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Chapter 1 Introduction 

1.1 Team SHINE 

 The Gemstone Program at the University of Maryland, College Park is a 

unique undergraduate research opportunity that allows students to participate in a 

three-year multidisciplinary team research project.  Under the guidance of 

mentors and the Gemstone staff, Team SHINE (Students Helping Implement 

Natural Energy) consists of five undergraduate members of the Gemstone 

Program.  The team was formed in the spring of 2006 driven by a common 

interest in the use of solar-powered electricity in developing nations. The team is 

performing its research under the guidance of Dr. Peter Chang, a professor of 

Civil and Environmental Engineering at the University of Maryland’s A. James 

Clark School of Engineering. 

 Team SHINE’s research goals arose from the group’s concern about the 

quality of life in developing nations and the astounding failure rate of solar home 

systems in these regions. Team SHINE chose to focus on how common problems 

associated with photovoltaic systems affect the systems’ voltage output. By 

collecting and analyzing voltage data, Team SHINE aimed to construct a 

diagnostic tool to be used in detecting these problems in implemented systems.   

1.2 Context 

 Approximately two billion people in the world do not have access to the 

electrical grid, and ninety percent of these people reside in developing nations 

(Himann, 2008). Those living in such regions are limited in many aspects of daily 

life, including cooking, food preservation, cleaning, reading, purifying and 
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heating water, and many other activities common to those living with electricity. 

The majority of individuals not living on the electrical grid currently use 

hydrocarbon fuels or biomass, which includes wood, grass, and animal waste, for 

needs such as cooking (Solar Electric, 2008). However, the use of biomass as a 

main source of fuel not only depletes the environment, but gathering these 

resources also wastes hours of daylight that could be used more productively. 

Additionally, much of the developing world uses kerosene lamps for nighttime 

light. The problem is that kerosene emits cancer-causing smoke and causes 

approximately 20,000 injuries and house fires each year from spills (Solar 

Electric, 2008). Also, each home burning a kerosene-fueled lamp emits an 

average of six tons of carbon dioxide into the atmosphere in a 20-year period and 

is the primary source of greenhouse gases emitted from developing nations (Solar 

Electric, 2008, Himann, 2008). 

 Solar power is a proven solution to this problem that meets the needs of 

many citizens in the developing world who do not have access to the electrical 

grid. Solar power provides efficient, steady light that is safer for users and the 

environment when compared to traditional energy sources (Solar Electric, 2008). 

In fact, numerous rural communities in developing nations have been able to 

successfully implement solar powered systems as a source of steady electricity 

(Niewenhout, 2001, p.455). Access to electricity improves many aspects of users’ 

lives in these rural communities. For instance, villagers are able to work after 

sunset, increasing their productivity beyond daylight hours (Solar Electric, 2008). 

Light helps to modernize the village and gives students the opportunity to read 
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and complete their homework at night. This bolsters education and literacy rates 

since school children are able to pursue academic interests beyond the daylight 

hours (Solar Electric, 2008). The installation of solar home systems at Myeka 

High School in the province of KwaZulu-Natal in South Africa created enough 

electricity to power a computer lab donated by the Dell Computer Corporation.  

Within a year of this installation the pass rate for students jumped from thirty to 

seventy percent, a clear example of how solar power can help to improve 

education (Solar Electric, 2008). Health clinics previously without lighting and 

certain medical equipment now have the ability to treat patients at night and use 

more sophisticated equipment. Additionally, clinics are able to refrigerate 

vaccines that are essential for survival in tropical regions (Solar Electric, 2008). 

Although lighting is certainly still considered a luxury for many developing 

communities, it is understood that the availability of light plays a major role in 

improving the quality of life for some developing areas (Gustavsson, 2005).  

 Solar powered systems are a solution to the lack of electricity for those 

unable to access the electrical grid; however, there are prominent issues to be 

considered with its use and implementation.  Approximately 1.5 million solar 

home systems have been implemented in the developing world, yet 23% are only 

working at partial capacity while 15% are not working at all (Nieuwenhout et al., 

2004, p.20).  Solar power systems can incur a variety of problems which either 

decrease performance or cause system failure (Mapako, 2005). When these 

problems occur, members of the rural communities are often completely unaware 

the system is malfunctioning. In some instances the users alter systems to fit their 
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needs without knowledge of the effects on their systems. In other cases, the 

systems malfunction without any apparent cause and users are not equipped to 

recognize the problems (Instituto, 1998).  Both of these scenarios lead to systems 

functioning at a lower capacity, ultimately leading to complete failure if the 

problem is not addressed (Energy, 2002). Projects also fail over time because of a 

lack of follow-up and poor capacity building by the implementers (Nieuwenhout 

et al., 2004, p.9).  Additionally, systems are frequently installed in developing 

areas by implementers who lack full knowledge of how the systems work. 

Therefore, these implementers often offer inadequate information (usually limited 

to daily cleaning or maintenance procedures) to the future users of the systems. If 

any information is provided to the daily users of the systems, it is frequently 

limited to the basics, such as how to use the system or how to clean it (Energy, 

2002).  This gap in knowledge available to users of the technology leads to a 

disturbing lack of effective and efficient use of the panels. Even with extensive 

daily maintenance of the panels, there are still many common problems that 

plague the solar home powered systems, resulting from the implementation, user 

interaction, or other factors (Energy, 2002). 

 The problems affecting photovoltaic systems can be effectively separated 

into two groups: problems with the photovoltaic panel and problems with the 

battery. Problems affecting the solar panel include corrosion and dust 

accumulation on the panel. Problems affecting the battery include overcharging, 

deep discharging, use of a less effective type of battery, and a lack or misuse of a 

charge controller. 
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Figure 1: A panel with residue on surface 
  

Overcharging and deep discharging of the batteries can degrade the 

batteries and cause a reduction in performance (Pearce, 2007).  Another major 

factor in battery failure is the use of improper battery types.  Most rural solar 

power systems use car batteries or “solar batteries” which are car batteries 

modified to have thicker plates to help with deep discharge (Van der Plas, 1998.). 

Car batteries or modified “solar batteries” typically will not last as long as a deep 

cycle battery, which is the type of battery better suited for photovoltaic systems.  

Incorrect battery use results in decreased system performance (See Appendix A). 

 Charge controllers are a crucial aspect of solar home systems as they 

regulate the flow of current to ensure a photovoltaic system’s battery stays within 

a healthy range of voltage based on the type of battery. However, local users often 

believe the use of a charge controller is unnecessary. In one study, a survey of 

different solar power systems in Kenya found that only 10 percent of systems 

utilized charge controllers.  Additionally, 18 percent of the systems with charge 

controllers had been altered to bypass the controller (van der Plas, 1998.).  

Although an isolated example, this is a common problem observed in developing 
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areas. Charge controllers are bypassed so that the user can draw more energy from 

the battery, even though this has serious consequences for the entire system.  The 

controller prevents overcharging and deep discharging, both of which seriously 

reduce the life of the batteries.  This potentially explains the high failure rate of 

batteries found in systems without charge controllers (van der Plas, 1998). A 

potential solution to a lack of charge controllers is the regular replacement of 

batteries in systems. However, continuous replacing of batteries can cause 

substantial financial strain on owners in developing areas; therefore, many owners 

continue to use poorly functioning batteries, thus having systems that work under 

capacity (van der Plas, 1998.).   

 In order to increase the effectiveness of the photovoltaic systems, the 

problems affecting the systems must be understood and easily identified. Table 1 

presents these five previously described common problems, from their prevalence 

to their causes and effects.  A detection tool for these common problems would 

provide considerable help to users with limited knowledge of how the systems 

work.  Ideally, any problems affecting a system could be detected before 

permanent damage occurs. This would eliminate potentially expensive, long-term 

damage to the solar home systems, since the problem could be identified and 

addressed early. In order to identify the problems plaguing solar powered systems 

quickly and accurately, the development of a simple method for the detection of 

these problems is undertaken.  
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Table 1: SHS Common Problems 
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1.3 Team Objectives 

Although research has been conducted on solar home systems and problems 

affecting them, there are issues not fully addressed in the literature. The vast 

majority of existing research comes in two main forms. The first is aimed at either 

describing or identifying the causes of the common problems prevalent in solar 

home systems of developing countries. The second type of research aims at 

improving the existing technology of solar home system components. This is 

where a large amount of money is invested (e.g. improving solar panels, charge 

controllers, etc.). While improving solar panel efficiency is important for the 

future viability of solar power, a more immediate problem of detecting problems 

in the field needs to be addressed. There is a significant lack of research into the 

field of detection methods for common problems that are resulting in the failure 

of these systems. When many systems are failing or not functioning to full 

capacity, improvements in efficiency of components are all for naught.  

The existing research concerning detection schemes is based in theory 

versus actual application and is limited in outlining effective methods for 

implementation versus providing immediate advice for users. In order to add to 

the current body of research and fill the significant research gaps surrounding 

detection methods, this project seeks to identify unique voltage output signatures 

for common problems in solar home systems.  These patterns will then be utilized 

to effectively identify similar problems in other systems. The fundamental 

research question driving our project is:  
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• Is it possible to create a tool that efficiently and effectively diagnoses 

common problems on affected solar home systems using unique voltage 

data gathered from problem simulations?  

Chapter 2 Background 

This paper analyzes several common causes of solar home system failure, 

as well as methods for their accurate detection.  A comprehensive literature 

review was performed in order to demonstrate the need for a detection tool, 

outline the major causes of system failure, and describe potential methods for 

problem identification. 

Team SHINE’s research adds to the existing literature by concentrating on 

an issue yet to be addressed by prior research.  This study is unique as there has 

been little research performed to address a way to use patterns from obtainable 

measurements, such as panel and battery voltage, in order to create a detection 

tool that informs users of the causes of reduced performance in their photovoltaic 

system. This detection tool will identify the causes of reduced performance in 

solar power home systems of the developing world and alert the user so the 

problem may be addressed.  

The first part of this literature review is an examination of the research 

previously conducted on each component of the system: the charge controller, the 

battery, and the panel.  These three parts are where the majority of problems arise 

with solar home system. Then, past studies that have attempted to solve these 

problems concerning solar home systems will be discussed.  
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2.1 Potential Problems of Photovoltaic Systems 

2.1.1 Charge Controller 

Charge controllers are important elements in photovoltaic systems. The 

controllers regulate the flow of current from the solar panel to the battery to 

ensure the battery is not overcharged or deeply discharged (Dunlop, 2001).  

Misuse or lack of a charge controller in a photovoltaic system may cause 

significant damage to the battery; therefore, proper use is vital to system health.  

Battery manufacturers often provide recommended charge regulation set-points so 

the battery can be kept at an adequate state of charge, avoiding the degrading 

effects of incorrect charging (Dunlop, 2001).  The literature has established 

charge controllers are an essential part of the solar home system, and their misuse 

or failure is a significant problem in the developing world. 

Charge controllers, as their name suggests, regulate the amount of charge 

to the battery.  There are two main types of controllers: “series” and “shunt”: 

since they have both proven to be equally effective in practice, the minor 

differences are not important for this study’s purposes (Instituto de Energia Solar, 

1998, p.20).  For more information on type and quality of charge controllers, see 

Appendix B.  The battery guide for solar applications published by the 

International Energy Agency lists several positive effects of utilizing a charge 

controller.  First, for a flooded lead-acid battery, a charge controller lessens the 

amount of water loss in the battery (meaning it has to be topped off less often) 

(International, 1999). Additionally, by limiting overcharge periods, the charge 

controller allows less acid to deposit in the battery’s electrodes (International, 
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1999).  This makes the battery easier to maintain, and will help the battery last 

longer. 

Previous research demonstrates the negative effects absence of or 

malfunctioning controller can have on the photovoltaic system.  A review of the 

literature on the subject shows about one-third of all solar home systems 

experience problems with the charge controller (Nieuwenhout et al., 2004, p.36).  

In one study, fourteen stand-alone photovoltaic systems were tested to determine 

the importance of charge controller set-points on preventing overcharge and deep 

discharge (Woodworth, 1994).  For two of these systems, the charge controller 

malfunctioned.  In the first case, the controller did not regulate the system at all, 

and it tried to charge the battery until sunset on clear days, ultimately 

overcharging in the battery. This severely corroded the positive grid (Woodworth, 

1994, p.940). In the other malfunctioning cases, the controller had no low-voltage 

disconnect, equating to a lack of protection against deep discharge.  Therefore, 

after a cloudy period, the controller could no longer function properly, which 

locked the overall system into a non-functioning state (Woodworth, 1994). This 

study demonstrates how a malfunctioning charge controller can drastically alter 

system health.  

In another study where photovoltaic batteries were treated over several 

years, authors found that when items with operating motors (such as refrigerators 

or pumps) are hooked up to a system, they can falsely trigger charge controller 

set-points (International, 1999).   These set-points are meant to keep the battery in 

the correct state of charge; if they are falsely triggered, the controller itself 
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becomes useless. This results in similar effects as if the charge controller is absent 

completely. In one study, 83 rural solar-powered communities in Mexico were 

surveyed and 555 batteries used in their system were tested.  One of the most 

significant findings was that malfunctioning charge controllers frequently result in 

battery failure.  For example, in one case, a battery cracked open because of the 

combination of a malfunctioning controller and the use of wrong battery caps 

(Huacuz, 1995, p.287). 

One of the most alarming issues with charge controllers can be completely 

controlled involves user interaction.  Approximately one third of solar home 

systems experience problems with the charge control. From this group, half of 

these systems are either missing the charge controller or it has been bypassed.  

One of the startling findings of the above Mexico study was that 21% of users 

utilized an override switch available on their charge controllers making the charge 

controllers pass the designed regulatory set points (Huacuz, 1995, p.292).  In 

Indonesia, 58% of respondents to a survey admitted they would bypass the charge 

controller after the low voltage disconnect went into effect (Nieuwenhout et al., 

2004, p.35).  Essentially, when the load should have been cut off to protect the 

battery from deep discharging, the users overrode this in order to continue to drain 

power from the battery. This type of activity drastically affects the heath of solar 

home systems overall.  

 We aim to build upon this literature by creating a system to detect when a 

charge controller is not working properly, whether due to user interaction or 

malfunctioning equipment. It has been shown that the controller is essential in 
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maintaining the health of a photovoltaic system, and therefore can be detrimental 

when the charge controller is not present or malfunctioning. Because this is a 

common problem in systems implemented in the developing world, its detection 

would be beneficial although bypassing of the charge controller may remain a 

problem.  

2.1.2 Photovoltaic Panel 

The photovoltaic panel is the means by which the sunlight is captured to 

feed the solar home systems with needed power. The solar panels are positioned 

at a near-horizontal angle to take advantage of the sun’s position in the sky at 

many locations close to the equator.  These environments can be arid and dusty, 

and they are sometimes prone to sandstorms.  This low panel angle and 

atmosphere causes sand or dust to accumulate on the surface of the photovoltaic 

panel, blocking out the sunlight.  Past research has shown that this can have 

several negative effects on the system as a whole. 

One study aimed to correlate the sand dust accumulation on the panel with 

loss of panel efficiency (Al-Hassan, 2005, p. 187). The authors did this by 

installing a system on the roof of a building in Kuwait and measuring the current-

voltage characteristics between a panel that was cleaned and another allowed to 

accumulate dust (Al-Hassan, 2005, p.190). The authors found the short-circuit 

current and the maximum output power decrease significantly as the amount of 

sand dust particles accumulated on the module surface increases (Al-Hassan, 

2005, 196).  They also estimated the decrease in photovoltaic module efficiency 

due to dust accumulation on module surface was approximately equal to 33% for 
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each 1 g/m2 of sand or dust accumulation (Al-Hassan, 2005).  They have shown 

dust on the panel significantly degrades the panel’s efficiency, thus affecting the 

overall system’s efficiency as well.  

In a similar study in Egypt, the effect of dust accumulation was measured, 

but this time using different tilt angles of the panels (Hegazy, 2001, p. 525). Nine 

glass plates were set up at different angles, and each was weighed after certain 

time periods to measure dust accumulation (Hegazy, 2001, p. 529).  The authors 

discovered the general level of solar transmittance decreased as the number of 

days of exposure to the environment increased (Hegazy, 2001, p. 531).  

Additionally, the tilt angle was found to be a factor. Hegazy concluded the more 

horizontally oriented the panels were, the more dust accumulated. A horizontal 

panel accumulated nearly double the amount of dust as a panel at 45 degrees 

(Hegazy, 2001, 529). This study further established the importance of tilt angle 

and environmental considerations.  

When solar home systems are implemented, users are commonly 

instructed to clean the panel.  A survey in Chile reported that 91% of users were 

instructed to clean their panels when the systems were first implemented 

(Nieuwenhout, et al., 2004, p.11).  Despite the instructions, the users did not 

perform this essential task. Many of the elderly members of the community were 

unable to clean the panels because the modules were too high to reach and some 

of the younger members even refused to clean them, as they did not understand 

the purpose (Nieuwenhout, et al., 2004, p.11). Studies have shown a large 

increase in efficiency if the panels are cleaned. For example, in Indonesia, 11 
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year-old photovoltaic panels that had not been regularly cleaned had an increase 

in power output from 32% to 57% of nameplate power once cleaned 

(Nieuwenhout, et al., 2004, p.11). 

These studies have shown dust and sand accumulation to be an important 

factor in the effectiveness of a photovoltaic system.  If the panel’s efficiency is 

reduced, the full potential of the system is also being reduced.  If users realize 

dust is accumulating early on, they can address the problem by cleaning the panel. 

2.1.3 Batteries 

Within the solar home system set-up, the battery is a crucial link between 

the solar panel and needs of the user. The battery serves as the storage device for 

energy coming from the solar panel, allowing users to utilize this radiation after 

the sun sets for light and other needs. However, due to the high demand placed on 

batteries in solar home systems, great care and awareness must be paid to this 

portion of the system. On a system lifetime basis, batteries contribute most to the 

life-cycle cost, and most of the serious problems with solar systems are battery-

related (Nieuwenhout et al., 2004, p.36). There are a group of common problems 

affecting solar home system batteries due to their use, as well as the intrinsic 

nature of the battery. These problems can be alleviated through the correct 

regulation of the batteries, and with many studies aiming to explore the exact and 

best regulation process needed to achieve this. To better understand the overall 

health of the battery within a system, there has also been extensive research to 

determine the state of health of batteries.  
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The battery is a crucial component of the photovoltaic system as it is the 

storage point for all solar energy to be utilized. Many different types of batteries 

exist for this purpose including Lead-Acid, Nickel-Cadmium, and Nickel-Lead 

batteries. Each of these types of batteries has unique characteristics and 

components, as well as advantages and disadvantages. The most common form 

for photovoltaic systems is the Lead-Acid battery. It will be discussed at greater 

lengths due to its significant prevalence. 

2.1.3.1 Types of Batteries 
Batteries are divided into primary and secondary categories. Primary 

batteries can only be used once, as the chemical reactions that occur within them 

are irreversible and use up all active material (Linden & Reddy, 2002). These 

batteries are commonly used in applications such as flashlights, radios, and toys. 

Secondary batteries, also known as rechargeable, can be used, charged, and 

reused. This means the chemical reactions are able to be reversed for regeneration 

of the active materials. These batteries are used in a wide variety of applications, 

from cars to lighting to PV systems. In particular, PV systems utilize one of three 

types of secondary batteries: Lead-Acid, Nickel-Cadmium, of Nickel-Lead 

(Kiehne, 2003).  

2.1.3.2 Lead Acid 
Lead-Acid batteries are composed of plates, lead, and lead oxide. The 

system is set-up with a positive electrode, negative electrode, and electrolyte 

solution. The batteries work on the premise of a reversible chemical reaction 

involving the oxidation of lead. The battery needs all of the active materials, 

including those located at the positive electrode, negative electrode, and 
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electrolyte to function. The reaction of lead and lead oxide (located on the plates) 

with the sulfuric acid electrolyte produces a voltage (Linden & Reddy, 2002). 

 The positive electrode can be structured in various ways, including a 

pasted grid, tubular plates, or rod plates. The positive electrode’s purpose is to 

supply electrons that allow charging of the battery. Pasted grid plates are 

commonly used in car batteries due to the high amount of energy, but low deep-

discharge ability. The plate is a lead grid through which material passes. This is 

typically lower in price, however corrosion is common as material passes through 

the plates, meaning limited reliability and unknown lifetime. Tubular plates are 

another option, composed of a lead spine with plastic tubing around it with the 

active mass between these components. This format allows for high energy for a 

given volume and good deep discharge properties. Rod plates are the final 

common type of positive electrode, composed of vertical rods with the active 

mass around the rods in an enclosed pocket. These ensure thorough use of the 

active material, giving a high current ability and reliance (Berndet, 1926). 

 The negative electrode of Lead-Acid batteries is always made of a 

pasted grid plate, composed of spongy lead in comparison to the lead oxide of the 

positive electrode (Berndet, 1926).  

 The electrolyte of Lead-Acid batteries is diluted sulphuric acid. 

Throughout the reaction the sulphate ions are consumed as discharging occurs, 

while during charging the strong acid is regenerated at the surfaces of the 

electrodes (Berndet, 1926).  
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 This basic structure to the Lead-Acid battery is kept throughout the three 

main types based on construction: Flooded, Gelled and Absorbed Glassed Mat. 

Each of these types of batteries has qualities which make them valuable for 

different applications. Lead-Acid batteries can also be divided into categories 

based upon application: Automotive, Marine, and Deep Cycle (Baxton, 2006).  

2.1.3.2.1 Construction 

2.1.3.2.1.1 Flooded/Open 
Flooded Lead-Acid batteries, also known as Open Lead-Acid batteries or 

wet batteries, were the first type of battery designed in the category. These 

batteries are known as wet due to the liquidity of sulphuric acid solution. They 

have removable caps to allow topping off of the solution and small vents, making 

them open. During operation, hydrogen and oxygen are produced at the 

electrodes. These gases are allowed to vent from the battery through the small 

holes in the top (Baxton, 2006). In the case of over-charging, these batteries can 

lose large amounts of water via the vents. For these reasons related to the charge 

cycle, flood lead-acid batteries must have their solutions topped off frequently. 

They are potentially very dangerous due to the liquid electrolyte within them, 

making them difficult to use in some applications. They also must be kept in 

open, well ventilated areas to ensure the fumes are allowed to be expelled from 

the area. These batteries are relatively cheap, making them the most common in 

many rural implementations of PV systems where the disadvantages do not 

outweigh the need to be cost efficient (Crompton, 2000).   
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2.1.3.2.1.2 Gelled 
Gelled lead-acid batteries are sealed batteries, with a few being valve-

regulated. Valve-regulated designated the battery as a recombinant battery, where 

the oxygen and hydrogen generated during operation on the electrodes will 

recombine, eliminating the loss of water of other batteries. These batteries use 

gelled acid, where the electrolyte has been added to silica gel, resulting in a less 

hazardous battery that does not need to be maintained in a constant upright 

position. They are more resistant to temperature and movement problems. 

However, gelled lead-acid batteries need a slower charge rate to prevent excessive 

gassing and a lower charge voltage, as overcharging can leave holes in the gel 

matrix which reduces capacity of the battery (Crompton, 2000).  

2.1.3.2.1.3 AGM/VRLA 
Absorbed Glass Mat batteries, commonly known as dry batteries or valve 

regulated lead-acid batteries, are distinct due to their boron-silicate glass mats 

located between electrode plates within the battery. These batteries are also sealed 

completely against fumes leaving and do not leak any type of acid if broken. 

There is no continuous maintenance required and water loss is limited via the 

same mechanism found with the gelled lead-acid batteries. These batteries are 

very useful for PV systems because of their ability to be placed in almost any 

location without needing to consider venting or temperature. Their low self-

discharge rate and sealed nature are also beneficial. These batteries are 

significantly more expensive than the alternatives, limiting their use (Anthony et 

al., 2004).  
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2.1.3.2.2 Applications 

2.1.3.2.2.1 Car 
The car battery, also known as the starting battery or SLI (Starting, 

Lighting, Ignition) battery, are batteries commonly used for the starting and 

running of engines. These batteries provide a surge of current for a short period of 

time, which works well for starting engines. The plates within these batteries are 

often very thin, porous (sponge-like), and very numerous. The design of the plates 

is to increase the overall surface area to allow for the large surge of current 

needed. In cars, once the initial ignition occurs, the alternator takes over as the 

power source. Starting batteries are never drained more than 20% of the total 

capacity. When this type of battery is put through deep cycles the porous plates 

are consumed and can no longer function. This leaves the battery working well 

below the initial capacity and, eventually not able to function at all (Dell & Rand, 

2001).   

2.1.3.2.2.2 Deep Cycle 
The deep cycle battery is constructed of much thicker plates than the other 

types, which allows prolonged discharging. Unlike the other two types of 

batteries, deep cycle batteries are able to be discharged to as low as 20% of 

capacity many times with minimal overall capacity loss (Dell & Rand, 2001). Not 

only are the plates of the deep cycle battery thicker, they are usually made of solid 

lead. The main purpose of this battery is to deliver a sustained voltage to its load 

over time. Deep-cycle batteries are typically used in PV applications, as well as 

for backup power and other applications needing long, continued energy (Farret & 

Simões, 2006). Although, deep cycle batteries can be reduced by 80% of their full 
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capacity, it has been found that only discharging to 50% of capacity can double 

the lifetime of the battery.  

2.1.3.2.2.3 Marine 
Marine batteries can be considered a hybrid of the car and deep cycle 

battery. The plates of the marine battery are porous; however the material is 

coarser than that found in starting batteries. This ensures the battery will still 

generate considerable starting power, but will be able to function over a longer 

period of time, similar to a deep cycle battery (Payne, 2003).  

 

2.1.3.3 Nickel Cadmium Batters 
Nickel Cadmium batteries are a type of alkaline storage battery. These 

batteries consist of a positive active material of nickel oxide and a negative area 

containing cadmium. This type of battery boasts advantages such as low self-

discharge rates, they are non-freezing and have a long life if not used with high 

frequency. However, there are disadvantages to these batteries that make them 

very difficult to use in PV systems. The disadvantages include low efficiency 

relative to lead-acid batteries and non-standard voltage and charging. From an 

economical standpoint, nickel cadmium batteries are also of limited applicability 

as they are very expensive and have a high disposal cost, as cadmium is very 

hazardous and has specific disposal procedures (Kiehne, 2003).  

2.1.3.4 Nickel Lead 
 Nickel lead batteries are an alternative to the lead acid and nickel 

cadmium types of batteries for PV systems. Nickel lead batteries have anodes 

made of a steel wool substrate with the active material being iron. The cathodes in 
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this design are made of nickel plated steel wool with nickel as the active material. 

The electrolyte is potassium hydroxide (Gaters Energy Products, 1997). Although 

these batteries can be used in PV systems, their disadvantages far out weight any 

potential advantages. For instance, they are known to have very low efficiency, a 

high rate of self-discharge, high water consumption, high internal resistance 

(inconsistent voltage across cells which can cause lower capacity), varied output 

of voltage, and these batteries must typically be very large. Due to the high self-

discharge rates, these batteries often necessitate a much large solar panel for 

charging to make up for the energy loss and are difficult to use for lighting as the 

changing voltage causes fluctuating light (Farret & Simões, 2006).  

2.1.3.5 Cycles  
Lead-acid batteries are most often used in PV systems, the cycling patterns 

of this battery will be further examined. The basic cycle consists of a charging 

phase and then a discharging phase. As a group the lead-acid batteries follow a 

similar pattern, with potential problems being examined at great length once the 

normal pattern has been established.  

2.1.3.5.1 Charging 
Charging of lead-acid batteries occurs in four distinct stages. The first 

stage is the main charge, where the battery achieves charging between 90% and 

95% of full capacity. The next stage, top-off charge, will bring the battery to its 

full 100% charging capacity. The equalization charge is achieved when the 

maximum charge level has been reached by all cells within the battery, often 

facilitated by a special controller. Reaching the equalization charge will help 

ensure maximization of the battery’s life. The final charge state is the 
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maintenance charge, the least frequent charging stage. Here the goal is to ensure 

the battery stays at full charge (Crompton, 2000). For lead-acid batteries, charging 

is known as “opportunity charging,” because the battery may only be partially 

utilized between charging capable times, such as during the day, the battery is 

rarely fully drained and therefore the battery is partially charged very frequently 

(Baxton, 2006).  

2.1.3.5.2 Discharging 
 Lead-acid batteries begin to discharge when a load is applied to them. A 

chemical reaction occurs between the sulfuric acid and the lead plates which 

generates a coating of lead sulfate on both the positive and negative electrode. 

This process is known as sulfation. The batteries voltage will drop as the sulfation 

continues, with the electrodes being covered in a very thick layer of lead sulfate. 

At this point the battery is completely discharged. Recharging will facilitate the 

reaction of lead sulfate back to sulfuric acid and lead (Gaters Energy Products, 

1997).  

2.1.3.6 Potential problems 
The complex charging cycles of lead-acid batteries result in a few common 

potential problems that are frequently encountered in PV systems.  

2.1.3.6.1 Overcharging 
Overcharging occurs in PV systems when the battery is allowed to charge 

even when the battery is at full capacity. This situation can occur on very sunny 

days, where the PV panel absorbs a large amount of solar radiation, or if the 

battery has not been completely discharged (Lugue & Hegedus, 2003). 
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Overcharging can cause damage to the battery in several ways. For “wet” lead-

acid batteries, the most common type in PV systems, overcharging can result in 

bubbling of the electrolyte fluid. As the acid is stirred, gas can form and be 

released. This is called gassing. The electrolyte fluid will become more acidic and 

begin to fizz, putting potentially harmful chemicals into the air. If not in a highly 

ventilated area, gassing can be extremely dangerous for people in the vicinity. 

Gassing is not healthy for the battery, and can result in lowered electrolyte levels 

in the battery. This will expose the electrodes to air and decrease the capacity of 

the battery permanently and can increase corrosion. The high temperature of the 

battery during overcharging will also increase the corrosion rate.  Corrosion 

occurs at the electrodes. This can result in active material falling from the 

electrodes and severely decreasing capacity for charging over time (Farret & 

Simões, 2006). To eliminate this problem, a charge controller should be utilized 

to ensure overcharging is stopped. Levels of electrolyte should also be checked 

and re-filled as needed. If overcharging patterns are identified early, the user can 

implement changes to ensure this does not continue (Lugue & Hegedus, 2003). 

One possibility is covering the PV panel on especially sunny days if the battery 

has not been used frequently. Another possibility is discharging the battery on a 

nightly basis, by always leaving a light running. This will ensure the battery is 

drained by the next day’s sun to make sure overcharging does not occur (Solar 

Energy International, 2004). Users should also stay aware of the noises and gases 

coming from the battery, and ensure it is in an open area where it can be observed.  
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2.1.3.6.2 Deep discharging 
 Deep discharging occurs when a lead-acid battery is allowed to 

discharge, then remains in a very low state of charge for an extended period of 

time. It is defined as discharging a battery below 20% of its full capacity (Lugue 

& Hegedus, 2003). This can lead to lead sulfate being left on the electrodes within 

the batteries, a condition known as sulfation. Sulfation slows down the charge and 

discharge reactions. It also causes longer charging times, incomplete charging, 

and excessive heat generation. Even with a charge controller, this slowing of the 

reactions can cause the controller to cut-off charge and discharge cycles at 

inappropriate times. In this way the battery will lose capacity earlier and age 

quickly (Bergveld et al., 2002). If lead sulfate is allowed to stay on the electrodes, 

lead sulfate crystals can form. These crystals are very hard and impossible to 

remove from the electrodes in a safe manner by the average user. Therefore, it is 

known as irreversible sulfation. Deep discharge can also be avoided by using an 

appropriate charge controller (Lugue & Hegedus, 2003). However, once 

irreversible sulfation has occurred on a battery’s electrodes, the battery can never 

regain full capacity and should be replaced. If a PV system is being used 

frequently and/or for long periods of time, the user may want to find alternative 

ways to provide electricity or try to lower the use (Solar Energy International, 

2004). This is a hard process to monitor as the voltage changes primarily occur 

within the battery, however decreased capacity coupled with high usage would 

indicate a deep discharge problem.  
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2.1.3.6.3 Correct Battery Use 

2.1.3.6.3.1 Overcharge 
Overcharging of the battery is a common contribution to the failure of 

photovoltaic systems in rural applications. Widespread literature has shown 

overcharging can damage the battery in several ways, and several previous studies 

have attempted to simulate the effects. 

Overcharging has been documented as one of the main causes of 

decreased performance in the most common battery types utilized with 

photovoltaic systems, Valve-Regulated Lead-Acid batteries (VRLA batteries). 

Within this larger category of batteries, there are several subsets including flooded 

lead-acid, gelled electrolyte, and Absorption Glass Mat batteries, with the latter 

two being classified as sealed lead-acid battery devices. One study utilized 

batteries post mortem from photovoltaic systems to discover the impact of over-

charging on the VRLA batteries. The batteries were first run in a standard solar 

home system, with a variety of different VRLA batteries being used under 

varying conditions. The battery was allowed to cycle through the charge-

discharge process, just as they would in real life applications. It was found 

recrystallization of the positive electrode of the battery during discharge was the 

primary cause of problems with the battery. This recrystallization build-up 

decreased the batteries ability to recharge over time, resulting in poor 

performance of the battery overall (Mattera et al., 2003).  

 When a battery is overcharged, there is an increase in gassing (Dunlop, 

2001, p.276). The acid in the battery cell is stirred and gas evolves because of 

chemical reactions taking place inside the battery, concentrating strong acid and 
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thus increasing the corrosion of the battery electrodes (Yang, 2006, p.286). 

Overcharging can also create excess heat production, which can further accelerate 

the ageing of a battery (Spiers, 1995, p.246).  The charge controller attempts to 

restrict overcharging for these reasons, but as shown in an earlier example, the 

controller cannot always be relied upon.  In one study, a battery without 

overcharging protection was tested to see how the lifetime of the system was 

affected (Yang, 2006, p.284).  It was found if overcharging occurs in about six 

months out of a year, then the lifetime of the battery is about half the expected 

lifetime after two years of this pattern(Yang, 2006, p.286). 

 Batteries are especially susceptible to overcharging in photovoltaic 

applications.  First, many of the batteries used in these systems are valve 

regulated lead-acid batteries.  Electrolyte cannot be added to these batteries 

(unlike flooded lead-acid batteries), thus, their tendency for overcharging 

increases (Dunlop, 2001, p. 276). Overcharging can occur during the summer 

because batteries are overcharged during periods of intense sunlight (Yang, 2006, 

p. 285). 

Overcharging is a serious problem that affects the ageing of the battery, 

and it is especially common in photovoltaic applications.  By analyzing this along 

with other problems in our study, we aim to detect overcharging early, so as to 

lessen its harmful effects. 

2.1.3.6.3.2 Deep Discharge 
Deep discharge has also been established as a major cause of ageing for 

batteries in photovoltaic applications (International, 1999, p.8). Deep discharge 
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occurs when the battery is drained below an adequate state of charge, and it can 

result in a permanent loss of charge capacity as well as poor rechargeability. 

In one study, tests were conducted on lead-acid batteries for a six-year 

period under simulated photovoltaic conditions (Spiers, 1995, p.247). The 

researchers found that after a long period of deep discharge, batteries suffer from 

some overall capacity loss (Spiers, 1995, p.251). This capacity loss results in the 

battery being unable to fully charge.  Additionally, a deep discharge at a low rate 

means that the battery plate’s active materials are being utilized more than normal 

due to the extended time and lower charge state.  If this occurs (e.g. during a 

period of very cloudy weather), the battery can be very slow to fully recharge 

(Spiers, 1995, p. 246). 

 In another study, batteries used in photovoltaic systems were examined 

post-mortem (Mattera, 2003, p. 248).  For batteries used in stand-alone domestic 

applications, the following problems were discovered: (1) Irreversible sulphation, 

as evidenced by a high lead sulphate presence in the charged positive and 

negative plates, (2) Electrolyte stratification, in which the lead sulphate gradient 

between the top and the bottom of the positive plate and negative plate indicates 

the presence of electrolyte stratification in both plates, (3) Formation of a 

corrosion layer at the positive grid-active mass interface, and (4) Textural change 

of the active mass- decrease in the porosity of the positive active mass (Mattera, 

2003, p.250). These are all factors that cause a battery to age.  Similar to previous 

studies, this study found poor rechargeability results after a long period of deep 

discharge.  This occurs because the deep discharging causes a distribution of new 
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crystals on battery plates leading to poor electronic contact making recharging 

more difficult (Mattera, 2003, p.256). 

 These studies have shown that deep discharging can cause serious 

problems in photovoltaic systems.  Batteries suffering from deep discharge 

become unable to charge completely and lose their effectiveness over time.  We 

will take this research a step further by aiming to create a way to detect deep 

discharging aiming for early changes in the system functioning to prevent long-

term negative effects. 

2.1.3.7 Regulation of Battery 

2.1.3.7.1 Need for voltage cut-off 

Many studies have considered how to best eliminate the overcharging of 

VRLA batteries. In fact, a variety of studies went about this in a similar format to 

our study. In one study, researchers took batteries attached to simulators to mimic 

typical patterns in charging and induced overcharging on a portion of the 

batteries. Through evaluation of parameters over time, including porosity, 

electrode balance, acid compensation, and other factors, it was found some sort of 

protection was needed to ensure batteries stayed within specific ranges of charge, 

ensuring overcharge did not happen. In many instances, it was also noted 

temperature compensation needed to be factored into these limits as well. The 

research indicates that with protection and temperature factors, there could be 

limits set to regulate the batteries to best prolong life and avoid unhealthy 

charging cycles (He et al., 2001). 
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2.1.3.7.2 Finding correct cut-off 

The need for exact limits on voltage for batteries led to an increase in 

research investigating how to find appropriate cut-off points for batteries. These 

voltage cut-offs are a necessity to prolong life and health of VRLA batteries in 

use. One study looked to supply this information, using previous data and 

mathematical simulations to find cut-off voltages for a given group of common 

VRLA batteries, looking for both the gassing voltage and end-of-charge voltage. 

An equation was determined whereby batteries could be regulated within a given 

range of voltages (Vela & Aguilera, 2006): 

( )( ) ( )TcIbaV gggg Δ+⋅++= 11ln  (2.1) 

( )( ) ( )TcIbaV fcfcfcfc Δ+⋅++= 11ln  (2.2) 
 
In which, Vg is the gassing voltage, I is the charge current, ∆T is the temperature 

deviation from 25 degrees Celsius, and a, b, and c are empirical parameters to be 

determined for each battery.  In the second equation, Vfc is end-of-charge voltage.  

These equations factor in current rate and temperature to better approximate what 

these cut-offs should be. However, this was impossible to apply to a wide range of 

batteries consistently due to their design differences, but still established a means 

for finding these voltages experimentally for maximizing operational efficiency in 

regulation (Vela & Aguilera, 2006).   

2.1.3.7.3 Floating Charge Regulation 

The ability of a system to cut off voltage when a battery is charged 

completely has been established as crucial to prolong battery life. Regulation of 

batteries was taken a step further with research examining the concept of floating 
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charge regulation, where the regulatory set points for charge control change 

dependent on the circumstances. Due to the complex nature of batteries, there 

were a variety of floating charge schemes proposed to account for the changing 

environment of a battery and the changes within the battery itself. In one study 

five of the most common floating charge regimes were analyzed: constant voltage 

charge, constant current charge, constant current-constant voltage charge, 

intermittent charge, and interrupted charge control. Temperature was also 

considered within this floating charge, as temperature has proven to have a drastic 

affect on VRLA batteries. Ultimately, the study found the interrupted charge 

control regime was most effective in regulating batteries’ end voltages, lowering 

the amount of overcharging and deep-discharging occurring within the batteries 

(Wong et al., 2008).  

2.1.3.8 Incorrect Type of Battery Used 

Another problem affecting photovoltaic systems is the use of car batteries, 

as opposed to the appropriate deep-cycle batteries.  Though some batteries are 

made specifically for photovoltaic purposes, car batteries are often used because 

of local availability and lower costs (Huacuz, 1995, p. 287).  They are the the 

cheapest to purchase in terms of nominal capacity.  Additionally, because they are 

produced locally, these batteries can be recycled; this can reduce possible 

negative environmental side effects of batteries being disposed incorrectly 

(Instituto de Energia Solar, 1998, p.12). 

 Nonetheless, automotive batteries, specifically designed to provide 

cranking power to motor vehicles, are problematic in photovoltaic applications.  

The plates in car batteries are not as thick as in a deep cycle battery, as they are 
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only meant to provide short periods of output (for starting the vehicle), whereas 

deep cycle battery provide long continuous output. Therefore, they are very 

sensitive to deep discharge, and have a short lifetime in photovoltaic systems 

(International, 1999, p.14).  For this reason, deep cycle batteries are recommended 

for photovoltaic applications, since they have a much larger battery lifetime and 

therefore reduce costs in the long run.  Another possible alternative are modified 

car batteries.  These batteries are altered so that their plates are thicker and they 

include a larger quantity of acid solution.  This provides for a battery that is still 

relatively inexpensive and has a longer lifetime than conventional automotive 

batteries thought still lower than deep cycle battery (Instituto de Energia Solar, 

1998, p.13). 

 Due to the common incorrect use, part of our project was designed to 

simulate the use of a car battery for a photovoltaic system.  Because these are 

used often, especially in systems implemented in the developing world, we have 

further studied the effects of the use of these batteries on the health of the 

systems. 

2.2 Solutions 

2.2.1 Maintenance Changes 

Implementing solutions to these common problems can be both 

burdensome and time consuming, varying by location. When the systems are 

located closer to metropolitan areas, solutions may be more widely available as 

there are more resources present. In remote areas, implementation can become 

very costly and difficult to arrange. This difficulty can stem from a lack of 
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understanding of the solutions as well as overly complex regulations that may 

limit the movement of the materials necessary for these solutions (Zahedi & 

Hallenstain 2007, 108). A major hindrance is associated with the very high cost of 

getting information back to a location to be processed (Mapako 2005). Some 

systems use satellites to monitor and then send information to centralized 

locations to allow recognition of problems arising with panels, though this is 

expensive and mainly used in grid-connected photovoltaic systems (Drews, 2007, 

p. 563). Perhaps a more efficient and effective method for monitoring off-grid 

systems would be a device to diagnose problems via direct attached to the 

systems.   

2.2.2 Educational Solutions 

Solar home systems require regular maintenance, as previously explained, 

to stay highly functional and effective. This maintenance must be continuously 

assessed and adopted to the demands of the system. Beyond simple maintenance, 

the system must be treated in a manner it was designed for, including use of a 

charge controller, correct charge controller set points, and correct battery usage. 

These aspects must all be clearly explained to the user to maximize system 

performance. Unfortunately, in a considerable portion of photovoltaic systems 

implemented in rural communities, implementation occurs by groups (non-profit 

organizations, etc.) visiting for a short time only to implement systems and then 

vacate the areas (Mapako 2005). This leaves many of those with the new systems 

lacking a clear understanding of the types of services needed on the system. The 

systems begin to degrade over time due to a lack of adequate information 
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provided to users (Gustavsson 2005, p. 557). Educational solutions have been 

implemented with the systems in some cases, and in other situations these 

solutions are implemented at a later date. These solar home systems are meant to 

be sustainable without continuous replacement of components. User training 

models have been developed to address the lack of educational resources upon 

implementation and aim to rectify the current problems (Adiyabai, 1982, p. 2272). 

However, problems will still arise regardless of the educational system put in 

place due to the complex nature of the systems. An efficient tool is still needed to 

quickly diagnose problems with the photovoltaic systems and provide the user 

instructions as to what step are needed to rectify the problem. 

2.2.3 Testing Battery Health 

Although a system for regulating voltage of VRLA batteries has been 

established, testing must still occur to indicate the health of a battery and to 

understand what parameters may be affecting it. Assessment of battery health can 

be achieved by a variety of means, ranging from a purely experimental in lab 

approach to a system designed based data from batteries in the field. The 

estimation of lifetime based on state of health for batteries has become a very 

important field as batteries are the weakest link in the photovoltaic system. 

2.2.3.1 Basic Model 

Basic equations for understanding the state of health of a VRLA battery have 

been established, with small variations in the equations dependent on the number 

of parameters factored into the original design of the experiment. One study was 

designed to consider a rather large number of parameters, such as electrode 
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morphology, electrode porosity, and acid concentration. During a simulation 

using batteries in a controlled setting, these factors were all monitored on a 

variety of VRLA batteries to ensure the model would not be extremely limited to 

one type of battery brand. From these data, a model was designed to test the state 

of battery health, and then tested against additional data from other laboratory 

experimentations. The model uses measurable temperature and voltage data to 

predict things such as reaction rate, porosity, acid concentration, and water dry-

out. It is a good representation of the type of variable used to evaluate systems in 

the field, although its applicability is limited due to the large number of 

measurements which must be taken to fill all the variables within the equation 

(Tenno et al., 2002).  

2.2.3.2 Changing model for temperature 

The complex nature of solar home systems makes it vulnerable to many 

factors possibly affecting the functioning of these systems. Temperature, as 

discussed previously, can have dramatic effects on the degradation of VRLA 

batteries. Temperature has been proven to change the discharge and charge rates 

of the batteries, as well as overall battery functioning. Therefore, temperature 

must be factored into the health test of a battery. One study achieved this by 

applying a wide range of temperatures to batteries running through the charging 

cycle within the lab (Tsujikawa et al., 2009). From the current and voltage output 

of these systems, as well as a previously established equation for the health of a 

battery, the study was able to establish a deterioration degree to be applied as an 

addition to the original equation of health. This deterioration degree allows one to 
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factor in varying temperature on the average life of a battery, making the health 

equation more valuable to those using systems in areas where the temperature can 

reach extremes (Tsujikawa et al., 2009). It is recommended other studies be 

conducted to find an understanding of how varying parameters affect the systems.  

2.2.3.3  Using Voltage to Diagnose 

Voltage of photovoltaic systems is an important indicator of the health of 

the system overall. There are typically normal voltage ranges designated by the 

manufacturers for both the battery and the panel. In a healthy solar home system, 

the recorded voltages will be in these ranges when the system is first 

implemented; if the new system is not within these ranges, it is an indication the 

photovoltaic system is malfunctioning in some manner.  

In one study, it proposed to use battery voltage to diagnose the health of a 

battery in solar home systems. In this research, the problems studied were similar 

to the ones we analyzed (dirty panel, lack of charge controller). These researchers 

created a method of early detection based on comparing expected battery voltage 

versus actual battery voltage. For the “expected voltage,” they created a model 

that estimated a healthy battery’s voltage over time; this could be compared to the 

voltage of a solar home system battery in actual application. Then, if there was a 

discrepancy between this expected voltage and actual, a problem could be 

detected (Lorenzo and Labed, 2005). Our experiment is similar, except that we 

are measuring voltage between systems with problems and controls where all data 

is actually collected and not theoretical. It was suggested in the article, as the 

authors mention that rather than using expected voltages, one could use voltages 
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from a newly implemented system to collect data (Lorenzo and Labed, 2005, p. 

258).  These authors were limited in only proposing a detection system, no 

method was created.  We intend to pursue this recommendation by identifying 

what problems are actually occurring, as opposed to simply determining whether 

the system is healthy or not, and designing a potential tool for detection.  

2.2.3.4 Central Lab Testing 

Often the problems exhibited by the systems stem from incorrect battery 

maintenance. Lack of, or incorrect maintenance can be a cause of overuse of the 

battery or overall neglect of the battery. To attempt to diagnose some of these 

battery problems, laboratories have been built to serve as test sites for rural 

communities.  Users bring failing or malfunctioning batteries to this central site, 

and tests are conducted to determine the problem.  Causes of battery failure or 

inefficiency are determined by putting the batteries through a multitude of 

elaborate tests designed by engineers; these tests consider several aspects of the 

battery’s condition, including voltage and current (Diaz, 2001, p. 363). Although 

this central lab concept does offer advantages to those with solar home systems 

and malfunctioning batteries, there are significant disadvantages.  The overall 

maintenance of such an operation proves very costly and once the problem is 

identified, it can often be too late to fix the battery (Diaz, 2001, p.373). This 

leaves those who operate the labs with high operating costs and those who use the 

services with the burden of bringing their batteries to the locations.  Additionally, 

since the battery often cannot be repaired, this can be a waste of time and 

resources (Diaz, 2001, p. 374). Overall, this shows the system to be inefficient on 
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both ends of its use, for those running the laboratories and the user. Our system 

aims to alleviate this burden from both ends by designing a system that does not 

require movement of any portion of the photovoltaic systems, but rather allows 

the technology to come to the system to assess the batteries in the community 

setting.  Our diagnostic tool has the potential to prove more efficient and effective 

in dealing with battery problems in these systems overall.  
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Chapter 3 Methodology 
 
 The purpose of this research is to improve the detection of problems 

affecting solar home systems in developing countries. Team SHINE designed 

algorithms which utilize patterns in voltage output as ‘fingerprints’ for five 

common problems. The research aimed to answer the following question: Is it 

possible to create a tool that efficiently and effectively diagnoses common 

problems in small solar home systems? 

Team SHINE answered this question by using a true experimental design. 

The experiment employs photovoltaic systems with five artificially induced 

problems which represent common issues observed in solar home systems 

including dirty panel, overcharging the battery, deeply discharging the battery, 

lack of a charge controller, and use of a car battery. These five problems are 

commonly observed in solar home systems in the developing world.   

3.1 Preliminary Experimentation 

 The purpose of the preliminary experiment was to demonstrate the visible 

effect dirt buildup had on the voltage output of solar home systems, using a small 

scale example.  This was essentially a preliminary version of the full scale dirty 

panel test. The system was assumed to be healthy, as it was new at the beginning 

of the trial run.  Two solar garden lights were placed outside for approximately 48 

hours (9:21 PM, 21 September to about 11 PM, 23 September) with no 

intervention in Annapolis, Maryland.  One was left as normal and the other was 

made artificially "dirty" by sprinkling flour onto clear adhesive tape and then 

placing the tape over the solar cells. The voltage for both lamps was recorded 
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every two minutes utilizing a small data logging device connected to the light’s 

battery terminals. The results are displayed in Figure 2.  

 

Figure 2: Voltage of a clean vs. dirty panel for two solar garden lights 
 

Both lamps follow approximately the same voltage curve while they are 

exposed to the sun, but when the sun sets, the voltage of the battery in the lamp 

with the "dirty" panel drops more quickly than the "clean" lamp. The light was 

visibly much dimmer as well. Perhaps even though the panels are at the same 

voltage during the day in full sunlight, the "dirty" panel isn't able to supply as 

much current to the battery, and thus the battery loses its charge more quickly 

when subjected to the same load at night. The results of the preliminary 

experiment were important to our research because it demonstrated that the 

induced problem caused detectable changes in voltage output when comparing the 

clean and dirty panels. 

3.2 Location and Mounting of Panels 

The solar panels for Team SHINE’s experiment were placed on the roof of 

the Glenn L. Martin Engineering building on the University of Maryland, College 

Park campus (Figures 3 through 7). This location was chosen for a few key 

reasons. First, the location of the building allows for unobstructed sunlight during 

Dirty Panel 

Clean Panel 
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the day, minimizing the need to consider shade in the final results. The building is 

oriented in an East-West direction which allowed the panels to be mounted so that 

they faced south, where they would receive the most direct sunlight. The 

building’s roof also allowed for access to an office closet where other necessary 

equipment for the experiment was placed including; batteries, charge controllers, 

and a laptop computer for data collection and processing. 

 

 

Figure 3: Team SHINE members mount solar panels on the roof of Martin Hall. 
 

The angle of the panels was the next consideration in the mounting 

process. After researching past experiments involving solar panels and other 

documented set-ups similar to that of our research, it was decided to use the 

following equation for the angle (θ) of the solar panels: θ = Latitude + 15º 

(Landau, 2002, Robinson).  The location of the testing, College Park, Maryland, is 

at 38.9839 º of Latitude, meaning that the angle of the panels was found to be 
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53.9839º, which was rounded to 55 º. This equation maximizes the average 

exposure of the panels to sunlight throughout the entire year. Although changing 

the angle of the panels throughout the year would yield the highest amount of sun 

exposure, this technique was not employed because it is not commonly 

recommended in developing countries.  This is due to the fact that manually 

changing the angle would require additional work and would risk damaging the 

modules.  Additionally, there is a risk of losing additional energy if the angle is 

set improperly (Instituto de Energia Solar, 1998, p.10).  Another reason for 

limiting the systems to one angle is the limited knowledge of the average user. 

Finally, this is also the best way of simulating solar home systems in developing 

countries, where the angle is usually fixed after implementation. 

Once the angle and location for the panels was decided, the mounting was 

designed. On the roof of The Glenn L. Martin Engineering Building there are 

several rows of anchored metal hooks that are oriented in an East-West direction. 

These hooks served two purposes. They provided a line along which to orient the 

panels once mounted to other support. They also acted as a strong anchor into the 

building, ensuring limited movement of the mounted panels.  
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Figure 4: Team SHINE members build mounts for the panels. 
 

Eighteen small panels were mounted on a structure made of plywood and 

2” x 4” supports.  The basic design of the structure is a long triangular tube, 

consisting of 2” x 4” wood right triangles with angles of 55, 35, and 90 degrees. 



 

 
 

44

 

Figure 5: Birds-Eye View of Mounted Solar Panels
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Figure 6: Panels mounted on the roof of the engineering building. 

 
The plywood frames were then anchored to the hooks on the roof using pipe 

straps and screws. The frames were further held down by weights placed throughout their 

length, to ensure that no lifting force from wind could move the structure.  

 

Figure 7: Team SHINE members fasten mounts to the hooks on the engineering roof. 
 
3.3  Simulation of Problems on Systems 

In order to gather data for training and testing our detection algorithms, we 

constructed a set of small solar home systems similar to those found in the developing 
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world. Our test set consisted of eighteen systems, divided into six groups of three. Each 

group represented one of the six conditions for which we are testing: Healthy (control 

group), Dirty Panel, Overcharged Battery, Deeply Discharged Battery, No Charge 

Controller, and Car Battery. For each condition, we altered the systems to induce the 

problem. Each problem was induced on three systems simultaneously in order to mitigate 

variations that might have occurred in each individual system. 

3.3.1 Control System 

The “Healthy” or control system was the standard by which the systems with 

induced problems were compared. These systems were constructed with 6.4W 10V thin 

film silicon solar panels, 12V 5Ah sealed lead acid batteries, charge controllers, load 

switching circuitry, and a 35Ω load. The specifications for this design are based on those 

of systems installed by the Light Up The World Foundation (LUTWF) in rural villages in 

the developing world (Solar Electric). Figure 8 shows a schematic diagram of the control 

system's construction. 
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Figure 8: Control (Healthy) System 
 

During the day, the charge controller regulates the flow of current from the solar 

panel to the battery in order to prevent overcharging. At night, a timer switches on, 

causing the power transistor to conduct, and allowing current to flow through the load. 

By Ohm's law, the current through the load will equal the battery voltage, minus a small 

drop across the power transistor, divided by the load resistance. Assuming 12.6V for a 

fully charged lead-acid battery, about 1V for the transistor drop, and a 35Ω load, the 

current will be about 330mA, reasonably close to the 300mA current specification for the 

1-watt white LEDs used in LUTWF's systems. 

To protect against deep discharge, either the charge controller or a comparable 

external circuit of our construction interrupted current flow to the load when the battery 

voltage fell below 10.5V. The low voltage cutoff circuit is described in Section 3.3.7.2. 
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3.3.2  “Dirty Panel” System 

Systems intended to simulate charging a battery with a dirty panel were 

electrically identical to the control system. We chose to simulate the problem by applying 

a thin coat of spray paint to sheets of clear acrylic glass holding the spray paint can 

approximately 18 inches away from the glass. The acrylic glass was then fastening these 

over the appropriate solar panels. The paint simulated dust and dirt, permanently blocking 

light on the panel’s surface. 

3.3.3 “Overcharged Battery” System 

We attempted to simulate overcharging the battery by making three modifications 

to the control system scheme. First, the three 6.4W solar panels were replaced with a 

single larger 80W panel, supplying the batteries with more current than a control system. 

Secondly, the charge controller was replaced with a diode, allowing current to flow 

unregulated to the battery during the day, but blocking the battery's discharge through the 

panel at night. Lastly, the load resistance was doubled, causing the current flow during 

the discharge cycle to be cut in half. These changes would cause the battery to receive 

more charge during the charging cycle, and to lose less to the load during the discharge 

cycle, resulting in a net gain in charge over time. The schematic diagram in Figure 9 

depicts these changes from the control system setup. 
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Figure 9: Overcharge System 
 

3.3.4 “Deeply Discharged Battery” System 

To simulate discharging the battery below the recommended minimum threshold, 

two modifications were made to the control system scheme. First, the low-voltage cutoff 

circuitry was removed (while still maintaining the charge controller's protection against 

overcharge) in order to let the battery drain to damagingly low states of charge. Second, 

the load resistance was reduced to one third that of the control system, causing the current 

during the discharge cycle to be three times the original quantity. These modifications 

would cause the battery to lose more charge during the discharge cycle than is gained 

during the charging cycle, resulting in a net loss of charge over time. The schematic 

diagram in Figure 10 reflects these changes from the control system set up in Figure 8. 
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Figure 10: Deeply Discharged System 
 

3.3.5 “No Charge Controller” System 

We simulated the lack of a charge controller by omitting it from the circuit, and 

instead connecting the panel directly to the battery. This allowed completely unregulated 

flow of charge from panel to battery during the day, and from battery to load at night. 

Thus, the battery was allowed to both overcharge and discharge too deeply. The 

schematic in Figure 11 depicts this configuration. 
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Figure 11: No Charge Controller System 
 

3.3.6  “Car Battery” System 

Simulation of the use of a cranking/car battery instead of the proper deep-cycle 

battery was achieved by replacing the battery in the “No Charge Controller” scheme with 

a car battery. The supporting circuitry is otherwise identical the control system set up 

depicted in Figure 8. 

3.3.7 Supporting Circuitry 

3.3.7.1 Panel Voltage Correction 
 

Due to the unexpectedly low open circuit voltage of our solar panels, we were 

concerned that the charge controllers, intended to be used with 12V panels, would not 

function properly. Since the panels only generated about 10.5-11V open circuit (lower 

when loaded, as when charging a battery), we decided to add 2V by inserting a power 
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supply between ground and the common (-) node of all eighteen panels. In the interest of 

time and cost, we accomplished this by using a computer power supply which was rated 

for 32A on its 5V line, and regulating the 5V down to about 2.1V using LM317 voltage 

regulator ICs (integrated circuits). Because we expected to need to pass as much as 

500mA x 18 systems = 9A of current, we used ten of these ICs in parallel, since each is 

capable of passing 1.5A. The Figure 12 shows our implementation. 

 

 

Figure 12: 5V to 2.1V Regulation 
 

Using the formula given in the datasheet for the LM317, the output voltage is  

1.25V*(1+ (100Ω/150Ω)) = 2.1V (3) giving an open circuit voltage of 12.6-13.1V. One 

important point which we did address is whether the addition of the power supply would 

disturb the normal operation of the solar panels other than to increase their voltage. Such 

a disturbance could have potentially led to unrealistic results, for example if the “dirty” 

system were able to charge batteries fully, when we expect that this should not be the 

case. However, in addition to supplying their own current, solar panels also limit the 

amount of current that can pass through them due to their electrical properties. Thus, we 
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believe that the panels in our experiment are behaving very similarly to panels with an 

inherent open circuit voltage of about 13V. 

3.3.7.2 Low Voltage Cutoff 

The set of charge controllers used for this experiment was not uniform. Several 

charge controllers were donated to our project, but we had to purchase a different model 

for the remaining three. The three Silicon Solar charge controllers offered protection 

against discharging the battery too deeply, while the Morningstar charge controllers did 

not. Some of our tests did not require such protection, but we did not have enough of the 

Silicon Solar charge controllers to otherwise fulfill our needs. Our solution was to 

construct circuits which would automatically disconnect the load when the battery 

voltage fell below a certain level. Based on the specifications of the Silicon Solar charge 

controllers and our research on batteries, the threshold was set to 10.5V. The following 

schematic in Figure 13 shows the circuit. 

 

Figure 13: Representation of low voltage cutoff circuit. 
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Its operation is as follows: the battery voltage is compared with a reference voltage 

(10.5V), set manually by the potentiometer as a fraction of the 12V supply. When the 

battery voltage is above the reference, the output of the comparator is “low,” providing a 

path to ground for the base of the PNP power transistor, in turn allowing current to flow 

to the load. If the battery voltage falls below the reference, the comparator’s output goes 

“high,” causing the transistor to cut off, and the battery to cease to drain. The capacitor 

connected to the comparator’s output prevents oscillation when the battery voltage is 

nearly the same as the reference. 

3.4 Data Acquisition 

In order to record data from the solar home systems, hardware and software from 

National Instruments (NI) were employed.  An NI data acquisition module (DAQ), 

version USB-6008 and NI LabVIEW software were purchased for this purpose. 

LabVIEW is a versatile icon-based virtual interface used to create and control programs 

for the NI hardware.   

  

 

 

 

 

 

 

 

 

 

Figure 14: Image of the LabVIEW data acquisition module (DAQ) and related circuit. 
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The LabVIEW program gathers voltage and current data by employing analog 

inputs and digital outputs on the data acquisition module, or DAQ.  However, the DAQ 

has only four analog inputs; in order to collect the 40 different input measurements we 

required, a strategy was employed to switch between inputs.  A system of multiplexers 

was constructed to cycle through all of the inputs (see Figure 15). 

 
Figure 15: Diagram of Data Acquisition Circuit 

 

Figure 16: Setup of multiplexer circuit for Data Acquisition 
 

The LabVIEW program outputs digital signals to sequentially select each of the 

multiplexers’ input channels.  The digital output component on the DAQ consists of six 

ports (S1, S2, S3, S4, S5, S6).  These ports each output a binary signal (0V low or 5V 

high), which are toggled between high and low throughout the duration of the program.   
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Each unique combination of three signals (low-low-low, high-low-high, etc.) 

indicates which input port on the multiplexer to activate.  There are eight possible 

combinations.  This allows for the selection of one of the eight channels (voltage 

measurements) on each multiplexer; the measurements are then sent to the analog inputs 

of the DAQ.  When a selected channel has been measured, the DAQ will input the next 

signal combination in the sequence.  The DAQ cycles through all eight signals, and then 

it restarts at the beginning of the sequence for a new set of measurements. 

The multiplexers are divided into two tiers: primary and secondary. This was 

necessary because we needed to take more measurements than one tier could provide. 

The DAQ has 4 inputs and each multiplexer has 8 channels.  That adds up to 32 

measurements, but we needed 40+ measurements.  The two-tier setup was convenient and 

easy to implement. The four primary multiplexers have outputs directly feeding to the 

analog inputs on the DAQ, while the five secondary multiplexer outputs feed into some 

of the primary multiplexer input channels.  Three of the DAQ digital output signals act as 

selectors that cycle through inputs for the primary set of four 8x1 multiplexers.  The 

second set of three signals are select inputs for the secondary set of five 8x1 multiplexers.  

The four analog input ports on the DAQ are able to measure voltages ranging 

from -20V to +20V. The analog inputs obtain voltage measurements from the outputs of 

the four primary multiplexers.  As the DAQ cycles through output signals, so does the 

voltage measurement coming into these inputs. A LabVIEW program organizes and 

stores this information in order to accurately preserve the voltage patterns of the 

photovoltaic systems over weeks or months at a time.  
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3.5 LabVIEW: Data Collection and Organization 

The LabVIEW program is necessary for the measurement of voltage and current 

data from the panels and batteries.  The program can be split up into three major stages: 

(1) initialization of digital output channels, (2) output of high or low digital signals, and 

(3) acquisition of voltage measurements. 

The first stage within this data collection program is the initialization of digital 

output channels.  This stage initializes the digital output channels to which the DAQ will 

send binary signals.  The program then transitions to the running state in which it 

indicates which signals the DAQ sends to the multiplexers.  As previously mentioned, a 

group of three channels is used to select which input on the multiplexer is measured by 

the DAQ at a given time.  The third and final stage in this program involves acquiring 

voltage measurements and saving the data to text files.  The program acquires 

measurements from the DAQ, which measures the DC voltage coming from each of its 

four analog ports.  The measurement data was written to several text files (see Appendix 

D) with eight columns of voltage and time data.  It then saves the data to a specified file. 

There are eight major 30 second loops that occur once the program is initiated.  

Within the first 30 second loop, a set of three low signals selects the first measurement 

port on each of the primary multiplexers.  The program also toggles between the eight 

ports on all of the secondary multiplexers, utilizing the second set of three digital output 

channels, in minor three second loops.  As each of these ports is toggled, data are 

collected and written to a text file.  In the second 30 second loop of the program, the 

same process occurs, except using the second measurement port on each of the primary 

multiplexers.  For the remaining six 30 second loops, the remaining six ports on the 
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primary set of multiplexers are measured.  None of the ports on the secondary set of 

multiplexers are measured in the last six 30 second loops. 

 

Figure 17: Block diagram of the LabVIEW Data Collection Program. 
 
 
 

Table 2: DAQ Outputs and Corresponding Digital Signals 
 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 

Selection Port 1 low high low  high low  high low high 

Selection Port 2 low low high high low  low high high 

Selection Port 3 low low low low high high high high 

Selection Port 4 low high low  high low  high low high 

Selection Port 5 low low high high low  low high high 

Selection Port 6 low low low low high high high high 

 

3.6 Current Limitations 

In order to gain a more complete picture of the charging cycles of the batteries, 

we attempted to construct current-sensing circuitry which would measure the current 

delivered to each battery during daylight hours. What follows is a description of the 

current sensing implementation we attempted. 

Initialize 
Select a set 
of primary 
channels 

Record 
Voltage/Current 
Measurement 

Wait 30 
sec 

Manual 
Stop? 

End 
Program 

No 

Yes 

Repeat for all 8 channels 

Restart at Channel 1 

Primary 
Channels 

Measured? 

Yes 

No 

Secondary 
Channels 

Left?

Wait 3 
sec 

Switch 
Secondary 
Channels

No 

Yes 



 

 
 

59

The basic principle of measuring current is to insert a resistor with a value small 

enough so as not to significantly disturb the system in-line with the desired circuit 

branch, and then to measure the voltage across it. We chose 0.1Ω resistors for measuring 

current, so that the estimated maximum current of approximately 500mA would produce 

a voltage drop of only 50mV. However, the voltage resolution of our data acquisition 

equipment was such that directly measuring this voltage would not have yielded useful 

results. Furthermore, our data acquisition equipment was ground-referenced, and the 

measurement needed was a differential one—either two separate voltage measurements 

with respect to ground would be needed in order to take the difference between the two, 

or else we would have to use differential amplifiers. 

Due to the somewhat limited availability of measurement channels, the better 

option was to use differential amplifiers. Initially, we attempted to use Maxim MAX4378 

integrated current sensors, which required only to be connected to the high and low sides 

of the in-line resistors, and would output the differential voltage multiplied by some gain. 

However, we had difficulty finding these, or anything comparable, in a Dual Inline 

Package that we could use on our breadboards. Our attempts to adapt surface-mount 

versions were functionally successful, but failed due to poor durability. 

The next option was to construct such differential amplifiers ourselves, using 

standard op-amps and resistors. These require many more components, and much more 

space than their integrated counterparts, so we were only able to construct a few. We 

used a version of the circuit shown in Figure 18, modified with R1 = R3 = 1kΩ, and R2 = 

R4 = 100kΩ, so that the gain was approximately 100 (yielding a full-scale output, with 

input 50mV, of 5V). The op-amps used were LM324 single-supply quad-channel units. 
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We were able to obtain reasonable current readings for a brief period from several 

systems, but the addition of the current sensors unfortunately caused erratic changes in 

many of the voltage readings for reasons which we were unable to discern. We decided to 

forego the current data in favor of consistent voltage data. 

 

Figure 18: Circuit Employed to Ground Reference a Differential Input Signal. 
(Source: National Semiconductor datasheet for LM324) 

 
3.7 Weather Data Collection 

Weather conditions affect the voltage output on a given day; for example, the 

voltage from a panel on a rainy day is often significantly lower than on a sunny day.  We 

have decided to take this factor into account by recording the general daily weather for 

each day of data collection.  We coded each day into one of three weather categories: 

sunny, cloudy, or rainy.  The weather data were obtained from WeatherBug, the world’s 

largest weather network that provides users with neighborhood level weather reports.  For 

this project, data from the WeatherBug Tracking Station located at Saint Hugh’s Catholic 
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School in Greenbelt Maryland was used.  The school is located only five miles away 

from the University of Maryland, where the photovoltaic systems are set up, which 

ensures that the weather conditions that are recorded are accurate. Additionally, the 

weather data were verified through the personal observations of one of the team members 

and by checking the National Weather Service’s website. The weather data for the 

National Weather Service were recorded at Reagan National Airport which is 

approximately fourteen miles from the University of Maryland.  We considered weather 

when we analyzed the data, as will be discussed in Section 4.2.1. 

3.8 Limitations 

In the data acquisition phase, three months of panel and battery voltage data for 

the 18 systems were obtained.  The data ranged from October 13th, 2008 to December 

21st, 2008.  Our initial goal was to capture six months of data, with special attention to 

data in the summer, which would most closely represent the data of solar home systems 

in equatorial countries.  Problems arose, however, with the system setup that delayed the 

data acquisition.   

These problems occurred over the span of Summer 2008 and were not fully 

resolved until October.  With the removal of current sensing as a requirement for data 

acquisition and analysis, voltage from the panels and batteries was able to be reliably 

measured and recorded.   

The delays in data collection and the need to begin extensive data analysis in 2009 

provided only a three month window of opportunity for data collection.  This placed 

major limits on observing differences in voltage patterns due to seasonal change.  It also 

hindered the analysis of long-term effects of each problem.  For instance, the voltage 
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pattern of a system with a deep discharge problem would have changed much over time, 

devolving from a healthy system to a system with low voltage during the nighttime, to a 

system with relatively low voltage in the daytime and nighttime (indicating a dead 

battery).   

 Although data were collected in fall and winter, and cannot be directly related to 

solar home systems in equatorial countries we believe the detection algorithms proposed 

could be applied to these systems by simulating systems using similar procedures from 

this research to develop baselines.  The algorithm structure would be the same, but the 

baselines would be changed to more closely replicate systems in countries near the 

equator, where sunlight is abundant year-round. 

With a constant load, the current reading during the discharge cycle is not of 

much interest. In fact, the discharge current for each battery could be calculated very 

easily by simply dividing the voltage signal by the corresponding load resistance (Ohm's 

Law: I = V/R). Since the resulting signal is merely a scaled replica of the voltage, 

however, it would be of no additional use in detecting changes in voltage output. 

Measuring the current during the charging (daytime) cycle would add much more detail 

to the “picture” of the battery's health, since the voltages were largely constant during 

that part of each day. 

Having access to the rate at which the battery is able to accept charge and how 

that rate varies with time can provide insight into the battery's function that voltage alone 

cannot. For example, a battery which ceases to accept new charge very early in the day 

and then discharges quickly at night is likely suffering from internal damage which 

reduces the active surface area of the metal plates. One situation in which this can occur 
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is in car batteries which are deeply discharged repeatedly, causing parts of the thin plates 

to crack and disconnect. A battery in this state could appear to be healthy with a very 

small number of voltage readings, since it would reach and maintain a normal voltage 

once charged and may settle at a similarly normal voltage when discharged. Current 

readings for this battery would quickly reveal a current which falls to zero shortly after 

the beginning of the charging cycle as the battery runs out of available metal surfaces to 

react, therefore ceasing to retain further charge.  

Unfortunately, current is more difficult to measure than voltage for two main 

reasons. First, it requires breaking an existing connection to insert a resistor, which may 

be inconvenient depending on the system's construction. Second, it requires a differential 

voltage measurement (often with amplification), which adds to the complexity of the data 

acquisition hardware. As previously explained, the latter reason was the main obstacle 

which prevented us from measuring current in this experiment. 
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Chapter 4 Diagnostic Tools 

4.1 Pre-processing 

The raw data output from our solar panels and batteries is subject to noise from a 

number of sources, including clouds passing overhead and electromagnetic radiation. In 

order to make valid comparisons, it is necessary to remove the effects of such random 

noise from the signals. Because these disturbances have high frequency compared to our 

sample rate of once every 10 minutes, a low pass filter sufficiently suppresses the noise 

without distorting the important features of the signals. 

4.1.1 Data Formatting Program 

We created a data formatting program to transform the text files written by 

LabVIEW into named vectors containing the voltage for each panel and battery over a 

select period of time.  This was a necessary step, as it transformed our data into a 

standard format that could be easily read by our diagnostic programs. This dramatically 

simplified the testing and comparison of our pattern matching algorithms. 

This data formatting program was created using the tools found in MATLAB.  

First, the program selects one of the 16 text files from the panel and battery voltage data 

collected using LabVIEW.  Each of these text files contains eight columns of time and 

voltage data (four columns of voltage and four columns of time).  Using the “textread” 

MATLAB command, our program deletes the first 21 lines of the text file, which contain 

an unnecessary header.  The remaining text is then converted into a matrix with eight 

columns and a number of rows corresponding to the number of measurements collected 

since the beginning of data collection.  This “textread” command is employed once for 

each of the 16 text files. 
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We then designed the program to simplify the data further using several steps.  

First, because the program cycles from one panel-battery pair to the next, the number of 

measurements may not match from one pair to another.  For example, one vector may 

have 143 measurements, while another has 144.  Therefore, we find the shortest vector 

length and set all of the vectors to that length, so that there are the same number of data 

points for each panel and battery.  Additionally, every odd column of every matrix (1st, 

3rd, 5th…) is a vector of time corresponding to the voltage data in every even column (2nd, 

4th, 6th).  Since the data were collected across these panels/batteries over the same time 

period, all columns of time data beyond the first were redundant, and were therefore 

removed. 

The next step involved the organization and naming of the vectors.  We used 

MATLAB to convert each of the individual voltage columns into its own vector, so that 

we would be able to compare or plot one individual panel or battery’s voltage over time.  

After this, we gave each of these voltage vectors a name identifying problem it represents 

(e.g. deep discharge, dirty panel), whether it is from a panel or battery, the assigned 

number for each set of systems (since there are three systems for each problem), and the 

assigned number out of all 18 panels.  An example of a name of one of these vectors 

would be “Drt_B1_2,” meaning “Dirty Panel,” Battery 1 (of 3), System 2 (of 18). 

4.1.2 Data Parsing 

 For both our experimental training data (the “known” sets) and for any input 

(“unknown”) data, it is necessary to divide large blocks of data into segments that our 

algorithms can use. While it is possible for a human to look at the data and determine 

where each day starts, it is desirable to automate as much of the process as possible. 
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 The separate24.m algorithm relies on the steep increase in solar panel voltage at 

sunrise to signal the beginning of each new day. Its input is a string of time-series voltage 

data of any length. Raw data is shown in Figure 19.  The steps in the algorithm are as 

follows: 

 

Figure 19: Graph of raw voltage data. 
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1. Filter with a 16-sample average: to remove noise, since sudden changes in voltage will 

be amplified in the next step, and could trick the algorithm into falsely detecting new 

days (Figure 20). 

 
Figure 20: Voltage graph after the first noise filter. 

 
 

2. Differentiate the signal: find the change between each point and the one before it. 

Steep increases and decreases such as those we are looking for will show up after this 

filter as large peaks above or below zero.  The resulting data is shown in Figure 21. 
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Figure 21: Voltage graph after differentiation. 

 
 
3. Filter with 16-sample average again:  the differentiation introduces new noise into the 

signal which must be filtered before we apply a threshold. Because the spike we want is 

the largest, it survives this second noise filter while smaller ones are suppressed.  See 

Figure 22. 

 
Figure 22: Voltage graph after the second noise filter. 
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4.  Exponentiate each sample with a high odd power: this exaggerates the difference 

between any remaining peaks while preserving their sign, so that sunrise is not mistaken 

for sunset, and also in case we have a need in the future to divide day from night. See 

Figure 23. 

 
Figure 23: Voltage graph after exponentiated. 

 

5. Subtract a threshold value and search for negative-to-positive zero crossings—find the 

indices where the data output from the previous step crosses some (experimentally 

determined) threshold in the positive direction. These indices are returned by the function 

as the indices where each new day begins.  See Figure 24. 
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Figure 24: Voltage graph with threshold. 

 
After testing with a few data sets to determine an appropriate threshold value, this 

algorithm is able to find the beginning of each new day with nearly 100 percent success. 

Its accuracy is affected by the weather, but it tends to err in favor of false negatives rather 

than false positives.  A listing of the program is shown in Appendix G. 

4.1.3 Normalization 

It is clear from many of our voltage-vs.-time plots that regardless of weather 

conditions or problems afflicting the system, there is a distinct trend of voltage being 

higher during the day and lower at night—a pattern which repeats every 24 hours. Since 

we are limiting the scope of our matching algorithms to a fixed set of baselines, we can 

remove the component of the signal that is common to all six baselines. This has the 
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effect of exaggerating the differences between the signals, reducing the chance of 

misdiagnosis due to similarity with multiple baselines. 

0 50 100 150
0

5

10

15

Sample Index

V
ol

ta
ge

 (V
)

 

Figure 25: Baselines with Mean Baseline. 
 

The fundamental equation used to create the mean baseline is given by: 

N

v
v

N

i
i

avg

∑
=

=
1  (4.1) 

In this equation, N is the number of baselines, vi is the voltage of each baseline, and vavg 

is the resulting average voltage point.  The equation is used to calculate 143 baseline 

indices. 

In theory, this signal contains the frequency components common to all six 

baseline signals. Figures 26 and 27 show the mean baseline and its Discrete Fourier 

Transform (DFT), a representation of the frequency content of the signal. The DC offset 

Mean Baseline
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has been removed (by subtracting the average value of the signal) to make the AC 

components more readily visible. 

 

Figure 26: Mean Baseline 
 

 

Figure 27: DFT of Mean Baseline. 
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The most important thing to note about the DFT of the mean baseline is the tall 

peak corresponding to the fundamental 24-hour cycle. This is the major “trend” in each 

daily cycle that we wish to eliminate. Ultimately, the “common component” is nothing 

more than the average of the baseline signals–a signal of the same length as each 

baseline, where each sample is the average of the baseline samples at the same time 

index.  By subtracting the mean baseline from the six baseline signals as well as the input 

signal in question, we are therefore subtracting out the 24-hour trend that we set out to 

eliminate, as well as some other components which happen to be common among the 

signals.   Figures 28 and 29 show the baselines before and after the mean has been 

subtracted.  Note that the normalized data are centered about zero; the vertical axis now 

represents volts of deviation from the mean. 
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Figure 28: Baselines before Normalization. 
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Figure 29: Baselines after Normalization. 
 

Due to time and logistic constraints, we were only able to implement 

normalization in the Least Squares and Gaussian matching algorithms. The results for 

these sections reflect matching based on normalized data. 

4.2 Diagnostic Tests/Algorithms 

Our team designed several algorithms with the goal of detecting and accurately 

diagnosing problems in actual solar home systems.  In order to develop and test the 

viability of the algorithms, we used data collected from the experimental systems.  Part of 

the experimental data was used to develop the algorithms, while another part of the 

experimental data was used to assess their accuracy.  The algorithms we developed are 

the Baseline Test, the Single and Combined Metric Tests, the Least Squares Test, and the 

Gaussian Test. 
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4.2.1 Baseline Test 

The Baseline test is a pattern-matching algorithm that can be used to diagnose 

systems by means of a baseline, or pre-recorded set of voltage data.  By comparing a 

working photovoltaic systems’ voltage output data to these baselines we believed that the 

program can accurately diagnose the problem affecting the working system.  The purpose 

for developing the Baseline test was to investigate the effectiveness of using pre-recorded 

data as a tool for detecting SHS problems.  It also served as a benchmark for the more 

sensitive baseline test we used, called the Gaussian test. 

 The baseline test is analogous to a fingerprint in that it represents a known 

pattern, in this case, training data from the first phase of data collection. The data are 

used to make a baseline pattern that can be reliably matched by future data of the same 

type.  The baselines are not exact replicas, but rather an envelope of the standard 

deviation of training data.  An envelope is necessary because, realistically, voltage 

patterns will not be exactly the same from day to day.  The fact that the patterns are 

similar from day to day, however, indicates that this test may be reliable.   

 The width of the envelope for the baseline test was an important parameter to set.  

If the envelope is too narrow, the true diagnosis may be rejected.  If the envelope is too 

wide, the baselines would overlap too greatly, leading to a greater chance of 

misdiagnosis. The envelope for the baseline test was chosen to be within one standard 

deviation of each of the data points of the training data because this allowed for a 

statistical majority of points to be detected, while overlapping little with other baselines. 

From the first two weeks of collected voltage data, a set of baselines was defined.  

The baselines, which represent the voltage pattern of an ‘average day,’ were used not 
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only in the baseline test, but in the Least Squares and Gaussian tests as well. These 

baselines were created from a two-week set of data, starting on November 11 and ending 

on November 23.  First, using the data separation program created in MATLAB, the data 

were separated into 24-hour cycles.  Data points corresponding to the same daily time in 

each 24-hour cycle were averaged, creating the baseline curves, shown below.  The 

standard deviation for each time index was also determined.  Dotted lines appearing 

above and below the central curves represent the standard deviation envelope that the 

baseline algorithm employs to determine matches between the baseline and sample data. 
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Figure 30: Baselines and Standard Deviation for the Control and Dirty Systems. 
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Figure 31: Baselines and Standard Deviation for the Overcharge and Deep Discharge Systems. 
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Figure 32: Baselines and Standard Deviation for the Malfunctioning or lack of a charge controller 
and Car Battery Systems 

 
Furthermore, distinct baselines were created for different types of weather.  These 

additional baselines were merited because cloudy and rainy weather significantly affected 
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daily voltage patterns, and the baseline envelopes created were too wide for accurate 

diagnosis.  Baselines for sunny, cloudy, and rainy weather were incorporated in the 

baseline detection algorithm, but none of the other algorithms. 

The baseline detection algorithm, created within MATLAB, was a function that 

required three inputs: (1) a vector of time (which was created in the data formatting 

program), (2) a vector of voltage data (also created in the data formatting program), and 

(3) a vector of new day indices (indicating the start and end of each day).  The program 

created a matrix which contains the four columns: day number (the first day of collection 

being 1), start of day index (which indicates the first voltage reading of that day), end of 

day index (which indicates the last voltage reading of that day), and weather type. 

The algorithm then compared one day of data at a time to the baselines in order to 

determine how well the sample data match each.  The program calculated how many of 

the sample points of voltage lie within the standard deviation of each of the baselines.  

Whichever baseline had the highest percentage of matches was determined to be the 

program’s diagnosis of which problem the sample data represents.  Only a plurality of 

data points was necessary for a match, not a majority.  For example, if Baseline 1 has 

40% of matches, while Baselines 2 and 3 both have 30% of matches, Baseline 1 is chosen 

despite having less than 50% of the total matches. 

 Though this program can determine the closest-matching problem using a single 

day of data, basing any decision on a single sample is unreliable. Therefore, the process 

was repeated over several days. As previously explained, a problem was determined for 

each day; then the program determined which problem occurred most frequently during 

that period of time, which provided a more accurate diagnosis. 
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4.2.2 Single and Combined Metric Tests 

The second diagnostic tool we created attempts to diagnose problems in a solar 

home system without the use of baselines.  This program was instead based on 

identifying features in the data that can be measured quantitatively.  These parameters 

were determined and each feature was given a weight to form a ‘combined metric.’  Each 

of the six identifiable problems was each given a target ‘score,’ predicted from training 

data.  From any set of sample data, problems can be diagnosed by matching the score of 

the data with the problem score of nearest value.  

4.2.2.1 Single Metric Tests 

First, single metric tests were developed by choosing a single parameter out of a 

group of important parameters, such as average voltage, curvature, and slope.  To build 

these programs, that parameter was averaged for each of the 6 sets of training data to set 

target values.  The single metric test was performed on 6 sets of ‘unknown’ standard test 

data for diagnosis.  For each day, the program first calculated the values of the parameter 

for each day, and finds the closest target value.  The diagnosis is decided to be the 

condition corresponding to that target value. 

In order to extract important features from each daily cycle, input data was 

separated into 24-hour periods.  The program, written in MATLAB, evaluated several 

parameters from the curves in order to develop the metric.  Each of the identifiable 

problems had distinct features that separated it from the other problems.  For each 24-

hour cycle, the following statistical parameters were extracted: 
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 Average Voltage 

 Average Rotation 

 Average Curvature   

 Maximum Curvature  

 Minimum Curvature  

 Maximum Discharge Slope 

 Average Discharge Slope 

The average voltage parameter was used to distinguish normally high-voltage 

patterns (overcharge, control) from relatively low-voltage patterns (deep discharge, no 

charge controller).  High average voltage indicates that the battery is being consistently 

charged to full capacity, while a low average voltage implies the battery is not being fully 

charged. 

The “rotation” of a single point was determined by measuring the angle (in 

degrees) that an imaginary line between a data point and the origin makes with the 

horizontal axis.  The rotation of the data points were averaged over each 24-hour cycle.  

Rotation does not directly correspond to any physical phenomenon in the voltage 

patterns; however, this parameter was used because rotation values remained fairly 

constant for each system over time, but were different for each simulated problem.   

The average curvature parameter was used to accentuate the differences between 

voltage data that are highly curved and those that are mostly flat.  Curvature is defined 

through the equation: 



 

 
 

81

2
3

2

2

2

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

=

dt
dV

dt
Vd

κ  (4.2) 

where 
dt
dV  and 2

2

dt
Vd  are the first and second derivatives of the voltage, respectively. 

Minimum curvature and maximum curvature are also used for this purpose.  Curvature 

depends on the type of system; for instance, there is a high maximum curvature for the 

car battery system because after dusk, the battery discharges from 12 V to 0-2 V very 

quickly, and thus curves from a flat horizontal line to a nearly vertical line in a short time 

period.  On the other hand, there is a very low maximum and minimum curvature 

associated with the control system because it does not discharge much. 

Finally, maximum and average discharge slope of the battery sending charge to 

the load were used.  Discharge slope corresponds to the rate at which the physical 

phenomenon occurs.  This parameter is important because the voltage profiles of certain 

problems exhibit higher discharge slopes than others. 

4.2.2.2 Combined Metric Test 

The combined metric test was adapted from a pattern matching technique used in 

“Discharge pattern recognition in high voltage equipment” (Gulski, 1995).  Gulski used a 

‘centour score,’ or the mathematical center of a combination of statistical parameters, 

from partially-discharging high voltage equipment to identify types of discharges.  The 

score nearest to the sample score was diagnosed as the corresponding type of partial 

discharge.   
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Similarly, the combined metric test used for SHINE’s research determined a 

‘score’ through the summation of important statistical parameters to diagnose PV system 

problems.  In order to set target scores of system problems for the combined metric test, 

training data were input into a preliminary program, which calculated the parameters and 

summed them to determine target scores.  Weights for the combined metric test (shown 

in Table 3) were chosen based on forcing all the metrics to have the same order of 

magnitude.  The average curvature weight is large because average curvature values were 

on the order of 10-3.  Next, the scores were multiplied by the weights, which separated 

problem target scores from one another.  This was performed by maximizing the 

normalized standard deviation of the target scores. 

The values were compiled for every day of the sample data, averaged over those 

days, and a score was determined using a weighted sum of the statistical parameters.  The 

program then compared the score to the predicted scores for each simulated problem. 

The parameters were weighted by the following factors: 

Table 3: Weights for Selected Parameters 
 

Average 
Voltage 

Average 
Rotation 

Average 
Curvature 

Minimum 
Curvature 

Maximum 
Curvature 

Maximum 
Slope 

Discharge 
Slope Avg. 

-5 -0.3 800 4 3 5 5
 

The combined metric test algorithm summed the weighted parameters, which 

yields a value that usually lies between -100 and 100.  The ‘score’ was then compared to 

predicted scores for each problem; an example is depicted on a number line in Figure 33.  

The predicted scores were determined from averaging scores of the first two weeks of 

collected data.  The positive scores on the number line were voltage patterns 

characterized by high curvature and high discharge slope.  The negative scores were 
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voltage patterns characterized by low curvature and low discharge slope. The algorithm 

determined which predicted score is closest to that of the sample system, and identified 

the corresponding problem. 
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Figure 33: Representation of Combined Metric Test. 
 
 

4.2.3 Least Squares Test 

The Least Squares matching method is a much different approach compared to the 

previous two methods. Rather than treating the signals as a series of voltages in the time-

domain, it treats them as points (or vectors) in high-dimensional space. The problem of 

matching signals then becomes a geometric one—each of our baselines represents a 

different direction in space, and when given a signal from a system with an unknown 

problem, we must find to which of the six directions it is closest. The algorithm 

accomplishes this by scaling and summing the “known” vectors to minimize the sum of 

the squared distances in each dimension to the “unknown” one. This is known as the 

Sample Data Corresponds to 
Dirty Panel 

Sample Score 
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“least squares approximation” of the unknown vector. The method described in this 

section performs the task very efficiently with matrix operations.  

The general principle of minimizing squared error between two signals is well 

suited to creating matching algorithms. It has been used for many years in the image 

recognition field; for example, as described by Bethel (Bethel, 1997). The paper 

describes an iterative process for transforming and matching small fragments of a 

grayscale image, in particular for application to stereo cameras. While the method 

described in the article calls for performing least squares approximation on the 

transformation parameters, we are assuming the signals to be uniform in phase and scale, 

so transformations are not necessary for our purpose. The “parameters” will instead be 

the time-series voltage samples of each signal.  For background information on the 

mathematics employed in this algorithm, refer to a Linear Algebra text such as 

Introduction to Linear Algebra, 3rd Edition (Strang, 2003). 

4.2.3.1 Applying Least Squares to Our Problem 

Using six sets of data, each corresponding to a known condition, our goal is to 

identify the problem in an unknown set by finding its closest match among the known 

sets. Each “set” that we are working with is one day long, consisting of 143 voltage 

samples taken at 10-minute intervals. Using the vector interpretation described 

previously, each set of known data represents a vector in 143-dimensional space, and the 

set of unknown data is the vector we wish to approximate by linear combination of the 

known sets. Our coefficient matrix then consists of six columns with 143 elements 

each—an extremely over-constrained system. By the least squares method, we expect 

that the approximate reconstruction of the unknown data set will have one clear, strong 
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component in the “direction” of one of the known data sets, allowing us to diagnose the 

problem. 

4.2.3.2 Least Squares Matching Algorithm 

The least squares matching algorithm takes, as input, two series of voltage data—

from the solar panel and battery—of any length, as long as the two are the same length. 

We had hoped to use battery current in the matching as well, but were unable to collect 

adequate current data. The solar panel voltage is fed to the data parsing (day separation) 

function to obtain the indices of each complete day within the input series.  

The vector of new day indices is then checked for false positives by taking the 

difference between adjacent entries. If any of these intervals is less than some arbitrary 

“minimum day length” (we used 140 samples), the earlier time index is discarded. The 

remaining indices are then used to extract 143-sample blocks from the input data which 

represent the days to be tested. These are arranged into a matrix where each column is 

one day. 

Least squares approximation is then performed on each column of this matrix 

individually, and the resulting coefficients collected into a matrix of a similar format—

six entries per column, one for each of the conditions for which we are testing, and one 

column per input day tested. Because the coefficients are sometimes not well separated, 

we exaggerate the differences by dividing by the mean of each set of six, then squaring 

the values. After this, we have attempted to use two different methods to make a decision. 

The simplest is to force a decision by taking the maximum for each day. In order to 

account for cases where two or more coefficients are close together, however, we tried 

implementing a second method whereby exactly one coefficient from each set of six was 
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required to be above some threshold, or else the day was flagged “indeterminate.” This is 

probably the better option in practice, due to the possibility of problems other than the six 

for which we are testing, but much more training data would be required to determine 

accurate threshold values. We therefore used the simple maximum for deciding the 

diagnosis. 

In order to analyze the success rate of the algorithm, we use Matlab to display a 

bar graph of the total number of decisions in favor of each problem. At this point, in 

practice, either the software could automatically make a decision, or a human could 

decide the final diagnosis based on the bar graph.  

4.2.4 Gaussian Test 

Our final matching method is called Gaussian because it makes use of the Gaussian 

probability density function, commonly known as a “bell curve,” to represent the 

baselines. It is very similar to the Baseline test discussed previously in that it evaluates 

the similarity between data sets based on proximity in voltage over time. However, where 

the Baseline test uses a strict “hit or miss” scoring for each point in time, the Gaussian 

test employs a smooth weighting function. During periods where the “unknown” curve 

matches a particular baseline more closely, a higher score is awarded. The result is a finer 

measure of similarity over all points in time, leading to greater accuracy than the Baseline 

test. 

4.2.4.1 Background 

The Gaussian probability density function is given by the equation: 
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where μ is the mean and σ is the standard deviation, which determines the spread (Knoke, 

Bohrnstedt, and Mee, 2002) . For a data set with N values, the mean is simply the sum of 

the values divided by N, while the standard deviation is given by the equation: 
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N 1
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The use of the Gaussian density function implies that a substantial and 

representative set of data was used to create the distributions, and ultimately the baselines 

against which the input signal will be compared. Ideally, training data for our system 

would exhibit both of these qualities, but the training set used in our evaluations was 

unfortunately limited to several weeks during the fall. These data were enough, however, 

to obtain means and standard deviations, and we must simply make the assumption that 

they are representative of all systems with similar specifications. 

We are interested in time-domain voltage signals, so when we refer to “mean” and 

“standard deviation” in the context of our baselines, it is not exactly in the same sense as 

for a single distribution, where there is only one mean and standard deviation. Rather, 

each baseline consists of one μ and σ for each sample in time. The time-series of 

distributions (in voltage) then comprises each baseline signal for this method. Figures 34 

and 35 show example baseline distributions. Darker areas represent regions of higher 

density (meaning the training data were more consistent at those parts of the cycle). The 

thin line laid over both distributions represents the average of several days' of test data 

from a system with a dirty panel. Because the test data in Figure 34 closely follow the 

dense region of the distribution, the "dirty" diagnosis would receive a high score. In 

contrast, the test data in Figure 35 largely do not intersect the dense regions of the 
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baseline distribution, and a low score is therefore awarded. Figures 36 and 37 show 

example distributions with different μ values and large and small σ, respectively. 

 

 
Figure 34: Gaussian Weight Field – Match 

 

 
Figure 35: Gaussian Weight Field - Mismatch 
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Figure 36: Density Function at Sample 30 

 

Figure 37: Density Function at Sample 90 
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An example of the Gaussian distribution applied in a signal processing and pattern 

recognition context comes from a paper titled “Gaussian Mixture Modeling… for Audio 

Fingerprinting” (Krishnan and Ramalingham, 2006). The paper describes an approach to 

the problem of “fingerprinting” audio signals for later recognition, a problem very similar 

to ours. One of the main ideas is to extract features from a set of training data and 

represent these as Gaussian distributions. This saves the algorithm from having to store 

the large amount of time-series data that constitute an audio signal. There are key 

differences, however, which render the methods described in the article not entirely 

applicable to our problem. First, our signals are very short compared to audio signals, 

thus we do not necessarily need the benefit of data compression. Secondly, much of the 

feature extraction described in the article is performed in the frequency domain, while our 

signals are very sparse in frequency content. Because of this, most of the feature 

extraction techniques (the entropy metrics, for example) would not give us useful 

fingerprints. Still, we found success with a method which treats the (relatively) small 

number of time-domain samples as independent features for matching. 

4.2.4.2 Matching Algorithm 
The matching algorithm's operation begins with a series of steps identical to the 

pre-processing performed for the Least Squares test. The raw input data are divided into 

24-hour segments using the day separation function, and arranged column-wise into a 

matrix. Each day's data will be diagnosed independently. 

The algorithm matches an input signal to one of the six conditions as follows. 

First, as in the Baseline test, training data are used to generate a mean and standard 

deviation signal for each condition. Each mean/standard deviation pair is then used to 

define a Gaussian probability density function. Because our standard baseline length is 
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143 samples in time (totaling 24 hours), there will be 143 Gaussian distributions per 

baseline. The concatenation in time of all the distributions for one baseline yields a two-

dimensional density function which we call the “baseline distribution.” There are six of 

these in total, one for each condition tested. 

To diagnose one day's worth of data, the baseline distribution for each problem is 

integrated along the voltage curve for that day to obtain a score. In discrete terms, the 

score is the sum over all 143 time indices of the Gaussian distributions evaluated at the 

corresponding voltages in the input signal. More concisely: 

∑
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where 'i' is the time index, Pi is the Gaussian distribution at time i, and v(i) is the voltage 

sample from the input data at time i. When all six conditions have been tested for, the 

condition with the highest score becomes the diagnosis. Figure 34 shows an example of a 

good match using this method, while Figure 35 shows a poor match. 

 A note on our usage of the Gaussian distribution: the typical statistical 

interpretation of the Gaussian distribution involves integrating the function over some 

interval to determine the probability that a random variable lies within that interval. Thus 

the probability of any single value is zero. However, because we are not performing any 

probabilistic calculations (making predictions, for example), only determining relative 

similarity between signals, we have found that an instantaneous evaluation of the 

function is sufficient.  
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Chapter 5 Results 

 Data were collected from October 13, 2008 to January 4, 2009.  A typical forty-

eight hour sample of filtered data is shown below for each system type of SHS problems 

simulated.  Figures 38 to 43 illustrate the voltage patterns of each simulated problem. The 

first daytime cycle (0 hrs to 12 hrs) is a sunny day, while the second daytime cycle (24 

hrs to 36 hrs) is a rainy day. 

The voltage pattern of the solar panel in the control system is characterized by 

variations from about 12-12.5 V in the daytime to 2-3 V at night.  The charging and 

discharging slopes are relatively high.  The battery voltage reaches the same voltage as 

the solar panel during the day, and attains a charge capacity high enough so that 

nighttime discharge affects the battery voltage very little.  
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Figure 38: Average Graph of Voltage Output of the Control System (Nov. 12th to Nov. 14th). 
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The “dirty panel” system exhibits many features distinct from the control system.  

First, although the voltage from the solar panel itself reaches 12.5 V, the charging and 

discharging slopes are less steep than the control panel, meaning the system is not 

charging the battery as quickly, and is therefore less efficient than the control.  Enough 

sunlight reaches the panel during the mid-day to produce the maximum 12.5V.  However, 

some of the sunlight is blocked, which hinders the ability of the solar panel to reach the 

same voltage as the control panel as the sun rises and sets.  This effect is most noticeable 

on the second day, which was a rainy day.  The panel narrowly achieves full voltage at 

hour 30.  The battery reaches a voltage slightly less than that of the panel during the day, 

and discharges considerably during the night.  On the second day, because the system 

was charged less, the battery voltage dropped to a lower level during discharge than 

during the previous day. 
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Figure 39: Average Graph of Voltage Output of the Dirty System. (Nov. 12th to Nov. 14th). 
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On an overcharged system, the larger solar panels reach a maximum of 16.5 V.  

The overcharged batteries exhibit a higher maximum voltage, averaging about 10% (~2 

V) higher than the control.  The batteries were also shown to charge to nearly the same 

level during the daytime, and remain at a high voltage during the night. Overcharging the 

batteries electrolyzes the water inside, which produces volatile hydrogen gas.  Within a 

month, the overcharged batteries were noticeably bulging, and the systems were 

disconnected for safety reasons. 
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Figure 40: Average Graph of Voltage Output of the Overcharged System. (Nov. 12th to Nov. 14th). 
 

Systems with batteries set to discharge deeply lost charge over a matter of weeks.  

In the data below, the battery is already deeply discharged, which seems to have affected 

the panel, possibly through corrosion.  The panel now charges considerably less than a 

full 12 V and the voltage level is very susceptible to reduction in cloudy or rainy weather.  

The charging and discharging of this system is more gradual, as indicated by the slopes of 



 

 
 

95

the charging and discharging periods.  The panel is able to charge the battery to nearly its 

own voltage level during the day.  For this system, the battery discharges to a voltage 

slightly higher than that of the panel voltage during the nighttime.  In other cases, the 

battery was discharged so heavily that it could no longer hold charge, and the voltage 

hovered between 2 V and 4 V. 
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Figure 41: Average Graph of Voltage Output of the Deep Discharge System (Nov 12th to Nov 14th). 
 

For systems lacking a charge controller, the battery and panel voltages are 

virtually equivalent because they share the same ‘positive’ and ‘common’ electrical 

nodes.  Unfortunately, there is no simple way to automatically measure the panel and 

battery independently.  As the system cycles between day and night, the voltage 

alternates from 12 V to 0.25 V.  When the battery is disconnected, the battery voltage 

was measured to be 2.5 V during the day, meaning the battery actually holds very little 

charge during the day. 
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Figure 42: Average Graph of Voltage Output of the No Charge Controller System. (Nov. 12th to Nov. 
14th). 

 
Voltage data for the system using a car battery, which also does not include a 

charge controller, is shown in Figure 43.  This battery, as opposed to a deep cycle battery, 

is designed to supply high current for a short time in order to start the combustion engine 

in an automobile, and is not ideal for use in solar home systems.  After several cycles of 

deep discharging (significantly fewer cycles than a deep cycle battery of equivalent 

capacity), the system loses the ability to hold charge.  Nevertheless, this type of battery is 

often used in the systems of villagers in developing countries due to their greater 

availability and lower cost.  Again, the battery and panel voltage is virtually equivalent 

because the system is set up in such a way that the panel and battery voltages are 
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measured at the same points in the circuit.  The features are very similar to the no charge 

controller test above.   
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Figure 43: Average Graph of Voltage Output of the Car Battery System. (Nov. 12th to Nov. 14th). 
 
5.1 Standard Test Samples 

 In order to compare the accuracy of the diagnostic algorithms employed, a 

standard set of sample data was selected.  The data are composed of three weeks of panel 

and battery voltage measurements from December 1 to December 21.   

 Each type of system (control, dirty panel, etc.) is represented in the test set.  First, 

each set of data is input into each detection algorithm. Next, the algorithms make 

diagnoses that should correspond to the type of system that the data comes from.  Finally, 

the diagnoses are checked for accuracy and the accuracies of the algorithms are compared 

with one another.  In this manner, it is possible to determine which algorithms are most 
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effective. The tests are also valuable in determining which problems are easy to identify, 

and which are most difficult. 

The test data are from the same system, but from a different time period than the 

data used to create the baselines.  The goal of this research is to determine if the detection 

algorithms can accurately identify problems from an arbitrary set of voltage data. 

Nevertheless, we assume that no significant changes, such as heavy battery degradation, 

occurred between the periods which would render the baselines unrepresentative. 

Selected data, in Figure 44 illustrate the voltage pattern of the standard test data.  

It is important to notice the similarity between tests such as the control system and the 

dirty panel system.  In Figure 44, data for the dirty panel is the dashed line because it 

discharges to a lower voltage than the healthy system; yet it would be more difficult for 

someone viewing the patterns to identify if only one pattern were depicted at a time.  

Likewise, the no charge controller and car battery systems have similar voltage patterns.  

Successful pattern-detection algorithms must be able to detect the small variability 

between these curves. 
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Figure 44: Standard Data from Selected Test Systems (Dec 1st to Dec 21st) 
 
5.2 Comparison of Detection Algorithms 

Team SHINE proposed several detection algorithms for system diagnosis.  Using 

the standard test data, we tested and compared the detection algorithms.  Each strategy 

has advantages and disadvantages.  A detailed evaluation of the four detection algorithms 

is presented here. 

5.2.1  Baseline Test 

The six graphs in Figure 46 are a representation of the fraction of correct and 

incorrect diagnoses for each set of test data.  Each graph may include a dark bar, which 

corresponds to the amount of positively diagnosed days of the test data.  Light bars 

represent the misdiagnosed days and their respective fractions of occurrence.  For 

example, Figure 45 is a results graph of a no charge controller system diagnosis.  The test 

data was diagnosed correctly (dark bar) about 65% of test days, while it was 
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misdiagnosed as deep discharge (first light bar) 10%, and a car battery system (second 

light bar) 25% of the time. 

 

 

 

Figure 45: Example Graph of System Diagnosis 
 

It appears that the control panel was diagnosed as a dirty panel system because of 

seasonal change.  The amount of available daylight lessens near the time of the winter 

equinox.  As winter approached, the amount of discharging for both the control and dirty 

panels continuously increased because there was less sunlight available and the battery 

may have not been charging back to full capacity during the daytime.  Incidentally, the 

baseline data for the dirty panel system in November were very similar to the test sample 

data for the control system in December.  The baseline algorithm was not sophisticated 

enough to account for this, and the control system was diagnosed as a dirty panel system.  

Further improvements could, however, take into account seasonal change and its effects 

on battery voltage.  Nevertheless, the algorithm did identify that the control system was 
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time
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discharging more than expected, indicating a smaller load should be used during the 

winter months. 

 

Figure 46: System Diagnoses using Baseline Test 
 
5.2.2 Single Metric Test: Average Voltage 

The first single metric test, which calculated average voltage for each day, correctly 

diagnosed 61.1% of daily voltage patterns overall. Average voltage was very accurate for 

the dirty panel system, overcharging system, and deep discharging system, which are 
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characterized by average voltages clearly separate from the other types of systems.  This 

made the systems easy to diagnose. 

As Figure 47 shows, the control panel, no charge controller, and car battery 

systems were misdiagnosed more often than they were correctly diagnosed.  Daily 

average voltage alone cannot be used for high accuracy. This suggests that taking into 

account other parameters as well would allow for a stronger differentiation between each 

of the systems. 
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Figure 47: System Diagnoses for Single Metric Test: Average Voltage 
 

5.2.3 Single Metric Test: Average Rotation 

 The measurements of average rotation were compared to those of the training data 

for diagnosis.  The reliability of the average rotation test was equal to that of the average 

voltage test, with 61.1% of daily voltage patterns diagnosed correctly.  This may be in 

part because average voltage and average rotation are related almost linearly.  From 

Figure 48, this test diagnosed the dirty panel system and deep discharge system better 
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than the average voltage test, yet it diagnosed the no charge controller and car battery 

tests with lower accuracy. 

 

Figure 48: System Diagnoses for Single Metric Test: Average Rotation 
 

5.2.4 Single Metric Test: Average Curvature 

An average curvature version of the single metric test did not perform well, with an 

overall accuracy of 34.9%.  As Figure 49 depicts, only the Control system and No Charge 
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Controller system were diagnosed correctly over 50% of the time.  This leads to the 

conclusion that average curvature alone is not a reliable factor for the determination of 

system type.  Although some system data are more curved than other data, the similarity 

between one pattern and at least one other are so close (e.g. the healthy and dirty panel 

systems) that the system misdiagnoses one of them.  Also, due to daily fluctuations, 

curvature may be much different from day to day. 

 

Figure 49: System Diagnoses for Single Metric Test: Average Curvature 



 

 
 

106

 

5.2.5 Single Metric Test: Maximum and Minimum Curvature 

 The uses of maximum and minimum curvature alone were very inaccurate, as 

both tests yielded 36.5% and 19% correct diagnoses, respectively.  Figure 50 shows low 

positive diagnosis, as only the No Charge Controller system was diagnosed correctly the 

majority of times.  The overall misdiagnosis is no doubt due to the fluctuations in voltage 

patterns from day to day causing extreme deviation in these values.  Maximum and 

minimum curvature could be averaged over a large sequence of days (greater than one 

week) to form a more accurate diagnosis. 
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Figure 50: System Diagnoses for Single Metric Test: Maximum Curvature 
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Figure 51: System Diagnoses for Single Metric Test: Minimum Curvature 
 

5.2.6 Single Metric Test: Average Discharge Slope 

 Average discharge slope was also a highly variable parameter.  Due to the 

similarity between certain discharge slopes (e.g. control and overcharge), it was difficult 

for the program to differentiate for proper diagnosis. Only 23% of daily voltage patterns 
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were correctly diagnosed overall.  Figure 52 depicts the Control System as correctly 

diagnosed, but none of the common problems were diagnosed correctly.  Due to seasonal 

change, the discharge slopes in the training data used to form target scores (from mid-

November) were different than those in the test data (from December).   

 

Figure 52: System Diagnoses for Single Metric Test: Average Discharge Slope 
 
 



 

 
 

110

5.2.7 Single Metric Test: Maximum Discharge Slope 

 Finally, the test of maximum discharge slope was fairly inaccurate.  31.75% of 

daily voltage patterns were correctly diagnosed.  The car battery was diagnosed well; 

however, the no charge controller system was overwhelmingly diagnosed as the car 

battery as well, indicating that there was little distinction between the two systems.  The 

control system was diagnosed as a dirty panel system more often than the dirty panel was 

correctly diagnosed.  Clearly, this test alone is not accurate enough to be used in a 

diagnosis tool, as is true with many of the other single metric tests. 
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Figure 53: System Diagnoses for Single Metric Test: Minimum Discharge Slope 
 
5.2.8 Single Metric Testing Conclusions 

Individual parameters could not reliably detect problems to a sufficient degree.  

Although average voltage and average rotation are good indicators of system type, the 

use of several metrics in combination is hypothesized to be more accurate.  Using a 

combination of weighted parameters, the reliable detection of most problems would be 

more likely.  
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5.2.9  Combined Metric Test 

The combined metric test was less accurate than the baseline test.  Using this 

detection algorithm, a 56% success rate was achieved using the standard test data.  The 

dirty panel, overcharged system, and car battery system were correctly diagnosed 100% 

of the time.  However, the control system was again mistaken for a dirty panel system.  

Also, the deep-discharged battery was mistakenly diagnosed as a car battery system.  The 

features of the deep-discharged battery were highly unpredictable compared to the 

features of the other graphs, erratically exhibiting weak, low daytime voltage cycles.  The 

reasons that the deep-discharged battery was incorrectly diagnosed include the fact that 

November data, used for model setup, had many low cycles due to cloudy or rainy days.  

Perhaps refinement of the weighting, removal of cloudy/rainy data, or use of additional 

statistical parameters would produce better results. A final option is to redesign the 

diagnostic test to evaluate a week-long (or longer) voltage time series rather than a single 

day's voltage time series.  The combined metric test is, however, advantageous in realistic 

situations because it does not depend on specific baseline data.  Unlike the other three 

tests used, this test can be outfitted on a system that has no prior voltage history. 
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Figure 54: System Diagnoses using Combined Metric Test 

 

5.2.10 Least Squares Test 

 When given our test data set, the Least Squares matching algorithm flawlessly 

diagnosed Dirty, Overcharged, and Deep Discharged systems, and performed nearly as 

well for the No Charge Controller system. For the Healthy/Control system, the diagnoses 

were about evenly divided between Control and Dirty, but slightly in favor of the correct 

diagnosis. For the system using a Car Battery, the diagnoses were all incorrect. 
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Figure 55: System Diagnoses using Least-Squares Test 

 The overwhelming majority of false diagnoses for the Car Battery system were 

for the No Charge Controller condition. Upon review of the mean baselines for these two 

problems, it is evident that they are very similar for their entire duration. In the vector 

sense, this equates to the two vectors being nearly parallel, and thus having very similar 

distances to any input vector. The distance between two n-dimensional vectors v1 and v2 

is given by the following equation: 
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In this case, our test Car Battery data was slightly closer to the No Charge Controller 

vector for nearly every day in the test data. 

5.2.11 Gaussian Test 

When provided with the same set of test input data as the other matching methods, 

the Gaussian test performed admirably. It was able to correctly diagnose 100% of Dirty, 

Overcharge, Deep Discharge, and Car Battery days, 64% of Healthy/Control days, and 

53% of No Charge Controller days. The series of bar charts in Figure 56 shows 

proportions of correct (black) and false (white) diagnoses from the test set. 
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Figure 56: System Diagnoses using Gaussian Test 
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Chapter 6 Discussion 

6.1 Comparison of Detection Programs 

 From the individual analyses, it is possible to make tentative conclusions about 

the effectiveness of each detection algorithm in real-world applications.  Each test has 

advantages and disadvantages that affected its reliability for the simulations conducted in 

this research.  A comparison of the percentage of correct diagnoses and the percentage of 

incorrect diagnoses for the four main detection algorithms is displayed in Figure 57.  

 

Figure 57: Percentage of Correct and Incorrect Diagnoses of Various Detection Methods 
 

Results indicate that the Gaussian test had the greatest accuracy over the range of 

tested data, at 86.5%. The main factor which accounted for the success of the Gaussian 

test as compared to others was the application of a smooth weighting function.  It was 

essentially a continuous, fine-resolution version of the Baseline test (which utilized an 

Baseline Test 

Combined Metric Test 

Least-Squares Test 

Gaussian Test 

27.5% 
Incorrect 

72.5% Correct 

31% 
Incorrect 

69% 
Correct 

44% 
Incorrect 56% 

Correct 

13.5% 
Incorrect 

86.5% 
Correct 



 

 
 

118

envelope with a crisp boundary—see Section 4.2.1).  The major difference between the 

Gaussian test results and the Least Squares test results was the ability to correctly identify 

the car battery system. 

Although the Gaussian test was very accurate, further development could be 

undertaken to enhance its accuracy.  The Gaussian test might be improved by allowing 

each data index point’s Gaussian distribution to radiate in two dimensional space, rather 

than comparing only corresponding samples in time. Radial distribution (illustrated in 

Figure 58 would produce a baseline which has “thickness” in the horizontal dimension, 

and is therefore more resistant to phase shift in time.  However, generating the new total 

distribution by overlapping many radial distributions would make the algorithm more 

complex.  
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Figure 58: Illustration of a 2-D Radial Distribution 

 
 The Baseline test had 69% correct diagnoses.  The advantage of this test lied in its 

simplicity.  Voltage baselines can be easily formed by averaging sets of training data.  
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However, one disadvantage was its reliance on a set envelope rather than the distinctive 

features of each test.  A major problem with the Baseline test was the misdiagnosis of 

healthy panels as dirty panels.  The most likely reason for this failure is that the test did 

not account for seasonal change between the training data and the test data.  The envelope 

set for this test was not able to compensate for seasonal changes.  To solve this problem, 

different baselines could be used for different times of year, as was done for weather 

patterns (discussed earlier in Section 3.7), to mitigate misdiagnosis. 

 The Combined Metric test was the least accurate of the four main tests.  Although 

this test took into account the important distinctive features of the voltage patterns, the 

variation in these parameters from day to day (especially curvature and discharge slope) 

severely weakened the effectiveness of the Combined Metric Test, leading to an overall 

accuracy of 56%.  Rather, when data were averaged over several days, so that highly 

variable parameters such as curvature and discharge slope could be averaged, the test 

accurately diagnosed four out of the six systems with a 66% accuracy (Figure 59).  The 

same problem as in the Baseline test, the misdiagnosis of healthy and dirty panel systems, 

occurred.  The healthy systems exhibited steeper discharge slopes and lower average 

voltage than was expected because of seasonal change.  Thus, the measured healthy 

system parameters resembled those of the dirty panel systems.  A more robust program, 

taking into consideration time of year would be a simple and effective solution to this 

problem.  Another issue that could have contributed to the inaccuracy of the Combined 

Metric test was the amount of filtering in the data.  The test data were filtered with the 

aforementioned eight-point average filter.  Depending on the amount of filtering, and the 

smoothness imparted to the curves, parameters such as curvature and discharge slope will 
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vary.  Thus, future research attempting to use this method will benefit from a close 

inspection of the effects of filtering on these parameters. 

 The Least Squares test was the second-most effective, with 72.5% correct 

diagnoses.  The only major misdiagnosis was that of the car battery system, typically 

misdiagnosed as a no charge controller system.  This stems from the fact that the voltage 

patterns of the two systems are very similar overall.   The least squares reconstruction of 

the car battery test data clearly yielded a correlation closer to that of the no charge 

controller system.  However, this issue was not problematic in the Baseline, Combined 

Metric, and Gaussian tests.  There was a distinctive separation between the No Charge 

Controller and Car Battery baselines just preceding the discharging slope (see Figure 32) 

because the baseline of the No Charge Controller test begins discharging earlier than the 

Car Battery system baseline.  The Baseline and Gaussian tests were able to distinguish 

between the No Charge Controller data and the Car Battery data because the 

aforementioned baseline separation caused the No Charge Controller data to have a 

higher correlation with the No Charge Controller baseline, and the Car Battery data to 

have a higher correlation with the Car Battery baseline. In the Combined Metric test, this 

separation played a role in dictating the maximum and average curvature of the daily 

data, which also allowed for clear distinction and correct diagnosis.  The Least Squares 

test did not identify this discrepancy because the approximation is less effective at 

detecting such minor discrepancies. 

With regard to the parameters used in the Gaussian and Baseline matching 

algorithms, a more statistically valid model for the spread of each distribution would use 
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the standard error of the sample mean (SEM), rather than the sample standard deviation. 

The SEM is given by: 

n
sSEx =  (6.1) 

s is the sample standard deviation (i.e. the sample based estimate of the standard 

deviation of the population), and n is the size (number of observations) of the sample. 

Because this quantity is inversely related to the sample size (i.e. number of days 

of training data), a larger sample size yields a narrower distribution. As the sample size 

increases, the distribution becomes narrower and eventually converges to a single value: 

the true mean voltage at that time index for all systems afflicted with the same problem. 

Thus collecting more training data yields greater certainty as to the true shape of the 

voltage curve for each problem. 

For use in a matching algorithm, the SEM can be multiplied by a scaling factor to 

change the algorithm's selectivity. While acquiring a large set of training data may yield a 

more accurate picture of the true voltage curve, it can also make the distribution so 

narrow as to exclude actual matches. Depending on the size of the training set, the scaling 

factor can be adjusted to maximize the percentage of correct diagnoses in a manner 

similar to the threshold proposed for the Least Squares test. 

6.2 Limitations 

Due to time constraints and lack of funding there are a few limitations we were 

unable to explore in our study. Although several trials were carried out, the effectiveness 

of the individual programs were only tested on two sizes of PV panels, two brands of 

charge controllers, and two different brands of batteries. Further testing on different types 

of photovoltaic systems in different conditions would be a practical method of validating 



 

 
 

122

these results. These methods may have also been affected by variables for which we did 

not control, e.g. seasonal changes. Additional limitations are concurrent problems, 

variable load, and insect infestation. 

6.2.1 Seasonal Change 

 
We encountered several limitations conducting our study outdoors. For instance, 

the changes in season caused variation in sun light and precipitation levels. We tried to 

control for these changes through numerous repetitions within the study.  However, 

future trials within a controlled environmental system could be conducted for further 

verification.  Additionally, the effect temperature has on the solar panels and batteries 

was not explored and warrants further investigation.  We hope that the next step in this 

research is in field trials of the pattern recognition system, to determine if the problems 

can still be identified even with all the uncontrolled variables found in a real-life setting. 

6.2.2 Concurrent Problems 

 One limitation of our research was the inability to account for the existence of 

concurrent problems.  We recognize the fact that more than one problem can affect a 

solar home system at any given time. However, Team SHINE was unable to factor this 

into our research and the detection algorithm we designed is only capable of detecting 

one problem at a time, since our baseline curves are derived from simulations of each 

problem individually.  In each of our proposed detection schemes, the program selects 

which of the problems are affecting the system or decides that there is no problem.   

 One solution would be to combine the baseline curves derived from each of the 

problems into different combinations.  This way, baselines for each problem would be 

obtained, but also for different problem combination.  Unfortunately, the effects on 
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voltage from these problems are unlikely to be linear and cannot be easily combined.  

This method may be too simplistic and not applicable for actual solar home systems. 

 The most reasonable solution is to propose future research to determine the 

voltage output of these combinations of problems.  We believe our experimental design 

was successful for the development of algorithms to detect single problems affecting 

solar home systems.  One can develop similar experiments to simulate multiple problems 

on one system, and use these voltage outputs to create similar detection algorithms.  

Though limited time and resources have not allowed Team SHINE the opportunity to 

carry out these tests, the following is an example of an experiment for the detection of 

multiple problems affecting solar home systems. 

 One possible combination is the use of a car battery and at the same time 

overcharging the battery. This can be simulated by merging our two setups for each of 

these individual tests. The same basic control setup can be used (see Figure 8).  Instead of 

a deep cycle battery, a 12V car battery can be used, just as in the Car Battery test.  This 

system can then be overcharged by connecting it to a 15V panel, just as was done in the 

overcharge test.  These data can then be logged and used to create baselines, as we did for 

each individual problem.  For this example, the result would be a “car 

battery/overcharge” baseline.  When looking at real data, this can then be a possible 

diagnosis in the detection algorithm. 

  This same process can be used for all combinations, even for more than two 

problems.  For example, it is possible to have a system with an overcharging car battery 

and dust on the panel.  Some combinations, however, will not need to be simulated 

because they are mutually exclusive.  The car battery test by nature already has no charge 
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controller, so those would not need to be combined and tested.  Another example is a 

system with both a dirty panel and overcharging, because these are not likely to happen in 

combination.  For all of the relevant problem combinations, our same individual setups 

can be combined, allowing future researchers to broaden the scope of our diagnostic tool 

to concurrent problems. 

6.2.3 Variable Load 

 Due to the many possible variations in usage of solar home systems, the 

experiment designed by Team SHINE chose to model the experiment in one standardized 

format for all data recording. The system was left with a steady load for all times during 

which it was utilizing the stored solar power. By designing the experiment in this manner, 

it ensured that regular baselines were found for the different stimulated common 

problems for accurate comparisons. The setup is based on the observation that it is typical 

for solar home systems in developing countries to power one light in a continuous 

manner. However, this may not be the way individuals make use of the power from the 

systems. Instead of continuously depleting the systems of stored power the usage could 

vary throughout the night depending on the needs of the users and this would alter the 

load on the system. Whether it is turning lights on and off, varying the number of lights 

operating in a home, or other such changes in power usage, these changes will affect the 

output recorded by our monitoring devices. The potential fluctuations or other changes of 

the voltage curves from these systems could challenge the ability of the monitoring 

system to accurately establish the common problem afflicting the given system.  To 

address this potential problem adjustments would be made, and the testing may require 

the user to keep the light on during the entire testing period. 
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6.2.4 Insect Infestation 

 
Insect infestation is a common problem in the developing world that could not be 

accounted for in this study. Due to the “insect’s homing instinct to nest in warm and 

quietplaces” many of the components of solar home systems make ideal nesting places 

for insect (Lorenzo, 2001). Lorenzo et. al found that even covering a photovoltaic module 

connection box with a tight lid  was not enough to prevent wasps from creating nests in 

the box. The authors stress the importance of making sure all components of the solar 

home system are water tight to prevent insects from building nests inside. Insect 

infestation can be detrimental to the system, because it increases the risk of the system 

short circuiting (Lorenzo, 2001).  Additionally, insects can block sunlight from reaching 

the system by nesting on the photovoltaic panel. This decreases the voltage output from 

the panel and would reduce the amount of power available for the users. Although insect 

infestation is a serious issue in the developing world we were unable to simulate an 

infestation in our experiment. We had no way to create an insect infestation or to promote 

an infestation due to the fact that much of our equipment was located indoors, and would 

creating an insect infestation pose a health hazard. Possible future research could 

investigate how infestations affect voltage output by setting up the experiment in such a 

way that insects could nest in the equipment. 

6.3 Expected Impact 

 Since the results of our study are algorithms and not a final product, it is 

impossible to predict the impact of our proposed final product.  Overall, there are 

approximately 1.5 million solar home systems being used in the developing world 
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(Nieuwenhout, et al., 2004, p. 20).  The most comprehensive literature study has shown 

23% were functioning only partly and 15% had completely failed (Nieuwenhout, et al., 

2004, p. 32).  It is possible to estimate that approximately 570,000 solar home systems in 

developing countries are not healthy (345,000 malfunctioning and 225,000 failed).  

Though there is no way to determine the exact effects our diagnostic tool would have on 

these numbers, we may be able to make some rough estimates by looking at the accuracy 

of our detection scheme while also taking into account some figures concerning the 

occurrence of these problems.   

 To estimate the potential impact of our proposed diagnostic tool in the developing 

world, the following assumptions are made. To begin, we assume that users will have 

access to the proposed detection tool and employ it on their solar home systems.  Though 

this is a best case scenario, our proposed product’s success in a few implementations 

could cause its dissemination in many projects.  We then need to assume that the user 

will regularly run the diagnostic test (through any of the means previously described).  

This is not completely plausible, as evidenced by the disregard many users have for the 

charge controller, but we are currently focusing on the merits of the device itself 

(Nieuwenhout et al., 2004, p. 35).  We then assume the users would take the necessary 

steps to address the problem once it has been identified; for this reason we created a table 

of suggested user responses (See Table 4). Finally, we will assume that our detection 

algorithms would be as accurate in the field as they were in our experiment.  While these 

are not perfectly realistic assumptions, they allow us to obtain some general numbers of 

our proposed detection method’s possible impact. 
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Table 4: Suggested User Response Guide 
 

 

Our most successful detection method was the Gaussian test, so we will use these 

results to obtain our estimates.  Let us first consider at the dirty panel problem.  The 

Gaussian test detected a dirty panel with 100% accuracy.  We know that problems with 

the photovoltaic panel only account approximately 3% of malfunctioning or failed solar 

home systems (Nieuwenhout et al., 2004, p. 34).  Because this figure includes 

Device Reading Suggested Initial User Response Suggested User Follow-up 

“System is Healthy” User does not need to take additional 
action. 

Run diagnostic tool again according to 
normal, pre-determined schedule.  

“Panel is Dirty” Clean the surface of the photovoltaic 
panel to remove all sand or dust 
particles. 

Run diagnostic tool immediately after 
panel is cleaned to ensure no other 
problem is occurring.  Clean the panel 
during regular intervals in the future.  
Run diagnostic tool again according to 
predetermined schedule. 

“Car Battery is 
Being Used” 

If possible, read labels or past packaging 
to determine if car battery is being used.  
Run diagnostic tool again for a longer 
period (about one week) to confirm 
diagnosis. 

If diagnosis confirmed, either purchase a 
deep cycle battery or use car battery for 
the duration of its lifetime.  Run 
diagnostic test again when battery is 
replaced. 

“System is Deep 
Discharged” 

Ensure charge controller set points are 
set according to the manufacturer’s 
suggestions. 

If this cannot be done, set load disconnect 
higher and higher, until the tool no longer 
detects deep discharge as a problem.  Run 
tool again according to predetermined 
schedule. 

“System is 
Overcharged” 

Ensure charge controller set points are 
set according to manufacturer’s 
suggestions. 

If this cannot be done, set load disconnect 
lower and lower until the tool no longer 
detects overcharging as a problem.  Run 
tool again according to predetermined 
schedule. 

“Charge Controller 
is Malfunctioning” 

If system does not contain a charge 
controller, purchase and install one.  If 
the charge controller’s functions are 
bypassed, reverse this bypass.  If neither 
of these are the case, user should 
monitor the load to see if it is ever 
disconnected by the load.  If this does 
not occur, the charge controller should 
be replaced.  If load disconnect is 
functioning but diagnosis remains the 
same, the disconnect set point should be 
adjusted until problem no longer occurs. 

If new controller purchased or bypass 
reversed, diagnostic tool should be run 
immediately to ensure no other problems 
are occurring.  Run tool again according 
to predetermined schedule. 

“Can Not Make a 
Diagnosis” 

Run the tool again until a different 
diagnosis can be made 

Run tool according to predetermined 
schedule 
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photovoltaic modules that are either broken or stolen, let us assume that dust 

accumulation accounts for only a third of this figure, 1%.  Because our detection tool was 

100% accurate in detecting the dirty panel problem, we can say that it would detect every 

instance of excessive dust accumulation.  According to the original figure of 1.5 million 

solar home systems and assuming that 1% of them have dirty panels, our detection 

method could potentially address the problems of 15,000 solar home systems.  

 The overcharge and deep discharge tests also both had a 100% accuracy rate 

using the Gaussian method.  Unfortunately, there are no conclusive figures as to the 

percentage of solar home system failures or malfunctions that resulted from either of 

these problems.  However, we do have data from several implementations that show the 

percentage of systems in which the batteries have failed.  In an Argentinian project, 

approximately 15% of batteries were malfunctioning three and a half years after 

implementation (Nieuwenhout et al., 2004, p. 36).  In Indonesia, failure rates ranged from 

0% to 16.1%, depending on the region, the mean failure rate being 6.1% (Nieuwenhout et 

al., 2004, p. 34).  If we assume that these numbers are equivalent to the failure rates all 

over the developing world, we can say that anywhere from 91,500 (6.1% of 1.5 million 

systems) to 241,500 systems have problems with the battery.  Because our two battery 

problems were detected with 100% accuracy, we predict that our system would save a 

number of systems somewhere within this range. 

  The Gaussian test was also able to detect the use of a car battery with 100% 

accuracy.  Unfortunately, there are no aggregate figures that tell us how many car 

batteries are actually being used in developing countries.  In a study in Brazil, eight of the 

fifteen (~53%) initially installed solar batteries were replaced with automotive batteries 
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(Reinders et al., 1999, p. 11).  Another study showed that 19% of the solar home systems 

in Swaziland used automotive batteries (Nieuwenhout et al., 2001, p. 50).  In Chad, 

Kenya, Zimbabwe, and Uganda, the use of car batteries ranged anywhere from 4.5% to 

30% (Nieuwenhout et al., 1999, p. 38).  Ignoring the Brazil data, because of the small 

sample size, we can make predictions based on this range of 4.5% to 30%.  Anywhere 

from 67,500 to 450,000 car batteries are therefore being used in the developing world 

based on this range, and based on our tests our device would detect all of these.   

 The malfunctioning charge controller test was not identified with 100% accuracy 

using the Gaussian method, as it was detected only 55% of the time.  A review of all 

literature has shown that charge controller are either missing, broken, malfunctioning, or 

bypassed 33% of the time (Nieuwenhout et al., 2004, p. 36).  Again using the 1.5 million 

solar home systems figure, we can say that approximately 495,000 systems suffer from 

problems due to the charge controller.  Because our detection rate is only 55%, we would 

expect to only detect approximately 270,000 of these. 

 Though these predictions are very rough and rely on several assumptions, they 

provide insight into the significant impact this kind of diagnostic tool can make (See 

Table 5). Based on these calculations, if the diagnostic tools are implemented 

everywhere, our device could detect problems on anywhere from 241,500 to 976,500 

systems (many of these problems overlap, since there are only approximately 570,000 

malfunctioning systems in the developing world) (Nieuwenhout, et al., 2004, p. 20)).  We 

have confidence in the accuracy of our detection methods, and we believe that its use 

could spread quickly throughout the developing world, greatly reducing the failure rate of 

solar home systems and improving the quality of life in these areas.  
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 The results of this research are important to the use of solar home systems in the 

developing world. As previously mentioned, the high failure rate of solar home systems 

leads to a loss of faith in the implementations of solar technology. Potential users may 

choose not to take the steps necessary to implement the system based on the failure rate 

and the potential high cost of repairs. The proposed detection tool will prevent failure of 

the system and promote proper maintenance which will restore users faith in the use of 

solar power. Additionally, preventing the need for major repairs on the system, such as 

replacing the battery, will greatly reduce the overall maintenance cost for the user. This is 

essential because cost is a major barrier when implementing solar home systems in the 

developing world. 

Table 5: Expected Detection Rates 

 

Our most successful detection method was the Gaussian test, so we will use these 

results to obtain our estimates.  Let us first consider at the dirty panel problem.  The 

Gaussian test detected a dirty panel with 100% accuracy.  We know that problems with 

the photovoltaic panel only account approximately 3% of malfunctioning or failed solar 

home systems (Nieuwenhout et al., 2004, p. 34).  Because this figure includes 

photovoltaic modules that are either broken or stolen, let us assume that dust 

Problem Number of Solar Home 
System with Given 
Problem 

Number of Solar Home 
Systems Detected with 
Problem 

Dirty Panel 15,000  15,000 
Problems with Battery: 
Overcharging or Deep 
Discharging 

91,500-241,500 91,500-241,500 

Car Battery 67,500- 450,00 67,500-450,000 
Malfunctioning Charge 
Controller 

495,000 270,000 
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accumulation accounts for only a third of this figure, 1%.  Because our detection tool was 

100% accurate in detecting the dirty panel problem, we can say that it would detect every 

instance of excessive dust accumulation.  According to the original figure of 1.5 million 

solar home systems and assuming that 1% of them have dirty panels, our detection 

method could potentially address the problems of 15,000 solar home systems.  

 The overcharge and deep discharge tests also both had a 100% accuracy rate 

using the Gaussian method.  Unfortunately, there are no conclusive figures as to the 

percentage of solar home system failures or malfunctions that resulted from either of 

these problems.  However, we do have data from several implementations that show the 

percentage of systems in which the batteries have failed.  In an Argentinian project, 

approximately 15% of batteries were malfunctioning three and a half years after 

implementation (Nieuwenhout et al., 2004, p. 36).  In Indonesia, failure rates ranged from 

0% to 16.1%, depending on the region, the mean failure rate being 6.1% (Nieuwenhout et 

al., 2004, p. 34).  If we assume that these numbers are equivalent to the failure rates all 

over the developing world, we can say that anywhere from 91,500 (6.1% of 1.5 million 

systems) to 241,500 systems have problems with the battery.  Because our two  

  The Gaussian test was also able to detect the use of a car battery with 100% 

accuracy.  Unfortunately, there are no aggregate figures that tell us how many car 

batteries are actually being used in developing countries.  In a study in Brazil, eight of the 

fifteen (~53%) initially installed solar batteries were replaced with automotive batteries 

(Reinders et al., 1999, p. 11).  Another study showed that 19% of the solar home systems 

in Swaziland used automotive batteries (Nieuwenhout et al., 2001, p. 50).  In Chad, 

Kenya, Zimbabwe, and Uganda, the use of car batteries ranged anywhere from 4.5% to 
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30% (Nieuwenhout et al., 1999, p. 38).  Ignoring the Brazil results (because of the small 

sample size) we can make predictions based on this range of 4.5% to 30%.  Anywhere 

from 67,500 to 450,000 car batteries are therefore being used in the developing world 

based on this range, and based on our tests our device would detect all of these.   

 The malfunctioning charge controller test was not identified with 100% accuracy 

using the Gaussian method, as it was detected only 55% of the time.  A review of all 

literature has shown that charge controller are either missing, broken, malfunctioning, or 

bypassed 33% of the time (Nieuwenhout et al., 2004, p. 36).  Again using the 1.5 million 

solar home systems figure, we can say that approximately 495,000 systems suffer from 

problems due to the charge controller.  Because our detection rate is only 55%, we would 

expect to only detect approximately 270,000 of these. 

 Though these predictions are very rough and rely on several assumptions, they 

provide insight into the significant impact this kind of diagnostic tool can make (See 

Figure 59). Based on these calculations, if the diagnostic tools are implemented 

everywhere, our device could detect problems on anywhere from 241,500 to 976,500 

systems (many of these problems overlap, since there are only approximately 570,000 

malfunctioning systems in the developing world).  We have confidence in the accuracy of 

our detection methods, and we believe that its use could spread quickly throughout the 

developing world, greatly reducing the failure rate of solar home systems and improving 

the quality of life in these areas. 
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Chapter 7 Possible Implementations and Future Research 
 

The algorithms created in this study can serve as an important basis for 

applications in solar home systems. The next step in future research would be to create a 

product that can be used in the field to detect the problems we have discussed concerning 

solar panels and batteries. When attached to an individual solar home system for a short 

period of time, this device could identify the problem and allow the user to address it 

before it causes long-term damage. In this section, we will propose several uses of such a 

tool and lay out the steps users can take to address each possible problem. 

 This proposed product would utilize our most successful detection algorithm: the 

Gaussian method. As discussed in previous sections, this method utilizes voltage patterns 

representative of each of the five problems we have discussed. These representative 

patterns would serve as the basis for our diagnostic tool. To test a given system, we can 

collect voltage data for that system for at least one day (since the detection algorithm 

relies on daily voltage patterns). The collection period can be longer than this, as the 

accuracy of the diagnosis would likely increase as the amount of voltage data increases. 

 Several methods can be utilized to collect this data and diagnose the problem. We 

devised four different options: (1) a stand-alone detection device with a separate data 

logger, (2) a charge controller with integrated detection algorithm (3) a detection device 

located on a central computer, and (4) a detection device accessible over the internet. The 

advantages and disadvantages of these will be discussed below. 
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7.1 Stand-alone Detection Device with Data Logger 

This first method would consist of a single product that can be attached to the solar 

home system (which should consist of a load, battery, photovoltaic panel, and charge 

control). This product would consist of a data logger that could collect voltage data and a 

CPU that would contain our detection algorithms; these two elements would be integrated 

into one system. Similar to our process of testing the algorithms, this program would 

compare the given data to the representative problem patterns. The user would attach the 

product to his or her system and record voltage for a given period, at least one day. The 

greater amount of data collected, the more accurate the diagnosis.  

The device would then send this voltage information to the CPU portion of the 

device, which would contain the day separation function, data filtering function, and the 

detection algorithm. The data would be separated into 24-hour periods (if more than 24 

hours of voltage data is collected), filtered, and then diagnosed using the detection 

algorithm.  

This product would then relay one of seven different results to the user: (1) 

System is Healthy, (2) Panel is Dirty, (3) Car Battery is Being Used, (4) System is Deep 

Discharged, (5) System is Overcharged, (6) Charge Controller is Malfunctioning, or (7) 

Can Not Make Diagnosis (though unlikely, this result is necessary in case the voltage 

pattern does not match that of a healthy system or any of the five problems). The results 

would be given to the user either in the form of a graphical display or using 6 different 

colored LED lights (one for each of the seven possible results). 

The advantage of this type of system is that, because the two main components 

are combined, it would be much easier to use. Very little expertise is needed, and the only 
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instructions necessary are for attaching it to the system and interpreting the results. By 

having the logger and CPU in one unit, there is less chance for human error affecting the 

results. No intermediate step is needed for the user to take the raw data and input it into 

an algorithm. Additionally, since the device is not necessary for the system to function, 

the diagnostic device can be shared by members of a village. For example, each user in 

an area can check the health of their system with this device for a day or period of days, 

and then pass it on to another user. This would greatly reduce the cost of the device to the 

user, since it could be shared by a large amount of people. The ease of the system would 

likely encourage its use, which would also avoid long-term maintenance costs that would 

arise if these problems were not detected quickly. 

The major downside to the device is its cost, even if this cost can be shared by 

multiple users. An entirely new product would have to be designed and manufactured, 

since there is no similar product on the market. Since the users of solar home systems in 

the developing world are poor, and because the products’ benefits are long term, there 

may not be enough demand for such a device. Users may not see the benefit of investing 

in a product that does not improve the short-term functions of their solar home system. 

Since a data logger and CPU are not integral parts of a typical system, users may brush 

the product off as an unnecessary cost. Another downside is that the data will not be 

analyzed continuously. There is therefore a greater chance of false diagnoses, since the 

device will only be gathering data for a day or a period of several days (leaving it 

susceptible to short-term changes in weather patterns or use of the load). 
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Figure 59: Diagram of Stand-Alone Detection Device with Data Logger 
 

7.2 Charge Controller with Integrated Detection Algorithm 

Another option would be a product in which the detection system is integrated 

within the charge controller. In this case, the computer program could read the voltage 

directly as it passes through the charge controller, allowing the problem to be diagnosed 

quickly. There would be no intermediate step of recording the voltage on a charge 

controller separately and then inputting it into the computer program. 

This product would first require a slight alteration to our computer algorithm. 

Because no data logger will be involved, the program itself will be collecting the 
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recorded data while voltage runs through the charge controller. This means that the 

program will begin to detect once 24 hours of data has been collected. At this point, the 

program will then split the data into 24-hour periods, every time an additional day of data 

is collected. The program then filters the data, which it then inputs into the problem 

detection algorithm. 

Because a charge controller is an important part of a solar home system, this 

device will be attached to the system for the entirety of its use and data will be collected 

continuously. The detection algorithm can also be altered for long-term monitoring. 

Rather than making a diagnosis on a day-to-day basis, as described in the previous 

section, the device should give a weekly diagnosis. Internally, the algorithm would 

choose one of the seven options mentioned above. Then, at the end of the week, the 

device would report the one result that is most common over that weekly period, using 

the LED system described in the previous method. Because this method takes more data 

into account, the accuracy of the diagnosis will be greater. 

This method has several important advantages. First, it increases accuracy, as the 

greater amount of information would reduce the likelihood of false positives caused by 

changes in either weather or load. Second, because the system is included in a necessary 

component of a solar home system (the charge controller), there is a greater chance that 

users would purchase the product. A potential solar home system customer, or potential 

installer, will already need to purchase a charge controller. Our device could be marketed 

as a new type of charge controller with upgraded capabilities. Additionally, since every 

user would have their own device, there is less “wear and tear” or other potential conflicts 

that could occur for a product that is shared among members of a community. 
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At the top of the list of disadvantages for this product is that it could suffer from 

user bypass, just as in a typical charge controller. This would have even worse effects 

because, not only could damage be caused by having no controller, but there would also 

be no method of detecting other problems. Cost is also a significant disadvantage, as one 

of the biggest barriers to rapid deployment of solar home systems is the high upfront cost 

(Nieuwenhout, 2004, p.456). Although this product is first and foremost a charge 

controller, it is still essentially a new product. Just as in the previous method, the device 

would need to be developed and manufactured. It would inherently have a higher cost 

than other charge controllers, as it would need to contain a CPU with our programs and 

algorithms. Furthermore, because it cannot be shared among multiple users, the cost 

would be higher per person.  

To alleviate the concern of user bypass of this product, one possibility is to pair 

this CPU-integrated charge controller with a solar panel also containing a CPU. The 

panel’s CPU would shut down the solar home system if it is at risk of being damaged. 

The charge controller tool would still log and measure voltages to detect problems, but 

the panel would have a simpler CPU that could detect problems that could cause 

permanent irreversible damage. In this case, the panel CPU would stop the system from 

operating until the problem is addressed. One example would be if the system deep 

discharges for many days at a time; the system would cut off current flow to the battery 

(to prevent permanent failure) until the user decreases the load on the system or increases 

the available solar radiation to the panel. Users would therefore not only be alerted to, but 

also forced to maintain their systems properly. Even if the charge controller unit is 

bypassed or removed, the panel CPU will be a safeguard against blatant misuse of the 
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system. Over time, this could lead to better education about their solar home systems and 

an increasingly positive attitude toward solar power (due to fewer system failures). 

Unfortunately, there is a possibility of a negative reaction. Users may see this as too rigid 

a device that does not give them enough leeway to use their systems as they see fit. 

However, the expectation is that the positive effects of this device would outweigh any 

dissatisfaction over flexibility of use. 

 

Figure 60: Diagram of Detection Device Contained within Charge Controller 
 

7.3 Detection Device within a Central Computer 

Another option would be for the data logger, computer algorithm, and charge 

controller to be separate components. A user could connect the data logger to their 

system and log a day or several days’ worth of data, and then bring that data to a central 

computer, which would contain the 24-hour separation, data filtering programs, and 

detection algorithms. The central computer would then diagnose the system based on the 

given data. 
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For the user, this system would be a multi-step process. First the user attaches the 

data logger to his or her solar home system. Data can then be collected for a minimum of 

one day (again, the greater amount of data collected, the higher the accuracy of the 

diagnosis). Once the data has been collected, the user than takes this data logger to a 

computer that is located somewhere at the center of the community. This method is most 

applicable if a village has a central community center that may contain a computer (or at 

the very least, enough electricity capabilities to power a computer). The user can attach 

the data logger to the computer and upload the voltage data. Then, the program could be 

run to separate and filter the data, and then gives a diagnosis. The interface would then 

display the diagnosis, using one of the seven options mentioned in the past two methods. 

Such a system would be convenient because data loggers are widely available and 

inexpensive. These could either be shared among community members, or used 

exclusively for each system. Additionally, only one central computer would be necessary, 

and everyone in a village could share it. Whenever a user expects that the system may not 

be working properly, he or she can collect data and bring it to this central location. This 

can also be done on a regular basis to ensure the health of the system. 

This method does bring some disadvantages. First, the community would need to 

have a central site that either contains a computer, or which is capable of powering a 

computer. Also, because the user needs to take the data to this site, there are some time 

costs because of the travel involved. This also means that the problem may not be 

diagnosed as quickly, since the user needs to collect the data for a period and then bring it 

to the test site. Additionally, the user would need some training to use the program, even 

if the interface is simple. This method also requires that the program be taken to the site 
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of the community, most likely by the group that implements the system. Finally, because 

of the multiple steps in this process, there is a greater probability of human error. 

 

 

 

Figure 61: Diagram of Detection Device with Central Computer 
 
7.4 Detection Device accessed through Internet 

A final option is very similar to the previous one, except that the central computer 

would not need to include the diagnostic program. If the computer has internet access, 

then the voltage data can be compared to an online database that contains the separating, 

filtering, and detection programs. 

The main advantage to this method is that implementers would not need to be sent 

to these remote locations to install this program onto a computer. Rather, the program 

could be accessed via the internet. The obvious problem is that most remote locations in 

the developing world would not have internet access. We see this method most applicable 

for more moderately developed regions. There are some green communities in the United 

States that utilize solar home systems. These areas are much more likely to have internet 

access, and it would be very convenient for this program to be accessed wirelessly. 
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7.5 Suggested User Responses 

 It is also important to consider how the user should respond to each possible 

problem scenario. While these detection methods are important for diagnosing common 

problems, it is up to the user to take steps to correct them. Some of these can be 

addressed rather simply, while some are more complex. Though the specifics of the solar 

home systems and village resources vary, we can provide some general recommendations 

for each problem. 

 A healthy system is obviously one that is not exhibiting any problems according 

to its voltage patterns. No further action should be taken except for future voltage 

measurements to ensure that the system remains healthy. 

 If the result is “Panel is Dirty,” the subsequent steps are also fairly simple. The 

user needs to clean the surface of the panel, removing any dust, sand, or dirt particles. 

The photovoltaic panel should be in an accessible spot so that this cleaning can be done 

regularly. There is also the possibility that this diagnosis has been caused by other 

factors, such as several days of cloudy weather, or a damaged panel. The user should be 

informed of these possibilities; if the panel is damaged, it should be replaced. Once the 

problem has been addressed, the user should then collect voltage data from the system 

again to be sure that no other problem is occurring. 

 If the device detects “Car Battery is Being Used,” there is no simple method to fix 

the problem. The user may not always know the type of battery that is being used in the 

system, and may not have any way to determine this. When this result is shown, it means 

that the battery will likely have a short lifetime. The user’s only options are to purchase a 

new deep cycle battery (or modified car battery), or wait until the end of the lifetime of 
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the car battery to replace it. Before purchasing a new battery, the user should run the 

program for a longer period of time to confirm the diagnosis. 

 To address the result of “System is Deep Discharged,” the steps are a bit more 

complex. The user should first check the charge controllers load connect and disconnect 

set-points. These points determine at which state of charge the battery should be 

connected and disconnected from the load. Ideally, the controller disconnects the load 

before the battery deep discharges and reconnects the load when the battery is within an 

adequate state of charge. The user should make sure that these values are set at the 

correct values recommended by the charge controller manufacturer. If this information is 

not available, and the deep discharge problem persists, then the load disconnect value 

should be set higher. The user should continue to monitor the system with the detection 

device until deep discharge is no longer detected as a problem. If it persists, then the 

disconnect value should be set higher and higher until the problem is no longer detected. 

 If the result “System is Overcharged” is detected, similar steps should be taken. 

The set-points should be checked and ensured that they match the manufacturer’s 

suggestions. Again, if this information is unavailable, or if the problem persists, the user 

should adjust the set points. In this case, the disconnect set-point should be lowered. This 

way, more of a load can be used, draining more power from the battery, and preventing 

overcharging. Just as in deep discharge, the user should continue to monitor the voltage 

and adjust the set-points as needed. There is also the possibility that the system is not 

properly sized, and the panel’s voltage is too high in comparison with the battery. If this 

is the case, either a battery with higher capacity or a panel with lower voltage should be 

purchased. 
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 If “Charge Controller is Malfunctioning” is the diagnosis, then several steps 

should be taken. If the user does not have a charge controller or has bypassed its 

functions, then a charge controller should be purchased (or bypass reversed). If this is not 

the case, the user should determine whether the charge controller is functioning at all. He 

or she can do this by determining if the load is ever disconnected. This can be determined 

by a test performed by the user. The user should keep the load on during an extended 

period of time while covering up the panel, to keep light from reaching the panel. If the 

controller is functioning, the load should be cut off at a certain point to keep the battery 

from deep discharging. If this does not occur, a new controller should be purchased. If 

this is not the case, then the set points should be adjusted, just as if the system was 

overcharged or deep discharged, until the problem is no longer detected. 

If the result is “Can Not Make Diagnosis,” then the algorithm cannot accurately 

detect whether the problem is healthy or exhibiting one of the problems. In this case, the 

user should use the detection device to continually monitor the system. This should be 

done until the product has enough data to predict one of the six other problems. 

 As explained in previous sections, this proposed product can have a significant 

impact in the use of solar home systems. Though each installation and village is different, 

we have proposed several methods of implementing our device, as well as suggestions for 

addressing each problem. Table 6 summarizes the comparison of the four different 

implementations discussed. Because these problems can be detected early, we expect to 

see that the failure rates would decrease (and the longevity of systems increase) when a 

detection device can be implemented. 
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7.6 Cost Analysis of Proposed Implementations 

One can see that cost must be a significant factor in evaluating these proposed 

implementations, as high up-front costs are one of the major barriers to solar home 

system dissemination (Niewenhout et al., 2001, p.454). Here we discuss these barriers in 

costs for each of our proposed implementations, as well as discuss some ways to 

overcome these barriers. For both of the computer implementations, the additional costs 

would actually be quite low, but they rely on a high amount of already existing 

infrastructure (such as computers, internet access). This would be a valuable solution for 

more developed regions that already contain a computer and/or internet access. For the 

majority of solar home systems in regions without this type of resources, our other 

proposed implementations would be the sole options. 

 Determining the exact cost of creating the other two products would be out of the 

scope of this project, but it is expected to be significant. The charge controller itself only 

makes up 5% of the initial system cost (Instituto, 1998, p.14). In the U.S. they can be 

found commercially for approximately $10, and they would likely be less expensive for 

those in developing areas. The data logger is a bit more expensive, at about $75-100 in 

the U.S. Nonetheless, as this device would be shared among several users, this would 

likely be cheaper than a charge controller (per houshold). The issue is that a new product 

would need to be developed in order to incorporate our detection algorithm into these 

devices. This would require a large amount of funding for research and product 

development. To justify this, we must expect that users would be willing to buy the 

product. As we have seen with the case of charge controllers, even a product with long-
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term benefits may be disregarded for short-term benefits (avoiding the cost of the new 

product). 

 One alternative possibility would be to have the implementers purchase the 

device, rather than the end user. Over 75% of implementations are large scale (over 100 

systems) and about 1/3 of them are provided by non-commercial sources, such as 

governments and NGO’s (Nieuwenhout, et al., 2001, p. 457). These are the types of 

organizations that these products would be marketed towards. Since their main goal is not 

profitability but sustainability of the project, they would have the highest interest in our 

product. Once the case is made that the failure reduction overrides this additional cost, we 

would expect to find significant interest in our project from these types of organizations. 

The long-term goal would be for these groups to initiate the use of our products; then, 

once their use proves to be effective, the use would spread through commercial routes. 
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Table 6: Proposed Implementation Types Compared (Green=positive, Yellow=moderate, Pink=negative) 
 
 

 
 

Method Cost Infrastructure 
Necessary 

Can be 
Shared 

Necessary to 
System 

Period of 
Data 
Collection 

Travel Costs Expertise 
Needed 

Stand-Alone 
Product 

Moderate Little Yes No Depends on 
if shared 

None Moderate 

Integrated 
Product 

Moderate Little No Yes Permanent None Low 

Central 
Computer 
and Internet-
Capable 

Low Significant Yes No Depends on 
if shared 

High Moderate 
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7.7 Distributed Energy Systems 

While the methods and software developed in this research were focused on small 

solar home systems, with the proper training data and perhaps a minimal amount of 

modification, they could be applied to most applications where batteries are used for bulk 

energy storage. In particular, distributed energy systems and electric automobiles will 

likely become prevalent in the coming decades, and both technologies rely heavily on the 

ability to store large amounts of energy. 

In distributed energy systems, large banks of batteries are installed throughout the 

power grid along with DC-to-AC inverters and other equipment. During periods of high 

demand, the batteries supplement the grid by supplying power to nearby consumers. 

During periods of low demand, the batteries consume power in recharging. This allows 

power transmission equipment to be designed for the average demand rather than peak 

demand, improving the cost-efficiency of the system. 

Figures 62 and 63 show two different ways of implementing the distributed 

energy principle, one where larger battery banks are connected to electrical substations, 

and another where each consumer has a smaller bank. Both configurations can in some 

sense be considered as larger scale replicas of solar home systems. The power source, 

batteries, and load are connected in parallel, and the charging and discharging of the 

batteries can be regulated in a similar way (with consideration given to the fact that the 

power grid is AC rather than DC, of course). However, the problems investigated in this 

project are not all applicable. Certainly, a power company would not likely use 

automotive batteries or bypass a charge controller, and if the banks are charged by the 

power grid, the presence of a dirty solar panel is not possible. The primary concern would 
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be with monitoring the batteries' discharge curves to detect when they are anything but 

healthy. A charge controller with incorrectly set thresholds could lead to overcharging or 

deep-discharging, and batteries wear out over time even with proper use.  

 

Figure 62: Diagram of Distributed System 
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Figure 63: Diagram of Distributed System II 

 
In both power grid and electric vehicle applications, reliability is a very high 

priority. Even brief power outages can cost businesses many thousands of dollars, and an 

automobile failure can leave the driver stranded. Thus it is highly desirable to be able to 

detect and address maintenance issues before a failure occurs. Installing a detection 

system such as ours could alert users to slowly developing problems or degradation of 

batteries due to normal use, allowing them to replace the batteries as often as necessary. 

This could also avert the scenario where a regular replacement schedule is implemented, 

enabling maximum use of the batteries over their lifespan. 

Newer technologies such as ultracapacitors are being developed, but until they 

can attain the same energy density as any type of battery for the same price, batteries will 
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remain in widespread use. Thus it will be important for some time to be able to model 

their behavior and detect problems quickly, or even before they occur at all. 
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Appendix A: Charge Controllers 
 

Charge controllers come in many shapes, sizes, and price ranges. The least 

complex form of charge controllers are the 1 or 2 stage versions, which use relays or 

shunt transistors to control the voltage.  They short or disconnect the panel when a certain 

voltage is reached.  These charge controllers have been used for decades.  They are cheap 

and reliable. (http://store.solar-electric.com/chco.html) 

 The next category is the 3-stage charge controller.  This type of controller acts by 

charging in three stages: the bulk stage, the absorption stage, and the float stage.  During 

the bulk phase of the charge cycle, the voltage sent to the battery rises to what is termed 

the “bulk level,” and current to the battery is maximized.  Next, in the absorption stage, 

the bulk voltage is maintained for a specific amount of time while the current lowers as 

the batteries charge up.  After the absorption phase is the float stage, in which the voltage 

is lowered to float level, at which the batteries draw a small current until the next cycle 

begins. (http://www.freesunpower.com/chargecontrollers.php) 

Many three stage controllers are equipped with “pulse width modulation,” or 

PWM.  PWM is the ability to change the length of the charging cycle based on the 

condition of the battery and the amount of current generated by the solar panel. 

(http://store.solar-electric.com/chco.html) 

The most complex charge controllers include maximum power point tracking, or 

MPPT. This feature converts high voltage DC power into lower voltage DC power that 

optimizes the match between the panel and battery.  This is claimed to provide 15 - 30% 

more power to the battery. (http://store.solar-electric.com/chco.html) 
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Appendix B: LabVIEW Data Collection Program 
 

 
 

LabVIEW Data Collection Program: Overall Structure 
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LabVIEW Data Collection Program: Select and Record Channels C through H 
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LabVIEW Data Collection Program: Secondary Cycle A 
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LabVIEW Data Collection Program: Secondary Cycle B 
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Appendix C: Example of Raw Data File: 24 Hour Period 
 
LabVIEW Measurement  
Writer_Version 0.92 
Reader_Version 1 
Separator Tab 
Multi_Headings No 
X_Columns Multi 
Time_Pref Absolute 
Operator SHINE 
Date 2008/10/13 
Time 17:12:27.510827 
***End_of_Header***  
  
Channels 4        
Samples 1  1  1  1  
Date 2008/10/13  2008/10/13  2008/10/13  2008/10/13  
Time 17:12:27.510827  17:12:27.510827  17:12:27.510827  17:12:27.510827  
X_Dimension Time  Time  Time  Time  
X0 0.0000000000000000E+0  0.0000000000000000E+0  0.0000000000000000E+0 
 0.0000000000000000E+0  
Delta_X 1.000000  1.000000  1.000000  1.000000  
***End_of_Header***         
X_Value Untitled X_Value Untitled 1 X_Value Untitled 2 X_Value Untitled 3 Comment 
0.000000 0.682112 0.000000 13.565972 0.000000 11.521906 0.000000 11.363276 
570.129807 0.682112 570.129807 13.433342 570.129807 11.450489 570.129807 11.240891 
1169.772049 0.682112 1169.772049 13.208891 1169.772049 11.419882 1169.772049 11.200095 
1769.784826 0.682112 1769.784826 13.117070 1769.784826 11.399477 1769.784826 11.179698 
2369.977861 0.682112 2369.977861 13.086463 2369.977861 11.379072 2369.977861 11.159300 
2969.780334 0.682112 2969.780334 13.066059 2969.780334 11.368870 2969.780334 11.159300 
3569.783096 0.682112 3569.783096 13.045654 3569.783096 11.358667 3569.783096 11.138903 
4169.785858 0.682112 4169.785858 13.015047 4169.785858 11.358667 4169.785858 11.128704 
4769.788619 0.682112 4769.788619 12.994643 4769.788619 11.348465 4769.788619 11.128704 
5369.771352 0.661713 5369.771352 12.974238 5369.771352 11.348465 5369.771352 11.118505 
5969.784128 0.651514 5969.784128 12.964036 5969.784128 11.338262 5969.784128 11.118505 
6569.776875 0.651514 6569.776875 12.943631 6569.776875 11.328060 6569.776875 11.118505 
7169.779637 0.641314 7169.779637 12.902822 7169.779637 11.073000 7169.779637 10.598366 
7769.742341 0.641314 7769.742341 12.892619 7769.742341 10.981178 7769.742341 9.751866 
8369.785160 0.641314 8369.785160 12.882417 8369.785160 10.899559 8369.785160 8.782981 
8969.787921 0.641314 8969.787921 12.872215 8969.787921 10.777130 8969.787921 7.875288 
9569.740611 0.641314 9569.740611 12.872215 9569.740611 10.583285 9569.740611 7.140974 
10169.793445 0.641314 10169.793445 12.851810 10169.793445 10.205796 10169.793445 6.529046 
10769.786192 0.641314 10769.786192 12.851810 10769.786192 9.654866 10769.786192 6.029305 
11369.738882 0.641314 11369.738882 12.841608 11369.738882 8.991710 11369.738882 5.611155 
11969.761672 0.641314 11969.761672 12.831406 11969.761672 8.257137 11969.761672 5.274594 
12569.944693 0.641314 12569.944693 12.831406 12569.944693 7.614386 12569.944693 5.019625 
13169.777210 0.641314 13169.777210 12.821203 13169.777210 7.083861 13169.777210 4.825847 
13769.779971 0.641314 13769.779971 12.811001 13769.779971 6.624753 13769.779971 4.672865 
14369.762704 0.641314 14369.762704 12.800799 14369.762704 6.288074 14369.762704 4.550480 
14969.765466 0.641314 14969.765466 12.790596 14969.765466 5.971800 14969.765466 4.417896 
15569.768227 0.641314 15569.768227 12.790596 15569.768227 5.706537 15569.768227 4.295510 
16169.801032 0.641314 16169.801032 12.780394 16169.801032 5.492287 16169.801032 4.162926 
16769.763736 0.641314 16769.763736 12.780394 16769.763736 5.329048 16769.763736 4.030341 
17369.776512 0.641314 17369.776512 12.770192 17369.776512 5.176012 17369.776512 3.907956 
17969.779274 0.641314 17969.779274 12.759989 17969.779274 5.043381 17969.779274 3.805968 
18569.782035 0.641314 18569.782035 12.759989 18569.782035 4.941357 18569.782035 3.724377 
19169.784797 0.641314 19169.784797 12.749787 19169.784797 4.839333 19169.784797 3.652986 
19769.787559 0.641314 19769.787559 12.749787 19769.787559 4.747512 19769.787559 3.601992 
20369.780305 0.641314 20369.780305 12.739585 20369.780305 4.676095 20369.780305 3.561197 
20969.763038 0.641314 20969.763038 12.729382 20969.763038 4.614880 20969.763038 3.530600 
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21569.785829 0.641314 21569.785829 12.729382 21569.785829 4.553666 21569.785829 3.489805 
22169.758547 0.641314 22169.758547 12.719180 22169.758547 4.502654 22169.758547 3.449010 
22769.761309 0.641314 22769.761309 12.719180 22769.761309 4.451642 22769.761309 3.418413 
23369.724013 0.641314 23369.724013 12.708978 23369.724013 4.390428 23369.724013 3.377618 
23969.756818 0.641314 23969.756818 12.698775 23969.756818 4.329213 23969.756818 3.336823 
24569.759579 0.641314 24569.759579 12.698775 24569.759579 4.267999 24569.759579 3.316425 
25169.722283 0.641314 25169.722283 12.688573 25169.722283 4.216987 25169.722283 3.285829 
25769.755088 0.641314 25769.755088 12.678371 25769.755088 4.145570 25769.755088 3.255233 
26369.757850 0.641314 26369.757850 12.678371 26369.757850 4.094558 26369.757850 3.234835 
26969.760611 0.641314 26969.760611 12.668169 26969.760611 4.023141 26969.760611 3.204239 
27569.763373 0.641314 27569.763373 12.657966 27569.763373 3.972129 27569.763373 3.183841 
28169.766134 0.641314 28169.766134 12.657966 28169.766134 3.910915 28169.766134 3.163444 
28769.768896 0.641314 28769.768896 12.647764 28769.768896 3.859903 28769.768896 3.132847 
29369.761643 0.631115 29369.761643 12.637562 29369.761643 3.808891 29369.761643 3.112450 
29969.764405 0.641314 29969.764405 12.637562 29969.764405 3.757879 29969.764405 3.092052 
30569.757152 0.641314 30569.757152 12.627359 30569.757152 3.717069 30569.757152 3.071654 
31169.769928 0.641314 31169.769928 12.627359 31169.769928 3.676260 31169.769928 3.051257 
31769.762675 0.641314 31769.762675 12.617157 31769.762675 3.645652 31769.762675 3.030859 
32369.765437 0.641314 32369.765437 12.606955 32369.765437 3.604843 32369.765437 3.010462 
32969.758184 0.641314 32969.758184 12.596752 32969.758184 3.574236 32969.758184 2.979865 
33569.851075 0.641314 33569.851075 12.596752 33569.851075 3.533426 33569.851075 2.939070 
34169.763707 0.641314 34169.763707 12.586550 34169.763707 3.492616 34169.763707 2.888076 
34769.756454 0.641314 34769.756454 12.586550 34769.756454 3.410997 34769.756454 2.745293 
35369.759216 0.641314 35369.759216 12.576348 35369.759216 2.441769 35369.759216 2.082371 
35969.761978 0.641314 35969.761978 12.576348 35969.761978 2.064280 35969.761978 1.643823 
36569.764739 0.631115 36569.764739 12.566145 36569.764739 2.074483 36569.764739 1.603028 
37169.717429 0.641314 37169.717429 12.555943 37169.717429 2.084685 37169.717429 1.603028 
37769.760248 0.641314 37769.760248 12.555943 37769.760248 2.094888 37769.760248 1.603028 
38369.763010 0.641314 38369.763010 12.545741 38369.763010 2.094888 38369.763010 1.592829 
38969.725714 0.641314 38969.725714 12.535538 38969.725714 2.094888 38969.725714 1.592829 
39569.758518 0.641314 39569.758518 12.525336 39569.758518 2.084685 39569.758518 1.582630 
40169.771295 0.641314 40169.771295 12.515134 40169.771295 2.084685 40169.771295 1.582630 
40769.733998 0.641314 40769.733998 12.515134 40769.733998 2.074483 40769.733998 1.582630 
41369.786832 0.641314 41369.786832 12.504932 41369.786832 2.074483 41369.786832 1.572431 
41969.789594 0.641314 41969.789594 12.504932 41969.789594 2.064280 41969.789594 1.572431 
42569.792355 0.641314 42569.792355 12.494729 42569.792355 2.054078 42569.792355 1.572431 
43169.915289 0.641314 43169.915289 12.484527 43169.915289 2.054078 43169.915289 1.562232 
43769.978137 0.641314 43769.978137 12.484527 43769.978137 2.043875 43769.978137 1.562232 
44369.930827 0.641314 44369.930827 12.474325 44369.930827 2.043875 44369.930827 1.552034 
44969.793387 0.641314 44969.793387 12.464122 44969.793387 2.023471 44969.793387 1.552034 
45569.946365 0.641314 45569.946365 12.464122 45569.946365 2.023471 45569.946365 1.541835 
46169.909069 0.641314 46169.909069 12.453920 46169.909069 2.013268 46169.909069 1.541835 
46770.082075 0.641314 46770.082075 12.443718 46770.082075 2.003066 46770.082075 1.541835 
47369.904578 0.641314 47369.904578 12.433515 47369.904578 1.992863 47369.904578 1.531636 
47969.917354 0.641314 47969.917354 12.433515 47969.917354 1.982661 47969.917354 1.531636 
48569.940144 0.641314 48569.940144 12.433515 48569.940144 1.972459 48569.940144 1.521437 
49169.912862 0.641314 49169.912862 12.423313 49169.912862 1.962256 49169.912862 1.521437 
49787.771299 0.651514 49787.771299 12.413111 49787.771299 1.962256 49787.771299 1.521437 
50371.110099 0.661713 50371.110099 12.413111 50371.110099 1.952054 50371.110099 1.531636 
50970.411853 0.661713 50970.411853 12.423313 50970.411853 3.237556 50970.411853 2.551516 
51570.044082 0.671913 51570.044082 12.474325 51570.044082 3.808891 51570.044082 3.234835 
52170.036829 0.671913 52170.036829 12.606955 52170.036829 5.196417 52170.036829 4.948233 
52769.869346 0.682112 52769.869346 12.872215 52769.869346 6.369693 52769.869346 6.386263 
53369.982265 0.682112 53369.982265 12.811001 53369.982265 6.859409 53369.982265 7.059384 
53970.125229 0.682112 53970.125229 13.086463 53970.125229 7.614386 53970.125229 8.171053 
54569.967760 0.682112 54569.967760 13.249700 54569.967760 8.124506 54569.967760 9.068547 
55175.838960 0.682112 55175.838960 13.321117 55175.838960 8.542805 55175.838960 9.894649 
55770.013341 0.682112 55770.013341 13.290510 55770.013341 8.655031 55770.013341 10.251607 
56370.046145 0.682112 56370.046145 13.219094 56370.046145 8.614221 56370.046145 10.343396 
56970.028878 0.682112 56970.028878 13.290510 56970.028878 9.195758 56970.028878 11.128704 
57569.971554 0.692312 57569.971554 13.423140 57569.971554 10.471058 57569.971554 11.444866 
58169.964301 0.682112 58169.964301 13.637388 58169.964301 11.083202 58169.964301 11.720234 
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58770.037163 0.682112 58770.037163 13.708805 58770.037163 11.358667 58770.037163 11.638644 
59369.919752 0.682112 59369.919752 13.810828 59369.919752 11.542310 59369.919752 11.638644 
59969.952557 0.682112 59969.952557 13.821030 59969.952557 11.419882 59969.952557 11.567252 
60570.095520 0.682112 60570.095520 13.974065 60570.095520 11.460691 60570.095520 11.628445 
61170.088267 0.682112 61170.088267 14.167909 61170.088267 11.481096 61170.088267 11.618246 
61770.141101 0.682112 61770.141101 14.331146 61770.141101 11.430084 61770.141101 11.567252 
62369.923545 0.692312 62369.923545 14.637215 62369.923545 11.440286 62369.923545 11.597848 
62969.916293 0.682112 62969.916293 14.953487 62969.916293 11.430084 62969.916293 11.557053 
63569.939083 0.682112 63569.939083 15.126926 63569.939083 11.419882 63569.939083 11.516258 
64169.921816 0.682112 64169.921816 15.402389 64169.921816 11.450489 64169.921816 11.557053 
64770.124866 0.682112 64770.124866 15.698256 64770.124866 11.481096 64770.124866 11.587650 
65369.967397 0.682112 65369.967397 15.820684 65369.967397 11.470894 65369.967397 11.567252 
65969.900058 0.682112 65969.900058 15.983921 65969.900058 11.491298 65969.900058 11.587650 
66569.872776 0.682112 66569.872776 16.096146 66569.872776 11.501501 66569.872776 11.557053 
67169.875537 0.682112 67169.875537 16.024730 67169.875537 11.481096 67169.875537 11.506059 
67769.928371 0.682112 67769.928371 16.147158 67769.928371 11.511703 67769.928371 11.536656 
68369.931133 0.682112 68369.931133 16.136956 68369.931133 11.511703 68369.931133 11.506059 
68969.903851 0.682112 68969.903851 15.983921 68969.903851 11.491298 68969.903851 11.424469 
69569.916627 0.692312 69569.916627 16.249181 69569.916627 11.572918 69569.916627 11.516258 
70169.849288 0.682112 70169.849288 16.208372 70169.849288 11.572918 70169.849288 11.516258 
70769.922151 0.682112 70769.922151 16.187967 70769.922151 11.603525 70769.922151 11.526457 
71369.934927 0.682112 71369.934927 16.065539 71369.934927 11.603525 71369.934927 11.526457 
71969.847558 0.682112 71969.847558 15.932909 71969.847558 11.593322 71969.847558 11.485662 
72569.770205 0.682112 72569.770205 15.728863 72569.770205 11.583120 72569.770205 11.475463 
73169.762952 0.692312 73169.762952 15.779875 73169.762952 11.603525 73169.762952 11.495860 
73769.775728 0.682112 73769.775728 15.749268 73769.775728 11.623930 73769.775728 11.485662 
74369.778490 0.682112 74369.778490 15.504412 74369.778490 11.613727 74369.778490 11.444866 
74969.831323 0.682112 74969.831323 15.453400 74969.831323 11.623930 74969.831323 11.495860 
75569.763984 0.682112 75569.763984 15.351377 75569.763984 11.654537 75569.763984 11.526457 
76169.766746 0.682112 76169.766746 15.218747 76169.766746 11.644334 76169.766746 11.516258 
76769.769507 0.682112 76769.769507 15.106522 76769.769507 11.654537 76769.769507 11.536656 
77369.962543 0.682112 77369.962543 14.973892 77369.962543 11.654537 77369.962543 11.516258 
77972.218544 0.682112 77972.218544 14.902475 77972.218544 11.664739 77972.218544 11.536656 
78569.827864 0.682112 78569.827864 14.841262 78569.827864 11.674942 78569.827864 11.546854 
79169.770539 0.682112 79169.770539 14.841262 79169.770539 11.644334 79169.770539 11.516258 
79769.763287 0.682112 79769.763287 14.810655 79769.763287 11.358667 79769.763287 10.996119 
80373.261074 0.682112 80373.261074 14.943285 80373.261074 11.572918 80373.261074 11.465264 
80969.818882 0.682112 80969.818882 14.820857 80969.818882 11.593322 80969.818882 11.485662 
81569.761557 0.682112 81569.761557 14.698429 81569.761557 11.593322 81569.761557 11.475463 
82169.724261 0.671913 82169.724261 14.892273 82169.724261 11.664739 82169.724261 11.577451 
82769.767080 0.682112 82769.767080 14.586204 82769.767080 11.572918 82769.767080 11.465264 
83369.769842 0.671913 83369.769842 14.718834 83369.769842 11.654537 83369.769842 11.567252 
83969.722531 0.661713 83969.722531 14.504585 83969.722531 11.593322 83969.722531 11.485662 
84569.765350 0.661713 84569.765350 14.494383 84569.765350 11.623930 84569.765350 11.516258 
85169.768112 0.682112 85169.768112 14.076088 85169.768112 11.491298 85169.768112 11.312282 
85769.720801 0.682112 85769.720801 14.127100 85769.720801 11.532108 85769.720801 11.363276 
86369.773635 0.671913 86369.773635 13.923053 86369.773635 11.419882 86369.773635 11.169499 
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Appendix D: Data Format Conversion Program 
 
clear all 
close all 
 
%----------------------------------------------------------------
--------% 
%READ FILES 
A1=textread('testsetA1.lvm','','headerlines',21); 
A2=textread('testsetA2.lvm','','headerlines',21); 
A3=textread('testsetA3.lvm','','headerlines',21); 
A4=textread('testsetA4.lvm','','headerlines',21); 
A5=textread('testsetA5.lvm','','headerlines',21); 
A6=textread('testsetA6.lvm','','headerlines',21); 
A7=textread('testsetA7.lvm','','headerlines',21); 
A8=textread('testsetA8.lvm','','headerlines',21); 
Ba1=textread('testsetB1.lvm','','headerlines',21); 
Ba2=textread('testsetB2.lvm','','headerlines',21); 
C=textread('testsetC.lvm','','headerlines',21); 
D=textread('testsetD.lvm','','headerlines',21); 
E=textread('testsetE.lvm','','headerlines',21); 
F=textread('testsetF.lvm','','headerlines',21); 
G=textread('testsetG.lvm','','headerlines',21); 
H=textread('testsetH.lvm','','headerlines',21); 
 
%----------------------------------------------------------------
--------% 
%FIND SHORTEST vect 
r=length(A1); 
s=length(A2); 
t=length(A6); 
u=length(Ba1); 
v=length(C); 
w=length(D); 
x=length(E); 
y=length(F); 
z=length(F); 
za=length(G); 
zb=length(H); 
long=[r;s;t;u;v;w;x;y;z;za;zb]; 
stop=min(long); 
%Because the program cycles from panel/battery to  
%panel/battery, the amount of measurements may not match from 
panel to  
%panel. This is kind of a convoluted way to find the length of 
each vector 
%take the shortest one, and set the stop value for all the 
vectors to that 
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time=H(1:stop,1); 
%Should be the same for every matrix. H could be A1, A2, C, 
whatever 
filter16 = ones(16,1)./16; 
 
Ctrl_I_1=filter(filter16, 1, A1(1:stop,2)); 
OC_B2_9=filter(filter16, 1, A1(1:stop,4)); 
NoCC_B1_5=filter(filter16, 1, A1(1:stop,6)); 
NoCC_P3_17=filter(filter16, 1, A1(1:stop,8)); 
 
Car_B2_12=filter(filter16, 1, Ba1(1:stop,2)); 
DD_B2_10=filter(filter16, 1, Ba1(1:stop,4)); 
Ctrl_B3_13=filter(filter16, 1, Ba1(1:stop,6)); 
Drt_B1_2=filter(filter16, 1, Ba1(1:stop,8)); 
 
OC_P3_15=filter(filter16, 1, C(1:stop,2)); 
DD_P3_16=filter(filter16, 1, C(1:stop,4)); 
Ctrl_B2_7=filter(filter16, 1, C(1:stop,6)); 
OC_B1_3=filter(filter16, 1, C(1:stop,8)); 
 
Drt_P3_14=filter(filter16, 1, D(1:stop,2)); 
Ctrl_P3_13=filter(filter16, 1, D(1:stop,4)); 
Drt_B2_8=filter(filter16, 1, D(1:stop,6)); 
DD_B1_4=filter(filter16, 1, D(1:stop,8)); 
 
Car_P3_18=filter(filter16, 1, E(1:stop,2)); 
NoCC_P1_5=filter(filter16, 1, E(1:stop,4)); 
DD_P2_10=filter(filter16, 1, E(1:stop,6)); 
OC_B3_15=filter(filter16, 1, E(1:stop,8)); 
 
Drt_P1_2=filter(filter16, 1, F(1:stop,2)); 
Car_P1_6=filter(filter16, 1, F(1:stop,4)); 
OC_P2_9=filter(filter16, 1, F(1:stop,6)); 
DD_B3_16=filter(filter16, 1, F(1:stop,8)); 
 
OC_P1_3=filter(filter16, 1, G(1:stop,2)); 
Ctrl_P2_7=filter(filter16, 1, G(1:stop,4)); 
NoCC_P2_11=filter(filter16, 1, G(1:stop,6)); 
NoCC_B3_17=filter(filter16, 1, G(1:stop,8)); 
 
DD_P1_4=filter(filter16, 1, H(1:stop,2)); 
Drt_P2_8=filter(filter16, 1, H(1:stop,4)); 
Car_P2_12=filter(filter16, 1, H(1:stop,6)); 
Drt_B3_14=filter(filter16, 1, H(1:stop,8)); 
 
Drt_I_8=filter(filter16, 1, A2(1:stop,2)); 
NoCC_I_17=filter(filter16, 1, A3(1:stop,2)); 
Car_I_6=filter(filter16, 1, A4(1:stop,2)); 
Car_B1_6=filter(filter16, 1, A5(1:stop,2)); 
Car_B3_18=filter(filter16, 1, A6(1:stop,2)); 
NoCC_B2_11=filter(filter16, 1, A7(1:stop,2)); 
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Ctrl_P1_1=filter(filter16, 1, A8(1:stop,2)); 
 
Ctrl_B1_1=filter(filter16, 1, Ba2(1:stop,2)); 
 
clear A1 A2 A3 A4 A5 A6 A7 A8 Ba1 Ba2 C D E F G H 
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Appendix E: Day Separation Program 
 
function [ndi, ndt] = separate24(data, times) 
 
% [new_day_indices, new_day_times] = separate24(data, times) 
% 
% Reads in a vector of time-series voltage or current data and 
returns 
% sample indices for the beginning of each day 
% 
% If a vector of corresponding timestamps is provided, then a 
vector 
% containing the timestamps corresponding to the output samples 
is also 
% returned 
 
if(nargin > 1)    % check to see if time vector specified 
    times_flag = 1; 
else 
    times_flag = 0; 
end 
 
if(nargin > 2)    % idiot check 
    error('Too many input arguments'); 
end 
 
if(times_flag) 
    if(length(times) ~= length(data))     % check vector 
dimensions 
        error('length(times) must equal length(data)'); 
    end 
end 
 
filter16 = ones(16,1)./16; 
% daylength = 143;    % day length in (10 min) samples: 23 hrs, 
50 min 
thresh = 1e-4;    % threshold of daily_spikes value for new day 
 
data_f16 = filter(filter16, 1, data);     % first noise filter 
data_deriv = filter([1 -1], 1, data_f16);      % one-sample 
differentiator 
data_deriv_f16 = filter(filter16, 1, data_deriv);    % derivative 
noise filter 
daily_spikes = data_deriv_f16.^7;      % raise to a high odd 
power to preserve 
                                       % sign while exaggerating 
peaks 
 
new_day_counter = 0; 
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for i = 2:length(daily_spikes) 
    prev = daily_spikes(i-1) - thresh; 
    curr = daily_spikes(i) - thresh; 
     
    if ((sign(prev) == -1) && (sign(curr) == 1)) 
        new_day_counter = new_day_counter + 1; 
        new_day_indices(new_day_counter) = i - 1; 
         
        if(times_flag) 
            new_day_times(new_day_counter) = times(i-1); 
        end 
         
    end 
end 
 
ndt=(new_day_times/3600)'; 
ndi=new_day_indices'; 
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Appendix F: Baseline Test (with weather consideration) 
 
function [ctrl,drt,oc,dd,nocc,car] = 
bsl_sd_weath_envelope(time,T,ndi) 
close all 
 
load blneandsd4.mat 
 
%time in hours 
time=time/3600; 
f=1; 
 
%Weather 
weath=[0 0 1 1 0 0 0 0 0 1 0 0 2 0 1 1 0 0 0 0 0 0 1 2 2 1 1 2 0 
0 0 2 2 0 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 2 2 0 
0 0 1 1 0 0 2 1 1 0 0 2 0 1 0 1 0 1 1 0 0 0 1 1]; 
 
%Full cycle percentage calc 
ctrl=0; 
drt=0; 
oc=0; 
dd=0; 
nocc=0; 
car=0; 
 
clear set bsl_ctrl1s bsl_drt1s bsl_oc1s bsl_dd1s bsl_nocc1s 
bsl_car1s 
figure 
%Make a set of day indices 
r=1; 
for i=1:length(ndi)-1 
    spc=ndi(i+1)-ndi(i); 
    %Remove unwanted extra day slices and cut off earlier days 
    if spc > 130 && spc < 150 && ndi(i) > 4131 && ndi(i) < 6008  
%%ndi(i) > 7015 && ndi(i) < 10039 
        set(r,1)=ndi(i); 
        set(r,2)=ndi(i+1); 
        set(r,3)=i; 
        set(r,4)=weath(i); 
        chart(r,:)=[set(r,3) set(r,4) set(r,1) set(r,2)]; 
        r=r+1; 
    end 
end 
 
set 
 
bsl_ctrl_s=bslsun(1:143,1); 
bsl_drt_s=bslsun(1:143,2); 
bsl_oc_s=bslsun(1:143,3); 
bsl_dd_s=bslsun(1:143,4); 
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bsl_nocc_s=bslsun(1:143,5); 
bsl_car_s=bslsun(1:143,6); 
 
[bsl_ctrl_s bsl_drt_s bsl_oc_s bsl_dd_s bsl_nocc_s bsl_car_s] 
 
sd_ctrl_s=sdsun(1:143,1); 
sd_drt_s=sdsun(1:143,2); 
sd_oc_s=sdsun(1:143,3); 
sd_dd_s=sdsun(1:143,4); 
sd_nocc_s=sdsun(1:143,5); 
sd_car_s=sdsun(1:143,6); 
 
bsl_ctrl_c=bslclo(1:143,1); 
bsl_drt_c=bslclo(1:143,2); 
bsl_oc_c=bslclo(1:143,3); 
bsl_dd_c=bslclo(1:143,4); 
bsl_nocc_c=bslclo(1:143,5); 
bsl_car_c=bslclo(1:143,6); 
 
sd_ctrl_c=sdclo(1:143,1); 
sd_drt_c=sdclo(1:143,2); 
sd_oc_c=sdclo(1:143,3); 
sd_dd_c=sdclo(1:143,4); 
sd_nocc_c=sdclo(1:143,5); 
sd_car_c=sdclo(1:143,6); 
 
bsl_ctrl_r=bslrain(1:143,1); 
bsl_drt_r=bslrain(1:143,2); 
bsl_oc_r=bslrain(1:143,3); 
bsl_dd_r=bslrain(1:143,4); 
bsl_nocc_r=bslrain(1:143,5); 
bsl_car_r=bslrain(1:143,6); 
 
sd_ctrl_r=sdrain(1:143,1); 
sd_drt_r=sdrain(1:143,2); 
sd_oc_r=sdrain(1:143,3); 
sd_dd_r=sdrain(1:143,4); 
sd_nocc_r=sdrain(1:143,5); 
sd_car_r=sdrain(1:143,6); 
 
for j=1:length(set) 
    V=T(set(j,1):set(j,1)+142); 
    disp('Day') 
    disp(set(j,3)) 
    %Decide which baselines to use 
    if weath(set(j,3))==0 
        disp('Sunny') 
        bsl_ctrl1=bsl_ctrl_s; 
        bsl_drt1=bsl_drt_s;  
        bsl_oc1=bsl_oc_s;  
        bsl_dd1=bsl_dd_s; 
        bsl_nocc1=bsl_nocc_s; 
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        bsl_car1=bsl_car_s; 
        sd_ctrl1=sd_ctrl_s; 
        sd_drt1=sd_drt_s;  
        sd_oc1=sd_oc_s;  
        sd_dd1=sd_dd_s; 
        sd_nocc1=sd_nocc_s; 
        sd_car1=sd_car_s; 
    elseif weath(set(j,3))==1 
        disp('Cloudy') 
        bsl_ctrl1=bsl_ctrl_c; 
        bsl_drt1=bsl_drt_c; 
        bsl_oc1=bsl_oc_c; 
        bsl_dd1=bsl_dd_c;  
        bsl_nocc1=bsl_nocc_c; 
        bsl_car1=bsl_car_c;  
        sd_ctrl1=sd_ctrl_c; 
        sd_drt1=sd_drt_c;  
        sd_oc1=sd_oc_c;  
        sd_dd1=sd_dd_c; 
        sd_nocc1=sd_nocc_c; 
        sd_car1=sd_car_c; 
    elseif weath(set(j,3))==2 
        disp('Rainy') 
        bsl_ctrl1=bsl_ctrl_r; 
        bsl_drt1=bsl_drt_r; 
        bsl_oc1=bsl_oc_r; 
        bsl_dd1=bsl_dd_r;  
        bsl_nocc1=bsl_nocc_r; 
        bsl_car1=bsl_car_r; 
        sd_ctrl1=sd_ctrl_r; 
        sd_drt1=sd_drt_r;  
        sd_oc1=sd_oc_r;  
        sd_dd1=sd_dd_r; 
        sd_nocc1=sd_nocc_r; 
        sd_car1=sd_car_r; 
    elseif weath(set(j,3))==3 
        disp('Very Rainy') 
        bsl_ctrl1=bsl_ctrl_r;  
        bsl_drt1=bsl_drt_r;  
        bsl_oc1=bsl_oc_r; 
        bsl_dd1=bsl_dd_r; 
        bsl_nocc1=bsl_nocc_r; 
        bsl_car1=bsl_car_r; 
        sd_ctrl1=sd_ctrl_r; 
        sd_drt1=sd_drt_r;  
        sd_oc1=sd_oc_r;  
        sd_dd1=sd_dd_r; 
        sd_nocc1=sd_nocc_r; 
        sd_car1=sd_car_r; 
    end 
 
    %Control Check 
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    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_ctrl1(i)+f*sd_ctrl1(i) && V(i) >= 
bsl_ctrl1(i)-f*sd_ctrl1(i)  
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_ctrl=match/length(V)*100; 
 
 
    %Dirt Check 
    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_drt1(i)+f*sd_drt1(i) && V(i) >= 
bsl_drt1(i)-f*sd_drt1(i)  
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_drt=match/length(V)*100; 
 
 
    %OverCharge Check 
    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_oc1(i)+f*sd_oc1(i) && V(i) >= bsl_oc1(i)-
f*sd_oc1(i)  
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_oc=match/length(V)*100; 
 
 
    %Deep Discharge Check 
    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_dd1(i)+f*sd_dd1(i) && V(i) >= bsl_dd1(i)-
f*sd_dd1(i) 
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_dd=match/length(V)*100; 
 
 
    %Malfunctioning or lack of a charge controller Check 
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    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_nocc1(i)+f*sd_nocc1(i) && V(i) >= 
bsl_nocc1(i)-f*sd_nocc1(i)  
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_nocc=match/length(V)*100; 
 
 
    %Car Battery Check 
    match=0; 
    for i=1:length(V) 
        if V(i) <= bsl_car1(i)+f*sd_car1(i) && V(i) >= 
bsl_car1(i)-f*sd_car1(i)  
            match=match+1; 
        else 
            match=match; 
        end 
    end 
    pct_car=match/length(V)*100; 
 
    %Make a figure and plot the day's data 
    if weath(set(j,3))==0 
        plot(time(1:length(V)),V(1:length(V)),'b','Linewidth',3) 
    elseif weath(set(j,3))==1 
        plot(time(1:length(V)),V(1:length(V)),'m','Linewidth',3) 
    elseif weath(set(j,3))==2 
        plot(time(1:length(V)),V(1:length(V)),'g','Linewidth',3) 
    elseif weath(set(j,3))==3 
        plot(time(1:length(V)),V(1:length(V)),'k','Linewidth',3) 
    end 
    hold on 
    axis([0 24 0 16]) 
    xlabel('Time (hrs)') 
    ylabel('Voltage (V)') 
 
 
    %Correlate 
    tot=[pct_ctrl pct_drt pct_oc pct_dd pct_nocc pct_car]; 
    if max(tot) < 30 
        disp 'The correlations are too low for system type to be 
determined.' 
        disp ' ' 
    elseif max(tot)==pct_ctrl 
        disp 'The battery is from a healthy system.' 
        disp ' ' 
        
plot(time(1:length(V)),bsl_ctrl1(1:length(V)),'k','Linewidth',3) 
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        plot(time(1:length(V)),bsl_ctrl1(1:length(V))-
f*sd_ctrl1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_ctrl1(1:length(V))+f*sd_ctrl1(1:length
(V)),'k:') 
        ctrl=ctrl+1; 
    elseif max(tot)==pct_drt 
        disp 'The battery is from a dirty system.' 
        disp ' ' 
        plot(time(1:length(V)),bsl_drt1(1:length(V)),'g') 
        plot(time(1:length(V)),bsl_drt1(1:length(V))-
f*sd_drt1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_drt1(1:length(V))+f*sd_drt1(1:length(V
)),'k:') 
        drt=drt+1; 
    elseif max(tot)==pct_oc 
        disp 'The battery is from a overcharged system.' 
        disp ' ' 
        plot(time(1:length(V)),bsl_oc1(1:length(V)),'r') 
        plot(time(1:length(V)),bsl_oc1(1:length(V))-
f*sd_oc1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_oc1(1:length(V))+f*sd_oc1(1:length(V))
,'k:') 
        oc=oc+1; 
    elseif max(tot)==pct_dd 
        disp 'The battery is from a deep discharged system.' 
        disp ' ' 
        plot(time(1:length(V)),bsl_dd1(1:length(V)),'r') 
        plot(time(1:length(V)),bsl_dd1(1:length(V))-
f*sd_dd1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_dd1(1:length(V))+.3*sd_dd1(1:length(V)
),'k:') 
        dd=dd+1; 
    elseif max(tot)==pct_nocc 
        disp 'The battery is from a malfunctioning or lack of a 
charge controller system.' 
        disp ' ' 
        plot(time(1:length(V)),bsl_nocc1(1:length(V)),'r') 
        plot(time(1:length(V)),bsl_nocc1(1:length(V))-
f*sd_nocc1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_nocc1(1:length(V))+f*sd_nocc1(1:length
(V)),'k:') 
        nocc=nocc+1; 
    elseif max(tot)==pct_car 
        disp 'The battery is from a car battery system.' 
        disp ' ' 
        plot(time(1:length(V)),bsl_car1(1:length(V)),'r') 
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        plot(time(1:length(V)),bsl_car1(1:length(V))-
f*sd_car1(1:length(V)),'k:') 
        
plot(time(1:length(V)),bsl_car1(1:length(V))+f*sd_car1(1:length(V
)),'k:') 
        car=car+1; 
    end 
    M(j) = getframe; 
end 
ctrl=ctrl/length(set)*100; 
drt=drt/length(set)*100; 
oc=oc/length(set)*100; 
dd=dd/length(set)*100; 
nocc=nocc/length(set)*100; 
car=car/length(set)*100; 
chart=chart 
movie(M,1,2) 
%Final Decision 
tot=[ctrl drt oc dd nocc car]; 
if max(tot) < 30 
    disp 'The correlations are too low for system type to be 
determined.' 
    disp ' ' 
    %end 
elseif max(tot)==ctrl 
    disp 'HEALTHY SYSTEM' 
    disp ' ' 
elseif max(tot)==drt 
    disp 'DIRTY PANEL' 
    disp ' ' 
elseif max(tot)==oc 
    disp 'OVERCHARGED BATTERY' 
    disp ' ' 
elseif max(tot)==dd 
    disp 'DEEP DISCHARGED BATTERY' 
    disp ' ' 
elseif max(tot)==nocc 
    disp 'MALFUNCTIONING OR LACK OF A CHARGE CONTROLLER' 
    disp ' ' 
elseif max(tot)==car 
    disp 'USING A CAR BATTERY' 
    disp ' ' 
end 
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Appendix G: Combined Metric Test 
 
function [ctrl drt oc dd nocc car]=stats_daily(time,T,ndi) 
close all 
 
%Weather 
weath=[0 0 1 1 0 0 0 0 0 1 0 0 2 0 1 1 0 0 0 0 0 0 1 2 2 1 1 2 0 
0 0 2 2 0 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 2 2 0 
0 0 1 1 0 0 2 1 1 0 0 2 0 1 0 1 0 1 1 0 0 0 1 1]; 
 
clear set 
 
%Make a set of day indices 
r=1; 
for i=1:length(ndi)-1 
    spc=ndi(i+1)-ndi(i); 
    %Remove unwanted extra day slices and cut off earlier days 
    if spc > 130 && spc < 150 && ndi(i) > 7015 && ndi(i) < 10039 
        set(r,1)=ndi(i); 
        set(r,2)=ndi(i+1); 
        set(r,3)=i; 
        set(r,4)=weath(i); 
        r=r+1; 
    end 
end 
 
clear sum rotsum ktot dydxsum dc_slope dydxmax Kmax K 
sum=zeros(140,length(set)); 
rotsum=zeros(140,length(set)); 
ktot=zeros(140,length(set)); 
dydxsum=zeros(length(set),1); 
 
for j=1:length(set) 
    V=T(set(j,1):set(j,2)); 
    for rr=3:140 
        sum(j)=sum(j)+V(rr); 
        r(rr,j)=atand(V(rr)/(time(rr)/3600)); 
        rotsum(j)=rotsum(j)+r(rr,j); 
        dydx2(rr-1,j)=(V(rr-1)-V(rr-2))/((time(rr-1)-time(rr-
2))/3600); 
        dydx(rr,j)=(V(rr)-V(rr-1))/((time(rr)-time(rr-1))/3600); 
        d2ydx2(rr,j)=(dydx(rr,j)-dydx2(rr-1,j))/((time(rr)-
time(rr-1))/3600); 
        k(rr,j)=d2ydx2(rr,j)/(1+dydx(rr,j)^2)^(3/2); 
        ktot(j)=ktot(j)+k(rr,j); 
        if rr>=41 && rr<76 
            dydxsum(j)=dydx(rr,j)+dydxsum(j); 
        end 
    end 
    [dydxmax(j),Idydx]=min(dydx(41:76,j)); 



 

 
 

178

    avg(j)=sum(j)/140; 
    rot(j)=rotsum(j)/140; 
    K(j)=ktot(j)/140; 
    dc_slope(j)=dydxsum(j)/(76-41); 
    [Kmax(j),Imax]=max(k(1:140,j)); 
    [Kmin(j),Imin]=min(k(1:140,j)); 
    Kmax(j)=mean([k(Imax-1,j),k(Imax,j),k(Imax,j)]); 
    Kmin(j)=mean([k(Imin-1,j),k(Imin,j),k(Imin,j)]); 
    figure; axis([0 24 0 14]);hold on 
    plot(time(1:140)/3600,V(1:140),'b','Linewidth',3) 
    plot(time(Imax)/3600,V(Imax),'go','Linewidth',2); 
    plot(time(Imin)/3600,V(Imin),'ko','Linewidth',2); 
    plot(time(Idydx+41)/3600,V(Idydx+41),'mo','Linewidth',2); 
    plot(time(41)/3600,V(41),'rx','Linewidth',3); 
    plot(time(76)/3600,V(76),'rx','Linewidth',3); 
    line([0,15*cosd(rot(j))],[0,15*sind(rot(j))],'Color','c') 
    line([time(Idydx+41)/3600-
2,time(Idydx+41)/3600+2],[V(Idydx+41)-
dydxmax(j)*2,dydxmax(j)*2+V(Idydx+41)],'Color','r') 
end 
 
disp('      day    weather      avg       rot         K      Kmax       
Kmin   dydxmax  dc_slope') 
stats=[set(:,3) set(:,4) avg' rot' K'  Kmax' Kmin' dydxmax' 
dc_slope']; 
 
ctrl=0; 
drt=0; 
oc=0; 
dd=0; 
nocc=0; 
car=0; 
     
for l=1:length(set) 
    score(l,1:9)=abs(stats(l,1:9)) 
    Tscore=-5*score(l,3)-
.3*score(l,4)+800*score(l,5)+4*score(l,6)+3*score(l,7)+5*score(l,
8)+5*score(l,9) 
    match=[-52.5 -34.5 -69.9 72.3 51.5 19.5] 
    less=abs(Tscore-match) 
    pick=min((less)) 
 
    if pick==less(1) 
        disp 'HEALTHY SYSTEM' 
        disp ' ' 
        ctrl=ctrl+1; 
    elseif pick==less(2) 
        disp 'DIRTY PANEL' 
        disp ' ' 
        drt=drt+1; 
    elseif pick==less(3) 
        disp 'OVERCHARGED BATTERY' 
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        disp ' ' 
        oc=oc+1; 
    elseif pick==less(4) 
        disp 'DEEP DISCHARGED BATTERY' 
        disp ' ' 
        dd=dd+1; 
    elseif pick==less(5) 
        disp 'MALFUNCTIONING OR LACK OF A CHARGE CONTROLLER' 
        disp ' ' 
        nocc=nocc+1; 
    elseif pick==less(6) 
        disp 'USING A CAR BATTERY' 
        disp ' ' 
        car=car+1; 
    end 
end 
 
ctrl=ctrl/length(set)*100; 
drt=drt/length(set)*100; 
oc=oc/length(set)*100; 
dd=dd/length(set)*100; 
nocc=nocc/length(set)*100; 
car=car/length(set)*100; 
 
%Final Decision 
tot=[ctrl drt oc dd nocc car]; 
disp 'Final Decision:' 
if max(tot) < 0 
    disp 'The correlations are too low for system type to be 
determined.' 
    disp ' ' 
elseif max(tot)==ctrl 
    disp 'HEALTHY SYSTEM' 
    disp ' ' 
elseif max(tot)==drt 
    disp 'DIRTY PANEL' 
    disp ' ' 
elseif max(tot)==oc 
    disp 'OVERCHARGED BATTERY' 
    disp ' ' 
elseif max(tot)==dd 
    disp 'DEEP DISCHARGED BATTERY' 
    disp ' ' 
elseif max(tot)==nocc 
    disp 'MALFUNCTIONING OR LACK OF A CHARGE CONTROLLER' 
    disp ' ' 
elseif max(tot)==car 
    disp 'USING A CAR BATTERY' 
    disp ' ' 
end 
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Appendix H: Least Squares and Gaussian Tests  
 
function diagnose_commonBaselines(Vpanel, Vbatt, Ibatt, method, 
normFlag) 
 
% diagnosis = diagnose(Vpanel, Vbatt, Ibatt, method, FSFilterFlag) 
% 
% Given Vpanel and Vbatt (plus optional Ibatt) from a system with an 
% unknown problem, this function returns the most probable diagnosis. 
% (1 for Healthy, 2 for Dirty panel, etc) 
% 
% Ibatt currently won't affect the results, as we have insufficient 
% training data. 
% 
% Method: 
% 1 for Least Squares 
% 2 for Gaussian baseline matching 
% 3 for No-baseline method (not currently implemented here) 
% 
% normFlag - Use Normalized data sets; 1 = on, 0 = off 
% Pre-filters Vbatt by subtracting out the time-domain average of the 
% baseline signals. If used, the filtered Vbatt will be compared to a 
set 
% of baselines with the same average signal subtracted. 
 
 
day_length = 143;   % 143*(10min/sample) = 23 hrs 50 min 
                    % Note that if this is changed, baseline sets will 
have 
                    % to be recompiled to match 
                     
min_day_length = 140; % threshold below which to discard a day's data 
new_day_offset = -2;  % |offset| < day_length 
decision_margin = 10;  % should be > 0; lower number -> more selective 
 
 
% check inputs 
if(nargin ~= 5) 
    error('Too many or too few input arguments'); 
end 
 
% compare lengths of Vbatt and Vpanel, truncate if necessary 
if(length(Vbatt) < length(Vpanel)) 
    Vpanel = Vpanel(1:length(Vbatt)); 
elseif(length(Vbatt) > length(Vpanel)) 
    Vbatt = Vbatt(1:length(Vpanel)); 
end 
 
% get new day indices 
new_day_indices = separate24(Vpanel); 
 
% check for errors by flagging "days" with length < min_day_length 
for i = 2:length(new_day_indices) 
    if(new_day_indices(i) - new_day_indices(i-1) < min_day_length) 
        new_day_indices(i-1) = -1; 
        continue 
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    end 
end 
 
% then discard those indices 
i = 1; 
while 1 
    if(new_day_indices(i) == -1) 
        new_day_indices = [new_day_indices(1:i-1) 
new_day_indices(i+1:length(new_day_indices))]; 
        continue 
    end 
    i = i + 1; 
    if(i > length(new_day_indices)) 
        break 
    end 
end 
 
% if offset would cause invalid reference, throw out first day 
if(new_day_indices(1) - new_day_offset < 1) 
    new_day_indices = new_day_indices(2:length(new_day_indices)); 
end 
 
% apply offset 
new_day_indices = new_day_indices - new_day_offset; 
 
% discard last partial day 
new_day_indices = new_day_indices(1:length(new_day_indices)-2);  %was -
1, but failed sometimes 
 
num_days = length(new_day_indices); 
 
if(num_days == 0) 
    error('No usable days found in input vector') 
end 
 
% rearrange battery data into a matrix; each column is a day 
daysMatrix = zeros(day_length,num_days);  % day_length + 1? 
for i = 1:num_days 
    daysMatrix(:,i) = 
Vbatt(new_day_indices(i):new_day_indices(i)+day_length-1); 
end 
 
% Load Baseline Data 
[LSbaselines, ProbFields, MeanBaseline] = loadBaselines(daysMatrix, 
num_days, normFlag, method);  %daysMatrix passed so that the average 
                                                        %curve can be 
superimposed on PDF     
                                                         
% LSbaselines = [LSbaselines ones(day_length+1,1)];  % add column for 
DC 
% offset 
 
totals = zeros(1,6); 
 
switch method 
    case 1 % Least Squares 
        % compare each day in unknown set to LSbaselines 
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        for i = 1:num_days 
            if(normFlag) 
                daysMatrix(:,i) = daysMatrix(:,i) - MeanBaseline; 
%Normalize, if requested 
            end 
            coeffs(:,i) = LSbaselines\daysMatrix(:,i); 
            relative(:,i) = (coeffs(1:6,i)./mean(coeffs(1:6,i))).^2; 
 
            % k = find(relative(:,i) > decision_margin);   % use 
decision margin 
            k = find(coeffs(:,i) == max(coeffs(:,i)));      % simple 
maximum (force decision) 
 
            if(length(k) ~= 1) 
                %         diagnosis(i) = 'Indeterminate'; 
                problem_type(i) = 0; 
            else 
                problem_type(i) = k; 
                 
                totals(k) = totals(k)+1; 
            end 
        end 
         
        %figure; hist(problem_type,1:6); 
         
        figure; 
        percentages = totals./num_days; 
        bar(percentages) 
        axis([0.5 6.5 0 1]) 
         
        title('Problem type vs. Relative Frequency'); 
        xlabel('1 = control, 2 = dirty, 3 = OC, 4 = DD, 5 = NoCC, 6 = 
Car'); 
        coeffs 
        relative 
     
         
    case 2 % Gaussian Baseline 
        scores = zeros(num_days,6); 
        for day = 1:num_days 
            if(normFlag) 
                daysMatrix(:,day) = daysMatrix(:,day) - MeanBaseline; 
%Normalize, if requested 
            end 
            for problem = 1:6   %test all problems 
            %for problem = [5 6]    %test particular problems 
                for sample = 1:day_length  % +1? 
                    %Find closest matching voltage index (ceiling) 
                    v_index = round((abs(daysMatrix(sample,day)-
ProbFields(problem).Vmin)/(ProbFields(problem).Vmax-
ProbFields(problem).Vmin))*ProbFields(problem).GridRes); 
%                   for v_index = 1:ProbFields(problem).GridRes+1 
%                         if(ProbFields(problem).Vgrid(v_index) > 
daysMatrix(sample,day))   %VERY SLOW 
%                             break 
%                         end 
%                   end 
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                    scores(day,problem) = scores(day,problem) + 
ProbFields(problem).ProbField(v_index,sample); 
                end 
            end 
        end 
         
        scores 
        %total_scores = sum(scores)  %column-wise sum--that is, sum 
across all days in question 
         
        totals = zeros(1,6); 
         
        %for each day 
        for i = 1:num_days 
            %find highest scoring problem 
            current_problem = find(scores(i,:) == max(scores(i,:))); 
            %increment the total for that day 
            totals(current_problem) = totals(current_problem) + 1; 
        end 
         
         
         
        percentages = totals./sum(totals); 
         
        figure; bar(percentages); 
         
        axis([0.5 6.5 0 1]) 
         
        title('Problem type vs. Score'); 
        xlabel('1 = control, 2 = dirty, 3 = OC, 4 = DD, 5 = NoCC, 6 = 
Car');         
         
    case 3 
        disp('No-baseline matching not yet available in this function') 
         
end 
         
        
     
%------------------------------------------------- 
% Helper Function to load baseline data 
 
function [baselines, ProbFields, MeanBaseline] = 
loadBaselines(daysMatrix, num_days, normFlag, method) 
 
if method == 2 
 
%-------------------------------------------------- 
% Prepare probability field and supporting data 
 
for problem = 1:6 
 
    dim_StatBaselines = 143; 
 
    mu = baselines(:,problem); 
    sigma = SunnyStDevs(:,problem); 
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    %Generate series of voltages on which to evaluate gaussian PDF 
    ProbFields(problem).GridRes = 500; 
    %Vmin = min(mu)-4; 
    %Vmax = max(mu)+4; 
     
    if(normFlag) 
        Vmin = -10; 
        Vmax = 10; 
    else 
        Vmin = 0; 
        Vmax = 20; 
    end 
         
    Vgrid = Vmin:(Vmax - Vmin)/ProbFields(problem).GridRes:Vmax; 
    ProbFields(problem).Vgrid = Vgrid; 
    ProbFields(problem).Vmin = Vmin; 
    ProbFields(problem).Vmax = Vmax; 
 
    ProbFields(problem).ProbField = 
zeros(length(Vgrid),dim_StatBaselines(1)); 
     
 
    for i = 1:length(mu) 
        %Generate Gaussian PDF for each sample 
        ProbFields(problem).ProbField(:,i) = 
(1/(sigma(i)*sqrt(2*pi)))*exp(-((Vgrid - mu(i)).^2/(2*sigma(i)^2))); 
    end 
 
    switch problem 
        case 1 
            type = 'Control'; 
            figure; 
        case 2 
            type = 'Dirty'; 
        case 3 
            type = 'Overcharge'; 
        case 4 
            type = 'Deep Discharge'; 
        case 5 
            type = 'No CC'; 
        case 6 
            type = 'Car Battery'; 
    end 
     
    %subplot(2,3,problem); 
    figure; 
    imagesc(1:dim_StatBaselines(1),Vgrid,ProbFields(problem).ProbField) 
    set(gca,'Ydir','normal') 
     
    %title([type ' ' num2str(dim_StatBaselines(2)) '-day 
distribution']) 
    title(['Compared with ' type ' baseline distribution']) 
    xlabel('Sample') 
    ylabel('Voltage') 
     
    hold on 
    if(normFlag && problem == 1) 



 

 
 

185

        for i = 1:num_days 
            daysMatrix(:,i) = daysMatrix(:,i) - MeanBaseline; 
%Normalize, if requested 
        end 
    end 
    plot(mean(daysMatrix'),'m','linewidth',3) 
    hold off 
 
end 
 
else 
    ProbFields = 0; 
end 
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