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Recently, the focus of transportation planning has evolved from
accommodating long-term mobility needs to providing near-term and more efficient
transportation systems management and operations (TSMO) solutions, the result of
limited transportation funding and road capacity build-out. This planning-for-operation
concept calls for modeling tools that are sensitive to dynamic interactions between
travel behavior and network supply so that the impacts of emerging TSMO strategies
(e.g., variable road pricing, ramp metering, etc.) can be accurately estimated. The
integration of activity-based travel demand models (ABM) and dynamic traffic
assignment (DTA) models offer a perfect solution. However, existing operational
integrated ABM-DTA models suffer from several limitations, including excessively
long runtime and poor convergence quality, which severely hinders large-scale

implementations.



This dissertation proposes to integrate operational ABM and DTA models
based on an innovative behavioral foundation: behavior user equilibrium (BUE).
Different from the normative behavior theory (i.e., user equilibrium, or UE), BUE is
based on a positive theory of travel behavior that avoids impractical assumptions, such
as complete information and perfect rationality. BUE describes what travelers actually
do in the system and thus emphasizes the role of information acquisition, knowledge
updating, and learning in travel decision-making. The BUE-based model saves runtime
because DTA models no longer need to run iteratively to reach UE internally and fewer
agents undergo behavioral adjustments through iterations. In addition to runtime
savings, the BUE principle proposes an alternative way to explain the behavior
adjustment process and provides improved behavioral realism. This BUE-based
integration framework is applied to the Washington-Baltimore Metropolitan Area as a
case study. The integrated model includes InSITE, an ABM developed for the
Baltimore Metropolitan Council (BMC), and DT ALite, a mesoscopic DTA model. The
BUE-based integrated model is then compared with a traditional, sequentially
integrated benchmark regarding model convergence and performance. Lastly, to
enhance the transferability of the BUE-based integration approach, this dissertation
develops a calibration method that estimates parameters associated with the BUE
principle using readily available local data so that this integration framework can be

easily applied to operational ABM and DTA models elsewhere.
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Chapter 1 Introduction

1.1 Background

Transportation, by definition, is the movement of humans, animals, and goods from
one location to another. A transportation system is an essential prerequisite for people
to trade and conduct activities; the first transportation systems were integral to the
development of civilization and urbanization. People often take transportation systems
for granted until something goes wrong; traffic congestion is a constant reminder of
their importance. When recurring congestion occurs, the blame is typically placed on
inaccurate growth anticipation and poor transportation planning efforts. The rapid
economic development over the past half-century has signified the critical role
transportation planning plays in supporting investment allocation, policy-making and
economic growth resulting in significant progress in transportation planning

techniques.

In practice, a comprehensive transportation planning process is usually dependent on
the development of a complex, yet rigorous mathematical model to represent the
demand and supply for travel in an urban region, which is referred to as a travel demand
model. The primary objective of a travel demand model is to simulate planning
scenarios of proposed plans and policies accurately. Driven by emerging transportation

policies and modern traffic management strategies, the focus of travel demand analysis
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has shifted accordingly. While earlier travel demand models emphasize
accommodating long-term mobility goals at the aggregate level, recent models are
concerned more with understanding the individual behavioral process in response to
mid-term or even short-term transportation management strategies. For instance,
activity-based travel demand models (ABMs) have improved trip-based approaches by:
1) considering activity patterns instead of individual trips; 2) modeling the individual
traveler’s decision-making process; 3) incorporating intra-household interactions; and

4) treating time as a continuum (Lin, Eluru, Waller, & Bhat, 2008).

In addition to methodological improvements, travel demand analysis has also
experienced theoretical advances. The normative theory of travel behavior (e.g., perfect
rationality, utility maximization, etc.) previously dominated travel demand analysis
because of its behavioral simplification. However, simplifications imply limitations,
especially in modeling travelers’ responses to emerging control strategies and
sophisticated policies. Therefore, rule-based and agent-based ABMs, based on either
bounded rationality theory or advanced behavioral foundations, are proposed to relax
the perfect rationality assumption in utility maximization-based ABMs. This makes it
possible to model the impacts of emerging transportation management systems such as
real-time information systems (RTIS) and advanced travel information systems

(ATIS).

Similar methodological improvement could also be observed in the development of

network supply models. Traditionally, a static traffic assignment model is employed as
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the last step of the classical four-step travel demand model. Recently, dynamic traffic
assignment (DTA) models have gradually replaced static models by: 1) considering
time-dependent interactions of travel demand and supply; 2) modeling the movement
of each individual traveler; 3) capturing congestion build-up and dissipation; and 4)
incorporating demand management strategies and intelligent transportation system

technologies.

As recently underscored by the U.S. Department of Transportation, it is critical to
integrate transportation systems management and operations (TSMO) strategies into
the planning process to advance transportation system efficiency, reliability, and
operations (Grant, Bauer, Plakson, & Mason, 2010). This planning for operations
concept calls for modeling tools that are sensitive to dynamic interactions between
travel behavior and network supply so that the impacts of emerging TSMO strategies
(e.g., variable road pricing, ramp metering, etc.) can be accurately estimated. The
integration of ABM and DTA models is naturally a perfect choice because ABM and
DTA were initially designed for planning and operation purposes, respectively. The
combination of both models captures the interplay of demand and supply, which
addresses the shortcomings of each independent model. Furthermore, both models
employ micro-simulation approaches and operate at finer temporal resolutions, which

provides consistent results and utilizes their full potential.

The behavioral foundation determines not only how travel demand models are

formulated but also how the ABM and DTA models are integrated. Even though the
3



behavioral foundation in ABM has evolved from perfect rationality to a bounded
rationality paradigm, the behavioral foundation in DTA has focused on perfect
rationality-based user equilibrium (UE) principles. In this context, DTA models must
load traffic to the network iteratively to reach UE conditions, which is already time-
consuming. Additionally, most existing ABM-DTA integrated models rely on a gap-
function-based convergence criterion. In other words, ABM and DTA must operate
sequentially and iteratively to ensure that differences in travel time or origin-destination
(OD) tables between two iterations fall into specific predefined gaps. Consequently,
the model runtime remains a significant issue hindering agencies from applying the
integrated model for policy analysis, which is especially true for large-scale

implementation.

For example, the Second Strategic Highway Research Program (SHRP2) Project C10B
developed a dynamic integrated model that combined the activity-based demand model
DaySim and a DTA model DynusT for Sacramento, California (T. Rossi &
Systematics, 2012). The runtime of this model used by the Sacramento Area Council
of Governments (SACOG) was around 70 hours; it included three feedback loops
(between DaySim and DynusT) with only 10 iterations of DynusT runs. It should be
noted that 10 DTA iterations are challenging to reach UE, especially for such a large-
scale implementation, and it is still not clear how many feedback loops would guarantee
model convergence. Therefore, the DTA iteration and feedback loop numbers in this
project can be viewed as a compromise that sacrifices model convergence for model

runtime. In addition to model runtime, the existing sequential integration method does
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not model the decision-making process the way travelers behave in real-world
situations. The behavioral simplification and impractical assumption in the integrated
models would yield poor behavior realism, which ultimately leads to deficient model
sensitivity to emerging transportation policies. These integration challenges are faced

by all researchers in the ABM and DTA integration field.

1.2 Research Scope and Objectives

Given the aforementioned integration challenges, this dissertation seeks to integrate
ABM and DTA models based on an innovative behavioral foundation that improves
the model efficiency while attaining advanced behavioral realism. Behavioral user
equilibrium (BUE) is based on positive behavior theory that is concerned with how
travel-related decisions are actually made instead of how they should be made as in
normative theory. This positive theory assumes limited information in decision-making
procedures and emphasizes the searching/learning process of each traveler, where past
experiences influence future travel behavior. Two behavioral concepts are theorized
when travelers search for travel alternatives (e.g., travel destination, departure time,
travel mode, etc.): perceived search cost and expected search gain. The BUE in a
transportation system is reached when all travelers stop searching for alternative travel
options because the perceived cost of an additional search exceeds the expected gain.
The integrated ABM and DTA model based on the BUE principle employs the agent-

based modeling approach and defines the convergence status based on the behavior of



an agent instead of the whole network performance. This principle saves model runtime
because the DTA model does not need to run iteratively to reach UE condition
internally and BUE convergence is guaranteed regardless of the network size (Xiong,
2015; Zhang, 2011). In addition to runtime savings, the BUE principle explicitly
models the behavior adjustment process at the individual level, which provides more

insights on the behavior dynamics.

To implement the BUE principle in integrating ABM and DTA models, this dissertation
first proposes a BUE-based theoretical integration framework. The framework
describes how to employ the agent-based approach in the integration and how each
agent learns and searches through iterations. Key BUE concepts, perceived search cost,
and expected search gain are specified in the context of an econometric-based ABM.
Specifically, the expected search gain is affected by travelers’ network information and
expectations on travel cost saving, which is calculated based on the variation of the
traveler utility. The perceived search cost measures the efforts involved in the search
process; three ways to estimate search cost are proposed in this dissertation. Previously,
the perceived search cost was estimated from behavioral survey data. With previous
estimated model parameters, a calibration approach is developed to calibrate search
cost parameters based on observed patterns. This approach provides excellent
transferability, where existing ABM and DTA integrated models can easily be

converted to a BUE-based paradigm without additional data collection cost.



While behavioral survey data could provide stated behavior adjustment information,
facts revealed regarding people’s actual behavior changes are preferred. Passively
collected data could be a perfect data source for estimating BUE-based models. This
dissertation showcases how to derive travel behavior information from passively
collected data with the help of data mining and machine learning methods to
supplement or replace the traditional travel surveys. Specifically, a random forests
model is developed to impute the mode information from smartphone-collected GPS
data. The detailed information regarding data collection, data processing, and results

are presented in Chapter 4.

The proposed theoretical integration framework is then applied to the Washington-
Baltimore metropolitan area. The integrated model includes InSITE, an ABM
originally developed for the Baltimore Metropolitan Council (BMC), and DTALite, a
mesoscopic DTA model. The modeling area includes Anne Arundel County, Baltimore
County, Carroll County, Harford County, Howard County, Montgomery County,
Prince Georges County, Frederick County, Baltimore City and the District of Columbia

(Figure 1-1).



4 ¥ N
0 42585 17 255 340
A ies A

Figure 1-1 InSITE Model Traffic Analysis Zone (TAZ) Map

To further accelerate the integrated model, this dissertation improves the runtime of
both the InSITE and DTALite models by maximizing computational resource
utilization. Specifically, the InSITE model has been modified to take advantage of
multi-processing in Python, which improves the runtime fourfold. A fast time-
dependent skim generation module has been developed to significantly reduce
DTALite runtime. With speed improvements from both model components, the BUE-
based integrated model is compared with a typical sequential model integrating
approach. Comparison details, including model performance, convergence status, and

runtime, are carried out in Chapter 5.



1.3 Research Contributions

The aforementioned modeling challenges in integrating ABM and DTA models
motivate this study to develop a BUE-based ABM and DTA model integration
approach. Unlike the existing integrated ABM and DTA approach that merely runs
both models sequentially, the proposed integration approach is based on a theoretically
sound behavioral foundation. This approach employs an agent-based modeling
technique and focuses on modeling the learning and searching process of each agent
through iterations. At every iteration, each agent would first decide whether to search
for new travel alternatives based on his/her limited information and prior experience.
The BUE of the transportation system is achieved when no traveler in the system is

willing to search for new travel alternatives.

Methodologically, the new ABM-DTA integration method proposed in this study
provides improved behavioral realism by capturing what a traveler does in the decision-
making process. The model convergence in the context of the BUE principle is
measured by the behavior of each traveler instead of network-wide performance as in
the traditional sequential integration method. Therefore, the convergence status is
guaranteed, since no traveler would search for alternative travel options unendingly;
this has been proved by previous studies (Xiong, 2015; Zhang, 2011). Additionally, to
enhance the transferability of the BUE-based integration approach, this study develops

a calibration process to estimate the perceived search cost in the model so that this



integration approach can be easily applied to ABM and DTA integration needs

elsewhere.

To implement the BUE theory in the context of ABM and DTA integration, the theory
is extended and enhanced in the following four aspects: 1) provide the initial traffic
condition without relying on outside travel demand models; 2) consider trip-chaining
constraints to fit into the tour-based setting in ABMs; 3) incorporate a new behavior
dimension—destination choice—into the framework; 4) propose a model calibration

method to streamline the search-cost parameter estimation process.

Practically, the BUE-based integration method improves the model runtime by relaxing
the UE assumption in the assignment model. Therefore, DTA models do not need to
run iteratively to reach the UE condition. Additionally, the overall model convergence
is measured by the behavioral adaptation process of each traveler instead of calculating
the average network travel time between iterations. Consequently, the convergence of
computation time is irrelative to network size and the number of travelers. To further
accelerate the integrated model, parallel computing techniques and tree-based shortest

path storage are developed for the ABM and DTA models, respectively.

In addition to the BUE-based integration approach, this study also explores how travel
behavior information can be derived from passively collected data. Passively collected
data (e.g., smartphone GPS data) could reveal important behavior information with the

help of proper data mining and machine learning techniques. The random forests model

10



used in this study could accurately identify travel mode information from smartphone
GPS data. Similar methods could reveal other behavior information, such as trip
purposes and their user socio-demographic information. This approach could
supplement or replace existing travel surveys, which are typically costly and time-

consuming.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows:

Chapter 2 provides a comprehensive literature review on the evolution of travel demand
modeling with a focus on various types of ABMs. This chapter then revisits the
advances in network supply models and the development of DTA models. The
motivation behind ABM and DTA integration is explained and existing integration
methods are introduced. Lastly, various behavioral foundations in the literature are

summarized and the concept of BUE is presented.

Chapter 3 develops the theoretical framework on integrating ABM and DTA models
based on the BUE principle. The first section in this chapter introduces the sequential
integration approach, which is commonly employed in the literature, as the benchmark
method. The BUE-based integration framework is then illustrated where integration-

technical details—including the convergence criteria and specifications of expected
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search gain and perceived search cost—are carried out. Lastly, a model calibration

approach is proposed to improve the transferability of the integration framework.

Chapter 4 describes three data sources: data previously used, data currently being used
and data to be used in the future. This chapter starts by describing the longitudinal data
that was previously used to estimate the BUE model. A section then introduces the
local data that can be used to calibrate the model parameters. Lastly, a case study is
presented to demonstrate how passively collected data could provide valuable travel

behavior information.

Chapter 5 summarizes the real-world application of the proposed integration
framework in the Washington-Baltimore Metropolitan Area. Model components BMC
InSITE ABM and DTALite are introduced, as well as intermediate steps for data
communication between the two models. The overall software implementation is
described with a focus on the parallel computing technique employed in InSITE to
speed up the integrated model. Following the implementation details, empirical results
are presented. Calibration results are first given, including the performance of the SPSA
algorithm and calibrated parameter values. The actual model results at various travel
dimensions, as well as the model behavior dynamics, are then presented. The discussion
section that follows analyzes the model results and compares the model performance

with the sequential integrated model.

12



Chapter 6 concludes the dissertation. This chapter summaries research efforts, results
and major findings. It ends with a discussion on the future research direction to further
enhance the BUE-based integration framework, as well as application prospects in

travel demand modeling.
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Chapter 2 Literature Review

Transportation planning involves the process of designing policies/regulations,
managing transportation infrastructures, and managing future travel growth. Accurate
transportation forecasting, the key to a successful transportation planning process,
usually relies on the development of rigorous travel demand models. Over the past few
decades, tens of thousands of papers have dedicated to improving travel demand
models, especially on the urban passenger side. From aggregate, four-step, trip-based
models to microsimulation, activity-based, tour-based models, advances in both
statistical methods and computational technologies have allowed the development of
travel demand models with two objectives: individual travel behavior realism and
sensitivity to policy scenarios. Section 2.1 briefly introduces the history of urban
passenger travel demand models, as well as earlier travel demand modeling approaches.
The development of activity-based models (ABM) and typical ABM categories are

reviewed in Section 2.2.

Network supply models are critical components of transportation forecasting. As the
last step of the traditional four-step travel demand modeling approach, it has long been
recognized that travel demand is affected by transportation network supply. From static
traffic assignment to microsimulation dynamic traffic assignment (DTA), network
supply models have evolved to address vast modeling challenges arising from emerging

policy goals and various application needs. Section 2.3 introduces the history of

14



network supply models and summarizes the development of DTA models over the past

several decades.

ABM and DTA models represent significant advancements that have occurred on the
demand and supply sides; both operate at the individual level and consider time as a
continuum (or at small time intervals). The integration of these two models would
provide improved behavioral realism and yield dynamic and consistent results. The
integration of ABM and DTA models is a topic that has been discussed for a long time
but still lacks good practical applications. Section 2.4 reviews both the state-of-the-art
and state-of-the-practice in ABM and DTA integration and presents major integration
challenges encountered in integrating a fully operational ABM and DTA model at the

metropolitan level.

Given the significant integration challenges (including model runtime, convergence
criteria, etc.) that are summarized in Section 2.4, this dissertation proposes to integrate
ABM and DTA models based on a new behavioral principle: behavioral user
equilibrium (BUE). Built on the agent-based modeling approach, the BUE principle
defines the equilibrium status from an individual’s perspective rather than a network-
wide point of view, which allows for better behavioral realism and more realistic
convergence criteria. Section 2.5 examines various user equilibrium principles under
different behavioral assumptions and the positive theory of travel behavior SILK (e.g.,

Search, Information, Learning and Knowledge), from where BUE is derived.
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Finally, Section 2.6 presents the summaries from the literature review, including the
research gap in the existing literature and how this dissertation contributes to the ABM

and DTA integration field.

2.1 Travel Demand Models and Earlier Modeling Approaches

Travel demand models have evolved rapidly over the past few decades, particularly
with increased computer performance in recent years. From the simplest sketch-
planning models and strategic-planning models to the dominant trip-based models and
more advanced ABM, the development of travel demand models has undergone a long
and complex process. Therefore, it is not in the scope of this section to offer a
comprehensive review of the history of travel demand model development; rather, this
section will discuss the development of activity-based travel demand models and recent

trends of the agent-based modeling approach to forecasting travel demand.

In general, travel demand models may take two forms. One form focuses on addressing
specific questions in transportation planning, such as traffic impact studies for new
development or travel analysis for a particular corridor or city district. Both sketch-
planning and strategic-planning models are tools designed to tackle problems that are
often narrow in scope. They are usually simple to implement, require fewer data and
only produce rough estimates of travel demand. The other form of models focuses on

seeking comprehensive answers to multiple, often interrelated aspects of transportation
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planning. They are usually complex and large-scale models; four-step models and
ABM are typical examples (Castiglione, Bradley, & Gliebe, 2014). The rest of this

section focuses on introducing travel demand models in this category.

The four-step travel demand model is considered the most popular and widely-
implemented comprehensive travel demand model in the literature. It was first
implemented on the mainframe in the 1950s through the Detroit Metropolitan Area
Traffic Study and Chicago Area Transportation Study (Chicago Area Transportation
Study, 1959) to plan major highway facilities. The four-step modeling practice was
standardized in the 1960s; since then, the use of travel demand models to support
Metropolitan Planning Organization (MPO) planning activities has been enforced by
federal requirements. As of today, many MPOs still actively maintain four-step models

for transportation planning analysis.

As the name suggests, a four-step model consists of four primary components, which
execute in sequence. The first trip generation step estimates the number of trips
produced and attracted by each traffic analysis zone (TAZ). The second trip distribution
component determines the destinations of trips generated at each TAZ, which is why
this component is also referred to as destination choice. The third mode choice step
predicts the travel mode (e.g., drive, transit, walk, bike, etc.) for each trip. The fourth
trip assignment component, also known as route choice, calculates which routes in the
network facilities each trip chooses. Other travel information in this process is either

regarded as exogenous inputs (e.g., land use) or neglected (e.g., time-of-day choices).
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With the main structure of four-step models being standardized, subsequent studies
target more on improving model components with new methodologies. For instance,
FHWA (1967) introduced a regression analysis to replace traditional cross-
classification methods in trip generation. Of all these methodological advances, the
most significant one was the introduction of discrete choice models (Ben-Akiva, 1973;
Domencich & McFadden, 1975; McFadden, 1978). The proposed utility-based
econometric formation was later widely employed in any choice-related travel

dimensions such as destination choice and mode choice.

Despite the popularity, four-step models have been criticized for the following aspects:
1) four-step models are typically trip-based, which overlook the interdependence
among different trips (e.g., the mode choice for two successive trips should be the same,
which cannot be recognized by trip-based models); 2) four-step models are aggregate
in nature, which fails to capture travel behavior at the individual level; 3) the static
nature of the model over time; 4) long analysis periods that makes it difficult to model
time-of-day related decisions; and 5) failure to consider intra-household interactions
(e.g., escorting kids to and from schools; (Castiglione et al., 2014; T. F. Rossi &
Shiftan, 1997). Recognizing these shortcomings, researchers have been studying the
next generation of travel demand models, which are introduced in the following

sections.
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2.2 Activity-Based Models

Activity-based models (ABMs) are considered the second generation of travel demand
models. A fundamental premise of ABMs is that travel demand stems from the need
for activity participation. Modeling the decision process of each traveler, ABMs
capture improved behavioral realism and better represent how policies, developments,
and travel growth impact people’s travel behavior, which leads to more accurate
predictions. Key features of ABMs include: 1) ABMs capture each individual’s
decision-making process, which provides detailed information and enables the analysis
of personalized policies; 2) ABMs incorporate the continuous temporal dimension,
which allows for modeling time-related studies (e.g., departure time choice and
dynamic pricing strategies); 3) ABMs are typically tour-based, which takes into
account the interrelation among several concessive trips and distinguishes between
mandatory and non-mandatory tours; and 4) ABMs usually consider the intra-

household interaction.

The theoretical exploration of the activity approach began in the 1970s-80s.
Héagerstraand’s work (Hégerstraand, 1970) first addressed the relationship between
activity participation and time-space concepts. Chapin (1974) later explored the
activity patterns of the urban population. Fried et al. (1977) attempted to analyze the
impact of social structures and rules on household travel behavior in urban areas. Jones
(1977) nicely summarized the work and proposed the well-known theory that travel is

derived from the need to participate in activities at different points in space and time.
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Parallelly, the random utility maximization (RUM) theory proposed by McFadden laid
the foundation for empirical ABMs and remains the most popular travel analysis

approach to date.

The early research discussed above have established the conceptual foundation of the
activity-based approach. In recent decades, with the improvements of modeling
methodologies, computation capacity, and data collection methods, the development of
conceptual and empirical ABMs began to explode. Up to now, ABMs have received
significant attention and have made substantial progress regarding standardization and
implementation. The rest of this section focuses on introducing several categories of
ABMs based on their modeling approach: 1) constraints-based models; 2)
econometrics-based models; and 3) rule-based models. It is also critical to note that the
above categories are not exclusive. Two or more of the approaches, or other approaches
such as agent-based approaches, can be combined to develop ABMs. These hybrid

approach-based ABMs, however, are not the focus of this section.

2.2.1 Constraints-based models

Constraints-based models are the first generation of ABMs, which try to explore
whether an activity schedule is feasible under particular space-time constraints.
PESASP (Program Evaluating the Set of Alternative Sample Paths) model, developed

by Lenntorp (1977, 1978), is the first attempt to implement Hégerstraand’s theoretical
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framework in a way that allows for significant policy analysis. PESASP was designed
to analyze possible combinations of activities under time and space restrictions. Jones
et al. (1983) later proposed CARLA (Combinatorial Algorithm for Rescheduling Lists
of Activities) model, which generated all feasible activity patterns caused by policy
changes. Model inputs include a list of activities to be scheduled, the durations, and
time-of-day constraints. The model then outputs a list of all possible arrangements of
these activities. CARLA was implemented in the Burford School study where the

schedules of a few pupils were generated following a policy change.

Besides the two earlier models mentioned above, examples of constraints-based ABMs
also include BSP (Huigen, 1986), MAGIC (Dijst, 1995; Dijst & Vidakovic, 1997) and
GISICAS (Kwan, 1997). Compared to later modeling approaches that predict
individual and household activity patterns, constraints-based ABMs focuses on
checking whether an activity agenda is feasible in particular space-time constraints.
The space-time constraints are often locations, available transportation modes, and
travel times between locations by specific modes. A combinatorial algorithm is usually
employed to generate all feasible activity patterns and then the feasibility of each
pattern is checked based on certain rules. However, constraints-based ABMs also suffer
from some limitations: 1) most models only acknowledge individual-level rather than
household-level accessibility; 2) space-time constraints assume isotropic conditions
where travel is equally smooth in all directions; and 3) most models lack an explicit

mechanism related to choice behavior under uncertainty (Rasouli & Timmermans,
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2014). Consequently, new activity-based modeling approaches have been proposed to

resolve these limitations.

2.2.2 Econometrics-based models

Econometrics-based ABMs primarily find their theoretical foundation in random utility
maximization (RUM) theory from choice modeling, where individuals make each
travel-related decision that maximizes their utility. These ABMs are typically
composed of a series of utility-maximization based discrete choice models (e.g.,
multinomial logit, nested logit, and mixed logit models) that predict different
dimensions in travel-related decisions (e.g., mode choice, destination choice, and
departure time choice). Additionally, several other econometric structures, including
hazard-based duration models and ordered response models, are also used to model

various travel-related decisions.

Earlier discrete choice models in transportation only focused on one dimension of the
travel-related decisions, of which mode choice is the most popular topic. Adler and
Ben-Akiva (1979) first extended the single-dimension model to multi-dimension
activity-travel patterns including trip chaining, trip characteristics, travel modes,
destination choice, etc. Discrete choice models in different travel dimensions are
executed sequentially, which works similarly to four-step models but with many more

decision-making processes taken into consideration and improved behavior realism. In
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general, econometrics-based ABMs can be further categorized into two classes based
on the modeling and representation of daily activity patterns: daily activity pattern

choice models and activity-scheduling process models.

The daily activity pattern choice models treat daily activity patterns as a choice
modeling problem and comprise a nested logit model of daily activity patterns based
on the hierarchy of trip purposes and trip frequencies. The daily activity pattern choice
models can be further classified into two groups: “individual daily activity pattern”
model and “coordinated daily activity pattern” models. The “individual daily activity
pattern” models, first proposed by Ben-Akiva and Bowman (1998), follow the concept
of an overall daily activity-travel pattern. This approach was then summarized as the
day activity schedule model by Bowman (1998) in his dissertation; its applications
include the Portland Metro Model (Bowman, Bradley, Shiftan, Lawton, & Ben-Akiva,
1999), SFCTA (San Francisco County Transportation Authority) Model (Bradley,
Outwater, Jonnalagadda, & Ruiter, 2001), SACSIM (Sacramento Activity-Based
Travel Simulation Model) (Bradley, Bowman, & Griesenbeck, 2010), etc. The
“coordinated daily activity pattern” models enhance the “individual daily activity
pattern” models by incorporating intra-household interactions during activity
scheduling and modeling the correlation across the activity patterns in a household.
This approach has been widely applied in models such as NYBPM (New York Best
Practice Model;(Chiao, Mohseni, & Bhowmick, 2006), MORPC (Mid-Ohio Regional
Planning Commission) Model (Parsons Brinckerhoff, 2005), ARC (Atlanta Regional

Commission) Model (Parsons Brinckerhof, 2006), etc.
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The activity-scheduling process models consider an activity-scheduling process where
a sequential decision process is employed to yield daily activity patterns. Compared to
the daily activity pattern choice models, which model the daily activity pattern choice
at the top of the hierarchy, the activity-scheduling process models generate daily
activity patterns at the end of the model as output. Applications of this approach include
PCATS (Prism-Constrained Activity Travel Simulator; (Kitamura & Fujii, 1998) and
CEMDAP (Comprehensive Econometric Micro-simulator for Activity-Travel Patterns;

(Bhat, Guo, Srinivasan, & Sivakumar, 2004).

Despite the wide popularity of econometrics-based ABMs, this approach is criticized
for two main issues: 1) utility-maximization theory might not apply to everyone and
perfect rationality does not exist in realty; 2) this approach does not reveal the
fundamental decision processes and behavioral mechanisms behind these travel-related
decisions (Pinjari & Bhat, 2011). Consequently, researchers are working on alternative

theory approaches to better mimic individual behavior process.

2.2.3 Rule-based models

Rule-based models, also referred to as computational process models (CPM), have been
proposed as an alternative approach to relaxing the behavior assumption of the utility-

maximization theory in econometrics-based ABMs. CPMs use heuristic productions,
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typically in the form of if-then rules, to mimic the underlying decision-making process
(Garling, Kwan, & Golledge, 1994). Even though rule-based models relax the RUM
theory and better represent travelers’ decision processes, none of them have been
implemented for operation purposes. Two factors have contributed to this: 1) rule-
based models require very detailed input data that are hard to collect; 2) the production
rules employed in rule-based models are not valid and may be thought to lack rigor
(Zhang, 2006). Examples of rule-based ABMs include SCHEDULER (Garling et al.,
1994), SMASH (Simulation Model of Activity Scheduling Heuristics; (Ettema,
Borgers, & Timmermans, 1993), AMOS (Activity Mobility Simulator; (Kitamura, Lula,
& Pas, 1993), ALBATROSS (A Learning-Based Transportation Oriented Simulation

System; (Arentze, Hofman, Joh, & Timmermans, 1999), etc.

2.2.4 Agent-based models

The agent-based modeling approach is a class of computational models for evaluating
the system operation by simulating the actions and interactions of autonomous agents
in this system (Odell, 2002). Even though this modeling approach has been widely
applied in fields such as economics, business, network theory, etc., the application of
this approach in travel demand modeling has not thrived until recently (Buliung &
Kanaroglou, 2007). The agent-based approach is related to another modeling concept—
multi-agent systems—which has been implemented in rule-based ABMs. While agents

in both modeling approaches follow similar behavioral rules, the agent-based approach
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allows the agents to learn, adapt and evolve during interactions with the environment
and other agents, which is distinct from multi-agent systems (Bhat et al., 2004).
Examples of agent-based ABMs include ALBATROSS in its second version
(Timmermans & Arentze, 2005), MATSIM (Multi-Agent Transport Simulation
Toolkit; (Balmer, Axhausen, & Nagel, 2006), SILK (Search, Information, Learning and
Knowledge; (Zhang, 2006; Zhang & Levinson, 2004) and ADAPTS (Agent-Based

Dynamic Activity Planning and Travel Scheduling; (Auld & Mohammadian, 2012).

2.3 Network Supply Models

Network supply models, also referred to as traffic assignment models, simulate how
travel demand interacts with network supply in the transportation system. Specifically,
network supply models concern the route choices between origins and destinations in
transportation networks. Based on the end goal, traffic assignment models are typically
categorized into two classes: user equilibrium (UE) assignment or system optimum
(SO) assignment. UE assignment is based on Wardrop’s first principle, which states
that no driver can unilaterally decrease his/her travel costs by switching to another route
(Wardrop, 1952). SO assignment is based on Wardrop’s second principle, which states
that drivers cooperate with one another to minimize total system travel time. In the
context of travel demand modeling, UE assignment is often employed since results of
this assignment are closer to real-world situations. To reach various assignment goals,

different assignment algorithms are proposed, such as incremental assignment,
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capacity restraint assignment, and method of successive average (MSA). While
different assignment algorithms perform differently, the main idea is to find the route,
and to link volumes and travel times that satisfy the equilibrium (or system optimum)

condition, usually through iterative procedures.

One major hypothesis in traffic assignment is the resolution of representing traffic flow
and conditions. Earlier traffic assignment models focused on representing the average
conditions over a period of analysis time, which is known as static assignment. In these
models, link volumes and travel times are assumed to be the same over the analysis
period. Static traffic assignment models are widely applied in conventional four-step
models because the mathematical properties of these models can be easily retained (Y.
Chiu et al., 2011). However, static assignment models are criticized for the following
issues: 1) time-dependent interactions of travel demand and network supply are not
captured; 2) static assignment models are aggregated in nature, which does not consider
the movement of each; 3) congestion building-up and dissipations are not modeled; and
4) they are not able to incorporate demand management strategies and intelligent

transportation system technologies (Lin et al., 2008).

To resolve the aforementioned issues, researchers began to look into the concept of
dynamic traffic assignment (DTA). DTA models can be regarded as performing static
assignment over a very short period while the impacts of the previous period on the
current period are captured. The equilibrium condition is still realized over each period,

which is known as dynamic user equilibrium (DyUE, to be distinguished from

27



deterministic user equilibrium, or DUE). There exist two types of DTA models based
on how the network loading process is modeled: analytical and simulation-based DTA
models. Analytical DAT models usually use volume-delay functions to calculating
travel times in the network, while simulation-based DTA models typically use
mesoscopic simulations to estimate how traffic propagates in the network. Examples
of simulation-based DTA models include VISTA (Waller & Ziliaskopoulos, 1999),
DYNASMART (Mahmassani, 1992), DynaMIT (Ben-Akiva, Bierlaire, Koutsopoulos,
& Mishalani, 1998), DynusT (Y.-C. Chiu, Nava, Zheng, & Bustillos, 2011) and

DTALite (Zhou & Taylor, 2014).

2.4 Integrated ABM and DTA Models

Today, it almost comes naturally that traffic assignment is the last step in the travel
demand modeling system. However, the integration of travel demand and network
supply models was not proposed until Evans (1973) first combined the gravity
distribution model with the equilibrium assignment model. It has become standard
practice to consider the interaction between travel demand and network supply ever
since. Recent years have witnessed significant development in both demand and supply
aspects. Nevertheless, the advancement in both fields was accomplished somewhat
independently. Earlier ABMs were developed with a static assignment process, which
generates inconsistent results and undermines the real potential of ABMs. Likewise,

using travel demand in aggregate time periods as the inputs for DTA does not achieve
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the capacity of DTA models (Lin et al., 2008). Therefore, the integration of ABM and
DTA helps exploit the full potential for both models mainly because of two reasons: 1)
both models treat time as a continuum, and 2) both models operate at the individual

level.

Earlier research focused on the mathematical formulation of integrating ABM and
DTA, typically through fixed-point formulation approach (Cantarella & Cascetta,
1995; Lam & Huang, 2003; Lin et al., 2008). The integration of an operational ABM
and DTA model was not proposed until recently. Pendyala et al. (2017) categorized the
ABM and DTA integration approaches into the sequential integration and several levels
of dynamic integrations, based on the data exchange frequency between the two
models. In a sequential integration paradigm, the ABM and DTA models are loosely
coupled, and only communicate and exchange data at the end of a full iteration (i.e.,
the entire 24-hour period of a day). This sequential information exchange procedure
fails to capture the impacts of network disruptions or real-time information systems on
travel behavior and demand. In recognition of this limitation, a tighter integration
approach is proposed. In a dynamic integration paradigm, data exchange between the
ABM and DTA models occurs at a much finer time resolution (e.g., one minute), which
represents network dynamics in a more realistic way. Existing dynamic integrated
systems include MATSim (Balmer et al., 2009), SSimTRAVEL (Pendyala et al., 2012),
and POLARIS (Auld et al., 2016). While dynamic integrated modeling systems provide
enhanced modeling capabilities, the majority of the integration efforts in the literature

fall in the sequential integration paradigm.
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Various ABM and DTA integration works have been proposed, from a conceptual
framework to an operational model system, in the literature. Within the scope of this
dissertation, it is not feasible to provide a comprehensive review of the ABM and DTA
integration literature. Consequently, this subsection focuses on reviewing the
integration of implementation-ready ABM and DTA models at the metropolitan level.
Particularly, several SHRP 2 Integrated Dynamic Travel Model (C10) funded projects
are reviewed in detail. In project CI0A, an ABM (DaySim), a DTA model
(TRANSIMS), and an emission model (MOVES; the Motor Vehicle Emission
Simulator) are integrated for the Jacksonville metropolitan area in Florida (Hadi,
Pendyala, Bhat, & Waller, 2014). In project C10B, DaySim and MOVES are integrated
with another DTA model, DynusT, for the Sacramento metropolitan area in California
(Cambridge Systematics, 2014). Other on-going C10 funded projects include the
Atlanta Regional Commission’s (ARC) project that integrates CT-RAMP1 with
DynusT; an Ohio Department of Transportation (ODOT) project that integrates CT-
RAMP2 with DynusT; San Francisco County Transportation Authority’s (SFCTA)
project that integrates CHAMP with FastTrips; and Baltimore Metropolitan Council’s
(BMC) project that integrates TourCast with DTALite. Even though different ABM
and DTA models are integrated, the core integration methodologies of these projects
are similar and belong to the sequential integration paradigm, except for a tighter
integration that was proposed for ARC and ODOT. The main challenges stemming
from these projects include: 1) excessive runtime, with each full model iteration

potentially taking days to run; 2) convergence challenge, as there is no consensus on
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unified convergence criteria; and 3) an efficient data exchange procedure, which is

needed to improve the model communication efficiency in order to save model runtime.

2.5 Behavioral Foundation

The behavioral foundation in travel demand modeling decides not only how each model
component is formulated but also how the ABM and DTA models are integrated. Even
though the behavioral foundation in ABM have evolved from perfect rationality (e.g.,
utility-maximizing) to bounded rationality (e.g., rule-based decision-making)
paradigm, the behavioral foundation in DTA has focused on perfect rationality-based
UE principles. This section reviews various behavioral theories ranging from rational
behavioral theory to the positive theory of travel behavior with a focus on the BUE

principle.

2.5.1 Perfect rationality and bounded rationality

As briefly introduced in Section 2.3, the UE principle, based on Wardrop’s first
principle, assumes that travelers have the same preference and perception, as well as
perfect knowledge of all alternatives. Travelers seek to maximize utility or minimize
generalized cost with perfect rationality in the decision-making process (Wardrop,
1952). The simplest form of the UE principle is deterministic user equilibrium (DUE).

Because of its simplicity and stability, DUE is the most popular traffic assignment
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method in practice, which is also the built-in method in all commercial transportation
planning software packages (Sheffi, 1985). Several iterative algorithms have been
proposed to solve DUE-based traffic assignments, such as the method of convex
combinations (Frank-Wolfe algorithm; (Frank & Wolfe, 1956), the method of
successive averages (MSA; (Almond, 1967) and origin-based algorithm (OBA; (Bar-

Gera & Boyce, 2003).

Despite being built on the utility maximization theory, stochastic user equilibrium
(SUE) principle relaxes some of the behavioral restrictions applied in DUE. While
DUE assumes that all travelers perceive travel cost in an identical manner, SUE
assumes that travelers do not have perfect information about travel cost due to random
perception errors (Daganzo & Sheffi, 1977). Since a random error component is
introduced to the utility structure (e.g., the generalized cost function), which is assumed
to follow normal or Gumbel distributions, SUE problems are typically in the form of
discrete choice models (i.e., probit or logit formulation). SUE problems are typically
solved with a discrete choice formulation, together with an iterative network loading
algorithm. STOCH (logit-based) approach proposed by Dial (1971) and the simulation
(probit-based) approach developed by Daganzo and Sheffi (Daganzo & Shefti, 1977)
are the two traditional approaches to performing stochastic traffic assignment.
Additionally, SUE implementations also concern the route choice set generation
problem, which is also known as path enumeration, because finite choice alternatives
are required for discrete choice formulations. Various route choice set generation

methods have been proposed with different behavioral assumptions, such as
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probabilistic choice set formations (Manski, 1977), labeling approach (Ben-Akiva,
Bergman, Daly, & Ramaswamy, 1984), link elimination and penalty methods (de la

Barra, Perez, & Anez, 1993), etc.

To further remove the unrealistic rationality assumption (i.e., utility maximization and
perfect information) in both DUE and SUE, boundedly rational user equilibrium
(BRUE) was proposed with an alternative behavioral theory based on Simon’s work on
bounded rationality (Simon, 1955). The BRUE condition in a transportation system is
accomplished when all travelers have found a satisfactory travel option. In the context
of choice modeling, instead of seeking a choice alternative that maximizes the utility,
BRUE travelers look for a choice alternative that reaches certain utility levels, wherein
the difference between this utility threshold and utility optimum is called indifference
band (IB). Mahmassani and Chang (1987) first introduced the concept of BRUE to
transportation in modeling departure time choices with bottlenecks. Since then, BRUE
has been widely applied in various transportation problems, including traffic safety
(Sivak, 2002), transportation planning (Khisty & Arslan, 2005), route choice (Han &
Timmermans, 2006), etc. Despite that the boundedly rational behavior hypothesis has
been verified by numerous simulation tests and empirical studies, it has not been
mathematically formulated because of its non-uniqueness and non-convexity. Di et al.
(2013) proposed to solve the BRUE problem in traffic assignment by formulating a
nonlinear complementarity problem (NCP) so that the mathematical properties of

BRUE can be analyzed.
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2.5.2 Behavioral user equilibrium

Compared to the aforementioned rational behavioral theory, the concept of behavioral
user equilibrium (BUE) is based on a positive theory of travel behavior, which removes
the restrictions of impractical rationality assumptions discussed above. Zhang (Zhang,
2006) first proposed the BUE principle in his dissertation. Under this principle,
travelers do not possess perfect information and travel decision-making is theorized as
a continual search process that emphasizes the role of information acquisition,
knowledge updating, and adaptive learning. Figure 2-1 illustrates the decision-making
procedure in BUE. At any specific time, an agent has a certain level of spatial
knowledge about external systems (e.g., places, infrastructures, and places of interest).
When the external environment changes, such as an increase in commute time due to
nearby construction, the agent is no longer satisfied with the current condition. The
problem-solving process is composed of procedural steps akin to a real-world problem-
solving situation. The agent first examines the self-beliefs to determine the subjective
search gains from the alternative search. The efforts related to the search and
information acquisition are modeled as the perceived search cost. The interplay of
search gain and search cost decides if a search for a travel alternative is necessary. If
the agent decides not to search, they will keep the status quo and execute habitual
behavior. If the search process is invoked, this agent will identify which travel
dimension (e.g., departure time, mode choice, destination choice, etc.) to search. Then,
rules and heuristics are used to determine alternatives and to select an alternative to

execute, if this alternative is sufficiently good. Eventually, when all agents in the
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system are satisfied with their travel options and stop searching for new alternatives,

the system is said to reach BUE.
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Figure 2-1 Decision-Making Process in BUE

Zhang (2006) applied the BUE theory to a route choice and traffic assignment model.
Xiong (2015) later expanded the BUE theory to handle multi-dimensional travel
behaviors including mode choice, departure time choice, and en-route diversion choice.
Previously, the majority of travel demand models in the literature assumed that travel
choices in different behavior dimensions took places in a pre-determined order. In
Xiong’s framework, however, travelers might choose the behavior dimension that is

most rewarding instead of executing travel choices sequentially. An agent-based travel
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demand model implementing the BUE theory has been developed by Zhang et al.
(2013) and was applied to a case study in the 1-270/-1495/1-95 corridor in the Northern
Washington, D.C. metropolitan area. Even though a real-world application has been
developed, the BUE theory still suffers from three main drawbacks: 1) the current
BUE-based model relies on external travel demand models to provide the initial traffic
condition, including population, socio-economic information, and travel patterns; 2)
the BUE-based model is still trip-based, where trip chaining constraints are not
considered; and 3) only three travel dimensions are included in the current model
framework. Therefore, this dissertation proposes to integrate ABM and DTA models
based on the BUE theory as an attempt to address these three drawbacks. The proposed

integrated model is elaborated in the following chapters.

2.6 Summary

The past few decades have witnessed significant progress in travel demand modeling.
From four-step models to ABMs and from econometrics-based approaches to rule-
based and agent-based modeling techniques, the advancement in travel demand models
is driven by emerging transportation policies, desired sensitivities to planning
scenarios, and the pursuit of better behavioral realism. Meanwhile, the focus of travel
demand models has shifted from pursuing aggregate-level prediction accuracy to

understanding individual-level travel behavior, and from replicating observed activity-
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travel decisions to explaining the underlying decision-making process. It has also

shifted from the perfect rationality theory to more realistic behavioral foundations.

Similar evolution patterns have also occurred in the development of network supply
models. DTA models have replaced static traffic assignment models to simulate
individual-level movement and capture temporal interactions in traffic flow. However,
the behavioral foundation of network supply models has not advanced significantly, as
UE-based DTA models still dominate the field. Although bounded rationality-based
traffic assignment models (i.e., BRUE) were proposed half a century ago, large-scale
applications still face considerable challenges. This is also the case when it comes to
integrating ABM and DTA models. Loose coupling between ABM and DTA models
is not only the most straightforward integration approach but also the most popular one.
The unrealistic behavioral foundation in the integration approach results in two major
drawbacks: impractical convergence criteria and excessively long runtime. DTA
models operate iteratively to reach UE condition, and then several feedback loops
between ABM and DTA models must conduct to attain system-wide equilibrium. In
real-world applications, it is typical to set a predefined feedback loop number due to

runtime considerations, which results in model convergence never fully guaranteed.

With integration limitations summarized above, an integration approach that is based
on a more realistic behavioral foundation is imperative. BUE, as a theoretically more
practical principle, is a plausible behavioral foundation for ABM and DTA model

integration. Different from existing integration approaches that emphasize system-wide
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equilibrium criteria, BUE defines the equilibrium situation from an individual point of
view; BUE is achieved when each traveler stops searching for travel decision
alternatives because additional searches are no longer rewarding. This bottom-up
equilibrium definition makes more sense from an agent-based modeling point of view.
However, a BUE-based integration approach also faces significant challenges such as
how to define search gain and search cost in the context of activity-based travel demand
modeling, how to implement the BUE principle without additional data collection
burdens, and how to improve the integrated model runtime systematically. Chapter 3
addresses these integration challenges and provides a theoretical framework for the

BUE-based integration method.
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Chapter 3 ABM and DTA Integration Framework

This chapter develops a theoretical framework that demonstrates how typical
operational ABM and DTA models can be integrated based on the BUE principle.
Previous operational integrated ABM and DTA models primarily follow a UE-based
convergence criterion, which measures the network-wide travel time changes over
iterations. In contrast, the new convergence criterion, namely BUE, measures the
convergence from an individual point of view. Under the BUE principle, each agent in
the system is assumed to go through a search process (i.e., an iterative process). At each
search iteration, each agent chooses one of the four travel behavioral dimensions (i.e.,
destination choice, time-of-day choice, mode choice and route choice) to search for
alternatives that could potentially improve his/her travel experiences. The BUE is
reached when all agents in the network are satisfied with their travel options and stop
searching. Only a portion of the population will change their travel behavior, meaning
that the ABM only needs to rerun for a proportion of the population at each search
iteration. Moreover, the DTA model does not need to run multiple iterations to reach
the UE condition at each search iteration, which further saves the overall runtime. In
addition to the runtime savings, the BUE-based integration framework employs a
theoretically more advanced convergence measure, which could provide better

behavioral realism.
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The first section of this chapter describes a typical sequential ABM and DTA
integration framework, which is used as a benchmark framework. The second section
introduces the proposed BUE-based integration framework. Technical details
regarding model components, workflow, and convergence criterion are also illustrated
in this section. Section 3 to 4 further explains how two key concepts in the search
process—search gain and search cost—are defined and calculated in the framework.
Finally, the last section summarizes this chapter by discussing the advantage and value

of the proposed integration framework.

3.1 A Sequential Integration Framework

This section introduces a typical sequential ABM and DTA integration approach. In
this approach, the ABM and DTA models interact with each other, passing trip patterns
and travel times back and forth until a measure of convergence is achieved. The general
framework is illustrated in Figure 3-1. The integrated model runs in iterations, with a
single “big loop” consisting of an iteration of the travel demand model, followed by a
run of the DTA model. The travel demand information (e.g., agents with their activities
and travel decisions, as well as characteristics) is passed to the DTA model within each
big loop. Travel time information resulting from the dynamic assignment is passed back
to the travel demand model for use as input (e.g., update activity pattern choices) in the
next big loop. Note that DTA models themselves are run iteratively to reach UE, so
there are several “small loops” of the DTA run within each “big loop”. A number of

“big loops” are run until a measure of convergence is achieved, in which the change in
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travel times (or some other measure) from one big loop to the next is within a specific
tolerance. This methodology seeks practical convergence between the models since
absolute convergence may not be achieved due to inherent differences at the various

modeling levels.

Activity Based Travel Demand Model
* Daily schedule of activities
= Activity locations and times
»  Tour/trip information, mode choice
I

Complete Roster of Tours and Trips Travel Times from
» Origin/destination/time Vehicle Trajectories

* Person/household characteristics (skimming matrices)
* Simulated value of time

h 4
Dynamic Traffic Assignment

not converged

converged

Figure 3-1 Sequential Integration Framework

3.2 A BUE-Based Integration Framework

3.2.1 Framework overview

As reviewed in Section 2.5, the BUE principle is built upon positive theory and agent-

based modeling. To implement the BUE principle while integrating ABM and DTA
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models, several major components are supplemented or changed on the basis of the
traditional sequential integration approach. First, the proposed BUE-based integration
framework is realized by means of agent-based modeling. Each traveler in the system
is treated as an intelligent agent that is able to learn, adapt, and interact with the
environment (e.g., transportation network). Second, the BUE principle assumes that, in
contrast to the rational behavioral theory, each agent does not possess perfect
information. Therefore, this positive theory of travel behavior emphasizes the role of

information, searching, and learning in travel decision-making.

For a better understanding, one can draw an analogy between the proposed framework
and house hunting. When a household first enters the housing market, they may have
insufficient knowledge about the market and they may search several candidate houses
before picking one. They could consult a real estate agent or search for information
online. During the search process, the household gradually becomes familiar with the
housing market and other important characteristics of different neighborhoods such as
accessibility, school districts, and safety, which results in enhanced spatial knowledge
about the area. The final purchase decision is based on the information and knowledge

accumulated during the search process.

Similarly, the proposed BUE-based framework begins with an initial condition, which
can be considered as the state that all individuals arrive at within the system the first
time, with very limited knowledge about the environment (Figure 3-2). Each model

iteration in the framework can be viewed as a day in real life. As days go by, agents
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gradually become familiar with the system by memorizing their own travel experiences

and learning through information from mass media, the internet, etc. They may search

for new travel options, change their travel behavior, or adjust their own expectations

until they are satisfied with the travel pattern. When all agents are satisfied with their

travel options and no longer search for new alternatives, the system reaches BUE.
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Figure 3-2 BUE-Based Integration Framework Illustration

At any given day ¢, an agent has an existing level of knowledge about places, activities,

and transportation facilities in the system. To make the travel plan for the day, this

agent i will undergo a decision-making process involving several behavioral steps.
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First, this individual looks at his/her beliefs, which leads to the subjective expectation
of gains from searching for alternative travel options. For instance, this individual may
reduce travel time by switching to a different route or save travel cost by changing the
travel mode. Self-beliefs might come from previous experiences or secondary
information sources including maps, internet, media, or other individuals. Information
acquisition and mental efforts involved in the search process can be generalized as the
perceived search cost. The tradeoff in the subjective search gain and the perceived
search cost determines whether this agent will conduct another search. The concept and
calculation of search gains and search costs in the context of ABM are elaborated in

the following sub-sections.

To implement the BUE principle in integrating ABM and DTA models, it is
hypothesized that long-term choices (e.g., auto ownership, work location, etc.) and
daily activity pattern (DAP) are not included in the day-to-day behavior adjustment
process (highlighted in Figure 3-2). Specifically, long-term choice components are only
executed in the first iteration and these choice results are kept unchanged throughout
the rest of the model iterations. In the proposed framework, only short-term behavior
dimensions are considered in the behavior adjustment phase, such as destination choice,
time-of-day choice, mode choice, and route choice. In this multi-dimensional setting,
agents will compare all behavior dimensions and choose the one with the highest

gain/cost ratio, namely the most rewarding dimension.
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If the perceived search cost exceeds the subjective search gain, this agent would decide
not to search and execute habitual behavior. Otherwise, a search process is invoked. In
the original BUE theory proposed by Zhang (Zhang, 2006), the search process involves
a set of rules or heuristics to identify and choose travel alternatives. In the context of
ABM, however, the search process can be realized by running the corresponding
behavioral module in the ABM. For instance, if an individual decides to search for
mode alternatives, the mode choice module in the ABM will be executed to identify

and choose mode alternatives for this traveler.

When no agent in the system searches for new alternatives, the model is said to be
converged and the BUE state is reached. Otherwise, the DTA model will be executed
with the revised travel plans. Agents in the system will update their knowledge based
on the new network travel times generated by the DTA simulator, and a new round of
the search process will execute with new network information and updated self-

expectations. The whole procedure iterates until BUE is reached.

3.2.2 Knowledge and learning

When the travel alternative search need arises, an individual typically uses existing
knowledge to solve this problem. Specifically, it is the spatial knowledge about
locations, activities, and the transportation system that help with the decision-making.

In contrast to the traditional rationality-based behavior theory, where people are
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assumed to have perfect information about the system, people in BUE theory only
possess a certain level of the spatial knowledge, which is clearly more realistic when

people make travel decisions.

Zhang (Zhang, 2006) first proposed a quantitative description of spatial knowledge,
which essentially makes the decision-making process quantifiable in BUE theory. The
spatial knowledge is generalized as multi-dimensional vectors, where each vector
represents a particular travel dimension (e.g., mode choice, departure time choice, etc.).
Suppose that an individual’s perception of a particular behavioral dimension d is based
on a specific attribute, such as generalized cost. This generalized cost, which is
assumed to fall into several categories, is used to quantify the effect of each travel
experience. For example, a person may use the following generalized cost categories:
0~5 dollars, 5~10 dollars, etc. If the generalized cost ¢; corresponding to category i has
been observed k; times in prior experience, the individual’s knowledge regarding this
behavioral dimension can be described by a vector K = (kq, ..., k;, ..., k;) . This
specification of spatial knowledge is the premise of developing a quantitative travel
behavior model and it is supported by empirical evidence in Zhang’s research (Zhang,

20006).

In addition to designing the structure of spatial knowledge, we must understand how
travelers update their spatial knowledge through learning. Bayes’ theorem is applied
here to describe the knowledge updating process. When a new travel option belonging

to category i is experienced by a traveler, the new knowledge becomes (ky, ..., k; +
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1, ..., k;). Let p; denote the probability that a new round of search in dimension d would
lead to an alternative with generalized cost c;, and the individual’s subjective beliefs
can be represented by a vector P = (py, ..., ;, ---, P1). These probabilities satisty the

following conditions:

I
Zpl-=1; pi=0 Viel (3-1)
i=1

To quantitatively link spatial knowledge K = (kq4,...,k;,...,k;) and subjective
probability P = (p4, ..., i, -, P1), it 1s assumed that individuals’ prior beliefs and

knowledge follow a Dirichlet distribution. The probability density function is:

P=——-— . p.ki—l 3.2
TGy 117 G2
where N is the total number of observations and I'(k;) = (k; — 1)! (gamma function).

According to the strong law of large numbers, this assumption is equivalent to Eq. (3-3)

as the sample size N grows.

(3-3)

I
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Individuals’ spatial knowledge K = (kq, ..., k;, ..., k;) , together with the current
condition, will determine their probability to search for new travel alternatives. Two
important concepts regarding the search process—subjective search gain and perceived

search cost—are illustrated in subsequent sections.

3.2.3 Subjective search gain

The search decision is based on an individual’s past experience and subjective beliefs.
Clearly, it is not feasible for a person to search for all alternative options in the real
world. Consequently, the stopping criterion must be specified, which leads to the
definition of two concepts: search gains and search cost. The search process continues
when the individual observes benefits from the process, namely the subjective search
gain exceeding the perceived search cost. Similarly, the search process stops when the

search gain fails to meet search cost.

The subjective search gain is based on subjective beliefs and prior travel experiences.
Search gain is also multi-dimensional. An additional search may lead to not only a
decline in travel time, but also a reduction in monetary cost or improvement in
subjective perception (e.g., safety, comfort, etc.). The subjective search gain sg, is
defined as the expected improvement on the generalized cost savings from an

additional search, which can be calculated as:
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where ¢ denotes the current generalized cost for the currently used travel option. Since
travelers will select the best travel option for all experienced ones, ¢ actually is always
the lowest generalized cost c%;, in dimension d. Let c* represent the theoretically
lowest generalized cost under the free-flow travel condition when all individuals
initially believe there is no congestion. The subjective probability of finding a travel
alternative with the generalized cost ¢* becomes 1/(N + 1) after N searches.

Therefore, Eq. (3-4) can be simplified as:
Sgy = —mn (3-5)

In the multi-dimensional setting, while the free-flow generalized cost ¢* stays identical
across all dimensions, the generalized cost c%;, of the current best travel option in
dimension d might be distinct in each dimension. Therefore, the traveler may search
for alternatives in different dimensions at each iteration. This unordered search process
is more realistic than a pre-determined decision sequence that is typically seen in

traditional travel demand models.

Generally, the subjective search gain declines as the number of searches N grows. Once

a better travel option is found (i.e., c,‘fu-n decreases), the expected search gain also
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decreases. Meanwhile, the framework is also sensitive to changes in external
conditions. For instance, if new links in the network are open, travelers are more likely
to search for new alternatives, since ¢ decreases and their expected search gain

Increases.

3.2.4 Perceived search cost

The perceived search cost exists because it takes time and efforts to acquire information
and search for travel alternatives. While the perceived search cost might be different
for different travelers, it remains the same for a particular traveler. Furthermore, the
perceived search cost is assumed to be constant for the same person throughout the

search process.

Theoretically, the perceived search cost can be derived based on Eq. (3-5) by
calculating both the lower and upper bounds. If a traveler stops searching after N
rounds of search, the perceived search cost for this traveler must be lower than the
expected search gain at search n — 1 and higher than the expected search gain at search
n to ensure that search n + 1 does not happen. Therefore, we can calculate the lower
and upper bounds of the search cost sc for behavioral dimension d and let the average

be the estimate of the perceived search cost:
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The distribution of perceived search costs among travelers can be obtained by
calculating the cost for each traveler, according to Eq. (3-6). To further predict
perceived search costs for all agents in the system, a subsequent regression analysis is
needed to reveal the relationship between search costs and travelers’ socio-
demographic information. Xiong (2015) collected travel behavior data from a stated
adaption survey and empirically estimated a regression model to predict the search cost.

Eq. (3-7) specifies the search cost model in dimension d as:

scqg = Bo + Bicy + Brgender + fipurpose + [ income
(3-7)
+ Bsdist + Bgpeak + [,veh + €;

where ¢, is the generalized cost for the initial travel experience; gender equals 1 if the
person is male, 0 otherwise; purpose equals 1 if the trip purpose is mandatory, such as
work and school trips, 0 otherwise; income is the annual household income, which
includes income classes of less than $50,000, $50,000-$100,000 and above $100,000;
peak equals 1 if the trip is in the peak period; veh equals 1 if the household owns more
than two vehicles. It is worth noting that multicollinearity phenomena may exist in the
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regression analysis; for instance, covariate trip purpose and income might be correlated.
Follow-up research should attempt to address the multicollinearity issue by adding
interaction terms. However, the focus of this regression analysis is for prediction
purposes rather than fully explaining the relationship between the search cost and
socio-demographic variables. In other words, as long as the model is able to predict the
search cost with reasonable accuracy, this analysis could live with the current model

specification.

In the current multi-dimensional context, the search cost is calculated independently
for different behavior dimensions. However, interdependence may exist when
calculating the search cost. For example, the search cost for destination choices may
impact the search cost for mode choices since the distance between origin and
destination obviously will affect mode choices. This issue can be resolved by fitting a
multivariate multiple regression (MMR) model to capture the potential correlation

among the dependent variables.

3.2.5 Model estimation

The estimation of these quantitative models can be data intensive. Traditional travel
surveys only provide individual travel behavior information for a specific day or two.
Longitudinal information, such as the number of days that a particular traveler takes to

search for travel alternatives and traffic conditions for these days, are typically missing.
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Therefore, new data sources must be explored. The BUE model was first estimated
with data from a stated adaption experiment conducted by Xiong (2015). Details
regarding the survey design and data collected are presented in Section 4.1.
Specifically, the stated adaption experiment imitates the search process and asks
participants how they would change travel behavior under various hypothetical
scenarios. The participants keep switching for alternative travel options until they are
satisfied with certain travel plans, and their choices and associated traffic conditions
are recorded. With the generalized cost information collected for various travel
dimensions, the search gain sg, at different iteration n can be calculated according to
Eq. (3-5). Information regarding when participants stop searching can also be derived
from the survey; thus, the search cost sc; can be calculated by taking the average of
the lower and upper bounds according to Eq. (3-6). Lastly, the proposed regression
model can be estimated using the socio-demographic information recorded by the
survey and the search cost calculated above. Specifically, generalized method of
moments (GMM) and two-stage least-squares (2SLS) estimators were employed in

Xiong’s study.

The focus of this dissertation is to develop an ABM and DTA integration framework
that is so flexible that it can be easily transferred to anywhere as long as operational
ABM and DTA models exist locally. However, the search cost model parameters would
not be the same for different regions, as people’s perceptions and travel behavior vary

from place to place. Local data are needed to customize the search cost model.
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Subsequent sections introduce several possible data sources for localization, as well as

a model calibration approach with minimal data requirement.

3.3 Model Calibration

To implement the decision-making process in the proposed BUE integration approach,
several important model parameters must be estimated. However, parameter estimation
requires travel behavior data, which is typically costly and time-consuming to collect
as discussed above. More importantly, the proposed integration framework focuses on
integrating existing operational ABM and DTA models that are already well calibrated
and validated. Consequently, additional data collection efforts are certainly not
preferred. To streamline the implementation of the integration framework, as well as
promote the model transferability, this study proposes to calibrate model parameters in
the integration framework. It is worth noting that the search cost parameters previously
estimated by Xiong (2015) are used as the initial values for the calibration process to

ensure a fast convergence.

Model calibration is the process of adjusting model parameters so that the simulated
model results closely represent the observed information (e.g., traffic counts, link travel
times, trip production rate, etc.). This process is critical to enhancing the model
performance and improving the result accuracy. The first subsection provides the

technical details regarding the model calibration process, including optimization
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problem formulation and the objective function. The second subsection introduces the
optimization algorithm, simultaneous perturbation stochastic approximation (SPSA),

and illustrates how the calibration method works.

3.3.1 Problem statement

To implement the BUE-based integration approach, model parameters must be re-
estimated based on local data. Since both ABM and DTA models in this study are fully
operational models, parameters in both models do not require further calibration. Based
on the BUE theory, parameters in the search cost model are the only ones that call for
calibration. Search costs are calculated using travelers’ socio-demographic data as
demonstrated in Eq. (3-7). In the search cost model, two parameters (6, and 6,) are
introduced to calibrate the function in each travel dimension, as shown in Eq. (3-8).
Since the search process in the BUE theory involves four travel dimensions (i.e.,
destination choice, departure time choice, mode choice, and route choice), a total of
eight parameters must be calibrated. Note that model parameters in the destination
choice dimension use mode choice parameters as the initial values, since destination
choice dimension did not exist in the previous study. The reason behind this treatment

1s the similar behavioral trend between these two travel dimensions.

scqg =0y o+ 01 (Bico + frgender + fzpurpose + [iinc
(3-8)
+ fsdist + Begpeak + B,veh + €;)
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In general, the process of a system-wide calibration of a simulation-based model is to
find the parameter values that minimize the error between observed measurements and
simulated measurements. Specifically, the observed measurements are traffic counts.
In other words, the SPSA algorithm seeks to minimize the difference between observed
traffic counts and simulated link volumes. Even though the search cost model involves
four travel dimensions, only link volume information is included in the objective
function since it represents the overall model performance. Local survey data can be
used to validate simulated results from three other travel dimensions, such as
destination choice, TOD choice, and mode choice. The calibration process is

formulated as a constrained minimization optimization problem, as shown in Eq. (3-9).

minimizeg (M, — Ms(0))?

s.t.
(3-9)

where M,, represents the observed traffic counts; M are simulated link volumes; 8 is
the vector of parameters from the model to be calibrated, and [ and u are vectors of
lower bounds and upper bounds for the parameters; f(Z; 8) represents the link between
the simulated outputs and the simulation-based model; and Z are the inputs required to

run the simulation-based model.
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One should note the complexity associated with the calibration approach proposed in
this study. The search cost model is concerned with four behavior dimensions; changes
in each dimension would lead to changes in the overall results. It is difficult to include
all four behavior dimensions in the objective function as it is often challenging to reach
optimal solutions in multi-objective optimization problems. This study involves the
final model results in the objective function, as typically executed in the literature.
Therefore, deviations in other travel dimensions (i.e., mode choice, destination choice,
and TOD choice) are expected in the study. In this study, results in these travel
dimensions are validated against survey data to ensure the overall performance of the

integrated model.

3.3.2 Simultaneous perturbation stochastic approximation (SPSA4)

The optimization problem in this study is a simulation-based optimization problem.
The simulated measurements are acquired directly from the integrated model, which
makes the optimization problem non-analytical and the non-linear problem with
extensive system noise. Additionally, the runtime of the integrated model is
significantly long. Considering these factors, this study selected the simultaneous
perturbation stochastic approximation (SPSA; (Spall, 1998) algorithm to solve the
minimization problem. This algorithm has the following advantages: 1) it accounts for
the simulation noise in the simulation-based model output; and 2) it only requires two

function evaluations per iteration regardless of the length of the vector of parameters.
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SPSA optimization algorithm has been successfully applied to various problems in the
transportation sector, especially to the calibration of DTA models (Antoniou, Azevedo,
Lu, Pereira, & Ben-Akiva, 2015; Lee & Ozbay, 2009; Lu, Xu, Antoniou, & Ben-Akiva,

2015; Ma, Avenue, Ave, & Zhang, 2007).

Essentially, the SPSA algorithm works by perturbing the components of the vector of

parameters and computing the gradient of the objective function based on the

perturbations. The implementation step of the algorithm is briefly described below:

o Step 0 Initialization and coefficient selection. in this step, the SPSA algorithm

is set up with the initial values for the vector of parameters 6, and also the
values for the non-negative algorithm coefficients a,c, 4, @, and y. In this
study, the initial values of the search cost parameters 6, are obtained from a
study conducted by Xiong (2015), which could contribute to the fast
convergence in SPSA algorithm. The algorithm coefficients belong exclusively
to the SPSA algorithm. At iteration k, the SPSA gain sequences a; =
a/(A+ k)¥ and ¢, = c/kY are critical to the performance of the SPSA

algorithm and their values are discussed in the Section of calibration results.

o Step I Generation of simultaneous perturbation vector: a p-dimensional

perturbation vector A, is generated using Monte Carlo simulation. Typically,
the random perturbation vector Ay, is Bernoulli-distributed, with a probability

of 0.5 for each of the two possible outcomes.
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Step 2 Objective function evaluations: evaluate the objective function twice

using the perturbation vector at each iteration k: f (9k + ckAk) and f (9k —

CkAk)

Step 3 Gradient approximation: compute the gradient approximation g ()

using the perturbation vector and two evaluations of the objective function

computed from Step 2:

@G A) —£(6 A )[A&l
+ - - -1
f(Br + i) — f(Ok — ciBy lA_kZI (3-10)

g(ék) - ch ..
Ay

where A; is the ith component of the perturbation vector.

Step 4 Update vector of parameters: update the values of the vector of

parameters based on the gradient descent using the approximated gradient

computed from Step 3 and the step size a; from Step 1:

Oker = O — a * g(6r) 3-11)
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o Step 5 Iteration or termination: return to Step 1 to continue iterating or
terminate if there is negligible change between iterations in the objective

function and/or values of the vector of parameters.

While this section provides technical details concerning the SPSA algorithm, the
selection of SPSA coefficients and actual calibration results are illustrated in Chapter

5.

3.4 Discussion

This chapter introduces two ABM and DTA integration approaches with a focus on the
BUE-based integration approach. The BUE theory was initially developed in the
context of the SILK framework, where behavior adjustment modules are rule-based
Artificial Intelligence (AI) models. This chapter emphasizes illustrating how the BUE
theory is adjusted and improved in the context of ABM and DTA integration.

Specifically, four main aspects of BUE have been enhanced:

e First, the original BUE theory requires an initial traffic condition and synthetic
population, which is typically from an existing travel demand model. The BUE-
based ABM and DTA integrated model, however, can provide the initial state by
running the model based on free-flow travel times without relying on outside data

sSources.

60



Second, the original BUE theory is built on the trip-based environment. Since most
ABMs are tour-based models, the BUE theory has incorporated trip-chaining
constraints so that it can fit into the tour-based setting. Technical details regarding
this BUE improvement are illustrated when implementing the integration

framework to a real-world application in Chapter 5.

Third, only three behavior dimensions (i.e., departure time choice, mode choice and
route choice) are considered in the original framework. This study incorporates a
fourth dimension (destination choice) into the framework, which enhances the

behavioral adjustment process.

Last, a model calibration approach is proposed to streamline the search cost
estimation process. This approach provides great transferability without additional

behavior data collection efforts.

In addition to the aforementioned BUE improvements, this chapter also introduced how

key elements such as search gain and search cost are calculated in the context of ABM

and DTA integration. The proposed BUE-based integration framework is applied to a

large-scale network in the Washington-Baltimore Metropolitan area. Chapter 5

presents details regarding the real-world model application and analyzes the application

results.
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Chapter 4 Data

Previous travel demand models are typically estimated with household travel survey
data, which is mostly concerned with only one cross-section of the study population.
However, the estimation of the proposed BUE model requires longitudinal information
that is often missing in the literature. For example, to study each person’s search
process, we have to understand what conditions trigger the search behavior and how
many searches it takes this person to become satisfied with the travel options. In other
words, we must monitor this person’s travel behavior over time to extract the

longitudinal information needed to estimate the BUE model.

This chapter introduces two longitudinal data sources and one calibration data source
for enhanced transferability purposes. First, we can design a stated adaptation
experiment to record participants’ behavioral responses to hypothetical traffic
conditions. Section 4.1 illustrates how such experiments are designed and how
longitudinal information can be inferred from the experiment. However, such
experiments can be both expensive and time-consuming. As an alternative, this study
develops an approach to calibrate the BUE model parameters. This calibration
approach requires a previously estimated BUE model and calibrates it based on existing
local data. Section 4.2 describes the data requirements for this calibration approach.
Lastly, the ideal longitudinal data source is from repeated observations where the actual

behavioral dynamics and the learning process can be revealed. Section 4.3 introduces
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how passively collected data is a good source of individual-level longitudinal data.
While some travel behavior information is easier to infer from passively collected
data—such as departure time, destinations, and trip durations—other information is
difficult to detect, like travel modes and tip purposes. Consequently, it requires
significant data mining and processing efforts to derive all trip-related information from
passively collected data. As a proof of concept, Section 4.3 demonstrates how travel
mode information can be detected with a case study in the Washington-Baltimore area.
While imputing all travel behavior information is beyond the scope of this dissertation,
future studies should examine how passively collected data could supplement or even

replace traditional behavior surveys.

4.1 Data from Behavioral Surveys

The BUE model emphasizes the role of searching and learning in explaining individual
behavioral dynamics. As a result, it is no longer sufficient to estimate such a model
with only cross-sectional data. For instance, to calculate the search cost for a traveler,
we must know when this traveler stops searching for alternatives as discussed in
Section 3.2. While this longitudinal travel behavior information is typically missing in
the literature, the behavioral survey is a good alternative and could reveal the traveler’s
decision-making adjustment over time. Xiong (2015) designed a stated adaption
experiment to collect behavior data and empirically estimated regression models to

predict search costs. The stated adaption survey consisted of a number of hypothetical
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questions such as “what would you do if you encountered specific conditions.”. It was
carried out in an iterative fashion where the behavioral responses of a person regarding
different inexperienced situations could be recorded. For instance, a survey participant
first reported his/her most recent trip, together with their socio-demographic
information recorded as well. Then the travel condition was assumed to alter due to
changes in exogenous policy or congestion level. The survey participant had to adjust
to these changes by searching for new travel alternatives. Since the search process in
Xiong’s study was multi-dimensional, alternatives in travel modes, departure time, and
routes were simulated. With the new information, this person had to choose between
his/her habitual plan and the new alternative, and state the reasons behind this decision.
The process was repeated iteratively until the participant was satisfied with the travel
experience. In this way, a complete behavioral adjustment procedure of each participant
can be recorded. The survey was conducted on a sample group of 110 people that
performed adaptions under schemes like overall congestion increases and road-pricing

scenarios.

With the longitudinal data collected from the survey, two important variables—search
gain and search cost—can be empirically calculated, as discussed in Section 3.2.
Additionally, the travel survey also records participants’ socio-demographic
information. The regression model, which relates the search cost and socio-
demographic information, therefore can be estimated. While the BUE model parameter

estimation can be easily carried out using the survey data, the cost and time associated
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with the survey remain a big issue. Additionally, the transferability of this method is

rather weak since similar behavioral surveys must be conducted locally.

4.2 Model Calibration Data

Due to the high cost and processing complexity of the data sources mentioned above,
this dissertation proposes a parameter calibration method that requires only existing
local data and provides great transferability. This model calibration approach, however,
requires acquisition of the initial parameter values of a previously estimated model so
that the calibration can converge more rapidly. In this study, the search cost regression
model parameters estimated by Xiong (2015) were used as the initial values for the

calibration process.
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Figure 4-1 Traffic Count Sensor Location

Traffic count data are typically required for model calibration. The calibration attempts
to minimize the difference between simulated link volumes and traffic counts. In this
study, annual average daily traffic (AADT) information was obtained from the
Maryland State Highway Administration (SHA) in 2009, covering 3,770 links within
the InSITE network. As shown in Figure 4-1, the small green squares represent the

location of link traffic count sensors within the network.

In addition to traffic count data, local travel survey data are also required to validate
intermediate results. For instance, trip length distribution information from the travel
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survey can be used to validate destination choice results. Mode share information can
be used to validate mode choice results. Departure time distribution information of
various trip purposes can be used to validate time-of-day model results. Specifically,
this study utilizes the 2007/2008 Household Travel Survey (HTS) jointly conducted by
National Capital Region Transportation Planning Board (TPB) and BMC. This travel
survey collected information from 14,365 households in the Washington and Baltimore
metropolitan area. A two-day travel diary was recorded for each member in the
household. Detailed behavior information at the trip level is available from the HTS

data. Descriptive statistics are presented in Table 4-1.

Table 4-1 HTS Descriptive Statistics

Variables Mean  Std. dev.
Household size 2.18 1.21

# of workers 1.18 0.85

# of vehicles 1.73 1.05

# of lic. drivers 1.63 0.75
Residential location (1=urban) 0.29 0.45
Housing tenure (1=own) 0.77 0.42

# of observations 14,365

This model calibration approach provides great transferability where existing local
ABM and DTA models can easily be converted to BUE-based paradigm without
additional data collection efforts. In this dissertation, SPSA (Simultaneous Perturbation
Stochastic Approximation) optimization method is selected for the calibration task.

Calibration and validation results are presented in Chapter 5.
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4.3 Passively Collected Data

The aforementioned behavioral survey can be considered as a stated preference method,
where inaccuracy might exist when people state their preferences. As a result, the
perfect data would be the panel data, where travelers’ travel information are actually
recorded over time. Imagine that there exists a device that follows you 24/7 to record
information about your every single trip over a long period of time. This ideal data
source would provide you insights on how you change travel behavior so that the
learning process can be modeled. While a data collection method of this kind might be
impossible to implement, passively collected data could be an excellent alternative to

track people’s behavior dynamics.

Thanks to the popularity of smartphones today, passively collected data are within
easier reach than ever. In its simplest form, passively collected data are GPS location
data (trajectories) that are typically collected using smartphones. While smartphones
are present at almost every time and place, the deficiency of this data source is quite
obvious: we do not know the actual trip information. It is nearly impossible to bother
users to provide details regarding every single taken trip. Therefore, data mining and
machine learning methods are typically employed to extract useful travel behavior
information. However, this approach requires significant data processing time and
existing data mining methods cannot guarantee the detection of all necessary trip

information. As a proof of concept, this section presents a case study in the Washington,
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D.C. area, which elaborates how trip mode information can be extracted from

smartphone GPS data.

4.3.1 Introduction

Thanks to the rapidly growing smartphone industry, passively collected travel data has
never been so readily available. According to the Pew Research Center, the United
States had around 223 million smartphone users in 2017. Roughly three-quarters of
Americans (77%) now own a smartphone, with lower-income Americans and those
ages 50 and older exhibiting a sharp uptick in ownership over the past year. The
widespread use of Global Positioning System (GPS)-based technologies, GPS loggers,
GPS-enabled phones, etc., provides an innovative but accurate approach to observe and
track individuals’ travel behavior. Compared to traditional data-collecting activities,
GPS-based technologies play a leading role in passively collecting a large amount of
accurate spatial and temporal information without spending considerable time and
money. The fast development of connected vehicles and autonomous vehicle
technologies ensures the continued influx of GPS data. This advent of GPS big data
requires technologies and research for processing and utilization to serve our life better.
To optimally use GPS data, we must be able to infer multiple trip information, such as
travel modes and trip purposes. In this study, we discuss how to do this solely with

passively collected GPS data and without asking people additional questions.
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Mode detection based on GPS raw data drew increasing research attention in the past
decade while GPS technology has been widely used to collect large-scale transportation
data. Researchers have used AI techniques to handle mode detection, including
decision trees (Stenneth, Wolfson, Yu, & Xu, 2011), neural networks (Byon & Liang,
2014; Gonzalez et al., 2010), Naive Bayes and Bayesian networks (Xiao, Juan, &
Zhang, 2015), random forests (Lari, 2015), etc. Wu, Yang and Jing (2016) have
conducted a thorough review of existing studies on this topic. Overall, the current
practices can detect car mode with high accuracy but the detection accuracy of

bus/metro/subway modes is not satisfactory.

This section develops a random forest model to impute travel mode information and
calculate variable importance rankings. The model is empirically tested on a GPS
dataset collected through GPS-enabled smartphone devices. To effectively detect the
travel mode for each trip, classification feature construction is critical in providing
useful information, preferably travel mode-specific knowledge. In addition to the
traditional features used in the literature (e.g., average speed, maximum speed, trip
distance, etc.), this study constructed two innovative features based on land use data:
the distance to the closest rail line (both underground and aboveground) and the
distance to the nearest bus line. Even though Stenneth et al. (Stenneth et al., 2011) first
proposed to use transportation network information in travel mode detection, they did
not consider metro (underground) detection and bus line information. Within the

Washington Metro system, GPS locations can be recorded at Metro stations, which

70



makes underground metro detection possible. To the best of my knowledge, this study

is the first to use land use data to infer metro mode that is typically underground.

4.3.2 Methodology

Based on previous studies in rule-based models and decision trees (Tang, Xiong, &
Zhang, 2015; Xiong & Zhang, 2013), the random forest model is selected for this mode
detection research. A random forest is an ensemble of decision trees (Ho, 1995). The
training packages for random forest are typically included in most existing software or

platforms for artificial intelligence (e.g., RandomForestClassifier in Python or R).

The general idea of random forests is to combine multiple decision trees built from
different samples generated from the training data set using the bootstrap sampling
method. For classification problems, the predictor is based on the majority voting of
different trees. For regression problems, the predictor is formed by taking the average
of different trees. When building each decision tree, at each node, a given number of
features are randomly selected and the best split is calculated from the selected features.

Since no pruning step is taken for the tree, all of the trees are maximum trees.

There are two critical parameters when training the random forest model: the number
of trees in the forest, or ntree, and the number of input variables randomly chosen at

each split, or mtry. One benefit of random forests is that it will not over-fit as more
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trees are added (Louppe, 2014). If more statistics are expected from decision trees, like
variable importance, then ntree can be set to 1000 or more to make the statistics stable.
For mtry, a value that equals the square root of the number of features is typically first
used. Then, attempt a value twice as high and half as low and check the out-of-bag
(OOB) error. OOB error refers to the mean prediction error for each training sample,
using only the trees that have the sample in their bootstrap sample. It is suggested to

set mtry higher when many noise variables are present.

4.3.3 Data collection

The data was originated from research analyzing the travel behavioral impact of the
2016~2017 Washington D.C.’s Metro SafeTrack project. SafeTrack is a series of 16
maintenance surges that address safety recommendations for the Metro system, which
lead to significant service disruptions to different Metro lines in the Washington area.
To assess the impact and analyze the travel behavior responses, the research authors
have conducted joint web-smartphone surveys with over 2,000 Metro users. A
smartphone application has been designed to record GPS location data for each survey

subject. The survey app functions are illustrated in Figure 4-2:

1) GPS location tracking: the app automatically records the user’s location
information. The frequency of recording is automatically adjusted based on

whether the user is moving or static to save battery consumption. Typically, the
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2)

3)

time interval between two location records is 30 seconds when the user is moving

and 10 ~ 30 minutes when the user is static, depending on the battery status.

Trip information logging: the app periodically “pushes” survey questions to record
trip purposes and the travel modes for the user’s recorded trips. This information is
verified by a follow-up travel diary survey and then is used in this research as the

ground-truth travel modes to train the mode detection.

Data uploading: for the sake of battery and cellular data usage, the app will not
automatically upload data to the online database unless the device is plugged in and
connected to a Wi-Fi network. Alternatively, the user could manually upload survey

records by pressing the button “Press to Upload”.

caFsfares RI % .4 26%8 10:33 AM E =4 NI L 040AM OFSHBWFT ORI ™ .4 25%8 10:40 AM
a

i Travel Helper "= Travel Helper (7]

TRACK UPLOAD PROFILE TRACK UPLOAD PROFILE

Thank you for your cont contribution
o our study on trave The upload

kes only a few conds and runs
in the background of the application

Press to Upload

School Last Upload: 01:30:00, 09/08/17

Cancel

Start Trip

Figure 4-2 The User Interface of Smartphone GPS Data Collection App
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A total of 865 trips are specified with travel mode information and these data are used
for mode detection modeling in this study. Of these 865 trips, 19.31% are auto trips,
15.84% are bus trips, 52.94% are metro trips and 12.37% are walk trips. Since this
survey was targeted towards Metro users, a high percentage of Metro trips are captured.
During the survey, only three trips are reported as bike trips; these trips are excluded

from this study due to the small sample size.

4.3.4 Data processing

Data Filtering:

In this study, the location point data collected in this study has information including
latitude, longitude, the instantaneous speed, accuracy and timestamp. The collected raw
GPS location data are filtered based on two criteria: accuracy and the average speed
between two successive location points. Accuracy indicates the closeness of a
measured location to the real location of the device at the time of the measurement,
which is vital in assessing the quality of the location data. The authors first filter the
data based on the accuracy and remove location data with accuracy that is larger than
500 meters as an attempt to get rid of inaccurate data points. To further eliminate
infeasible travel patterns, a location point is removed if the average speed between this
point and last point is faster than 150 meters per hour. This is to discard data noises

(e.g., sudden “jumps” in location) and improve data quality.
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Trip End Identification:

To impute travel mode information, trip end information must be extracted from a
series of GPS location points. The trip end identification method in this study is similar
to the approach proposed by Tang, Pan, & Zhang (2018). A trip end is identified as the
first and last location point in a stay region. In this study, a stay region is defined as the
region where the user has stayed longer than a time threshold T, within a distance range
of D and under a speed limit V. A set of successive location points P; = {pg, p1, -, Pi}

are labels as a stay region if they satisfy the following constraints:

Ady; < D,Vi € P,
Ato, =T (4-1)

Ul'SV,ViEPl

where Ad; denotes the distance difference between the first location py and any
location p; in the location set, At is the time difference between the first and last
location points, and v; represents any speed at the location p;. Consequently, location
Do 1s the trip end of the last recorded trip and p,, will be the trip start of the following

trip.

The Construction of Classification Features:
As described in the modeling section, typical trajectory features are employed in our

empirical testing. The following table summarizes the trajectory features.
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Table 4-2 Mode Detection Data Description of Trajectory Features

Variables

Descriptions

Trip distance

Trip time

OD Euclidean distance

Average speed

Max. instantaneous speed

Average data record

The trip distance is computed as the sum of the distances
between two successive location points in this trip

The difference between the timestamps of the trip start and
the trip end

The shortest Euclidean distance between the origin and
destination of the trip

The average speed is calculated as the trip distance divided by
the trip time

The maximum value in the set of instantaneous speeds directly
collected by the smartphone app during the trip

The number of data points recorded during the trip divided by

the trip time

These features are selected to differentiate the modes as much as possible. For instance,

the average speed can be used to distinguish walk mode from other modes. The

maximum instantaneous speed further helps differentiate walk trips from auto or bus

trips that encounter severe traffic congestion, which makes the average speed of those

trips close to walking trips. The overall data recording frequency can be used to identify

Metro trips as other travel modes typically do not suffer from significant GPS

disruptions.
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4.3.5 Empirical results

The random forests model results are shown in Table 4-3. The overall model accuracy
is 91.33%, with the highest 96.11% accuracy for Metro and lowest 86.15% for bus.
Metro trips are generally easy to detect for two reasons. First, underground Metro trips
could only obtain GPS signals at Metro stations, meaning that the total number of data
points recorded in Metro trips is much smaller than the other modes given the same
travel distance. Therefore, the average data record feature could easily distinguish
Metro trips from other modes. Second, the distance to the Metro line system further
helps detect Metro trips. However, bus trips are relatively difficult to identify and often
confused with driving trips. Even with land use information, the detection accuracy

could not reach 90%. Future studies should focus on seeking new features that could

discover bus trips.

Table 4-3 Overall Model Statistics

Accuracy: 0.9133

95% CI: (0.8834, 0.9376)

P-Value [Acc > NIR]: <2.2e-16

Statistics by Class:

Auto Metro Bus Walk
Sensitivity 0.8804 0.9719 0.7667 0.8571
Specificity 0.9860 0.9502 0.9564 0.9825
Pos Pred Value 0.9419 0.9603 0.7302 0.8571
Neg Pred Value 0.9698 0.9646 0.9638 0.9825
Balanced Accuracy 0.9371  0.9608 0.8673 0.9167
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In this study, the prediction accuracy of 10-fold cross-validation is used to measure the
performance of the random forests model. For each round of the validation, 10 random
seeds are used to ensure the stability of the validation results. Table 4-4 summarizes

the prediction accuracy of the proposed model.

Table 4-4 Confusion Matrix

Detected Travel Mode
Car Metro Bus Walk Recall:

Reported Car 149 1 10 2 92.55%
Travel Metro 3 466 3 3 97.90%
Mode Bus 7 14 98 4 79.67%

Walk 0 4 2 99 94.29%
Precision: 93.71% 96.08% 86.73% 91.67% 91.33%

Compared to existing studies on mode detections, the level of accuracy that the
proposed model emits is among the top. According to the review paper by Wu et al.
(Wu et al., 2016), most studies reported an overall mode detection accuracy at around
88%~93%, while the reported highest level of accuracy is 96% (Lari, 2015).
Nevertheless, it is worth noting that this research is focused on the mode detection of
likely Metro users. Unlike typical studies that largely draw data from auto trips (e.g.,
about 80% of the testing data are driving trips in Lari(Lari, 2015), the testing data has
relatively more balanced distribution among car, metro, bus, and walk. Also, in most
research papers, classifying auto trips has much higher accuracy compared to detecting
bus or metro trips (Nitsche, Widhalm, Breuss, Briandle, & Maurer, 2014). It is not yet

possible to draw a conclusion on which models perform the best without extensive
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examination and testing using the same datasets. However, the high prediction accuracy
resulted from the random forests model clearly shows its potential in handling mode
detection, especially for its generalization power on the trivial differences among car,

metro, and bus trajectories.

4.4 Summary

This chapter introduces two ways to derive the longitudinal data required to estimate
the proposed BUE-based integrated model: behavioral surveys and passively collected
data. Additionally, a calibration approach can be applied when a previously estimated
BUE model exists. The data requirement for this calibration approach is specified in
this chapter. While this chapter reveals only travel mode information from passively
collected data, the methodology provided is general enough to detect other trip-related
information. Tang (2018) applied a similar methodology to infer trip purpose
information from smartphone GPS data. Ongoing research in our research group is also
examining how random forest models could impute traveler’s socio-demographic
information. With the popularization of smart devices and maturity of data mining
methodologies, passively collected data has the potential to replace traditional travel

surveys and provide data for advanced travel demand models.
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Chapter 5 Integrated Model Application in the Washington-

Baltimore Area

This chapter showcases a model demonstration. The proposed BUE-based ABM and
DTA integration framework is applied to a large-scale network in the Washington-
Baltimore metropolitan area. The Washington, D.C. area ranks No.l in traffic
congestion according to the 2015 Urban Mobility Scorecard (Dooley, 2015), which
makes it highly challenging to model the massive traffic in this large-scale network.
The traditional sequential ABM and DTA integrated model for the Washington-
Baltimore metropolitan area would take 30 hours per iteration on average, including 30
DTA iterations. The long runtime remains a significant hinderance for real-world
implementations. However, the BUE-based integration approach could accelerate the
integrated model while maintaining the result accuracy. On the contrary, the advanced
behavioral theory foundation proposed in the framework could lead to enhanced
behavior realism. The real-world integration results are analyzed and discussed in this

chapter.

This chapter is organized as follows. The first section introduces two major components
of the integration application: InNSITE ABM and DTALite. Section 5.2 illustrates the
overall integration process regarding software implementation. Section 5.3
demonstrates the advanced computing technology employed to accelerate InSITE and
DTALite including multi-threading and tree-based route storage. Section 5.4 analyzes

80



and discusses real-world model results. The last section provides conclusions and

summarizes this chapter.

5.1 Major Model Components

5.1.1 BMC InSITE ABM

InSITE is an activity-based model system composed of interconnected, discrete choice
models representing choices at distinct dimensions (e.g., travel mode, destination) that
focus on decisions related to daily activity and mobility for a typical weekday. InSITE
adopts the day activity-schedule approach, where a daily activity schedule is defined
through the concepts of activity pattern and activity schedule. The activity pattern
defines the participation in activities as primary and secondary. Primary activities are
the anchors (e.g., home-to-work trip and work-to-home trip represent a tour, with work
as the primary activity) of a tour, and secondary activities are intermediate stops within
a particular tour (i.e., stopping for shopping during the work-to-home half of the tour).
The activity schedule adds detailed information to the activity pattern about tours, such
as the timing, travel mode, destination of primary activities, and the stops for secondary

activities within the tours.

The model covers an area that includes the entire Baltimore Metropolitan Council

(BMC) region, plus the District of Columbia and the Maryland portion of the region
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covered by the Metropolitan Washington Council of Governments (MWCOG). The
proportion of Maryland in the model region consists of Baltimore City and Anne
Arundel, Baltimore, Carroll, Harford, Howard, Frederick, Montgomery, and Prince

George’s Counties.

InSITE models travel for a typical weekday. The choices made by households and
individual travelers are simulated using probabilities from a series of logit models. As
shown in Figure 5-1, the model begins by simulating long-term choices that are made
before the travel day, including auto ownership, workplace location for workers, school

location for students, transit pass ownership, and E-ZPass toll transponder ownership.
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Long-Term Choices
Auto Cwnership, Work Location, School Location, Transit

Pass Ownership, E-ZPass Ownership

|
r

Household Class Membership

Tour Generation l_l :
k. 4

Daily Activity Pattern — - Individual
(including WorkiSchool Travel) Fully Joint Travel e MNon-mandatory
| | Travel
Mandatory Tour .
Generation Submodel Joint Tour Purpose
‘ School Escorting Model ‘
Tour-Level Choices 1L Jr
‘_' Joint Tour Individual Non-
Mandatory Tour Destination & - mgnsdil:am? .
Destination & Time of Day our Destination
Time of Day Time of Day

All Tour Stop Generation & Mode Choice

Stop/Trip-Level Choices

h

Stop (Trip) Level Destination, Mode Choice, Time of Day

Figure 5-1 InSITE Model Structure

Another feature of InSITE is a class membership model that is applied prior to the daily
activity pattern model. The class membership model determines which segment an
individual household belongs to via a multinomial logit model. Each class membership
model alternative represents a distinct segment, and the model uses attributes of the
household (such as household size and income) to generate probabilities that the
household is a member of a specific class. The parameters of the daily activity pattern
model, the fully joint tour model and the class membership model were estimated
simultaneously since there are components of each model that affect one another. A

more in-depth look at the class membership model is documented by Lemp (2014).
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The next set of models estimates a daily activity pattern for each person. Whether the
person has work tours (with or without stops), school or university tours, non-
mandatory activity tours only, or does not travel within the region, is simulated. If the
simulated pattern has mandatory (work or school) tours, they are generated. For
students making school tours, InSITE simulates whether they are escorted by a
household member and if so, by whom. At this point, the destinations and times of day

for the mandatory tours are simulated.

Next, fully joint tours among household members are simulated, including who
participates, the activity purpose, the destination, and the time of day. After the details
of the mandatory and joint tours are known, individual, non-mandatory tours are
simulated, with their destinations and time of day. The final tour level models are the

generation of stops for each tour and tour level mode choice.

The stop- and trip-level choices are simulated next. These include destination choice
for each stop, the times for the stops, and mode choice for the trips between stops
(conditional on tour mode). From the results of these models, auto and transit trip

tables are assembled for input to highway and transit assignment, respectively.
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5.1.2 DTALite

DTALite, an open-source, light-weight, mesoscopic DTA simulation package; in
conjunction with the Network eXplorer for Traffic Analysis (NeXTA) graphic user
interface (GUI), it has been developed to provide transportation planners, engineers,
and researchers with a theoretically rigorous and computationally efficient traffic
network modeling tool. DTALite adopts a new software architecture and algorithm
design to facilitate the most efficient use of emergent parallel (multi-core) processing
techniques and exploit the unprecedented parallel computing power newly available on

both laptops and desktops.

The overall structure of DTALite, illustrated in Figure 5-2, integrates the four major

modeling components, highlighted in yellow. They are:

1) time-dependent shortest path finding, based on a node-link network structure;

2) vehicle/agent attribute generation, which combines an origin-destination demand

matrix with additional time-of-day departure time profile to generate trips;

3) dynamic path assignment module, which considers major factors affecting agents’
route choice or departure time choice behavior, such as (i) different types of traveler

information supply strategies (e.g., historical, pre-trip, and/or en-route information,
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4)

and variable message signs), and (ii) road pricing strategies where economic values

are converted to generalized travel time, and;

a class of queue-based traffic flow models that can accept essential road capacity
reduction or enhancement measures, such as work zones, incidents and ramp meters.
The queue-based traffic simulation model in DTALite only requires basic link
capacity and free-flow speed for operation, which are readily available from static
traffic assignment models. By using simple input parameters, in addition to possible
connections with common signal data interfaces, the proposed simulation package
may enable state DOTs and regional MPOs to rapidly apply advanced DTA
methodologies for large-scale regional networks, subareas or corridors.
Additionally, the modularized system design may help serve future needs by
simplifying the process for transportation researchers and software developers to

continue to build upon and expand its range of capabilities.
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Figure 5-2 DTALite System Architecture with Key Modeling Components
(Source: (Zhou & Taylor, 2014)

The traffic assignment and simulation modules are fully integrated and iterated to either
capture day-to-day user response or find steady-state equilibrium conditions. Within
this simulation-assignment framework, the rich set of output data include traffic
measures of effectiveness (MOESs) at different spatial and temporal scales, ranging
from network, corridor-level, and specific links. Typical speed, volume, and density
measures, as well as agent-based trajectories, can be visualized through the NEXTA
user interface. Based on the design structure and queue-based mesoscopic traffic
simulation model, DTALite has considerable potential for generalizing the modeling

framework into the field of real-time traffic state estimation and prediction.
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As a powerful mesoscopic DTA simulator, DTALite is often applied to large-scale
networks. Existing path-based methods only store link volumes of the current iteration.
When the origin-destination (OD) demand volume changes, DTALite must calculate
from the beginning, which is extremely time-consuming. Currently a tree-based version
of DTALite featuring rapid re-optimization is in development. The new DTALite
version has the following features that will dramatically improve the computing speed:
1) storage of all the shortest path tree for all iterations; 2) re-optimization function,
which finds the new shortest path tree based on the existing base tree; and 3) large-
scale parallel computing capability (i.e., OPENMP and MPI). This tree-based DTALite
model could achieve a major speed boost: the Maryland statewide network (i.e., 1674

zones, 170,000 links) runtime is only 3 seconds per iteration on an 8-thread machine.

5.2 Model Integration Implementation

5.2.1 Overall process

The overall integration structure is illustrated in Figure 5-3. To execute various model
components in one platform, a Python program is developed as a wrapper to call
different modules. In addition to the major components InSITE ABM and DTALite,
the integrated model also includes several intermediate modules such as search process

module, convergence check module, agent update module and skim script.

88



f’ Model Application

@ Search Process <

.4

R Convergence Check

4

JR AgentUpdate |

Figure 5-3 Integration Framework Structure

The framework starts with an InSITE and DTALite run as the initial condition, which
imitates the state when all agents arrive at the system for the first time and are
unfamiliar with the environment. Next, the search process module calculates the search
gain and search cost for every agent in the system and determines whether an agent
would search for alternative travel options, and which behavioral dimension to search
if this agent decides to search for alternatives. The integrated model then calls different
behavioral modules in InSITE ABM to calculate new travel options for the agents that
choose to search. In this study, four behavioral dimensions are considered: destination
choice, time-of-day choice, mode choice and route choice. The agent trip roster is then
updated with new trip options and fed to DTALite to simulate updated travel time on

the network. Since InSITE and DTALite are developed in different coding languages,
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a skim script module is built to convert the dynamic DTALite skim file format to be
compatible with InSITE. Finally, the convergence check module checks if the model
has converged by measuring how many agents in the system are still searching. The

next model iteration will start if the convergence has not been reached.

5.2.2 Information exchange between models

In the BUE-based integration framework, the ABM and DTA model exchange
information when the model run is complete. At the end of each InSITE run, the
program will output a complete roster of trip information and traveler characteristics
(e.g., origin/destination, time of travel, value of time (VOT), etc.). One feature of
InSITE is that each traveler in the population has a simulated VOT obtained from the
VOT population density functions. These simulated VOTs are passed from InSITE to
DTALite to use in its route choice models, which could also support the analysis of
tolling scenarios. Compared to previous integration efforts, where the ABM outputs
three separate files containing information regarding the trip, person, and household,
respectively, this DTA roster combines all information in one file, which improves the
data exchange efficiency. This roster later becomes the input to DTALite so that the

network representation can be simulated.

The main data passed from DTALite to InSITE is related to highway travel times. In

the integrated model, DTALite simulates highway travel dynamically over the entire
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day from beginning to end. Since InSITE uses 48 aggregate time periods of 30 minutes
in length, DTALite creates link travel times for each 30-minute period by averaging
the times experienced by the vehicles (from trip trajectories) in the DTA during the
period. It should be noted that free flow travel times are employed for the initial
iteration. After the initial iteration, the travel time inputs to InSITE can be unique for

each half-hour period.

5.2.3 Towards a tour-based BUE model

The original BUE theory was developed based on a trip-based diagram. In other words,
no trip chaining constraints were explicitly considered previously. However, InSITE
ABM is a tour-based travel demand model. Consequently, the BUE theory needs to be
revised accordingly. Specifically, the following key assumptions are proposed

regarding implementing the search theory in a tour-based environment.

e Tours are independent

e Mandatory tours (work/school) will not change destination choices

e If non-mandatory tours change destinations, stops conditional on the tour will
change accordingly

e If tours/stops change TOD, time constraints apply (based on minimum activity

duration)
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e If tours change TOD/modes, the stops conditional on the tour will change
accordingly

e Travel modes of stops are the same as tours

5.3 Accelerating InSITE ABM and DTALite

One major motivation of this dissertation is the excessively long model runtime that
hinders the large-scale implementation of the integrated ABM and DTA model. Even
though the proposed BUE-based integration framework has significantly reduced the
integrated model runtime, there is still potential for further runtime reduction in the
individual model component. This section illustrates how advanced computing

technologies are implemented to speed up InSITE ABM and DTALite.

5.3.1 Multiprocessing in InSITE ABM

InSITE, as an econometrics-based ABM, calculates travel options for each traveler in
the model using discrete choice models. In other words, InSITE model runtime is
positively related to the number of travelers in the model. Realizing this fact, a parallel
computing program is developed to speed up the INSITE ABM. In this dissertation, the
whole population is divided into sub-groups so that multiprocessing functions can be
performed to run discrete choice models on these population sub-groups in parallel.

Specifically, a Python program is used to call multiple InSITE runs simultaneously and
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each of the InSITE runs processes one population sub-group. The multi-processing
feature is realized by utilizing Python package Subprocess. Python scripts are attached

in Appendix A for further reference.

The model speed is constrained by CPU power. The current single-process version of
the InSITE ABM occupies around 25% of CPU power in the UMD workstation. As a
result, the multi-processed InSITE can theoretically run as much as four times faster
than the single-processed InSITE. Due to multi-processing, the model runtime is
positively related to the CPU power. The more cores/processors a machine has, the
faster the multi-processed InSITE could run on this machine. Consequently, the multi-
processed InSITE could run even faster with a machine that has more CPU capability

than the current UMD workstation.

5.3.2 Time-dependent skim generation in DTALite

Even though DTALite only performs one iteration under the BUE-based integration
framework, it must provide time-dependent skims to the InSITE ABM for each
iteration. The travel time skims are at 30-minute intervals and require 48 skim tables to
generate every iteration. With the built-in skim calculation function in DTALite, this
skim generation process takes around 2.5 hours per iteration. For a 48-hour integrated
model run with 15 iterations, DTALite alone consumes 37.5 hours, which takes about

78% of the overall integration model runtime.
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This dissertation develops a Python program to produce time-dependent skims much
faster. This Python program takes advantage of the time-dependent link travel time
from the “output LinkMOE.csv” file, which is readily available from DTALite. The
program calculates the time-dependent skims directly using the time-dependent link
travel time information based on the shortest path algorithm, which runs much more
efficiently than the built-in skim generation function in DTALite. This Python program
shortens the skim generation time from 2.5 hours to around 45 minutes per iteration,

which saves 26 hours for the overall integrated model run.

5.4 Calibration and Validation Results

As introduced in Section 3.3 Model Calibration, this dissertation develops a model
calibration approach to re-estimate the search cost model parameters. SPSA algorithm
is selected to solve the optimization problem. The sum of the squared differences
between the observation information and model results is used as the objective
function. SPSA seeks to minimize the objective function by the simultaneous
perturbation of model parameters. This study uses parameter values previously
estimated from data in the same region as the initial values, which could lead to quicker

model convergence.
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5.4.1 SPSA calibration

An important aspect of the calibration is the selection of the five SPSA algorithm
coefficients: a, c, A, @ and y. Spall (Spall, 1998) has suggested the default values for
these coefficients. However, coefficients a and ¢ must be adjusted locally based on the
objective function and the average of gradients to ensure an appropriate step size.
Several rounds of calibrations were conducted; Table 5-1 summarizes values of the

SPSA coefficients used in this study.

Table 5-1 SPSA Coefficients

Coefficient Value
A 100
a 3E-11
c 0.1
a 0.602
Y 0.101

The SPSA algorithm is coded in Python and the code is attached in Appendix B for the
reader’s reference. As introduced in Section 3.3, eight parameters (6, and 6; in four
behavior dimensions) are calibrated in this calibration process. The initial search cost
model coefficients  are inherited from the parameter values in the previous study

conducted by Xiong (2015). The initial values of 8, and 6, are 1.0.
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The algorithm convergence is reported in Figure 5-4. Thirty iterations were conducted
in this study, largely due to the runtime constraints. Two objective function evaluations
are required in the SPSA algorithm, which makes 60 integrated model runs in the
calibration process. Each integrated model run takes around 24 hours and details
regarding runtime breakdown are provided in the subsequent section. Fortunately, the
initial state achieved by performing InSITE and DTALite, which takes around four
hours, does not need to repeat for each iteration. In other words, each SPSA iteration
takes about 20 hours. The calibration process was terminated at iteration 30 when the
overall percent difference between observed and simulated traffic counts falls within
10%. Although the objective function represents the sum of squared differences
between simulated link travel time and traffic counts, only the percent difference is

reported in Figure 5-4 since it is easier to observe the true model performance.
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Percent Difference by Iteration
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Figure 5-4 SPSA Convergence Over Iterations

After 30 iterations, the calibrated SPSA parameters 8, and 8; and final calibrated

search cost model coefficients § are shown in Table 5-2 and Table 5-3, respectively.

Using the calibrated parameter values, the perceived search cost can be empirically

calculated for each traveler in the system.

Table 5-2 Calibration Results

Parameters Search Cost Search Costin  Search Cost in Search Cost in

in Mode Destination TOD Route
0, 1.643 0.802 1.342 0.874
04 0.964 2.509 0.792 1.497
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Table 5-3 Calibrated Search Cost Model Parameters

Variables: Search Cost Search Cost  Search Cost Search Cost
in Mode in Destination in TOD in Route
Constant 2.203 1.076 0.540 0.336
Generalized cost 0.022 0.058 0.006 0.001
Gender (female) 0.013 0.035 0.128 0.147
Purpose (work/school) -0.097 -0.253 -0.072 0.147
Income (<$50Kk) 0.181 0.472 -0.215 -0.448
Income ($50k - $100Kk) 0.082 0.213 -0.226 -0.310
Distance -0.019 -0.050 -0.006 -0.009
Peak-hour travel 0.155 0.404 0.089 0.015
Number of vehicles -0.085 -0.221 0.236 -0.052

As indicated in Section 3.3, the calibration problem in this study is quite complex
considering the multi-dimensional nature associated with the search cost model.
Changes in one travel dimension could lead to changes in the final model results. This
proposes a calibration algorithm and proves that the algorithm is able to reduce the
overall model result errors, which would be considered a success in the calibration

process.

5.4.2 Validation results

Even though the objective function of the calibration algorithm is to minimize the
difference between observed traffic counts and simulated link volumes, this section
validates results in other behavior dimensions (i.e., mode choice, destination choice,
and TOD) to have a comprehensive assessment of the model performance. As

illustrated in Section 3.3, 2007/2008 HTS data are used to validate model results. The
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survey data are expended based on the survey weights in the modeling area to be
comparable with model results. All the model results and observations are reported at

the trip level.

Figure 5-5 presents the aggregate share of the observed and estimated trip travel mode
choice. Results suggest that the proposed integrated model could replicate the observed
travel mode share fairly good. However, the proposed model overestimates the single-
occupancy-vehicle (SOV) share by over 3% and slightly underestimates other modes.
It is important to note is that the travel mode school bus, which is explicitly modeled

in InSITE, is considered part of the transit mode.
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Figure 5-5 Observed and Simulated Trip Mode Shares

Figure 5-6 demonstrates the observed and simulated trip length distribution at a five-

mile interval. In summary, the integrated model tends to overestimate the trip length as
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higher percentages are seen in both 5-9.99 and 10-14.99 bins. Despite the errors, the

integrated model does reflect the overall trip length distribution as observed in HTS.
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Figure 5-6 Observed and Simulated Trip Distance Distributions

Figure 5-7 reports the observed and simulated trip time-of-day distribution. The results
suggest that the integrated model overestimates trip departures in both morning and
afternoon peaks. In general, the integrated model tends to underestimate the congestion
level in the network based on the validation results in Figure 5-5, Figure 5-6, and
Figure 5-7. Consequently, travelers in the proposed model are likely to drive alone,
take longer paths, and depart during rush hours as a result of the underestimated

congested travel time.
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Figure 5-7 Observed and Simulated TOD Distributions

In addition to survey data, this study also validates assignment results with traffic
counts. The primary focus of the assignment validation is the ability of the integrated
model assignment to reproduce observed daily traffic volumes. This validation can be
considered a model system validation, since it will be impacted by the travel models

embodied in both InSITE and DTALite.

Table 5-4 Validation by Function Class

Function Class Percent Difference
Interstate 4.75%
Freeway -6.24%
Primary Arterial -7.78%
Minor Arterial 9.06%
Collector & Others 16.65%
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Assignment Validation
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Figure 5-8 Assignment Results Compared with Observations

Table 5-4 reports the validation results by function classes. The percent difference for
the majority of function classes is within 10%. It is worth noting that the model tends
to overestimate the volume on lower facility types such as minor arterials and
collectors. This is probably because these facilities are underrepresented in the network,
meaning that not all local roads are included in the network. Consequently, more traffic
is diverted to minor arterials and collectors. However, assignment results at various
function classes are within the accepted accuracy range in general. Figure 5-8 plots the
simulated assignment results against traffic counts. The dashed line represents the 45-

degree line where simulated results match the observed link volumes exactly. The
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overall assignment performance could replicate the observed pattern, with some
outliers. To further analyze the validation results, Figure 5-9 illustrates the geographic
distribution of the over- and underestimated links. Blue links represent links that are
underestimated while red links represent overestimated ones. Overall, the model tends

to underestimate traffic volumes on the Baltimore beltway but overestimate on I-70

and northern 1-95 towards Baltimore.
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Figure 5-9 Locations of Over- and Underestimated Links

5.5 Application Results
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With the help of longitudinal information, rich behavior dynamics can be observed in
the BUE-based integrated model. The unique search process embedded in the proposed
model acts like a comprehensive database where each behavioral decision during the
search process is recorded for every agent in the system. Figure 5-9 demonstrates how
the search gain and search cost ratio evolves during the search process for a specific
agent. Initially, all travel dimensions are rewarding for this agent (i.e., the gain/cost
ratio is larger than 1). This agent decides to search for alternatives in the most rewarding
dimension, which is the departure time choice. At iteration 2, this agent determines to
search for destination alternatives since destination choice is the dimension with the
highest gain/cost ratio. The search continues as the process iterates. Finally, this agent
stops searching at iteration 7 when the gain/cost ratios in all dimensions fall below 1,
meaning that another round of searching is no longer rewarding and this agent is
satisfied with the current travel plan. However, if external conditions alter (e.g.,
construction work in the neighborhood), this agent might change his/her aspiration
level and start the search process again. Figure 5-9 only describes the search dynamics
for one particular travel. Eventually, when all travelers in the system stop searching for

new alternatives, the BUE condition has been reached.
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Gain/Cost Ratio Changes
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Figure 5-10 Changes of Gain/Cost Ratio over Iterations

Figure 5-10 illustrates the convergence of multi-dimensional behaviors where the
percentage of the population searching for alternatives in four dimensions are reported.
The preliminary results suggest that people tend to search for alternative routes at the
beginning. Later, departure time options are explored. The low percentage of people
search for destination or mode alternatives. The result indicates that the BUE is reached
after around 11 iterations when no one in the system is searching for new alternatives.
This is also in line with the travel behavior observed in reality. For instance, it would
take a person a few days (no more than ten days) to find the satisfied travel pattern if

this person is new to a place or turbulence occurs in the external transportation system.
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Figure 5-11 Convergence of the Integrated Model

In addition to the model convergence, more behavior dynamics in various travel
dimensions can be observed from the proposed model. Figure 5-11 illustrates the mode
share changes at the trip level in the search process. At the first iteration, individuals
tend to drive since free flow travel time was used in the system. As the search process
iterates, individuals tend to switch to other mode alternatives when the traffic

congestion is taken into consideration.
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Mode Share Changes
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Figure 5-12 Mode Share over Iteration

5.6 Practical Implementation of Fast Convergence and Runtime

One major motivation of this dissertation is the excessively long runtime associated
with the integrated ABM and DTA model. With the implementation of BUE theory,
plus the speed boost in both InSITE and DTALite, the integrated model runtime has
reduced significantly. Currently, a complete 15-iteration BUE-based integrated model
takes 24 hours. A detailed runtime breakdown for a 15-iteration model run is shown in

Table 5-5.
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Table 5-5 A 15-Iteration Model Runtime Breakdown

Runtime (hrs)

InSITE ABM 9
DTALite 11
Search process 1
CUBE skim conversion 3
Total 24

Previously, a sequentially integrated InSITE and DTALite model would take 30 hours
per iteration. Currently, a BUE-based InSITE and DTALite integrated model only
consumes 1.6 hours per iteration on average. Even though the BUE-based integrated
model would require more iterations to converge, the overall runtime has decreased
greatly. A detailed runtime comparison between a sequentially integrated model and
BUE-based integrated model is presented in Table 5-6. With accelerating InSITE ABM
and DTALite, and by implementing the BUE approach, the overall model runtime has

been improved by almost 19 times.

Table 5-6 Runtime Comparison

Sequential ABM-DTA  BUE-Based

Integration (hrs) Integration (hrs)
1-Iteration ABM 16 0.6
1-Iteration DTA 2.5 0.75
1-Iteration Integrated Model 30 1.6
A Complete Run with 15 Feedback Loops 450 24

Bringing down the integrated model runtime to a time frame of one day has two major
practical values. First, it allows for many more practitioners to actually start using this
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modeling tool for application purposes without having to wait days or even weeks to
see the model results. The sequentially integrated InSITE and DTALite model
developed for the BMC area in the SHRP2 program takes more than a week to run; it
is difficult for BMC to use this model because of the runtime. Second, only with a
runtime of one day or so could the proposed calibration approach be possible. As
described in Section 3.2, the calibration algorithm takes 30 iterations. In other words,
the calibration process with the sequential integration would take around 562 days,
which makes it impossible to implement. In general, the runtime improvement itself is
a major contribution of this dissertation as it allows agencies to actually implement the

integrated AMB and DTA model within a reasonable time frame.

5.7 Summary

This chapter applies the proposed BUE-based ABM and DTA integrated framework to
the Washington-Baltimore metropolitan area network. InNSITE ABM and DTALite
models are integrated based on the BUE theory. Brief introductions on InSITE and
DTALite models are given. A Python wrapper is developed to execute various
components in the framework and enables efficient data exchange. To enhance the
BUE theory to a tour-based environment, several rules are proposed in this chapter. To
further accelerate the major model components, InNSITE ABM and DTALite, the
advanced computing technology (multi-processing) and fast time-dependent skim

generation program are implemented. Multi-processed InSITE ABM now runs four
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times faster than the original version. The new time-dependent skim generation method

saves about 26 hours for the overall integrated model runtime.

In addition to the significant runtime savings, various model results are also provided.
This chapter first reports the calibration and validation results. SPSA coefficients and
calibrated search cost model parameters are reported. Model results in various behavior
dimensions after calibration are validated against HTS data. The validation results
suggest that the integrated model could replicate observed travel patterns but tend to
underestimate the congestion level in the network. The overall SPSA algorithm
performance indicates that the calibration process can reduce the percent difference
between simulated link volumes and traffic counts to below 10%. Specific traffic
assignment results and validation by function classes are also reported. Considering the
complexity associated with the calibration approach, the performance of the calibration

algorithm is considering satisfactory.

One major advantage of the proposed integrated model is to record the multi-
dimensional travel dynamics. Rich behavior dynamics at both the individual level and
the system level are presented in this chapter. At the individual level, the search gain
and cost ratio over model iterations is shown, which could reveal the travel decision
dynamics for a specific traveler with regards to when this person starts/stops searching
for alternatives and what travel dimensions this traveler searches at each iteration. At
the system level, the model convergence and mode share changes over iterations are

also exhibited. Information regarding what travel dimensions people tend to search and
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when the system reaches BUE can be easily identified. With the implementation of the

BUE theory, the analysis capability of the integrated model has been enhanced.
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Chapter 6 Conclusions

6.1 Research Summary

Advances in information technology and modeling methodology drives innovations in
travel demand modeling. More and more new travel demand models have been
developed in recent decades. One major motivation of this dissertation is a practical
challenge in the travel demand modeling field: how to properly integrate ABM and
DTA models. Specific challenges include an extremely long model runtime and slow
model convergence. To resolve this modeling challenge, this dissertation proposes to

employ an innovative behavioral theory, BUE, to link ABM and DTA models.

The BUE-based integration approach proposed in this dissertation contributes to the
literature mainly in two ways. Firstly, the BUE theory provides an alternative way to
look at the decision-making process when modeling travel demand. With imperfect
information and satisficing behavior, BUE theory employs an agent-based modeling
approach that emphasizes the role of learning and searching behavior involved in the
travel decision-making process. Travelers in the system no longer follow a predefined
decision-making order (e.g., activity generation, destination choice, TOD choice, mode
choice, and route choice). The multi-dimensional search mechanism in BUE theory
better describes the complex process of making travel decisions. Furthermore, the

agent-based modeling approach enables the capture of more behavior dynamics. As
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demonstrated in Section 5.5, the behavior dynamics of an individual or the whole
system can be recorded, which increases the analysis capability of the proposed

integrated model.

Second, the BUE-based integration approach reduces the model runtime significantly
as a result of a new convergence definition. Previous integration methods measure the
model convergence from a network-wide point of view. DTA models must run
iteratively to reach the user equilibrium condition first. The integrated model then needs
to run iteratively to ensure that congestion is properly reflected. The BUE-based
integration approach, however, measures the model convergence from an individual
point of view, thanks to the agent-based modeling method. The model reaches
behavioral user equilibrium when all agents are satisfied with their travel options and
no longer search for travel alternatives. In this way, the ABM model only needs to
execute for a proportion of the agents who search for travel alternatives and the DTA
model only runs once for each integrated model iteration. Consequently, the model

runtime is decreased substantially.

To implement the BUE theory in integrating ABM and DTA models, a Python program
is developed to mimic the search process in the decision-making procedure. The Python
program calculates the search gain and search cost associated with the search process
for each traveler in the system and decides whether to search for new travel alternatives.
The Python program acts like a program wrapper that also calls components in ABM

and DTA models. Intermediate steps are also developed to convert data formats
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required by different model components and to ensure efficient data exchange

processes.

The BUE-based integration framework has been applied to the Washington-Baltimore
metropolitan area. InNSITE ABM is integrated with DTALite in this region based on the
BUE theory. To further accelerate the integrated model, advanced computing
technologies are developed to boost both INSITE and DTALite. The integrated InSITE
and DTALite model only takes about 24 hours to run compared to weeks in a typical
sequential integrated model. In addition to runtime savings, model calibration and
validation results suggest acceptable assignment results. Various model results
illustrating behavior dynamics are also presented in the dissertation to further

demonstrate expended analysis capability.

Lastly, this dissertation demonstrates how passively collected data can provide
valuable information for developing cutting-edge travel demand models. To keep pace
with the big data era, new travel demand models must take advantage of this big data
source to supplement or even replace traditional travel surveys. Passively collected data
are easier to obtain and typically come with large volumes. Researchers need to develop
advanced data mining and machine learning models to extract useful facts from this
data source. This dissertation illustrates how mode information can be inferred from
smartphone GPS data. Even though more information must be detected from passively

collected data, such as trip purposes and socio-demographic information, this
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dissertation sheds light on a promising data source for advanced travel demand

modeling purposes.

6.2 Discussions and Future Research

As travel demand models evolve, impractical behavior assumptions must be relaxed
and a travel decision-making process that is closer to a real-world situation must be
developed. The BUE principle attempts to provide an alternative theory to explain
people’s travel behavior other than the normative theory. Admittedly however,
limitations exist when applying the BUE principle to integrate ABM and DTA models.
One limitation is that major components in typical ABMs, such as discrete choice
models, are based on the normative theory. The normative theory emphasizes the
assumption of perfect information and complete rationality, which contradicts the
positive theory embedded in the BUE principle. One can argue that the positive theory
only describes the overall decision-making process while the normative theory explains
the behavior in each specific travel dimension. This is also similar to the situation in
hybrid approach-based ABMs, which attempt to combine econometric-based models
with agent-based models. The underlying behavior assumptions are not consistent in
either of those ABMs. Furthermore, econometric-based models have been widely
applied in the field of travel demand modeling and established high credibility. It might
take a leap of faith to replace the entire econometric-based models with positive theory-

based models.
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In this dissertation, only travel mode information is detected from passively collected
data. Future research should explore more valuable trip-related information from
passively collected data. Researchers have been working on imputing missing
information such as trip purposes and users’ socio-demographic data (Tang, Pan, &
Zhang, 2018; Zhu, Gonder, & Lin, 2017). Passively collected data could completely
replace the traditional travel-diary type of surveys if trip purpose and socio-
demographic information are accurately predicted. With the wide coverage of passively
collected data, this data source could play a much more critical role in advanced travel

demand analysis in the future.

Recognizing the value of passively collected data, the Federal Highway Administration
(FHWA) has supported a series of Exploratory Advanced Research programs to look
at how data collected from smartphones and other smart devices could supplement or
even replace traditional travel surveys. The low cost associated with the data collection
and easy access to reaching a large group of the population are advantages that
traditional survey approaches cannot provide. Especially for methodologies like BUE
theory that emphasizes modeling people’s behavior dynamics, panel data or repeated
observations are preferred. Traditional surveys focus only on one cross section while
passively collected data can easily reveal repeated observations for an object over a
long period. Rich information regarding the travel behavior adjustment process can be
detected from this data sources. The model calibration approach proposed in this study

is only a short-term solution. For a long-term point of view, longitudinal behavior data
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are still needed to estimate the search cost model parameters. Passively collected data
has the potential to provide this type of information without expensive behavioral

surveys.

117



Appendices

Appendix A: Integration Implementation Code

nmnn

BUE-based Integrated InSITE and DTALite

@author: dyangl14

nmnn

import pandas as pd

import numpy as np

import os

import subprocess

from simpledbf import Dbf5
import shutil

itern_num = 15

dir_integrated = "G:/MITAMS InSITE ABM-DTALite Clean Set Up/"

dir_insitel ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model Run
1/dist/bin/"

dir_insite2 = "G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model Run
2+/dist/bin/"

dir_insitel 1 ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model
Run 1 _1/dist/bin/"

dir_insitel 2 ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model
Run 1 2/dist/bin/"

dir_insitel 3 ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model
Run 1 3/dist/bin/"

dir_insitel 4 ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model
Run 1 4/dist/bin/"

dir_insitel 5 ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model
Run 1 _5/dist/bin/"

dir _datal ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model Run
1/dist/data/"

dir_data2 = "G:/MITAMS InSITE ABM-DTALite Clean Set Up/InSITE Model Run
2+/dist/data/"

dir R ="C:/Users/carrion/Documents/R/R-3.3.2/bin/Rscript.exe"

dir Cube ="C:/Program Files (x86)/Citilabs/CubeVoyager/runtpp.exe"
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dir BUE ="G:/MITAMS InSITE ABM-DTALite Clean Set Up/Di_BUE/"

def RunInSITE(start,end):
print "Running Customized InSITE from %d to %d" %(start, end)
os.chdir(dir_insite2)
subprocess.call([dir_insite2+"ComponentLauncher.exe", "%d" %start, "%d"
%end])

def RunDTALite():
print "Running DTALite"
os.chdir(dir_data2)
subprocess.call(dir data2+"DTALite.exe")

def RunCUBE():
print "Running CUBE Script"
cmd = [dir_Cube,dir_data2+"ConvertToCubeSkims.s"]
subprocess.call(cmd)

def RunR(module):
print "Running R Script " + module
cmd = [dir_R, "--vanilla", dir BUE+"agent filter "+module+".R"]
subprocess.call(cmd)

#Run InSITE with free flow condition
print 'Running InSITE with free flow speed (1st iteration)'

cwd = os.path.join(os.path.dirname(__ file ))
scenario_dir = os.path.abspath(os.path.dirname(cwd))
multithread dir = "%s\\Cube\\"%scenario_dir

#Multiprocessing of InSITE

dirlist = [dir_insitel 1, dir_insitel 2, dir insitel 3, dir_insitel 4, dir_insitel 5]
processes = [subprocess.Popen([multithread dir +
dirlistelement],cwd=multithread_dir) for dirlistelement in dirlist]

exitcodes = [p.wait() for p in processes]

#Run DTALite
RunDTALite()

#Convert DATLite skims to CUBE skims
RunCUBE()

#Test model convergence
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RunR('ConvergenceScript')

#Analysis DTA outputs and run BUE analysis (2+ iteration)

print 'Initialization: seize population information and calculate search cost'
os.chdir(dir_data2)

shutil.copyfile('persons.dbf','persons_temp.dbf")

person_info dbf = Dbf5("persons_temp.dbt")

person_info = person_info dbf.to dataframe()

search outcome d = pd.read csv('search outcome d.csv')
search_outcome m = pd.read csv('search_outcome m.csv')

search outcome t=pd.read csv('search outcome t.csv')
search_outcome r=pd.read csv('search outcome r.csv')
search_outcome d = search outcome d.set index('person tour stop')
search_outcome m = search outcome m.set_index('person_tour stop')
search outcome t = search outcome t.set index('person tour stop')
search_outcome r = search outcome r.set index('person_tour stop')
search count d =pd.read csv('search count d.csv')

search_count m = pd.read csv('search _count m.csv')

search count t=pd.read csv('search count t.csv')

search _count r = pd.read csv('search count r.csv')

search count d = search count d.set index('person_tour stop')
search_count m = search count m.set_index('person_tour_stop')
search count t=search count t.set index('person_tour stop')
search_count r=search count r.set index('person_tour stop')
search dimension = pd.read csv(‘output test dimension.csv')
search_dimension['id'] = search_dimension['person_tour stop']

search dimension = search_dimension.set index('id")

for iterate in range(2,itern_num-+1):

#print iterate

shutil.copyfile("TripModes modified.dbf,'TripModes modified temp.dbt')

input_agent = pd.read_csv('input_agent_test.csv')

output_agent = pd.read csv(‘output agent.csv')

trip_mode dbf = Dbf5('TripModes_modified temp.dbf")

trip_ mode = trip_mode dbf.to dataframe()

trip_mode['person_tour stop'] = trip_mode['personld'].map(str) +' '+
trip_mode['tourld'].map(str) +' '+ trip_mode['halfTour'].map(str) +"' '+
trip_mode('stopld'].map(str)

input_agent['person_tour stop'] = input_agent['person id'].map(str) +' '+
input_agent['tour_id'].map(str) +' '+ input_agent['half tour id'].map(str) +' '+
input_agent['stop_id'].map(str)

trip_mode['person_tourld'] = trip_mode['personld'].map(str) +' '+
trip_mode['tourld'].map(str)
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agent_join =
trip_mode.merge(input_agent[['person_tour stop','agent id']],how="left'left on='pers
on_tour stop',right on='person_tour stop')

agent join = agent join.merge(output agent[['agent id',’ distance',’
travel time in min']],how='"left',left on="agent id',right on='agent id')

#Fill Nan with travel time from TripModes

agent_join[' travel time in min'] = agent join['
travel time in min'].fillna(agent join['travTime'])

agent join[' distance'] = agent join[' distance'].fillna(agent join['distance'])

agent _combine =
agent_join.merge(person_info[['PERSONID','AGE',/GENDER','HHINCS5S'],how='"le
ft',left on='"personld',right on="PERSONID")

agent_combine = agent _combine.sort_values('personld')

agent_combine['id'] = agent combine['person_tour stop']

agent_combine = agent combine.set_index('id')

#convert purpose & income to dummy
agent_combine['purpose _dummy'] = np.where(agent combine['tourld']<3,1,0)
depart time = agent combine['dep_time']
agent_combine['peak'] = np.where((depart_time >= 420 and num <= 540) or
(num >= 1020 and num <= 1140),1,0)
agent_combine = pd.get dummies(data=agent combine, columns=["HHINC5S'])

agent_combine['cost dest'] = 1.076 + 0.058 * agent combine['travTime'] + 0.035 *
agent_combine['GENDER'] + 0.472 * agent combine['HHINCS5S 0.0']+0.213 *
agent_combine['HHINCS5S 1.0'] -0.050 * agent combine[' distance'] -0.253 *
agent _combine['purpose_dummy'] + 0.404 * agent combine['peak'] + 0.296 *
agent _combine['cars']

agent _combine['cost TOD'] = 0.54 + 0.006 * agent combine['travTime'] + 0.128 *
agent_combine['GENDER'] -0.215 * agent combine['HHINCS5S 0.0'] - 0.226 *
agent_combine['HHINC5S 1.0 -0.006 * agent combine[' distance'] -0.072 *
agent_combine['purpose _dummy'] + 0.089 * agent combine['peak'] + 0.154 *
agent_combine['cars']

agent_combine['cost mode'] =2.203 + 0.022 * agent combine['travTime'] + 0.013
* agent_combine['GENDER'] +0.181 * agent combine['HHINC5S 0.0'] + 0.082 *
agent_combine['HHINCS5S 1.0']-0.019 * agent combine[' distance'] -0.097 *
agent _combine['purpose_dummy'] + 0.155 * agent_combine['peak'] + 0.114 *
agent _combine['cars']

agent combine['cost_route'] =0.336 + 0.001 * agent combine['travTime'] + 0.147
* agent_combine['GENDER'] -0.448 * agent combine['HHINC5S 0.0'] -0.310 *
agent_combine['HHINCS5S 1.0 -0.009 * agent combine[' distance'] +0.147 *
agent_combine['purpose_dummy'] + 0.015 * agent combine['peak'] +0.172 *
agent_combine['cars']
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search outcome d = search outcome d.merge(agent combine[['
travel time in min']],how="left',left index=True,right index=True)

search_outcome m = search outcome m.merge(agent combine][['
travel time in min']],how="left',left index=True,right index=True)

search outcome t = search outcome t.merge(agent combine[['
travel time in min']],how="left',left index=True,right index=True)

search outcome r = search outcome r.merge(agent combine[|['
travel time in_min']],how="left'left index=True,right index=True)

search outcome d = search outcome d.rename(columns={'
travel time in min":'DTA_time %d'%iterate})

search outcome m = search outcome_d.rename(columns={'
travel time in min":'DTA_time %d'%iterate})

search outcome t=search outcome d.rename(columns={'
travel time in min":'DTA_time %d'%iterate})

search outcome r = search outcome d.rename(columns={'
travel time in min":'DTA_time %d'%iterate})

agent_combine['gain_dest %d'%iterate] = None
agent combine['gain TOD %d'%iterate] = None
agent_combine['gain_mode %d'%iterate] = None
agent combine['gain_route %d'%iterate] = None
search_dimension['dimension_%d'%iterate] = 0

for index, row in agent_combine.iterrows():

agent combine.loc[index,'gain_dest %d'%iterate] = (-
row['travTime']*gain_percent +
search outcome d.loc[row['person_tour stop']].max())/(search count d.loc[row['per
son_tour_stop'],'count'] +1)

agent combine.loc[index,'gain_ TOD %d'%siterate] = (-
row['travTime']*gain_percent +
search outcome _t.loc[row['person_tour stop']].max())/(search _count t.loc[row['pers
on_tour stop'],'count'] +1)

agent combine.loc[index,'gain_mode %d'%iterate] = (-
row['travTime']*gain_percent +
search _outcome m.loc[row['person_tour stop'l].max())/(search _count m.loc[row['pe
rson_tour_stop'],'count'] +1)

agent combine.loc[index,'gain_route %d'%iterate] = (-
row['travTime']*gain_percent +
search outcome r.loc[row['person_tour stop'l].max())/(search count r.loc[row['pers
on_tour stop'],'count'] +1)

if (
agent combine.loc[index,'gain_dest %d'%iterate] >
agent_combine.loc[index,'cost_dest'] and

122



agent combine.loc[index,'gain_dest %d'%iterate] -
agent _combine.loc[index,'cost dest'] >
agent combine.loc[index,'gain_ TOD %d'%:iterate] -
agent_combine.loc[index,'cost TOD'] and

agent combine.loc[index,'gain_dest %d'%iterate] -
agent _combine.loc[index,'cost dest'] >
agent combine.loc[index,'gain_mode %d'%iterate] -
agent_combine.loc[index,'cost mode'] and

agent combine.loc[index,'gain_dest %d'%iterate] -
agent _combine.loc[index,'cost dest'] >
agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost_route']

):
search_count_d.loc[row['person_tour stop'],'count'] +=1
search_dimension.loc[row['person_tour stop'],'dimension_%d'%iterate] = 1

elif (
agent_combine.loc[index,'gain TOD %d'%iterate] >
agent _combine.loc[index,'cost TOD'] and
agent_combine.loc[index,'gain TOD %d'%iterate] -
agent_combine.loc[index,'cost TOD'] >
agent combine.loc[index,'gain_dest %d'%iterate] -
agent_combine.loc[index,'cost dest'] and
agent_combine.loc[index,'gain TOD %d'%iterate] -
agent_combine.loc[index,'cost TOD'] >
agent combine.loc[index,'gain_mode %d'%iterate] -
agent_combine.loc[index,'cost mode'] and
agent_combine.loc[index,'gain TOD %d'%iterate] -
agent_combine.loc[index,'cost TOD'] >
agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost route']
):
search count_t.loc[row['person_tour stop'],'count'] += 1
search_dimension.loc[row['person_tour stop'],'dimension %d'%iterate] = 2

elif (

agent combine.loc[index,'gain_mode %d'%iterate] >
agent_combine.loc[index,'cost_mode'] and

agent combine.loc[index,'gain_mode %d'%siterate] -
agent_combine.loc[index,'cost_ mode'] >
agent combine.loc[index,'gain_ TOD %d'%siterate] -
agent_combine.loc[index,'cost TOD'] and

agent combine.loc[index,'gain_mode %d'%iterate] -
agent_combine.loc[index,'cost_ mode'] >
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agent combine.loc[index,'gain_dest %d'%iterate] -
agent_combine.loc[index,'cost_dest'] and

agent combine.loc[index,'gain_mode %d'%siterate] -
agent_combine.loc[index,'cost_ mode'] >
agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost_route']

):
search_count_m.loc[row['person_tour stop'],'count'] +=1
search_dimension.loc[row['person_tour stop'],'dimension %d'%iterate] = 3

elif (

agent combine.loc[index,'gain_route %d'%iterate] >
agent _combine.loc[index,'cost route'] and

agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost route'] >
agent_combine.loc[index,'gain TOD %d'"%iterate] -
agent _combine.loc[index,'cost TOD'] and

agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost route'] >
agent combine.loc[index,'gain_dest %d'%iterate] -
agent_combine.loc[index,'cost dest'] and

agent combine.loc[index,'gain_route %d'%iterate] -
agent_combine.loc[index,'cost route'] >
agent combine.loc[index,'gain_mode %d'%iterate] -
agent _combine.loc[index,'cost mode']

):
search _count_r.loc[row['person_tour stop'],'count'] +=1
search_dimension.loc[row['person_tour stop'],'dimension %d'%iterate] = 4

search_outcome d['DTA time %d'%iterate]=None
search_outcome m['DTA time %d'%iterate]=None
search_outcome t['DTA time %d'%iterate]=None
search_outcome r['DTA time %d'%iterate]=None

agent combine['gain_dest %d'%iterate] = None

agent_combine['gain TOD %d'%iterate] = None
agent combine['gain_mode %d'%iterate] = None
agent_combine['gain_route %d'%iterate] = None

test_switch = search_dimension.copy()

test dest = test _switch[test switch['dimension_1']==1].copy()

test TOD =test switch[test switch['dimension_1']==2].copy()

test mode = test_switch[test switch['dimension_1']==3].copy()

test_route = test switch[(test_switch['dimension_1']==4) &
(test_switch['tripMode']<4)].copy()
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MTOD agent = test TOD[(test TOD['tourld']==1) | (test. TOD['tourld"]|==2)]
MTOD agent =MTOD agentfMTOD agent['tourPurp'] ==
MTOD _agent['purpose']]
MTOD_agent.to csv('MTOD agent.csv',index=False,header=True)
FJD agent = test_dest[(test dest['tourld']==10) | (test_dest['tourld']==11)]
FJD agent=FJD agent[FJD_ agent['tourPurp'] == FJD_agent['purpose']]
FJD agent.to_csv('FJD_agent.csv',index=False,header=True)
FJITOD agent = test TODJ[(test TOD['tourld']==10) |
(test TOD['tourld']==11)]
FJTOD agent=FJTOD agent[FJTOD agent['tourPurp'] ==
FIJITOD agent['purpose']]
FITOD agent.to csv('FJTOD_ agent.csv',index=False,header=True)
INMD_agent = test_dest[(test dest['tourld']==50) | (test_dest['tourld']==51) |
(test_dest['tourld']|==52)]
INMD agent = INMD agent[INMD agent['tourPurp'] ==
INMD agent['purpose']]
INMD _agent.to_csv('INMD_agent.csv',index=False,header=True)
INMTOD _ Escort agent =test TODJ[(test TOD['tourld']==50) |
(test TOD['tourld']==51) | (test TOD['tourld']==52)]
INMTOD Escort agent =
INMTOD _Escort_agent[INMTOD Escort_agent['tourPurp'] == 1152]
INMTOD Escort agent =
INMTOD_Escort _agent[INMTOD Escort agent['tourPurp'] ==
INMTOD Escort _agent['purpose'] ]
INMTOD_ Escort agent.to_csv('INMTOD_Escort agent.csv',index=False,hea
der=True)
INMTOD agent = test TOD[(test TOD['tourId']==50) |
(test TOD['tourld']==51) | (test TOD['tourld']==52)]
INMTOD _agent = INMTOD agent[INMTOD agent['tourPurp'] != 1152]
INMTOD agent=INMTOD_ agent[INMTOD agent['tourPurp'l ==
INMTOD_agent['purpose']]
INMTOD agent.to csv('INMTOD agent.csv',index=False,header=True)
TMC agent = test mode[test mode['tourPurp'] == test mode['purpose']]
TMC agent = TMC agent[(TMC_agent['tourld"']!=90) &
(TMC_agent['tourId']!=91)]
TMC agent.to _csv("TMC_agent.csv',index=False,header=True)
WBD agent = test_dest[(test_dest['tourld']==90) | (test_dest['tourld']==91)]
WBD agent = WBD agent[ WBD_agent['tourPurp'] ==
WBD_agent['purpose']]
WBD_agent.to csv("WBD_agent.csv',index=False,header=True)
WBTOD agent =test TOD[(test TOD['tourld']==90) |
(test TOD['tourld']==91)]
WBTOD agent = WBTOD agentfWBTOD agent|['tourPurp'] ==
WBTOD _agent['purpose']]
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WBTOD_agent.to csv('WBTOD_agent.csv',index=False,header=True)
WBMC agent = test mode[test mode['tourPurp'] == test mode['purpose']]
WBMC agent = WBMC agent[( WBMC _agent['tourld']==90) |
(WBMC _agent['tourld']==91)]
WBMC agent.to csv('WBMC agent.csv',index=False,header=True)
STOPD Home agent = test dest[test dest['tourPurp'] != test_dest['purpose']]
STOPD Home agent =
STOPD Home agent[STOPD Home agent['purpose']!=2048]
STOPD Home agent =
STOPD Home agent[(STOPD Home agent['tourld]!=90) &
(STOPD_Home agent['tourld']!'=91)]
STOPD Home agent.to _csv('STOPD Home agent.csv',index=False,header=
True)
STOPD Work agent = test dest[test dest['tourPurp'] != test dest['purpose']]
STOPD Work agent =
STOPD Work agent[STOPD Work agent['purpose']!=2048]
STOPD Work agent =
STOPD Work agent[(STOPD Work agent['tourld']==90) |
(STOPD_Work agent['tourld']==91)]
STOPD Work agent.to csv('STOPD Work agent.csv',index=False,header=
True)
STOPTOD Home agent =test TOD[test TOD['tourPurp'] !=
test TOD['purpose']]
STOPTOD Home agent =
STOPTOD_ Home agent[STOPTOD Home agent['purpose'|!=2048]
STOPTOD Home agent =
STOPTOD_ Home agent[(STOPTOD Home agent['tourld']!'=90) &
(STOPTOD Home agent['tourld']!=91)]
STOPTOD Home agent.to csv('STOPTOD agent.csv',index=False,header=
True)
STOPTOD_ Work agent =test TOD[test TOD['tourPurp'] !=
test TOD['purpose']]
STOPTOD Work agent =
STOPTOD Work agent[STOPTOD Work agent['purpose']!=2048]
STOPTOD Work agent =
STOPTOD Work agent[(STOPTOD Work agent['tourld']==90) |
(STOPTOD_ Work agent['tourld']==91)]
STOPTOD Work agent.to csv('STOPTOD Work agent.csv',index=False,he
ader=True)
TRIPMC agent = test mode[test mode['tourPurp'] !=test mode['purpose']]
TRIPMC agent = TRIPMC agent[TRIPMC agent['purpose']!=2048]
TRIPMC agent.to_csv('TRIPMC agent.csv',index=False,header=True)
test route.to_csv('Route agent.csv',index=False,header=True)

#Run R to update InSITE input files
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RunR('MTOD")
RunR('FID")
RunR(FJTOD")
RunR(INMD")
RunR(INMTOD")
RunR('TMC'")
RunR('WBD')
RunR('WBTOD')
RunR('WBMC))
RunR('STOPD')
RunR('STOPTOD")
RunR('TRIPMC))

#Run InSITE to update agents' choices
RunInSITE(16,16)
RunInSITE(19,19)
RunInSITE(20,20)
RunInSITE(23,24)
RunInSITE(25,26)
RunInSITE(28,28)
RunInSITE(31,31)
RunInSITE(32,32)
RunInSITE(34,34)
RunInSITE(36,36)
RunInSITE(37,37)
RunInSITE(38,38)

#Update Trip Modes file to reflects changes
RunR('Trip_Modes update')

#Generate new input_agent file for the next iteration
RunInSITE(39,39)

#Update agents with route changes

os.chdir(dir _data2)

input_agent new = pd.read_csv('input_agent_test.csv')
input_agent new = input_agent new.drop('path node sequence', 1)

agent joint =
input_agent new.merge(output agent[['agent id','path node sequence']],how="left',le
ft on='agent id',right on='agent id'")

agent_joint['person_tour stop'] = agent joint['person_id'].map(str) +' '+
agent joint['tour id']l.map(str) +' '+ agent joint['half tour id"].map(str) +' '+
agent_joint['stop id'].map(str)
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test_route['person_tour stop'] = test route['personld'].map(str) +' '+
test_route['tourld'].map(str) +' '+ test route['halfTour'].map(str) +' '+
test_route|['stopld'].map(str)

route list=list(set(test _route['person_tour stop']) &
set(agent_joint['person_tour stop']))

agent joint = agent joint.set_index('person_tour stop')

agent_joint.loc[route list,'path node sequence']l = None

agent joint.to_csv('input_agent.csv')

#Run DTALite to generate time-dependent skims
RunDTALite()

#Convert DATLite skims to CUBE skims
RunCUBE()

#Test model convergence
RunR('ConvergenceScript')
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Appendix B: SPSA Code

nmn

A class to implement Simultaneous Perturbation Stochastic Approximation.

@author: Di Yang

import pdb

import numpy as np

from InSIATE DTALite import *

class SimpleSPSA (object):
"""Simultaneous Perturbation Stochastic Approximation.
# These constants are used throughout
alpha = 0.602
gamma = 0.101

nman

def init (self, loss_function, a_par=3e-11, noise_var=0.101, args=(),
min_vals=None, max_vals=None, \
param_tolerance=None, function tolerance=None, max_iter=1000):

"""The constructor requires a loss function and any required extra

arguments. Optionally, boundaries as well as tolerance thresholds can

be specified.

:param loss_function: The loss (or cost) function that will be minimised.
Note that this function will have to return a scalar value, not a vector.

:param a_par: This is the “"a’" parameter, which controls the scaling of
the gradient. It's value will have to be guesstimated heuristically.

:param noise_var: The noise variance is used to scale the approximation
to the gradient. It needs to be >0.

:param args: Any additional arguments to “‘loss_function™".

:param min_vals: A vector with minimum bounds for parameters

:param max_vals: A vector with maximum bounds for parameters

:param param_tolerance: A vector stating the maximum parameter change
per iteration.

:param function_tolerance: A scalar stating the maximum change in
“loss_function" per iteration.

:return: None

self.args = args

self.loss = loss_function

self.min_vals = min_vals

self.max vals = max_vals
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self.param_tolerance = param_tolerance
self.function_tolerance = function_tolerance
self.c_par =noise var

self.max_iter = max_iter

self.big a par =100

self.a par=a par

def calc_loss(self, theta):
"""Evalute the cost/loss function with a value of theta
retval = self.loss(theta, * self.args)
return retval

nmnn

def minimise(self, theta 0, ens size=1, report=1):
"""The main minimisation loop. Requires a starting value, and optionally
a number of ensemble realisations to estimate the gradient.
:param theta 0: The starting value for the minimiser
:param ens_size: Number of relaisations to approximate the gradient.
:return: A tuple containing the parameters that optimise the function,
the function value, and the number of iterations used.
n_iter=0
num_p = theta 0.shape[0]
# print "Starting theta=", theta 0
theta = theta 0
j_old = self.calc_loss(theta)
# Calculate the initial cost function
theta saved = theta 0*100
while (np.linalg.norm(theta saved-theta)/np.linalg.norm(theta_saved) >\
le-8) and (n_iter < self.max_iter):
# The optimisation carried out until the solution has converged, or
# the maximum number of itertions has been reached.
theta saved = theta # Store theta at the start of the iteration
# as we may well be restoring it later on.
# Calculate the ak and ck scalars. Note that these require
# a degree of tweaking
ak = self.a_par/(n_iter + 1 + self.big_a par)**self.alpha
ck = self.c_par/(n_iter + 1)**self.gamma
ghat = 0. # Initialise gradient estimate
for j in np.arange(ens_size):
# This loop produces “‘ens_size"" realisations of the gradient
# which will be averaged. Each has a cost of two function runs.
# Bernoulli distribution with p=0.5
delta = (np.random.randint(0, 2, num _p) *2 - 1)
# Stochastic perturbation, innit
theta plus = theta + ck*delta
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theta plus = np.minimum(theta plus, self.max_vals)
theta plus = np.maximum(theta_ plus, self.min_vals)
theta minus = theta - ck*delta
theta_minus = np.maximum(theta minus, self.min_vals)
theta minus = np.minimum(theta_minus, self.max_vals)
# Funcion values associated with ““theta_plus’ and
# “theta minus’™”
j_plus = self.calc_loss(theta plus)
j_minus = self.calc loss(theta minus)
# Estimate the gradient
ghat = ghat + (j_plus - j_minus)/(2.*ck*delta)
# Average gradient...
ghat = ghat/float(ens_size)
# The new parameter is the old parameter plus a scaled displacement
# along the gradient.
not all pass = True
this_ak = (theta*0 + 1)*ak
theta new = theta
while not_all pass:
out of bounds = np.where(np.logical or(\
theta new - this_ak*ghat > self.max_vals,
theta new - this_ak*ghat < self.min_vals))[0]
theta new = theta - this_ak*ghat
if len(out_of bounds) == 0:
theta = theta - this_ak*ghat
not all pass = False
else:
this ak[out of bounds] = this ak[out of bounds]/2.
# The new value of the gradient.
j_new = self.calc_loss(theta)
# Be chatty to the user, tell him/her how it's going...
if n_iter % report == 0:
print "\tIter %05d" % n_iter, j_new, ak, ck
print "\tTheta %s" %theta
# Functional tolerance: you can specify to ignore new theta values
# that result in large shifts in the function value. Not a great
# way to keep the results sane, though, as ak and ck decrease
# slowly.
if self.function_tolerance is not None:
if np.abs(j_new -j old) > self.function_tolerance:
print "\t No function tolerance!", np.abs(j_new - j old)
theta = theta saved
continue
else:
j_old=j new
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# You can also specify the maximum amount you want your parameters
# to change in one iteration.
if self.param_tolerance is not None:
theta dif = np.abs(theta - theta saved)
if not np.all(theta dif < self.param_tolerance):
print "\t No param tolerance!", theta dif <\
self.param_tolerance
theta = theta saved
continue
# Ignore results that are outside the boundaries
if (self.min_vals is not None) and (self.max_vals is not None):
i_max = np.where(theta >= self.max_vals)[0]
1_min = np.where(theta <= self.min_vals)[0]
if len(i_max) > 0:
theta[i max] = self.max_vals[i_max]*0.9
if len(i_min) > 0:
theta[i_min] = self.min_vals[i_min]*1.1
n_iter += 1
return theta, j new, n_iter

def run_spsa(p_in):
min_theta=[0.01] * 32
max_theta =[100.0] * 32
opti = SimpleSPSA(errfunc, min_vals=min_theta, max vals=max_theta)
(xsol, j_opt, niter) = opti.minimise(theta0)
print xsol, j_opt, niter

" n

if name ==" main "
theta0 = np.ones(32)
run_spsa(theta0)
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