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At an ever increasing pace, synthetic biomaterials are being developed with 

specific functionalities for tissue engineering applications.  These biomaterials 

possess properties including biocompatibility, mechanical strength, and degradation 

as well as functionalities such as specific cell adhesion and directed cell migration.  

However, synthetic polymers are often not completely biologically inert and may 

non-specifically react with the surrounding in vivo environment.  An example of this 

reactivity is the release of acidic degradation products from hydrolytically degradable 

polymers based upon an ester moiety.  These degradation products can lower the local 

pH and incite an inflammatory response as well as increase scaffold degradation rate.  

Therefore there has been a concerted effort in the research community to develop 

alternatives.  

In order to address this concern, a novel class of biomaterials based upon a 

cyclic acetal unit has been developed and investigated for both soft and hard tissue 



  

repair.  This work specifically looks at a cyclic acetal biomaterial based on a 5-ethyl-

5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) monomer 

as a scaffold for abdominal wall hernia repair.   

Abdominal wall hernias are a growing concern for clinicians today as they 

occur in approximately 10% of all patients that undergo an abdominal procedure.  

Despite many advances in repair techniques, both wound healing and skeletal muscle 

regeneration is limited in many cases.  This results in both a decrease in abdominal 

wall tissue function as well as a hernia recurrence rate of up to 50%.   

To address this high recurrence rate this project aims to create a functional 

gene delivery scaffold from the EH monomer.  Scaffolds with different architectures 

were fabricated and skeletal muscle myoblast cell compatibility, material properties 

and protein and gene delivery rates were all investigated.   
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Chapter 1: Introduction 

 Synthetic biomaterials are often used clinically in the repair of both soft and 

hard tissues.  These materials can be tailored to exhibit physical properties that mimic 

the desired tissue as well as chemical properties that promote a desired biological 

function.  One drawback of these materials however is that they are not always 

biologically inert.  Once implanted they can induce an inflammatory response which 

can hinder healing.  This reaction occurs more strongly in degradable materials.  Most 

degradable materials take advantage of the hydrolytically degradable ester moiety, 

however this unit produces acidic byproducts.  This can lead to an increased 

inflammatory response as well as an increase in scaffold degradation.  Therefore there 

has been significant research into developing materials that have more biocompatible  

properties.  One such class of  materials incorporates a cyclic acetal monomer in 

place of an ester.  This cyclic acetal unit degrades hydrolytically into neutral diol and 

aldehyde byproducts.  This makes it an attractive choice for tissue repair strategies.   

 Specifically, this work investigates the use of a cyclic acetal biomaterial for 

the regeneration of skeletal muscle within an abdominal wall defect.  Abdominal wall 

hernias are an increasing problem in the United States with many cases going 

unreported and untreated.  Current repair techniques include xenografts, allografts 

and prosthetic meshes.  Despite these techniques, the hernia recurrence rate is as high 

as 50%.   

 To address this issue, scaffolds were fabricated from the cyclic acetal 

monomer 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate 

(EHD).  First the mechanical and biological compatibility of solid EH networks was 
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investigated.  Solid EH networks were fabricated and mechanical properties, cellular 

attachment and insulin-like growth factor 1 (IGF-1) protein release and viability were 

tested.  Second, the structural architecture of the EH scaffolds was altered to produce 

more desirable mechanical and physical properties.  To determine the effect changing 

scaffold architecture, the degradation and buffer pH change, as well as Young’s 

modulus and flexural strength were examined.  Third, the utility of these scaffolds as 

a gene delivery device was evaluated.  Specifically, the effect of the scaffold 

architecture on the release of a green fluorescent protein (GFP) plasmid as well as an 

IGF-1 GFP fusion gene plasmid was studied.  Overall, this work provides a 

comprehensive look at the design and characterization of an EH scaffold for skeletal 

muscle regeneration within an abdominal wall hernia defect. 
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Chapter 2: Recent Developments in Cyclic Acetal Biomaterials 

for Tissue Engineering Applications∗ 

Introduction 

Biomaterials fabricated from synthetic polymers have been exhaustively 

developed so as to possess both biocompatible and bioactive properties for 

biomedical and tissue engineering applications.1-3  Depending upon each application, 

a newly developed polymer needs to meet a specific set of requirements.  As a result, 

numerous studies have tailored polymers for individual applications by precisely 

controlling their chemical and physical properties.4-8  For example, synthetic 

polymers have been fabricated into specific shaped materials with desired pore 

morphologies to promote tissue in-growth.9-11  Indeed, a number of synthetic 

polymers have been successfully developed, and are now used widely in clinical 

applications.12, 13  

A major advantage of synthetic polymers is that they may be modified to 

support the incorporation of drugs, chemical moieties, cells, implants and devices, as 

well as micro- and macro-molecules.14-16  Furthermore, specific biological functions 

can be pre-programmed into polymer materials by incorporating any of a variety of 

molecules, including ligands, hormones, proteins, peptides, nucleotides, drugs, 

enzymes, vectors, and antibodies.17-19  Together, these physical and biological 

properties can create an optimal biomaterial whose main function is to act as a tissue 

                                                 
∗ This chapter was published as the following article: Falco, E.E., M. Patel, and J.P. Fisher, Recent 
developments in cyclic acetal biomaterials for tissue engineering applications. Pharm Res, 2008. 
25(10): p. 2348-56 
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substitute.  With the diversity of matrix components available, however, it may be 

possible for the polymeric biomaterial to provide additional functionalities so as to 

ultimately act as a tissue replacement, or engineered tissue.  In vivo, polymeric 

biomaterials should facilitate cellular proliferation and differentiation, as precursors 

to the synthesis of a new organic extracellular matrix.  To successfully promote 

cellular and tissue regeneration, synthetic polymers must first work in concert with 

the surrounding tissue, and thus elicit a short and mild inflammatory response.  The 

surrounding tissue response is especially critical in the development of degradable 

polymeric biomaterials.  In particular, these biomaterials should possess degradation 

properties that do not lead to a long and pronounced inflammatory reaction.20, 21  

Recently, a number of investigators have shifted their focus to fabricating 

degradable, biomedical polymers that produce less toxic degradation products, 

therefore decreasing the inflammatory response of the surrounding tissue.  For 

example, synthetic polymers based upon degradable units such as acetals, cyclic 

acetals, and ketals have been developed and shown to degrade via hydrolysis to 

produce hydroxyl and carbonyl terminals.22-24  While the specific chemical structure 

of each degradation product is monomer and reaction specific, the products are 

typically alcohols, carbonyls, aldehydes, and ketones.  This review will discuss the 

current research, development, and potential applications of newly developed acetal, 

cyclic acetal, and ketal based polymers.  Further, this review will describe some of 

the encouraging physical, chemical, and biological properties of the resulting 

polymeric biomaterials, making them attractive candidates for a wide range of tissue 

engineering and drug delivery applications.  
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Current Degradable Biomaterials 

Polymeric biomaterials vary widely both in material properties and 

applications.  Tissue engineering applications require the consideration of properties 

such as biocompatibility, mechanical strength, and degradation.  In the related field of 

drug delivery, however, the emphasis on mechanical strength is often replaced with 

the ability to release bioactive molecules.  Overall, the importance given to each 

property is often application dependant and while many materials fulfill individual 

needs, there is still a requirement for a universally ideal material. 

 

Polyesters 

Polymers based upon a repeating ester unit are probably the most widely 

investigated biomaterials for biomedical and tissue engineering applications.  

Polyesters have been found to be largely biocompatible, along with possessing a wide 

range of mechanical and degradation properties.  The simplest polyester is 

poly(glycolic acid) (PGA).  PGA can easily be synthesized via the ring-opening 

polymerization of glycolide.25  PGA is most notably used in the clinical setting as 

resorbable sutures, but is currently being investigated in several other biomedical 

applications.26  PGA is a hydrophilic polymer which has a highly crystalline 

structure.26  PGA degrades via bulk degradation, where mass loss occurs throughout 

the material while initial dimensions (or volume) of the material remains mostly 

constant.27  Due to the mass loss, PGA materials exhibit a significant decrease in 

mechanical strength as the material degrades.26, 28, 29  In an effort to increase PGA’s 
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utility and slow its degradation, PGA is often used as a co-polymer with poly (L-

lactic acid) (PLLA) or poly(D,L-lactic acid) (PLA). 

PLLA and PLA are structurally similar to PGA, with the exception of the 

presence of a chiral methyl group.  PLLA and PLA have a semi-crystalline structure 

and are hydrophobic in nature.  The increased hydrophobicity leads to an increase in 

degradation rate compared to PGA.26, 30-32  To increase the hydrophilicity of PLLA 

and slow the degradation rate of PGA, co-polymers with PLLA have been developed, 

such as the widely investigated poly(D,L-lactic-co-glycolic acid) (PLGA).  A 

significant clinical application of the PLGA copolymers is in drug delivery, where 

injectable PLGA microspheres are utilized to deliver leuprolide acetate in a controlled 

profile.30-32 

Poly(ɛ-caprolactone) (PCL) is a semi-crystalline polymer similar to PLA.26  

PCL has been extensively used for drug delivery applications due to its high 

permeability to drugs and long term sustainability in vivo.26, 33, 34  The bulk 

degradation of PCL is a slow process on the order of one to three years.  In an attempt 

to increase its degradation rate, PCL has been increasingly used in the synthesis of 

co-polymers and polymer blends with poly(ethylene glycol) (PEG), poly (ethylene 

oxide) (PEO), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV), PLLA and 

PLGA.35-38  

Poly(propylene fumarate) (PPF) is a linear polyester which hydrolytically 

degrades into fumaric acid and propylene glycol.39  Due to the presence of carbon-

carbon double bonds within the repeating unit of PPF, PPF may be covalently 

crosslinked to fabricate a rigid biomaterial.  Previous studies have demonstrated that 
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PPF crosslinking may be initiated by either thermal or photo activated initiators.40, 41  

The physical properties of the PPF crosslinked networks, including the rate of 

degradation, are heavily influenced by the fabrication procedure.26, 42  Particulate 

materials, including carbon nanotubes, have been incorporated within PPF to increase 

its mechanical strength, especially critical in bone tissue engineering applications.43-45  

In vivo studies of both the tissue response to PPF and the functionality of PPF 

scaffolds have indicated that the polymer promotes a mild inflammatory response 

similar to other polyester materials.46, 47  

 

Polyanhydrides 

Polyanhydrides are synthesized from diacid monomers, as opposed to the 

polyesters’ single acid monomer, and they degrade hydrolytically at the anhydride 

linkages into diacid products.  Polyanhydrides are especially desirable due to their 

surface erosion degradation properties.26, 48, 49  Surface erosion occurs from the 

surface of the material, as opposed to bulk degradation which occurs throughout the 

material.  Biomaterials that degrade through a surface mechanism retain their density, 

as mass is lost from the surface.  The degradation rate of polyanhydrides has been 

shown to be largely controlled by the polymer backbone structure.  Since the 

mechanical properties of polyanhydrides are generally modest, co-polymers and 

crosslinked polyanhydrides have been developed for bone tissue engineering 

applications.26, 50  Polyanhydrides have also been used clinically as drug delivery 

materials.26, 51, 52  
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While polyesters and polyanhydrides are all widely characterized and under 

development for biomedical applications, they are not biologically inert and may non-

specifically react with the surrounding in vivo environment.53  Polyesters and 

polyanhydrides, as well as other similarly structured polymers, degrade via hydrolysis 

and give rise to products with carboxylic acid terminal groups.  Thus their 

degradation may create an acidic regenerative environment which can prolong the 

inflammatory response and accelerate the degradation of the material, leading to 

premature loss of mechanical and structural properties.54, 55  Previous studies have 

also shown that accumulation and increased concentration of acidic degradation 

products can induce tissue toxicity.28, 29, 56  To address these issues, a new class of 

synthetic, polymeric biomaterials based upon degradable units such as acetals, cyclic 

acetals, and ketals have been developed.22, 24, 53  

 

Cyclic Acetal Biomaterials 

Cyclic acetal biomaterials (CAB) are a novel class of biomaterials consisting 

of a six member ring structure based upon a cyclic acetal unit.  The cyclic acetal unit 

hydrolytically degrades, forming products terminated with diol and carbonyl end 

groups.  Recent studies have described the development of CAB’s for tissue 

engineering applications.22, 57-59  

CABs are most easily fabricated by radical polymerization of the monomer 5-

ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD).  

Although available commercially through the early 2000s, to the best of our 

knowledge the EHD monomer is no longer commercially available.  However, the 
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EHD monomer may be easily synthesized in approximately 4 days.60  Briefly, 

isobutyraldehyde and formaldehyde are reacted with potassium carbonate.  The 

product is then extracted using chloroform and is washed with water and brine.  The 

resulting solution is dried under vacuum overnight, producing the solid product, 3-

hydroxy-2,2-dimethylpropionaldehyde (HDP).  HDP is then reacted with 

trimethylolpropane in 1 M hydrochloric acid.  The solution is neutralized with sodium 

hydroxide and the resulting product, hydrolyzed EHD (HEHD), is extracted, washed 

with water and brine, purified by ether precipitation, and then dried overnight under 

vacuum.  Finally acrylate terminal groups are added to the monomer.  Here, HEHD is 

combined with triethylamine and acryloyl chloride.  The final EHD product is 

extracted, washed, and purified by silica chromatography.60 

It should be noted here that although the EHD monomer does allow for the 

fabrication of a polymer network whose backbone is formed by hydrolytically 

degradable cyclic acetal units, the use of acrylates in the crosslinking chemistry will 

form degradation products with terminal carboxylic acids.  Future development of 

CABs will attempt to eliminate the acrylate based crosslinking chemistry, and 

therefore completely remove acidic degradation products.  

 

EH Networks 

A number of disparate biomaterials may be fabricated from the EHD 

monomer.  The simplest material is a EH network, where the EHD monomer is 

radically polymerized in to a network, using the initiator benzoyl peroxide (BP) and 

the accelerant N,N-dimethyl-p-toluidine (DMT) (Fig. 1).  
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Figure 2. 1:  Chemical structure of 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-

ethanol diacrylate (EHD) cyclic acetal networks and its degradation products (22). 

 

A recent study focused on the effects of initiator, accelerant, and diluent 

content on the physical properties of the EH networks.22  Investigated properties 

included gelation time, reaction temperature, swelling degree, sol fraction, swelling 

degree, and cytotoxicity.  Results showed that EH network gelation time varied 

between 33.3 and 193.9 s, with the gelation time decreasing with increased BP 

content.  Maximum reaction temperature also increases from 31.9°C to 109.0°C with 

an increase in BP content.  These gelation times and reactions temperatures are 

similar to the clinically relevant range for injectable biomaterials, however the utility 

of EH networks as an injectable biomaterial has not been fully investigated.  Overall, 

results indicated that initiator and accelerant had the greatest effect upon the rate of 

reaction, as demonstrated by gelation time and maximum reaction temperature.22  As 

EH networks are hydrophobic, they do not swell in water, however swelling in 

organic solvent can be utilized to describe network formation.  Results showed that 

EH network swelling varied between 29.9% and 48.3%, while network sol fraction 
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varied from 22.0% to 45.0%.  The results demonstrated that diluent content had the 

greatest effect upon swelling degree and sol fraction, and therefore most significantly 

affected the extent of the network forming reaction.  Finally, results also indicated 

that EH networks could support the adhesion and viability of osteoprogenitor cells.  

There was a significant difference in osteoprogenitor cell viability between all 

experimental groups and the tissue culture polystyrene control at 4 h, however 

viability at 8 h was comparable to the control for the experimental group containing 

high amounts of initiator and diluent.  Thus, the results imply that EH networks can 

be fabricated with controlled properties and also support osteoprogenitor cell 

adhesion and viability.22 

Additional investigations have characterized the degradation of the EHD 

monomer as well as EH networks.  In terms of the monomer, EHD was degraded 

under acidic conditions (pH 2 and pH 4) and the solvent was analyzed for the 

degradation products of trimethylolpropane and HDP using 1H NMR.  Results 

showed that at temperatures of 65°C, 80°C and 90°C these products were indeed 

realized, and that their release followed first order kinetics.60 

Since the monomer does demonstrate hydrolytic degradation, the degradation 

rate of both porous and non-porous EH networks was evaluated.  Macroporous EH 

scaffolds were prepared using a leachable porogen strategy.  Briefly, macroporous 

networks were fabricated by incorporating a NaCl porogen (70, 75, and 80 wt%) into 

the EHD monomer solution prior to cross-linking.  EH networks were formed around 

the crystals by radical polymerization, and the porogen was removed by water 

leaching.  The results confirmed that while degradation occurred in all networks, the 



 12 
 

rate of degradation was enhanced with the addition of the macropores (Fig. 2a).  Solid 

EH networks, which are highly hydrophobic and resist water absorption, lost 

approximately 3.5% of their mass after 28 days.  By incorporating macropores 

however, the degradation rate was dramatically increased, with the EH scaffolds 

displaying approximately 10% mass degradation after 28 days.  The degradation rate 

was not found to be dependent on porogen content, however with only 10% mass lost 

for these groups after 28 days it should be noted that further testing is needed to 

determine the length of time required for complete degradation of the scaffolds.  As 

described above, the use of acrylate chemistry in the formation of the EH networks 

will result in the formation of degradation products with terminal carboxylic acid 

groups.  To investigate the acidity of the EH network degradation products, the pH of 

the solvent was monitored throughout the study and the solvent was not refreshed 

during the experimental time.  The results demonstrated that the degradation of the 

EH networks was not associated with a significant pH change over the course of the 

28 day study (Fig. 2b).  Thus the study concluded that EH scaffolds hydrolytically 

degrade and produce minimal acidic products upon hydrolysis.   
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Figure 2. 2:  (A) The percent mass lost from EH scaffolds and (B) change in solvent pH during in 

vitro degradation.  All porous groups displayed similar degradation over 28 days with a more 

dramatic degradation than the solid EH networks.  Results also confirmed the near constant 

solvent pH throughout the 28 day degradation study, demonstrating the lack of acidic 

degradation products by the CABs.  Values represent means and associated standard deviation 

(n=5). 

  

An initial application of EH networks has been in the area of skeletal muscle 

regeneration.  Here, EH networks would act as platform for the recruitment of 

satellite cells, the proliferation and differentiation of satellite cells into myoblasts, and 

the ultimate formation of myotubes and myofibers.  Therefore, initial studies 

examined the attachment and proliferation of putative myoblasts upon EH networks 
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as well as the myoblastic response to EH network’s release of insulin-like growth 

factor 1 (IGF-1).59  To begin, two EH networks formed from 0.34 and 0.58 M 

initiator solutions were tested for myoblast attachment at 4 and 6 h.  Both networks 

displayed a myoblast attachment similar to tissue culture polystyrene at both time 

points.  Further testing was done to investigate the ability of the EH network to 

release growth factors and stimulate myoblast proliferation.59  IGF-1 was absorbed 

onto the networks’ surface at concentrations of 0, 10, 50 and 150 ng/network, and 

then primary myoblasts were seeded onto the growth factor coated networks and 

grown in growth media for 3 and 5 days.  Results indicated that on day 3, the IGF-1 

loaded networks significantly increased myoblast proliferation in the highest loaded 

networks, and that the maintenance of this increased proliferation requires continuous 

IGF-1 release.  Overall, this work demonstrated that EH networks support myoblast 

attachment as well as IGF-1 induced myoblast proliferation.59  

 

EH-PEG Hydrogels 

In order to form a water swellable network based upon a cyclic acetal 

monomer, poly(ethylene glycol) was incorporated into the EH network 

polymerization reaction resulting in EH-PEG hydrogels (Fig. 3).57, 58, 61   
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Figure 2. 3:  Chemical reaction between poly(ethylene glycol) diacrylate (PEGDA) and 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) to form EH-PEG 

hydrogels (58). 

 

EH-PEG hydrogels were synthesized with varying molar ratios of EHD to 

PEGDA as well as with varying monomer concentrations so as to then investigate 

their effects upon the physical properties of the resulting hydrogel.58  Results showed 

that the EH-PEG hydrogel swelling degree was particularly dependent on the 

monomer concentration, with swelling increasing as monomer concentration 

decreased.  Initiator concentration did not appear to have a significant effect on the 

swelling degree of EH-PEG hydrogels.  Results also demonstrated that low initiator 

concentrations did not produce sufficient amounts of radicals to propagate thorough 

crosslinking reactions.  This lead to a higher sol fraction, due to unreacted monomers 

left within the gel.58  A study of water contact angle was also performed to examine 

the hydrophilicity of the surface of the EH-PEG hydrogels, with results indicating 

that the water contact angle decreased as the ratio of PEGDA increased.  Thus, the 
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addition of PEGDA strongly influenced the hydrophilicity of the material, due to its 

hydrophilic EH polymer main chain.58  Finally, the range of contact angle values was 

within the range of 50° to 75° where cell adhesion is generally thought to be 

promoted.62, 63  This study concluded that the EH-PEG hydrogels can be easily 

fabricated with controllable properties and that these biomaterials may be suited for 

cell transplantation applications.58  

In order to investigate the utility of EH-PEG hydrogels as cell carriers, a series 

of studies were also undertaken to examine the viability and function of embedded 

osteoprogenitor cells.57  Specifically, this work examined (1) the effect of radical 

initiators on viability and metabolic activity of osteoprogenitor cells in monolayer, (2) 

the ability of the osteoprogenitor cells to differentiate after initiator exposure, and (3) 

the viability of osteoprogenitor cells embedded in the EH-PEG hydrogels.  EH-PEG 

hydrogels were fabricated using the water-soluble redox, radical initiation system of 

ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED).  

To assess the effect of the initiator system on the metabolic activity, osteoprogenitor 

cells were cultured with the initiators at concentrations of 10, 15, and 20 mM and 

analyzed using a standard toxicology kit.  Results indicate similar levels of metabolic 

activity between the 10, 15 mM, and control groups at early times and decreased 

activity for the 20 mM group.  The effect of the initiator system on the differentiation 

of osteoprogenitor cells was examined by short exposure to the initiator system 

followed by culture in osteogenic media; differentiation was assayed by the 

expression of alkaline phosphatase.  Results indicate that exposure to low 

concentrations of the initiation system does not affect the ability of the cell population 
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to osteodifferentiate.  Lastly, osteoprogenitor cells were embedded in EH-PEG 

hydrogels, cultured in media for 7 days, and analyzed for viability using a fluorescent 

live/dead assay.  Results quantitatively showed that the majority of the 

osteoprogenitor cell population was viable up to 7 days.  This work indicated that the 

EH-PEG hydrogel system is a viable approach for cell carrier applications.  

Finally, a recent study demonstrated the utility of EH-PEG hydrogels to repair 

craniofacial defects.61  The goals of the study were to repair the defect while studying 

tissue response to EH-PEG hydrogels and the extent of bone repair after loading the 

hydrogels with bone morphogenetic protein- 2 (BMP-2).  Results indicated a mild 

tissue response to the EH-PEG hydrogels and minimal cellular invasion around the 

implant.  Prior to the in vivo study, BMP-2 release from the hydrogels was studied in 

vitro, demonstrating that the EH-PEG hydrogels do indeed release bioactive BMP-2 

over the course of 12 h.61  For the in vivo study, two experimental groups (EH-PEG 

hydrogels containing either 0.25 or 2.5 µg BMP-2) and an unloaded EH-PEG 

hydrogel control group were implanted into an orbital defect created in the rabbit 

animal model.  Histological results after 7 days indicated no difference in bone 

growth near the construct between both experimental groups.  However, at 28 days 

the EH-PEG hydrogel containing 2.5 µg BMP-2 demonstrated higher levels of bone 

growth compared to the experimental and control groups.  The results of this work 

demonstrated that EH-PEG hydrogels can be used for delivery of BMP-2 in vivo for 

bone tissue engineering applications.61 
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Poly[poly(ethylene glycol)-co-cyclic acetal] (PECA) Hydrogels 

Although EH-PEG hydrogels have a number of attractive properties for 

biomedical applications, there may be a need to fabricate water swellable, cyclic 

acetal based networks with a more defined, and therefore more controllable, 

macromolecular structure.  Thus, a hydrogel formed from a copolymer of EHD and 

PEG may be advantageous, when compared to the random network of polymerized 

monomers and short chained polymers that form EH-PEG hydrogels.  To this end, the 

copolymer poly[poly(ethylene glycol)-co-cyclic acetal] (PECA) and the resulting 

PECA hydrogels have been developed.  The PECA copolymer is synthesized by 

copolymerization of the EHD cyclic acetal monomer with PEG polymers (Fig. 4).60  

More specifically, EHD is first dissolved in tetrahydrofuran with sodium hydride at 

0°C.  Next, poly(ethylene glycol) (Mn=600 g/mol) ditosylate is added at 50°C.  Water 

is added to the mixture, and then all solvents are removed by reduced pressure.  The 

resulting PECA copolymer is dissolved in ethyl acetate, filtered, and then further 

purified by silica chromatography.  The hydroxyl groups of the product were 

transformed into acrylate groups by acryloyl chloride and triethylamine.  Diacrylated 

PECA was then crosslinked using APS and TEMED to form PECA hydrogels.  
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Figure 2. 4:  Synthetic route for PECA and PECA hydrogels (60). 

 

A series of studies investigated the effect of PEG length on the properties of 

the PECA copolymer as well as the resulting PECA hydrogels.60  Results confirmed 

that PECA hydrogels could be readily fabricated with water contents in excess of 90 

wt%.  The swelling and sol fraction of PECA hydrogels were found to be dependent 

on the initial PEG chain length, initiator concentration, and polymer concentration.  

Swelling degree increased as the PECA concentration decreased, due to the mobility 
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of the polymer chains during gelation and the crosslink density of hydrogels.  

Swelling degree also increased with an increase in PEG chain length due to the 

decreased hydrogel crosslinking.  Degradation rate of the cyclic acetal segments was 

found to be dependent on the solvent acidity and temperature, where degradation rate 

increased with a decrease in temperature and acidity due to dependence of cyclic 

acetal hydrolysis upon hydronium ion concentration.60  When the cyclic acetal 

segments were degraded under simulated physiological conditions, the pH of the 

surrounding environment remained constant.  Studies also showed that the dry weight 

of PECA hydrogels decreased by 30% after 5 months of in vitro degradation.  Thus, 

this study revealed that both swelling ratio and degradation rate of PECA hydrogels 

were easily controlled, and well suited for future drug delivery and tissue engineering 

applications.60 

 

Polyacetals and Polyketals 

Another group of novel synthetic polymers includes the polyacetals and 

polyketals.  The utility of biomaterials based upon polyacetals and polyketals are not 

limited to tissue regeneration, but are also useful in applications ranging from drug 

delivery to orthopedic implants.  These biomaterials are often modified specifically to 

their desired function during synthesis using alcohols, ethers, aldehydes, and 

ketones.64  Consequentially, the degradation products can also be tailored to consist of 

alcohols, aldehydes, and ketones, none of which significantly change the local tissue 

pH.  Due to the variety of methods and reactants available for synthesis, there are 

near limitless applications for these biomaterials.  
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The majority of the work with polyacetal and polyketal based biomaterials is 

focused on drug delivery and tumor targeting.  Current cancer therapeutics are often 

delivered systemically as opposed to selectively, leading to high levels of the drug 

found in tissues far from the intended site.  Polyacetal and polyketal based 

biomaterials can take advantage of the fact that the local environment within a tumor 

has a lower pH than the surrounding tissue, and therefore induce the release of drugs 

at these sites, due to pH dependent degradation.24, 65  A number of studies have 

recently shown that degradation and drug release rates are accelerated when in a low 

pH environment.23, 24, 66, 67  This targeted release allows the carrier to remain in the 

blood and not release the therapeutic drug until it is taken up into the tumor, 

significantly decreasing administration of the drug to local healthy tissues.66  Also, 

the pH dependent behavior allows for the carrier to remain in the system longer than 

current carriers, and therefore deliver more therapeutic agent to the tumor.68  

Additionally, by altering the reactants, carriers that have a Mw < 40,000 g/mol can be 

produced, allowing for the renal exclusion of degradation products.66 

Using the same principles, polyacetal and polyketal based biomaterials can be 

tailored to target other chronic illnesses.  For example, macrophages can be targeted 

by these biomaterials for the delivery of anti-inflammatory drugs.  The distinct pH 

difference between the blood (pH 7.4), endosome (pH 6.5), and lysosome (pH 5.5) 

allows for polyacetal and polyketal based biomaterial degradation within a specific 

compartment of the targeted cell.69, 70  Taking the delivery one step further, Vicent et 

al. has shown that the therapeutic agent can be directly incorporated into the 
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backbone of these polyacetal and polyketal polymer carriers.66  Through hydrolysis, 

the drug is freed as the polymer backbone is degraded.  

Another application of polyacetal and polyketal based biomaterials is to create 

specialized structures that are polyfunctional.  For example, Lemcoff and Fuchs 

showed that it is possible to create dendrimeric diacetals that had several potential 

uses, including guest inclusion, self assembly, and channel formation with controlled 

degradation.71  These structures are unique in the fact that each generation of the 

dendrimer is available for independent removal and can contain functional 

macromolecules that would become free upon degradation.71  This could be utilized 

in a multifaceted approach with each generation containing a different 

macromolecule.  Gillies et al. have also used these polyacetal and polyketal based 

dendrimer structures to create potential drug carriers.72  They have synthesized linear-

dendritic block copolymers containing acetal degradable units that self assembled into 

micelles.  To investigate the use of these micelles as controlled release drug carriers, 

studies were performed with Nile Red dye as a model.  It was found that this dye, 

which was protected within the micelle’s core, was subsequently released as the 

acetal groups were hydrolyzed and the micelle dispersed, therefore showing a 

degradation controlled release.72 

Polyacetals have also been used clinically in several orthopedic implants, 

most notably the Freeman all-polymer knee replacement and hip resurfacing 

prostheses.73, 74  Current studies have discussed work on surface wear of hip joints 

and mechanical properties of these materials.73-75  A recent study published by Lee 

and Choi demonstrated that the properties of a porous polyacetal block were similar 
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to that of bone.76  These studies have displayed the diverse function that these 

materials have in every aspect of tissue engineering. 

 

Conclusions 

Current synthetic biomaterials for tissue engineering applications are 

sufficient, yet they are far from ideal.  Biomaterials based upon polyesters and 

polyanhydrides possess distinctive properties and are used extensively in clinical 

practice.  While synthetic biomaterials can be tailored to meet many tissue 

engineering and drug delivery needs, many are not biologically inert.  In an effort to 

develop alternative materials, extensive research is being done to synthesize polymers 

that have more desirable degradation properties.  Cyclic acetals are an increasingly 

versatile group of materials that can be utilized for both soft and hard tissue repair.  

Properties of cyclic acetal biomaterials have been controlled by varying fabrication 

parameters to create highly hydrophobic EH networks.  These networks have been 

shown to support a viable osteoprogenitor and myoblast cell population.  

Alternatively, water swellable EH-PEG hydrogels were able to sustain an 

encapsulated osteoprogenitor cell population for up to 7 days in vitro as well as 

deliver BMP-2 to bone in vivo.  Finally, in an effort to create a more organized 

hydrogel structure EHD and PEG were copolymerized to form PECA.  PECA 

hydrogels have been shown to be a favorable material for both drug delivery and 

tissue engineering applications.  Other groups of biomaterials are based upon 

polyacetals and polyketals, and have been shown potential in drug delivery 

applications due to their pH dependent degradation properties.  The development of 
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alternative synthetic polymers, such as those described here is a critical step for the 

future success of many tissue engineering and drug delivery applications.  
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Chapter 3: Skeletal Muscle Tissue Engineering Approaches to 

Abdominal Wall Hernia Repair∗  

Introduction 

Hernia repair is one of the most frequently performed operations with 

estimates of approximately one million operations annually in the United States 

alone.77-80  Groin hernias represent the vast majority of these hernia repairs with a 

preponderance of these being performed in men.  It has been estimated that 

approximately four out of every 1,000 men will need hernia repair surgery.81  These 

overwhelming numbers put abdominal hernias among the most common pathological 

conditions affecting humans.  Furthermore, it is believed that these numbers are most 

likely underestimated.82, 83  

 Ventral hernias represent a significant proportion of abdominal wall hernias.  

These hernias occur on the anterior abdominal wall and may be congenital or 

acquired.  They account for 36 percent of hernia repairs and this number is increasing 

every year.77  Incisional hernias represent a subset of ventral hernias occurring in 

patients that have undergone a prior abdominal operation.  These incisional hernias 

occur when the skeletal muscle and fascia around an incision site is weakened and 

can no longer support the pressure generated within the abdominal cavity resulting in 

a rupture.  These hernias occur in up to 10% of patients that undergo abdominal 

incisions.   

                                                 
∗ This chapter was published as the following article: Falco, E.E., J.S. Roth, and J.P. Fisher, Skeletal 
muscle tissue engineering approaches to abdominal wall hernia repair. Birth Defects Res C Embryo 
Today, 2008. 84(4): p. 315-21. 
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 Hernias most commonly present as an uncomfortable protuberance of the 

abdominal wall.  The protrusion typically represents abdominal viscera which have 

protruded through the confines of the abdominal cavity.  Although uncommon, the 

herniated abdominal contents may become entrapped or incarcerated.  Viscera 

incarcerated within a hernia may result initially in discomfort with progression to 

ischemia and death of the involved organs.  If untreated, a strangulated hernia may 

result in the loss of the organ or possibly the death of the patient. 

 Current treatment methods for abdominal wall hernias involve the placement 

of prosthetic biomaterials, xenografts, or allografts.  Despite these available 

techniques, the incidence of recurrence varies from 20 to 50%.84  There is no 

definitive best biomaterial, graft, or technique for the repair of abdominal hernias.  

The choice of repair is generally dictated by the background, training and experience 

of the operating surgeon.  This review summarizes the mechanisms of abdominal 

hernia formation, provides an overview of the current practices for hernia repair and 

considers the role of skeletal muscle regeneration strategies for the treatment of 

hernias.  

 

Abdominal Wall Morphology 

Abdominal Wall Physiology and Function 

 The abdominal wall is made up of six layers: skin, subcutaneous fascia, 

musculature, transversalis fascia, preperitoneal tissue and peritoneum.85  The skin is 

composed of two layers: the epidermis and the dermis.  The epidermis, which is the 

uppermost layer of skin, is made up of nonvascularized endothelial cells that form 
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from the inside outward.  Just beneath this layer is the dermis, which functions as a 

collagenaous connective tissue layer that contains capillaries, lymphatics, and nerve 

ending, as well as, the hair follicles, sebaceous glands, sweat glands and their ducts, 

and smooth muscle fibers.86  This connective tissue layer recurs along with adipose 

tissue in most of the layers of the abdominal wall.  The subcutaneous fascia, 

transversalis fascia and preperitoneal layers all contain connective tissue with varying 

amounts of fat cells and fat stores which vary in thickness gradually with position 

along the abdominal wall.87  The musculature is made up of the transverus abdominis, 

internal oblique, external oblique and rectus abdominis muscle groups.85  Each 

muscle group consists of uniquely arranged muscle fibers specific to its required 

motor function.  These groups work in concert to provide the mechanical strength and 

flexibility necessary to move the torso of the body and to carry out the vital function 

of the abdominal wall: to counteract the large pressure force exerted by the internal 

organs.  Lastly, the peritoneum is a serous membrane that lines both the abdominal 

wall and internal organs, allowing for movement of the organs within the abdominal 

cavity.  Abdominal hernias commonly affect the last four layers of the abdominal 

wall as well as the incorporated connective tissues and muscular fasciae.  Loss of this 

musculature is critical as the muscles provide the majority of the abdominal walls 

mechanical strength.  Once lost it is replaced only with connective and scar tissues 

which leave the site vulnerable to continual defects. 
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Musculature Development and Regeneration 

 Skeletal muscle provides the bulk of the mechanical strength, mobility, and 

flexibility to not just the abdominal wall but to almost all the mobile parts of the body 

making it a tissue of great interest.  Since muscle is such a dense tissue, its defects 

often exceed the limits of nutrient diffusion and therefore have a relatively 

complicated regeneration scheme.  Not only must the physical muscle be regenerated, 

but the surrounding nerves and vasculature must also be repaired in order for proper 

functionality to return. 

 Skeletal muscle fiber development and regeneration are similar processes.  In 

development mononuclear myoblasts line up parallel to one another and fuse to 

produce multinucleated myotubes.  The myotubes share the cytoplasm of 

incorporated myoblasts and their nuclei are disbursed along its length.  Once the 

myotubes are formed they go through a maturation process, during which they 

become innervated and vascularized, resulting in myofibers.88  Myofibers are then 

bound together by connective tissues to provide strength to the muscle.  When 

electrically stimulated the myofibers contract simultaneously leading to the most 

distinctive characteristic exhibited by skeletal muscle: voluntary movement.  The 

parallel alignment of the myoblasts during fusion is the key to what gives the 

myofibers their ability to produce the force necessary for movement and strength. 

 If trauma occurs to the fibers, muscle regeneration and repair begins with the 

activation of the progenitor cells, known as satellite cells.89-91  These mononuclear 

cells are present in all types of muscle, and in skeletal muscle they reside between the 

basal lamina and the myofiber it encapsulates.  While they are not always found in the 
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same density in all skeletal muscles, they are often found spaced throughout the 

myofiber with which they reside. 88  It has been found that these cells are not directly 

associated with the myofiber, as was shown by the presence of a gap between the 

plasma membrane of the myofiber and the membrane of the satellite cell.  This gap 

can range in size from 15-60 nm with little protrusion of the basal lamina into the 

space. 88  It is possible that this space is what allows the cells to migrate freely and as 

necessary.  Once activated, the satellite cells migrate to the site of the defect and 

proliferate.  The newly produced cells can return to quiescence and replenish the 

satellite cell reserve or remain activated and migrate to the site of the defect to 

regenerate the muscle.  Within the defect they can align parallel to the injured 

myofiber or fuse to each other to develop new and repaired myotubes.  These 

myotubes again undergo the maturation process of innervation and vascularization to 

become functioning myofibers.  There are several diseases and conditions that can 

affect the repair and regeneration processes of the skeletal muscle: one of which is 

abdominal wall hernias.    

 

Anatomy of Hernia Formation 

A Mechanism for Herniation 

 Abdominal hernias occur when the structural integrity of the abdominal wall 

is compromised resulting in a loss of tissue function.92, 93  During normal activities 

such as exercising, laughing, coughing, lifting, standing and sitting upright there is a 

significant increase in the internal pressure force applied to the abdominal wall.83, 92  

Normally this excess pressure is equally distributed along the abdominal wall, 
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however when abnormalities are present in the abdominal wall tissue the musculature 

can bulge or tear under the stress effectively relieving the increased pressure and 

resulting in a hernia. 

 Discontinuities in the abdominal tissue can occur as a result of several 

mechanisms.  Hernias often result from direct trauma to the abdomen resulting in the 

disruption of the underlying musculature.  This can occur through blunt force trauma, 

high-energy transfer events 94 or through physical penetration, such as bullet and 

knife wounds.92  The common thread in all cases is the loss of the skeletal muscle and 

therefore loss of mechanical stability within an area of the abdominal wall.  

Regardless of the source, these injuries stimulate a wound healing response.  It is 

widely thought that herniation results from both the mechanical instabilities as well as 

inadequate wound healing at the injury site. 84, 93  

 

Wound Healing in Hernias 

 Recently, in an effort to better anticipate and resolve herniation in patients, 

research has been done into the wound healing of both primary and recurring hernias.  

In normal wound healing an inflammatory response is incited and blood fills the 

defect, allowing proteins to form a provisional matrix.  This matrix provides a 

scaffold to facilitate wound healing by helping direct incoming cells, proteins and 

signals and aid in the remodeling of the scar tissue.  Once the matrix is formed, acute 

inflammation begins with the infiltration of fluid, plasma proteins and various 

leukocytes.95  Macrophages specifically have been shown to help to direct tissue 

repair and are vital to proper wound healing.93  Fibroblasts are then recruited to the 
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wound site where they proliferate and initiate angiogenesis, collagen synthesis and 

extra cellular matrix (ECM) production creating granulation tissue.93, 95  In the final 

stage of wound healing, the granulation tissue is remodeled and combined with 

foreign body giant cells to become fibrous scar tissue.95 

 In hernia patients there is evidence that indicates that normal wound healing 

does not take place.  Samples of scar tissue from patients with recurring hernias 

showed abnormalities in the scar tissue as well as surrounding skin and connective 

tissues.93  When compared to normal tissue, the most prominent difference was that 

the herniated tissue displayed a lower ratio of collagen type I to collagen type III.84, 93  

In wound healing collagen type I is responsible for the mature remodeled ECM that 

provides tensile strength to the tissue, whereas collagen type III makes up the 

immature fibrils that form the provisional matrix during inflammation.84  Therefore, 

lower ratios of type I to type III collagen result in weaker and less mature scar tissue.  

For hernia repair this has a significant effect, as the tissue must have the adequate 

tensile strength to withstand the large pressure changes experienced in the abdominal 

cavity during everyday activity.  Additionally, some reports have shown modified 

collagen metabolism due to the increased expression of matrix metallo-proteinases, 

therefore altering the collagen degradation and remodeling processes.  This results in 

a significant difference in scar tissue strength as well as the overall wound strength.84, 

93 

 There are several other factors that can increase the probability of primary and 

recurring hernias as well as alter wound healing.  Old age, male gender and a high 

body mass index all increase a patient’s susceptibility to complications, longer 
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surgery times, larger defects and a higher recurrence rate.96  Behaviors such as 

smoking or using steroids and medical conditions such as diabetes mellitus have also 

been shown to increase the risk of developing primary and recurring incisional 

hernias.83, 84, 92, 97  Furthermore, wound infection, surgical technique, and the choice of 

suture or prosthetic material affects the probability of herniation.92, 93  Some suture 

materials and surgical meshes can incite a foreign body reaction leading to chronic 

inflammation, characterized by the presence of macrophages, monocytes, and 

lymphocytes with vascularization beginning to occur.95  This prolonged inflammation 

hinders granulation tissue formation, leading to decreased mechanical stability and 

overall wound healing.  All together these defects are the leading reasons for the 

continuously high hernia recurrence rates.  

 

Overview of Current Clinical Solutions 

Clinical Approaches to Treat Abdominal Hernias 

 Currently there is no accepted universal approach to treating abdominal 

hernias.  The most common techniques involve the placement of prosthetic 

biomaterial meshes, xenografts, or allografts into the defect.82, 98  The use of these 

materials has resulted from a necessity to improve upon the poor results of sutured 

hernia repair.  When the native tissue is repaired by suture alone, there is a large 

tension force exerted on a small area of tissue that is occupied by the suture.  As a 

result, the abdominal wall can tear at the suture point resulting in hernia recurrences.  

These recurrent hernias typically occur lateral to the initial hernia repair and are often 
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larger with multiple defects as a result of disruption of the abdominal wall at multiple 

suture sites.  The recurrence rate for this technique approaches 50%.97 

 In an attempt to reduce the risk of recurrences, meshes are secured using a 

“tension free” approach.  The tension free placement helps to reduce healing time and 

pain.99-101  These advances have reduced the hernia recurrence rate by as much as 

75%.  However, the overall recurrence rate is still approximately 24%.97, 102 

 

Criteria for Repair Techniques 

 There are several criteria that surgical implants must meet before they can be 

considered viable for clinical application.  The first is mechanical stability.  The 

prosthesis or tissue that is used for repair must allow for the return of functionality of 

the tissue.  In skeletal muscle this means it must be pliable and able to move with the 

body, as well as have the mechanical strength to withstand intra-abdominal pressures.  

These mechanical properties can be tested in vitro.   

 It is essential to understand the systemic reaction to any implanted 

biomaterial.  Wound healing plays an important role in the regaining of functional 

tissue and any material that supports the growth of bacteria or the harboring of other 

harmful organisms is not suitable for implantation.  Biomaterials must also have a 

minimal inflammatory response following implantation.  It has been shown that 

devices that can decrease the inflammatory response and body rejection to an implant 

or suture is a better candidate for repair.  In addition, the tissue or prosthesis should 

support ingrowth of the native tissue to repair the defect, while preventing adhesions 

to the abdominal viscera.103  
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 One major setback to the use of permanent biomaterials is the possibility for 

the implant to migrate or contract thus rendering it ineffective.104  Therefore implants 

that are absorbable in addition to having the aforementioned properties are being 

studied.  This additional quality allows the material to be removed from the system 

slowly, allowing the hosts tissues to replace the defect as the material degrades.  

Optimization of these three qualities would give the best outcome for hernia repair. 

 

Xenografts 

 Xenografts have been used extensively in developing suture material and 

prosthetic patches.  Kangaroo, ox, deer and whale tendons have all been used in the 

past as prosthetics for repair.100  Catgut has also been used to form suture material.  

More recently, porcine small intestine submucosa (SIS) has been studied as a viable 

material for hernia repair.  Badylak et al. describes a production method in which the 

small intestine is harvested from a pig and the superficial and abluminal muscular 

layers, as well as the serosa were mechanically removed.105  The remaining 

submucosa and basal layer, which contained the ECM’s supporting structures, were 

sterilized using 0.1% peracetic acid.105  Multiple sections were then pressed together 

using vacuum to form a stronger and larger scaffold.105, 106  After a final sterilization 

with ethylene oxide the SIS is ready for implantation.  Once implanted, this scaffold 

contains growth factors and ECM molecules that attract host cells and begins to 

reorganize them in such a way that they can create functional tissue.  Over time the 

graft is reabsorbed into the body leaving behind only host tissue.  Rauth et al. 

compared two SIS meshes to a synthetic expanded polytetrafluoroethylene (ePTFE) 
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mesh which were all commercially available and found that while all implants 

displayed wound healing and fibrous encapsulation, the wound contraction of the SIS 

meshes was significantly higher than with the ePTFE.107  This additional contraction 

is indicative of stronger more mature collagen network in the fibrous encapsulation. 

93, therefore indicating that the SIS is more capable of tissue ingrowth and remodeling 

than the synthetic ePTFE mesh and thus could result in better long term repair.107 

 While all these materials help restore some functionality of the muscle there 

are two major limitations: disease transmission and host rejection.  While techniques 

for detecting disease are advancing daily, disease transmission is a significant 

concern, although occurs rarely.  Host rejection is an equally troublesome limitation 

that can lead to a chronic inflammatory response resulting in incomplete or inefficient 

healing.  However, by removing the cells from the graft, as is done with the porcine 

SIS, these limitations can be greatly reduced. 

 

Allografts 

 Allografts are especially useful because the donor tissues that are supplied are 

more comparable to host tissues.  Xu et al. have studied the effectiveness of both 

commercially available human acellular dermal matrix (HADM or AlloDerm®) and 

human cellular dermal matrix (HCDM).108  They found that the absence of cells in the 

HADM allowed for the infiltration of fibroblasts, spindle-shaped cells, aligned fibers, 

and a vasculature network but did not illicit a chronic immune response.108  HCDM 

on the other hand exhibited a chronic inflammatory response and fibrous 

encapsulation.108  In another study Silverman et al. compared a pig allogenic acellular 
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dermal matrix (ADM) to ePTFE.109  The ADM showed stronger tissue ingrowth at the 

implant-tissue interface and also exhibited vasculature ingrowth.  However, no 

significant difference was found in overall hernia repair.109  Kolker et al. have also 

investigated the use of the AlloDerm® acellular scaffolds in patients with recurring 

hernias.  They found that after approximately 16 months, there were no 

recurrences.110   

 Issues related to supply of allografts represent a significant limitation to 

widespread use of human acellular dermis for hernia repair.  Allografts are generally 

harvested from organ and tissue donors following their death and are accordingly 

limited in supply.  As with xenografts, host rejection remains an issue, however 

disease transmission risk is considerably lower.111 

 

Autografts 

 With the help of tissue engineering principles, an emerging technique of repair 

is autografts.  These techniques look to use the rebuilding mechanisms inherent in the 

host’s own musculature.  As with allografts, Conconi et al. have shown that an 

autologous acellular matrix can regenerate myofibers that maintain contractile 

function for up to 60 days in vivo.112 Other techniques are looking into cellular 

methods for repair.  Satellite cells and mesenchymal stem cells (MSC) are just two 

cell types that have been studied extensively in skeletal muscle development.89-91, 113-

115  These cells are adult stem cells that reside within muscle and bone marrow, 

respectively.  MSCs are similar to satellite cells, as described above, however they 

have the ability to differentiate into more than one lineage.  The most commonly 
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studied lineages that arise from MSCs are bone and cartilage; however fat, ligament, 

tendon, muscle and marrow stroma are also thought to be alternate lineages.115, 116 

The ability of these cells to differentiate and fuse into myofibers is a large step in 

skeletal muscle engineering and possibly hernia repair. Current hernia repair 

techniques simply replace the musculature with fibrous scar tissue as opposed to 

muscle.113 Therefore, it is a hypothesized that these stem cells combined with 

prosthetic scaffolds or acellular matrices, such as ECM, will result in skeletal tissue 

regeneration in the defect.   

 

Prosthetic Meshes 

 The use of prosthetic meshes in the repair of hernias is the most frequently 

utilized technique.  Meshes have been engineered to suit the needs of the surgical 

repair.  Two common synthetic polymers that have been tested are 

polytetrafluoroethylene (PTFE) and polypropylene (PP).  Natural polymers such as 

sodium hyaluronate (HA) and carboxymethylcellulose (CMC) are also used.  By 

varying percentages of different monomers along with the crosslink density of the 

polymer, one can change the biodegradability of the polymer.  Also, when looking at 

the processing techniques, different pore sizes, ranging from 3 – 500 µm can be 

achieved.  As well as, pores of different shapes with both random and ordered 

distributions.103, 117  Changes to both the bulk and surface morphology allow for more 

control over the tissue ingrowth in vivo and provides a mesh that can exhibit a wide 

range of mechanical and biological properties.  Due to the lack of a previous cellular 

component there is not the same risk for disease transmission. 
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 Another advantage to using biomaterials in hernia repairs is that they are not 

as limited in supply as donor tissue or cells.  There is also more opportunity for larger 

defect repairs.  This technique is not perfect however.  The implant is treated as a 

foreign body; therefore the risk of inflammatory response is eminent.  In this case, 

fibrosis can occur and provoke adhesions of the abdominal viscera to the defect site. 

104 Adhesions lead to conditions such as intestinal obstruction, chronic abdominal 

hernia repair, and female infertility.103  This concern is currently being addressed in 

research as can been seen with the dual layer meshes.103 

 Polytetrafluoroethylene (PTFE) is a hydrophobic, non-biodegradable polymer 

that is often formed into a fiber mesh and is currently used clinically.103, 111  By 

adjusting the crosslink density of the mesh, one can ideally alter the adhesive and 

tissue ingrowth properties of the mesh, as is done in the Gore-Tex Dual mesh.103  This 

mesh is of a bilayer design.  One layer has a mesh size of 3 µm and it meant to restrict 

tissue ingrowth, where as the other layer has a mesh size of greater than 100 µm and 

is meant to provoke tissue ingrowth.  In a study by Gonzalez et al., it was found that 

this mesh does inhibit tissue ingrowth.103  However, other studies have shown that 

this design has a high rate of recurrence, infection and inflammatory response.118 

 Polypropylene (PP) on the other hand is a slightly less hydrophobic, non-

biodegradable polymer.111  It is also formed into meshes that contain macropores.  

These macropores helps to trigger tissue ingrowth that help improve the surgical 

integrity and strength of the implant.103, 104  Nevertheless, PP has no natural defense 

for adhesion formation.  Therefore, the use of non-adhering agents such has 

hyaluronic acid and carboxymethylcellulose in addition to the PP is currently being 
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investigated.104, 119  These glycosaminoglycans not only reduce the number of binding 

site available on the PP, they also carry a charge, which can affect cell binding.  An 

overall advantage of the PP grafts is that they have a decreased risk of infection and 

inflammation when compared to the PTFE grafts.118  

 By combining a polymer that has enhanced cell adhesion, to face the 

musculature, with one that inhibits cell adhesion, to face the abdominal cavity, the 

ideal abdominal wall implant could be achieved. 

 

Tissue Engineering Approaches to Treat Defects 

 Tissue engineering is combining cells, signals and scaffolds to restore, 

maintain, or improve tissue function.  By using the methods of engineering and 

applying them to living systems, great strides have been made in the field of clinical 

medicine and vast improvements in the quality of life have been achieved.  While 

clinicians are helping to define specific medical needs, researches are focused on 

defining cell signaling pathways, migration, attachment, proliferation and 

differentiation of several types of cells, in the regeneration of tissue.120-122  Together 

with clinicians, in vivo studies can be performed to test the applicability of the in vitro 

techniques being developed from this knowledge.  Only though the combination of 

the functional biology of the system with the system’s interaction characteristics can 

methods or tissues be produced that can replicate or improve that found naturally.  

For hernia repair the ideal tissue to focus on is skeletal muscle.  Current repair 

techniques focus on improving the organization of scar tissue while restoring some of 

the mechanical strength that is lost during herniation.  While there have been 
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significant advances over suture techniques alone, the hernia recurrence rate is still 

high.  Therefore the ideal solution would be to restore the native tissue to its original 

functionality through skeletal muscle regeneration.  

 

Next Generation Polymeric Scaffolds 

 As mentioned above, polymeric scaffolds allow researchers and clinicians to 

control the properties of hernia repair meshes.  These meshes have demonstrated 

promising results in hernia repair but are still not ideal.  The next generation of 

clinical products involves controlling the scaffold degradation and surface properties 

to help restore function to the damaged skeletal muscle tissue.  This can be done by 

optimizing current scaffolds and creating new novel polymers that possess the 

mechanical properties, surface properties, biocompatibility, and degradation rates that 

are desired.  Current research is investigating micropatterned materials for directed 

cell migration and growth of skeletal muscle123, 124, as well as, degradable polymers 

that can time release growth factors for not only skeletal muscle regeneration 125, 126, 

but vascularization and innervation as well.  To achieve functional skeletal muscle 

regeneration, all three tissues must be considered.  By learning more about the signals 

and metabolic pathways of these tissues and their progenitor cells, better tools will 

become available for the optimization of ideal hernia repair devices.   
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Conclusions 

 Despite our attempts to lower the rates of primary hernia occurrence and 

recurrence, this problem has remained largely unchanged for decades.  Imperfect 

wound healing is thought to be the mechanism for herniation however many attempts 

to control this have been limited in their success.  Therefore a tissue engineering 

approach of regenerating the lost skeletal muscle has been proposed.  To achieve the 

ideal solution however a greater understanding of current biomaterials and their 

cellular interactions are needed. 
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Chapter 4: Project Summary 

Abdominal wall hernias are a common clinical concern.  Existing clinical 

solutions involve the use of synthetic prosthetic meshes that focus primarily on the 

structural support of the abdominal wall and not defect wound healing.  To address 

both of these concerns this project aims to use a tissue engineering strategy to 

regenerate skeletal muscle within the abdominal wall defect using a cyclic acetal 

based scaffold, a skeletal muscle myoblast cell population, and a plasmid encoded for 

IGF-1. 

Initial studies investigated the biocompatibility of a cyclic acetal biomaterial 

fabricated from 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol 

diacrylate (EHD).  Three aspects of this scaffold were investigated.  First, the 

mechanical properties of solid EH networks were determined.  Second, the 

attachment, viability, and proliferation of a rat myoblastic cell population was 

assessed and third the release and functionality of insulin-like growth factor 1 (IGF-1) 

was evaluated.   

Once completed, the scaffold was improved upon by altering the structural 

architecture of the crosslinked EH networks.  To determine this effect on material 

properties the mass lost and pH change during degradation, the Young’s modulus and 

the flexural strength for five different scaffold architectures were investigated. 

Finally, in an effort to encourage skeletal muscle regeneration over scar tissue 

formation gene delivery methods were employed.  More specifically, the effect of 

scaffold architecture on plasmid delivery was assessed.  In addition, a therapeutic 
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plasmid that expressed IGF-1 was constructed and evaluated in a human skeletal 

muscle myoblast cell population.  
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Chapter 5: EH Networks as a Scaffold for Skeletal Muscle 

Regeneration in Abdominal Wall Hernia Repair∗ 

Introduction 

Abdominal wall hernias, and particularly incisional hernias, are a common 

clinical problem affecting nearly 5 million Americans.  Although autografts, 

allografts, and xenografts are options for the repair of abdominal wall hernias, their 

relatively high recurrence rates have mostly limited their clinical application.105, 106, 

127-130  The most common approach for incisional hernia repair involves the 

implantation of a synthetic or natural prosthetic mesh.  Synthetic prosthetic materials, 

including polypropylene, polytetrafluoroethylene, and various polyesters, are most 

often used, while natural polymers, such as sodium hyaluronate and 

carboxymethylcellulose, may be used in conjunction with these prosthetic materials 

so as to augment the tissue response to the implant materials.  As synthetic prosthetic 

meshes have mostly controllable physical properties, including pliability and strength, 

as well as pore size, shape, and distribution, the fabrication can be tailored for a 

specific clinical application.103, 117  Nevertheless, synthetic materials are associated 

with significant disadvantages, such as a prolonged inflammatory response, prosthetic 

infections, and fistula formation.118, 130, 131  Furthermore, the potential for mesh 

migration or shrinkage may render them ineffective.104  As a result of these 

                                                 
∗ This chapter was published as the following article: Falco, E.E., J.S. Roth, and J.P. Fisher, EH 
Networks as a scaffold for skeletal muscle regeneration in abdominal wall hernia repair. J Surg Res, 
2008. 149(1): p. 76-83. 
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disadvantages, the current incidence of hernia recurrence after intervention ranges 

from 32% to 63%.132 

As an answer to the current clinical need for better hernia repair, we propose 

that a degradable biomaterial scaffold, which promotes the regeneration of abdominal 

skeletal muscle, may be an attractive approach.  Here, the implanted scaffold would 

guide the regeneration of load bearing skeletal muscle through facilitated myoblast 

proliferation and maturation.  To this end, we have engineered a scaffold, termed an 

EH network, made from the cyclic acetal monomer 5-ethyl- 5-(hydroxymethyl)-β,β-

dimethyl-1,3-dioxane-2-ethanol diacrylate (Fig. 1).   

 

Figure 5. 1:  (A) Chemical structure of the monomer 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-

1,3dioxane-2-ethanol diacrylate (EHD).  (B) Chemical structure of the resulting crosslinked EH 

network.  (C) An EH network sheet made with a 0.58M BP solution. 
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EH network’s novel property is that it lacks the ester groups present in many 

other biodegradable polymers and, therefore, as EH degrades it produces less acidic 

byproducts.22, 58, 60  Thus, premature scaffold degradation due to high acidity is 

prevented and the inflammatory response of skeletal muscle tissue surrounding the 

implant is decreased. 

The work presented here intends to investigate the skeletal muscle 

regeneration on the surface of an EH network.  Skeletal muscle regeneration begins 

with satellite cells, the progenitor cell of skeletal muscle.  These mononuclear cells 

are present in skeletal, smooth, and cardiac muscles.  In skeletal muscle specifically, 

the mononuclear satellite cells reside between the myofiber and the basal lamina and 

are able to move freely.88-91  When trauma to the musculature occurs, available 

satellite cells become activated and migrate to the site of the defect, where they 

proliferate.  The newly produced cells then have one of two roles: to replenish the 

satellite cells’ reserve and return to quiescence or to remain activated at the site of the 

defect.  Activated satellite cells mature into myoblasts that align parallel with each 

other and with the remaining myofibers in a process that parallels muscle 

development.  Myoblast fusion then begins, after which the resulting myotubes 

undergo a maturation process to become functioning myofibers.  The importance of 

this process in the regeneration of tissues has been the focus of several studies 

defining cell signaling pathways, migration, attachment, proliferation, and 

differentiation of several types of cells.120-122 

One such cell-signaling pathway that has been studied extensively in 

conjunction with skeletal muscle development and regeneration is that of insulin-like 
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growth factor-1 (IGF-1).  IGF-1 is a polypeptide hormone that has been shown to 

function as autocrine and paracrine signals that affect skeletal muscle growth and 

development.133-135  More specifically, when IGF-1 binds to the IGF-1 receptor (IGF-

1R) that is present on activated satellite cells, it produces an increase in the cell’s 

proliferative capabilities as well as its differentiation.135-137  Overall, increasing the 

amount of IGF-1 present in the skeletal muscle produces an increase in both the 

skeletal muscle DNA and protein content.136  Therefore, the use of IGF-1 may be 

critical to activating and guiding satellite cell behavior in skeletal muscle 

regeneration.135 

To date, there have been only modest investigations into the use of 

biomaterials in guided skeletal muscle regeneration.  As satellite cells are not present 

within the prosthesis prior to implantation, they must migrate and compete with the 

granulation tissue and foreign body giant cells to enter the matrix.  With such an 

inadequate number of satellite cells available compared with the competing cells, the 

musculature is often replaced almost solely by fibrous scar tissue as opposed to 

skeletal muscle.95, 113  Given this issue, we investigated what initial steps would 

permit creation of an EH scaffold that would facilitate skeletal muscle regeneration.  

To begin, we examined the effects of initiator concentration on the mechanical 

properties of the radically crosslinked EH networks so as to confirm their utility in 

soft tissue applications.  Next, we investigated the effects of initiator concentration on 

cell attachment to characterize the interactions between the network and our skeletal 

myoblast population.  Then, the effect of exogenous IGF-1 in the growth media on 

cell proliferation was tested on attached myoblasts to ensure that the IGF-1 protein 



 48 
 

signaling was unaffected by the scaffold.  Finally, the effects of increasing the 

concentration of adsorbed IGF-1 on release and myoblast proliferation were 

characterized to determine the ability of the EH scaffold to serve as a delivery system 

for IGF-1. 

 

Materials and Methods 

Materials 

Benzoyl peroxide (BP), N,N-dimethyl-p-toluidine (DMT), 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD), and bovine 

serum albumin were obtained from Sigma-Aldrich (Milwaukee, WI).  Reagent grade 

acetone was purchased from Fisher Scientific (Pittsburgh, PA).  F-10 Ham media (F-

10), fetal bovine serum (FBS), penicillin/streptomycin (Pen/Strep), and 

trypsin/ethylenediamine tetraacetic acid (EDTA) were received from Invitrogen 

(Carlsbad, CA).  Collagenase P was obtained from Roche Applied Sciences 

(Indianapolis, IN).  Recombinant human insulin-like growth factor-1 was acquired 

from R&D Systems (Minneapolis, MN). 

 

EH Network Synthesis 

EH sheets were fabricated in a glass plate mold.  To assemble this mold, 

capillary tubes were secured onto one of two glass plates with vacuum grease.  

Together, the plate and capillaries made up the walls and bottom of a rectangular 

well.  With this completed, a 0.81 M stock solution of BP in acetone was prepared.  
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Subsequently from this stock, working solutions based on desired fabrication 

parameters were made. EHD monomer was then mixed with the working initiator 

solution until one phase was present.  The accelerant N,N-dimethyl- p-toluidine was 

added to the solution at a concentration of 0.5 µL/g of EHD monomer.  The solution 

was mixed again and poured into the well of the previously prepared plate.  A second 

plate was used to cover the solution and the system was placed in an oven at 30°C for 

20 min.  A uniform thickness of approximately 0.8 mm was achieved. 

 

Skeletal Myoblast Isolation and Harvest 

Skeletal muscle was harvested and isolated from the hind limbs of Wistar 

Hannover GALAS rats.  Once removed, each muscle was rinsed three times with F-

10 Ham media containing 10% Pen/Strep, diced, and then digested in 10 mL of 

collagenase P solution for 2 h at 37°C and 5% CO2.  After incubation, 100 µL of 

trypsin/EDTA solution was mixed into the cell solution and placed back into the 

incubator for 30 min at 37°C and 5% CO2.  The trypsin and collagenase P solution 

was neutralized with 22 mL of growth media, composed of F-10 Ham media 

containing 10% FBS and 1% Pen/Strep.  The cell suspension was passed through 

three filters with 100 µm, 70 µm, and 40 µm mesh sizes, respectively.  The remaining 

cells were centrifuged, and the pellet was again resuspended in growth media.  This 

procedure was completed twice more, once with F-10 Ham media only and finally 

with growth media.  The resulting suspension was plated on a T-25 culture flask and 

was placed in the incubator at 37°C and 5% CO2.  The resulting cell population is a 

putative rat skeletal myoblast population, and will be referred to henceforth as 
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myoblasts.  The growth media was changed the day after harvest.  At day 3, the cells 

were passaged and reseeded onto a new T-25 culture flask.  Growth media was 

changed again at day 6.  Finally on day 8 the cells were washed twice with 

phosphate-buffered saline (PBS), trypsinized, and seeded according to the study 

parameters. 

 

Dynamic Mechanical Analysis 

The mechanical properties of EH networks were analyzed by dynamic 

mechanical analysis, reflecting the dynamic mechanical forces experienced in the 

abdominal wall.  Three different networks were formed using initiator solution 

concentrations of 0.08, 0.23, and 0.81 M.  During fabrication 2.25 mL of the desired 

initiator solution was used for every 2.0 g of EHD monomer.  The resulting sheets 

were cut into 13 mm × 30 mm rectangles.  Using the Q-800 Dynamic Mechanical 

Analyzer (TA Instruments, New Castle, DE) the samples were placed in the single 

cantilever clamp and held isothermally at 37°C.  One end of the network was then 

oscillated over a frequency range of 1–100 Hz at an amplitude of 15 µm.  This 

experiment was run with a sample size of six and the values for the complex modulus 

were reported as a mean and standard deviation of these samples at a frequency of 10 

Hz. 
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Skeletal Myoblast Attachment 

Skeletal myoblast attachment was investigated on EH networks that were 

formed using 0.75 mL of either 0.34 M or 0.58 M initiator solution for every 2.0 g of 

EHD.  These resulting networks were cut into disks with a diameter of 2.0 cm.  The 

disks were subsequently washed three times for 15 min each with PBS, acetone, PBS 

again, and then sterilized by exposure to UV light overnight.  Each disk was placed in 

a 12-well plate.  Stainless steel inserts were fabricated by cutting 1.5 cm length 

sections from a 3/4 in. stainless steel polished pipe purchased from Stainless Steel 

Stock (Friend, NE).  These inserts were filed down until their edges were smooth, and 

then they were washed thoroughly and sterilized through autoclaving.  The stainless 

steel inserts were then placed onto the EH networks to prevent them from floating in 

the culture media.  A population of myoblasts was seeded into the center of the EH 

disks, confined by the stainless steel insert, at a seeding density of 100,000 cells per 

network.  After 4 and 6 h the disks were washed twice with PBS and the remaining 

cells were lifted with trypsin/EDTA and counted using a hemacytometer. 

 

Dosed IGF-1 Induced Myoblast Proliferation 

To examine the effect of EH networks on IGF-1 signaling, skeletal myoblasts 

were isolated and networks made from the 0.58 M initiator solution were prepared.  

Myoblasts, seeded at an initial density of 1.0 × 106 cells, were cultured on each disk 

for 48 h to allow cellular attachment before testing for cellular proliferation.  After 48 

h, growth media was changed and IGF-1 was added at concentrations of 0 ng/mL 

(control group), 10 ng/mL, and 15 ng/mL of IGF-1. (Please note that all myoblast 
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culture studies, including those with exogenous IGF-1, used media containing 10% 

FBS despite the fact that FBS does contain multiple growth factors, including IGF-1.  

FBS was nevertheless incorporated into the cell culture media for two significant 

reasons.  First, FBS is generally required for long term cell adhesion to a purely 

synthetic material in an in vitro study.  Second, FBS replicates some of the aspects of 

the chemically complex environment that will be observed by the proposed 

constructed when used clinically.  After 3 and 5 d, the cells were lifted and counted 

using a hemacytometer.  This experiment was done in triplicate and the values are 

reported as the mean and standard deviation of the total number of cells for each 

group. 

 

Adsorbed IGF-1 Release Profile and its Effect on Myoblast Proliferation 

To determine the activity of IGF-1 adsorbed on the surface of EH networks, 

IGF-1 was physically adsorbed onto the network, and both IGF-1 release and 

myoblast proliferation were characterized.  IGF-1 was reconstituted in PBS with 

0.1% bovine serum albumin to a concentration of 100 µg/mL.  Solutions of the IGF-1 

stock were diluted to 10 ng/mL, 50 ng/mL, and 100 ng/mL.  One mL of the IGF-1 

working solutions was then added to the surface of the network and allowed to 

evaporate overnight in a sterile laminar flow hood.  Once the networks dried, 2 mL of 

fresh PBS were added to each sample.  The networks were then placed in the 

incubator at 37°C and 5% CO2.  At 0.25, 0.5, 0.75, 1, 2, 4, 6, 12, 24, and 48 h, a 300 

µL sample was removed and fresh PBS was added to maintain a constant total 

volume.  All sample aliquots were stored at 4°C until analysis.  The samples were 
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analyzed using a human IGF-I Quantikine enzyme-linked immunosorbent assay Kit 

(R&D Systems, Minneapolis, MN).  To investigate proliferation, myoblasts were 

cultured on the IGF-1 loaded disks with growth media being changed on day 3.  All 

media was supplemented with FBS as was done in the previous proliferation study.  

After 3 and 5 d, the cells were lifted and counted using a hemacytometer.  Both 

studies were done in triplicate and the values were reported as the mean and standard 

deviation of the absolute amount of IGF-1, the percent of loaded IGF-1 released from 

the network, and the total number of cells on each network, respectively. 

 

Statistical Analysis 

Statistical analysis was performed on all data using analysis of variance and 

Tukey’s multiple comparison tests. 

 

Results 

The objective of this work was to determine the feasibility of a 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate network as a 

biomaterial for skeletal muscle regeneration and therefore abdominal wall hernia 

repair.  Specifically, we looked at the physical properties of the biomaterial itself as 

well as its use as a degradable scaffold for the delivery of IGF-1 to a skeletal 

myoblast population.   

In the mechanical study, the frequency at which the sample was oscillated was 

varied between 1 and 100 Hz.  Initial data analysis indicated that EH networks had a 
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complex modulus that demonstrated less than 8% variance across the entire frequency 

range.  Therefore, reported values were chosen from the middle of the experimental 

range at 10 Hz to eliminate any end effects.  As can be seen in Fig. 2, the complex 

modulus of the network made with 0.23 M BP solution was found to be statistically 

similar to both of the networks made with 0.08 and 0.81 M BP solutions.  However, 

comparison of the 0.08 and 0.81 M BP solution networks show that the complex 

modulus decreased significantly from 4.7 ×102 ± 1.2 × 102 MPa to 2.5 × 102 ± 0.1 × 

102 MPa, respectively. 
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Figure 5. 2:  Complex modulus as a function of initiator concentration.  A frequency sweep of 1–

100 Hz was run on a Q-800 dynamic mechanical analyzer (TA Instruments) with parameters of 

37°C and 15 µm amplitude.  Results for 10 Hz are reported in this graph. 

 

To determine the ability of EH scaffolds to support a cell population, four 

different studies were conducted with putative rat skeletal myoblasts.  First, myoblast 

attachment was tested. Figure 3 shows that when comparing the 0.34 and 0.58 M BP 

networks, there is a slight increase in myoblast attachment as the initiator content is 

increased.  However, closer study revealed this trend was not found to be statistically 
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significant.  Results also indicated that the percent of myoblasts attached to the 

experimental group and the tissue culture polystyrene (TCPS) were statistically 

similar at all time points, indicating that initial myoblast attachment occurs at a rate 

and extent similar to the control. 
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Figure 5. 3:  Myoblast cell attachment on EH networks with varied initiator concentrations.  All 

groups were found to be statistically similar. 

 

Next, in an effort to promote cell proliferation, IGF-1 was added to the culture 

media at concentrations of 0 ng/mL (control group), 10 ng/mL, and 15 ng/mL.  As 

mentioned earlier, myoblasts were allowed to attach to the EH network for 48 h prior 

to IGF-1 addition; therefore, all results were normalized to data taken on the day of 

IGF-1 addition (day 0).  As indicated in Fig. 4, at day 3, the cell numbers for the 

control, 5 ng/mL and 10 ng/mL groups were as follows: 0.65 × 106 ± 0.10 × 106, 0.61 

× 106 ± 0.11 × 106, and 0.64 × 106 ± 0.13 × 106 cells per network.  No significant 

difference among all groups at day 3 was found.  However, by day 5 the groups 

containing growth media supplemented with IGF-1 had significantly more cells than 

the control group: the values for the control and experimental groups were 0.65 × 106 
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± 0.17 × 106, 1.03 × 106 ± 0.34 × 106, and 1.08 × 106 3± 0.28 × 106 cells per well, 

respectively.  While there were no statistical differences among the experimental 

groups at these doses, this study demonstrates the result that the supplementation of 

IGF-1 to the growth media induces attached myoblast proliferation. 
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Figure 5. 4:  Total number of cells attached to EH networks after 3 and 5 days.  It was shown in 

this study that only the IGF-1 groups at day 5 were statistically different from all groups in both 

time points. 

 

Next, the study of this material as a delivery device was initiated as IGF-1 was 

physically adsorbed onto the EH surface and allowed to release into fresh PBS over 

time.  To obtain release profiles of the IGF-1, three concentrations of 10, 50, and 150 

ng were adsorbed onto the network and release was characterized over 48 h.  Figure 

5A displays the absolute amount of IGF-1 released. The 50 and 150 ng loading 

groups released 16.19 ± 0.32 ng and 17.07 ± 0.12 ng IGF-1, respectively, over 48 h.  

These two groups follow a similar temporal profile and are significantly similar for 

all points, except at 2 and 48 h.  Alternatively, the 10 ng loading group released 1.65 

± 0.03 ng over 48 h.  This group was statistically lower than the other higher loading 
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groups at all time points, as expected.  Considering percent release, the 50 ng loading 

group released a significantly higher percent of IGF-1 than the 10 ng loading group 

after 48 h (Fig. 5B).  Moreover, compared with the 150 ng loading group, the 10 ng 

loading group released a significantly higher percent of IGF-1.  Here, release after 48 

h was 32.38 ± 0.63%, 16.52 ± 0.29%, and 11.38 ± 0.08% IGF-1 loaded, respectively. 

 

Figure 5. 5:  (A) Total IGF-1 released from the surface of the EH network.  The 10 ng loading 

group showed a significantly lower amount of IGF-1 released than the 50 and 150 ng loading 

groups.  The 50 and 150 ng groups were statistically similar for all time points except 2 and 48 h.  

(B) Percent IGF-1 release from the surface of the EH network.  The 10 ng loading group released 

a significantly higher percent of the loaded IGF-1 than the 150 ng loading group.  The 50 ng 
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group released the highest percent of the loaded IGF-1 and was statistically different from both 

the 10 ng and 50 ng loading groups. 

 

Last, the functionality of the adsorbed IGF-1 was examined.  Myoblasts were 

seeded onto IGF-1 loaded EH networks and the IGF-1 induced proliferation 

investigated.  Figure 6 showed that the 50 and 150 ng loaded networks had 

significantly more cells attached to the networks than either the 10 ng loading group 

or the control at day 3.  By day 5, all groups were shown to be statistically similar.  

Also, the control at day 5 was statistically higher than at day 3, showing a slower 

increase in cell numbers than the IGF-1 loaded network groups. 
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Figure 5. 6:  Total number of cells attached to IGF-1 loaded EH networks after 3 and 5 days. It 

was shown in this study that only the networks that contained 50 and 150 ng of IGF-1 had more 

cells attached at day 3 than the 10 ng and control groups. It was also found that by day 5 all 

groups had leveled off and were statistically similar. 
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Discussion 

This work seeks to develop EH networks as a platform for skeletal muscle 

regeneration within abdominal hernias.  As an initial concern, any biomaterial 

developed for abdominal hernia repair must have physical properties that are suitable 

for the abdominal environment.  In particular, the material must withstand the force 

of the abdominal cavity, while allowing for free movement.  Previous work with EH 

networks has shown that by altering the fabrication parameters, properties such as the 

gelation time, sol fraction, and swelling degree could all be varied.22  Therefore, it 

was hypothesized that by altering the fabrication parameters, specifically the initiator 

concentration, we could alter the mechanical properties as well.  Results showed that 

complex modulus did decrease significantly as initiator concentration was reduced 

from 0.81 to 0.08 M and, thus, EH network mechanical properties may be controlled 

by alternations in initiator concentration (Fig. 2).  This control over material 

mechanical properties is a key attribute, allowing an implant to be fabricated with the 

mechanical properties necessary for a particular application.  Nevertheless, it must be 

noted that abdominal wall skeletal muscle has been reported to possess a Young’s 

modulus of 42.5 ± 9.0 kPa in the transverse plane and 22.5 ± 2.6 kPa in the sagittal 

plane.138  Thus, the EH networks studied here have a modulus approximately 100-fold 

greater than skeletal muscle.  Although this may be a concern, it must be emphasized 

that the networks studied here were solid sheets, while clinically relevant implants 

would be fabricated as porous meshes with significantly lower mechanical properties.  

Porous EH networks are easily fabricated using any of a number of strategies, 

including porogen leaching, phase separation, and gas foaming.  Following a porogen 
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leaching strategy139-142, we have fabricated porous EH networks, although they are 

not considered in the present work. 

The biological functionality of EH networks, specifically cellular interactions, 

was then investigated by determining the effects of increasing initiator concentration 

on myoblast attachment.  Myoblasts were expected to have a similar percent 

attachment to the EH networks as the tissue culture polystyrene control.  Results 

showed that the 0.58 M initiator system had a slightly higher percent of cell 

attachment than the 0.34 M BP system; however, all groups were statically similar at 

both 4 and 6 h (Fig. 3).  Previous studies have shown that during network formation, 

the 0.58 M BP solution reacts more completely, leaving behind less unreacted and 

presumably more cytotoxic materials.22  Therefore, the trend of increasing myoblast 

attachment with increased initiator concentration may be due to the reduction of 

unreacted components in the system.  Due to the results of this study, the higher 

initiator formulation was used for subsequent experiments. 

The retention of IGF-1 signaling pathways by myoblasts attached to EH 

networks was then investigated by augmenting culture media with exogenous IGF-1.  

Results demonstrated that at day 3, all groups of IGF-1 concentrations had 

significantly similar cell growth (Fig. 4).  However, by day 5, both the 10 ng/mL and 

15 ng/mL group had significantly more cells than the control group, as well as similar 

cell numbers to each other.  The results indicate that repeated exposure to IGF-1 has a 

long-term effect on the cell proliferation.  Furthermore, it also implies that increasing 

the concentration from 10 to 15 ng/mL did not have a significant effect on the cell 

proliferation, an outcome that may be due to the small difference between 
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concentrations.  Finally, this study demonstrates that the EH network does not affect 

the myoblast’s ability to use the IGF-1 protein to induce mitotic signaling pathways. 

However, to be an effective delivery vehicle, the EH scaffold should be able 

to deliver the IGF-1 protein in an active form, so as to ultimately induce myoblast 

proliferation in vivo.  Therefore, the release rate of adsorbed IGF-1 from EH networks 

was subsequently characterized.  In particular, the effect of physically adsorbing 

increasing concentrations of IGF-1 on the total IGF-1 released into PBS over time 

was measured (Fig. 5).  Results demonstrated that the loading of low levels of IGF-1 

allow for release over 2 h, while higher loading levels sustained release after 12 h.  

Furthermore, as this study used an enzyme-linked immunosorbent assay to detect 

IGF-1 release, it may be inferred that the released IGF-1 retained its structurally 

active form.  It must be noted, however, that a relatively low percentage of IGF-1 was 

released from the EH networks.  Finally, this data does demonstrate that EH networks 

can be functionalized to release IGF-1 into the local environment, therefore inferring 

their ability to deliver IGF-1 to native skeletal muscle in vivo. 

The final work aimed to demonstrate the ability of IGF-1 loaded EH networks 

to induce skeletal myoblast proliferation (Fig. 6).  Results showed that after 3 d, EH 

networks loaded with 50 and 150 ng of IGF-1 had significantly more myoblasts than 

the control and 10 ng loaded networks.  By day 5, however, all of the groups had 

significantly similar levels of myoblast proliferation.  At this later time point, there 

was likely no additional IGF-1 being released from any of the networks (see results in 

Fig. 5) and, thus, it would be expected that IGF-1 induced proliferation had slowed.  

As the results with IGF-1 augmented media demonstrated that continuous IGF-1 
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delivery is needed for enhanced myoblast proliferation (Fig. 4), this work confirms 

that EH networks loaded with IGF-1 can release the growth factor at early time points 

so as to induce myoblast proliferation in the initial healing stages.  Furthermore, 

contrasting the results in Figs. 4 and 6, it appears that skeletal myoblasts exposed to 

continuous IGF-1 delivery demonstrate a delayed increase in cell proliferation.  

However, when a similar amount of IGF-1 was delivered in a burst due to EH 

network release, a short-term increase in myoblast proliferation was observed.  

Overall, a similar increase in cell proliferation was seen in both studies, with 

adsorbed IGF-1 exhibiting an increase in proliferation at earlier time points than IGF-

1 supplemented culture media.  In clinical applications, it may be that the burst 

release of IGF-1 from EH networks is preferred, so that myoblast proliferation is 

initiated early, however this is speculative and would need to be confirmed by 

controlled in vivo studies. 

The results of this work demonstrated fundamental relationships between EH 

networks, IGF-1, and myoblasts.  In particular, EH networks allow for myoblast 

adhesion, IGF-1 surface absorption, and subsequent release, as well as IGF-1 induced 

myoblast proliferation.  While this initial work focused upon in vitro studies, we can 

speculate that in vivo EH networks should allow for the local delivery of an active 

form of IGF-1 and that this delivery can be sustained for up to 12 h. 

These successful results also indicate future directions for this work.  In 

particular, the fabrication of porous EH networks as well as the interaction of porous 

architectures with myoblasts should be considered.  Comprehensive mechanical 

studies, including tensile strength, burst strength, and suture retention strength would 
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demonstrate whether the mechanical properties of porous EH meshes are suitable for 

the abdominal wall environment.  The results described here also indicate that in vivo 

studies of EH materials may be warranted, as well as contrasting their efficacy with 

meshes currently in use for abdominal hernia repair.  Finally, future work will need to 

evaluate the proposed strategy of skeletal muscle regeneration for hernia repair and, 

in particular, contrasting this approach with current strategies that focus upon 

fibroblast proliferation and collagen matrix production. 

 

Conclusions 

This work examined the ability of the novel cyclic acetal biomaterial to function as an 

abdominal wall hernia repair implant.  Tissue engineering principles were used to 

examine EH networks in regards to their mechanical and biological compatibility.  In 

particular, mechanical properties, cellular attachment, IGF-1 release, and IGF-1 

induced proliferation were examined.  Results showed that the concentration of 

initiator solution used during fabrication altered the mechanical property of these 

networks.  Additionally, results show that myoblasts attach to the networks in a 

manner similar to the tissue culture polystyrene control and proliferate upon these 

networks in the presence of IGF-1.  Finally, results demonstrate that IGF-1 can be 

released from the network after adsorption and will continue to induce myoblast 

proliferation. These studies suggest that the EH scaffold would be a favorable 

material for facilitated myoblast attachment and proliferation. When combined with 

fabrication and degradation properties of EH networks, this biomaterial is a promising 

scaffold for tissue engineering, specifically a skeletal muscle engineering strategy. 
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Chapter 6:  Fabrication and Characterization of Porous EH 

Scaffolds and EH-PEG Bilayers 

Introduction 

 Synthetic polymers have been extensively studied for use in biomedical and 

tissue engineering applications.1-3  Several current clinical applications include 

medical devices such as vascular stents and hernia repair meshes as well as polymer 

therapeutics such as polymer-protein conjugates and drug delivery devices.1, 17, 143, 144  

These applications are all possible due to the ease with which a synthetic polymer’s 

chemical and physical properties can be modified.  One of the most common 

modifications made for tissue engineering applications specifically is to polymer 

scaffold architecture.9-11  Techniques such as porogen leaching, electrospinning, and 

micropatterning are often used.123, 124, 140, 145, 146  To determine a polymer’s utility and 

clinical relevance, mechanical and chemical properties of the fabricated scaffolds 

must be investigated. 

 This paper addresses the use of a cyclic acetal monomer, 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD), in the 

formation of a crosslinked porous EH scaffolds for abdominal wall hernia repair.  

Abdominal wall hernias are a prevalent condition with approximately 500,000 new 

cases developed each year in the United States.132  While several synthetic meshes 

have been developed to aid in the repair of abdominal wall hernias, there is yet to be 

an ideal candidate that can effectively prevent recurrence in all patients.  In fact, even 

with synthetic mesh placement hernia recurrence occurs in 20-50% of patients.84 
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 In an effort to lower hernia recurrence rates, a tissue engineering strategy was 

developed to encourage skeletal muscle regeneration within the hernia defect.  To 

achieve this, two aspects must be investigated: wound healing and mechanical 

stability.  Current studies have demonstrated that recurrent hernia patients almost 

always exhibit incomplete or immature wound healing.84, 93  During skeletal muscle 

wound healing, satellite cells become activated and migrate to the defect site where 

they begin to proliferate.  If the defect is blocked by a polymer scaffold however, 

neither the satellite cells nor inflammatory cells can infiltrate the defect.  This results 

in the prosthetic mesh becoming encapsulated in fibrous scar tissue.107  Previous work 

has shown that EH networks are biocompatible with a rat skeletal muscle myoblastic 

cell population and that they support the attachment and proliferation of these cells.59  

Therefore a macroporous EH monolayer was designed to allow for cell infiltration 

into the network.  Once populated with satellite cells, the cells can attach and align 

with each other to fuse into myotubes and mature into functioning myofibers.  For 

this strategy to be successful however, the polymeric scaffold must degrade on the 

same time scale as muscle is regenerated.    

To further create a functional hernia repair device, EH monolayers were 

coated with poly(ethylene glycol) diacrylate (EH-PEG bilayers) in an attempt to 

create an abdominal adhesion barrier.   Abdominal adhesions are a common clinical 

complication in hernia repair.103, 104, 118, 130, 131, 147  It has been found that adhesions can 

lead to intestinal obstruction, chronic pain, female infertility and entercutaneous 

fistulas.103, 132, 147  To successfully prevent reoccurrence and other post-operative 

complication, an ideal hernia repair device must address this concern.  As for 
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mechanical stability, previous studies have showed that solid EH networks had a 100 

fold greater modulus than that of skeletal muscle.59  Therefore it is hypothesized that 

by creating a more porous architecture one can alter the mechanical properties as 

well.   

To this end, the studies presented here aim to characterize porous EH 

networks for the application of abdominal wall hernia repair.  EH scaffolds with 

different architectures were fabricated and were degraded in buffer (pH 7.4) to 

determine the percent mass lost as well as the change in pH of the buffer solution 

over 85 days.  In addition, the effect of changes in the scaffold architecture on the 

Young’s modulus and flexural strength was measured.  

 

Materials and Methods 

Materials 

Benzoyl peroxide (BP), N,N-dimethyl-p-toluidine (DMT), 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD), 

isobutyraldehyde, formaldehyde (37% aqueous solution), trimethylolpropane, 

triethylamine, hydroquinone, acryloyl chloride, ammonium persulfate (APS), 

N,N,N’,N’-tetramethylethylenediamine (TEMED) and PEG diacrylate (PEGDA) 

were obtained from Sigma-Aldrich (Milwaukee, WI, USA).  Reagent grade acetone, 

potassium carbonate, sodium sulfate, ethyl ether, silica gel (60-200 mesh) and sodium 

chloride (salt) were purchased from Fisher Scientific (Pittsburg, PA, USA ). 
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5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate Synthesis 

 EHD was synthesized based on the protocols described by Kaihara et al.  

Potassium carbonate (18.9 g, 0.25 equiv) was added to isobutyraldehyde (50 ml, 1 

equiv) and formaldehyde (37% aqueous solution, 40.8 ml, 1 equiv) and the solution 

was stirred at 0°C overnight.  The product 3-hydroxy-2,2-dimethylpropinaldehyde 

(HDP) was extracted three times with chloroform and then washed with water and 

brine.  The chloroform layers were combined and dried with sodium sulfate and the 

solvent was evaporated under reduced pressure to obtain solid HDP.   HDP (32.9 g, 1 

equiv) and trimethylolpropane (86.6 g, 2 equiv) were dissolved in 1 M hydrochloric 

acid (200 ml) and stirred for 2 h at 80°C.  The solution was then neutralized with 

sodium hydroxide and the product 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-

dioxane-2-ethanol (HEHD) was extracted three times with chloroform and washed 

with water and brine.  The chloroform layers were combined and again dried with 

sodium sulfate and evaporated under reduced pressure to obtain solid HEHD.  The 

HEHD was purified using an ethyl ether wash to remove undesired byproducts and 

was dried under reduced pressure.  HEHD (31.3 g, 1 equiv) was dissolved in 

chloroform and triethylamine (65.4 ml, 3 equiv) and hydroquinone (0.034 g, 

0.002equiv) were added.   Acryloyl chloride (38.1 ml, 3 equiv) was added dropwise 

as the reaction was stirred at 0°C for 2 h.  The insoluble salts were removed through 

filtration and the product, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-

ethanol diacrylate (EHD), was extracted three times with chloroform and washed with 

water and brine.  The chloroform layers were combined and dried with sodium sulfate 

and evaporated under reduced pressure.  The EHD was further purified by silica gel 
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column chromatography using a chloroform/ethanol (10:1, v/v) as the eluent.  The 

fractions that contained EHD were determined by thin layer chromatography and 

NMR. 

 

Solid EH Network Formation 

Solid EH networks were fabricated in a glass plate mold.  To assemble this 

mold, capillary tubes were secured onto one of two glass plates with vacuum grease 

to create a 1 mm thick well.  BP was added to acetone to create a 0.826 M solution.  2 

g of EHD monomer was then mixed with 0.75 mL of BP solution and 16 µL of DMT 

was added.  This mixture was vortexed and poured directly into the mold.  The 

network was covered with a second plate and placed in an oven at 60°C for 20 min.  

The resulting sheet was removed, cut into the required shape and placed into DI water 

for 48 h with the water change after 24 h. 

  

Solution Formed Porous EH Monolayer Formation 

 Solution formed porous EH networks (SOLN EH monolayers) were made 

using a leachable porogen strategy. 7 × 4.3 cm rectangular cavities were cut out of 1.4 

mm thick plastic sheets in order to form frames. A glass plate was placed under the 

frames to form a well, which was filled with 7.8 g of salt.  Salt was wetted with 

2.445 mL 85% acetone and spread with another glass plate to fill the frame.  Salt-

filled frames were dried on an 85 °C hot plate for 1 h in order to produce an 
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interconnected salt network that was attached to the plastic frame. The salt-filled 

frame was allowed to cool 10 min before removal from the glass plate. 

 The mass of the salt network was measured to determine the amount of 

polymer solution required to achieve the desired porosities of 75 and 80 wt% salt.  

Active EHD solution was prepared by mixing each gram of EHD with 375 µL of 

0.826 M BP in acetone and 8 µL DMT.  The salt-filled frame was suspended over a 

weighing dish such that the salt network was solely supported by the frame and active 

EHD solution was delivered drop wise onto the salt cake. 

The frame was then placed in a 60°C oven for 20 min to promote polymer 

gelling.  Once gelled, the SOLN EH network was transferred to DI water to leach out 

salt.  After 20 min the networks were removed from the frame to prevent cracking 

and the salt was leached out for 48 h with a water change at 24 h. 

 

Solid PEG Monolayer Formation 

PEG networks were prepared with 30 wt% PEGDA, 20 mM APS, 20 mM 

TEMED and 5% acetone. Two stacks of three cover slips were placed on top of 

a glass sheet to control the PEG network thickness.  PEGDA, APS, TEMED, 

water and acetone were vortexed and poured quickly in between the cover glass 

stacks.  A second glass sheet was then placed on top of the cover slips, pressing the 

PEG solution between the two layers of glass.  After curing, 10 mm wide 

samples were cut from the PEG network. 
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EH-PEG Bilayer Production 

 SOLN EH networks were made as described above.  Networks were removed 

from the water after 48 h and dried overnight on a paper towel.  20 mM solutions of 

the water soluble radical initiators ammonium persulfate (APS) and N,N,N’,N’-

tetramethylethylenediamine (TEMED) were made as well as a 30% solution of PEG 

diacrylate (PEGDA) in 5% acetone.  Two stacks of three coverslips were placed on a 

glass plate to control the thickness of the PEGDA layer on the EH network.  After 

combining the PEGDA, APS, and TEMED the solution was vortexed and poured 

quickly in between the coverslips.  The dried SOLN EH network was placed on top of 

the coverslips and the PEGDA was allowed to crosslink with the network.  After the 

PEGDA was gelled the network was removed from the plate and the excess PEG was 

removed.  The bilayers could then be cut into any shape desired. 

 

Scanning Electron Microscopy 

To obtain SEM images, networks were fabricated as mentioned above.  The 

samples were positioned to expose both the top surface and cross section of each 

scaffold and the samples were coated with gold before imaging.  Images were 

obtained using a Hitachi Field Emission Scanning Electron Microscope fitted with an 

X-Ray Analysis System. 
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Degradation Study 

 Solid networks, two SOLN EH monolayers and two EH-PEG bilayers were all 

fabricated as described above.  5 samples for each of the 5 groups for each time point 

were cut into 1 cm2 networks and were immediately weighed after fabrication.  

During storage the network dispelled water so on day 0 all networks were prewetted 

with ethanol using the following protocol.  The networks were put in a falcon tube of 

100% ethanol and placed under vacuum.  Once the air was removed and the pores 

were filled, the networks were allowed to soak for 20 min.  The ethanol was then 

replaced with PBS over a series of three 20 min washes.  20 mL of PBS was then 

added each vial and the networks were placed in the oven at 37°C for 1 to 85 days.  

At each time point the networks were weighed and the pH of the PBS was measured. 

 

Mechanical Analysis 

 Two SOLN EH monolayers and two EH-PEG bilayers were fabricated as 

described above.  Solid PEG layers were also formed as discussed above as a control.  

Samples were cut into 1 x 6.5 cm strips.  5 samples from each group where then 

tested according to ASTM 790 Procedure A for three point bending for reinforced 

and unreinforced polymers, with the following modifications: samples were tested 

wet in order to better represent physiological conditions, the support span for all 

specimens was 30 mm and samples were preloaded with 0.01 N prior to testing. 
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Results 

 The objective of this work was to investigate the degradation rate and 

mechanical properties of solid EH networks, porous SOLN EH monolayers, and EH-

PEG bilayers.  Initially, SEM images were obtained to qualitatively assess the 

differences in network structure.  Then, the networks were degraded in PBS buffer 

(pH 7.4) at 37°C for 85 days and the mass lost and buffer pH change was measured.  

In addition, 3 point bending mechanical analysis was performed to determine the 

Young’s modulus and flexural strength of the networks.   

 Solid EH networks, porous SOLN EH monolayers, and EH-PEG bilayers 

were successfully constructed and cut into 1 cm2 squares.  Figure 1 shows the top and 

cross sectional views of (A) a solid EH network, (B) a 75 wt% SOLN EH network 

and (C) a 80 wt% SOLN EH network.  Figure 1A (top) shows that the solid EH 

networks were defect free on the top surface.  The cross sectional image (bottom) 

however displays some ridges which are artifacts from the cutting of the networks.  

Figures 1B and 1C show the porous structure created by the porogen leaching 

method.  Qualitatively, the pores on the top surface of the 75 wt% SOLN EH 

monolayer (figure 1B top) appear more uniformly spaced as illustrated by the thicker 

wall between pores and the grid-like alignment of pores, which was not observed for 

the 80 wt% SOLN EH network (figure 1C top).  However, when comparing cross 

sections (1B and 1C bottom), the pores are evident through the entire cross sectional 

area of both groups. 
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Figure 6. 1:  (A) SEM image of the surface (top) and cross section (bottom) of a solid EH network 

(B) SEM image of the surface (top) and cross section (bottom) of a 75 wt% SOLN EH monolayer 

(C) SEM image of the surface (top) and cross section (bottom) of a 80 wt% SOLN EH 

monolayer. 

 

 To determine how the degradation of these networks was impacted by these 

architectural changes, scaffolds were made and cut into 1 cm2 squares.  The networks 

were weighed and submerged in PBS buffer (pH 7.4) for 85 days.  Figure 2 shows 

that the solid EH networks lost the majority of their mass during the first 4 days in 

solution.  Between days 4 and 85 no significant changes were observed.  By day 85 

the solid EH networks lost 12.290 ± 0.663% of their total mass.  The 75 wt% SOLN 

EH monolayer exhibited a significant loss in mass only during the first day in solution 

before the mass stabilized.  After 85 days 29.209 ± 7.181% of the network’s mass 

was lost.  The 80 wt% SOLN EH monolayers lost the majority of its mass during the 

first 4 days of the study.  While this was similar to the solid networks, the total mass 

loss was significantly less in the solid networks than in the porous SOLN EH 
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monolayers.  This group however did not remain stable though the study.  The mass 

oscillated slightly between day 4 and 85 with a total percent mass loss of 25.028 ± 

5.920% at 85 days.  Both of the 75 and 80 wt% EH-PEG bilayers exhibited no 

significant mass loss during the 85 day study.  At day 85 the total recorded mass lost 

for these groups were 3.032 ± 3.157 % and 8.995 ± 3.088 % respectively.  Overall, at 

day 85 it was found the SOLN EH monolayers lost significantly more percent mass 

than the solid EH networks and the EH-PEG hydrogels. 
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Figure 6. 2:  Percent mass change of solid EH networks, 75 and 80 wt% SOLN EH monolayers 

and 75 and 80 wt% EH-PEG bilayers degraded in PBS buffer over 85 days.  The 75 and 80 wt% 

EH-PEG bilayers did not lose a significant percent of its mass over the course of this study.  The 

solid EH networks lost 12.290 ± 0.663 % of their mass which was statistically different than at 

day 1, but was not statistically different than the 75 and 80 wt% bilayers.  The 75 and 80 wt% 

SOLN EH monolayers lost the most percent mass having lost 29.209 ± 7.181 % and 25.028 ± 

5.920 % respectively.   

 

 In addition to the percent mass change, the change in buffer pH was recorded 

at each time point.  The pH of the solution varied by approximately 1.4 pH units over 
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the course of the study, as can be seen in Figure 3.  The solid EH networks had a 

significant decrease in pH over the majority of study.  By day 29 the pH leveled off 

and was found to be 6.98 ± 0.06 at day 85.  The pH of the 75 wt% SOLN EH 

networks did not vary significantly over the course of the study.  The pH at 85 days 

was found to be 6.87 ± 0.05.  As with the percent mass loss data, the pH of the 80 

wt% SOLN EH monolayers displayed a similar trend to the solid EH networks.  The 

pH at 85 days for this group was 7.01 ± 0.06 which was significantly lower than the 

starting pH of 7.4.  The group that had the most significant decrease in pH over time 

was the 75 wt% EH-PEG bilayer group.  This group showed significant differences 

throughout the whole study.  In the end, at day 85 the pH for this group was 5.87 ± 

0.14.  The 80 wt% EH-PEG bilayer also exhibited a strong decrease in pH but it was 

not as strong as the 75 wt% EH-PEG bilayer group.  The 75 wt% EH-PEG bilayer 

group showed a pH of 6.406 ± 0.17 at 85 days.  Overall, at day 85 the degradation 

buffer solution from the solid EH networks and the 75 and 80 wt% SOLN EH 

monolayer groups had a statistically higher pH than that of the 75 and 80 wt% EH-

PEG bilayers.  The 80 wt% EH-PEG bilayers also had a statistically higher pH than 

the 75 wt% EH-PEG bilayers as well.  
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Figure 6. 3:  pH change of PBS buffer solution from solid EH networks, 75 and 80 wt% SOLN 

EH monolayers and 75 and 80 wt% EH-PEG bilayers degraded over 85 days.  The pH of the 75 

wt% SOLN EH networks did not vary significantly over the course of the study.  The solid EH 

networks and the 80 wt% SOLN EH monolayers however did show a significant decrease in pH 

to 6.98 ± 0.06 and 7.01 ± 0.06 respectively at day 85.  Both of the 75 and 80 wt% EH-PEG bilayer 

groups showed the largest drops in pH from 7.4 to 5.87 ± 0.14 and 6.406 ± 0.17 respectively. 

 

  In an effort to characterize the effect of the scaffold architecture on 

mechanical properties, three point bending mechanical analysis was performed.  

Briefly, the 75 and 80 wt% SOLN EH monolayers and the 75 and 80wt% EH-PEG 

bilayer groups were fabricated and cut into 1 x 6 cm strips.  These were then tested to 

determine the Young’s modulus and flexural strength of the networks.  The bilayers 

were tested on both sides to determine if there was a significant different in 

mechanical properties based on which material the force was applied to.  All bilayer 

results are reported with the values of the EH side up first and the PEG side up 

second.  Solid PEG scaffolds were used as a control.  Figure 4 shows that the solid 

PEG networks had a Young’s modulus of 8.310 ± 1.552MPa.  The 80 wt% bilayers 
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showed similar numbers at 9.698 ± 3.338 MPa and 7.088 ± 3.871 MPa when the 

force was applied to the EH side and the PEG side respectively.  The 80 wt% SOLN 

EH monolayer and the 75 wt% EH-PEG bilayers were statistically higher than the 

previous groups.  The values for these groups were 20.824 ± 4.731 MPa for the solid 

networks and 20.929 ± 2.227 MPa and 20.683 ± 2.448 MPa when the force was 

applied to the EH side and the PEG side of the bilayers respectively.  The 75 wt% 

SOLN EH monolayer was statistically higher than all other groups with a Young’s 

modulus of 29.915 ± 6.103 MPa. 
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Figure 6. 4:  The Young’s modulus was found for 75 and 80 wt% SOLN EH monolayers, 75 and 

80 wt% EH-PEG bilayers and a solid PEG control network.  Results indicate the modulus for 

the 75 wt% SOLN EH monolayers was statistically higher than the 75 wt% EH-PEG bilayers 

and 80 wt% SOLN EH monolayers.   In addition, the modulus for the 80 wt% EH-PEG bilayers 

and solid PEG control networks were statistically lower than all of the other groups.  EH UP 

refers to when the force was being applied to the EH layer and PEG  UP refers to when the force 

was being applied to the PEG layer. 
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When looking at the flexural strength a different trend was exhibited.  The 

flexural strength of the 75 wt% SOLN EH monolayer and the 75wt% bilayers were 

0.598 ± 0.107 MPa, 0.632 ± 0.095 MPa and 0.618 ± 0.090 MPa respectively.  These 

values were found to be significantly higher than the 80 wt% EH-PEG bilayers and 

the solid PEG control which had values of 0.323 ± 0.097 MPa, 0.253 ± 0.114 MPa 

and 0.204 ± 0.030 MPa.  The 80 wt% SOLN EH monolayer had a flexural strength of 

0.528 ± 0.168 MPa which was only significantly higher than the 80 wt% bilayer when 

the force was applied to the PEG layer and the solid PEG control. 
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Figure 6. 5:  The flexural strength was found for 75 and 80 wt% SOLN EH monolayers, 75 and 

80 wt% EH-PEG bilayers and a solid PEG control network.  Results indicate the 75 wt% SOLN 

EH monolayers, 75 wt% EH-PEG bilayers and the 80 wt% SOLN EH monolayers were not 

statistically different.  In addition it was found that the 80 wt% EH-PEG bilayers and solid PEG 

control network was significantly lower than all of the other groups. EH UP refers to when the 

force was being applied to the EH layer and PEG UP refers to when the force was being applied 

to the PEG layer. 
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Discussion 

 This work seeks to characterize EH polymer scaffolds for the application of 

abdominal wall hernia repair.  Previous studies have shown that solid EH scaffolds 

were a favorable material for facilitated myoblast attachment and proliferation.  

However, one of the drawbacks of this work was the high complex modulus exhibited 

by the solid networks during dynamic mechanical analysis.59  Therefore in an effort to 

increase the EH scaffolds utility, porous SOLN EH monolayers, and EH-PEG 

bilayers were fabricated using a porogen leaching strategy.  SEM images were taken 

after porogen leaching to qualitatively analyze the different network architectures.  

The solid EH scaffolds showed cracks during fabrication after the sheet was removed 

from the mold.  SEM images were used to examine the extent of these defects within 

the solid scaffolds.  Figure 1A shows the top view (top) and cross section (bottom) of 

the solid EH networks.  No microscale defects were found in these images.  The 

ridges that are evident on the cross section (1A bottom) occur during the cutting 

process of the polymer sheet after gelation and are visible to the naked eye.  The 

porous EH scaffolds in Figures 1B and 1C show the surface pore architecture (top) 

and the pore distribution (bottom) formed due to the porogen leaching technique.  

Figure 1B (top) shows individual pores arranged across the top surface of the network 

as opposed to the clumped pores that are shown in Figure 1C (top).  This is due to the 

lower percent of porogen, 75 wt% compared to 80 wt%, contained with the scaffolds 

during fabrication.  Overall, the images show that solid networks are defect free and 

that both of the 75 and 80 wt% SOLN EH networks show highly porous structures 
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that are have different surface architectures with pores dispersed throughout the 

network. 

 To begin to characterize these scaffolds, polymer degradation in PBS buffer 

(pH 7.4) was investigated.  Cyclic acetal monomers lack the ester linkages present in 

other hydrolytically degradable materials thereby eliminating the production of acidic 

degradation products.  This study investigates the percent mass lost and pH change as 

a function of scaffold architecture over 85 days.  EH networks are highly hydrophobic 

and thus must be prewetted to completely submerge the network.  It is hypothesized 

that by exposing a larger surface area of the network to the buffer through the 

introduction of pores into the scaffold that the percent mass lost can be greatly 

enhanced.  This effect can be seen in Figure 2 where the SOLN EH monolayers lost 

significantly more mass than any other group.  However, it was found that there were 

no significant differences between the 75 wt% and 80 wt% SOLN EH monolayer 

groups throughout the study.  As expected, the increase in scaffold surface area 

produced a large change in percent mass lost over the solid networks.  These results 

are supported by the pH data shown in Figure 3.  Both the solid networks and the 75 

wt% SOLN EH monolayers had a significant decrease in pH over the 85 day study.  

This pH decrease was due to an additional degradation product.  During fabrication, a 

radical initiator is used to break the double bond of the acrylate group which then 

bonds to other acrylate groups on other molecules.  During hydrolysis, the carbon – 

oxygen bond is targeted.  While the cyclic acetal unit degrades into non-acidic 

degradation products the newly bound acrylate groups form an additional carboxylic 
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acid degradation product.  This product can alter the pH of the PBS buffer solution as 

was seen in the previous result. 

 While the solid EH networks and the SOLN EH monolayers exhibited 

expected behavior, the EH-PEG bilayers did not.  These networks maintained their 

mass throughout the study.  It is hypothesized that this is a result of the hydrophilic 

and non-degradable nature of the PEG layer.  PEG is known to swell in PBS buffer 

solution and fabrication constraints prevent the use of dry weights for this study.  

More specifically, it was found that the EH-PEG bilayers must remain hydrated after 

fabrication to prevent the delamination of the bilayers due to dehydration.  Therefore, 

the wet weights must be measured at each time point and the gel swelling effects 

cannot be completely eliminated.  When fabricating the EH-PEG hydrogels, the 

hydrophobicity of the SOLN EH monolayers is used as the mechanism to prevent the 

PEGDA from filling the pores before gelation.  While this is an effective technique, 

there are still some pores that can become filled with PEG.  It is speculated that these 

PEG filled pores as well as the chemical bonds between the EH and the PEG can 

hinder the gel swelling.  Then as the SOLN EH monolayer degrades (as is shown in 

Figure 2) the PEG layer becomes free to take up more PBS buffer therefore 

recovering or exceeding the mass lost through EH degradation.  One indication that 

EH degradation is occurring within these bilayers, besides the SOLN EH monolayer 

data, is displayed in Figure 3.  The bilayers exhibited a significant drop in pH over the 

time of the experiment, indicating the possible presence of the carboxylic acid 

degradation product that was discussed earlier. 
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 To test the different mechanical properties of these networks three point 

bending tests were performed on the SOLN EH networks and the EH-PEG bilayers.  

A solid PEG network was used as a control.  As expected the 75 wt% SOLN EH 

monolayers displayed the highest Young’s modulus of the group at 29.915 ± 6.103 

MPa.  This number is still an order of magnitude higher than the modulus of skeletal 

muscle which is reported to be 42.5 ± 9.0 kPa in the transverse plane and 22.5 ± 2.6 

kPa in the sagittal plane.138  By coating the SOLN EH monolayers with PEG to create 

EH-PEG bilayers however, the Young’s modulus was decreased significantly to 

20.929 ± 2.227 MPa and 20.683 ± 2.448 MPa when the force was applied to the EH 

side and the PEG side of the bilayers respectively.  There was no significant 

difference found when the force was applied to one side of the bilayer over the other.  

During flexural deformation, microcracks can be seen and heard within the network.  

These cracks accumulate and the integrity of the scaffold is compromised over time.  

`The addition of the PEG helped to reinforce these networks, increasing its capacity 

for elastic deformation and lowering the networks overall stiffness.  The 80 wt% 

SOLN EH monolayer displayed similar properties to the 75 wt% EH-PEG bilayers 

with a Young’s modulus of 20.824 ± 4.731 MPa.  This is significantly lower than the 

75 wt% SOLN EH monolayer and it indicates that by altering the weight percent of 

porogen within a network that the stiffness of that material can be controlled.  This 

trend is also evident in materials such as metals and ceramics. As with the 75 wt% 

EH-PEG bilayers, the 80 wt% EH-PEG bilayers were statically lower than their 

monolayer counterpart as well as the 75 wt% SOLN EH monolayers and EH-PEG 

bilayers.  This group was not statistically different from the solid PEG control 
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network which had a Young’s modulus of 8.310 ± 1.552 MPa.  Again, the same 

phenomenon that was displayed in the 75 wt% EH-PEG bilayers can be seen here.  

Overall, while the Young’s modulus of this material is still greater than skeletal 

muscle, it has been shown that these properties can be altered significantly based on 

scaffold architecture. 

In addition to the stiffness of the material, flexural strength was also 

measured.  This property demonstrates the maximum stress at which fracture within 

the sample occurs.  It was found that the PEG control had the lowest flexural strength 

when compared to the 75 and 80 wt% SOLN EH monolayers.  In addition, the 80 

wt% SOLN EH monolayers showed a drop in flexural strength but it was not 

significant.  These results indicate that when fabricating the EH-PEG bilayers, the EH 

layer will control the scaffold’s strength.  The 75 wt% EH-PEG bilayers followed this 

expected trend as the addition of PEG to the SOLN EH monolayer did not 

significantly affect the flexural strength.  For the 80 wt% EH-PEG bilayers however, 

a significant decrease in strength from the 75 wt% monolayers and EH-PEG bilayers 

was observed.  A significant difference was found between the 80 wt% EH-PEG 

bilayers and the 80 wt% monolayer, but only when the force was applied to the PEG 

layer.  It is hypothesized that this is a result of the change in the network’s surface 

architecture and the composite’s interface.  Qualitatively, Figures 1B and 1C show 

that there are larger pores formed from the grouping of individual pores on the 

surface of the 80 wt% SOLN EH monolayers than on the surface of the 75 wt% 

SOLN EH monolayers.  This presents a greater opportunity for the PEGDA to 

infiltrate the 80 wt% SOLN EH monolayers than the 75 wt% SOLN EH monolayer 
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before gelling.  In addition, as mentioned earlier, the pore walls of the 80 wt% SOLN 

EH monolayers are thinner than in the 75 wt% SOLN EH monolayers.  Thus 

providing less EH surface area for the PEG layer to bind to.  It is thought that this 

thinning of EH pore walls could contribute significantly to the differences in flexural 

strength between the 80 wt% bilayers and the other experimental groups.  Overall, 

this group was not found to be statistically different than the solid PEG control.  

The successful characterization of these EHD based biomaterials show its 

utility in the field of tissue engineering.  These samples were designed for the specific 

application of skeletal muscle regeneration within abdominal wall hernia repair.  

Future work will investigate the use of these porous architectures to better deliver 

therapeutic proteins to enhance skeletal muscle regeneration.  By improving the 

biological functionality of these scaffolds as well as optimizing the material 

properties a new strategy for abdominal wall hernia repair can be implemented. 

 

Conclusions 

This work seeks to further advance the use of EH cyclic acetal biomaterials as 

an abdominal wall hernia repair device.  The effect of scaffold architecture on the 

degradation properties and mechanical properties were evaluated.  Results showed 

that by altering the porosity of the scaffolds, both percent mass loss and mechanical 

properties could be altered.  More specifically, it was found the porous 75 and 80 

wt% SOLN EH monolayers loss significant more mass than the solid EH network and 

75 and 80 wt% EH-PEG bilayers over 85 days.  In addition, it was found that the 

mass of the 75 and 80 wt% EH-PEG bilayers did not change significantly over time.  
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Mechanical testing showed that by adding the PEG layer to SOLN EH monolayers, 

the stiffness of the networks could be greatly reduced as did adding more porogen to 

the SOLN EH networks during fabrication.  When looking at the flexural strength 

however, the EH was found to be the main contributor to the overall strength of the 

networks.  All together, these results showed that changing the architecture of the 

porous SOLN EH monolayers and EH-PEG bilayers we can control the chemical and 

mechanical properties of scaffolds.   
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Chapter 7:  Porous EH Monolayers and EH-PEG Bilayers as a 

Gene Delivery Device for Abdominal Wall Hernias Repair 

Introduction 

 Abdominal wall hernias are among the most common pathological conditions 

affecting humans.  Approximately one million repair surgeries are performed 

annually in the US alone.77-80  Several repair techniques are available, including 

xenografts, allografts and autografts, but the most common technique is the 

implantation of synthetic or natural prosthetic meshes.105, 106, 118, 127-130   

Polypropylene, polytetrafluoroethylene and many polyesters are the most utilized 

synthetic materials while natural polymers such as sodium hyaluronate and 

carboxymethylcellulose are often added to augment the implant’s integration with the 

host tissue.  Despite these various options, hernia recurrence rates vary between 20-

50%.84   

 In an effort to lower the hernia recurrence rates, a synthetic polymer scaffold 

was designed to deliver a therapeutic plasmid to the abdominal wall defect.  This 

work addresses two major aspects of hernia repair: mechanical support and defect 

wound healing.  Mechanical support of the hernia defect during repair is critical as 

the repair device must be able to sustain significant changes in intra-abdominal 

pressure during healing.83, 92  Synthetic polymer systems are ideal for this application 

due to the ease of which their physical properties can be tailored.  Some commonly 

controlled properties include pore size, shape and distribution as well as pliability and 

strength.103, 117  The cyclic acetal monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-
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1,3-dioxane-2-ethanol diacrylate (EHD), is an attractive option for repair scaffolds 

due to ease of scaffold production and biodegradable chemistry. 22, 58, 148  

Wound healing, on the other hand, is more complicated.  Current studies 

showed that recurrent hernia patients almost unanimously exhibited incomplete or 

immature wound healing at and around the hernia defect site.84, 93  During skeletal 

muscle wound healing, satellite cells become activated and migrate to the defect site 

where they begin to proliferate.  A population of these cells align with remaining 

myofibers and each other and fuse to form multinucleated myotubes.  The myotubes 

then mature to become fully functional myofibers.  In the event of large defects such 

as abdominal wall hernias however satellite cells must compete with granulation 

tissue and foreign body giant cells to fill the defect.  With a limited number of 

satellite cells, fibrous scar tissue is almost always formed over skeletal muscle.  When 

the scar tissue produced is immature or abnormal, as is seen in recurrent hernia 

patients, a significant difference in scar strength and overall wound strength can be 

observed.93  In an effort to lower recurrence, this paper investigates the use of a 

degradable biomaterial scaffold to encourage skeletal muscle regeneration over scar 

tissue formation through gene delivery.   

Skeletal muscle has been extensively studied for gene therapy applications. 

Many trials look to use skeletal muscle as a mechanism to continuously distribute 

secreted therapeutic proteins systemically for the treatment of muscular genetic 

diseases and ischemia as well as for DNA vaccines.149  These studies have shown 

some success with the biggest hurdles being low transfection efficiency and only 

localized protein production.  While these hurdles hinder gene therapy for traditional 
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pathologies they can be overcome or used as an advantage in abdominal wall hernia 

repair.  Transfection efficiency was found to increase in regenerating muscle as 

opposed to uninjured muscle for a week after transfection.150  These results indicate a 

more effective short term administration of the gene of interest which could be 

applied during the healing of an abdominal wall defect and in the case of abdominal 

wall hernia repair, localized transfection and protein production is ideal.  With the 

optimum gene and delivery system in place, skeletal muscle regeneration within 

abdominal wall defects could be realized. 

The studies presented here investigate the use of scaffolds fabricated from 

EHD monomers as a release mechanism for the delivery of a therapeutic plasmid 

containing an insulin-like growth factor 1 green fluorescent protein fusion gene (IGF-

1 GFP).  To this end, different scaffold architectures were fabricated and the release 

curves and plasmid viability were recorded.  IGF-1 was chosen as the gene of interest 

as it has been shown that IGF-1 functions as both autocrine and paracrine signals that 

effect skeletal muscle growth and development.133-135  More specifically, IGF-1 binds 

to activated satellite cells and increases both cell proliferation and differentiation.135-

137  Increasing IGF-1 levels in skeletal muscle also leads to an increase in both DNA 

and protein content within the target muscle.136  Therefore, IGF-1 may be critical to 

activating and guiding satellite cell behavior in skeletal muscle regeneration.135 
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Materials and Methods 

Materials 

Benzoyl peroxide (BP), N,N-dimethyl-p-toluidine (DMT), 5-ethyl-5-

(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD), 

isobutyraldehyde, formaldehyde (37% aqueous solution), trimethylolpropane, 

triethylamine, hydroquinone, acryloyl chloride, ammonium persulfate (APS), 

N,N,N’,N’-tetramethylethylenediamine (TEMED), PEG diacrylate (PEGDA), agar 

and LB media were obtained from Sigma-Aldrich (Milwaukee, WI, USA).  Reagent 

grade acetone, potassium carbonate, sodium sulfate, ethyl ether, silica gel (60-200 

mesh) and sodium chloride (salt) were purchased from Fisher Scientific (Pittsburg, 

PA, USA).  Lipofectin Transfection Reagent, Opti-MEM I Reduced Serum Media 

(OM), Vivid Colors™ pcDNA™ 6.2/C-EmGFP-GW/TOPO® Mammalian 

Expression Vector, One Shot® TOP10 chemically competent E. coli, Lipofectamine 

2000 Transfection Reagent were received from Invitrogen (Carlsbad, CA, USA).  

FuGENE Transfection Reagent was purchased from Roche Applied Science 

(Indianapolis, IN, USA).  Human skeletal muscle myoblasts, skeletal muscle cell 

growth media and BulletKit, trypsin/EDTA and trypsin neutralization solution were 

obtained from Lonza (Walkersville, MD, USA).   

 

5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate Synthesis 

 EHD was synthesized based on the protocols described by Kaihara et al.  

Potassium carbonate (18.9 g, 0.25 equiv) was added to isobutyraldehyde (50 ml, 1 
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equiv) and formaldehyde (37% aqueous solution, 40.8 ml, 1 equiv) and the solution 

was stirred at 0°C overnight.  The product 3-hydroxy-2,2-dimethylpropinaldehyde 

(HDP) was extracted three times with chloroform and then washed with water and 

brine.  The chloroform layers were combined and dried with sodium sulfate and the 

solvent was evaporated under reduced pressure to obtain solid HDP.   HDP (32.9 g, 1 

equiv) and trimethylolpropane (86.6 g, 2 equiv) were dissolved in 1 M hydrochloric 

acid (200 ml) and stirred for 2 h at 80°C.  The solution was then neutralized with 

sodium hydroxide and the product 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-

dioxane-2-ethanol (HEHD) was extracted three times with chloroform and washed 

with water and brine.  The chloroform layers were combined and again dried with 

sodium sulfate and evaporated under reduced pressure to obtain solid HEHD.  The 

HEHD was purified using an ethyl ether wash to remove undesired byproducts and 

was dried under reduced pressure.  HEHD (31.3 g, 1 equiv) was dissolved in 

chloroform and triethylamine (65.4 ml, 3 equiv) and hydroquinone (0.034 g, 

0.002equiv) were added.   Acryloyl chloride (38.1 ml, 3 equiv) was added dropwise 

as the reaction was stirred at 0°C for 2 h.  The insoluble salts were removed through 

filtration and the product, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-

ethanol diacrylate (EHD), was extracted three times with chloroform and washed with 

water and brine.  The chloroform layers were combined and dried with sodium sulfate 

and evaporated under reduced pressure.  The EHD was further purified by silica gel 

column chromatography using a chloroform/ethanol (10:1, v/v) as the eluent.  The 

fractions that contained EHD were determined by thin layer chromatography and 

NMR. 
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Slurry Formed Porous EH Monolayer Formation 

Slurry former porous EH networks (SLRY EH monolayers) were fabricated 

using a porogen leaching strategy.  To begin, a glass mold was fabricated by attaching 

capillary tubes to a glass plate creating a 1 mm thick well.  BP was added to acetone 

to create a 0.58 M solution.  2 g of EHD monomer was then mixed with 0.75 mL of 

BP solution and 1 µL of DMT.  This mixture was quickly added to the salt, vortexed 

and spread into the mold. The network was covered with a second plate and placed in 

an oven at 30°C until it was gelled.  The resulting networks contained 75 wt% salt.  

The sheet was removed from the mold and placed into DI water for 72 h and the 

water was changed ever 24 h.  The resulting porous sheets were cut into circles with a 

diameter of 2 cm.  

 

Solution Formed Porous EH Monolayer Formation 

 Solution formed porous EH networks (SOLN EH monolayers) were made 

using a leachable porogen strategy. 7 × 4.3 cm rectangular cavities were cut out of 1.4 

mm thick plastic sheets in order to form frames. A glass plate was placed under the 

frames to form a well, which was filled with 7.8 g of salt.  Salt was wetted with 

2.445 mL 85% acetone and spread with another glass plate to fill the frame.  Salt-

filled frames were dried on an 85 °C hot plate for 1 h in order to produce an 

interconnected salt network that was attached to the plastic frame. The salt-filled 

frame was allowed to cool 10 min before removal from the glass plate. 

 The mass of the salt network was measured to determine the amount of 

polymer solution required to achieve the desired porosities of 75 and 80 wt% salt. 
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Active EHD solution was prepared by mixing each gram of EHD with 375 µL of 

0.826 M BP in acetone and 8 µL DMT. The salt-filled frame was suspended over a 

weighing dish such that the salt network was solely supported by the frame and active 

EHD solution was delivered drop wise onto the salt cake. 

The frame was then placed in a 60°C oven for 20 min to promote polymer 

gelling.  Once gelled, the SOLN EH monolayer was transferred to DI water to leach 

out salt.  After 20 min the networks were removed from the frame to prevent cracking 

and the salt was leached out for 48 h with a water change at 24 h. 

 

EH-PEG Bilayer Production 

 SOLN EH monolayers were made as described above.  Networks were 

removed from the water after 48 h and dried overnight on a paper towel.  20 mM 

solutions of the water soluble radical initiators ammonium persulfate (APS) and 

N,N,N’,N’-tetramethylethylenediamine (TEMED) were made as well as a 30% 

solution of PEG diacrylate (PEGDA) in 5% acetone.  As was done in the solid 

networks, two stacks of three coverslips were placed on a glass plate to control the 

thickness of the PEGDA layer on the EH network.  After combining the PEGDA, 

APS, and TEMED the solution was vortexed and poured quickly in between the 

coverslips.  The dried SOLN EH monolayer was placed on top of the coverslips and 

the PEGDA was allowed to crosslink with the network.  After the PEGDA was gelled 

the network was removed from the plate and the excess PEG was removed.  The 

bilayers could then be cut into any shape desired. 
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Scanning Electron Microscopy 

To obtain SEM images, networks were fabricated as mentioned above.  The 

samples were positioned to expose both the top surface and cross section of each 

scaffold and were coated with gold before imaging.  Images were obtained using a 

Hitachi Field Emission Scanning Electron Microscope fitted with an X-Ray Analysis 

System.  

 

Single Gene Lipoplex Formation 

 Single gene lipoplexes (SG lipoplexes) were formed using a GFP plasmid 

supplied from Dr. Pandit’s lab as well as Lipofectin Transfection Reagent at a ratio of 

1:7 using the standard protocols.  Briefly, Lipofectin and DNA were each diluted into 

100 µL of Opti-MEM I Reduced Serum Media (OM) and allowed to sit for 

approximately 30 min.  The DNA solution was then added to the diluted Lipofectin 

and mixed gently.  The complexes were then incubated at room temperature for an 

additional 10 min before use. 

 

Dose Dependent SG Lipoplex Release from SLRY EH Monolayers 

 Porous EH networks were formed as mentioned above.  Before seeding the 

networks were washed three times for 15 min each with PBS, acetone, PBS again.  

The networks were placed on a paper towel to remove any PBS.  They were then pre-

wetted and sterilized using the following protocol.  The networks were put in a falcon 

tube of 100% ethanol and placed under vacuum.  Once the air was removed and the 
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pores were filled, the networks were allowed to soak for 20 min during which time 

there were moved into a biosafety hood to maintain sterility.  The ethanol was then 

replaced with PBS over a series of five 20 min washes.  The networks were placed in 

a 12 well plate and the 200 µL SG lipoplex solution was added to the top surface of 

the network.  The solution was allowed to fill the pores undisturbed in an incubator at 

37°C and 5% CO2 for 4 h after which time any displaced PBS was collected for 

loading efficiency calculations.  1 mL of PBS was added to completely submerge 

each network and the media was collected and replaced at each time point.   

 

IGF-1 GFP Fusion Plasmid Construction 

To produce the IGF-1 GFP fusion plasmid, RNA was isolated from human 

skeletal muscle myoblasts (hSkMMs).  cDNA was created using reverse transcription 

and the IGF-1 gene was amplified by performing a polymerase chain reaction (PCR).  

The PCR product was then purified though agarose gel electrophoresis and the 

desired cDNA was removed from the gel.  This product was mixed with the Vivid 

Colors™ pcDNA™ 6.2/C-EmGFP-GW/TOPO® Mammalian Expression Vector and 

then used to transform One Shot® TOP10 chemically competent E. Coli.  The cells 

were spread onto agar plates containing 100 µg/mL of ampicillin and were left in the 

incubator at 37°C for 12-14 h at which time they were moved to 4°C for storage.  

Colonies were chosen from the plates and grown in LB media containing 100 µg/mL 

of ampicillin for 12-16 h.  Using a Promega Endotoxin Free Midi Prep Kit the 

plasmid was harvested from the cells and concentration was determined using the 

NanoDrop spectrophotometer.  To ensure proper insertion of the PCR product into 
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the TOPO vector, the inserted product was again amplified using PCR and purified 

using gel electrophoresis.  The sample was then sent to DNA sequencing as another 

check. 

 

Fusion Gene Complex Formation 

 Fusion gene complexes (FG complexes) were formed using the FuGENE 

Transfection Reagent.  DNA was diluted in OM to a concentration of 2 ng/µL.  

FuGENE was then added to the solution at a ratio of 6:2 (FuGENE(µL):DNA(µg)) 

and mixed gently.  The solution was incubated at room temperature for 15 min before 

use.  

 

Fusion Gene Lipoplex Formation 

 Fusion gene lipoplexes (FG lipoplexes) were formed using the Lipofectamine 

2000 Transfection Reagent.  Desired amount of DNA was diluted in 50 µL of OM 

and Lipofectamine 2000 was diluted in 50 µL of OM in a ratio of 6:2 (Lipofectamine 

2000:DNA).  After a 5 min incubation at room temperature the DNA was added to 

the Lipofectamine 2000 and the lipoplexes were incubated at room temperature for an 

additional 20 min before use. 

 

Transfection Efficiency and Dose Dependence 

 To test the transfection efficiency and dose dependence of the plasmid 

hSkMMs were cultured to passage 4 and then seeded in a 24 well plate at a density of 
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60,000 cells per well (approximately 80-90% confluence).  After 24 h the media was 

changed to OM and either lipoplexes, complexes or nothing were added to the media 

of the wells at concentrations of 0.5, 1 and 5 µg of plasmid DNA per well.  The media 

was replaced 5 h and 24 h after transfection.  46 h after transfection and 22 h after the 

media change the media was collected and a Quantikine ELISA assay (R&D 

Systems, Minneapolis, MN) was performed.   

 

Architecture Guided FG Complex Release  

SOLN EH monolayers and EH-PEG bilayers with two different porosities 

were formed as mentioned above.  Before seeding the networks they were pre-wetted 

and sterilized as explained in the dose dependent SG Lipoplex release study.  The 

networks were then placed in a 12 well plate and the complex solution was added to 

the top surface of the network.  The solution was allowed to fill the pores and any 

displaced PBS was collected for loading efficiency calculations.  1.4 mL of PBS was 

added to completely submerge each network and 400 µL of PBS was removed at each 

time point and replaced with fresh PBS to maintain a constant volume.  Picogreen 

was then used to determine the concentration of the released DNA. 

 

Statistical Analysis 

 Statistical analysis was performed on all data using analysis of variance 

(ANOVA) and Tukey’s multiple comparison tests. 
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Results 

The objective of this work was to investigate the use porous SLRY and SOLN 

EH monolayer scaffolds as plasmid delivery devices for abdominal wall hernia repair.  

To this end, plasmid release was measured as a function of scaffold architecture.  

Initially, the architecture of both the SLRY EH monolayers and the SOLN EH 

monolayers was characterized.  The dose based SG lipoplex release was measured for 

plasmids that produced a single reporter gene, GFP.  In an effort to test the scaffolds 

utility as a functional release device, plasmids that produced IGF-1 GFP fusion 

proteins were constructed and plasmid performance was evaluated.  Finally, a release 

study was performed to test the effect of scaffold architecture on FG complex release 

rate. 

In this study, SLRY EH monolayers were made using the glass plate system 

described above.  Samples were collected and photographed to visualize both the 

macroscopic structure (Figure 1A) and the microscopic structure (Figures 1B, C and 

D) as described in the methods.  The top surface in Figure 1A and 1B shows that 

there are few pores on the outer surfaces.  However, Figures 1C and 1D show that the 

pores are located throughout the scaffold and are cubic in shape.  
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Figure 7. 1:  (A) Image of a 75 wt% porous SLRY EH monolayer.  (B) SEM image of the surface 

of a 75 wt% SLRY EH monolayer.  (C) SEM image of the cross section of a 75 wt% SLRY EH 

monolayer.  (D) Higher magnification SEM image of pores in a 75 wt% SLRY EH monolayer. 

 

In addition, porous SOLN EH monolayers were fabricated using the frame 

method described previously and the scaffolds were imaged to qualitatively show the 

changes in architecture from the previous scaffolds.  Figure 2A shows a highly porous 

surface, so much so that the architecture could be observed under 10x magnifications 

with a Zeiss Inverted Microscope (Figure 2B).  In addition, Figures 2C-E showed that 

the pores were more evenly distributed throughout the scaffold and that the pores 

were more spherical in shape.  
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Figure 7. 2:  (A) Image of an 80 wt% SOLN EH monolayer.  (B) 10x magnification of an 80 wt% 

SOLN EH monolayer.  (C) SEM image of the surface of an 80 wt% SOLN EH monolayer.  (D) 

SEM image of the cross section of an 80 wt% SOLN EH monolayer.  (E) Higher magnification 

SEM image of a single pore in an 80 wt% SOLN EH monolayer. 

 

To determine dose based release profiles of SG lipoplexes from SLRY EH 

monolayers, three different concentrations of SG lipoplexes were released from the 

network over 24 h.  Figure 3 shows that the lipoplexes exhibit an initial burst release 

for the first hour.  From 1 to 24 h the plasmid concentration continued to increase but 

at a much slower rate than during the first hour.  In addition, it was shown that while 

the loading efficiency was 98.6 ± 0.1 % or greater only 4.6 ± 0.1 % of the originally 

loaded plasmid was released at maximum.  The 25 µg loading group released the 

most plasmid with 444.0 ± 0.7 ng being released at 24 h.  The 10 µg and 5 µg loading 

groups each released 351.0 ± 16.6 ng and 226.1 ± 11.5 ng respectively.  The 25 µg 

and 10 µg loading groups were statistically higher than the 5 µg loading groups at all 
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time points.  They were not statistically different from each other until the 2 h time 

point.  
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Figure 7. 3:  Total SG plasmid DNA released from a 75 wt% porous SLRY EH monolayer.  The 

25 µg loading group released the most plasmid at 24 h followed by the 10 µg and 5 µg loading 

groups respectively.  The 25 µg and 10 µg loading groups were statistically higher than the 5 µg 

loading groups at all time points.  They were not statistically different from each other until the 2 

h time point. 

 

In an effort to create a more functional protein, plasmid DNA was created that 

fuses IGF-1 to emGFP.  To test the plasmids utility and dose dependent transfection 

FG complexes and FG lipoplexes were added to hSkMMs at different concentrations.  

46 h after transfection the change in IGF-1 concentrations in the supernatant was 

measured via an ELISA assay.  Figures 4A-C show the GFP production within cells 

transfected with FG complexes.  Figures 4A and 4B show expression in wells that 

were seeded at a density of 20,000 and 40,000 cells/well respectively whereas figure 

4C shows transfection in fused myoblasts.  Figure 4D shows that IGF-1 production is 
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only affected slightly by plasmid dose with a statistically higher amount of protein 

being produced with the highest concentration of FG complexes. 
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Figure 7. 4:  (A) GFP expression within hSkMMs seeded at a density of 20,000 cells/well.  (B) 

GFP expression within hSkMMs seeded at a density of 40,000 cells/well.  (C) GFP expression 

within fused hSkMMs in culture.  (D) Amount of IGF-1 produced from transfected hSkMMs.  

The general trend shows that there is a slight dose response over the DNA range used.  In 

addition the lipoplexes and the complexes performed similarly at all doses.  The 5 µg FuGENE 

complex group was statistically higher than the control group. 

 

To determine the effects of architecture on plasmid release rate both SOLN 

EH monolayers and EH-PEG bilayers were fabricated.  Complexes were loaded onto 

the different scaffolds and DNA concentration in the supernatant was measured over 

24 h.  Figure 5 shows that the release profile was similar to previous study with a 

burst release over the first hour which levels off to 24 h.  Overall all groups 
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performed similarly however general trends show that the 75 wt% SOLN EH 

monolayer released more complex over 24 h than its less porous counterpart.  In 

addition, the bilayers retained more complex than the monolayers of the same 

porosity for the first 2 h.  The 75 wt% EH-PEG bilayers continued to release more 

than its monolayer counterpart, however the 80 wt% monolayer released more than 

the EH-PEG bilayer after 2 h. 
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Figure 7. 5:  Total IGF-1 GFP plasmid release from SOLN EH monolayers and bilayers.  Trends 

showed that 80 wt% SOLN EH monolayers released more plasmid than the 75 wt% SOLN EH 

monolayers.  It was also observed that the porous bilayers released more plasmid than their 

monolayer counterparts.   

 

Discussion 

 This work seeks to develop an EH scaffold for the release of IGF-1 GFP 

fusion plasmids for abdominal wall hernia repair.  Previous work has focused on the 

mechanical properties and biocompatibility of the EH scaffolds.  It was found that 

solid EH networks had a modulus approximately 100 fold greater than that of skeletal 
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muscle and that these scaffolds could release active IGF-1 over a 48 h period of 

time.59  In addition, by changing the scaffold architecture it was found the modulus of 

the scaffolds could be decreased by an order of magnitude.  To further this work it 

was hypothesized that IGF-1 could be delivered more effectively using a porous 

scaffold.  Networks were fabricated using a porogen leaching strategy and SEM 

photos were taken after the porogen was leached to qualitatively determine pore 

interconnectivity and distribution (Figures 1 and 2).  Interconnectivity was also 

established quantitatively by monitoring the mass lost during leaching.  It was found 

that the 75 wt% and 80 wt% SLRY EH monolayers lost 62.09 ± 8.29 % and 66.57 ± 

11.9 % of their overall mass respectively (Table 1).  This demonstrates that the pores 

are not completely interconnected and it is evident in Figures 1B and 1C that there are 

few pores on the top surfaces of the network.  In addition, it can be seen that the pores 

are not evenly distributed throughout the cross-section of the scaffold.  This is an 

artifact of the fabrication technique where the porogen settles to the bottom of the 

glass mold before the scaffold is fully gelled. 

To increase the pore distribution of the scaffolds however, the glass plate 

system was abandoned and salt frames were made to maintain porous surfaces.  As 

can be seen in Figure 2, SOLN EH monolayers were fabricated where the number of 

pores exposed at the surface as well as throughout the cross section was increased.  In 

addition, Table 1 shows that 80 wt% SOLN EH monolayers lost 86.67 ± 0.635 % of 

their overall mass after 48 h.  A greater amount of mass was lost than porogen was 

added in these samples.  It is speculated that this is due to the removal of unreacted 

monomers and initiator during leaching.  The SLRY EH monolayers required 
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additional washing steps to remove these components.  This increase in pore 

interconnectivity was also observed during the following gene delivery studies both 

in the loading and release of the plasmid complexes.  

 

75 62.09 ± 8.29%

80 66.57 ± 11.9%

SOLN 80 86.87 ± 0.63%

wt% NaCL Added During 
Scaffold Fabrication

Pecent Mass Lost During 
Leaching

SLRY

Fabrication Technique

 

Table 7.1:  The percent mass lost during leaching for two different SLRY and a SOLN EH 

monolayer.  It was found that the SOLN fabrication technique produced scaffolds with higher 

pore interconnectivity than the SLRY fabrication technique. 

 

In an effort to further alter the scaffold architecture and create a more 

functional scaffold for hernia repair, one side of the porous scaffolds was coated with 

a layer of PEG.  Adhesions of the abdominal viscera to the abdominal defect area are 

a common clinical setback in prosthetic mesh placement.103, 104, 118, 130, 131  By adding a 

PEG layer to this scaffold the dual benefit of blocking the pores on one surface of the 

network and creating an adhesion barrier for the scaffold is achieved.   

To advance the protein delivery aspect of the previous work, gene delivery 

was investigated.  Gene delivery is a promising technique in producing therapeutic 

proteins within skeletal muscle.149  These initial studies were carried out with a GFP 

reporter plasmid complexed with a liposomal carrier.  This SG lipoplex was chosen 

over naked DNA due to the known difficulty of transfecting primary skeletal 

myoblasts.  Results showed that the plasmid was released in a burst release for the 

first hour as expected.  Continued release of the plasmid was observed at a steady but 
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much slower rate over the next 23 h.  During this study the plasmid concentration did 

not plateau.  It was found that the 10 and 25 µg loading groups released significantly 

more plasmid than the 5 µg loading group over all time points.  By 24 h however all 

group were statistically different with the 25 µg loading group releasing 444.0 ± 0.7 

ng, the 10 µg loading group releasing 351.0 ± 16.6 ng and the 5 µg loading group 

releasing 226.1 ± 11.5 ng.  This corresponds to 1.8, 3.5 and 4.6 % of the initially 

loaded plasmid respectively for each group.  It is hypothesized that due to the limited 

pore distribution and presence of so few pores on the surface of the networks that 

once complexes entered the network, they became trapped within the pores.  This is 

evident through the continual and gradual increase of plasmid release rate with no 

plateau reached during the 24 h.  In an effort to expand upon these results and obtain 

a higher release percentage over 24 h the effect of scaffold architecture on FG 

complex release was studied. 

To produce a therapeutic protein, an IGF-1 GFP fusion plasmid was 

constructed and released from the networks.  Transfection studies were performed 

with human skeletal muscle myoblasts (hSkMMs) to test the utility and transfection 

ability of both the FG complexes and FG lipoplexes.  Both GFP production and IGF-

1 production were observed using fluorescent microscopy and ELISA assays.  Figures 

4A-C show cells transfected with FG complexes were Figure 4D shows the amount of 

IGF-1 produced over a 22 h incubation period.  Overall, the FG lipoplexes and FG 

complexes performed equally.  There is a slight trend of increasing IGF-1 as plasmid 

dose increases.  The only group that was statistically higher than the control however 

was the 5 µg plasmid loading group.  While this is a large amount of DNA to provide 
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to the cells, primary cells are notoriously hard to transfect.  Overall, the production of 

both GFP and IGF-1 confirm that the plasmid was functional.  

Finally, to test the delivery capabilities of the SOLN EH monolayer and 

bilayer scaffolds, release studies were performed.  While there were no statistical 

differences after 24 h, obvious trends were evident in the data.  The 75 wt% EH-PEG 

bilayers released the most plasmid followed by its monolayer counterpart.  From the 

results achieved in the previous SG lipoplex study this was expected as more plasmid 

would be trapped within the network with fewer pores on the surface to leach out 

from.  In addition, by blocking the pores with the PEG hydrogel layer more plasmid 

can be retained in the network during initial loading.  A similar trend was exhibited 

by the 80 wt% SOLN EH monolayers and bilayers during the first 2 h of release.  

After this point, the bilayer release leveled off and the monolayers release more 

complexes.  Due to the high interconnectivity of these scaffolds as well as the 

hydrophobicity of the polymer EH, loading efficiencies were reduced to 

approximately 87 % and 70 % in the 75 wt% scaffolds and 80 wt% scaffolds 

respectively.  Therefore the loading efficiency is hypothesized to be a significant 

factor in the overall release rate. 

These results demonstrate promise for the use of porous EH scaffolds as a 

gene delivery vehicle.  It has been shown that the release of plasmid complexes and 

lipoplexes can be altered based on varying scaffold architecture.  By tailoring the 

architecture of the scaffold to hold the desired quantity of plasmid complexes or 

lipoplexes one can effectively alter the complex release time and dose.  Future 

directions involve the addition of hSkMMs to these loaded networks to determine cell 
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behavior in the presence of SOLN EH monolayer and EH-PEG bilayer scaffolds as 

well as evaluating this scaffold in vivo as a therapeutic gene delivery device for hernia 

repair. 

 

Conclusions 

This work seeks to further advance the use of EH cyclic acetal biomaterials as 

an abdominal wall hernia repair device.  The effect of scaffold architecture on the 

release of plasmid lipoplexes and complexes was evaluated.  Results showed that by 

altering the porosity of the scaffolds, especially at the surface of the network, the 

release of plasmids over time could be altered.  More specifically, it was shown that 

having highly porous network surfaces provided fast loading and lower retention than 

those networks with blocked pores or fewer surface pores.  In addition, a therapeutic 

plasmid was constructed to deliver an IGF-1 GFP fusion gene to hSkMMs.  When 

combined, these results saw a promising tunable delivery method for gene delivery to 

the abdominal wall skeletal muscle.    
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Chapter 8: Summary 

Synthetic biomaterials are widely used in clinical application.  As technology 

advances, these materials are being tailored to suit many tissue engineering and drug 

delivery needs.  Currently however, their efficacy is limited as many materials are not 

biologically inert.  In an effort to develop alternative materials, extensive research is 

being done to synthesize polymers with more biological functionality.  Cyclic acetals 

are an increasingly versatile group of materials used for both soft and hard tissue 

repair.  They have been demonstrated to show a varying range of mechanical, 

chemical and biological properties both in vitro and in vivo.  Therefore this material 

was chosen to investigate skeletal muscle regeneration within an abdominal wall 

hernia. 

Despite various attempts to lower both primary hernia occurrence and 

recurrence an ideal solution has not been found.  Currently technologies aim to patch 

the defect without fully addressing the underlying cause of the problem, imperfect 

wound healing.  There has been little success, therefore a tissue engineering strategy 

was employed to aid in skeletal muscle regeneration as oppose to scar tissue 

formation. 

First, the mechanical and biological compatibility of the EH networks was 

investigated.  In particular solid EH networks were fabricated and mechanical 

properties, cellular attachment and IGF-1 protein release and viability were tested.  

Results showed that the mechanical properties of the networks could be altered by 

increasing the initiator concentration during fabrication.  The mechanical strength of 
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these networks was approximately 100 fold greater than that of native skeletal 

muscle.  In addition, these networks were able to maintain a proliferating rat myoblast 

population and release active IGF-1 from their surface.  Overall, this work showed 

the utility and biofunctionality of a cyclic acetal biomaterial made from EHD. 

Next, in an effort to make networks with more relevant mechanical properties 

and to characterize its chemical properties, scaffolds with different architectures were 

fabricated.  The effect of this change on the scaffold’s degradation properties as well 

as the Young’s modulus and flexural strength were evaluated.  Results showed that by 

adding pores to the solid EH networks from the previous work that mass lost during 

degradation could be greatly increased.  In addition, by adding a layer of PEG to 

these monolayers during fabrication, the mass lost during degradation could be 

counteracted.  Mechanical testing showed that adding this layer of PEG, as well as 

increasing overall scaffold porosity can significantly decrease the stiffness of the 

scaffold.  The strength however was found to remain the same as it was shown that 

the EH layer provides the majority of the strength to the scaffolds.  Overall, this work 

demonstrated the effect of changing scaffold architecture on the physical and 

mechanical properties of EH scaffolds. 

Last, the utility of the previously made EH scaffolds as a gene delivery device 

was evaluated.  More specifically, the effect of scaffold architecture on the release of 

plasmid lipoplexes and complexes was determined.  Results showed that by creating 

scaffolds with highly dispersed and interconnected pores, that the release of SG 

lipoplexes and FG complexes could be altered.  The biggest effects on release were 

due to the changes in surface architecture and pore interconnectivity of the networks.  
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To further the functionality of the scaffold, a therapeutic plasmid that produces IGF-1 

GFP fusion proteins was constructed.  hSkMMs were transfected with this plasmid 

and functionality was demonstrated using fluorescent microscopy and ELISA.   

Overall, this project shows the biocompatibility of the cyclic acetal based EH 

scaffold as well as the effects of scaffold architecture on physical, mechanical and 

biological properties.  Through further optimization of the surface and bulk 

architecture of these scaffolds, a gene delivery device can be fabricated to aid and 

guide in the skeletal muscle regeneration within an abdominal wall hernia defect. 
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