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        In this thesis I describe an approach toward investigating moving interfaces, 

surface stabilities and directing self assembly of nanostructures, using lithographic 

patterning to perturb a flat crystalline surface over a range of spatial frequencies, 

followed by epitaxial growth.   GaAs(001) shows a transient instability toward 

topographical perturbations.  We model this behavior using an Ehrlich-Schwoebel 

(ES) barrier which impedes the diffusion of atoms across steps from above. We show 

via both kinetic Monte Carlo (kMC) simulations and molecular beam epitaxial (MBE) 

growth experiments that patterning in the presence of an ES barrier can be used to 

direct the self assembly of mounds.  

        Second, as we track the time evolution of mound formation, we find the 

evidence of "Self-Limiting Growth" on surfaces - we find that in the initial stage of 

growth, the pattern directs the spontaneous formation of multilayer islands at 2-fold 



  

bridge sites between neighboring nanopits along [110] crystal orientation, seemingly 

due to the presence of an Ehrlich-Schwoebel barrier and the effect of heterogeneous 

nucleation sites on the surfaces.  However, as growth continues, the height of mounds 

at 2-fold bridge sites “self-limits”: the mounds cease to grow. Beyond this point an 

initially less favored 4-fold bridge sites dominate, and a different pattern of self 

assembled mounds begins. The observation of self-limiting behavior brings us new 

understanding of mechanism for crystal growth. We also find that the transient 

amplification of pattern corrugation during growth is correlated with self-limiting 

behavior of mounds. We propose that a minimum, ‘critical terrace size’ at the top of 

each mound is responsible for the observed self-limiting growth behavior. 

        Finally, the observation of the sequence of the mounds forming on the patterned 

surfaces gives us rather direct evidence that the formation of growth mounds on the 

surface is a nucleated process, rather than an instability. 
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Chapter One 

Introduction 

 

 

 

 

      1.1  Motivation and Goals 

        One of the motivations of this work is that based on the timetable of Moore's 

Law [1.1] and the international technology roadmap for semiconductors [1.2], the 

conventional fabrication of devices is reaching the limit, so that one of the grand 

challenges in nanotechnology is achieving the fabrication of huge density of 

nanometer-sized structures with controlled placement, on a practical time scale.  

Intensive efforts have been put into the combination of templating the substrates and 

spontaneously assembly of structures, which is a potential candidate to break through 

the bottleneck of nanotechnology.   However, in the systems reported earlier, they 

typically involved local chemistry [1.3] or strain [1.4-1.6] as the driving forces for 

directing self assembly of nanostructures.  It would be interesting and important to 

understand under what conditions kinetic effects, such as the Ehrlich-Schwoebel 

barrier, which oppose the crossing of steps from above by diffusing adatoms, can also 
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be used as a mean of directing assembly of nanostructures.  In chapter three of this 

thesis, we present simulations predicting that indeed directed of self assembly of 

nanostructures through patterning the substrate, and in the presence of an Ehrlich-

Schwoebel barrier.   

        In addition, the evolution of surface morphology remains a crucial issue in the 

field of thin film deposition.  It is necessary to understand the surface kinetics for 

improving the quality and smoothness of thin films.   There are remaining crucial 

problems of growth and surface evolution that haven't been understood, even for 

systems that were investigated for many decades, such as GaAs.   In previous related 

work Kan et al., and Tadayyon-Eslami et al. reported the surprising result [1.7, 1.8] 

that the corrugation of pits they built-in increases initially and eventual decays during 

epitaxial growth on GaAs(001).  Important still unresolved questions in this system 

were: What drives this transient amplification of pattern corrugation? and what are 

the atomic-scale mechanisms that cause a reversal of the surface evolution modes , 

specifically transition from amplifying to decay? 

        Furthermore, the formation of mounds is  an important feature that arises during 

growth, and a long disputed issue concerns the mechanism of forming mounds on 

GaAs(001) [1.9-1.12].  Does the formation of mounds come from the instabilities 

introduced by the Ehrlich-Schwoebel barrier or the roughness of the starting surface 

introduced by oxide removal techniques?   
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        In chapter four, we investigate the surface evolution of nano-patterned 

GaAs(001), and we observe evidence for self-limiting growth that provides a key 

element in explaining the reversal of pattern amplification to pattern decay.  We also 

report that reaching the critical terrace size of the top of each mound cause this self-

limiting behavior.   Most interestingly, we observe a sequence of sites of mound 

formation on patterned surfaces that give us new insights of the mechanism of 

formation of mounds. 

 

 

      1.2   Background 

       1.2.1  Epitaxy 

        Crystalline solids are known to be the stable form of most materials at low 

temperature under moderate pressure (with the exception of helium). The reason that 

many of the materials around us are not single-crystalline is that crystal growth is 

kinetically hindered. It is subject to barriers and instabilities which cause defects and 

finally polycrystalline or amorphous material.  The technique of growth of single 

crystals is called "Epitaxy", from the Greek roots --- epi, meaning "above", and taxis, 

meaning "in ordered manner",  which refers to the method of depositing a single 

crystalline film on a single crystalline substrate.   The deposited film is denoted as a 

epitaxial film or epitaxial layer.  Epitaxial films may be grown from vapor or liquid 

phases of materials, and because the substrate acts as a seed crystal, the deposited 

film takes on a lattice structure and orientation identical to those of the substrate.   
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        Epitaxial films can be classified into two categories: homoepitaxy, for which the 

film is deposited on a substrate of the same composition as the substrate; and 

heteroepitaxy, for which the film is deposited on a substrate with other compositions 

of materials.   Epitaxy is used widely in nanotechnology and in semiconductor 

fabrication, and it is the only affordable method of high quality crystal growth for 

many semiconductor materials, including technologically important materials as 

silicon-germanium, gallium nitride, gallium arsenide, indium phosphide and graphene.    

 

 

       1.2.2  Description of crystalline surface 

        Usually the substrate used for epitaxy is a single crystal, cut along a low Miller 

index plane, however it is always misoriented to some degree from the intended 

orientation. Usually wide terraces appear, divided by mono-atomic steps to 

compensate for the misorientation. (Misoriented Si(111) provides an exception to this, 

as it facets into flat regions separated by step bunches [1.13, 1.14])   An intentionally 

misoriented surface is called a vicinal surface, in contrast to an ideally atomically flat 

low index oriented surface. For a uniform vicinal surface, the distance between steps, 

called the terrace width L, depends only on the misorientation angle (α) and the step 

height (h): 

                                                     αtan×= Lh            ........ (1.1) 

         

        Fig. 1.1 shows a TSK (Terrace Step Kink) model of crystalline surface originally 

proposed by Kossel and Stranski [1.15, 1.16], which describes the thermodynamics of 
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             Fig. 1.1 Schematic of  TSK (Terrace-Step-Kink) model of crystalline surface 

 

crystal surface formation and transformation, as well as the energetics of surface 

defect formation. The TSK model can be applied successfully to surface science 

topics such as crystal growth (including epitaxial growth), surface diffusion, surface 

roughening, and desorption.   

  

 

       1.2.3 Growth 

        Crystal and thin film growth occurs far from equilibrium and is a kinetic process 

where a high effective pressure is produced at the substrate to achieve condensation. 

The growth of crystal typically includes the following steps:  1) Adsorption of atoms 
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at the surface; 2) Diffusion of adatoms on the surface; 3) Incorporation into solid;  4) 

Desorption of adatoms from the surface, which competes with incorporation. The 

longer the adatom diffuses on the surface the higher the probability of desorption. 

        During growth adatoms arrive at the surface from the vapor, then they are 

absorbed by the surface and diffuse across the terraces until they are incorporated into 

solid by attaching to the existing step edges, islands, kink sites or vacancies or 

desorption.   For those adatoms captured by vacancies or step edges, there is much 

less probability for them to escape due to bondings with near neighboring atoms, and 

the bonding strength is proportional to the number of nearest neighbors.  Besides, the 

number of nearest neighbor sites of an adatom depends strongly on crystal symmetry 

and orientation of the surface.   In addition, vacancies are very unlikely to be formed 

in great numbers during growth, because a relatively large number of atoms would 

need to be previously attached to other sites in exactly the right order. Thus, during 

growth on real surfaces vacancies appear only rarely and can be neglected. 

 

 

       1.2.4  Surface Diffusion 

        One of the most important parameters dictating the surface evolution of a film or 

a crystal is the kinetics of surface diffusion of adatoms.    Diffusion on a solid surface 

is the motion of particles or adatoms on a discrete lattice.  For a thermally activated 

surface diffusion process, the diffusivity of an adatom D can be expressed by the 

Einstein relation as shown in Eq. (1.2) where ν is the hopping rate of an adatom on a 

substrate and d is the dimension of the motion.   
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d

D
2

ν
=                    ...... (1.2) 

        The diffusion hopping rate is the inverse of the average time needed for an 

adatom to jump from one site to another on the surface.  D is often divided into a pre-

factor D0 and a Boltzmann factor as shown in Eq. (1.3) 

                                           )exp(
Tk

E
DD

B

d
o −=            ...... (1.3) 

where D0 is maximum diffusion constant, Ed is the activation energy that an adatom 

has to overcome for a hopping, kB is Boltzmann's constant and T is absolute 

temperature.    During deposition, a flux of atoms arrives at the growth front with a 

rate of F (in monolayers per second, or ML/s). Usually in MBE growth, the diffusion 

hopping rate is fast compared to the typical arrival rate from the flux, at typical 

growth rates of a  0.1~1 monolayer per second.   Upon arrival an adatom diffuses on 

the surface till it meets another adatom to form a dimer, and the mean free path 

(diffusion length) of adatom diffusion is the mean distance on the surface that the 

monomer travels before it joins the surface (incorporation), or it leaves the surface 

(evaporation).     In a kinetically limited growth scenario, the dimers are observed to 

be stable from a basic energetics point of view such that the critical nucleus size is  

i=2;  for GaAs(001) under standard growth conditions this is thought to correspond to 

two Ga adatoms colliding in the presence of adsorbed As2 [1.17].   Upon further 

deposition the number of dimers increases and becomes comparable to the density of 

monomers. Therefore, the chances of a monomer finding another monomer decreases, 

the growth rate of islands (trimers) competes with the growth rate of dimers, and 

further deposition contributes to island growth alone. At this saturation island density, 
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mean-field theory suggests that the mean free path of diffusing adatoms is equal to 

the mean island separation assuming that the monomer density outside the islands 

approaches the average value.    

        The mean free path, l ,  of adatoms relates closely with D and follows a power 

law as shown in Eq. 1.4 [1.18, 1.19] 

                                                      
6/1)(

F
D

l ∝             ....... (1.4) 

        The dependence of l on the ratio D/F ratio alone relates to the amount of time 

available for an adatom to diffuse before it encounters another adatom from the 

incoming flux, i.e., higher flux of deposition decreases the mean free path of adatoms.   

In Eq. (1.4) the diffusion coefficient D is a function of temperature according to Eq. 

(1.3), therefore, we can derive the temperature dependence of mean free path of 

adatoms from above equations; that the mean free path (diffusion length) increases 

exponentially with temperature. 

        For GaAs(001) during growth, both gallium and arsenic, in the form of As2, 

diffuse on the surface [1.17]. Arsenic has much higher vapor pressure; thus up to a 

thousand times more arsenic than gallium is directed to the surface. Usually arsenic is 

present in excess, and under this condition, it is thought that the arrival and diffusion 

of gallium controls the growth [1.20]. However, as more arsenic is exposed to the 

surface, the probability for a diffusing gallium atom to form a bond to an arsenic 

molecule and to be incorporated is higher; therefore, the effect of changing the 

arsenic flux is definitely not negligible [1.20]. On the other hand, if more gallium is 

incorporated, fewer diffusing Ga atoms move on the surface, and the mean free path 

for diffusion increases.  
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Initial Surface

ES

Fig. 1.2    Schematic of the additional diffusion barrier at step edge (Ehrlich-

Schwoebel barrier).  It is rather unlikely for an adatom to cross the step atom 

from above due to increased hopping barrier.   

 

       1.2.5  Interlayer Transport - Effect of Ehrlich-Schwoebel Barrier 

        When diffusing adatoms move on the terrace, they will encounter an additional 

diffusion barrier when they approach descending step edges to impede adatoms cross 

step from above, indicated as ES in Fig. 1.2, and this addition diffusion barrier, so 

called “Ehrlich-Schwoebel” barrier was first demonstrated experimentally by Ehrlich 

and Hudda in 1966 [1.21] through field ion microscopy.  They observed diffusing 



 

 10 
 

tungsten atoms on terraces which appeared to be repelled by descending terraces. 

Schwoebel and Shipsey interpreted this observation as due to a change in potential 

barrier for an adatom which diffuses across the step edge [1.22, 1.23].  As shown in 

Fig. 1.2, when an adatom crosses the step from above, it moves from a meta-stable 

state (top schematic, two bond countings) to an unstable state (intermediate schematic, 

one bond counting), which is unfavored.  

        If there is presence of the Ehrlich-Schwoebel barrier on crystal surface, the 

diffusing adatoms have lower possibility to move downward the steps and form a flat, 

two-dimensional film on surface, i.e. the interlayer transport between terraces is 

hindered.   Instead, the presence of the Ehrlich-Schwoebel barrier will result in three-

dimensional growth - formation of multilayer islands.  Fig. 1.3 shows an example of 

the multilayer island formation during homoepitaxial growth with the presence of 

significant Ehrlich-Schwoebel barrier on Pt(111) surface [1.24, 1.34].  In Fig. 1.3, the 

existing steps direct the nucleation of new islands on top of the existing terraces, and 

result in wedding-cake shape of multilayer islands.    So an interesting question would 

be: could we direct the formation of multilayer islands by building in artificial steps 

through patterning techniques with the effect of this kinetic barrier?  This question 

has been investigated and reported in chapter three of this thesis. 

        The possible existence of this barrier on semiconductor surfaces is a very 

important but unresolved question. For example for elemental semiconductors, this 

barrier might be able to explain the roughening of Si(001) surfaces before it becomes 

amorphous. In the case of Ge(001) the barrier is found to be very weak [1.25]. For 

GaAs, Johnson et al. suggested that mound formation during growth might be due to 
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Pt / Pt(111)

Fig. 1.3  STM images of formation of Pt multilayer islands on Pt(111) surface due 

to the presence of strong Ehrlich-Schwoebel barrier. After 37.1 ML of Pt deposited 

on top (Fig. 3 in Ref.[1.34]) 

the existence of this barrier [1.9].  Finally even for the case where the Ehrlich-

Schwoebel barrier is very weak, it has been proposed that a cooperative multistep 

Ehrlich-Schwoebel barrier for closely bunched steps might lead to observable effects 

[1.26]. 
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       1.2.6  Growth Modes 

        The occurrence of individual epitaxial growth modes depends on various 

parameters of which the most important are the thermodynamic driving force and the 

misfit between substrate and layer.  The growth mode characterizes the nucleation 

and growth process. There is a direct correspondence between the growth mode and 

the film morphology, which gives the structural properties such as perfection, flatness 

and interface abruptness of the layers.  It is determined by the kinetics of the transport 

and diffusion processes on the surface. Different atomistic processes may occur on 

the surface during film growth: deposition, diffusion on terraces, nucleation on 

islands, nucleation of second-layer islands, diffusion to a lower terrace, attachment to 

an island, diffusion along a step edge. 

        Experimentally, the distinction between three classical growth modes is well 

known: Frank-van der Merwe (FV), Volmer-Weber (VW) and Stranski-Krastonov 

(SK). In addition to the three well-known epitaxial growth modes mentioned above, 

there are four distinct growth modes: step flow mode, columnar growth, step 

bunching, screw-island growth.    

 

Frank-van der Merwe (FV) (Layer by Layer) Growth Mode  

        During FV or layer-by-layer growth mode, a new layer is nucleated only after 

completion of the layer below. This growth mode requires the diffusion length of 

adatoms smaller than the average terrace width, so that the growth is via island 

nucleation. In the idealized case in which interlayer transport is perfect, all the atoms 

arriving on the surface are incorporated at island borders.    The optimum layer 
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homogeneity can be achieved by one dimensional movement of steps in FV mode 

initiated by a precise controlled small angle substrate misorientation.  

 

Volmer-Weber (VW) (Island Nucleation) Growth Mode  

        A VW growth mode consists of large number of surface nuclei in first phase and 

consists of their spreading in second phase.  Thus, VW growth often results in a high 

mosaicity of the material inside the layer.  From the point of view of kinetics, it 

requires large terraces of the substrate, and adatoms arrive at the surface and diffuse 

around; nucleation happens when a sufficient number of adatoms meet each other.  

Islands grow by addition of further atoms until they coalesce. This process is similar 

to nucleation of a condensed phase from a supersaturated gas [1.27].   In this case, the 

interlayer transport is inhibited.   

 

Stranski-Krastonov (SK) Growth Mode  

        SK mode is considered as intermediate between the FV and VW growth modes, 

and it is caused by significant lattice misfit from film and substrate. The lattice 

mismatch between the substrate and the film creates a build-in strain as a 

consequence of the increasing elastic energy with increasing layer thickness. The first 

deposited layer is atomically smooth (FV growth mode), compressively strained layer 

up to a certain thickness called the critical thickness. When the deposition time is 

enough to exceed the critical thickness – a grow mode transition to islands rapidly 

takes place (VW growth mode), because the nonuniform strain field can reduce the 
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strain energy by an island array, compared with a uniform flat film, resulting in the 

SK growth mechanism.  

 

Step Flow Growth Mode  

        Step flow mode is clearly distinct from layer-by layer growth in FV mode.  

Surfaces usually have steps, which are preferred sites for incorporation of adatoms 

into the growing crystal.   In step flow growth regime, the diffusion length of adatoms 

or the average island separation are much longer than the average terrace width, 

therefore, adatoms will be easily captured and incorporated by step edges [1.28]. The 

effect of preferred incorporation at steps is more pronounced if the steps are close 

together.  This mode is often used to avoid island formation and island coalescence in 

epitaxy from the vapor phase. 

 

 

      1.2.7  Formation of Growth Mounds 

        When the interlayer transport of the atoms is inhibited, the growth leads to 

mound formation [1.20], and mound formation results in increased roughness of the 

surface.   As has been mentioned above, the ease of movement of atoms between 

layers affects whether layer-by-layer growth or the formation of the mounds occurs.  

         In this section, we introduce mechanisms for the formation of growth mounds 

on GaAs surface.   Certainly, one of the earliest and the most famous works that 

talked about the formation of mound on GaAs surface is by Johnson et al. [1.9].   In 

their work,  they employed numerical simulation and molecular beam epitaxial 
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growth experiments to check the growth behavior on both vicinal (stepped) and 

singular (flat) starting surfaces.  They concluded that in the presence of step-edge 

(Ehrlich-Schwoebel) barrier, the growth on singular surface is unstable and results in 

the formation of mounded structures with stable slope selection [1.29].  In contrast, 

the growth on a vicinal surface (the miscut above a certain critical slope, depending in 

the diffusivity of adatoms) is rather stable and leads to step-flow growth regime.    

From their observation, they proposed that the presence of Ehrlich-Schwoebel barrier 

destablize the singular surface toward to formation of mounds.  However, a lower 

temperature oxide removal method was not applied in their experiment (e.g. applying 

atomic hydrogen source), there might be non-negligible roughness existing on the 

starting surface through removing the oxide thermally at 600 ℃ [1.30], and the 

roughness may affect further growth and bring in some complications during growth.    

        Theoretically,  Politi et al. came up with the interpretation that the Ehrlich-

Schwoebel barrier results in an instability toward mound formation on surface during 

growth [1.10, 1.11].  The growth instabilities were classified by Politi et. al. as 

follows:    a) Diffusion instabilities: this kind of instability is typical for growth from 

solution or from melts. In the case of limited diffusion, atoms or molecules tend to 

stick to the  nearest point of the solid, and dendrites form.   b) Kinetic instabilities: 

these usually happen when the growth is fast compared to diffusion and the surface 

can not attain its equilibrium shape.   c) Thermodynamic instabilities: these occur 

during the formation of thermodynamically unstable materials or during the 

heteroepitaxial growth with lattice mismatch.   d) Geometric instabilities: an example 
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Fig. 1.4  AFM images (all 2 μm x 2μm) of GaAs surfaces after (a) thermal 

cleaning, ( b) etching with atomic hydrogen, (c) growth on thermally cleaned 

substrate, and (d) growth on atomic H-etched substrate.  Grayscales are (a) 30 

nm, (b) 2.5 nm, (c) 4 nm, and (d) 2.5 nm.  (Fig. 3 in Ref. [1.31]) 

 

is shadowing, in which the geometry of the surface prevents stable and uniform 

growth. 

        A few years later, the Ballestad et al. [1.31] reexamined the question of 

instability toward mound formation, carrying out experiments similar to those done 

by Johnson et al., i.e. homoepitaxial growth on flat GaAs(001) surfaces.  In this case 
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they compared the results of  thermal desorption of the  oxide layer at 600 ℃ with a 

process using  atomic hydrogen at lower temperature of 300 ℃~ 400 ℃, which the 

latter method minimizes the initial roughness of starting GaAs(001) surface by 

approximately an order of magnitude [1.30].    Their results are reproduced  in Fig. 

1.4, and indicate that no mounding indicative of unstable growth was observed in the 

films cleaned with atomic hydrogen and suggest that homoepitaxial growth on flat 

GaAs is stable, and that the mounds commonly attributed to growth instabilities are in 

fact due to the initial roughness of the oxide-desorbed GaAs surface.   

        More recently, Tadayyon-Eslami et al. reported the formation of mounds around 

micron size pits she patterned on GaAs(001) surface for growth at temperatures 

below ~540 ℃, with the mounds selectively decorating certain edges of pits, i.e. 

running perpendicular to [110] crystal orientation of GaAs. This result is shown in 

Fig. 1.5.   Tadayyon-Eslami et al. interpreted this as evidence of the existence of a 

small, aniostropic Ehrlich-Schwoebel barrier on GaAs(001) surface [1.8].  In this 

thesis we reexamine this interpretation and present evidence that, instead, 

heterogeneous  nucleation of mounds, rather than instability associated with the 

Ehrlich-Schwoebel barrier, explains this observation. 
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Fig. 1.5  Selective formation of mounds around pits along [110] orientation during 

homoepitaxial growth at temperature of 540℃.  The growth thickness is (a) 0 nm; 

(b)100 nm; (c) 200 nm; (d) 500nm. The pit size is 0.7μ m and the spacing between 

pits is 1.4μ m  (Reproduced figure from ref. [1.30]) 
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       1.2.8  Reflection High Energy Electron Diffraction (RHEED) 

        Reflection High-Energy Electron Diffraction (RHEED) is a versatile analytical 

tool for characterizing thin films during growth by molecular beam epitaxy, since it is 

very sensitive to surface structure and morphology; it is particularly sensitive to 

surface roughness, down to monolayer sensitivity.   An accelerated incident electron 

beam with high energy (5-100 keV) is incident on the surface with very small angle 

(< 3 degree).  Although energetic electrons can penetrate deeply into materials, the 

glancing incident angle makes this technique very sensitive to the surface [1.32], and 

the sample region is typically only a few atomic layers into the material.   Fig. 1.6 

shows the geometry employed in the RHEED [1.33].    Upon reflection, electrons 

interfere and form a diffraction pattern.   The diffraction pattern is determined by the 

surface morphology and the atomic structure of the surface.   A perfectly flat surface 

will result in a RHEED pattern which consists of the intersection of reciprocal lattice 

rods with the Ewald sphere, i.e. streaks.   The RHEED techniques also allows us to 

monitor the growth rate of layers of atoms on the surface by analysing the periodic 

variations of the RHEED intensity during growth, this is so called RHEED 

oscillations.  Besides, by knowing both the distance from the sample to the screen or 

recording medium and the energy of the electron source, it is possible to calculate the 

lattice spacings of the sample through RHEED patterns. 
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Fig. 1.6   Schematic of RHEED.  A glancing angle is used between incident beam 

and the sample that allows us to obtain the information for only few layers of 

surface atoms 
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Chapter 2 

Experimental and Simulation Procedures 

 

 

 

       In this chapter, we describe the techniques employed in the investigation of 

surface evolution and directing self-assembly of nanostructures during growth on 

patterned substrates which form the major part of this thesis from both experimental 

and numerical simulation aspects.    In order to make direct comparisons between 

experiments and atomistic calculations, it is desirable to fabricate our patterns within 

nanometer, rather than micron, scale due to limitations in computational power.   

       First, we introduce the techniques required for nano-pattern fabrication, crystal 

growth and characterization from the experimental aspect. Then, we will introduce 

the idea of kinetic Monte Carlo (kMC) simulation, which we used in our atomistic 

numerical calculations in order to understand the effect of kinetic parameters on 

surface evolution and nanostructure formation during growth.   
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    2.1 Growth Experiments on Patterned GaAs(001) 

       2.1.1   Fabrication of Nanopatterns 

      We create periodic, square arrays of square nanopits using electron beam 

lithography on GaAs(001) substrates.  The n-type GaAs wafers used in these 

experiments were two inches in diameter with thickness of 500 + 25 µm and surface 

orientation of (001) + 0.5o, supplied by American Crystal Technology (AXT). A 

summary of patterning process is show in Fig. 2.1. 

       All the processes described below have been carried out in a class 10 cleanroom 

to minimize the presence of particles on the surface.  Impurity clusters act as 

nucleation centers for growth of rough structures or pinning of the steps during 

growth, which significantly affect the evolution of surface morphology. We have 

taken special care to remove all residues of the e-beam resist from the patterned 

surfaces, using multiple cycles of solvent rinses and oxygen plasma etching. We 

examined the results by scanning the surfaces with AFM after each cycle to judge the 

results. This is repeated until all detectable resist has been removed. 
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      2.1.1.1   Electron Beam Lithography (EBL) 

        We choose commercial Poly-methyl methacrylate (PMMA) fabricated by 

MICROCHEM as our electron-beam resist [2.1], which is a positive resist, i.e. the 

regions of PMMA exposed to the electron beam are damaged (chain scission) and can 

be subsequently removed during a developing process.  PMMA is a versatile 

polymeric material that is well suited for many imaging and non-imaging 

microelectronic applications, and it is also the most commonly used as a high 

resolution positive resist for direct write e-beam as well as x-ray and deep UV 

microlithographic processes.  Standard PMMA products cover a wide range of film 

thickness and are formulated with 495,000 and 950,000 molecular weight (MW) 

Fig. 2.1  Schematic of processes of nano-pattern fabrication on GaAs(001) 

substrates by electron beam lithography and plasma etching techniques. 
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resins in either chlorobenzene or the safer solvent anisole.  The PMMA we use is 950 

PMMA A4, which means we have PMMA with 950,000 molecular weight, and the 

concentration of PMMA is 4% dissolved in solvent anisole.   

       We first deposited several drops of  PMMA on the wafer with a disposable 

pipette, and the wafer was then spun at 5000 rpm for 60 seconds with the ramp speed 

500 rpm/sec to speed up and down. This spinning rate creates a fairly uniform film of 

PMMA with thickness of ~200 nm on top of the wafer. The wafer was then put on a 

hot plate and pre-baked at 180 °C for 5 minutes to harden the PMMA and to enhance 

its adhesion to the wafer. 

       The system we used is a field emission scanning electron microscope (SEM, 

JEOL JSM-6500F), which has been modified for electron beam lithography control 

(Nabity), which allows us to fabricate nanostructures at least down to 50 nm.    We 

optimize the size and spacing of fabricated patterns to fit the nominal values by 

refining the dosages of electron beams. Typically, we varied the dosages from 

400~900 µC/cm2.   We then transferred the pattern to the substrate by inductive 

coupling plasma etching, removed the resist and measured the pit topography by 

carbon nanotube terminated tips with atomic force microscopy (AFM).   

         After exposing the resist, we transferred the wafers into resist developer:  1:3 

MIBK (methyl isobutyl ketone) to IPA (isopropyl alcohol). The exposed PMMA was 

removed by immersing into resist developer for 20 seconds with slightly shaking.  

The wafers were then rinsed with IPA for another 40 seconds to remove the residues 

of the developer, and then blown dry with dry nitrogen.  Furthermore, we also used 

short 15 second oxygen plasma exposures to remove the residues of PMMA in the 
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Table 2.1   Parameters used for etching GaAs(001) in Inductive 

Coupling Plasma   (ICP) etching  system. 

trenches of patterns, in order to control the uniformity of pattern transfer in the next 

etching step.  At this point, we also characterized the patterned PMMA film by 

optical microscopy to check if the processes above were successful.. 

 

      2.1.1.2 Inductive Coupling Plasma (ICP) Etching 

      The next step in the patterned substrate fabrication process is transferring the 

pattern to the substrate using inductive coupling plasma etching. We chose a dry 

etching method which allows for anisotropic etching, resulting in pits with nearly 

vertical side walls. The etching was done in a Plasmatherm SLR ICP system. The 

operating parameters for the process are given in table 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

BCl3  Gas 12.5 sccm 

Cl2    Gas 2.5 sccm 

He  Gas 4.0 sccm 

Pressure 4.0 mTorr 

RF 1 Power 60 W 

RF 2 Power 100 W 

DC Voltage 310 V 

Etching Time 25~40 sec 
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       With our etching condition, the etching rate for GaAs(001) is about 1 nm/sec.  

This condition reduces our total etching time to within a minute for fabricating 20 - 

50 nm depth nanopit arrays; this short etching time is advantageous to avoid 

overheating the substrate that will harden the PMMA and make it hard to be removed 

from the substrate. 

 

      2.1.1.3 Sample Cleaning and Characterization 

        After transferring the pattern to the substrate via ICP, we dissolved the resist 

with acetone, while agitating in an ultrasonic bath for 30 minutes. We then immersed 

the wafer in boiling (~80 ºC) n-methyl-2-pyrrolidone (NMP) for 60 minutes. The 

wafer was next rinsed with a series of solvents: acetone, methanol, and isopropyl 

alcohol.   Finally, we rinsed the wafer with flowing deionized (DI) water, and then 

dried the wafer using a jet of dry nitrogen gas.   Repeating the solvent cleaning 

process described above does not completely remove these residues. We found that in 

order to remove the residual resist completely, it was necessary to subject the wafers 

to oxygen plasma cleaning for another 10 minutes after solvent cleaning.   

        It is very important to fully remove the PMMA on the patterned substrate; 

otherwise, the residues will strongly affect the growth results by molecular beam 

epitaxy.  Therefore, we carefully characterized the patterned surface by AFM and 

particular checked if we see clear pit edges, which are the places PMMA residues 

stay mostly.   If residues of PMMA was detected, we further run a few cycles of the 

solvent rinsing and the oxygen plasma etching in order to remove all residues to 

beneath the detectable limit by AFM imaging. 
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      2.1.1.4  Pattern Design 

       In order to use a model containing atomic-scale processes to understand the 

growth behavior, we decided to make nano-scale patterns.  We first fabricated a series 

of square-nanopit arrays, varying the initial pit width, including widths of 60 nm, 80 

nm, 100 nm, 140 nm, 200 nm, 280 nm and 400 nm.  In all cases, we fixed the ratio of 

the initial width to pitch (center-to-center spacing) to be 1: 2, and fabricated a finite 

size of 20 x 20 squared-nanopits in each array, and this allows us to compare the 

growth behavior between the patterned region and the unpatterned part of the surface.  

Fig. 2.2 shows examples of AFM images of nano-patterned GaAs(001) substrates 

with varying initial pit widths. 

 

Fig. 2.2   AFM images of squared-nanopit arrays made by electron beam 

lithography and plasma etching techniques on GaAs(001) substrates. The width of 

nanopits varies from 60 nm to 400 nm, and the depth of nanopit is approximately 

50 nm. 
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Fig. 2.3   SEM images of nanogrooves on GaAs(001) substrates. The width of this 

set of nanogrooves is 200 nm, the depth is approximately 20 nm, and the ratio of 

length to width of nanogrooves varies up to 200:1, corresponding to a 40 μm long 

grooves. 

        Device fabrication with architectures containing various geometries and designs 

typically involves lots of pattern transfer.  Therefore both from scientific and 

technological points of view, we were curious about how shapes of the patterns affect 

the growth or the thin film deposition.    In order to address this question, we 

fabricated nanogrooved pattern on GaAs(001) substrate by varying its length/width 

aspect ratio of patterns from 1:1000 to 1000:1, in which the two orthogonal edges of 

the patterns are along [110] and [110] crystal orientations.  Examples of scanning 

electron microscopy images of nanogrooves are shown in Fig.2.3. (The results of 

growth of nanogrooved patterns are described in Appendix A) 
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      2.1.2 Molecular Beam Epitaxy (MBE) 

        Molecular Beam Epitaxy (MBE) is an Ultra High Vacuum (UHV)-based 

technique for producing high quality epitaxial structures with monolayer (ML) 

control.  Since its introduction in the 1970s as a tool for growing high-purity III-V 

semiconductor films, MBE has evolved into one of the most widely used techniques 

for producing epitaxial layers of metals, insulators, and superconductors as well, both 

at the research and the industrial production level. The principle underlying MBE 

growth is relatively simple: it consists essentially of atoms or clusters of atoms, which 

are produced by heating up a solid source. They then migrate in an UHV environment 

and impinge on a hot substrate surface, where they can diffuse and eventually 

incorporate into the growing film. Despite the conceptual simplicity, a great 

technological effort is required to produce systems that yield the desired quality in 

terms of material purity, uniformity and interface control [2.2].    In this section, we 

further describe the procedures used in the final surface preparation and in MBE 

growth in our growth experiments. 

 

      2.1.2.1 Pre-Loading Preparation 

       Prior to loading a wafer into the MBE system one final series of solvent rinses 

was performed. This consisted of a sequence of rinses, 3 minutes each, while 

agitating in an ultrasonic cleaner. The sequence of solvent was trichloroethylene 

(TCE) followed by acetone, methanol and isopropyl alcohol: A clean beaker used for 

each step. The sample was then rinsed with flowing DI water and then blown dry with 

N2. 
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      2.1.2.2 MBE Growth Stations 

       Our MBE growth was done in a commercially available MBE growth systems, 

which is a VG-80H MBE system with the capability for growing compounds based 

on Ga, Al, As, N and Sb; also with in situ atomic hydrogen source, reflection high 

energy electron diffraction (RHEED), and residual gas analysis diagnostics. The 

schematic of the MBE system is shown in Fig. 2.4.  

 

 

 

Fig. 2.4  Schematic of the MBE system we used in our experiment. The system is 

equipped with RHEED and atomic hydrogen source. 
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       After solvent rinsing, the sample was loaded into the introduction chamber of the 

MBE system through a load-lock system, and degassed for 12 hrs at 180 ºC at a 

background pressure of approximately 10-11 torr.    Next, the sample was transferred 

into the preparation chamber (P = 10-11 torr) where the second stage of degassing of 

the sample was carried out, typically for 30 minutes at 400 ºC. 

       Prior to growth, the beam equivalent pressures (BEP) of the As2 flux and the Ga 

flux from the effusion cells were measured using an ion gauge located in the growth 

chamber; this was done while the sample was still in the preparation chamber. Once 

both the As2 flux and Ga flux were calibrated to the desired settings, the sample was 

then transferred to the growth chamber for growth. For the growth, As2 flux was used 

in excess so the growth rate was controlled by the Ga flux.  

 

 

      2.1.2.3 Oxide Removal 

       In order to get epitaxial growth on GaAs(001) substrate, the native oxide on the 

substrate must be removed.   This can be done in two ways, desorption by heating to 

~582 °C or desorption while heating to ~400 °C in the presence of atomic hydrogen. 

[2.14, 2.15]  In our experiments we desorbed the oxide layer with the presence of 

atomic hydrogen to minimize the surface roughness due to heating.   Desorption of 

the oxide was monitored using RHEED and as the oxide was removed, the RHEED 

pattern turns from hazy background to diffraction streaks, which is characteristic of 

crystalline surface reconstruction of GaAs(001) surface.   Fig. 2.5 shows examples of 
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(a) (b)

our RHEED patterns for a GaAs(001) surface before and after removing the oxide 

layer for the electron beam incident along the [110] azimuths.    

 

 

 

 

       

        Removing the oxide in the presence of atomic hydrogen gives us a rather smooth 

starting surface with RMS roughness of 0.15 nm measured by ex-situ atomic force 

microscopy. On the contrary, the deoxidized surface prepared by heating up to 582 °C 

will result in a rougher surface, which has the RMS roughness about 1 nm [2.3].  The 

reducing roughness of starting surface prepared by atomic hydrogen further reduced 

the possibilities for heterogeneous nucleation of mounds that lead us to the new 

Fig. 2.5 RHEED patterns for GaAs(001) surfaces along [110] crystal orientation; (a) 

before deoxidization with atomic hydrogen source; (b) after deoxidization with atomic 

hydrogen for 3 hours at 400°C. 
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understanding of the mechanism of mound formation and will be discussed in 

Chapter 4. 

 

 

      2.1.2.4 Growth Experiments and Surface Reconstructions 

        In the work described in this thesis, we carried out homoepitaxial growth of 

GaAs on patterned GaAs(001) substrates.  The patterning on the substrate acts as a 

probe to realize the effect of kinetic barrier on GaAs(001) surface and to understand 

the mechanisms of crystal growth and mound formation on surfaces.   

        Patterned samples were cycled between a molecular beam epitaxy (MBE) 

growth chamber (base pressure 2 x 10-11 mbar) for homoepitaxial growth and an 

atomic force microscope (AFM) for surface topography determination in atmosphere.  

Before each growth experiment the surface oxide was desorbed by heating to 400 ℃ 

in the presence of atomic hydrogen, producing negligible desorption induced 

roughness.  The growth was performed in the excess of As2 flux with beam 

equivalent pressure (BEP) of 7.5 x 10-6 torr, and we set the BEP ratio for As2 : Ga is 

10:1 that the BEP for Ga flux is about 7.5 x 10-7 torr.  The opening of valve for Ga 

flux determines the onset of GaAs growth on the substrate, and the growth rate was 

held fixed at 0.28 nm/s.   In this research, we did our growth experiments mainly at 

temperatures of 460 °C and 525 °C.   

        We used reflection high energy electron diffraction (RHEED) to monitor our 

surface reconstructions after de-oxidization.   In Fig 2.6 (a) and (b), we show the 

RHEED patterns along [010] and [110] crystal orientations, respectively, of the 
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surfaces heated at 525 °C.  The existing "4x" peaks (1/4 beam) along [010] 

orientation, and "2x" peaks (1/2 beam) along [110] orientation are the characteristic 

of a c(4x4) surface reconstruction of GaAs(001).  In Fig. 2.6 (c) and (d) show the 

RHEED patterns along [110] and [110] crystal orientations of the surfaces heated at 

580 °C. Evidently, the "2x" peaks (1/2 beam) along [110] orientation, and "4x" peaks 

(1/4 beam) along [110] orientation are the characteristic of β2-(2x4) surface 

reconstruction of GaAs(001) [2.3, 2.4].   Clearly, we see a surface reconstruction 

phase transformation between growth temperatures 525 °C and 580 °C.    

        Therefore, in order to know the starting microscopic conditions of the initial 

surface we are dealing with, we carefully check the surface reconstructions of 

GaAs(001) over a range of growth temperatures, which is show in Fig. 2.7.    By 

tracking the RHEED patterns taken along [110] orientation, we see a transition from 

showing prominent "2x" peaks to "4x" peaks as we increase the temperature, which 

indicates a phase transition from c(4x4) to β2-(2x4)  surface reconstructions at 557 °C.   

Consequently, the growth experiments reported in the thesis are at the temperatures 

below this phase transition, which are at the c(4x4) reconstruction regime.      
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[110]

525 oC

580 oC

(a) (b)

(d)(c)

[110][110]

[010]

 

Fig. 2.6  RHEED patterns for GaAs(001) surfaces at (a) 525 oC along [010] crystal 

orientation; (b) 525 oC along [110] orientation; (c) 580 oC along [110] orientation; 

and (d) 580 oC along [110] orientation after deoxidization with atomic hydrogen for 3 

hours at 400°C. The RHEED patterns indicate a phase transition at the temperature 

between 525°C and 580 °C.  
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Fig. 2.7  Peak intensity analysis of RHEED patterns taken along [110] crystal 

orientation vs. growth temperatures for GaAs(001) surface.  We observe a phase 

transition at 557 oC 
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    2.1.3 Characterization 

       We use atomic force microscopy (AFM) for ex-situ characterization of the grown 

surfaces after they were taken out from the vacuum chamber.  Typically for rather flat 

surfaces, silicon AFM tip with pyramid-shape is frequently used for tapping mode 

scanning. However, due to the narrow and deep nanoscale patterns we made on the 

substrates, regular pyramid-shape tip will result in strong convolution with the 

patterns and not image the shape of patterns correctly.   Therefore, we adopt 

commercially available carbon nanotube (CNT)  terminated AFM tips [2.5] whose 

terminal radii were nominally between 10 nm and 30 nm  to characterize the 

patterned surfaces; these resolve the pit edges and bottoms in the range of pattern 

sizes used in our experiments.    Scanning electron microscopy (SEM) was also used 

in characterizing the lateral dimensions of the grown substrates.  However, we found 

that the characterized areas by SEM show differences in growth topography for 

cycled substrates; this may be due to the carbon contamination from SEM or the 

charging effect of the substrates.   Thus we used SEM to characterize the surfaces 

only at the final stage, i.e. beyond which no further growth was planned. 
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    2.2  Kinetic Monte Carlo (kMC) Simulation Method 

      2.2.1  Brief  Review of kMC 

       Monte Carlo simulation refers to a broad class of algorithms that solve problems 

through the use of random numbers, and the name means just what it sounds like, 

referring to the random nature of the gambling at Monte Carlo, Monaco.  The most 

famous of the Monte Carlo methods is the Metropolis algorithm [2.6, 2.7], invented 

over 50 years ago at Los Alamos National Laboratory.   Metropolis Monte Carlo is 

accomplished through surprisingly simple rules, involving almost nothing more than 

moving one atom at a time by a small random displacement.  This algorithm and the 

numerous methods built on it are at the heart of many of the simulations studies of 

equilibrium properties of physical systems.   

        In the 1960’s researchers began to develop a different kind of Monte Carlo 

algorithm for evolving systems dynamically from state to state.  The earliest 

application of this approach for an atomistic system may have been demonstrated by 

Beeler with the simulation of radiation damage annealing [2.8].    In the 1990’s the 

terminology for this approach settled in as kinetic Monte Carlo, though the early 

papers typically use the term of "dynamic Monte Carlo" [2.9].  The popularity and 

range of applications of kinetic Monte Carlo (kMC) has continued to grow, and kMC 

is now a common tool for studying materials subjects.   A questionable issue with 

kMC is whether it can, in principle, give the exact dynamical evolution of a system. 

Although this ideal is virtually never achieved, and usually not even attempted, the 

kMC method is presented here from this point of view because it simplifies the real 

system with computational models and makes a good framework for understanding 
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Fig. 2.8  Typical length and time scales associate with computational methods. 

KMC can reach much larger scale than MD and DFT. (Fig.1 in [2.10]) 

what is possible with kMC, what the approximations are in a typical implementation, 

and how they might be improved.  

        Why use kMC method or perhaps equivalently,  what is the benefit of using 

kMC?  In particular, in computational materials science molecular dynamics (MD) 

simulations exist that allow one to follow the dynamics of molecular processes in 

great detail.   In particular, the combination of MD simulations with density 

functional theory (DFT) calculations of the electronic structure has brought us a great 

step further; since DFT enables us to describe a wide class of chemical bonds with 

good accuracy, it has become possible to model the microscopic dynamics in 
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materials.  Hence any simulation that aims at predictive power should start from the 

sub-atomic scale of the electronic many-particle problem. However, for many 

questions of scientific or technological relevance, the phenomena of interest take 

place on much larger length and time scales.  This “time-scale problem” brings up the 

limitation of DFT and MD calculations as shown in Fig. 2.8.   Kinetic Monte Carlo 

attempts to overcome this limitation by exploiting the fact that the long-time 

dynamics of this kind of system typically consists of diffusive jumps from state to 

state.  Rather than following the trajectory through every period, these state-to-state 

transitions are treated directly.  The result is that can reach vastly longer time scales, 

and can be applied to tackle with complex many-particle systems [2.10]. 

 

 

    2.2.2 KMC Model in this Work 

      Our kinetic Monte Carlo simulations are carried out using a Fortran-based code 

developed by our collaborator Ajmi Ben Haj Hammouda [2.11,2.12].  It uses a 

standard solid-on-solid (SOS) description of the growth of a simple cubic crystal. The  

SOS model assigns an integer height , measured above the average vicinal plane, to 

each point   on a square grid of dimensions 500a x 500a, where a is the lattice 

constant.  We use periodic boundary conditions in both directions.    

       The microscopic processes considered are the deposition of atoms with an 

incident flux F and diffusion; desorption is not considered. In most of the results 

reported above we fixed the incoming flux at a value corresponding to the arrival of 1 

monolayer of atoms per second.  Absorbed adatoms hop from site to site in the 
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Ed

Ea

Ed + EES

 

Fig. 2.9  Schematics of solid on solid (SOS) model built in our kMC model with 

presence of three energetic barriers: the diffusion barrier, Ed,  the in-plane nearest 

neighbor interaction barrier, Ea and the Ehrlich-Schwoebel (ES) barrier, EES. 

presence of three energetic barriers: the diffusion barrier, Ed,  the in-plane nearest 

neighbor interaction barrier, Ea and in order to probe the effect of Ehrlich-Schwoebel 

(ES) barrier on semiconductor surface directly, we build the Ehrlich-Schwoebel 

barrier, EES, at step edges in our kMC calculation.  The schematics of a microscopic 

view of  diffusing adatoms associated with these energetic barriers is shown in Fig. 

2.9. 
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The overall barrier to hopping is 

 

                                               EX = Ed + nEa + ηEES                ......(2.1) 

        Here n is the number of nearest neighbor adatoms with which a diffusing atom 

interacts; it ranges from 0 to 3, as atoms with 4 neighbors are immobile.  η is equal to 

1 if there is an Ehrlich-Schwoebel barrier for a particular hop, and 0 otherwise. The 

hopping frequency follows an Arrhenius form with a rate: 

 

                           ( )TkE BX /exp0 −=Γ ν  ......(2.2) 

where ν0=1013 Hz is a typical adatom vibration frequency, T is the substrate 

temperature, and kB is Boltzmann’s constant.  We use values for the diffusion barrier 

and the in-plane nearest neighbor interaction barrier typical of those calculated by 

first principle calculations [2.13], and vary EES.  In the simple model used here no 

preferential diffusion along step edges is considered.   However, it is good enough to 

qualitatively demonstrate the effect of Ehrlich-Schwoebel barrier during growth on a 

patterned surface. 

 

               The initial simulations start with a surface shown in Fig. 2.10, containing a 

square array of flat-bottomed square pits, each of width 50 lattice constants wide and 

with a center-to-center spacing of 100 lattice constants. We start with pits 10 lattice 

constants deep, bounded by side walls, which form angles of 45
◦
 with respect to the 

surrounding surface.   However, in our later simulations, we also treat the width, 
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Initial surface

Depth: 10 a

Width: 50 a

Pitch : 100 a

(Top view)

500

400

300

200

100

0

4003002001000

Fig. 2.10   In our kMC simulations, we build in periodic patterns on the 

surface as our starting surface.  

depth and slope of side walls as changing parameters to determine how these pattern 

parameters affect the growth and surface evolution. 
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Chapter 3 

Kinetic Monte Carlo Study of Directing Self-

Assembly of Nanostructures on Patterned Crystal 

Surface during Homoepitaxial Growth 

         

 

     A means of fast assembly of extremely large numbers of nanostructures with 

positional and size control will be required if technology is to keep pace with the ever 

decreasing size scale of devices called for by such timetables as Moore’s Law [3.1] 

and the international technology roadmap for semiconductors [3.2].  Directed self-

assembly [3.3], in which a template influences the otherwise spontaneous 

arrangement of atoms during processes such as growth [3.4-3.18]   is an appealing 

candidate for achieving this.  Mechanisms by which templates influence control over 

how atoms assemble are often based upon either local chemistry [3.3] or strain 

[3.19,3.20].  Here we demonstrate that a qualitatively different type of mechanism, in 

which an extra diffusion barrier to an atom crossing a step [3.21,3.22] can lead to self 
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assembly of a variety of ordered arrangements of nanometer-sized “mounds” during 

epitaxial growth on a patterned substrate. 

       A familiar example of self-assembly is crystal formation, in which atoms align in 

periodic arrangements which are dictated by local bonding.  In this process kinetics 

limits the degree to which the lowest-energy, ordered arrangements can form.  On the 

other hand, kinetic barriers have long allowed for the fabrication of structures in 

which atoms are not in their lowest free energy configurations.  A particularly 

interesting type of diffusion barrier at step edges [3.21, 3.22] has been shown to lead 

both to the formation of multilayer islands or “mounds” during crystal growth [3.23-

3.30] and step bunching or meandering instabilities during sublimation [3.31] or 

growth [3.32], respectively.  Work by Tadayyon et al. on epitaxial growth of GaAs on 

patterned GaAs(001) substrates showed evidence that this “Ehrlich-Schwoebel” (ES) 

barrier might play a role in a transient growth instability we observe [3.33].  In this 

chapter we investigate the role of the Ehrlich-Schwoebel barrier during growth on 

patterned surfaces using kinetic Monte Carlo (kMC) simulations.   Much of this work 

has been published in a recent article [3.40]. 
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    3.1  KMC Simulation Results 

        As mentioned in the previous chapter, we include the Ehrlich-Schwoebel barrier 

effect in our kMC simulations to probe its effect directly during crystal growth.  In 

our early simulations we treated the Ehrlich-Schwoebel barrier as an adjustable 

parameter.  As we are most interested in understanding its effect, we began with a 

relatively large Ehrlich-Schwoebel barrier, 0.1 eV,  comparable to what is expected 

on certain metal surfaces, for example: Pt; we have also carried out an investigation 

of the effect of varying this barrier, presented below.  Other energetic barriers are 

employed in a reasonable range of those resulting from first-principles calculations 

[3.37].  

         In Fig. 3.1 we show a series of simulated topographies for growth on a patterned 

surface at 600K, with diffusion barrier of Ed = 1.2 eV, an in-plane nearest-neighbor 

interaction energy of  Ea = 0.3 eV and an Ehrlich-Schwoebel barrier of EES =0.1 eV .  

After about 10ML of growth,  mounds form on the surfaces; these coarsen with 

deposition during the early stage of growth. The formation of mounds  agrees 

qualitatively with simulations carried out several years ago by Johnson et al.[3.23], 

who attempted to model the unstable growth on unpatterned GaAs(001) surfaces 

during MBE growth. 
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Tgrowth = 600 K

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)(a) (b)

(d)

(c)(a) (b)

(e)(d)

(c)(a) (b)

(f)(e)(d)

(c)(a) (b)

Fig.3.1 Snapshots of simulated surface morphologies during growth at temperature 

600 K with overall layer thicknesses of (a) 0ML; (b) 1ML; (c) 10ML; (d) 50ML; (e) 

200ML (f) 500ML. The components of the energetic barriers were set at Ed =1.2 eV, 

Ea =0.3 eV,  EES =0.1 eV,  Flux= 1 ML/sec. 

 

 

 

        In Fig. 3.2 we show the result of greatly lowering the value of Ehrlich-

Schwoebel barrier in our kMC simulations, from 0.1 eV to 0.01 eV, on the formation 

of growth mounds.    By comparing the images in Figs. 3.1(f) and 3.2(c), both of 
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Fig.3.2  Snapshots of simulated surface morphologies after 500 ML of growth with a 

reduced Ehrlich-Schwoebel barrier of EES = 0.01 eV, at growth temperature of (a) 

500K; (b) 550K; (c) 600K; (d) 650K; (e) 675K (f) 700K.  Other energetic parameters 

were set as Ed =1.2 eV, Ea =0.3, Flux= 1 ML/sec. 

which show the surface topography after 500 ML of growth at temperature of 600 K, 

we see the following in the low Ehrlich-Schwoebel barrier regime: first, the mounds 

become more irregular;  second, the predefined patterns (artificial steps) have less of 

a tendency to direct the assembly of mounds; and third, three-dimensional island 

growth on the surface is surpressed; rather the simulation shows two-dimensional 

growth. 
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Tgrowth = 850 K

(a) (b) (c)

(d) (e) (f)

Fig.3.3 Snapshots of simulated surface morphologies during growth at a 

temperature of  850K with layer thicknesses of (a) 0ML; (b) 1ML; (c) 5ML; (d) 

10ML; (e) 20ML (f) 50ML. Energetic parameters were set as EES= 0.1 eV, Ed 

=1.2 eV, Ea =0.3, Flux= 1 ML/sec. 

        At a relatively high temperature of 850K with the value of Ehrlich-Schwoebel 

barrier 0.1 eV, we see an inward collapse of the patterns and complete relaxation at 

an early stage of growth, 50 ML, as shown in Fig. 3.3.  Growing at high enough 

temperature, the thermal energy of diffusing atoms on the surface is sufficient to 

overcome the Ehrlich-Schwoebel barrier, reducing the instability and eliminating the 

formation of mounds on the surfaces. 
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Fig. 3.4  Simulated topography vs. growth temperature. (a) initial patterned surface; 

pits are 50a wide, 10a deep and separated by A=100a center-to-center, where a is the 

lattice constant.    (b)-(g) simulated topographies after 1000ML grown thickness, at 1 

ML/s. Energetic barriers are Ed=1.2 eV, Ea=0.3 eV, EES=0.1 eV.  Growth temperatures 

are: (b) 550K; (c) 650K; (d) 680K; (e) 695K; (f) 725K; (g) 755K; (h) summary of 

average mound size vs. grown thickness at a series of temperatures; dashed line 

indicates 1000ML. 

         Our kMC results indicate that for a moderate Ehrlich-Schwoebel barrier, and 

within a temperature window, patterns containing artificial step bunches (e.g. the 

sidewalls of the pits) on the surface can direct the self assembly of growth mounds 

kinetically.    
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        In Fig. 3.4, we summarize our simulation results for an Ehrlich-Schwoebel 

barrier of 0.1 eV over a range of growth temperatures.   Fig. 3.4(a) shows the starting 

surface, while  Figs. 3.4 (b)-(g) show the topography that results after the simulated 

growth of a film of 1000 monolayers average layer thickness at a rate of 1 ML/s, for a 

series of increasing temperatures.  Fig. 3.4(h) summarizes the average mound size vs. 

growth thickness for temperatures across this range and indicates that after 300 

monolayers of growth, the average mound size nearly reaches steady state. Thus the 

snapshots we show here for 1000 ML thus reflect near-steady states of the evolution 

of surface topography in each case.    

 

        Fig. 3.4(b) is for simulated growth at a temperature of 550K, and shows a high 

density of irregular mounds decorating the surface.  The dendritic shapes of 

individual mounds indicate that diffusive motion of atoms is slow compared to the 

arrival of new atoms from the flux at this temperature and suggest diffusion limited 

aggregation (DLA) growth [3.43].    Increasing the temperature results in the 

formation of larger mounds of more regular shapes, as can be seen in Figs. 3.4(c)-(d).  

By 680 K a strong correlation between the positions of the mounds and the original 

pattern is visibly evident, in which one growth mound sits at the center of each pit, 

and roughly two growth mounds form on the "bridge sites" in between neighboring 

pits.  Further increases in the temperature result in larger mounds, whose shapes 

evolve from nearly isotropic, to distinctly diamond-like at 725 K. Fig. 3.4(f) show 

that growth of 1000 ML at 725K results in pits which have shrunk and mounds which 

form mainly at the bridge site between neighboring pits.  On increasing the 
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temperature more, the mounds coarsen even further. In Fig. 3.4(g), which is for 

growth at 755K, the mounds almost span the entire pattern period to evolve to square 

shape. The initial pattern seemingly acts as an array of pinning sites to constrain the 

mound shapes and sizes.   Growing above 770K produces mounds whose size 

exceeds that of the pattern cell, and the shapes become less regular.   

 

 

    3.2 Mound-Mound Separation Analysis 

      3.2.1 Height-Height Correlation Function Analysis and Correlation 

Maps 

       In this section, we statistically analyze the effect of the initial topographical 

pattern on the self assembly of the growth mounds, particularly evident in Figs. 3.4(d), 

3.4(f) and 3.4(g), using a correlation function, defined as: 

                                  (((( ))))
R

G r z R z R r
//

2 / / / / / / / /( ) ( ) ( )≡ +≡ +≡ +≡ + r

r rr r
 .......(3.1) 

        In this expression )( //Rz
r

 is the local height of the surface at a particular lateral 

position //R
r

, )( //// rRz
rr

+  is the height at position displaced laterally from this by //r
r

  

and 
//R
r  denotes the average over all values of //R

r
.   A more conventional form of 

the height-height correlation function (which we refer to as G1 to distinguish from the 

one which we use in our analysis) is given by: 
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        These two forms of the height-height correlation have a simple relation, and are 

equivalent in a statistical point of view. However, separations for which the height is 

highly correlated yield a peak in G2, but a valley in G1, i.e. they are complementary to 

each other.  We adopt the former (i.e. G2 , Eq.(3.1)), as this relationship between 

relative height and correlation seems more intuitive than that for the latter.   Based on 

the simulated images, using Eq. (3.1) we can generate the corresponding real space, 

two-dimensional correlation maps. Fig. 3.5 shows some characteristics of the 

corresponding correlation maps which can be adopted to probe the long range 

ordering of the evolving nanostructures and surface morphologies during growth.   

Fig. 3.5(a) shows a perfect periodic structure, i.e. the model starting surface that we 

use in our kMC simulations, and the corresponding correlation map according to Fig. 

3.5(a) is shown in Fig. 3.5(d). It consists of a set of peaks, with the separation 

between peaks given by the period of the starting patterns. This can be understood 

based on the fact that shifting the whole structure over one pattern period “A”, results 

in a structure which is identical with that before the shift, i.e. the resulting structure is 

completely correlated.   Consistent with this, profiles taken along the dashed arrow 

line shows that the intensity of the “first-order” (i.e.  R=A) peaks, i.e. those displaced 

from the map center by a distance equal to the pattern period A along the horizontal 

<100> and vertical <010> directions, in this case is identical to the that of the central 

peak.    More generally, based on the definition of height-height correlation function 

(Eq. (3.1)), the height of the central peak in these correlation maps is equal to the 

mean-square corrugation amplitude, with contributions from both the mounds that 

assemble spontaneously during growth and what remains of the original pattern.   The 
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Fig. 3.5  Simulated topography and corresponding correlation maps. (a) initial 

patterned surface with perfect periodicity;  (b) surface topography with limited 

periodicity of patterns, growth at 750K after 1000ML of growth; (c) surface 

topography with ordered arrangement of mound structures, growth at 680K after 

1000ML of growth; (d),(e) and (f) show the corresponding correlation maps and line 

profiles taken horizontally across the center of (a),(b) and (c), respectively. 

height of the “first-order” peaks gives a measure of the persistence of the pattern 

during growth.   
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        Therefore, for the grown surface morphology with limited order, as shown in Fig. 

3.5(b), the correlation map shows periodic arrays; however, the height of “first-order” 

peaks has been reduced relative to the height of central peak (as shown in Fig. 3.5(e)). 

This indicates that the order is reduced, relative to that of the starting surface, due to 

the growth.   From the point of view of directed self-assembly, the most interesting 

feature that arises during growth on our model patterned surfaces is the additional 

peaks-(which we hereafter refer to as “satellite peaks”) which appear between those at 

displacements given by integral combinations of the pattern unit vectors; These are 

visible in Fig. 3.5(c) and (f); they signify additional periodicities that arise due to the 

ordering of the growth mounds. The separation between the first satellite peak 

position and the central peak corresponds to separations between mounds. 
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      3.2.2 Comparison of Growth on Patterned and Unpatterned Surfaces 

     In this section, we compare the growth behavior  on substrates with and without 

patterns, using analysis based on height-height correlation maps.   

      In Figs. 3.6 (a)-(d), we show the correlation maps calculated from kMC 

simulations of growth on patterned surfaces at 550K, 680K, 725K and 755K.   Fig. 

3.6 (b) is the correlation map corresponding to Fig. 3.4 (d), in which we see the 

separation between the positions of first satellite peak (right double-dotted line) and 

central peak (left double-dotted line) along <100> orientation is one-third of the 

pattern period (A/3); which confirms the visual impression from Fig. 3.4(d), i.e. that 

two mounds tend to form in the bridge between pits resulting in a (A/3 x A/3) 

structure.  Fig. 3.6 (c) shows the correlation map corresponding to Fig. 3.4 (f).  The 

positions of satellites have rotated by 45 degrees and appear only along <110> 

directions; the spacing between two dotted lines in the figure is exactly A/√2, and 

shows that the arrangement of mounds adopts an (A/√2 x A/√2) unit cell for growth 

at this temperature.  The simulated images in this range (e.g. Fig. 3.4 (f)) show that a 

single mound forms in each bridge-site between near-neighbor pits; mounds do not 

form within pits at these temperatures. Fig. 3.6 (d) shows the correlation map from 

Fig. 3.4 (g); at this temperature, the mounds assemble into a third, even lower 

coverage arrangement, and adopt an ( A x A ) unit cell, in which all satellites are 

absent (i.e. coincide with integral peaks) in the correlation maps.       
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(a) (b) (c) (d)

< 100 >

Ru

(i) (j) (k) (l)

Ru ~A

AA

(e) (f) (g) (h)

< 110 >

       Fig. 3.6: Correlation maps for growth on patterned and unpatterned surfaces.  

After 1000ML simulated growth, at 1 ML/s. (a) growth at 550K on patterned surface 

showing weak ordering; (b) growth on patterned surface at 680K, showing square 

ordering; double-dot dash lines show a separation of A/3; (c) growth on patterned 

surface at 725K, showing diagonally-ordered structure; dotted lines show a pacing of 

√2A/2; (d) growth at 755K on patterned surface showing original pattern period;  3.6 

(e)-(h) growth on un-patterned initial surface (e) at 550K; (f) at 680K; (g) at 725K; (h) at 

755K; 3.6 (i)-(l) corresponding correlation maps of 3.6 (e)-(h), showing liquid-like 

ordering: Ru indicates the radius of the ring in the correlation maps, corresponding to the 

near-neighbor mound separation. 
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        This behavior is in sharp contrast to what we find for simulated growth on an 

unpatterned surface.   Figs. 3.6 (e)-(h) show the topographical images of simulated 

growth on unpatterned surfaces at 550K, 680K, 725K and 755K; mounds again form 

on the surfaces due to the effect of Ehrlich-Schwoebel barrier. However, in the 

absence of initial patterns, mounds show nearly-close-packed arrangements with 

“natural” (near-neighbor) spacings which increase with temperature.  Figs. 3.6 (i)-(l) 

show the corresponding correlation maps of Figs. 3.6 (e)-(h), respectively.  The 

correlation maps on unpatterned surfaces show a nearly isotropic ring surrounding an 

excluded area around the central peak, but otherwise no indication of orientational 

ordering of the mounds: the arrangement is “liquid-like”.  The radius of the ring (Ru) 

in the correlation maps corresponds to the “natural” nearest neighbor mound 

separation. 

 

        Further analysis of the positions of the satellites as a function of temperature 

reveals an intriguing behavior in the assembly of mounds when an initial 

topographical pattern is present.  This can be seen in Fig. 3.7, where we plot the 

position of the nearest satellite peaks along both the horizontal <100> and diagonal 

<110> directions vs. the radius of the ring (natural nearest neighbor spacing) on the 

unpatterned surface. The arrangement of mounds locks into a series of ordered arrays 

whose period is related to that of the pattern as the temperature is increased.   This 

behavior is reminiscent of “devil’s staircases”, or sequences of higher-order 

commensurate phases which form as temperature or pressure is changed in adsorbate 

systems when there is a competition between preferred adsorbate-spacings and 
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substrate periodicities [3.38]. For growth at or below 600K the distances from center 

of the closest satellites along both of these directions are equal and given by the 

radius of the ring (Ru).  At these low temperatures the mound separations are thus 

isotropic, and relatively insensitive to the presence of the pattern, which show up as a 

background in the correlation maps.  By a growth temperature of 660K the pattern 

clearly exerts an influence on the mound spacing:  the symmetry of the satellites 

visually indicates that the mounds assemble into a square lattice, with the ratio of the 

distances to the nearest diagonal satellite and to the nearest horizontal satellite in the 

ratio of √2:1.  Interestingly, the mound lattice has adopted a lattice spacing of A/3, 

rather than the “natural” value of 0.26A which it would have in the absence of the 

pattern.  It remains locked into this structure up until a temperature of 700K, in spite 

of an increase in the unpatterned mound spacing to 0.43A.  Increasing the growth 

temperature slightly, to 710K, causes an abrupt change in the arrangement in which 

the mounds assemble.  Evidently driven by the significantly larger natural spacing, 

the mound lattice rotates by 45 degrees, and adopts an (A/√2 x A/√2) unit cell.  As 

for the intermediate temperature (A/√2 x A/√2) structure,  the mounds lock into this 

lower coverage structure over a range of temperature, up to approximately 735K.  

Raising the temperature to 740K causes the mounds to assemble into a third ordered 

phase.  The simulations show that the larger natural spacing of the mounds is 

accommodated by the assembly of individual mounds in the 4-fold sites between pits 

and form ( A x A) structures.  At the approximate center of the temperature range for 

this structure, 755K, the pattern period A coincides with the spacing mounds would 

naturally adopt.  Increasing the growth temperature above 770K results in a 
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Fig. 3.7: Evidence for lock in of mounds to series of ordered structures.   Nearest satellite 

peak position from correlation maps after growth on patterned surface vs. ring radius for 

unpatterned surface, along <110> (red open circles) and <100> (blue solid squares). 

After 1000ML grown thickness, at 1 ML/s, with temperature as indicated.  Solid blue line 

has slope 1, corresponding to mound spacing along <100> equal to that on an unpatterned 

surface.  Solid red line has slope √2.  Mound lattice vectors relative to pattern are 

indicated for three ordered structures. Insets from top to bottom show the correlation maps 

of surface morphologies after growth at 755K, 725K and 680K, respectively. 

disordered structure; there is no simple relation of the placement of these large 

mounds to the topographical pattern, and even the first-order peaks are absent in the 

correlation maps.   
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      3.2.3  The Effect of Changing Pattern Parameters on Mound 

Separation 

      An interesting question concerns how the choice of initial geometrical parameters 

might affect which ordered mound arrangements occur for growth on a patterned 

surface.  To investigate this we carried out additional simulations for geometries in 

which the relative values of different pattern length scales are changed.  We find that 

changing the depth of the pattern at fixed width and pitch has a subtle effect, as 

summarized in Fig. 3.8 for the case of the same pattern pitch and pit-width as in Figs. 

3.1 - 3.4, but with the depth tripled to h = 30a.  The same sequence of phases as in the 

h = 10a case occurs, with only changes in the transition regions between them.  This 

may be in part due to the finite sidewall angle which causes a decrease in the widths 

of the flat mesa widths between pits with increasing pit depth.    

 

      On the other hand, changing the starting pit-widths for a fixed pitch and depth 

gives rise to a different sequence of mound structures with increasing temperature.  

Figure 3.9 summarizes the results for growth simulations in which the pitch and depth 

are maintained at the same values as in Figs. 3.1- 3.4, but in which the initial width of 

the pits is 0.75 times the pitch, i.e. w=75a.  In this case the simulations predict four, 

rather than three ordered mound structures, with unit meshes given by A/5 x A/5, A/3 

x A/3, A/2 x A/2 and A x A as the growth temperature is increased.  Interestingly, the 

rotated A/√2 x A/√2 structure is “missing” in this case.   
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Fig. 3.8  Effect of pattern parameters on sequence of mound structures with 

temperature- changing depth of initial patterns   Nearest satellite peak position from 

correlation maps after simulated growth on patterned surface vs. ring radius for 

unpatterned surface, along <110> (red open circles) and <100> (blue solid squares). 

Satellite positions for initial pattern pitch A =100a and width w = 50a, but depth 

increased to h = 30a. Insets from top to bottom show the correlation maps of surface 

morphologies after growth at 740K, 710K and 680K, respectively.  After 1000ML 

grown thickness, at 1 ML/s, with temperature as indicated.  
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Fig. 3.9  Effect of pattern parameters on sequence of mound structures with 

temperature- changing width of initial patterns   Nearest satellite peak position 

from correlation maps after simulated growth on patterned surface vs. ring radius 

for unpatterned surface, along <110> (red open circles) and ,<100> (blue solid 

squares). Satellite positions for initial pattern pitch A = 100a, depth h = 10a and pit 

width w = 75a. Insets from top to bottom show the correlation maps of surface 

morphologies after growth at 760K, 720K, 675K and 630K, respectively.   
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        While we do not have a detailed understanding of the relationship between the 

pattern parameters and the mound structures which form, we expect that it involves a 

competition between a temperature-dependent natural nearest neighbor mound 

spacing, discussed above, and the pattern lateral length scales.  The mound-pattern 

interaction is seemingly based upon the formation of mounds only on the flat mesas 

around and at the bottoms of pits. This restricts the configurational entropy of mounds 

on the surface, and results in an effective interaction which is entropic. 
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      3.3  Effect of Changing Energetic Barriers and Growth Fluxes 

      One might wonder how general the series of self-assembled mound structures 

seen in Fig. 3.4 is.  In particular: would a different set of barriers and growth flux 

produce mound structures with different periods?  To address this we carried out 

additional simulations, changing Ehrlich-Schwoebel barrier over a wide range. 

Interestingly, we see the same sequence of three ordered phases in three temperature 

windows as the Ehrlich-Schwoebel barrier varies from 0.03 eV to 0.2 eV although the 

temperature boundaries shift to lower temperature ranges as we decrease the Ehrlich-

Schwoebel barriers.  

 

      From Fig. 3.10 it is clear that for small Ehrlich-Schwoebel barrier, 0.03 eV, there 

are relatively small temperature windows in which each ordered phase forms. This is 

perhaps reasonable given that for a small Ehrlich-Schwoebel barrier, there is less 

tendency of mound formation. On the other hand, for a large Ehrlich-Schwoebel 

barrier, 0.2 eV, the  apparent transitional regions (error bars) between ordered phases 

become significant. While this might be due to the possibility of wider regions of 

“phase coexistence”, it may also indicate that for a very large Ehrlich-Schwoebel 

barrier interlayer transport is  greatly reduced, slowing “equilibration” or better, 

achievement of near-steady state. .  
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Fig. 3.10  Effect of changing Ehrlich-Schwoebel (ES) barriers.   The same sequence 

of three ordered phases shows up as the ES barrier varies from 30 meV to 200 meV.  

 

        

         

 

        In addition , for an Ehrlich-Schwoebel barrier of EES = 0.1 eV we carried out 

simulations systemically changing the growth flux from 0.5 ML/s to 2.0 ML/s.  Flux 

is important in self assembly since a competition occurs between the arrival of new 

atoms and the diffusivity of adatoms  during growth.  Once again, we find that the 

prediction is for a sequence of three ordered phases of mound arrangements as shown 

in Fig. 3.11. 
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Fig. 3.11  Effect of changing growth fluxes.   Regions of three ordered phases 

shows for fluxes varying from from 0.5 ML/sec to 2.0 ML/sec. EES barrier is 0.1 eV. 
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        We also carried out simulations varying the diffusion barrier (Ed), from 0.8 eV to 

1.2 eV, and the in-plane nearest neighbor interaction barrier (Ea), from 0.25 eV to 0.4 

eV.  In each case the same sequence of three ordered mound structures occur, 

although at different temperatures ranges.  Overall, the prediction is that these 

directed self assembled structures should occur over a range of energy barriers on 

surfaces and incident fluxes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 69 
 

      3.4  Image Segmentation for Mound Size Analysis 

     From the systematical analyses of mound separations, we found a very interesting 

temperature dependence of ordered mound arrangements.  A remaining, and 

interesting questions would be: what does this mean about the sizes of the mounds?   

Does the same lock-in series occur  as a function of temperatures?  In order to answer 

these questions, we carried out image segmentation to define each mound and 

calculate the average mound size after varying grown thicknesses.   

 

       3.4.1  Image Segmentation Method 

      A Fortran-based code (developed by Dr. Hung-Chih Kan) allows us to define the 

boundary of each mound and through that we can obtain the distributions of average 

mound size.   The details of the code are provided in Appendix C.   

         Fig. 3.12 shows results of image segmentation on patterned substrates after 

1000 ML of growth with various temperatures, which is indicated at the top of each 

image. The color codes used here is only for distinguishing mounds from their 

neighbors.   From Fig. 3.12, we can see that the image segmentation works 

reasonably well in analyzing the average mound size vs. temperatures in the presence 

of initial patterns.  Due to the limited size of each simulation frame, the statistics are 

limited, increasingly so for the growth at higher temperatures, as shown in the lower 

row of Fig. 3.12.   In order to improve our statistics, we ran many sets of simulations 

and did the image segmentation for all sets of data. 
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Fig. 3.12  Image segmentation of mounds grown on patterned surfaces. The 

growth temperature for each case is indicated on top of each panel.  

 

 

       For comparison and consistency, we use the same approach for results of the 

growth on unpatterned surfaces, as illustrated in Fig. 3.13.  The image segmentation 

method again works nicely, and allows us to obtain the temperature dependent of 

"natural mound size".  We plot the average mound size on patterned surfaces vs. 

natural mound size on unpatterned surfaces as a function of temperature, presented in 

Fig. 3.14, and discussed in the next section. 
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Fig. 3.13  Image segmentation of mounds grown on unpatterned surfaces. The 

growth temperature for each case is indicated on top of each panel. 

 

 

 

      3.4.2  Temperature Dependence of Average Mound Size    

       Interestingly, Fig. 3.14, indicates that the temperature dependence of the mound 

sizes shows some differences from what might be guessed from the temperature 

dependence of the correlation map satellite positions.  No obvious break in the 

dependence of the mound size on temperature is seen in the range in which the (A/3 x 

A/3) structure forms; instead, the size of mounds follows its natural size (the mound 

size on unpatterned surface), which shows a monotonic increase of the mound size as 
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Fig. 3.14: Average mound size on patterned vs. unpatterned surfaces. After 

growth of 1000ML at 1 ML/s, with temperatures as indicated.  Insets at lower right 

are correlation maps for 690K and 700K, as indicated. 

the temperature increases in the lower temperature growth regime.    Surprisingly, in 

this regime, the mounds grow larger as a function of temperature, but the average  

separation is locked into a fixed amount.  One can imagine that the interaction 

between mounds become increasingly repulsive with size, and that it becomes less 

favorable enegetically to accommodate mounds in the (A/3 x A/3) phase as the 

temperature increases.  We next examine how the system responds.   
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Fig. 3.15: Satellite peak intensity for peaks along <100> and <110> directions.   

After growth of 1000ML at 1 ML/s, with temperatures as indicated.  

         In Fig. 3.15, the analysis shows a continuous decrease in the intensity of the 

nearest satellite along <100> relative to that along <110> as the temperature is 

increased from 680K to 700K, indicating that the mound lattice accommodates the 

increase in natural size by a continuous increase in the fraction of near neighbor 

mound-pairs which are separated along <110>, rather than <100> directions in this 

range.  Indeed such a change in the near-neighbor arrangement of mounds is evident 

by comparing Figs. 3.4 (d) and (e), which in some sense the average arrangement of 

mounds is rotating in order to accommodate the mound with increasing size, and to 

turn the system into a lower density phase. 
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        We have also used the Generalized Wigner Surmise (GWS), which Einstein et al 

[3.41, 3.42] have used in terrace width distribution (TWD) analysis on stepped 

surfaces, to analyze our mound separation distribution. The details of this analysis are 

discussed in Appendix B.  
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EES = 0 EES=0.2eV

(a) (b)

Fig. 3.16: Simulations of local density of adatoms by diffusion equation (a) with 

Ehrlich-Schwoebe barrierl, EES=0 eV; (b) with EES=0.2 eV.  Bright contrast:  high 

density; dark contrast: low density. 

      3.5   Mechanisms of Directing Mounds 

        We now consider how an artificially imposed topographical pattern might act in 

directing the assembly of mounds during growth.  One possibility is based upon the 

modification of the local density of adatoms on the surface.   On relatively flat 

regions of a surface, such as those between the pits, growth via the formation of atom 

clusters (“islands”) is favored over the addition of atoms to existing steps.  As islands 

are most likely to form where adatom density is high, a seeming explanation for our 

observations is that the positions of the maxima in the adatom density relative to the 

pattern changes with temperature owing to thermal activation across the Ehrlich-

Schwoebel barriers at the edges of pits. 
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        This possibility, however, is ruled out by a simple solution of the diffusion 

equation shown in Figs. 3.16 (a) and (b); the simulations based on the second Fick's 

law with and without the effect of Ehrlich-Schwoebel barriers both indicate that 

initially the adatom density is always highest between the corners of quartets of 

nanopit neighbors, which we refer as the centers of the “four-fold bridges” regardless 

the presence of Ehrlich-Schwoebel barriers. A moderate Ehrlich-Schwoebel barrier 

flattens this maximum out, but does not shift its position [3.39, 3.40].    Initially this 

favors island formation near the centers of the bridges between pits.  

        We thus further consider a second possibility, suggested by the upper-left inset 

of Fig. 3.14, that beneath 700K the mound sizes on the patterned surfaces follow 

those determined by kinetics in the absence of a pattern.  This natural size arises from 

the competition of the Ehrlich-Schwoebel barrier, which favors vertical growth of 

multi-island stacks [3.24-3.31], and arrival of diffusing adatoms on the underlying 

surface favors lateral growth due to attachment to the edges of the bottom-most island.   

For this to be the correct explanation the mound positions would need to evolve 

during growth from the initial nucleation sites favored by highest adatom density to 

relative positions determined by their natural size, and the effects of the pattern.  One 

of these is the reduction of the area of the underlying terrace, and thus the supply of 

adatoms for lateral growth, if a mound approaches the upper edge of a pit.  Some 

evidence for this evolution is seen in Figure 3.17, which shows series of height 

profiles from our simulations for increasing grown thickness.  Successive panels in 

this figure are for temperatures corresponding to the centers of the ranges in which 

the three ordered mound structures assemble for the pattern geometry of Fig. 3.4. For 
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Fig. 3.17: Height profiles of simulated surfaces for increasing amounts of growth. 

(a)-(b) show the evolution of morphologies of the 2-fold bridges at growth 

temperatures 680K and 725K, the arrow in (a) indicates a local height maximum 

near the center of 2-fold bridges at initial stage of growth; (c) shows the evolution of 

morphologies of the 4-fold bridges. The heights of profiles are rescaled to display 

subtle features at the early growth stage. 

the A/3 x A/3 arrangement of mounds seen in Fig. 3.4(d) two mounds can be 

accommodated in the bridge between near-neighbor pits, with a third forming in the 

pit bottoms; in Figure 3.17 (a) an initial height maximum forms near the center of the 

bridges in between two adjacent nanopits, which we refer as 2-fold bridge sites, but 

two maxima evolve near the bridge edges as the growth continues.  Raising the 

temperature increases the rate of atom diffusion, and thus the natural size of the 

mounds.  Larger mounds are accommodated by the 2-fold bridge sites in the A/√2 x 

A/√2 structure, and the largest in the 4-fold bridge sites of the A x A structure. 
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      3.6 Conclusion 

        The model used in our simulations is simple, and leaves out many effects, 

including elastic strain near the edges of pits, interaction between steps like those that 

bound the pits and anisotropy in the diffusivity and atom-step attachment 

probabilities.  Nonetheless we show nice demonstration of the effect of Ehrlich-

Schwoebel barrier both with the simulations and early experimental results. 

 

       In summary, our results show that a purely kinetic effect, i.e. an additional 

diffusion barrier, the "Ehrlich-Schwoebel" barrier, at step edges, which impedes 

atoms crossing steps from above, and has long known to produce mounds during 

growth on certain surfaces can act not merely to suppress the lowest energy atom 

arrangement during growth, but to direct a series of ordered arrangements of 

nanometer-sized mounds with temperature, by controlling the competition between 

the natural mound near neighbor spacing and the length scales imposed by an 

artificially produced pattern.  The sequence of mound structures varies with the 

pattern length scales. Most importantly, the density of mounds in these structures can 

exceed that of the initial pattern, which demonstrate an amplification of resolution 

than the patterns we defined.  We anticipate that this phenomenon could find 

application in the fast, controlled assemblies of nanostructures called for by current 

technology. 
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Chapter 4 

Observation of Self-Limiting Growth in the 

Directed Self-Assembly of Mounds during 

Homoepitaxial Growth on Patterned GaAs(001) 

 

 

        In this chapter we  report on growth experiments in a system for which directed 

self-assembly of nanostructures occurs, homoepitaxial growth on nanopatterned 

GaAs(001) [4.1, 4.2].  As shown in the previous chapter our kinetic Monte Carlo 

(kMC) simulations predict that the formation of a series of ordered “growth mounds”, 

or island stacks at positions directed by the predefined topographical pattern arises in 

the presence of a sufficiently high additional barrier for diffusing adatoms to cross 

step edges from above,  i.e. an “Ehrlich-Schwoebel” barrier [4.3- 4.5].   

        A remaining crucial issue in the application of directed self-assembly is that of 

the persistence of the structures that spontaneously evolve during processes such as 
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growth and deposition.   There have been reports of the observation of certain types 

of “self-limiting” behavior in some experimental systems, with the interplay of 

energetic and kinetics during growth leading to the evolution of nanostructures which 

display a dominant size [4.6] or shape [4.7- 4.9].   These studies have not, however, 

dealt with self-limiting behavior in the literal sense of the term: i.e. how kinetics 

might limit the persistence of nanostructures during their evolution. 

        We investigate the question of the persistence of mounds during molecular beam 

epitaxial growth on nanopatterned GaAs(001) surfaces.   We also investigate the 

evolution of preferred sites for mound formation in this system..  As we show in 

detail below, in the initial stages of growth, a lithographically-defined pattern directs 

the spontaneous formation of multilayer islands at the centers of bridges between 

near-neighbor nanopits along [110] crystal orientation, seemingly due to the presence 

of an Ehrlich-Schwoebel barrier. As growth continues, the heights of mounds at these 

2-fold bridge sites “self-limit”. Beyond this point mounds at other, 4-fold bridge sites 

dominate the topography, but these self-limit as well. We find that this self-limiting 

behavior leads to a range of film thickness over which these structures persist.   This 

self-limiting behavior suggests the existence of a minimum, ‘critical terrace width’ 

for nucleation of islands during growth, and provides a physical mechanism for 

understanding the transient nature of the observed instability during growth on these 

patterned surfaces.  
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    4.1  Results of Homoepitaxial Growth Experiments on Nano-

Patterned GaAs(001) 

      4.1.1  Temperature Dependence of Growth Experiments 

        We have described in detail our experimental approach and setup for the 

experiments in chapter two. Here we review this material briefly.  We patterned 

GaAs(001) wafers using e-beam lithography followed by inductively-coupling 

plasma etching, creating several sets of nanopit arrays in which the widths were 

varied from 60 nm to 400 nm, the center-to-center spacing maintained at twice the 

initial width, and the initial depths were approximately 50 nm. Patterned samples 

were cycled between a molecular beam epitaxy (MBE) growth chamber (base 

pressure 2 x 10-11 mbar) for homoepitaxial growth and an atomic force microscope 

(AFM) for surface topography determination in atmosphere.  Before each growth 

experiment the surface oxide was desorbed by heating to 400 °C in the presence of  

an atomic hydrogen flux, resulting in negligible desorption induced roughness [4.29, 

4.30].   The growth rate was held fixed at 0.28 nm/s, with the As2 and Ga fluxes set 

for a beam equivalent pressure ratio of 10:1 [4.31].  The growth temperature were set 

at either 460 °C or 525 °C, , which are both in the temperature range in which the 

c(4x4) surface reconstruction occurs on GaAs(001).  
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      4.1.2  Experimental Comparison of Growth  on Patterned GaAs(001) 

Substrate with kMC Simulations  

        Previous work by Tadayyon-Eslami et al. explored the effect of lithographically 

patterning GaAs(001) surfaces on the subsequent topography which evolves as more 

GaAs is deposited, i.e. “homoepitaxial growth”.  In her work, she used 

photolithography followed by etching to create patterns in which the dimensions and 

spacings of the pits were microns, much larger than the nanometer scale structures we 

explored in our simulations.  Nevertheless, these experiments produced interesting 

results which suggested that a small Ehrlich-Schwoebel barrier is present on these 

surfaces, at least for steps of a certain orientation.  Specifically, on these “micro-

patterned” surfaces we found that depositing Ga and As2 (the latter in excess) at a 

temperature of 540 ºC and a rate of 1 monolayer per second results in the formation 

of mounds selectively at the edges of pits along [110] directions [4.3].  At these 

length scales, the pits are apparently too far apart to result in formation of ordered 

mound arrangements between them.  In this thesis, we have implemented electron 

beam lithography to make structures whose dimensions and spacings are much 

smaller, approaching those used in the simulations.    

        Fig. 4.1 shows a series of atomic force microscopy maps of the topography 

which results from GaAs growth on such nanopatterned (001) surfaces at two 

different temperatures.  At the lower of the two temperatures, 460 ºC, individual 

mounds span bridges between neighboring pairs of nanopits separated along [110] 

directions, (“[110] two-fold bridges”).  
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Fig. 4.1: Mound structures during growth of GaAs on nanopatterned surfaces.   

(a) Atomic force microscope image of topography of patterned GaAs(001) before growth. 

Pits are 30 nm deep, 150 nm wide and spaced at A = 300 nm. (b) AFM image after 

growth of 60 nm of additional GaAs at 460ºC.  The blue square shows the unit cell of the 

initial square pattern.  (c) After growth of 100 nm at 460ºC.  (d) After growth of 30 nm, at 

a temperature of 525ºC.  (e) After growth of 60 nm at 525ºC. 
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          It is at these same sites that mounds form in the second ordered arrangement,   

A/√2 x A/√2 structure, in the simulations for the first pattern geometry discussed 

above (Fig. 3.4(f)). A difference is that the mounds which form at the centers of the 

two-fold bridges along [110] directions in the simulations are missing in the 

experiments.  The GaAs(001) surface, in fact is not 4-fold symmetric: both the Ga 

diffusivity [4.10,4.11] and adatom-step sticking probabilities [4.26] are different 

along [110] and [110], as is the geometry of steps running along [110] (“B-type”) and 

[110] (“A-type”) for both the c(4x4) [4.10] of interest here and the β2(2x4) 

reconstruction [4.22-4.26] which occurs above ~550 ℃[4.3, 4.32].  In addition, 

earlier results by Tadayyon et al. on micropatterned GaAs(001) suggested the 

presence of a finite Ehrlich-Schwoebel barrier along [110] but not obviously along 

[110].  Even more striking is the observation after increasing the experimental growth 

temperature to 525 ºC.  In this case mounds again form at the centers of the “four-fold 

bridges” i.e. between the corners of quartets of nanopit neighbors, and lead to the 

same A x A structure seen at the higher temperatures in the simulations (Fig. 3.4(g)).  

Additional preliminary experiments at lower temperatures than those explored here is 

shown in Fig. 4.2; the experimental results look more complicated than the A/3 x A/3 

structure we saw in kMC simulations.    

        In Figs. 4.2(a)-(c) we show three different modes of directing high density 

assembly of mounds with different length scales and shapes of the initial pattern at 

the growth temperature of 300 ºC.   In each case, we have grown 40 nm of GaAs on 

top on the nanopatterned GaAs(001) surfaces.  It is clear that the arrangements of 

mounds are sensitive to those pattern parameters as we mentioned earlier.   However, 
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Fig. 4.2: High density mound structures formed with lower growth temperature  (a) 

-(c) top: atomic force microscope images of topography of patterned GaAs(001) after 

40nm of GaAs grown on top at temperature of 300ºC, which the spacings of pattern 

arrays are 200 nm, 160 nm and 120 nm respectively. Bottom: the schematics of 

various high density mound structures directed by patterns with different lateral sizes. 

in these preliminary lower temperature growth experiments on patterned GaAs(001) 

substrates, we indeed see qualitative agreement of forming much higher density of 

nanostructures decorating the surfaces, and being directed by the predefined patterns. 
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Fig. 4.3  A series of AFM images for varying initial widths of nanopits (the size 

increases from left to right, the pitch is twice the initial width), and for different 

thickness of growth (the growth thickness increases from top to bottom). The growth 

temperature is 525℃. 

      4.1.3 Evolution During Growth at 525 ℃   

         In experiments, we observe more complicated structures and evolution as we 

track the morphologies as a function of growth thickness.   In Fig. 4.3, we show a 

series of AFM images of surface morphologies of patterned GaAs(001) after growth 

at 525 ℃.  We characterized the surfaces by AFM at four growth stages: after growth 
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of GaAs layers of 30 nm, 60 nm, 100 nm and 150 nm average thickness.  Along the 

horizontal direction, we show the grown surface profiles with fixed average  growth 

layer thicknesses for varying nanopit patterns.  The initial widths of the nanopits are 

varied from 60 nm to 280 nm from left to the right; along the vertical direction, the 

grown layer thickness varies from 30 nm to 150 nm from top to bottom.  At the 

earliest stages of growth shown here, i.e. for the 30 nm average film thickness, for the 

smaller width nanopits, (i.e. 60 nm or 100 nm wide) we see that mounds have formed 

at the centers of “4-fold bridge sites”, i.e. at sites between quartets of neighboring pits.  

This agrees with the predictions of our kMC calculations discussed in chapter three --  

for the highest temperature, " 1 x 1" mound phase.   However, for larger nanopit 

patterns, those for 140 nm or larger initial width, , we see that the mounds have 

instead formed at the 2-fold bridge sites after growth of 30 nm of GaAs.  We  track 

the evolution of surface morphology by scanning at the same area of the surface after 

thicker growth layers.  After  60 nm we see that the mounds which initially formed at 

the 2-fold bridge sites decay in height, and that mounds at the 4-fold bridge sites 

begin to dominate the surface topography. This amounts to a “kinetic transition” from 

mound assembly in in 2-fold bridges sites to mound assembly in 4-fold bridge sites.  

As seen in fourth and fifth columns in Fig. 4.3  such a transition occurs for  larger 

nanopit patterns as well,   The  zigzag line-segments in Fig. 4.3 marks the 

approximate kinetic phase boundary separating  the two regimes; AFM images 

images above and to the right of this show the formation of mounds at 2-fold bridge 

sites, while images below and to the left show the formation of mounds at 4-fold 

bridge sites.  Overall our results at this temperature show that  mounds form at the 2-
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fold bridge sites at the earlier stages of growth, then the surfaces evolve during 

growth and display a transition to a structure containing mounds at 4-fold bridge sites 

at later stages of growth, with the transition occurring at a thickness which increases 

monotonically with the spatial period of the pattern; for the smallest  nanopit patterns, 

i.e. with initial widths of 60 nm and 100 nm wide nanopits, apparently the transition 

occurs a stage of growth, less than 30 nm thickness . 

 

 

         4.1.4 Evolution During Growth at 460 ℃ 

        In the last section we described our observations of a very interesting evolution 

of surface morphologies for growth at a temperature just slightly below that at which 

Tadayyon, et al. observed a change in the mode of unstable growth on patterned 

GaAs(001) [4.3]., An obvious question concerns  the effect of lowering the 

temperature yet further. To address this we carried out additional growth experiments 

using  the same procedures  as we described in the last section, but using a lower 

growth temperature of 460 ℃.  

        In Fig. 4.4, we show a summary of surface profiles as functions of the sizes of 

nanopits and the total growth thickness at the growth temperature 460 ℃.   The 

dominant features for average grown-layer thicknesses less than, and pattern periods 

greater than those indicated by the zig-zag line are once again mounds at the  2-fold 

bridge sites, while for thicknesses beyond this and periods below this the dominant 

features are mounds in the 4-fold bridge sites.   
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Fig. 4.4  A series of AFM images for different initial widths of nanopits (the size 

increases from left to right, the pitch is twice the initial width), and for different 

thickness of growth (the growth thickness increases from top to bottom). The growth 

temperature is 460℃. 
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        Comparing with Fig. 4.3, i.e. the major behavior of surface evolution for these 

two different growth temperatures is qualitatively the same, but the boundary is 

shifted toward larger layer thicknesses and smaller periods for the lower  growth 

temperature.     

         We now examine in more detail the effect of the pattern period, based upon 

AFM images like those shown in Fig. 4.4.  For the larger patterns, i.e. initial nanopits 

of  200 nm and 280 nm widths, we see the that the mounds initially (i.e. at smaller 

thicknesses) appear as a pair of ridges around pit edges along [110].   This is 

qualitatively consistent with observations reported by Tadayyon [4.3] for growth 

experiments at 540 ℃ for GaAs(001) surfaces patterned with arrays of pits in which 

the characteristic sizes and spacings were microns. With thicker layers, we see instead 

single mounds at the centers of 2-fold bridge sites. The coalescence evidently occurs 

at film thicknesses which increase with spatial period, and thus is expected to will 

occur beyond the growth thickness we pursued here for the larger period patterns. . 

        For both of the growth temperatures reported on above, we observed a intriguing 

transition of the dominant sites for mound formation as we growth thicker films on 

top of the patterned surfaces.  In the next few sections we  probe the mechanisms that 

drive this transition through further quantitative analysis. . 
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       4.2 Observation of Self-Limiting Growth 

        In this section we carry out a careful analysis of  the growth experiments done at 

460℃; since the surface evolves slower at this lower temperature it is easier to 

capture more details during surface evolution.   

        In Fig. 4.5, we show a series of AFM images as a function of growth thickness 

on a nanopatterned GaAs(001) surface with an initial pit width of 140 nm  and a 

spatial period of 280 nm.  These images have a relatively large field of view that 

includes the entire patterned area  and the surrounding unpatterned parts of the 

surface.  We  measured height profiles from these images along the [110] orientation 

(red dashed line) cutting across both the 2-fold bridge sites and the bottoms of pits; 

these are shown in Fig. 4.6.  

        In Fig. 4.6,  these profiles show that at the early stage of growth, i.e. after 30 nm, 

the local growth fronts at 2-fold bridge sites surpass that at the unpatterned areas.  At 

a later stage, i.e. by an average film thickness of 100 nm, the growth fronts at some of 

the 2-fold bridge sites have been surpassed by the front at the unpatterned areas. 

Beyond this point, i.e. by a grown thickness of 150 nm, the fronts at all 2-fold bridge 

sites have  fallen far behind that of the unpatterned regions.   This is not a simple 

relaxation of patterns: we do not see typical sinusoidal shapes of line profiles, as 

might be expected if the evolution followed that predicted by a diffusion equation.  

On the contrary, we still see the sharp, cusp-like features at the top of 2-fold bridge 

sites.  Seemingly, the growth fronts at 2-fold bridge sites at certain point cease, i.e. 

locally the surface stops growing; these regions are surpassed by the growth fronts of 
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Fig. 4.5  Large field of view of AFM images of nanopatterned GaAs(001) 

topography ,including both patterned and unpatterned parts of the surface, before 

growth and after homoepitaxial growth of 60 nm, 100 nm and 150 nm.   Initial nanopit 

widths w =140nm; center-center spacing between nanopits = 280 nm; growth 

temperature = 460 ºC; growth rate = 0.28 nm/s.   
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the surroundings and the unpatterned regions.  This is evidence for a  'self-limiting 

growth' behavior of mounds at these 2-fold bridge sites. 
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Fig. 4.6  Measured height profiles from AFM images presented in Fig.4.5, taken 

along [110] and cutting across 2-fold bridge sites and the bottoms of nanopits, 

as indicated by red dashed line in Fig. 4.5. 

 

        We  next consider more details of the growth on a nanopatterned surface at 460 

℃,  including further evidence of  self-limiting behavior of mounds  based upon a 

series of “zoomed-in” AFM images , and height  profiles, in this case measured 
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Fig. 4.7  AFM images of nanopatterned GaAs(001) topography before and after 

homoepitaxial growth: (a) before growth; (b) after growth of 60 nm; (c) after 

growth of 100 nm; (d) after growth of 150 nm. Initial nanopit widths w =140nm; 

center-center spacing between nanopits = 280 nm; growth temperature = 460 ºC; 

growth rate = 0.28 nm/s.  Blue squares show a pattern unit cell. 

along the  [110] orientation (indicated by green dashed lines in Fig. 4.7), cutting  

across the bridges between nanopits.  These are presented in Figs. 4.7 and 4.8.   
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        The starting topography is shown in Fig. 4.7 (a), and subsequent panels show the 

topography which results from the growth of films of thickness (b) 60 nm, (c) 100 nm 

and (d) 150 nm.   Due to the anisotropies of the GaAs(001) surface reconstruction, 

diffusion coefficients and adatom sticking probabilities, the evolution of nanopits is 

different along [110] and [110] [4.10- 4.13].  The AFM images show a broadening of 

nanopits and thus a narrowing of the “bridges” between them along [110].  The 

nanopit widths along [110] show the opposite behavior, i.e. a narrowing during 

epitaxial growth.   At early stages of growth, as seen in Fig. 4.7 (b)-(c) mounds self-

assemble at the centers of bridges between near-neighbor nanopits along [110], which 

are at the 2-fold bridge sites.  Our previous results in chapter three suggest that this is 

due to the combined effect of Ehrlich-Schwoebel (ES) barriers along [110]-oriented 

steps [4.3- 4.5] and a reduced nucleation barrier at the corresponding pit edges [4.2, 

4.17], and we will have further discussion later in this chapter.   

        The evolution of the mounds during growth can be tracked in Fig. 4.8, which 

shows a series of height profiles along the path indicated by the green dashed line in 

Fig. 4.7.  This set of line profiles allow us to compare the growth fronts at 2-fold 

bridge sites, 4-fold bridge sites and the unpatterned areas.  Again, at early stages of 

growth, the mounds forming at the 2-fold bridge sites dominate the surface profiles.  

However, at later stages of growth, between 100 nm and 150 nm, a sharp change in 

the evolution of the surface morphology occurs: while before this point the mounds at 

2-fold bridge sites grow and sharpen, after this they are surpassed by mounds at 4-

fold bridge sites, i.e. between quartets of neighboring nanopits.   Thus, we find the 

mounds at 2-fold bridge sites 'self-limit' at certain point, and this behavior results in 



 

 96 
 

70x10
-9

60

50

40

30

20

10

0

H
e
ig

h
t 

(m
)

2.5x10
-6

2.01.51.00.50.0

Lateral Size (m)

100nm

0nm

60nm

150nm

2-fold site 4-fold site Unpatterned

30nm

 

Fig. 4.8   Measured height profiles from Figs.4.7(a)-(d), taken along [110] 

across bridge sites, as indicated  by green dashed line in Fig. 4.7.  

the 'transition' between mound structures with different dominant sites relative to the 

underlying pattern we described earlier in this chapter. 

 

         4.2.1  Quantitative Height Analysis of Growth 

        In this section we quantify the of self-limiting growth behavior, measuring the 

mound heights as a function of average layer thickness.   A first interesting question 

that arises in tracking the height of the mounds during growth is what to use as a 
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reference level; since during growth, in principle the entire surface is propagating. 

There are at least two ways of measuring it, which we consider below.   In Fig. 4.9 (a) 

we summarize the heights of mounds at 2-fold and 4-fold bridge sites, relative to the 

bridges on which they form, for growth on a 280 nm period pattern.   Consistent with 

the height profiles of Fig. 4.8 the height of mounds above 2-fold bridge sites 

(depicted here by solid triangles) reaches a maximum at a film thickness of 

approximately 100 nm, beyond which it decays, and is surpassed by the height of 

mounds at 4-fold sites (depicted by solid squares) which do not yet decay.   

        On the other hand, since the nanopit arrays are of finite size, it is instead possible  

to measure the mound heights relative to the unpatterned, surrounding surface, with 

somewhat different results.    This behavior can be seen in Figs. 4.5-4.6, for which  

the AFM images are sufficiently broad so as to include both the patterned and 

surrounding unpatterned parts of the surface.   For finite-sized patterns, it is 

seemingly  preferable to measure the height of mounds relative to the unpatterned 

areas,  as this reference level can be common for the height measurement for various 

sites on the surfaces.   The results of such a measurement are shown in Fig. 4.9 (b); 

the heights of mounds at both 2-fold bridge sites (depicted by open triangles) and 4-

fold bridge sites(depicted by open squares), relative to the unpatterned surface both 

reach maxima after growth of a smaller average film thickness in this case, 

approximately 60 nm, beyond which they decay relative to the unpatterned areas as 

we grow thicker films. Presumably the self-limiting growth behavior initiates as the 

height reaches a maximum, and results in a decreasing relative height, which 

eventually becomes negative relative to the reference level. 
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Fig. 4.9  Mound evolution for array with spatial period = 280 nm; (a) Mound 

heights vs. grown thickness, measured above local bridges on which they form; 

(closed triangles) mounds at 2-fold bridge sites; (closed squares) mounds at 4-fold 

bridge sites. (b) Mound heights vs. grown thickness, measured above the 

unpatterned part of the surface; (open triangles) mounds at 2-fold bridge sites; 

(open squares) mounds at 4-fold bridge sites. 
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          4.2.2  Growth Rate Analysis 

        A somewhat different way to quantify this behavior, which we consider here,  is 

to track the relative growth velocity of various sites on the surface.   In Fig. 4.10 we 

plot the growth rates of the heights of three different features, relative to that of the 

surrounding unpatterned surface, and normalized to the average growth rate: these are 

for the mounds at 2-fold bridge sites (dashed curve), mounds at 4-fold bridge sites 

(dashed-dotted curve) and the pit bottoms (dotted line).    

        Early on, the local growth rate at mound sites is greater than the average growth 

rate, while that at pit bottoms is below the average.  Such a difference leads to an 

initial amplification of the pattern corrugation during the early stage of growth.    By 

a film thickness of 60 nm, at which point the analysis of the relative height (Fig. 4.9 

(b)) showed that the self-limiting growth of mounds initiates, the local growth rate 

falls behind that at both the reference level and at the pit bottoms.  Strikingly, 

coincident with this, the growth rate at the pit bottoms reaches a maximum, and 

exceeds that of the reference.   The pattern corrugation amplitude in this regime 

decays.  We thus observe a transition from the amplification of the patterns to decay 

of the patterns, in agreement with the results of Tadayyon et al., Kan et al., and Shah 

et al. [4.3, 4.14- 4.16].   In that earlier work the initial understanding was based on 

phenomenological models; the  analysis and observations presented here strongly 

suggest a much more physical understanding: the self-limiting growth of mounds is 

relevant and, at least in part, responsible for the transient amplification of the 

topographic patterns during growth on GaAs(001).   
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Fig. 4.10  Growth rate, relative to, and normalized to that of the reference level, 

defined as that unpatterned region of surface of mounds; results are for: mounds  at  

2-fold bridge sites(dashed line), mounds at 4-fold bridge sites(double dot-dashed line), 

nanopit bottoms(dotted line). 

 

 

 

 

 



 

 101 
 

Table 4.1   Self-limiting growth (SLG) we observe on nanopit arrays with different 

spatial period for growth at 460 ℃.  SLG occurs at thicker growth for larger spatial 

periodicity of nanopit arrays. 

          4.2.3  Evidence for a Critical Top Terrace Width 

        In the previous sections, we analyzed the results of growth on nanopit arrays 

with spatial period of 280 nm to demonstrate the "self-limiting" behavior of mounds 

on these surfaces.  We find this behavior to be general: we observe such self-limiting 

behavior on nanopit arrays with other spatial periods as well, occurring for different 

amount of growth thickness, as summarized in Table. 4.1.   

         

Width (nm) of 

nanopits 

Spacing (nm) 

between nanopits 

Thickness (SLG 

occurs, nm) 

100 200 30 

140 280 60 

200 400 100 

 

 

        A remaining question is what is the physical mechanism behind the self-limiting 

growth behavior?  A plausible explanation, based on observations that the mounds 

sharpen before self-limiting, is that self-limitation comes from the existence of a 

minimum terrace width, beneath which further islands do not nucleate.  In Fig. 4.11 

(a), we plot the apparent top terrace width as a function of growth thickness based on 
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measured height profiles across 2-fold bridge sites.  The analysis shows a minimum 

size after growth of 60 nm, i.e. coincident with the initiation of self-limiting behavior 

shown in Fig. 4.9 (b) from the height analysis .  This is added evidence that reaching 

the minimum top terrace width causes the observed self limiting growth of mounds.  

        Fig. 4.11 (b) shows a histogram of apparent apex terrace widths, measured at the 

minimum shown in top terrace width distribution, e.g. after 60 nm growth in Fig. 

4.11(a).   This histogram is based on the statistics that we measured the apex terrace 

widths of mounds formed on various spatial periods of nanopit arrays that exhibit 

self-limiting behavior, which are the mounds described in Table 4.1.    Interestingly, 

the histogram exhibits a distribution of widths, with a peak value of 45-50 nm for the 

critical terrace size. This is undoubtedly an overestimate, and sets an upper limit for 

the critical width, as it includes the convolution with a fairly blunt AFM probe. 

Deconvolution of the point spread function, using the manufacturers range of tip radii 

of 20 ± 10 nm would yield a value of 23 ± 23 nm, a range which includes a width as 

small as a single unit cell. 

       Intuitively one might expect the critical terrace width to be small, perhaps on the 

order of a one, or a few unit cells of the GaAs(001) - c(4x4) reconstruction.  Indeed a  

plausible hypothesis is that this effect related to “reaction limited island nucleation” 

of compound semiconductors during MBE growth, as proposed by Kratzer et al., 

[4.18, 4.19]. Specifically, in this picture the incorporation of a new layer of GaAs into 

the solid would be prevented once the top terrace width is too small to have a finite 

probability for island nucleation to occur.   Island nucleation involves multiple 
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Fig. 4.11   (a) Measured widths of the topmost terrace width for mounds at 2-fold 

bridge sites, measured along [110]. (b) Histogram of measured topmost terrace 

widths is measured at the growth thickness corresponding to the minimum in (a) and 

that of other pattern periods described in Table 4.1.   

species (Ga adatoms, As2 molecules) adsorbed in sequence, along with selection of 

sufficiently strong absorption sites and surface geometry.   
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        A second possible mechanism, proposed by Giesen et al. [4.20], is that the 

Ehrlich-Schwoebel barrier might vanish due to quantum confinement effects of 

electronic states on the surface if the top terrace width drops below a certain critical 

size.  The vanishing of the ES barrier at the apexes of mounds would increase the 

probability of interlayer mass transport from the top of the mounds to the pit bottoms, 

reducing the probability of island nucleation growth at the apexes, and initiating self-

limiting behavior. Distinguishing between these, and other possibilities, require 

further investigation. 
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      4.3  Understanding of the Sequence of Nucleation Sites on 

Patterned GaAs(001) 

        In our previous results, we observed a sequence of dominant mound formation 

sites on patterned GaAs(001) surface: the mounds form at 2-fold bridge sites first, 

self-limit and eventually are dominated by the mounds at the 4-fold bridge sites.  

Below we try to understand the reason for  this sequence of mound formation.  

        Seemingly this sequence might be explained if a peak in adatom concentration 

occurred at 2 fold bridge sites initially, and once those mounds form, a secondary 

peak of adatom concentration occurred at the 4-fold bridge sites..  This is based on 

the notion that mound formation is most likely at regions of high adatom 

concentration.  In order to check this hypothesis, we carried out numerical solutions 

of the diffusion equation to calculate the adatom concentration on patterned surface, 

in the absence of, and in the presence of Ehrlich-Schwoebel barrier, as discussed  in 

section 3.5.   

        However, this analysis showed that whether an Ehrlich-Schwoebel barrier is 

present or not, the adatom concentration is always higher at the 4-fold bridge sites, 

not the 2-fold bridge sites.  This is shown again in Fig. 4.12 (a) and (b) (it was shown 

earlier in Fig. 3.16). Furthermore, in Fig. 4.12 (c) and (d), we show the results of 

adatom concentration of the surface with an adatom sink, i.e. an existing island 

nucleated at the 4-fold bridge sites.  The results show that only when there is an 

existing mound at the 4-fold bridge sites, the adatom concentration reaches a 

maximum near the 2-fold bridge sites; this is so whether there is Ehrlich-Schwoebel 

effect or not.  This behavior is the opposite of what we would expect based upon our 
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EES = 0 EES=0.2eV

EES = 0 EES=0.2eV

Fixed Existing Mound (Adatom Sink) at 4-Fold Site

Adatom density Calculation (No island form initially) 

(a) (b)

(c) (d)

 

Fig. 4.12  Simulations of local density of adatoms by diffusion equation (a) with 

Ehrlich-Schwoebel (EES)=0 eV; (b) with EES =0.2 eV, both (a) and (b) have no 

nucleated islands formed yet; (c) with EES =0 eV; and (d) with EES =0.2 eV, both (c) 

and (d) show the results after one island formed at 4-fold sites. Bright region:  high 

density; dark region: low density. 

experiments.  We conclude that it is not the adatom concentration that is responsible 

for determining the dominant mound formation sites. 
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Fig. 4.13   Schematic of nucleation barriers for homogeneous (red curve), 

heterogeneous (purple curve) and potent heterogeneous (black curve) nucleation from 

classical nucleation theory. Dashed curve indicates the energy cost from perimeter 

energy, and dashed-dotted curve indicates the energy gain of mound formation. 
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        A very plausible explanation based on the above discussion is that the mounds 

nucleate at heterogeneous sites.  Based on classical nucleation theory in two 

dimensions, the energetic cost of nucleation is the perimeter energy, i.e. the free 

energy (β)  per unit length of edges around the mounds: 

 

 

        Also from nucleation theory, at certain  types of heterogeneous nucleation sites, 

∫+∆−=∆
perimeter

A dlAGG β
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[110] 

200 nm

[110] 

2 μμμμm

(a)

(b)

(c)

(d)

Fig. 4.14   (a) Schematic of mound formation through heterogeneous nucleation 

sites.  Mounds form as a pair of ridges along certain edges between larger 

separated pits; (b) Experimental result for micron-size pits; (c) Schematic of mound  

formation between two nanopits - forming a single mound; (d) Experiment result for 

nanopits. 

there is a reduction in the perimeter free energy that causes a reduction in nucleation 

barrier; Fig. 4.13 illustrates schematically that the nucleation barrier for 

heterogeneous nucleation (purple curve) is significantly reduced from that for 

homogeneous nucleation (red curve).  

        What then is the mechanism for the reduction of the perimeter energy at certain 

edges of pits?  A likely explanation is the formation of a multistep reconstruction. 

Based upon our observations, this apparently only  occurs for steps running 
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perpendicular to [110]-type directions, but not perpendicular to [110]-type directions. 

Indeed GaAs(001) is a 2-fold symmetric, not a 4-fold symmetric surface [4.10, 4.22-

26 ].   As illustrated in Fig. 4.14 (a) and (b), this idea explains both the anisotropy of 

forming mounds only along [110] orientation around micron-size pits that Tadayyon 

et al. reported earlier [4.3]  as well why we only see a single mounds at 2-fold bridge 

sites for patterns of nm length scales.  In Fig. 4.14 (c) we show a schematic 

illustrating the idea that as these pits get close together, the critical size of these 

mounds is large enough to simultaneously take the advantage of the reduction of 

perimeter energy at two adjacent pits, reducing the nucleation barrier further (as the 

black curve shown in Fig. 4.13) and making 2-fold bridge sites even more potent for 

the nucleation of mounds. For comparison we show an AFM image of such mounds 

on a nanopatterned GaAs(001) surface in Fig. 4.14 (d).  Finally, we point out  that the 

4 fold bridge sites are seemingly less potent as they only take the advantage of the 

reduction of nucleation barrier at the corners of those heterogeneous nucleation sites. 

 

        This explanation is in good agreement with our experiments,  but brings us to a 

very different picture of mound formation from that suggested by Politi and Villain 

[4.27, 4.28].  In our model the mound formation is a nucleated process, and not due to 

the instability on the surface which instead would suggest a formation process akin to 

spinodal decomposition 
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        4.4  Conclusion 

         In summary, we have observed intriguing self-limiting behavior of mounds 

which form on nanopatterned GaAs(001) during growth.  We find that growth near 

500°C is dominated by formation of multilayer mounds.   Evidently island nucleation 

is faster than the incorporation of diffusing adatoms at steps.  Once a mound reaches a 

self limiting shape, it can apparently only grow further via the slow incorporation 

from below of atoms at the steps which form its sidewalls. Our observations strongly 

suggest that a critical, minimum terrace width for island nucleation is an important 

effect in understanding the transient amplification of pattern corrugation during 

growth [4.3, 4.14-16].   These observations provide new insights of growth 

instabilities during epitaxial growth [4.21].  Finally, the sequence of the mounds 

forming on the patterned surfaces gives us rather direct evidence that the formation of 

growth mounds on the surface is a nucleated process, rather than an instability. 
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Chapter 5 

Conclusions and Future Work 

 

 

      5.1 Conclusions 

        In this thesis, we have demonstrated both via kinetic Monte Carlo simulations 

and by direct MBE growth experiments that it is indeed possible to use a patterned 

substrate to direct the self assembly of mounds in the presence of a kinetic barrier, the 

Ehrlich-Schwoebel barrier. We also observe the system lock-in into a series of 

ordered mound structures, 1/3 x 1/3, 1/√2 x 1/√2 and 1 x1 periodicity relative to the 

underlying pattern periodicity in different temperature windows.  We found that the 

pattern parameters (pit size) and growth parameters (temperature, which defines 

natural mound size) both affect the direction of growth mounds on the surface. We 

interpret our observations as evidence for a kind of entropic interaction between the 

size of patterns and the size of mounds: since mounds don’t overhang pit edges, pits 

reduce the configurations of mound arrangement so that only certain configurations 

(periodicities) exist.  From a technological point of view, it is interesting and 
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important that the density of mounds in these structures can exceed that of the initial 

pattern, which demonstrate an amplification of resolution of the patterns we defined. 

We expect this phenomenon could find application in the fast, controlled assemblies 

of nanostructures in nanotechnology. 

        We also found that the persistence of mounds which form on patterned surfaces 

is limited. The mounds initially form at the 2-fold bridge sites, and after certain 

amount of growth, these mounds sharpen up and "self- limit"; then they are replaced 

by the mounds form at the 4-fold bridge sites. We proposed that this "self-limiting" 

behavior is due to the existence of "critical terrace width" on top of mounds, below 

which, further islands don’t nucleate; then the self-limitng mounds are surpassed by 

the surrounding interface.   The observation of self-limiting growth on GaAs(001) 

also indicates that the sticking coefficient for atoms to incorporate to steps or 

sidewalls is rather small since once a mound reaches "self-limit", mounds can only 

grow further via incorporation of atoms at steps which form its sidewalls, and the 

incorporation to sidewalls is apparently a slow process.  On the contrary, if the 

sticking coefficient is large or the growth of sidewall is fast, those mounds will 

probably not show the self-limiting growth of mounds, such as the growth on many 

metal surfaces.    Incidentally, the observation of self-limiting growth gave us the 

physical mechanisms to understand the transient behavior of pattern corrugation 

during growth that Taddayon et al. reported a few years ago.   

        Finally, and perhaps most interestingly, the experimental observation of the 

sequence of the mound formation sites on the patterned surfaces gives  rather direct 

evidence that the formation of growth mounds on the surface is a nucleated process, 
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not an instability, as had been  suggested earlier by Johnson et al. [1.9] and Politi et al. 

[1.10].  The most potent heterogeneous nucleation sites, 2-fold bridge sites, take 

advantage of reduction of perimeter energy simultaneously from the edges of two 

adjacent nanopits, and the second preferred nucleation sites, 4-fold bridge sites, take 

advantage of reduction of perimeter energy only at the corners of nanopits.  We think 

a multistep reconstruction formed along certain edges, [110] orientation, of patterns 

during growth on GaAs is associated with this anisotropic behavior of formation of 

mounds that we observed. 
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      5.2 Future Work 

        In this section, we propose possible and interesting future work which could be 

done to extend our understanding, as reported in previous chapters of this thesis. 

 

    1.  Competition between kinetic and strain driven self assembly 

        In our investigation, we demonstrated a direction of self assembly of a series of 

multilayer island or “mound” arrangements, with the relative placement of mounds 

respect to lithographically-defined nanopits.  The placement of mounds is 

controllable by varying the growth temperature. The direction is driven by a purely 

kinetic barrier, the Ehrlich-Schwoebel barrier, which is different from many previous 

works of direction of structures driven by strain effect.   A great deal of work over the 

past two decades demonstrates that in lattice-mismatched systems, Stanski-Krastinov 

(SK) growth leads to the formation of nanometer scale quantum dots.   Hence, it 

would be extremely interesting to investigate the competition between kinetic and 

strain effects on the direction of self assembly of structures.   What we would like to 

do next is to experimentally investigate the transition from kinetically to strain - 

driven self assembly for growth of InGaAs quantum dot structures on patterned 

GaAs(001).  

        By varying the In composition of InGaAs layers grown on nanopit patterned 

GaAs(001) we could probe the competition between the elastic energy that drives 

quantum dot formation and the Ehrlich-Schwoebel barrier that drives kinetically 

directed mound self organization.  We could measure the topography at various 
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stages of growth using AFM.  We anticipate to observe a transition of formation of 

kinetic-driven mounds to strain-driven quantum dots as we increase the In/Ga ratio.   

 

    2.  Build in anisotropy in kMC simulations for comparing with GaAs system  

        In our kMC simuation, we have adopted a code to demonstrate the growth 

behavior of an isotropic system, which only gave us qualitative agreement with our 

growth experiments on the system of GaAs.  In order to capture more details of what 

happens in growth of patterned GaAs, it is necessary to incorporate anisotropy 

properties in our calculation since GaAs is a 2-fold symmetric crystal.   In the 

modified model, we plan to add the anisotropy of diffusion barrier, bonding energy, 

sticking coefficient along [110] and [110] orientations. We anticipate this new model 

can reproduce the anisotropy of the mounds shapes and the anisotropy of the 

evolution of patterns for two orthogonal orientations. 

 

    3.  Explore the generality of direction of ordered mound arrangements 

through kinetic barrier - designing experiments of growth on patterned metal 

substrates 

        We reported very intriguing results of directing self assembly of a series of 

ordered nanostructures based mostly on kMC simulations with single species of 

atoms associated with the kMC model. The simplicity of these results is surprising, so 

that we expect this simple direction of temperature-dependent ordered mound 

arrangements can be realized in the growth of patterned metal substrate, such as silver, 

with significant presence of Ehrlich-Schwoebel barrier on the surface, which there is 



 

 116 
 

only one species associated with it.  We propose to pattern a silver substrate with 

nanometer size pit arrays (preferred in-situ by focused ion beam (FIB)).  We expect 

that the temperature dependence of ordered mound arrangements on a silver substrate 

might find wide applications in fast fabrication of plasmonic arrays.  
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Appendix A 

Evidence for a Large, Thermal-Activated 

Characteristic Length Scale in Homoepitaxial 

Growth on GaAs(001) 

 

 

 

 

        In this appendix, we report on observations of growth on GaAs(001) surfaces 

nanopatterned with grooves of varying length/width aspect ratios. For homoepitaxial 

growth at temperatures near 500 ℃ , we find that ridges build up at the upper long 

edges of grooves oriented along [110].  No ridges form at the long edges of grooves 

oriented [110]; instead cusps form at the bottoms of such grooves. Most interestingly, 

we find that the evolution of ridge heights during growth breaks into two distinct 

branches, with the separation occurring at a groove length of 7.5 + 2.5 um for growth 

at 525 ℃, and at a length which is an order of magnitude smaller than this for growth 

at 460 ℃. These observations indicate the presence of very large, thermally-activated 

characteristic lengths which governs the evolution of the topography during growth. 
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      A.1  Motivation 

     In recent work [A.1- A.4], we have reported the observation of transient 

instabilities during MBE growth on topographically-patterned GaAs(001), whose 

characteristics change qualitatively across the temperature range of 500 ºC-600 ºC.  

We proposed that a small Ehrlich-Schwoebel barrier[A.5, A.6] at steps which descend 

along [110], along with a reduced nucleation barrier[A.7, A.8] at the edges of 

lithographically defined pits on the surface play significant roles in the observed 

transient instability and its temperature dependence.  In previous chapters, we 

reported the results of square or round pits, however, it is important and interesting to 

know the effect of shape f patterns during growth. Therefore in this appendix, we 

probe the length scale dependence of growth instabilities in this system, using 

nanogrooved-patterned templates as a means of perturbing the growing surface, and 

find evidence for a very large, thermal-activated characteristic length scale. 

 

      A.2  Experiment 

           We patterned singular GaAs(001) wafers using electron-beam lithography 

followed by inductively-coupling plasma etching to create arrays of nanogrooves in 

the substrates.  We oriented the nanogrooves with long axes along both [110] and 

[110], corresponding to the directions of the unit vectors for the the β2(2x4) and c(4x4) 

reconstructions which occur during growth under As2-rich conditions at common 

growth temperatures. We fabricated two sets of groove arrays on each substrate.  In 

the first set, individual grooves are initially 200 nm wide, with a [110]/[110] aspect 

ratio which we vary systematically over the range from 0.005:1 to 200:1.   The 
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second set consists of 100 nm initial-width grooves whose [110]/[110] aspect ratios 

range from 0.001:1 to 1000:1.  For both sets patterned  the initial groove depths at 

approximately 50 nm.  We measured the topography of our samples using atomic 

force microscopy (AFM) in tapping mode, using carbon nanotube terminated probes.  

Each patterned sample was cycled between the molecular beam epitaxy (MBE) 

growth chamber (base pressure 2 x 10-11 mbar) for homoepitaxial growth and the 

AFM for characterization in atmosphere.  At the beginning of each growth 

experiment the surface oxide was desorbed by heating the samples to 400 ℃ during 

exposure to atomic hydrogen within the MBE chamber, minimizing desorption 

induced roughness.  The measured growth rate was 0.28 nm/sec, with the As2 and Ga 

fluxes set for a beam equivalent pressure ratio of 10:1.  We carried out growth at two 

temperatures, 460 ℃ and 525 ℃ to investigate the influence of kinetic parameters for 

epitaxial growth on these surfaces. Reflection high energy electron diffraction 

(RHEED) measurements showed that the surface reconstruction was c(4x4) beneath 

approximately 550 ºC in our growth experiments.  

 

      A.3 Results 

        A.3.1 Formation of Ridges at [110]-oriented Edges 

   In Fig. A.1, we show example of AFM images for samples initially patterned 

with arrays of 200 nm wide grooves, before and after various amounts of growth.  

The upper row of images, i.e. Figs. A.1(a)-(d) show [110]-oriented nanogrooves for 

the starting surface, and after growth of thicknesses of 60 nm, 100 nm, and 150 nm, 

respectively, for growth at a temperature of 460 ℃.   
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2um

[110]

[1
1
0
]

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. A.1  (a)-(d) AFM images of 200 nm wide nanogrooves (long edges along [110] 

direction) with different growth thickness (a) 0nm; (b) 60nm; (c) 100nm; (d) 150nm  

at growth temperature of 460 ℃,  [110]/[110] aspect ratio is 1:1, 2:1 and 10:1;  

fig.A1(e)-(g) are AFM images of nanogrooves (long edges along [110] direction) with 

different growth thickness at growth temperature of 460 ℃, (e) 60nm; (f) 100nm; (g) 

150nm; with [110]/[110] aspect ratio 1:1, 1:2 and 1:10; fig.1(h)-(j)  AFM images of 

200 nm wide nanogrooves (long edges along [110] direction) with same sequence of 

growth (h) 60nm; (i) 100nm; (j) 150nm  at higher growth temperature of 525 ℃. 
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Fig. A.2 (a) stacked line profiles cross perpendicular to the grooves along  red 

dotted line of fig. A.1 (a)-(d);   (b) stacked line profiles cross perpendicular to the 

grooves along blue dotted line of fig. A.1(e)-(g). 

        The growing ridges at the long  upper edges are visible as bright fringes to either 

side of the grooves.  These ridges are even more easily seen in Fig. A.2(a), which 

consists of height profiles, measured from the images shown in Fig. A.1(a)-(d) along 

[110], as indicated by the red dashed line in Fig. A.1(d).  In Figs. A.1(e)-(g), we show 

AFM images of orthogonal, [110]-oriented grooves, for the same growth sequence.  

In this case no ridges are apparent at the upper sides of the long edges of the  grooves; 

instead such features appear along the short directions.  
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        This result is consistent with the earlier observations of Tadayyon et al.[A.1], of 

anisotropic ridge formation around circular pits during growth at 500 ºC.  The 

absence of ridge formation at the long edges of [110]-oriented grooves is confirmed 

in Fig. A.2(b), which shows height profiles measured from Fig.1(e)-(g) along [110], 

as indicated by the blue dashed line in Fig. A.1(g).    We have previously proposed 

that the anisotropic ridge formation might be understood based the effect of forming 

multi-step reconstruction along [110] orientation that reduces the nucleation barrier at 

the corresponding pit edges [A.7, A.8].   

 

       A.3.2 Anisotropy of Surface Evolution 

        Comparison of the two sets of height profiles in Fig. A.2 shows another striking 

difference between the modes of surface evolution during MBE growth for patterns 

made up of nanogrooves oriented along these two perpendicular orientations. Those 

oriented with their long edges parallel to [110] show a discernable narrowing along 

their short axis, with cusps first forming, and then persisting at the bottom of the 

grooves. For nanogroove patterns with long edges along [110], growth produces 

nearly the opposite behavior, i.e. a pronounced broadening along the orthogonal, [110] 

direction.   The rate of broadening is temperature dependent, as can be seen in the 

bottom row of images, Figs. A.1(h)-(j), which show the results of a similar growth 

sequence, but at a somewhat temperature of 525 ℃.  At this higher temperature, the 

rate of broadening of nanogrooves along [110] is approximately three times faster,  

than at 460 ℃, consistent with a smaller adatom sticking probability to the steps 

which bound these grooves.     
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       A.3.3  Analysis of Ridge Heights 

        A.3.3.1 Length Scale Dependence of Ridge Heights-High T 

        We now show that analysis of the height of ridges vs. nanogroove length reveals 

a characteristic lateral length scale.  In Fig. A.3(a) the heights of the ridges which 

form during growth at 525 ℃ along 200 nm wide [110]-oriented grooves are plotted 

as a function of growth thickness, for a range of [110]/[110] length aspect ratios.  As 

the growth proceeds, the evolution of the ridge heights separates into two branches. 

For larger aspect ratios, i.e. 200:1, 100:1 and 50:1, the ridge heights evolve to a 

maximum of approximately 15 nm at a grown thickness of approximately 120 nm. In 

contrast, for the smaller groove aspect ratios, i.e. 20:1, 10:1 and 2:1, the ridge heights 

evolve to a maximum value of approximately 8 nm for grown thickness of 

approximately 100 nm.  The pronounced break between the two branches indicated 

by the arrow in Fig. A.3(a) occurs at an initial aspect ratio of between 20:1 and 50:1, 

which corresponds to a groove length of between 4 um and 10 um.  It is suggestive of 

an exceedingly long characteristic lateral length scale beyond which the growth 

kinetics changes abruptly.  As a check of this interpretation, we examine the behavior 

of ridge heights for another set of arrays of nanogrooves, whose initial widths were 

100 nm.  As seen in Fig. A.3(b). the evolution of ridge heights for these narrower 

grooves also shows a break into two branches, at an aspect ratio between 50:1 and 

100:1, corresponding to a groove length of between 5 um and 10 um.  This is in 

agreement with that for the wider grooves. 
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Fig. A.3    Ridge heights vs. growth thickness at growth temperature of 525 ℃, 

showing aspect ratios (length scales) dependence of ridge heights for both sets of 

nanogrooves, (a) 200 nm wide nanogrooves; (b) 100 nm wide nanogrooves. Fig. 

A.3(c) consistence of characteristic lengths of 7.5 + 2.5 um for both sets of 

nanogroove-patterned surface. 

        We summarize this intriguing behavior Fig.  A.3(c) where we plot the ridge 

height vs. groove length for both sets of nanogrooves for growth at 525 ℃. Both 

curves, display an inflection point at a characteristic length of 7.5 + 2.5 um. 
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       A.3.3.2   Length Scale Dependence of Ridge Heights- Low T 

          To probe the temperature dependence of this length scale we lowered the 

growth temperature to 460 ℃.  The ridge heights have not yet reached a maximum by 

a grown thickness of 150 nm, however we do see signs of a splitting of the evolution 

into two branches at this temperature as well.   Figs. A.4(a) and A.4(b) show plots of 

the ridge heights as a function of growth thickness, for 200 nm and 100 nm wide 

nanogrooves respectively, again for a range of aspect ratios.   As shown by arrow in 

Fig. A.4(a) for the 200 nm wide nanogrooves a break, in the ridge height distribution 

curves occurs at an aspect ratio of between 2:1 and 10:1, corresponding to a groove 

length along [110] of between 400 nm and 1000 nm.  For the 100 nm wide 

nanogrooves, as shown in Fig. A.4(b), the break in evolution occurs between  aspect 

ratios 5:1 and 10:1, corresponding to a groove length of between 500 nm to 1000 nm.  

This is again in agreement with that for the wider grooves to within the uncertainty 

set by the increments between successive patterned lengths.   Fig. A.4(c) summarizes 

this behavior, and shows that this characteristic length decreases by an order of 

magnitude, from 7.5 + 2.5 um to 750 + 250 nm, on lowering the  growth temperature 

from 525 ℃ to  460 ℃.  
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Fig. A.4    Ridge heights vs. growth thickness at growth temperature of 460 ℃, 

showing aspect ratios (length scales) dependence of ridge heights for both sets of 

nanogrooves, (a) 200 nm wide nanogrooves; (b) 100 nm wide nanogrooves. Fig. 

A.4(c) Consistence of characteristic lengths of 750 + 250 nm for both sets of 

nanogroove-patterned surface. 

 

 

 

 

 



 

 127 
 

      A.4 Discussion 

         What is the physical origin of this behavior?  We expect that the formation of 

the observed ridges, along upper edges of nanogrooves, initiates with island 

nucleation.   In nucleation the kinetics of deposition, surface reconstruction and 

surface diffusion likely all play key roles. However as the individual fluxes and the 

surface reconstruction are the same for each of our growth experiments, the 

temperature dependence of large characteristic length scale we observe must derive 

from a thermally activated process.  A logical candidate is surface diffusion.   In fact 

it is widely assumed that during homoepitaxial growth on GaAs(001) under As-rich 

conditions, it is the diffusion of Ga adatoms on the growing surface is the rate 

limiting process [A.9].  Based upon this, a reasonable hypothesis is that the very long, 

thermal-activated characteristic lengths we observed might be a measure of the 

effective surface diffusion length of Ga adatoms before adding to a step[A.10], such 

as those which bound the grooves, or the sidewalls along [110].  If we assume that the 

presence of a small anisotropic Ehrlich-Schwoebel barrier tends to inhibit the 

attachment of Ga adatoms to steps at the edge of [110]-oriented grooves, then such 

adatoms on landing onto the surface regions between long nanogrooves should be 

“trapped”,  and more likely to nucleate islands.   The maximum distance such an atom 

would need to diffuse to “escape” from between grooves, is. half of the length of 

grooves.  The larger the ratio of this length to the adatom diffusion length, the more 

likely that an island will be nucleated between grooves. On the other hand, in the 

limit in which the half-length of the grooves is much shorter than the diffusion length 

of adatoms, they are likely to diffuse out of the region between nanogrooves, without 
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island nucleation.  We thus associate a value of approximately one half of the groove 

length at which the break in the ridge height occurs with the Ga diffusion length. We  

thus estimate an effective diffusion length of 3.8 + 1.3 um, at 525 ºC which is 

approximately a factor of three larger than the previously reported diffusion length for 

Ga adatoms on GaAs(001)- β2(2x4) or at the transition from β2(2x4) to c(4x4) under 

MBE growth conditions [A.10-15].   
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A.5  Conclusion 

        To summarize, our homoepitaxial growth experiments on nanogroove patterned 

GaAs(001) show evidence for a  very large, thermal-activated characteristic length 

scale beyond which the kinetics change abruptly.  The value of the observed 

characteristic length is 7.5 + 2.5 um, at 525 ºC., and an order of magnitude less than 

this at 460 ºC.  The logical interpretation is that we are probing the effective diffusion 

length of Ga adatoms,  The nanogrooved patterned arrays on the surface might 

effectively reduce 2D Brownian motions of adatoms into a quasi-1D problem to 

enhance the diffusion length of diffusing Ga atoms.  It is remarkable that even though 

the distance between grooves, and thus between available steps is many times smaller 

than this distance that a seemingly small Ehrlich-Schwoebel barrier [A.1, A.7] can 

result in adatoms diffusing such a long distance, and in the process encountering, but 

not adding to the edges of the lithographically defined grooves. 
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Appendix B 

Another Mound Separation Analysis 

– using the Generalized Wigner Surmise (GWS) 

 

 

 

        We use the approach proposed by Einstein et al. [B.1, B.2] which have been 

used to study terrace width distribution (TWD) on vincinal surfaces and also the 

capture zone (CZ) radii on surface where island growth occurs.  This is the so called 

the General Wigner Surmise (GWS) with the equation shown below: 
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        The exponent ρin the generalized Wigner Surmise (GWS) provides valuable 

information of underlying physics of a few systems.    In one example, i.e. the study 

of terrace width distributions, the exponent ρ takes on a value greater than 2 if there is 

a repulsion between steps [B.1].  It is not immediately clear if this aspect of the GWS 

carries over to the case of the mound separation distribution, as it is not clear what 

physics is behind the exponent ρ in this case. While it is interesting to speculate that 
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Mound A Mound B

S

Fig. B.1  Defining separation s 

between two neighboring mounds 

after 1000ML of growth. 

the exponent ρ might in some sense indicate the interaction between mounds, it will 

require further study to understand if this is so. 

      Nevertheless, for curiosity, we examined 

the distributions of mound separations in our 

simulations to see if they are "Wigner-like".   

The way we define the spacing is to take the 

edge to edge spacing as shown in Fig. B.1. 

Since mound size nearly reaches steady 

state after 1000ML of growth, we analyze 

the mound-mound separations at that stage 

of growth thickness. Again, we adopt 

image segmentation method to allow us to obtain the information of mound 

separations. 

       

        In Fig. B.2, we show plots of the mound separation distributions of our kMC 

simulations for both unpatterned and patterned surfaces.  Figs. B.2 (a) and (b) are 

examples of mound separation distributions for the growth on unpatterned surfaces at 

two different growth temperatures, which the data are shown as open circles in plots ; 

Figs. B.2 (c) and (d) show examples of those for patterned surfaces, and the data are 

shown as open squares in plots.   We fit our data by the expression of generalized 

Wigner Surmise (GWS), and the fits are reasonably well for both cases with and 

without patterns on the surfaces.  Hence, the mound separation distributions display 

"Wigner-like" distributions. 
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Fig. B.2  Mound separation distributions(open circles or squares)  fitted by 

expression of Generalized Wigner Surmise (GWS (dashed curves). (a) and (b) are 

the cases for growth on unpatterned surfaces, with the growth temperature of (a) 

660K and (b) 725K; (c) and (d) are the cases for growth on patterned surfaces, with 

the growth temperature of (c) 660K and (d) 725K. 
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        Now based on many simulations, we systematically plot the exponents as a 

function of growth temperatures for both unpatterned and patterned cases, which is 

shown in Fig. B.3. 

        For the simulated growth on unpatterned surfaces, corresponding to the green 

curve in Fig. B.3, the exponent starts with a value close to 2 at low growth 

temperature.  As we raise the growth temperature, the exponent slowly increases to a 

value of 4.   

         For comparison, results for simulated growth on the patterned surfaces are 

illustrated by the orange curve in Fig. B.3; the insets are the corresponding 

topological structures and correlation maps at the growth temperature pointed by 

arrows.   At a relatively low temperature of 660K, where we start seeing (A/3 x A/3) 

periodicity of mound structure, the natural size of the mounds is smaller than 1/3 of 

the spacing between patterns.   The best fit to a GWS dependence leads to an 

exponent close to 2.   As we raise the temperature to 700K, the natural separation of 

mounds increases continuously, passing through a value of  1/3 of the pattern spacing 

at 680 K, but still the simulated mound spacing remains locked in the same fixed 

amount as lower temperature.  The simulated images indicate that  increasing the 

temperature beyond 680K gives arise to disorder arrangement of growth mounds: the 

mound shapes distort and the lattice of mound seems to start rotating in order to 

accommodate mounds with larger size.  The value of the GWS exponent, increases 

though a value of 4 at 680K, reaching a maximum close to 6 by 700K.   Based upon 

the analogy with the terrace width case this increase in exponent might be interpreted 
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as signifying a mound-mound interaction which becomes more repulsive due to 

accommodating mounds with increasing size in the (A/3 x A/3) phase 

 

     Raising growth temperature further to 710K in the simulations results in an abrupt 

change of the mound arrangement, to a lower density A/√2 x A/√2  phase.  

Coincident with this, the GWS exponent drops abruptly.  The natural mound 

separation size is 0.62 A, i.e. smaller than the 1 /√2 of the pattern spacing at the 

growth temperature of 710K.   Raising the growth temperature further results again in 

a monotonic increase  in the GWS exponents, as the natural mound separation 

increases through and beyond a value of  A/√2 .  The exponent again drops abruptly 

at a temperature of ~738K, coincident with an abrupt change in the mound 

arrangement to a third, even lower density, A x A phase.     

 

        Intriguingly, we thus observe that  the GWS exponent displays abrupt changes 

coincident with the phase transitions between the ordered mound phases in our 

simulations.  This seems to support a hypothesis in which the exponent ρ is related 

to the interaction between mounds and the generalized Wigner Surmise (GWS) could 

possibly be adopted in the system of mound formation, with the “neutral” value 

corresponding to ρ=4, rather than the ρ=2 value found in the case of step 

interactions [B.1].  Further analysis is warranted to test this hypothesis. 
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Fig. B.3  Exponent of GWS vs. growth temperature.  Orange curve is showing the 

case of patterned surface; green curve is for unpattered surface.  Insets are the 

corresponding topological structures and correlation maps at the growth temperature 

pointed by arrows. 
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Appendix C 

Image Segmentation Method - Fortran 95 Code 

 

 

 

        Below is the Fortran code developed by Dr. Hung-Chih Kan that allow us to 

calculate mound size distributions, mound separation distributions and number of 

density of mounds.  

 

!     Last change:  HCK   5 Feb 2010   10:36 am 

program Img_Seg 
CHARACTER*80 imagefile, segfile 
CHARACTER*1200 txline 
INTEGER Nx,Ny,Nt,Nk,Nx1,Ny1 
 
! Variables for Sorting 
INTEGER*8, ALLOCATABLE, DIMENSION(:,:) :: hR,hC,hT,hB,h 
INTEGER*8, ALLOCATABLE :: indx(:), key(:),k_freq(:),k_start(:), k_indx(:) 
DOUBLE PRECISION, ALLOCATABLE:: h0(:), BMask(:) 
DOUBLE PRECISION hmin,hmax,lmin,lmax 
INTEGER i,j,k 
INTEGER tmpkey1,tmpkey2,tmpkey3 
 
! Variables for  distance transformation 
INTEGER, allocatable :: DT_h(:) 
INTEGER :: island,c_dt=0,subis 
INTEGER, ALLOCATABLE :: ispxl(:) 
LOGICAL :: edge_detected, abnormal 
CHARACTER*1 ans 
 
! Variables for Segmentation 
 



 

 137 
 

INTEGER:: MASK = -2, WSHED = 0, INIT=-1 
INTEGER*8,ALLOCATABLE :: h_out(:), h_dist(:) 
INTEGER*8, ALLOCATABLE :: que(:) 
INTEGER:: c_label=0,c_dist, p_false=-1 
INTEGER p,q1st,qend,qsize,p1,p2,round_1st,round_end 
INTEGER, DIMENSION(8) :: pn,pn1 
LOGICAL :: Que_empty, q1st_rst = .FALSE., qend_rst=.false. 
 
! Variable for post processing 
 
DOUBLE PRECISION, ALLOCATABLE :: p_tbl(:), 
p_pxl(:),p_1st(:),Partial_key(:),NewMask(:) 
DOUBLE PRECISION, ALLOCATABLE :: Iimg(:),Timg(:),Vstp(:),Vtrs(:) 
INTEGER, allocatable :: Itrs(:),Istp(:) 
INTEGER, DIMENSION(8) :: E_pxl=(/2,1,4,3,8,7,6,5/) 
INTEGER :: A_partial_island 
LOGICAL :: partial_island, edge_pixel, repeated_pixel 
INTEGER :: edg1,edgx,past_edg,edgpxl,ipartial,cpartial 
INTEGER :: Ntrs,Nstp 
DOUBLE PRECISION :: htmp 
LOGICAL :: same_terrace 
 
 
! Mound statistics 
 
DOUBLE PRECISION :: M_size_avg, M_size_std, M_num_density 
INTEGER, ALLOCATABLE :: M_num(:), M_c(:), M_x(:),M_y(:) 
INTEGER :: M_size,dmx,dmy,MdV 
 
DOUBLE PRECISION, ALLOCATABLE,DIMENSION(:) :: M_d 
INTEGER, ALLOCATABLE, DIMENSION(:) :: M_d_hist 
DOUBLE PRECISION :: M_d_min, M_d_max, M_dd 
 
!***********************! 
!                                             ! 
!  Input Graphic File              ! 
!                                             ! 
!***********************! 
 
 
PRINT *,'Enter image filename: ' 
read *,imagefile 
Nx=400;Ny=400 
Nx1=Nx-1;Ny1=Ny-1 
Nt=Nx*Ny 
Nk=SQRT(REAL(Nt)) 
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ALLOCATE (h0(Nt),indx(Nt),key(Nt),k_freq(Nk),k_start(Nk),k_indx(Nk)) 
ALLOCATE (BMask(NT),DT_h(Nt)) 
ALLOCATE (h(Nx,Ny)) 
 
OPEN(101,FILE=imagefile) 
 
do i=1,Ny 
  read (101,*) (h0(j),j=1+(i-1)*Nx,i*Nx) 
  h(:,i)=h0(1+(i-1)*Nx:i*Nx) 
end do 
CLOSE(101) 
 
 
do i=2,Nx-1 
  do j=2,Ny-1 
 
     abnormal = (abs(h(i,j) - h(i+1,j)) > 100 ) .and.  (abs(h(i,j) - h(i-1,j)) > 100 )  .and.  
& 
                (abs(h(i,j) - h(i,j+1)) > 100 ) .and.  (abs(h(i,j) - h(i,j-1)) > 100 ) 
     if (abnormal) then 
       PRINT *,'abnormal pixel at (',i,',',j,') h = ',h(i,j) 
       h(i,j)=(h(i+1,j)+ h(i-1,j)+ h(i,j+1) + h(i,j-1))/4 
       PRINT *,'Modified h = ', h(i,j) 
     end if 
  end do 
end do 
 
!do i=1, 20 
!  h( 1,2:Ny1)  =  h(  2,2:Ny1) 
!  h(Nx,2:Ny1)  =  h(Nx1,2:Ny1) 
!  h(2:Nx1, 1)  =  h(2:Nx1,  2) 
!  h(2:Nx1,Ny)  =  h(2:Nx1,Ny1) 
!  h(1,1)=h(2,2) 
!  h(Nx,1)=h(Nx1,2) 
!  h(1,Ny1)=h(2,Ny1) 
!  h(Nx,Ny)=h(Nx1,Ny1) 
!  h(2:Nx1,2:Ny1) = (REAL(h(1:Nx1-
1,2:Ny1))+REAL(h(3:Nx,2:Ny1))+REAL(h(2:Nx1,1:Ny1-
1))+REAL(h(2:Nx1,3:Ny)))/4 
!end do 
OPEN(102,FILE='Transmap.dat') 
do i=1,Ny 
  WRITE(102,'(600(I8,2x))') (h(j,i), J=1,Nx) 
end do 
CLOSE(102) 



 

 139 
 

 
 
do i=1,Ny 
    Dt_h(1+(i-1)*Nx:i*Nx)=h(:,i) 
end do 
 
OPEN(102,FILE='Transmap2.dat') 
do i=1,Ny 
  WRITE(102,'(600(I8,2x))') (Dt_h(j), J=1+(i-1)*Nx,i*Nx) 
end do 
CLOSE(102) 
 
!hmin=MINVAL(Dt_h) 
!hmax=MAXVAL(Dt_h) 
!do 
!  PRINT *,'The maxium in the image is ',hmax 
!  PRINT *,'The minimum in the image is ',hmin 
!  PRINT *,'Do you want to set the saturate the image with a lower maximum? [y/n] 
' 
!  read *, ans 
!  if (ans .eq. 'n') exit 
!  if (ans .eq. 'y') then 
!    do 
!      PRINT *,'Enter a new maximum D, ',hMIN,'=< D <=',hmax,' ' 
!      read *,tempkey2 
!      if ((tempkey2>=hmin).AND.(tempkey2<=hmax)) exit 
!    end do 
!    DT_h=MIN(DT_h,tempkey2) 
!    do 
!      PRINT *,'Enter a new minimum D, ',hMIN,'<= D <=',hmax,' ' 
!      read *,tempkey2 
!      if ((tempkey2>=hmin).AND.(tempkey2<=hmax)) exit 
!    end do 
!    DT_h=MIN(DT_h,tempkey2) 
! 
!    OPEN(103,'modified_map.dat') 
!    do i=1,Ny 
!      write (103,'(600(I6,1x))') (DT_h(j), j=(i-1)*Nx+1,i*Nx) 
!    end do 
!    CLOSE(103) 
!    PRINT *,'map updated' 
!  end if 
!end do 
!DT_h=DT_h-tempkey2 
!DT_h=h0-MINVAL(h0) 
DT_h=DT_h -MINVAL(DT_h) 
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!********************************! 
!                                                                ! 
!  Sorting Image Pixels with Key             ! 
!                                                                ! 
!********************************! 
key=DT_h+1 
indx=-1 
 
k_freq=0 
do i=1,Nt  !Scan key for the occuring frequency for each  value 
  k_freq(key(i)) = k_freq(key(i)) + 1 
end do 
 
k_start(1)=1 
do i=1,Nk-1 
   k_start(i+1)=k_start(i) +k_freq(i) 
   !PRINT *,i,k_start(i),k_freq(i) 
end do 
 !PRINT *,Nk,k_start(Nk),k_freq(Nk) 
 
k_indx=0 
do i=1,Nt 
  tmpkey1=key(i) 
  tmpkey2=k_start(tmpkey1)+k_indx(tmpkey1) 
  indx(tmpkey2)=i 
  k_indx(tmpkey1)=k_indx(tmpkey1)+1 
end do 
 
 
!******************! 
!                                    ! 
! Imspection codes       ! 
!                                    ! 
!******************! 
 
!open (102,FILE='sort.dat') 
!do i=Nk,1,-1 
!  WRITE(102,'(100(I12,1x))') ( key(indx(j)),j=k_start(i),k_start(i)+k_freq(i)-1) 
!  WRITE(102,'(100(I12,1x))') (indx(j),j=k_start(i),k_start(i)+k_freq(i)-1) 
!  WRITE(102,'(100(E12.6,1x))') (h0(indx(j)),j=k_start(i),k_start(i)+k_freq(i)-1) 
!end do 
!close (102) 
 
 
!********************! 
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!                                       ! 
! Image Segmentation     ! 
!                                       ! 
!********************! 
 
qsize= 10*MAXVAL(k_freq)+1 
ALLOCATE (que(qsize),h_out(Nt),h_dist(Nt)) 
h_out = INIT 
h_dist = 0 
qend=0 ; round_end=0 
q1st=1 ; round_1st=1 
 
do i=Nk,0.05*Nk,-1 
  tmpkey1=k_freq(i) 
  if (tmpkey1 > 0 ) then 
    !PRINT *,'Level',i 
    do j=k_start(i),k_start(i)+tmpkey1-1 
       p=indx(j) 
       !PRINT *,'Level:',i,j,p 
       h_out(p)=MASK 
       call neighbor8(p,pn) 
       !if ((MOD(p,Nx)==0).OR.(MOD(p,Nx)==1)) PRINT *,p,pn 
       !if ((p<Nx).OR.(p>Nt-Nx)) PRINT *,p,pn 
       do k=1,8 
         if ((h_out(pn(k))>0).OR.(h_out(pn(k))==WSHED)) then 
           h_dist(p)=1 
           call fifo_add(p) 
         end if 
       end do 
    end do 
 
    c_dist=1; call fifo_add(p_false) 
 
    do 
      call fifo_first(p) 
      if (p == p_false) then 
        call fifo_empty(que_empty) 
        if (que_empty) then 
          exit 
        else 
          call fifo_add(p_false) 
          c_dist=c_dist + 1 
          call fifo_first(p) 
        end if 
      end if 
     ! PRINT *,'Flooding; Level: ',i 



 

 142 
 

      call neighbor8(p,pn) 
     ! PRINT *,p,pn 
      do k=1,8 
        if 
((h_dist(pn(k))<c_dist).AND.((h_out(pn(k))>0).OR.(h_out(pn(k))==WSHED))) 
then 
          if (h_out(pn(k)) > 0) then 
            if ((h_out(p)==MASK).OR.(h_out(p)==WSHED)) then 
              h_out(p)=h_out(pn(k)) 
            else if (h_out(p) /= h_out(pn(k))) then 
              h_out(p)=WSHED 
            else 
            end if 
          else if (h_out(p) == MASK) THEN 
            h_out(p) = WSHED 
          else 
          end if 
        else if ((h_out(pn(k))==MASK).AND.(h_dist(pn(k))==0)) then 
          h_dist(pn(k))=c_dist+1 
          call fifo_add(pn(k)) 
        else 
        end if 
      end do 
    end do 
 
   ! PRINT *,'new minimun; Level: ',i 
 
    do j=k_start(i),k_start(i)+tmpkey1-1 
      p=indx(j) 
      h_dist(p)=0 
      if (h_out(p) == MASK) then 
        c_label=c_label+1 
        call fifo_add(p) 
        h_out(p)=c_label 
        do 
          call fifo_empty(que_empty) 
          if (que_empty) exit 
          call fifo_first(p1) 
          call neighbor8(p1,pn1) 
          do k=1,8 
            if (h_out(pn1(k))==MASK) then 
              call fifo_add(pn1(k)) 
              h_out(pn1(k))=c_label 
            end if 
          end do 
        end do 
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      end if 
    end do 
  end if 
end do 
 
OPEN(102,FILE='sort_img_'//imagefile) 
do i=1,Ny 
  write (102,'(600(I6,1x))') (h_out(j), j=(i-1)*Nx+1,i*Nx) 
end do 
CLOSE(102) 
 
PRINT *,'There are ' ,c_label,'mounds.' 
 
! h_out = -1 unprocessed pixel 
!       =  0 boundary pixels (those can not be assigned between neighboring islands) 
!       >= 1 mound pixels 
 
!********************************! 
!                                                                ! 
!  Post Segmentation Processing              ! 
!                                                                ! 
!********************************! 
 
! Nk-1 : total number of mounds 
! k_freq(i) = pixel coverage of i-th mound (i>1) 
 
Nparticle = c_label 
Island = Nt 
key=MAX(1,h_out+1) 
Nk=MAXVAL(key); PRINT *,NK,MINVAL(key) 
DEALLOCATE(k_freq,k_start,k_indx) 
ALLOCATE(k_freq(Nk),k_start(Nk),k_indx(Nk)) 
ALLOCATE(P_tbl(Island), P_pxl(Nparticle), P_1st(Nparticle)) 
indx=-1 
call Sort_key(key,indx,Nk) 
 
 
 
!******************************! 
!                                                            ! 
!  Identify partial islands                      ! 
!                                                            ! 
!******************************! 
A_partial_island = 0 
ALLOCATE(Partial_key(Island)) 
ipartial = 0 
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do i=2,Nk 
  do j=k_start(i),k_start(i)+k_freq(i)-1 
    tmpkey1= indx(j) 
    tmpkey2= MOD(tmpkey1,Nx); If (tmpkey2==0) tmpkey2=Nx 
    tmpkey3= int((tmpkey1-1)/Nx)+1 
    partial_island = (tmpkey2 == 1).OR.(tmpkey2 == Nx) .OR. & 
                     (tmpkey3 == 1).OR.(tmpkey3 == Ny) 
    if (partial_island) then 
      !PRINT *,'Island # ',i, ' is partially scanned in the image.' 
      !PRINT *,i,tmpkey1, tmpkey2,tmpkey3 
      A_partial_island = A_partial_island + k_freq(i) 
      k_freq(i) = 0 
      ipartial = ipartial +1 
      Partial_key(ipartial)=i 
      exit 
    end if 
  end do 
end do 
PRINT *,'There are ',ipartial,' partial islands found:' 
PRINT *,INT(Partial_key(1:ipartial)) 
 
 
!*********************! 
!                                         ! 
!  Monund statistics           ! 
!                                         ! 
!*********************! 
 
! 1. Average mound size and standard deviation 
 
M_size_avg = REAL(SUM(k_freq(2:Nk)))/REAL(Nk-iPartial-1) 
 
tmpkey1 = 0 
 
do i=2,NK 
  tmpkey1 = tmpkey1 + k_freq(i)**2 
end do 
PRINT *, tmpkey1/REAL(Nk-iPartial-1), M_size_avg**2 
 
M_size_std = SQRT(tmpkey1/REAL(Nk-iPartial-1)-M_size_avg**2) 
 
M_num_density = REAL(Nk-1-ipartial) / REAL(Nt - A_partial_island) 
 
 
 
! 2. Histogram of Mound size 
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do i= 1,ipartial 
  k_freq(Partial_key(i))=M_size_avg 
 ! PRINT *, Partial_key(i) 
end do 
 
tmpkey1 = MAXVAL(k_freq(2:Nk)) 
tmpkey2 = MINVAL(k_freq(2:Nk)) 
 
PRINT *,' ' 
PRINT *,'The program is going to generate the histogram of the island island size 
distribution.' 
PRINT *,'That is the number of islands between size V and V+dV.' 
PRINT *,'So far we have the following.' 
PRINT *,' ' 
PRINT *,'Total number of isalnds = ', Nk 
PRINT *,'Max, Min island size = ', tmpkey1,tmpkey2 
PRINT *,'Average mound size = ', M_size_avg 
PRINT *,'Standard deviation = ', M_size_std 
PRINT *,' ' 
PRINT *,'Do you want to choose the size of dV ?' 
PRINT *,'or let the program to use dV=(Vmax-Vmin)/20 ?' 
do 
  PRINT *,'Enter [y/n] ' 
  read *,ans 
    if ((ans == 'y').OR.(ans == 'n')) exit 
end do 
if (ans=='y') then 
   PRINT*,'Enter the size of dV. ' 
   read *,tmpkey3 
   MdV=INT((tmpkey1-tmpkey2)/tmpkey3+1) 
else 
   MdV=21 
   tmpkey3= (tmpkey1-tmpkey2)/20 
end if 
 
 
ALLOCATE(M_num(MdV)) 
j=1 
M_num=0 
do i=2,Nk 
  IF (i /= Partial_key(j)) then 
    tmpkey1 =k_freq(i)/tmpkey3-tmpkey2/tmpkey3+1 
    if (tmpkey1 == MdV+1)tmpkey1 = Mdv 
    M_num(tmpkey1) = M_num(tmpkey1) + 1 
  else 
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    j=Min(j+1,ipartial) 
  end if 
 
end do 
 
! Export results 
 
OPEN(102,FILE='hist_'//imagefile) 
 
WRITE(102,'(E22.10,2x,A80)') M_size_avg, 'Average mound size (number of 
pixels)' 
WRITE(102,'(E22.10,2x,A80)') M_size_std, 'standard diviation of mound size 
(number of pixels)' 
WRITE(102,'(E22.10,2x,A80)') M_num_density*1e4, 'Number density of Mounds 
mound ( per (100 pixel)^2 ) ' 
 
do i=1,MdV 
  
tmpkey1=MAX(tmpkey3*int(REAL(tmpkey2)/REAL(tmpkey3)+0.5),tmpkey3*(tm
pkey2/tmpkey3+i-1)) 
  WRITE(102,'(2(I10,2x))') tmpkey1 , M_num(i) 
end do 
 
CLOSE(102) 
 
! 3. Height weighted mound center coordinate 
 
hmin=MINVAL(h0) 
 
ALLOCATE(M_c(Nk), M_x(Nk), M_y(Nk)) 
M_c=0; M_x=0; M_y=0 
OPEN(103,FILE='MoundCoor_'//imagefile) 
 
j=1 
do i=2,Nk 
  IF (i /= Partial_key(j)) then 
    tmpkey1 = k_start(i)+k_freq(i)-1 
    !tmpkey1 = MAXVAL(h0(indx(k_start(i):tmpkey1))) ;tmpkey2=0; tmpkey3=0 
    !PRINT *, tmpkey1 
    !tmpkey1=0 
    !do k=k_start(i),k_start(i)+k_freq(i)-1 
    !  tmpkey2=h0(indx(k)) 
    !  if (tmpkey2>= tmpkey1) tmpkey1=tmpkey2 
    !end do 
    !PRINT *, tmpkey1 
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    do k=k_start(i),tmpkey1 
      tmpkey3=indx(k) 
      tmpkey2=h0(tmpkey3)-hmin 
      !if (tmpkey2 == tmpkey1) then 
        dmx=MOD(tmpkey3,Nx); if (dmx==0) dmx=Nx 
        dmy=INT((tmpkey3-1)/Nx)+1 
        M_x(i)=M_x(i) + dmx*tmpkey2 
        M_y(i)=M_y(i) + dmy*tmpkey2 
        M_c(i)=M_c(i) + tmpkey2 
        !PRINT *,tmpkey2,tmpkey1 
        !PRINT *,M_c(i),dmx,dmy 
        !WRITE(103,'(2(I10,2x))') dmx,dmy 
      !end if 
    end do 
    M_x(i)=M_x(i)/M_c(i) 
    M_y(i)=M_y(i)/M_c(i) 
 
   ! PRINT *,i,M_x(i),M_y(i) 
    WRITE(103,'(2(I10,2x))') M_x(i),M_y(i) 
  else 
    j=Min(j+1,ipartial) 
   ! PRINT *,'partial mound',Partial_key(j) 
  end if 
end do 
CLOSE(103) 
 
! 4. Island spacing statistics 
 
ALLOCATE (M_d((Nk-2)*(Nk-1)/2),M_d_hist(50)) 
tmpkey1=0 
do i=2,Nk 
  if ((M_x(i)/=0).or.(M_y(i)/=0)) then 
    do j=i+1,Nk 
       if ((M_x(j)/=0).or.(M_y(j)/=0)) then 
         tmpkey1=tmpkey1+1 
         M_d(tmpkey1) = SQRT(REAL( (M_x(i)-M_x(j))**2 + (M_y(i)-M_y(j))**2) ) 
         !PRINT *,tmpkey1, M_d(tmpkey1) 
       end if 
    end do 
  end if 
end do 
 
M_d_min = MINVAL(M_d(1:tmpkey1)) 
M_d_max = MAXVAL(M_d(1:tmpkey1)) 
M_dd = (M_d_max-M_d_min)/50 
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M_d_hist=0 
 
PRINT *,'M_d_max, M_d_min = ',M_d_max, M_d_min 
do i =1,tmpkey1 
  tmpkey2=INT((M_d(i)-M_d_min)/M_dd)+1 
  if (tmpkey2 == 51) tmpkey2=50 
  M_d_hist(tmpkey2)=M_d_hist(tmpkey2)+1 
end do 
 
open (104,FILE='Islandspacing_'//imagefile) 
do i=1, 50 
  WRITE(104,*) (M_d_min+ (REAL(i)-0.5)*M_dd), M_d_hist(i) 
end do 
CLOSE(104) 
 
 
 
! 3. Height weighted mound center coordinate 
 
 
!ALLOCATE(M_c(Nk), M_x(Nk), M_y(Nk)) 
!M_c=0; M_x=0; M_y=0 
!OPEN(103,FILE='MoundCoor_'//imagefile) 
 
!j=1 
!do i=2,Nk 
!  IF (i /= Partial_key(j)) then 
!    tmpkey1=0    ;tmpkey2=0; tmpkey3=0 
!    do k=k_start(i),k_start(i)+k_freq(i)-1 
!      tmpkey1=indx(k) 
!      tmpkey2=h0(tmpkey1) 
!      dmx=MOD(tmpkey1,Nx); if (dmx==0) dmx=Nx 
!      dmy=INT((tmpkey1-1)/Nx)+1 
!      M_x(i)=M_x(i)+dmx*tmpkey2 
!      M_y(i)=M_y(i)+dmy*tmpkey2 
!      tmpkey3=tmpkey3+tmpkey2 
!    end do 
!    M_x(i)=M_x(i)/tmpkey3 
!    M_y(i)=M_y(i)/tmpkey3 
! 
!    PRINT *,i,M_x(i),M_y(i) 
!    WRITE(103,'(2(I10,2x))') M_x(i),M_y(i) 
!  else 
!    j=Min(j+1,ipartial) 
!    PRINT *,'partial mound',Partial_key(j) 
!  end if 
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!end do 
!CLOSE(103) 
 
CONTAINS 
 
 
subroutine neighbor8(p,pn) 
INTEGER p                                         !p(5)  p(3) p(6) 
INTEGER, DIMENSION(8) :: pn                       !p(1)  p    p(2) 
INTEGER px,py                                     !p(7)  p(4) p(8) 
py=INT((p-1)/Nx)+1 
px=mod(p,Nx); if (px == 0) px = Nx 
if (px == 1)  then 
   pn(1)=p; pn(5)=p; pn(7)=p 
   pn(2)=p+1 
   if (py == 1) then 
     pn(3)=p; pn(6)=p 
     pn(4)=p+Nx ; pn(8)=Pn(4)+1 
   else if (py == Ny) then 
     pn(4)=p; pn(8)=p 
     pn(3)=p-Nx; pn(6)=pn(3)+1 
   else 
     pn(3)=p-Nx; pn(6)=pn(3)+1 
     pn(4)=p+Nx ; pn(8)=Pn(4)+1 
   end if 
else if(px == Nx) then 
     pn(6)=p;pn(2)=p; pn(8)=p 
     pn(1)=p-1 
   if (py == 1) then 
     pn(5)=p; pn(3)=p 
     pn(4)=p+Nx;pn(7)=pn(4)-1 
   else  if (py == Ny) then 
     pn(4)=p; pn(7)=p 
     pn(3)=p-Nx; pn(5)=pn(3)-1 
   else 
     pn(3)=p-Nx; pn(5)=pn(3)-1 
     pn(4)=p+Nx; pn(7)=pn(4)-1 
   end if 
else if ((py == 1).AND.(px>1).AND.(px<Nx)) then 
    pn(5)=p; pn(3)=p; pn(6)=p 
    pn(1)=p-1; pn(2)=p+1 
    pn(4)=p+Ny;pn(7)=pn(4)-1;pn(8)=pn(4)+1 
else if ((py == Ny).AND.(px>1).AND.(px<Nx)) then 
    pn(7)=p; pn(4)=p; pn(8)=p 
    pn(1)=p-1; pn(2)=p+1 
    pn(3)=p-Ny;pn(5)=pn(3)-1;pn(6)=pn(3)+1 
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else 
    pn(3)=p-Ny;pn(5)=pn(3)-1;pn(6)=pn(3)+1 
    pn(1)=p-1; pn(2)=p+1 
    pn(4)=p+Ny;pn(7)=pn(4)-1;pn(8)=pn(4)+1 
end if 
!PRINT *,p,pn 
end subroutine 
 
!********************************! 
!                                                                ! 
!  Sorting Image Pixels with Key             ! 
!                                                                ! 
!********************************! 
subroutine Sort_Key(key,indx,Nk) 
INTEGER*8 :: key(:), indx(:) 
INTEGER :: NK 
k_freq=0 
do i=1,Nt  !Scan key for the occuring frequency for each  value 
  k_freq(key(i)) = k_freq(key(i)) + 1 
end do 
!PRINT *,'Nk =',Nk 
k_start=0 
k_start(1)=1 
do i=1,Nk-1 
   k_start(i+1)=k_start(i) +k_freq(i) 
   !PRINT *,i,k_start(i),k_freq(i) 
end do 
 
!PRINT *,Nk,k_start(Nk),k_freq(Nk) 
 
k_indx=0 
do i=1,Nt 
  tmpkey1=key(i) 
  tmpkey2=k_start(tmpkey1)+k_indx(tmpkey1) 
  indx(tmpkey2)=i 
  k_indx(tmpkey1)=k_indx(tmpkey1)+1 
end do 
end subroutine 
 
 
 
 
subroutine fifo_add(p) 
INTEGER p 
qend=qend+1; 
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if (qend>qsize) then 
qend_rst=.true. 
qend=1 
END if 
que(qend)=p 
 
if (qend_rst.and.q1st_rst) then 
 !PRINT *,'add',q1st,q1st_rst,qend,qend_rst ,qsize 
 qend_rst=.false. 
 q1st_rst=.false. 
end if 
!PRINT *,'add',q1st,q1st_rst,qend,qend_rst ,qsize 
end subroutine 
 
subroutine fifo_first(p) 
INTEGER p 
p=que(q1st); 
q1st=q1st+1; 
if (q1st>qsize) then 
  q1st_rst=.true. 
  q1st=1 
END if 
 
if (qend_rst.and.q1st_rst) then 
 !PRINT *,'first',q1st,q1st_rst,qend,qend_rst ,qsize 
 qend_rst=.false. 
 q1st_rst=.false. 
end if 
!PRINT *,'first',q1st,q1st_rst,qend,qend_rst ,qsize 
end subroutine 
 
subroutine fifo_empty(q) 
LOGICAL :: q 
if (q1st_rst) then 
  q=.true. 
else if (qend_rst) then 
  q=.false. 
else 
  q=q1st > qend 
end if 
!PRINT *,'empty',q1st,q1st_rst,qend,qend_rst ,qsize 
!PRINT *,'empty',q 
!PRINT *,'empty',round_1st,round_end,q 
end subroutine 
end program 
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