i is called the Wishart distribution, and is

denoted S ∼ W (Σ, p, n), S is a p× p random matrix. For more general case, when

Xi ∼ N (µi,Σ), i = 1, ..., n, the law of S =
∑n

i=1 XiX
T
i is called ‘non central Wishart

distribution’.

In modeling the dynamics of covariance matrices, we need to focus on processes

taking values in the set of nonnegative definite matrices. Therefore, the trace of these

nonnegative definite matrices may be considered for modeling positive stochastic

volatility process. Now let us see how to construct the Wishart process.

The simplest way to derive the distribution of a Wishart process is to start

from multivariate OU processes with identical dynamics.

Proposition 3.2. (Construction of the Wishart Process) Let β ∈ N, and

{XOU
k,t , t ≥ 0}1≤k≤β be independent vectorial OU processes in Rn with dynamics:

dXOU
k,t = MXOU

k,t dt+QTdWk,t, (3.1)

where {Wk,t, t ≥ 0, 1 ≤ k ≤ β} are independent vectorial Brownian motions, M,Q
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are n× n matrices and Q is invertible. Then let us consider the matrix process:

Vt =

β∑
k=1

XOU
k,t (XOU

k,t )T . (3.2)

which has dynamics:

dVt = (βQTQ+MVt + VtM
T )dt+

√
Vt dWtQ+QTdW T

t

√
Vt. (3.3)

Proof : Thanks to the Itô calculus, we easily get:

dVt = (βQTQ+MVt + VtM
T )dt+

β∑
k=1

Xk,tdW
T
k,tQ+QTdWk,tX

T
k,t.

Then, by using the Lévy criterion for Brownian motion, we can define a matrix-

valued Brownian motion W so that:

√
VtdWt =

β∑
k=1

Xk,tdW
T
k,t

. �

Definition 3.3. (The Wishart Process) The dynamics in (3.3) is called the

Wishart process, and it is an affine process. The parameter β in (3.3) is not re-

stricted to an integer, and it can be chosen as any positive real number:

dVt = (ΩΩT + VtM
T +MVt) dt+

√
Vt dWtQ+QT dWt

√
Vt (3.4)

Equation (3.4) characterizes the Wishart process introduced by Bru [9], where

ΩΩT = βQTQ

Ω, M , Q ∈ Mn (the set of square matrices), β ∈ R, Ω is invertible and Wt is a

Brownian motion matrix.
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The Wishart process is usually used to model the dynamics of volatility-

covolatility matrices. It is a mean-reverting process with affine properties. In the

framework of the Wishart process in Equation (3.4), the matrix M can be considered

as the mean-reversion parameter and the matrix Q as the volatility parameter of

Vt.
7 In order to guarantee the typical mean-reverting and strict positive definiteness

features of the volatility, the matrix M is assumed to be negative semi-definite, and

condition β > n − 1 is imposed to ensure existence and uniqueness of the solution

Vt.

In addition, as the evolution dynamics of Vt is usually applied to modeling

volatility-covolatlity matrices, the matrix Q can be considered as the volatility of

volatility parameter, which takes into account the variance-covariance fluctuations.

Moreover, the Wishart process is the multivariate extension of the CIR process in-

troduced for scalar stochastic volatility, and this multi-variable Wishart process will

provide some flexibility that can help explain some empirical observations that a

collection of independent one variable CIR processes can not capture. Furthermore,

the Wishart dynamics can describe the evolution of stochastic volatility-covolatility

matrices and are very flexible. They are direct competitors of less structural multi-

variate ARCH models, multinomial trees [39], and dynamic conditional correlation

GARCH models [29].

Proposition 3.4. (The Wishart process is an affine process) Let Vt be a

Wishart Process satisfying the matrix diffusion system in (3.4). Then the drift of Vt

7There a vast literature chose Vt to be a volatility-covolatility matrices Σt. Thus in those cases,

the matrix Q can be considered as the volatility of volatility parameter.
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is

E(dVt|Ft) = (βQQT + VtM
T +MTVt)dt, (3.5)

and the covariance of αTdVtα (Since it is more difficult to represent the volatility

matrix of dVt, which has large dimension. Fortunately, it is equivalent to know the

square of the norm associated with dVt) for any α, β ∈ Rn is:

Cov[(αTdVtα, β
TdVtβ)|Ft] = (4αTdVtβα

TQTQβ)dt. (3.6)

The drift and volatility are both affine functions 8of Vt, and therefore the Wishart

process is an affine process.

Proof : See Appendix. �

Now, let us to see how to define the conditional Laplace transform of the

Wishart process. For any symmetric matrix Γ

Tr(ΓVt) =
n∑
i=1

(ΓVt)ii =
n∑
i=1

n∑
j=1

γij(Vt)ji =
n∑
i=1

γii(Vt)ii + 2
∑
i<j

γij(Vt)ij,

where {γij, i, j = 1, ..., n} are the entries of the matrix Γ. Thus, the conditional

Laplace transform can be defined as

ψt,h(Γ) = E[eTr(ΓVt+h)|Ft],

since any linear combination of the elements of Vt can be written as Tr(ΓVt). The

explicit expression of ψt,h(Γ) is given as follows:

8or equivalently the conditional Laplace transform is an exponential affine function of Vt
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Proposition 3.5. (The Conditional Laplace Transform of the Wishart

Process) The Wishart process Vt has conditional Laplace transform

ψt,h(Γ) =
expTr[M̃(h)TΓ(Id− 2Σ(h)Γ)−1M̃(h)Vt]

(det[Id− 2Σ(h)Γ])β/2
. (3.7)

where

M̃(h) = eMh,

Σ(h) =

∫ h

0

eMsQQT (eMs)T ds.

Proof : See Appendix. �

This conditional Laplace transform can be recognized as the Laplace trans-

form of a noncentral Wishart distribution. In particular, the transition probability

density function at horizon h admits a closed form expression which involves a series

expansion (See [1] and [52]).

Proposition 3.6. (The transition pdf of the Wishart Process) The condi-

tional density of the Wishart process Vt+h, given Vt is

f(Vt+h|Vt) =
1

2βn/2
1

Γn(β/2)
(det Σ(h))−β/2

× (detVt+h)
(β−n−1)/2 exp−1

2
Tr[Σ(h)−1(Vt+h + M̃(h)VtM̃(h)T )]

×◦ F1

(
β/2,

1

4
M̃(h)VtM̃(h)TVt+h

)
,

(3.8)

where

Γn(β/2) =

∫
M>>0

exp[Tr(−M)](det M)(β−n−1)/2

is the multidimensional gamma function and ◦F1 is a hypergeometric function of

matrix argument.
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The hypergeometric function admits a series expansion which involves the so-

called ’zonal polynomials’. These polynomials have no closed form expressions, but

can be computed recursively [43], [52].

Proposition 3.7. (Infinitesimal Generator of the Wishart Process) The

infinitesimal generator associated with the Wishart process in (3.4) is:

LV = Tr[(βQTQ+MVt + VtM
T )D + 2VtDQ

TQD], (3.9)

where the operator D is defined by

D =

(
∂

∂V ij
t

)
1≤i,j≤n

(3.10)

Proof : See Appendix. �

3.2.2 Integrated Wishart Process

Definition 3.8. (The Integrated Wishart Process) If Vt follows the dynamics

of Wishart processes as described in (3.4), the integrated Wishart process is defined

by

Yt =

∫ t

0

Tr[Vs] ds.

Let us see the conditional Laplace transform (given by Gourieroux in [34]).

Proposition 3.9. (The Conditional Laplace Transform of the Integrated

Wishart Process) Given a symmetric matrix Γ, and a Wishart process Vt, the con-

ditional Laplace transform of the integrated Wishart process defined in definition 3.8
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can be written as:

ψ∗t,h(Γ) = E

(
expTr

[
Γ

∫ t+h

t

Vτ dτ

]
|Ft
)

= exp[Tr(M∗(h,Γ)Vt) + b∗(h,Γ)],

(3.11)

where
∂M∗

∂h
(h,Γ) = Γ +M∗(h,Γ)M +MTM∗(h,Γ) + 2M∗(h,Γ)QTQM∗(h,Γ),

∂b∗

∂h
(h,Γ) = βTr[M∗(h,Γ)QQT ],

(3.12)

with initial conditions: M∗(0,Γ) = 0, b∗(0,Γ) = 0. The solution of this matrix

Riccati differential system is:

M∗(h,Γ) = M∗(Γ) + exp[(M + 2QTQM∗(Γ))h]T − (M∗(Γ))−1

+ 2

∫ h

0

exp[M + 2QTQM∗(h,Γ)u]QTQ exp[M + 2QTQM∗(h,Γ)u]T du

× exp[[M + 2QTQM∗(Γ)]h],

(3.13)

where M∗(Γ) satisfies:

MTM∗(Γ) +M∗(Γ)M + 2M∗(Γ)QTQM∗(Γ) + Γ = 0. (3.14)

Proof : See Appendix. �

We note that the solution given in the above proposition is not a closed form

solution. Therefore, it is not easy and may be impossible to get option prices

when applying FFT. The closed form solution for the conditional Laplace transform

of the integrated Wishart process will be derived later by using Matrix Riccati

Linearization methods.
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3.3 A New Multivariate Stochastic Lévy Correlation Model with In-

tegrated Wishart Time Change

In this thesis, we introduce a new multivariate Lévy correlation model which

can handle the following simultaneously:

1. stochastic stock price,

2. skewness, kurtosis, implied volatility smile/skew,

3. stochastic volatility,

4. stochastic skewness, and

5. stochastic correlation.

As we have discussed, there are some limitations to several existing models

and not all five factors listed above can be captured at the same time. For instance,

the classic Black-Scholes [8] model can only handle the first case, ‘stochastic stock

price’; general Lévy processes [48] [3] can handle 1 and 2; the Heston [38], Bates [5]

or Merton [51] models can handle 1,2,and 3; and the Lévy models with stochastic

volatility [12] can handle 1-4. Our new multivariate stochastic Lévy correlation

model will be able to capture 1-5 and also has the following nice features:

• It is a multidimensional Lévy process with stochastic volatility, stochastic

covolatility and flexible dependence structure.

• It allows flexible correlation dynamics with independent variation.
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• It allows each asset has its own business clock as well as the co-movements of

business clocks of multiple assets.

• It can be easily applied to other Lévy processes which are time-changed Brow-

nian motions.

• The conditional marginal and joint characteristic functions can be derived in

an explicit form.

• It can be calibrated to the real financial market and fit the option price surface

across different maturities and strikes.

3.3.1 Model Design

While there are lots of literature dealing with multivariate Lévy process with

dependence structures in recent few years, (e.g., Barndorff-Nielsen [3], Luciano

and Schoutens [47], Cont and Tankov [17], Eberlein and Madan [27], Kallen and

Tankov [44], Tankov [57] etc.), none of them have taken stochastic volatility into

account and have limited capability to catch complex dependence structure. In ad-

dition, Carr, Geman, Madan and Yor [12] proposed an approach, which has been

introduced in previous chapter, to model stochastic volatility with Lévy processes by

evaluating Lévy processes subordinate to the integral of a Cox-Ingersoll-Ross (CIR)

process. However, their framework is not able to capture the joint behavior among

several assets and does not take stochastic correlation into account. Our aim is to

build a new model with rich dependence structures and flexibilities to fill this gap.
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As we discussed in Chapter Two, the random change in volatility can be

captured by random change in time. Therefore stochastic volatility can be created

via time change. We will construct a new multivariate model and capture the

stochastic correlation feature by randomizing the calendar time t to business time

Tt.

We use Lévy processes to model return innovations and stochastic time changes

to generate stochastic volatility and stochastic correlation. Each return i (i =

1, ..., n) is modeled as:

Return Xi ∼
n∑
j=1

Lij
T ijt
,

n∑
j=1

Lij(Tij)

∼
n∑
j=1

(Economic Shock From Source j )Stochastic impacts

where Lij is a independent Lévy process and Tij is a stochastic time change (business

time). In the above setting, we can think each Lévy process as capture one source of

economic shock, and the stochastic time change on each Lévy process as captureing

the random intensity of the impact of the economic shock on the financial security.

To model the stochastic correlation among multiple underlying assets, we de-

sign the stochastic time changes Tij for return Xi (i, j = 1, ..., n) as new stochastic

clocks given by

Tij(t, τ) =

∫ t+τ

t

a2
ij(u) du,

where aij, (i, j = 1, ..., n) are elements of the square root Wishart process
√
A(t).

They capture the intensity of business activity at time t. Then the stochastic Lévy
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correlation model is constructed as follows:

Xi(t, τ) =
n∑
j=1

Lij

(∫ t+τ

t

a2
ij(u) du

)
, i = 1, ..., n. (3.15)

We denote it as Xt(τ) , Lt•{At(τ)}, where Xt ∈ Rn, Lt, At ∈ Rn×n and the element

Lij(t) in matrix Lt is taken from a centered independent Lévy process family with

unit variance

√
A(t) =


a11(t) ... a1n(t)

... ... ...

an1(t) ... ann(t)

 . (3.16)

Here
√
A(t), A(t) are symmetric positive definite n × n matrices, and the process

A(t) is defined here as an instantaneous rate of time change matrix which follows

the Wishart process law.

dAt = (βQTQ+ AtM
T +MAt) dt+

√
At dWtQ+QT dWt

√
At, (3.17)

where M,Q ∈ Mn(R), β ∈ R, β > n − 1, Q is invertible and M is negative semi-

definite.

The Wishart process is widely used in modeling the dynamics of volatility and

co-volatility as a multivariate extension of the CIR process. In addition, the Wishart

process is a mean-reverting process, and it belongs to the class of affine processes, in

which the Laplace transform has affine property. Therefore, we choose the Wishart

process to model the dynamics of instantaneous time change rates. The stochastic

time change is modeled as in (3.15) based on the Wishart process, and the stochastic

correlation structure can be captured by such construction. For simplicity, now let

us examine the two dimensional case.
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Definition 3.10. (2D Stochastic Lévy Correlation Model) The two dimen-

sional stochastic Lévy correlation model is defined as:

X1(0, t) = L11

(∫ t

0

a2
11(u) du

)
+ L12

(∫ t

0

a2
12(u) du

)
,

X2(0, t) = L21

(∫ t

0

a2
21(u) du

)
+ L22

(∫ t

0

a2
22(u) du

) (3.18)

or

X1(t, τ) = L11(

∫ t+τ

t

a2
11(u) du) + L12(

∫ t+τ

t

a2
12(u) du),

X2(t, τ) = L21(

∫ t+τ

t

a2
21(u) du) + L22(

∫ t+τ

t

a2
22(u) du)

(3.19)

where √
A(t) =

 a11(t) a12(t)

a21(t) a22(t)

 . (3.20)

In Equations (3.19), L11, L12, L21, L22 are centered independent Lévy processes

with unit variance. The components L11, L12 follow the the same Lévy process, which

can be considered as the source of economic shock, and L21, L22 are chosen from the

same Lévy family, but different from L11, L12. For example, if we choose the variance

gamma processes as independent Lévy processes in (3.19), L11, L12 ∼ V G(θ1, ν1, σ1)

and L21, L22 ∼ V G(θ2, ν2, σ2), where {Lij, ij = 1, 2} are all independent. Since√
A(t) is a symmetric positive definite 2 × 2 matrix, then T12 =

∫ t+τ
t

a2
12(u) du =∫ t+τ

t
a2

21(u) du = T21 can be considered as the common business clock, which captures

the random intensity of the common economic impacts and may model the co-

movements of business clocks of multiple assets (economic sources). The processes

L11(
∫ t+τ
t

a2
11(u) du) and L22(

∫ t+τ
t

a2
22(u) du) are two Lévy processes running under

their own business clocks and can be considered as idiosyncratic factors for the two

underlying assets separately.
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3.3.2 Conditional Characteristic Function Derivation

It is well known that in order to solve the pricing problem, it is sufficient to

compute the conditional characteristic function under the risk neutral measure of

the underlying assets. Once the explicit characteristic function is obtained, one can

easily perform the Fast Fourier transform to price options. In this section, we will

derive the closed forms of the conditional marginal characteristic function as well as

the joint characteristic function of our stochastic Lévy correlation model.

Proposition 3.11. (The Conditional Marginal Characteristic Function)

Let Lévy processes Xi be defined as:

Xi(t, τ) =
n∑
j=1

Lij

(∫ t+τ

t

a2
ij(s) ds

)
, i = 1, ..., n.

Then the conditional marginal characteristic function for each Xi is

φXi; t,τ (ui) = E (exp[iuiXi(t, τ)]|Ft) = E

(
exp Tr[Γ

∫ t+τ

t

A(s) ds]|Ft
)
, (3.21)

with

Γ =



0 0 ... 0

0 ψi(ui) ... 0

... ... ... ...

0 0 ... 0


where ψi(ui) is the diagonal entries (in ith row and ith column) of matrix Γ, and

represents a centered Lévy exponent. (e.g. if Lij are VG processes, then ψi(ui) =

− 1
νi
ln(1− iθiνiui +

σ2
i u

2
i νi

2
− iuiθi))
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Proof: The conditional marginal characteristic function φXi; t,τ (ui) is given by:

E(exp[iuiXi(t, τ)]|Ft) = E{exp(iui[Li1(

∫ t+τ

t

a2
i1(s) ds) + ...+ Lin(

∫ t+τ

t

a2
in(s) ds)])|Ft}

= E{exp[

∫ t+τ

t

a2
i1(s) ds · ψi(ui) + ...+

∫ t+τ

t

a2
in(s) ds · ψi(ui)]|Ft}

= E(exp[
n∑
j=1

∫ t+τ

t

a2
ij(s) ds · ψi(ui)]|Ft)

(3.22)

Since
√
A(t) is constructed as in (3.16), then A(t) is:

A(t) =



a2
11(t) + ...+ a2

1n(t) ∗ ... ∗

∗ a2
21(t) + ...+ a2

2n(t) ... ∗

∗ ∗ ... ∗

∗ ∗ ... a2
n1(t) + ...+ a2

nn(t)


where

√
A(t), A(t) are symmetric positive definite n × n matrices. If we define a

new symmetric matrix Aψ(t) as:

Aψ(t) =

[a2
11(t) + ...+ a2

1n(t)]ψ1(u1) ∗ ... ∗

∗ [a2
21(t) + ...+ a2

2n(t)]ψ2(u2) ... ∗

∗ ∗ ... ∗

∗ ∗ ... [a2
n1(t) + ...+ a2

nn(t)]ψn(un)


(3.23)

and chose Γ as:

Γ =



0 0 ... 0

0 ψi(ui) ... 0

... ... ... ...

0 0 ... 0


,
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then

Aψii(s) = Tr[ΓA(s)] (3.24)

where Aψii is the i-th diagonal element in Aψ. Thus the conditional marginal char-

acteristic function in (3.22) becomes:

E (exp [iuiXi(t, τ)] |Ft) = E

(
exp

[
n∑
j=1

∫ t+τ

t

a2
ij(s) ds · ψi(ui)

]
|Ft

)

= E

(
exp

[∫ t+τ

t

Aψii(s) ds

]
|Ft
)

= E

(
exp Tr

[
Γ

∫ t+τ

t

A(s) ds

]
|Ft
)
.

where

Γ =



0 0 ... 0

0 ψi(ui) ... 0

... ... ... ...

0 0 ... 0


.

�

Proposition 3.12. (The Conditional Joint Characteristic Function)

Let Lévy processes Xi, i = 1, ..., n are defined as:

Xi(t, τ) =
n∑
j=1

Lij(

∫ t+τ

t

a2
ij(s) ds), i = 1, ..., n

then the conditional joint characteristic function for X1, ..., Xn is:

φX1,...,Xn; t,τ (u1, ..., un) = E
[
exp

(
i〈u,X(t, τ)〉

)
|Ft
]

= E

(
exp Tr

[
Γ

∫ t+τ

t

A(s) ds

]
|Ft
)
,

(3.25)
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where

Γ =



ψ1(u1) 0 ... 0

0 ψ2(u2) ... 0

... ... ... ...

0 0 ... ψn(un)


and where ψi(ui), i = 1, ..., n are centered Lévy exponents.

Proof: The conditional joint characteristic function φX1,...,Xn; t,τ (u1, ..., un) is

E [exp (i〈u,X(t, τ)〉) |Ft] = E [exp (iu1X1 + ...+ iunXn) |Ft]

= E

[
exp

( n∑
i=1

n∑
j=1

∫ t+τ

t

a2
ij(s) ds · ψi(ui)

)
|Ft

]

= E

[
exp

( n∑
i=1

n∑
j=1

∫ t+τ

t

a2
ij(s) · ψi(ui) ds

)
|Ft

]
.

(3.26)

As Aψ is defined in (3.23), if Γ is chosen as:

Γ =



ψ1(u1) 0 ... 0

0 ψ2(u2) ... 0

... ... ... ...

0 0 ... ψn(un)


,

then we have

Tr[Aψ(s)] = Tr[ΓA(s)] (3.27)

Thus the conditional joint characteristic function in (3.26) becomes:

E [exp(i〈u,X(t, τ)〉)|Ft] = E

[
exp

( n∑
i=1

n∑
j=1

∫ t+τ

t

a2
ij(s) · ψi(ui) ds

)
|Ft

]

= E
(

exp

[
Tr

∫ t+τ

t

Aψ(s) ds

]
|Ft
)

= Et
(

exp Tr

[
Γ

∫ t+τ

t

A(s) ds

] )
.

(3.28)
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with Γ as:

Γ =



ψ1(u1) 0 ... 0

0 ψ2(u2) ... 0

... ... ... ...

0 0 ... ψn(un)


.

�

From Proposition 3.11 and Proposition 3.12, we note that the marginal and

joint conditional characteristic functions become the Laplace transforms of the in-

tegrated Wishart process with different choices of Γ.

3.3.3 The Explicit Laplace Transform for the Integrated Wishart

Process

It is well known that in order to solve the pricing problem of plain vanilla

options, it is sufficient to compute the conditional characteristic function (or alter-

natively the conditional Laplace transform) under risk neutral measure of the under-

lying asset.(One can get option prices via the FFT approach discussed in Chapter

One.) Therefore our essential task is to derive a closed form of the conditional

Laplace transform, which is analytically tractable.

In the previous Section 3.2.2, we have introduced the integrated Wishart pro-

cess. Its conditional Laplace transform is provided in the Proposition 3.9, derived

by Gourieroux [34]. However, the expression given in this proposition is not an

explicit form, and is very difficult to apply the FFT method to get option prices. In
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general the Riccati differential systems in (3.34) do not admit closed form solution.

Therefore, we need an explicit expression which makes pricing of derivative options

possible. A different approach is introduced in this section to obtain a closed form

solution for the conditional Laplace transform of the integrated Wishart process.

For any symmetric matrix Γ, let us denote the conditional Laplace transform

of the integrated Wishart process as

ψAt,τ (Γ) = E

(
exp Tr[Γ

∫ t+τ

t

A(s) ds]|Ft
)

= Et(exp Tr[Γ

∫ t+τ

t

A(s) ds]).

As we have discussed before, the Wishart process is an affine process, which means

the Laplace transform can be written as an exponential affine function, namely

ψAt,τ (Γ) = Et(exp Tr[Γ

∫ t+τ

t

A(s) ds]) = exp
(
Tr[C(τ,Γ)At] + b(τ,Γ)

)
, (3.29)

where C(τ,Γ) ∈ Mn(R), C(0,Γ) = 0, and b(t) ∈ R, b(0,Γ) = 0. Thus, our goal

is to look for two deterministic functions C(τ,Γ) and b(τ,Γ) that parametrize the

Laplace transform in equation (3.29).

Unlike the integrated square-root process in Heston’s model and Carr’s time

changed Lévy process, for which the Laplace transform have been extensively studied

by Dufresne [26] and Cox [19], there are almost no references in the literature to the

explicit form of the conditional Laplace transform of the integrated Wishart process

in multi-dimension. Therefore, to our knowledge, the result we derive in this section

are apparently new.

One way to derive the closed conditional Laplace transform form solution of

this integrated Wishart process is to follow the method described by Da Fonseca,

Grasselli, and Tebald in [23]. We borrow their idea and derive as follows:
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Proposition 3.13. (The Conditional Laplace Transform of the Integrated

Wishart Process(explicit form))

Given a symmetric positive definite n×n matrix A(t) which follows the Wishart

process, the conditional Laplace transform of the integrated Wishart process is given

as:

ψAt,τ (Γ) = Et(exp Tr[Γ

∫ t+τ

t

A(s) ds]) = exp
(
Tr[C(τ,Γ)At] + b(τ,Γ)

)
, (3.30)

where

C(τ,Γ) = C−1
22 (τ,Γ)C21(τ,Γ)

b (τ,Γ) = b(τ) = −β
2

[τ Tr(M) + ln (det C22(τ,Γ)]

(3.31)

with  C11(τ,Γ) C12(τ,Γ)

C21(τ,Γ) C22(τ,Γ)

 = exp

τ
 M −2QTQ

Γ −MT


 .

With this proposition, the closed form of conditional characteristic functions

in (3.22) and (3.26) can be obtained by choosing different Γ. Now let us see the

derivation details.

Proof:

Because ψAt,τ (Γ) = Et(exp Tr[Γ
∫ t+τ
t

A(s) ds]) where A(t) is a Wishart process

which is affine, then we can write

Et(exp Tr[Γ

∫ t+τ

t

A(s) ds]) = exp
(
Tr[C(τ,Γ)At] + b(τ,Γ)

)
. (3.32)

Thanks to Itô’s lemma and the infinitesimal generator LA of the Wishart process

derived by Bru (1991) with

LA = Tr[(βQTQ+MA+ AMT )D + 2ADQTQD] (3.33)
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and

D =

(
∂

∂Aij

)
1≤i,j≤n

.

We obtain the following equation:

Tr[C ′(τ,Γ)At] + b′(τ,Γ) =Tr[
(
C(τ,Γ)M +MTC(τ,Γ) + 2C(τ,Γ)QTQC(τ,Γ) + Γ

)
At]

+ βTr[C(τ,Γ)QQT ].

By identifying the coefficients of At, we get the following matrix Riccati ODE equa-

tion (see [30])

∂C(τ,Γ)

∂τ
= C(τ,Γ)M +MTC(τ,Γ) + 2C(τ,Γ)QTQC(τ,Γ) + Γ, (3.34)

with initial condition C(0,Γ) = 0.

The differential equation for b(τ,Γ) is

∂b(τ,Γ)

∂τ
= βTr[C(τ,Γ)QQT ],

b(0,Γ) = 0.

(3.35)

The Equation (3.34) is a matrix Riccati equation which has several nice prop-

erties (see [30]). Riccati ODE is belong to a quotient manifold (see Grasselli and

Tebaldi [36]), where their flow can be linearized by doubling the dimension of the

problem. Thus, we can obtain the closed-form solution to (3.34), (3.35) with a

linearization procedure, as presented by Da Fonseca et al. in [23].

By doubling the dimension of the problem, we put

C(τ,Γ) = F (τ,Γ)−1G(τ,Γ) (3.36)

with F (τ,Γ) ∈ GLn(R), G(τ,Γ) ∈Mn(R), F (0,Γ) = In, G(0,Γ) = 0.
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Then, we have

∂

∂τ

[
F (τ,Γ)C(τ,Γ)

]
− ∂F (τ,Γ)

∂τ
C(τ,Γ) = F (τ,Γ)

∂C(τ,Γ)

∂τ
,

and by equations (3.36), (3.34), we obtain:

∂G(τ,Γ)

∂τ
− ∂F (τ,Γ)

∂τ
C(τ,Γ) =G(τ,Γ)M + F (τ,Γ)MTC(τ,Γ)

+ 2G(τ,Γ)QTQC(τ,Γ) + ΓF (τ,Γ).

The above ODE leads to a system of linear equations:
∂G(τ,Γ)

∂τ
= G(τ,Γ)M + ΓF (τ,Γ),

∂F (τ,Γ)

∂τ
= −F (τ,Γ)MT − 2G(τ,Γ)QTQ,

(3.37)

which can also be written as follows:

∂

∂τ

[
G(τ,Γ) F (τ,Γ)] = [G(τ,Γ) F (τ,Γ)

] M −2QTQ

Γ −MT

 ,

and can be easily solved by:

[
G(τ,Γ) F (τ,Γ)

]
=
[
G(0,Γ) F (0,Γ)

]
exp

τ
 M −2QTQ

Γ −MT




=
[
C(0,Γ) In

]
exp

τ
 M −2QTQ

Γ −MT




=
[
C(0,Γ)C11(τ,Γ) + C21(τ,Γ) C(0,Γ)C12(τ,Γ) + C22(τ,Γ)

]
=
[
C21(τ,Γ) C22(τ,Γ)

]
,

where  C11(τ,Γ) C12(τ,Γ)

C21(τ,Γ) C22(τ,Γ)

 = exp

τ
 M −2QTQ

Γ −MT


 . (3.38)
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Therefore, we have

C(τ,Γ) = F (τ,Γ)−1G(τ,Γ) = C22(τ,Γ)−1C21(τ,Γ). (3.39)

which represents the closed form solution of the matrix Riccati ODE (3.34).

Now let us turn to solving the equation (3.35). We can use the following trick

to improve the computation: From the second equation in (3.37) we obtain

G(τ,Γ) = −1

2

[
∂F (τ,Γ)

∂τ
+ F (τ,Γ)MT

]
(QTQ)−1,

and plugging it into equation (3.36) and using the properties of the trace we deduce

∂b(τ,Γ)

∂τ
= −β

2
Tr
[
F (τ,Γ)−1∂F (τ,Γ)

∂τ
+MT

]
,

which can be easily integrated to get

b(τ,Γ) = −β
2

[
Tr(M)τ + Tr[ln F (τ,Γ)]

]
.

By the matrix logarithm property we get

Tr[lnF (τ,Γ)] = ln[det F (τ,Γ)].

Therefore the expression of b (τ,Γ) is

b (τ,Γ) = b(τ) = −β
2

[
τ Tr(M) + ln (det C22(τ,Γ)

]
. �

3.3.4 The Stochastic Lévy Correlation Market Model

As we have discussed in Section 2.3.2, the Lévy model as described in equa-

tion (1.13) leads to an incomplete market. Thus there exist infinitely many equiv-
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alent martingale measures. In this dissertation, the mean-correcting martingale

measure is chosen as a risk-neutral measure:

St = S0e
(r−q)t eXYt

E(eXYt )
. (3.40)

Then we will easily get the conditional marginal characteristic function and joint

characteristic function under the risk-neutral measure.

Proposition 3.14. (The Marginal Characteristic Function)

The marginal characteristic function for the log of stock price St with constant

continuously compounded interest rate r and dividend yields q at time t is given by:

φlnSt(u) = E[eiu lnSt ] = e(iu ln(S0+(r−q)t)) φX; 0, t(u)

[φX; 0, t(−i)]iu
. (3.41)

where φX; 0, t(u) is defined as in proposition 3.11.

Proposition 3.15. (The Joint Characteristic Function)

The joint characteristic function for the log of stock prices S1(t), ..., Sn(t) with

risk free rate r and dividend yield q1, ..., qn at time t is given by:

φlnS1,...,lnSn(u1, ..., un) = E[ei〈u,lnSt〉]

= exp(
n∑
j=1

iuj[lnSj(0) + (r − qj)t])
φX1,...,Xn; 0, t(u1, ..., un)∏n

j=1[φXj 0, t(−i)]iuj
.

(3.42)

where φX1,...,Xn; 0, t(u1, ..., un) is defined as in proposition 3.12

In this dissertation, we chose the VG processes as our base Lévy processes.

However, one should notice that this correlation model can be applied to any Lévy

process, for instance, the VG process, the NIG process, or the CGMY process. In
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addition, we will discuss the performance and features in the rest of the paper in

only two dimension for simplicity. But these results can be easily extended to higher

dimensions.

3.4 Model Performance and Numerical Implementations

3.4.1 Path Simulation

In our multivariate Lévy correlation model setting, the instantaneous rate of

time change matrix A(t) follows the Wishart process

dAt = (βQTQ+ AtM
T +MAt) dt+

√
At dWtQ+QT dWt

√
At,

which it captures all variation information of volatility-covolatility among multiple

assets. In this section, Monte Carlo simulation is used to generate the simulated

sample paths of the Wishart process. Monte Carlo simulation is widely used in

financial engineering. It is a straightforward and easy implemented methodology in

option pricing when an analytic solution is not available.

There is a problem with simulation of continuous Wishart processes when β

is a real number. The problem is that one must ensure that the matrix A(t) stays

positive definite. The same problem occurs in the Heston model, and that is why

the Euler-truncated scheme has been introduced (See Lord, Koekkoek, and Van Di-

jk [46] for details). For Wishart process simulation, in order to make the matrix

A(t) positive, the solution is to keep only positive eigenvalues and replace negative

ones by zeros. This is very costly since this requires a matrix diagonalization at each
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step of the diffusion. There exist some more efficient schemes such as the Discrete

O-U scheme and Gaussian autoregressive scheme when β is an integer number. In

addition, QE scheme to continuous Wishart process is introduced by Gauthier and

Possamai in 2009 [32]. In this dissertation, we will introduce two efficient schemes

to simulate the sample path of Wishart process with integer β. (See [32] for the

general case.)

Discrete OU Scheme

In the particular case where β is an integer, we have already seen in Proposi-

tion 3.2 that a Wishart process can be expressed as a sum of vectorial OU processes:

dXOU
k,t = MXOU

k,t dt+QTdWk,t,

At =

β∑
k=1

XOU
k,t (XOU

k,t )T .

where {Wk,t, t ≥, 1 ≤ k ≤ β} are independent vectorial Brownian motions. Then

the discretization of these processes is as follows:

Algorithm: Discretization of the variance process:

XOU
k,t+∆t = ∆tMXOU

k,t +
√

∆tQT εk,t+∆t, ε ∼ N(0, I)

At =

β∑
k=1

XOU
k,t (XOU

k,t )T .

Input: matrices M ,Q, integer β, time spacing ∆t1, ...,∆tn with
∑N

i=1 ∆ti = T .

Initialization: A0 =
∑β

k=1Xk,0X
T
k,0

for each k = 1, ..., β, Xk is n dimensional vector. (n assets)
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Loop: from i = 1 to N :

Loop: from k = 1 to β:

Generate multivariate normal vector εk,ti+1
∼ N(0, I)

Xk,ti+1
= Xk,ti + ∆tiMXk,ti +

√
∆tQT εk,ti+1

Return: At =
∑β

i=1Xk,tX
T
k,t.

Gaussian Autoregressive Vector Processes

The Wishart Autoregressive process (WAR) can be interpreted as an outer product

of Guassian autoregressive vector processes, when the degree of freedom β is an

integer. (See [35])

Algorithm: Guassian Autoregressive Vector Processes:

Discrete-time Wishart process: At =
∑β

k=1Xk,tX
T
k,t

where Xk,t+h = MdXk,t + εk,t+h εk,t+h ∼ N(0,Σd),

and Md = exp(Mh), Σd =
∫ h

0
exp(Ms)QQT [exp(Ms)]T ds, h is the time step.

Input: matrices M ,Q, integer β, time spacing ∆t1, ...,∆tn with
∑N

i=1 ∆ti = T

Initialization: A0 =
∑β

k=1Xk,0X
T
k,0

for each k = 1, ..., β, Xk is n dimensional vector. (n assets)
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Loop: from i = 1 to N :

Loop: from k = 1 to β:

Generate multivariate normal vector εk,ti+1
∼ N(0,Σd)

where Σd =
∫ ∆ti

0
exp(Ms)QQT [exp(Ms)]T ds

Xk,ti+1
= MdXk,ti + εk,ti+1

Md = exp(M∆ti)

Return: At =
∑β

i=1Xk,tX
T
k,t.

We now present simulation experiments to illustrate the dynamics of a bivari-

ate Wishart process. The bivariate Wishart process has three components that can

be interpreted as two volatility and one covolatility processes. In our model setting,

the random change in volatility is captured by random change in time. Thus, the

three components in our bivariate Wishart process represent the instantaneous time

change rate. We examine the evolution of three following processes:

• A11(t), A22(t), which capture the random change of two volatilities,

• A12(t)/
√
A11(t)A22(t) which captures the correlation, and

• the eigenvalues of the stochastic volatility matrix.

We simulate T = 250 observations in all experiments. Figures are provided.
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Experiment 1 (Figure 3.1, 3.2, 3.3)

Simulation parameters for experiment 1:

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.5 0.4

0.3 0.2

 , β = 4.

Figure 3.1: A11(t), A22(t) evolution (Volatilities)for experiment 1

Figure 3.1 displays the dynamics of the instantaneous time change ratesA11(t) (Blue

one) and A22(t) (Red one), which trace out the first and second diagonal components

of the volatility series respectively. In all experiments, we observe that the bivariate

Wishart process model is able to reproduce the volatility clustering. The higher
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Figure 3.2: reflect covolatility evolution for experiment 1

Figure 3.3: Eigenvalues for experiment 1
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path represents larger volatility while lower path represents the smaller volatility.

Volatility for asset 2 varies much more than asset 1. Moreover, we also note that

the clustering pattern is not identical in both volatilities. The simulated path in

Figure 3.2 of the correlation processes takes values between −1 and 1.

We also examine the eigenvalue series (Figure 3.3): The minimum eigenvalue is

equal to the minimum of portfolio volatilities αTA(t)α with allocation standardized

by αTα = 1, while the maximum eigenvalue is equal to the maximum of portfolio

volatilities computed for allocation standardized as before. These provide a measure

of risk. The eigenvectors associated with the largest eigenvalue define the most risky

portfolio allocation. In addition, when the smallest eigenvalue is close to zero, the

associated eigenvector provides the arbitragist strategies.

Experiment 2 (Figure 3.4, 3.5, 3.6)

Simulation parameters for experiment 2:

M =

 −5 −3

−3 −5

 , Q =

 0.113 0.033

0 0.0795

 , β = 3.

In experiment 2, the off-diagonal elements in the volatility of volatility param-

eter Q are relatively small. This may explain the observations of lower correlation

among two assets in Figure 3.5.
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Figure 3.4: A11(t),A22(t) evolution (Volatilities)for experiment 2

Figure 3.5: reflect covolatility evolution for experiment 2
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Figure 3.6: eigenvalues for experiment 2

Experiment 3 (Figure 3.7, 3.8, 3.9)

Simulation parameters for experiment 3:

M =

 −0.3420 0

0 −0.1311

 , Q =

 0.243 0

0 0.243

 , β = 3.

In this experiment 3, there are zero off-diagonal elements in parameters M

and Q, and one can observe that correlation bounces freely between the values −1

to 1.
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Figure 3.7: A11(t),A22(t) evolution (Volatilities)for experiment 3

Figure 3.8: Reflect covolatility evolution for experiment 3
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Figure 3.9: Eigenvalues for experiment 3

X(t) Sample Path Simulation

Three simulated sample paths for asset return X(t) are prensented. In order to see

the effect of parameters M and Q clearly, we are using same parameter sets for the

VG exponent in following three experiments (θ1 = θ2 = 0.08, σ1 = σ2 = 1, ν1 = ν2 =

0.05).

Experiment 1 for X(t) (Figure 3.10)

X(t) path simulation parameters for experiment 1:

M =

 −0.3420 0

0 −0.1311

 , Q =

 0.243 0

0 0.243

 , β = 3.
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Experiment 2 for X(t) (Figure 3.11)

X(t) path simulation parameters for experiment 2:

M =

 −0.03420 0.02

0.02 −0.01311

 , Q =

 0.0243 0

0 0.0243

 , β = 3.

Experiment 3 for X(t) (Figure 3.12)

X(t) path simulation parameters for experiment 3:

M =

 −0.3420 0.2

0.2 −0.1311

 , Q =

 0.243 0

0 −0.8

 , β = 3.

Figure 3.10: X(t) sample path for experiment 1
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Figure 3.11: X(t) sample path for experiment 2

Figure 3.12: X(t) sample path for experiment 3
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3.4.2 Finding the Damping Factor α

In the FFT method introduced in Chapter 1.4, Carr and Madan [11] suggest

choosing a damping factor α which satisfies:

E(Sα+1
T ) <∞ (3.43)

FFT is efficient but it suffers from one drawback in application. The solutions

produced depend on the choice of damping factor α. Moreover, in this new model

the relationship between α and the parameters is not as trivial to identify as is done

by Carr and Madan [11] for the VG model. We therefore test our model to find

appropriate α that satisfies (3.43).

Figure 3.13: Damping factors for VG model

From Figure 3.13 and Figure 3.14 option prices decay as alpha increasing.

Carr and Madan [11] suggest choosing α = 1.5 for modified call price, and α = 1.1

for modified time value. In Figure 3.14, option prices converge and become stable

when α is greater than 1. We have tested different α values for the Lévy correlation
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Figure 3.14: Damping factors for new correlation model

model resulting in choosing the damping factor α between 1 and 1.65. The model

performs very well.

3.4.3 The Performance of Density Functions

In Proposition 3.6, the transition probability density function does not have a

closed form. However, density functions can be recovered by applying the Fourier

inversion theorem.

Theorem 3.16. (Fourier Inversion Theorem)

Let X = (x1, ..., xp)
T be a p × 1 random variable with cumulative density

function(c.d.f.) FX and consider ∀ξ ∈ Rp, the characteristic function of X is the

Fourier transform of FX :

ΦX(ξ) =

∫
...

∫
Rp
e−iξ

TX dFX . (3.44)

Now suppose that X has a density function fX . If ΦX is Lebesgue integrable (ΦX ∈
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L1(Rp)), then, by the inversion theorem:

fX(X) =
1

(2π)p

∫
...

∫
Rp
e−iξ

TXΦX(ξ) dξ. (3.45)

In Propositions 3.11 and 3.12, the conditional marginal characteristic function

and joint characteristic function have been derived in explicit form. We therefore

applied the Fourier Inversion Theorem on both characteristic functions to recover

the density functions.

Histogram for Simulated Samples

To better visualize what the simulated data look like, we present a histogram.

We simulated 10, 000 log returns for a single asset and present their histogram in

Figure 3.15. The red solid line is the best normal fit to simulated data. The blue

bars represent simulated log returns. We observed there is a skewness, which results

the normal fitting inaccurately.

Figure 3.15: Simulated samples histogram with Q = [0.05, 0.04; 0.03, 0.05];M =

[−15,−0.5;−0.5,−5]; θ1 = −1.5, σ1 = 0.15, ν1 = 0.4344.
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Marginal PDF

We chose different sets of parameters to reveal the behavior of the marginal

probability density function. Densities are displayed in Figures 3.16 – 3.19:

Figure 3.16: Marginal pdf of log returns I

As we know, market returns have a fat tail and skewness phenomena. From

all these marginal pdf figures, we have seen that by choosing a broad range of

parameters, the probability density function for log returns in our model has shown

a wide range of skewness, kurtosis and rich dependent structures, which make this

new model more flexible and a good candidate for market returns.
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Figure 3.17: Marginal pdf of log returns II

Figure 3.18: Marginal pdf of log returns III
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Figure 3.19: Marginal pdf of log returns IV

Joint PDF

Based on joint characteristic functions, the joint pdf can be obtained via Fouri-

er inverse transformation theorem. Figures of joint density functions are provided

for two experiments in Figure 3.20 and Figure 3.21. In order to see the effect of

Wishart parameters better, we use the same VG parameters for two assets.

Experiment 1 for Joint PDF

(positive skewness)

parameters for experiment 1:

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.05 0.04

0.03 0.02

 , β = 4.

θ1 = θ2 = 3.5, σ1 = σ2 = 0.35, ν1 = ν2 = 0.0716.
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Figure 3.20: Joint pdf(with marginal pdf) of log returns for experiment 1
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Experiment 2 for Joint PDF

(negative skewness)

parameters for experiment 2:

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.5 0.4

0.3 0.2

 , β = 4.

θ1 = θ2 = −2.5, σ1 = σ2 = 0.25, ν1 = ν2 = 0.15.

Figure 3.21: Joint pdf(with marginal pdf) of log returns for experiment 2
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3.4.4 Is Lévy necessary?

Lévy processes are used as building blocks in our correlation model. As Brow-

nian motion belongs to the Lévy family, we may wonder whether Lévy process is

necessary in model fitting. Can we replace it with simple Brownian motion which is

much easier to implement? We test our model by choosing the Lévy process L(t) to

be Brownian motion. Therefore the Lévy exponent becomes ψ(uj) = −u2
j/2. In or-

der to visualize the difference between using VG exponent with standard Brownian

motion exponent, we present probability density functions for simulated log returns,

which were generated by using Brownian motion instead of VG process. Graphs are

showing in Figure 3.22 and Figure 3.23.

Figure 3.22: Brownian motion test I
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Figure 3.23: Brownian motion test II

In Figure 3.22 and Figure 3.23, it seems that the two marginal densities are still

normal and no skewness effect has been observed. Even though Brownian motions

are simple and easy, we can not use it as a substitute for all Lévy processes L(t).

Therefore, the general Lévy process setting in our model is indeed necessary and

can capture skewness features as desired, which has been showed in Figure 3.16 to

Figure 3.19.

3.4.5 Implied Volatility Surface

In financial mathematics, the implied volatility of an option contract is the

volatility of the price of the underlying security that is implied by the market price of

the option based on an option pricing model. In other words, implied volatility is the

volatility that makes the model option price equal to the market option price. The

implied volatility surface describes the relationship between the implied volatility of
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the options, strike prices and maturities. For currency options, implied volatilities

tend to be higher for in-the-money and out-of-money options than for at-the-money

options. Thus, the implied volatility surface for currency options is usually described

as a smile shape. In addition, for equity, volatility often decreases as the strike price

increases, which known as a volatility skew.

The implied volatility surface for Black-Scholes model is flat, as its volatility

is assumed to be constant over time. However, in reality, volatilities are neither

constant nor deterministic. In fact, the volatility is a stochastic process itself. Our

new multivariate Lévy correlation model assumes stochastic volatility, so the implied

volatility surfaces showing in Figure 3.24, Figure 3.25 and Figure 3.26 display a

desirable curved feature. The left figure is the implied volatility surface for asset

one, and the right one is for asset two.

Figure 3.24: Implied Volatility Surface with θV G1 = θV G2 = −0.15; νV G1 = νV G2 =

0.3; σV G1 = σV G2 = 0.9966; A0 = [0.05, 0; 0, 0.05]; M = [−15,−0.5;−0.5,−5];

Q = [0.5, 0.4; 0.3, 0.5]; β = 4
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Figure 3.25: Implied Volatility Surface with θV G1 = θV G2 = −0.35; νV G1 = νV G2 =

0.5; σV G1 = σV G2 = 0.9689; A0 = [1, 0.8; 0.8, 1]; M = [−15,−0.5;−0.5,−5]; Q =

[0.5, 0.4; 0.3, 0.5]; β = 4

Figure 3.26: Implied Volatility Surface with θV G1 = θV G2 = 0.05; νV G1 =

νV G2 = 0.5; σV G1 = σV G2 = 0.9994;β = 4 M = [−15,−2.15;−2.15,−10];Q =

[0.15, 0.16; 0.18, 0.15]; A0 = [0.4, 0.04; 0.04, 0.4];
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3.4.6 Local Correlation

Pearson’s correlation is known as linear correlation which effective represen-

t co-movements between variables. However, for different sample values the co-

movements of variables perform differently, so linear correlation may sometimes

mislead if the marginal distributions are non-normal. We therefore provide the

local correlation here to better investigate the local dependence structures of our

multivariate Lévy correlation model.

In financial markets, asset prices tend to move together when market have

big movements. One common drawback of multivariate Brownian motion and the

Gaussian copula is that their joint dynamics was strongly rejected as a model for

co-movement of two stock prices. Compared with those normal distributions, local

correlation can used to determine the relative co-movement level of two variables.

Definition 3.17. (Local Correlation)

The local correlation ρlocal(X1, X2) for the two dimensional distribution (X1, X2) ∈

R2 is defined as the correlation given that (X1, X2) has in the neighborhood (x1 ±

ε, x2 ± ε), where ε is small.

Proposition 3.18. (Closed Form for Local Correlation)

The closed form for ρlocal(x1, x2) can be obtained by approximating the joint

density f(x1, x2) using the expansion of a joint Gaussian density:

g(x1, x2) := −2 lnf(x1, x2) = c(gx1x1x
2
1 + 2gx1x2x1x2 + gx2x2x

2
2 + ...).
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Then we have

ρlocal =
∂2

∂x1∂x2
(− ln(f))√

∂2

∂2x1
(− ln(f)) ∂2

∂2x2
(− ln(f))

.

which can be represented as

ρlocal =
fx1x2f − fx1fx2√

fx1x1f − f 2
x1

√
fx2x2f − f 2

x2

. (3.46)

where fx1 , fx2 denote the first derivatives of f with respect to x1 and x2 and fx1x1 , fx1x2 , fx2x2

denote the second derivatives of f with respect to the corresponding variables.

In equation 3.46, fx1 , fx2 , fx1x1 , fx1x2 , fx2x2 can be efficiently computed via

FFT. Since there is no closed form for the two dimensional correlation Lévy mod-

el as we have discussed before, one needs to numerically invert the characteristic

function by Fourier transform. We computed fx1 , fx2 , fx1x1 , fx1x2 , fx2x2 as follows:

f(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2Φ(u1, u2) du1du2

fx1(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2(−iu1)Φ(u1, u2) du1du2

fx2(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2(−iu2)Φ(u1, u2) du1du2

fx1x1(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2(−u2

1)Φ(u1, u2) du1du2

fx1x2(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2(−u1u2)Φ(u1, u2) du1du2

fx2x2(x1, x2) =
1

(2π)2

∫ ∫
e−iu1x1−iu2x2(−u2

2)Φ(u1, u2) du1du2.

We have chosen different parameters to draw local correlation surfaces which

are displayed in Figure 3.27, Figure 3.28, and Figure 3.29. These figures show that
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the correlation surfaces of our new Lévy correlation model are non-flat, peaked at

the corners of the first and third quadrants, and also went down to a very low level

in the second and fourth quadrants, which are desirable features as we expected.

Experiment 1 for Local Correlation

The parameters for experiment 1 (Figure 3.27):

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.5 0.4

0.3 0.2

 , A0 =

 0.22 0.13

0.13 0.14

 ,

β = 4, θ1 = θ2 = 3.5, σ1 = σ2 = 0.35, ν1 = ν2 = 0.0716.

Figure 3.27: Local Correlation Surface I
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Experiment 2 for Local Correlation

The parameters for experiment 2 (Figure 3.28):

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.5 0.4

0.3 0.2

 , A0 =

 0.22 0.13

0.13 0.14

 ,

β = 4, θ1 = θ2 = −2.5, σ1 = σ2 = 0.25, ν1 = ν2 = 0.15.

Figure 3.28: Local Correlation Surface II

Experiment 3 for Local Correlation

The parameters for experiment 3 (Figure 3.29):

M =

 −0.2 −0.15

−0.15 −0.1

 , Q =

 0.5 0.04

0.03 0.2

 , A0 =

 0.22 0.13

0.13 0.14

 ,

β = 4, θ1 = θ2 = 2.5, σ1 = σ2 = 0.25, ν1 = ν2 = 0.15.
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Figure 3.29: Local Correlation Surface III
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Chapter 4

Application to Option Pricing and Calibration

4.1 Overview

In financial market, many derivatives are not only depend on single asset but

also expose risks to more than one assets. While there is a wide variety of literature

on pricing of single-asset options in equity market, the amount of literature con-

sidering the multi-asset case is rather limited. Since not only the individual assets

but also their joint behavior has to be taken into account, a model under consider-

ation should be reasonable and flexible to model the marginal as well as the joint

dynamics of assets, and thus to price and hedge financial derivatives consistently.

In this chapter, we will discuss the pricing problem of applying our Lévy

correlation model and show that this new model is able to obtain the prices of several

different type of options, including options on single asset as well as options on

multiple underlying assets. Meanwhile, the characteristic function can be computed

in closed form, which makes option pricing and calibration feasible. In the last

section of this chapter, FX option pairs are chosen as an illustrative example and

we calibrate the bivariate Lévy correlation model with integrated Wishart time

change to market price.

As we have described in Section 1.4, the Carr-Madan FFT method has become

a popular and efficient tool in option pricing (for more details, refer to Section 1.4).
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A closed form of the characteristic function is a key for evaluating option prices via

FFT. Fortunately, marginal and joint characteristic functions for our Lévy correla-

tion model have been derived in explicit form (See Section 3.3.2). In order to obtain

option prices, analytic closed forms of characteristic functions for different styles of

option will be derived later. Moreover, the FFT method has been applied to numer-

ically compute the prices, and Monte Carlo simulation results are also provided for

comparison. Although all pricing problems can be done by Monte Carlo simulation,

the FFT method is more efficient and accurate than simulation.

We restrict our computation to the case of only two assets, due to the com-

putational burden of the high-dimensional FFT algorithm. However, it is worth

noting that those numerical methods can be applied to any multivariate model with

closed form characteristic function. In particular, we choose the Lévy process to be

Variance Gamma in all experiments, but other Lévy process such as NIG, CGMY,

etc. can also be considered as feasible candidates. We only choose three differen-

t options, vanilla European option, forward start option, and exchange option, as

typical examples for illustration. But one should notice that, this correlation model

can be applied to other options with dependence structures as well, such as spread

option, basket option, rainbow option, etc.

In our numerical illustrative examples, the two assets S1(t), S2(t) follow the

model

S1(t) = S1(0)e(r−q1)t eX1(0,t)

E(eX1(0,t))

S2(t) = S2(0)e(r−q2)t eX2(0,t)

E(eX2(0,t))

(4.1)

89



or more generally:

S1(T ) = S1(t)e(r−q1)(T−t) eX1(t,T−t)

E(eX1(t,T−t))

S2(T ) = S2(t)e(r−q2)(T−t) eX2(t,T−t)

E(eX2(t,T−t))

(4.2)

where X1, X2 are defined in Definition 3.10, and q1, q2 are dividend yields.

4.2 Single Asset Option Pricing

In this section we deal with the pricing problem of plain vanilla contingent

claims, in particular the European call option. We are only using two assets in

computation, but this Lévy correlation model can be applied to higher dimensional

cases technically. The closed form of characteristic function is derived for the sake

of applying FFT method, and Monte Carlo simulation result is also presented for

comparison.

4.2.1 Vanilla European Option

One simple example for single asset option is vanilla European call option with

payoff (ST −K)+. (The Option only depends on a single underlying asset.)

The two vanilla European call option prices are (put option prices can be

obtained by put-call parity)

CallpriceS1 = e−(r−q1)τEQ(S1 −K)+

CallpriceS2 = e−(r−q2)τEQ(S2 −K)+

(4.3)
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and the characteristic function for the log return is:

φlnS1(T )(u1) = E(eiu1(lnS1(0)+(r−q1)T )
φX1;0,T (u1)

[φX1;0,T (−i)]iu1

φlnS2(T )(u2) = E(eiu2(lnS2(0)+(r−q2)T )
φX2;0,T (u2)

[φX2;0,T (−i)]iu2

(4.4)

where closed-form for marginal characteristic functions φX1;0,T (u1) and φX2;0,T (u2)

have been derived in Proposition 3.11.

The vanilla European option prices for S1 and S2 in (4.3) can now be easily

computed by the Carr-Madan FFT method.

4.2.2 Numerical Results

In this subsection, to see the advantage of using the FFT method over Monte

Carlo simulation, we compare their computational results for vanilla European op-

tion under the two-dimensional Lévy (VG) correlation model. In Monte Carlo sim-

ulation, we have run 100, 000 simulation paths each time to obtain an accurate

estimation. The FFT algorithm and simulation were implemented in Matlab on the

same machine. We observed that FFT is much faster compared with Monte Car-

lo simulation (FFT takes less than a second to get result while simulation usually

takes over 1000 times longer than FFT). FFT is faster in a sense that it generates a

matrix of prices with different strikes and is able to compute option prices across dif-

ferent strikes in one single run. Besides computation speed, Monte Carlo simulation

converges very slowly without using variance reduction techniques.

We have performed the FFT method taking N = 4096 and ran 100, 000 sample

paths for Monte Carlo simulation. The parameters we were using are as follows (for
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Table 4.1)

M =

 −15 −0.5

−0.5 −5

 , Q =

 0.5 0.4

0.3 0.5

 , A0 =

 0.04 0.04

0.04 0.04

 ,

β = 4, θ1 = θ2 = −0.15, σ1 = σ2 = 0.9966, ν1 = ν2 = 0.3, T = 1

S1(0) = S2(0) = 100, r = 0.05 N = 4096, simulation numbers = 100, 000.

FFT method Simulation

K = 80 C(S1) 24.7462 24.7309

C(S2) 27.6238 27.6117

K = 90 C(S1) 15.9739 16.0023

C(S2) 20.3514 20.3391

K = 100 C(S1) 7.8547 7.8345

C(S2) 14.5353 14.5188

K = 110 C(S1) 4.0803 3.9782

C(S2) 11.9104 11.8920

K = 120 C(S1) 2.9785 3.0244

C(S2) 9.1024 9.0769

Table 4.1: Computational Results for Vanilla European Option Prices

From Table 4.1, we can see that the two sets of computational results by using

FFT and Monte Carlo simulation separately are close, but FFT is much faster than
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simulation. We also present the time change rate simulation paths for two assets

and correlation path in Figure 4.1. We observe that the two assets are almost

always positively correlated over time, and red line A22 dominate the blue line A11

for almost the entire time period. Since the instantaneous time change rate A11(t)

path (blue line) reflects the dynamic evolution of volatility for asset S1(t), and the

A22(t) path (red one) captures the stochastic volatility information for the second

asset S2(t), the volatility for S2 is more volatile than S1 so that the second asset is

more risky than asset one. This observation also explains the computation results

showing in Table 4.1, in which call prices for S2 is higher than S1 at the same strike

level. Intuitively, higher volatility result in higher call price.

4.3 Multi-asset Option Pricing

In this section we are going to show that our new Lévy correlation model is

able to price multi-asset options. We deal with the pricing problem of one of the

simplest multi-asset options: the exchange option. We are only using two assets in

computation, but this Lévy correlation model can be applied to higher dimensional

cases technically. The closed form of characteristic function is derived for the sake

of applying FFT method, and Monte Carlo simulation result is also presented for

comparison.
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Figure 4.1: A11, A22 and correlation evolution for S1, S2 (vanilla European option

experiment)
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4.3.1 Exchange Option

One simplest example for multi-asset option is Exchange option. Exchange

Options were initially introduced by William “Dr. Risk” Margrabe in his seminal

1978 paper. These types of options allow the holder of the option to exchange one

asset for another and are used commonly in foreign exchange markets, bond markets

and stock markets, among others. The payoff of the exchange option depends on

two correlated assets S1 and S2 with payoff (S1 − S2)+. Exchange option can be

seen as a special case of a spread option with zero strike.

We consider the exchange option pricing problem under the bivariate Lévy

(VG) correlation model with integrated Wishat time change, where S1 and S2 are

modeled as in Equation (4.1) or more generally as in Equation (4.2)

The exchange option price EXOP(S1, S2) with zero dividends at time 0 is:

EXOP(S1, S2) = e−rTEQ[S1(T )− S2(T )]+ (4.5)

By Theorem 1.8 introduced in Chapter One, we can simplify the calculation

by change the measure from risk neutral Q to the new measure U2 with numeraire

S2. Then the price for exchange option EXOP(S1, S2) becomes:

EXOP(S1, S2) = S2(0)EU2

(
S1(T )

S2(T )
− 1

)+

(4.6)

where EU2 is the expectation under measure U2 with numeraire S2. Therefore, the

exchange option becomes vanilla European call option on S1(T )/S2(T ) under the

new measure U2 with strike K = 1.

In order to apply FFT method to get the price of the exchange option, the
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characteristic function of ln[S1(T )/S2(T )] under the new measure U2 is needed, and

can be derived by change of numeraire technique.

Proposition 4.1. (Characteristic function for ln[S1(T )/S2(T )])

The closed form of characteristic function for ln[S1(T )/S2(T )] is:

φ
ln
S1
S2

(u) = exp
[
iu ln

S1(0)

S2(0)
− iu lnφX1,X2;0,T (−i, 0)

− (1− iu) lnφX1,X2;0,T (0,−i)
]
· φX1,X2;0,T (u,−i− u)

(4.7)

where the joint characteristic function φX1,X2;0,T is derived in proposition 3.12.

Proof:

φ
ln
S1
S2

(u) = EU2
[
e
iu ln

S1(T )
S2(T )

]
= EQ[eiu ln

S1(T )
S2(T )

dU2

dQ
]

= EQ[eiu lnS1(T )−iu lnS2(T ) · e−rT+lnS2(T )−lnS2(0)
]

= EQ[e−rT+iu lnS1(T )+(1−iu) lnS2(T )−lnS2(0)
]

= EQ[e−rT+iu[lnS1(0)+rT+X1(T )−ln φX1;0,T
(−i)]+(1−iu)[lnS2(0)+rT+X2(T )−ln φX2;0,T

(−i)]−ln S2(0)
]

= EQ[eiu ln
S1(0)
S2(0)

−iu lnφX1;0,T
(−i)−(1−iu) ln φX2;0,T

(−i) · eiuX1(T )+(1−iu)X2(T )
]

= e
iu ln

S1(0)
S2(0)

−iu ln φX1,X2;0,T
(−i,0)−(1−iu) ln φX1,X2;0,T

(0,−i) · φX1,X2;0,T (u,−i− u)

�

4.3.2 Numerical Results

We compare their computational results for exchange option under the two-

dimensional Lévy (VG) correlation model. In Monte Carlo simulation, we have run

100, 000 simulation paths each time to obtain an accurate estimation. We have
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perform FFT method for taking N = 4096 and run 100, 000 times for Monte Carlo

simulation.The FFT algorithm and simulation were implemented in Matlab on the

same machine.

The parameters we were using are as follows:(for Table 4.2)

M =

 −15 −0.5

−0.5 −5

 , Q =

 0.5 0.4

0.3 0.5

 , A0 =

 0.04 0.04

0.04 0.04

 ,

β = 4, θ1 = θ2 = −1.5, σ1 = σ2 = 0.5701, ν1 = ν2 = 0.3,

S1(0) = 100, T = 1, r = 0.05, N = 4096, simulation numbers = 100, 000.

FFT method Simulation

S2(0) = 80 23.0125 23.0597

S2(0) = 90 15.7805 15.7765

S2(0) = 100 11.3444 11.3289

S2(0) = 110 8.7915 8.8003

S2(0) = 120 7.0667 7.0557

Table 4.2: Computational Results for Exchange Option Prices

4.4 Exotic Option Pricing

In finance, an exotic option is a derivative which has features making it more

complex than commonly traded products (vanilla options). This product could
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depend on more than one index and generally trades over the counter (OTC).

The payoff of an exotic option at maturity depends not just on the value of the

underlying index at maturity, but at its value at several times during the contract’s

life. For example, one type of exotic option is known as a chooser option, which

allows an investor to choose whether the options is a put or call at a certain point

during the option’s life. Because this type of option can change over the holding

period, it is not be found on a regular exchange, which is why classified as an exotic

option. Some other types of options include: barrier options, Asian options, digital

options, mountain range options, etc. All belong to exotic option family.

In this section, we will show the Lévy correlation model is able to price exotic

options. One type of exotic options, the forward-start call option is chosen as

an implemented example. The closed form characteristic function is derived and

numerical results via FFT and simulation are shown in the next section.

4.4.1 Forward Start Call Option

A forward start option is an advance purchase of a put or call option that will

become active at some specified future time. It is essentially a forward on an option,

only the premium is paid in advance. The asset price at the start of this option

is not known, and the strike price is determined when the option becomes active.

For instance, a forward start call option with payoff (ST/St −K)+ is an option that

starts at some pre-specified time in the future (we call this strike date t), and has

a maturity after that date. Forward start contracts can be used to give an investor
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exposure to forward volatility, and represents the building block for both cliquet

options9 and variance swaps. All these contracts share the common feature of being

pure variance contracts.

We can not know (today) the price of the underlying asset at the starting

point, since the forward start option starts in the future, and for this reason it is

standard to specify a strike price as a percentage of moneyness. For example, we

can set the strike to be 100% of the price of the underlying at the strike date, so

that the option starts at-the-money (ATM). Table 4.3 gives the position in which

option start with different strikes for forward start calls.

Call Option Put Option

K < 100% starts (1−K)% ITM starts (1−K)% OTM

K > 100% starts (K − 1)% OTM starts (K − 1)% ITM

K = 100% starts ATM starts ATM

Table 4.3: Strike for Forward Start Calls and the position in which the option starts.

We consider the forward start call option pricing problem under the bivariate

Lévy (VG) correlation model with integrated Wishart time change, where two assets

S1 and S2 are modeled as in Equation (4.1) or more generally as in Equation (4.2).

The payoff of a forward-start call option at maturity T is (ST/St −K)+, where St

is the stock price at a fixed time t, 0 ≤ t ≤ T . Then by risk-neutral valuation, the

9A series of consecutive forward start options creates a cliquet option
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initial price of options for S1 and S2 are given by:

FS CS1(0) = e−rTEQ[S1(T )

S1(t)
−K

]+
FS CS2(0) = e−rTEQ[S2(T )

S2(t)
−K

]+ (4.8)

If we consider the forward log return: ln[ST/St], the forward start call option prices

at time zero become:

FS CS1(0) = e−rTEQ[eln[S1(T )/S1(t)] − elnK
]+

FS CS2(0) = e−rTEQ[eln[S2(T )/S2(t)] − elnK
]+ (4.9)

In order to price a forward-start call option via the FFT method, the forward

characteristic function of ln[ST/St] is needed.10 This will involve the computation

of the characteristic function of the Wishart process, which is given in following:

Proposition 4.2. (The Conditional Characteristic Function of the Wishart

Process)

Given a real symmetric matrix D, the conditional characteristic function of

the Wishart process Vt is given by:

φVtD,t(τ) = Et exp(i T r[DVt+τ ]) = exp
(
Tr[B(τ)Vt] + C(τ)

)
(4.10)

where the deterministic complex-valued functions B(τ) ∈ Mn(Cn), C(τ) ∈ C are

given by:

B(τ) =
(
iDB12(τ) +B22(τ)

)−1(
iDB11(τ) +B21(τ)

)
,

C(τ) = Tr[βQTQ

∫ τ

0

B(s) ds],

(4.11)

10The expectation in this section is under risk-neutral measure Q and we use E in stead of EQ

in all computations for simplicity.
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with  B11(τ) B12(τ)

B21(τ) B22(τ)

 = exp τ

 M −2QTQ

0 −MT

 .

Proof: See Appendix. �

We now derive the forward characteristic function of the log returns:

φln[ST /St](u) = E
[
eiu ln[ST /St]

]
= E

[
Et(e

iu(lnST−lnSt))
]

= E
[
e−iu lnSt · Et(eiu lnST )

]
= E

(
e−iu lnSt · eiu lnSt+iu(r−q)(T−t) · φX;t,T (u)

[φX;t,T (−i)]iu
)

= eiu(r−q)(T−t)E
( eTr[C(T−t,Γ)At]+b(T−t,Γ)[
eTr[C(T−t,Γ(−i))]+b(T−t,Γ(−i))

]iu )
= eiu(r−q)(T−t)+b(T−t,Γ)−iu b(T−t,Γ(−i))E0

(
eTr{[C(T−t,Γ)−iuC(T−t,Γ(−i))]At}

)
where C(T − t, Γ), b(T − t, Γ) are given in equation (3.31), At follows Wishart

process, and Γ(−i) represents similar to Γ but replacing all u elements(u1, ..., un)

with −i. If we denote C̃(T − t) , C(T − t, Γ)− iuC(T − t, Γ(−i)), then we have:

φln[ST /St](u) = eiu(r−q)(T−t)+b(T−t,Γ)−iu b(T−t,Γ(−i))E0

(
eTr[C̃(T−t)At]

)
(4.12)

Now we see that E0

(
eTr[C̃(T−t)At]

)
in equation (4.12) can be evaluated by using

equation (4.10) with iD = C̃(T − t), Vt+τ = At, and τ = t, t = 0. Then,

E0

(
eTr[C̃(T−t)At]

)
= eTr[B(t)A0]+C∗(t) (4.13)

Therefore, the forward characteristic function will be:

φln[ST /St](u) = eiu(r−q)(T−t)+b(T−t,Γ)−iu b(T−t,Γ(−i))+Tr[B(t)A0]+C∗(t) (4.14)
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with

B(t) =
(
C̃(T − t)B12(t) +B22(t)

)−1(
C̃(T − t)B11(t) +B21(t)

)
,

C∗(t) = Tr[βQTQ

∫ t

0

B(s) ds].

(4.15)

Now the closed form of forward characteristic function is in hand, and we can

apply FFT method to get the price of forward start option.

4.4.2 Numerical Results

We compare computational results for forward-start option under the two-

dimensional Lévy(VG) correlation model. In Monte Carlo simulation, we have run

100, 000 simulation paths each time to obtain a considerable accurate estimation.

We have perform FFT method for taking N = 1024 and run 100, 000 times for

Monte Carlo simulation.The FFT algorithm and simulation were implemented in

Matlab on the same machine. Results are showing in Table 4.4.

The parameters we were using are as follows:(for Table 4.4)

M =

 −15 −0.5

−0.5 −5

 , Q =

 0.5 0.4

0.3 0.5

 , A0 =

 0.04 0.04

0.04 0.04

 ,

β = 4, θ1 = θ2 = −0.15, σ1 = σ2 = 0.9966, ν1 = ν2 = 0.3,

S1(0) = S2(0) = 100, r = 0.05, N = 1024, T = 1, t = 0.5.
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FFT method Simulation

K = 0.2 FS C(S1) 0.7917 0.7932

FS C(S2) 0.7967 0.8011

K = 0.5 FS C(S1) 0.5003 0.5005

FS C(S2) 0.5047 0.5016

K = 0.8 FS C(S1) 0.2176 0.2185

FS C(S2) 0.2277 0.2300

K = 1 FS C(S1) 0.0397 0.0388

FS C(S2) 0.0786 0.0802

K = 1.1 FS C(S1) 0.0180 0.0178

FS C(S2) 0.0557 0.0550

K = 1.2 FS C(S1) 0.0129 0.0133

FS C(S2) 0.0429 0.0437

Table 4.4: Computational Results for Forward Start Call Option Prices
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4.5 Calibration

The price to pay for more realistic models is the increased complexity of model

calibration. Often, the estimation method becomes as crucial as the model itself [18].

Calibration consists in estimating the unknown parameters of the model which

reproduce almost perfectly the market option prices. The main purpose of calibra-

tion is pricing OTC options, often exotic, which do not quote in any market and

whose prices are therefore unknown.

The aim of this section is to show that the calibration of our Lévy integrated

Wishart time change correlation model to market prices is feasible. To the best of

our knowledge, no other multivariate stochastic volatility models with non-trivial

dependence structure with Wishart process have been successfully calibrated to the

real market. This is may due to the fact that the trade-off between flexibility and

tractability is particularly delicate in a multivariate setting. Therefore, we think the

content in this chapter is relatively new and can be considered as a good attempt. 11

Though the closed form of characteristic function formula is given in the con-

text for high dimensions, it is usually not numerically feasible in practice by FFT.

Hence, we calibrate the model using two-asset options that incorporate pairwise de-

pendencies. Moreover, it is difficult to obtain real price quotes of multi-asset options,

since they are mostly traded over-the-counter. In order to circumvent this problem,

we consider foreign exchange rates because of the special triangular relationship in

FX market (more details will be provided in a later subsection) and use options on

11It may be considered as a first test rather than a finished product.
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two liquid currency pairs to price options on the illiquid cross-currency pair. To

my knowledge, the bivariate Lévy (VG) correlation model is the first model with

stochastic volatility and correlation which can deal with this problem.

4.5.1 Estimation Methods: Non-Linear Least Squares

In the Lévy correlation model we developed earlier, the likelihood functions are

not known in closed form, so using the maximum likelihood method 12 to estimate

the statistical parameters is very difficult to implement. Frequently used method-

s for Lévy models include the generalized method-of-moments (GMM) developed

by Hansen and Scheinkman [37], and the efficient method-of-moments (EMM) pro-

posed by Gallant and Tauchen [31]. However, it is not convenient to employ these

econometric tools in practice. An alternative and popular way is to use option prices

to estimate the risk-neutral parameters directly.

Since calibration consists of estimating unknown parameters which produce

the correct market prices of selected options, this is also considered as an inverse

problem (as we solve for parameters indirectly through some implied structures).

The most popular approach to solve such an inverse problem is to minimize the

error or discrepancy between model prices and market prices. This usually turns

out to be a non-linear least squares optimization problem. More specifically, the

sum of squared differences between model option prices and market option prices is

minimized over the parameter space.

The procedure is: we collect N options with different time to maturities and

12Please refer to some statistic books for Maximum Likelihood Estimation method for details
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strike prices on the same stock in the same day. The parameter set Θ is then

determined to find the minimum value of a sum of N squared residuals. We evaluate:

Θ̂ = arg min
Θ

N∑
i=1

[
CMarket
i (Ki, Ti)− CModel

i,Θ (Ki, Ti)
]2

(4.16)

where CMarket
i (Ki, Ti) and CModel

i,Θ (Ki, Ti) are the ith option prices from the market

and model respectively, with strike Ki and time to maturity Ti.

4.5.2 Empirical Application

We are using cross-currency options to implement the calibration, since one

interesting problem in the FX market is using options on two liquid currency pairs

to price options on illiquid cross-currency pairs. A currency pair is the quotation

of the relative value of a currency unit against the unit of another currency in the

foreign exchange market. We consider the options on illiquid FX pair j/k, which

represents currency j against currency k. For example, the quotation EUR/USD

1.2500 means that one euro is exchanged for 1.2500 US dollars. The option price

for this illiquid pair j/k may be computed from the prices of two options of liquid

pairs k/i (currency k against currency i or alternatively currency k is quoted in

units of currency i) and j/i. For instance, if we are interested in a vanilla option on

GBP/EUR, we can use two liquid pairs GBP/USD and EUR/USD.

The risk-neutral processes for two spot FX rates Sj/i(t) and Sk/i(t) under

measure Qi, which represents the risk-neutral measure with numeraire i (a money

market account invested in currency i), are defined as follows:
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Sj/i(t) = Sj/i(0)e−(rj−ri)t eX1(t)

EQi [eX1(t)]

Sk/i(t) = Sk/i(0)e−(rk−ri)t eX2(t)

EQi [eX2(t)]

(4.17)

where ri, rj, rk are assumed to be deterministic interest rates for three currencies

and X1(t), X2(t) follows the Lévy correlation model we developed earlier. The

characteristic functions for the log returns ln[Sj/i(t)/Sj/i(0)] and ln[Sk/i(t)/Sk/i(0)]

are:

φln[Sj/i(t)/Sj/i(0)](u) = e−iu[(rj−ri)t−ln(φX1,X2;0,t
(−i,0))] · φX1,X2;0,t(u, 0)

φln[Sk/i(t)/Sk/i(0)](u) = e−iu[(rk−ri)t−ln(φX1,X2;0,t
(0,−i))] · φX1,X2;0,t(0, u)

(4.18)

where φX1,X2 is the joint characteristic function for X1 and X2.

The characteristic function of the log return ln[Sj/k(t)/Sj/k(0)] under measure

Qk can be derived by changing of measure:

φ
ln

Sj/k(t)

Sj/k(0)

(u) = EQk [eiu ln[Sj/k(t)/Sj/k(0)]] = EQi [eiu ln[Sj/k(t)/Sj/k(0)]dQ
k

dQi
]

= EQi [eiu ln[Sj/k(t)/Sj/k(0)] · e(ri−rk)t+ln[Sk/i(t)/Sk/i(0)]

= EQi [eiu ln[Sj/i(t)/Sj/i(0)]·e−(iu−1) ln[Sk/i(t)/Sk/i(0)]−(ri−rk)t
]

= EQi [ei(u ln[Sj/i(t)/Sj/i(0)]−(u+i) ln[Sk/i(t)/Sk/i(0)])·e−(ri−rk)t ]

= φX1,X2;0,t(u,−(u+ i))eiu(rk−rj)t−iu ln(φX1,X2;0,t
(−i,0))+i(i+u) ln(φX1,X2;0,t

(0,−i))

(4.19)

Now we have the closed form characteristic function of the log return for the

interested currency pair j/k. The FFT method can be applied to price a European

option written on cross FX rate Sj/k(t).
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In our calibration implement, we obtained two cross-currency option price

data: EUU (ISE Spot EUR USD) and GBP (ISE Spot GBP USD) on June 17th,

2011 from OIC(The Options Industry Council) 13 14. We collected call option prices

for 393 options (including ATM, ITM, OTM) in total, with 160 call options on the

GBP/USD (symbol:GBP) exchange rate and 233 call options on the EUR/USD

(symbol:EUU) exchange rate. Each of them had different strikes and four or five

maturities, respectively (maturity days include: 29 days, 64 days, 92 days, 183 days,

274 days). The mid-value between bid and ask price is used as the option value.

Table 4.5 shows the currency LIBOR rate we were using for exchange rate at that

time.

Time to Maturity USD LIBOR EUR LIBOR GBP LIBOR

29 0.18580% 1.27688% 0.62750%

64 0.24650% 1.45000% 0.82500%

92 0.28775% 1.52500% 0.89563%

183 0.56200% 1.91475% 1.35563%

274 0.72775% 2.11563% 1.57688%

Table 4.5: Libor rates on June 17th, 2011

13website: http://www.optionseducation.org
14The option chain data for EUU and GBP can also be obtained from MarketWatch:

http://www.marketwatch.com
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Our objective function for calibration is:

Θ̂ = arg min
Θ

∑
alloptions

[
CMarket
i (Ki, Ti)− CModel

i,Θ (Ki, Ti)
]2

(4.20)

4.5.3 Calibration Results

We calibrate two currency pairs for bivariate Lévy correlation model with inte-

grated Wishart time change simultaneously and the parameter set Θ is: M2×2,Q2×2, β,

A0 (2×2), θ1, θ2, ν1, ν2, σ1,σ2 (19 parameters). Since M is required to be negative

semi-definite, and A0 should be positive semi-definite, M, A0 have Cholesky decom-

positions

M = −LMLTM , A0 = LA0L
T
A0

with

LM =

 m11 0

m21 m22

 , LA0 =

 l11 0

l21 l22

 ,

Then the parameter set need to be estimated has be reduced to 15 param-

eters: l11, l21, l22, m11, m21, m22, q11, q12, q21, q22, β, θ1, θ2, ν1, ν2, σ1, σ2. where Q

is denoted as:

Q =

 q11 q12

q21 q22

 ,

and β > n − 1 (n is the number of underlying assets; for the bivariate case n =

2). The parameter σ1 and σ2 can be evaluated by θ2ν + σ2 = 1, since centered

independent Lévy (VG) processes with unit variance were chosen in model setting.

109



We totally have 15 parameters to be estimated. For such a large parameter set,

Genetic Algorithm performs better in selecting solutions to minimize the objective

function. We therefore use Genetic Algorithm (GA) to find optimization parameters.

The calibration result can be found in Table 4.6.

Calibration Parameters l11 l21 l22 m11 m21 m22

Results 0.2146 -0.2201 0.2071 4.3564 -2.8998 3.5063

Calibration Parameters q11 q12 q21 q22 β θ1

Results 0.0706 0.1780 0.2574 0.6145 1.4341 -3.5349

Calibration Parameters θ2 ν1 ν2

Results 0.0070 -2.6561 0.0177

Table 4.6: Calibrated parameters for options on GBP/USD and EUR/USD on June

17th, 2011

Overall GBP/USD EUR/USD

RMSE 0.1334 0.1118 0.1462

APE 0.0199 0.0194 0.0203

Table 4.7: RMSE and APE Results for Calibration

Table 4.7 shows error results: The overall root mean squared error (RMSE) is

0.1334, and absolute percent error (APE) is 0.0199. The RMSE for only considering
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GBP/USD is 0.1118 and APE is 0.0194; the RMSE for only considering EUR/USD

is 0.1462 and APE is 0.0203. To depict the good fit visually we provide Figure 4.2,

where market and model prices are compared for a sample of different strikes and

maturities(marker ’◦’ represents market prices, and marker ’+’ represents model

prices). We also tested the sensitivity of the calibration with respect to the initial

values of the optimization and found that the calibration parameters could be re-

covered quite well from a broad range of initial values. From Figure 4.2, we can see

that model prices for two options fit the market prices for various maturities and

strikes very well with the calibration parameters. Figures 4.3 and 4.4 show fitting

results for different maturities separately.

4.5.4 Discussion-Volatilities:EUR/USD over GBP/USD?

The previous subsection shows the calibration parameters for two currency

options: GBP/USD and EUR/USD. With the calibration parameter results shown

in Table 4.6, we could simulate instantaneous time change rate sample paths, which

capture the dynamics of volatilities for two options, and also correlation sample

paths. Two figures are shown in Figure 4.5 (a) and (b).

In Figure 4.5 (a), A11(t) (Blue line) reflects the volatility variation for option

on GBP/USD, while A22(t)(Red line) reflects the volatility variation for option on

EUR/USD. We observed that EUR/USD is more volatile and risky than GBP/USD

in these days (around June 2011), as the red line is over blue line for almost en-

tire time period. And from Figure 4.5 (b), it is obvious that EUR/USD is highly
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Figure 4.2: Calibration results for bivariate Lévy(VG) correlation model with inte-

grated Wishart time change: market prices (circle) against model prices (plus).
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Figure 4.3: Calibration results with different maturities 29 days, 64 days, 92 days:

market prices (circle) against model prices (plus).
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Figure 4.4: Calibration results with different maturities 183 days, 274 days: market

prices (circle) against model prices (plus).
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Figure 4.5: A11(t), A22(t) and correlation simulated paths from calibration param-

eters
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correlated with GBP/USD. However, GBP/USD is usually more volatile than EU-

R/USD (GBP/USD usually has higher volatility and lower liquidity in the market

than EUR/USD).

Why have we seen this shift? Is EUR/USD over GBP/USD these days? Let us

refer to an article on June 27th, 2011, named ”$EURUSD vs $GBPUSD - Volatility

Favors EU over GU these days?” [59]

Volatility Favors: $EURUSD over $GBPUSD these days?

“There was a time when the daily volatility (measured in pip range) of the

GBPUSD was always above that of the EURUSD. Combine the higher volatility and

the lower liquidity of GU versus EU, and I could understand how the bid offer spread

on GU was typically a bit wider than on the EU. But these days, the daily ranges

show that EU is giving us more volatility than the GU (i.e., more pip potential in

any potential move). When you combine that with the lower pip spread it looks

like you are getting a bit better bang for your buck whenever you trade the EU

compared to when you trade the GU.” [59]

Daily history volatilities for EUR/USD and GBP/USD are shown in Figure 4.6

and Figure 4.7

Figure 4.6 shows from (Forex Ticker)www.mataf.net the daily pip (shorten for

in points) range over the last couple of years on EUR/USD. Notice how during much

of 2010 the daily average was less than 150 pips but now are routinely seeing daily

average ranges exceeding 150 pips.

Figure 4.7 shows the daily pip range over the last couple of years on GBP/USD.
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Figure 4.6: Daily History Volatilities for EUR/USD from 03/2008−−06/2011

Notice how during much of 2010 the range was above 150 pips and during early 2010

it was even close to 170 or 180 pips average. What is quite surprising now is to see

that the pip range is sub-150 pips on many days.

Figure 4.7: Daily History Volatilities for GBP/USD from 03/2008−−06/2011

From two charts, we could see the history volatilities result show the similar

trend as our simulated sample path for time change A11, A22, and our model sim-
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ulation results draw the same conclusion as the history results—the volatility for

EUR/USD is above GBP/USD in those days around June 2011. We may wonder

why this happened? It may due the Greek Debt Crisis and ECB rate hikes around

those days 15.

15low interest rates, no apparent near term prospects for rate hikes, not directly implicated in

the Greek crisis although you can never rule it out 100% [59]
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Chapter 5

Conclusion and Future Work

In conclusion, we explored how to extend stochastic volatility for Lévy process

to multivariate level and study the properties of this new model in this thesis. Our

model is a multidimensional Lévy process with stochastic mean, stochastic volatil-

ity, stochastic skewness as well as stochastic correlation of cross-sectional of asset

returns. Compared with the existing models, our Lévy correlation model has a

very flexible dependence structure without sacrificing tractability. It allows each

asset to have its own business clock as well as the co-movements of business clocks

of multiple assets, and also allows flexible correlation dynamics with independent

variation. Meanwhile, we derived the marginal and joint characteristic functions in

closed form, and we also derived pricing methods for different types of options, in-

cluding single asset option and muti-asset options, by using Monte Carlo simulation

and Fast Fourier transformation methods. Moreover, we have shown the skewness

for our new model varies stochastically over time, which therefore can deal with

stochastic skewness effects introduced by Carr and Wu [14]. Finally, we calibrated

this model to the options on FX currency pairs and remarkable consistence has been

observed. We compared model prices with market prices by drawing calibration fig-

ures and show that this model can simultaneously fit the cross-rate option market

prices surface across different maturities and strikes very closely.
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Our model can be widely used in many fields, such as some other OTC deriva-

tive pricing(for instance, variance swap, volatility swap, or other relative deriva-

tives), credit risk management, optimal portfolio choice, etc. My future work will

devote on applying this model to those fields.
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Appendix A

Relative Proofs and Concepts

A.1 One Dimensional Riccati Equation

A univariate Riccati equation:

da(h)

dh
= b[a(h)− c0][a(h)− c1]. (A.1)

can be written as:

da(h)

[
1

a(h)− c0

− 1

a(h)− c1

]
= b(c0 − c1)dh. (A.2)

By taking integral we will get:

a(h) = c1 +
[a(0)− c1](c0 − c1)

a(0)− c1 − [a(0)− c0]exp[b(c0 − c1]h
(A.3)

A.2 Proof of Proposition 2.7

Proof: In equation (2.9), the conditional Laplace transform of the CIR process

yt has an exponential affine form as:

ψt,h(u) = Et[exp(−uyt+h)] = exp[−a(h, u)yt − b(h, u)] (A.4)
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By iterated expectation theorem we get:

ψt,h(u) = EtEt+dt[exp(−uyt+h)] = Et[ψt+dt,h−dt(u)]

= Etexp[−a(h− dt, u)yt+dt − b(h− dt, u)]

= Etexp[−a(h− dt, u)yt+dt[yt − k(yt − θ)dt+ (η2yt)
1/2 dWt]− b(h− dt, u)]

∼ exp[−a(h− dt, u)yt + a(h− dt, u)k(yt − θ)dt− b(h− dt, u)]

Etexp[−a(h− dt, u)(η2yt)
1/2 dWt]

∼ exp[−a(h− dt, u)yt + a(h, u)k(yt − θ)dt− b(h− dt, u) +
1

2
a2(h, u)η2ytdt].

By identifying with the assumed expression in equation (A.4), we obtain:
a(h, u) ∼ a(h− dt, u)− ka(h, u)dt− 1

2
η2a2(h, u)dt,

b(h, u) ∼ b(h− dt, u) + kθa(h, u)dt.

If we take dt→ 0, two functions are solutions of the following differential system:
∂a(h, u)

∂h
= −ka(h, u)− 1

2
η2a2(h, u),

∂b(h, u)

∂h
= kθa(h, u).

(A.5)

with initial conditions:(since Etexp(−uyt) = exp(−uyt)

a(0, u) = u, b(0, u) = 0.

From equations (A.5), we note that the function a(h, u) satisfies a Riccati equation

in (A.1) with: b = −η2
2
, c1 = 0, c0 = −2k

η2
, and initial condition a(0, u) = u.

Then by applying formula (A.3), we derived that:

a(h, u) =
−2k
η2
u

u− [u+ 2k
η2

]ekh
=

uekh

1 + η2u
2k

[1− e−kh]
.
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By integrating the second equation in (A.5), we get:

b(h, u) =
2kθ

η2
log

[
1 + u

η2

2k
(1− e−kh)

]
.

�

A.3 Proof of Proposition 3.4

Proof: Since Et(dWt) = 0, the drift of Wishart process Vt is easily obtained:

EtdVt = (βQQT + VtM
T +MTVt)dt

and the covariance:

Covt(α
TdVtα, β

TdVtβ)

= Covt(α
TV

1/2
t dWtQα + αTQTdWtY

1/2
t α, βTQTdW T

t Y
1/2
t β)

= Et[(α
TV

1/2
t dWtQα + αTQTdWtY

1/2
t α)(βTQTdW T

t Y
1/2
t β)].

we note that for any vectors u, v ∈ Rn:

Et(dWtuv
TdW T

t ) = Et(dW
T
t uv

TdWt) = vTuIdt,

Et(dWtuv
TdWt) = Et(dW

T
t uv

TdW T
t ) = vuTdt,

then we deduce that:

Covt(α
TdVtα, β

TdVtβ) = (4αTdVtβα
TQTQβ)dt.

�
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A.4 Proof of Proposition 3.5

Proof: Given Vt+h = xt+hx
T
t+h, where xt is an OU process: dxt = Mxtdt +

QTdWt, with the distribution of xt+1|xt ∼ N
(
M̃(h)xt,Σ(h)

)
. Then the conditional

Laplace transform of Vt+h is:

Ete
Tr(ΓVt+h) = Ete

xTt+hΓxt+h

=

∫
Rn
expxT

(
Γ− Σ(h)−1

2

)
x+ xTΣ(h)−1M̃(h)xt dx

1

(2π)n/2
1

(detΣ(h))1/2
exp

(
−1

2
xTt M̃(h)TΣ(h)−1M̃(h)xt

)
.

In order to simplify the above result, we apply the following lemma:

Lemma A.1. For any symmetric positive semi-definite matrix Ω, and µ ∈ Rn, we

obtain: ∫
Rn
exp(−xTΩx+ µTx)dx =

πn/2

(detΩ)1/2
exp(

1

4
µTΩ−1µ). (A.6)

Thus, we get:

Ete
Tr(ΓVt+h) =

1

det(Id− 2Σ(h)Γ)1/2

exp−1

2
xTt M̃(h)TΣ(h)−1M̃(h)xt +

1

2
xTt M̃(h)TΣ(h)−1(Σ(h)−1 − 2Γ)−1Σ(h)−1M̃(h)xt

=
expTr[Γ(Id− 2Σ(h)Γ)−1M̃(h)VtM̃(h)T ]

(det[Id− 2Σ(h)Γ])1/2
.

This is the result for β = 1 of Proposition 3.5. The general case is immediately de-

duced. �
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A.5 Proof of Proposition 3.7

Proof: Let f : Sn(R)→ R be a two times differentiable function. By applying

Itô’s lemma, we first have:

df(Vt) =
n∑

i,j=1

∂f

∂V ij
t

Vt dV
ij
t +

1

2

n∑
i,j,k,l=1

∂2f

∂V ij
t ∂V

kl
t

Vt d〈V ij, V kl〉t. (A.7)

Then from (3.4), we will get:

dV ij
t = (βQTQ+MVt + VtM

T )ijdt+
n∑

p,q=1

(
√
Vt)

ip(dWt)
pqQqj +Qqi(dWt)

pq(
√
Vt)

jp

Thus,

d〈V ij, V kl〉t =
n∑

p,q=1

[
(
√
Vt)

ipQqj +Qqi(
√
Vt)

jp
] [

(
√
Vt)

kpQql +Qqk(
√
Vt)

lp
]

= 4
n∑

p,q=1

(
√
Vt)

ipQqj(
√
Vt)

kpQql = 4V ik
t (QTQ)jl.

(A.8)

If replacing those quantities in the equation (A.7), we can easily get the matrix for-

mulation in (3.9). �

A.6 Proof of Proposition 3.9

Proof:

ψ∗t,h+dt(Γ) = Etexp[Tr

(∫ t+dt

t

ΓVτ dτ

)
]ψ∗t+dt,h(Γ)

' expTr(ΓVt)dt+ b∗(h,Γ)EtexpTr(M
∗(h,Γ)Vt+dt)

' exp{Tr(ΓVt)dt+ b∗(h,Γ) + EtTr(M
∗(h,Γ)Vt+dt) +

1

2
VtTr(M

∗(h,Γ)vt+dt)}

= exp{Tr(ΓVt)dt+ b∗(h,Γ) + Tr[M∗(h,Γ)Vt + (βQQT + VtM
T +MVt)dt]}

+ 2Tr[M∗(h,Γ)VtM
∗(h,Γ)QTQ]dt.

(A.9)
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Let t→ 0, and by identifying both expressions of the Laplace transform, we will get

the result. Now, let us consider a matrical Riccati differential system:

dA(h)

dh
= BTA(h) + A(h)B + 2A(h) ∧ A(h) + C, (A.10)

where A(h),∧, C are symmetric n×n matrices and B is a square n×n matrix. The

solution of the multidimensional equation (A.10) is [35]:

A(h) = A∗ + exp[(B + 2 ∧ A∗)h]T

{(A(0)− A∗)−1 + 2

∫ h

0

exp[(B + 2 ∧ A∗)u] ∧ exp[(B + 2 ∧ A∗)u]Tdu}

exp[(B + 2 ∧ A∗)h],

where A∗ satisfies:

BTA∗ + A∗B + 2A∗BA∗ + C = 0.

In order to get the result in proposition 3.9, we directly apply the above result to the

multi-dimensional partial Riccati equation. �

A.7 Proof of Proposition 4.2

Proof: The complex-valued non-symmetric Matrix Riccati ODE satisfied by

B(τ) becomes:

d

dτ
B(τ) = B(τ)M +MTB(τ) + 2B(τ)QTQB(τ),

B(0) = iD,

(A.11)

while

C(τ) = Tr[βQTQ

∫ τ

0

B(s)ds].
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Applying the linearization procedure, we obtain the explicit solution for B(τ) =

F (τ)−1G(τ), with

[
G(τ) F (τ)

]
=
[
G(0) F (0)

]
exp

τ
 M −2QTQ

0 −MT




=
[
B(0) In

]
exp

τ
 M −2QTQ

0 −MT




=
[
iDB11(τ) +B21(τ) iDB12(τ) +B22(τ)

]
which completes the proof. �
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Lévy Processes, Mathematical Finance.

[13] Carr, P., Geman, H., Madan, D. B., Yor, M. (2002) The Fine Structure of
Asset Returns: An Empirical Investigation. Journal of Business, April 2002,
75 2, 305-32

128



[14] Carr, P. and Wu, L.,(2004) Stochastic skew in currency options.

[15] Carr, P. Liu, W.,(2004) Time changed Lévy Process and Option Pricing. Jour-
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mensional Lévy processes using Lévy copulas.Journal of Multivariate Analysis
Vol. 97, 1551-1572

[45] Kou, S. (2002) A jump-diffusion model for option pricing, Management Sci-
ence, 48, 1086-1101

[46] Lord,R., Koekkoek,R., and Van Dijk, D.,(2008) A Comparison of Biased Simu-
lation Schemes for Stochastic Volatility Models. Tinbergen Institute Discussion
Paper No. 06-046/4

[47] Luciano, E. and Schoutens, W. (2006) A multivariate jump-driven financial
asset model. Quantitative Finance 6: 385-402

[48] Madan, D. B. and Seneta, E. (1990) The variance gamma model for share
market returns. Journal of Business 63, 511-524

[49] Madan, D.B., Carr, P.P., Chang, E.C. (1998) The variance gamma process
and option pricing, European Finance Review, 2, 79-105.

[50] Mandelbrot, B.,(1963) The Variation of Certain Speculative Prices. Journal
of Business,Vol. 36, 394

[51] Merton, R.C. (1973) Theory of Rational Option Pricing. Bell Journal of Eco-
nomics and Management Science, 4, 141-183

[52] Muirhead, R. (1982) Aspects of Multivariate Statistical Theory. Wiley.

[53] Prause, K. (1999) The Generalized Hyperbolic Model: Estimation, Financial
Derivatives, and Risk Measures, Dissertation University at Freiburg.

[54] Saporta G. (2006) Probability, data analysis and statistics, Editions Technip.

131
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