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The automotive transmission maintains a proper equilibrium between the
power and torque produced by the engine and those demanded by the drive
wheels. Most automatic transmissions employ some kind of epicyclic gear mech-
anisms to achieve the above purpose. The first step in the design process of such
a mechanism involves finding the configuration that provides the correct speed
ratios, and meets other dynamic and kinematic requirements. In this work, the
kinematic structural characteristics of epicyclic gear mechanisms have been iden-
tified, and a methodology is formulated to systematically enumerate all possible
configurations of such mechanisms. This is achieved through representation of
the mechanisms by graphs and their storage in the computer as vertex-to-vertex
adjacency matrices. Some of the structural characteristics of the mechanisms

that arise out of its functional requirements are taken into account during the



enumeration process. This helps limit the number of graphs at any stage of the
enumeration procedure. Graphs of mechanisms with up to nine links have been
generated using this methodology.

The representation of mechanisms by graphs precipitates the need of a method-
ology for reverse transformation, that is, for constructing the mechanisms from
graphs. To accomplish this, a mechanism is discretized into Fundamental Geared
Entities. Further, these geared entities are shown to be a conglomeration of five
primitives; namely, carrier, sun, ring, the single planet, and the multiple planet
gears. An algorithm is formulated to create these entities from the graph repre-
sentation by using the primitives. These entities are then connected together to

form the mechanism.
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Chapter 1

Introduction

The design of a mechanism begins with structural synthesis followed by kinematic
and dynamic analysis. The most difficult phase in the design process is the
conceptual phase where one has to decide the basic structure of a mechanism, i.e.,
the number of links and the number and type of joints connecting them, to satisfy
certain functional requirements. Traditionally, this has been achieved by the
designer’s intuition and ingenuity. However, this approach has one drawback. It
does not guarantee that all the potential machanisms, which could have satisfied
the functional requirements, have been evaluated and that the best candidate
has been selected. Beginning in the early seventies, efforts were undertaken to
overcome this drawback by systematically generating mechanisms for a particular
use.

This thesis deals with the systematic enumeration and proper functional rep-

resentation of epicyclic-gear-type automatic transmissions found in automobiles.



Methods of systematically enumerating the kinematic structures of mecha-
nisms have been developed by applying graph theory to the enumeration proce-
dure. This chapter reviews the method of representing the kinematic structure
of a mechanism by graphs, introduces the concept of graph isomorphism and
describes some methodologies for identifying non-isomorphic graphs. Then fun-
damental rules associated with the graphs of epicyclic gear trains (EGTs) as
identified by Buschbaum and Freudenstein (1970), are explained. Finally, the

scope and organization of this thesis are outlined.

1.1 Background

1.1.1 Graph Representation

A graph (Harary, 1969) consists of a set of points together with a set of unordered
pairs of these points. Thus, a graph may be visualized as a set of points or vertices
in space interconnected by lines or edges. An edge is said to be incident on a
vertex if the vertex is one of the end vertices constituting that edge. A line
merely carries the information that a pair of vertices are adjacent and hence
its geometry is of no significance. For the purpose of analysis and storage in
a digital computer, a graph can be represented by a matrix. There are several
matrix representations of a graph, with the vertex-vertex adjacency matrix being
the most commonly used. The vertex-vertex adjacency matrix of a graph of n

vertices numbered from 1 to n, is an nxn matrix with its elements A(i,j) defined



as follows

o 1 if vertex ¢ is connected to vertex j,
A(t,g) =

0 otherwise (including ¢ = j).

The graph representation of a mechanism essentially ignores the dimensions of
the mechanism and only retains information about its number of links and type
of joints connecting them. In the graph representation of a mechanism, links
are represented by vertices and joints by edges. Since an edge connects only
two vertices, only binary joints can be represented through graph. Therefore
a trinary joint is represented as two binary joints, a quarternary joint as three
binary joints and so on. The type of joints between links can be stored in the
graph representation by labeling or coloring the edges.

A walk in a graph is an alternating sequence of vertices and edges, beginning
and ending with vertices such that each edge in the sequence is incident on the
vertices immediately preceding and succeeding it. A walk is a path if all the
vertices in the sequence are distinct. If each vertex in a walk is distinct except
for the beginning and the end vertices it is called a circuit. A graph is said to be
connected if there exist one or more paths between any two of its vertices. A tree
is a connected graph with no circuits. Any two vertices of a tree are connected
by exactly one path. The subgraph of a graph is obtained by removal of one or
more vertices and edges from the graph. The removal of a vertex implies the
removal of all the edges incident to the vertex. A component of a graph is the

maximally connected subgraph.



An articulation point in a graph is a vertex, the removal of which increases
the number of components. A mechanism whose graph has one or more articu-
lation points is called a fractionated mechanism because it can be separated into
two or more independent fractions by breaking the links corresponding to the
articulation points.

A graph is said to be rooted if one of its vertices is marked distinctly from
the others. I'rom the mechanism point of view the root represents a unique link
usually the base link (or the frame), in the mechanism. Since the enumeration
of rooted graph is easier, one should always try to find a unique link in the class
of mechanisms one wants to generate.

Two graphs are isomorphic if there exists a one-to-one correspondence be-
tween their vertices and edges which preserves the incidence and labeling. The
adjacency matrix of two isomorphic graphs can be different depending on the
numbering of their vertices. However, the adjacency matrix of any one of the
isomorphic graphs can be made the same as the other by pre and post mul-
tiplying it by a matrix B and its transpose. The matrix B has the following
characteristics.

(i) All the elements of matrix B are either 1 or 0.

(ii) The sum of the elements in any row or column is 1.

Thus, it follows from linear algebra that the adjacency matrices of two isomor-
phic graphs will have the same characteristic polynomials (Uicker and Raicu, 1975).

However, the converse is not true. Therefore, although the use of characteristic



polynomials has proved to be effective in the identification of isomorphic graphs,
quite a few examples to the contrary can be found in the papers by Mruthyunjaya
and Balasubramanian (1987), and Sohn and Freudenstein(1986).

A reliable method for identifying isomorphism is to develop a unique code
for each graph, such that two isomorphic graphs will have the same code while
two non-isomorphic graphs will have different codes. This usually involves find-
ing a way of uniquely numbering the vertices. For example, in the degree code
(Tang and Liu, 1988) the vertices with higher degrees are numbered first. Then
permutation is carried out among the vertices of the same degrees. For each per-
mutation, the number D formed by concatenating the elements to the right of the
main diagonal of the adjacency matrix is compared with the others. The permu-
tation for which this D is maximum gives the canonical sequence for numbering

the vertices. This maximized D is the degree code for the graph.

1.1.2 Epicyclic Gear Trains
Definition

Epicyclic gear train (EGT) is defined (Buchsbaum and Freudenstein, 1970) as a
geared kinematic chain containing only revolute and geared joints and conforming

to the following rules.

R1: The mechanism shall obey the general degrees of freedom equation, i.e. no
special proportions are required to ensure the mobility of an epicyclic gear
train; its joints are binary and its graph planar.

5



R2: In the graph of an EGT, there shall be no circuit which has zero or negative

degrees of freedom.

R3: The rotatability of all links shall be unlimited. Mechanisms with partial

mobility or with partially locked structure shall be excluded.

R4: Each gear must have a turning pair on its axis, and each link in a gear train
must have at least one turning pair in order to maintain a constant center

distance between each gear pair.

Fundamental Characteristics

In the graph of an EGT, thick edges represent gear joints between links while
thin edges represent revolute joints. Using the above rules it has been shown
that the graph of an EGT of v links will possess the following characteristics

(Buchsbaum and Freudenstein, 1970):

F1 The graph has v vertices, (v-1) turning pair edges and (v-1-F) geared edges,

where F is the dof of the EGT.

F2 The subgraph obtained by deleting all the geared edges is a tree.

F3 Any geared edge added to the tree forms a fundamental circuit having one

geared edge and several turning pair edges.

F4 The number of fundamental circuits equals the number of geared edges.



F5 Each turning-pair edge can be characterized by labeling it with different

symbols a, b, ¢, etc., which identifies the location of its joint axis in space.

F6 All thin edges having the same label must form a tree.

F7 The differential dof of any circuit must be at least equal to one; for a fun-
damental circuit it is equal to the number of vertices in the circuit minus

two.

F8 In each fundamental circuit there is one vertex, called the transfer vertex,
such that all edges on one side of the transfer vertex have the same label

and edges at opposite side of the transfer vertex have a different label.

F9 All vertices must have at least one incident edge, which represents a turning

pair.

Though any graph representing an EGT will have these characteristics, a
graph having these characteristics may not necessarily conform to rules R1 to
R4.

Fig. 1.1(a) shows an EGT of 5 links. Fig. 1.1(c) depicts the corresponding
graph representation. Fig. 1.1(b) shows another mechanism having the same
graph representation. The two mechanisms have the same graph representation
because the graph of an epicyclic gear train does not contain sufficient informa-

tion to distinguish between external and internal gear pairs.
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Figure 1.1 Epicyclic Gear Trains of 5 links: (a,b) functional representations,

(c) graph representation for (a) and (b).

Rotation and Displacement Graphs

A rotation graph is a subgraph obtained from the graph of an EGT by deleting
all the thin edges and those vertices that are not incident by any geared edge,
and by labeling the geared edges with the associated transfer vertices. It has
been shown that two EGTs will have the same set of rotational displacement
equations if their rotation graphs are isomorphic (Freudenstein, 1979).

The displacement graph was originally defined by Freudenstein as a graph
obtained by labeling each vertex of a rotation graph with the label of the edge
connecting the vertex to the corresponding transfer vertex. Two EGTs will have
the same set of linear displacement equations if their displacement graphs are
isomorphic (Freudenstein, 1979). However, in this thesis we will consider any

graph of an EGT possessing the fundamental characteristics listed before as a



displacement graph, or simply a graph of an EGT.

It has already been mentioned in Section 1.1.1 that a graph can only represent
binary joints. This, however, creates a problem in uniquely representing a mech-
anism. This is because if links A, B and C form a trinary joint one can represent
it as two binary joints formed between links A & B and B & C, or between links A
& C and C & B. For example, the mechanism shown in Fig. 1.2(a) can be recon-
figured into the mechanism shown in Fig. 1.2(c) by rearranging the revolute joints
among its coaxial links. Though these two mechanisms appear to be structurally
non-isomorphic (Ravisankar and Mruthyunjaya, 1985), they are kinematically
equivalent, and for the purpose of structural synthesis are considered the same.
The graph representations of the two mechanisms are shown in Figs. 1.2(b) and
(d) respectively. The two graphs are mathematically non-isomorphic. The graph
in Fig. 1.2(d) can be formed from the graph of Fig. 1.2(b), if the thin edge join-
ing the vertices 1 and 2 in the latter is replaced by a thin edge of the same label
joining vertices 2 and 3. This method of creating mathematically non-isomorphic
graphs representing kinematically equivalent EGTs by replacing a thin edge by
another thin edge of the same label is known as vertex selection. This further
complicates the issue of isomorphism and leads to the definition of pseudoiso-
morphism (Tsai and Lin, 1989). Two graphs are said to be pseudoisomorphic if
they become isomorphic under single or repeated application of vertex selection.

The problem of pseudoisomorphism can be averted by imposing some rules that

result in unique arrangement of the edges of the same label. Such a displacement
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Figure 1.2 Epicyclic Gear Trains of 6 links: (a,c) functional representations,

(b,d) Corresponding graph representations.
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graph is called a canonical displacement graph, or canonical graph (Tsai, 1988).

1.1.3 Literature Review

After Buchsbaum and Freudenstein’s pioneering work, which laid down the ground
rules for EGTs, a considerable amount of work has been done in the area. Rav-
isankar and Mruthyunjaya (1985) computerized the method developed by Buchs-
baum and Freudenstein and enumerated graphs of one degree-of-freedom (dof)
EGTs with up to 6 links. Tsai (1987) developed a simpler method of generating
graphs of one-dof EGTs in which geared edges do not form a loop. Tsai and
Lin (1989) later extended this method to enumerate non-fractionated two-dof
EGTs. Hsu (1992) developed alternative methods of enumerating epicyclic gear
trains and has shown that all 6-link, one-dof EGTs can be generated from 81
displacement graphs. Kim and Kwak (1990) used edge permutation groups to
identify isomorphic graphs and used Tsai’s method (Tsai, 1987) of enumeration
to derive one-dof EGTs with up to 7 links. They showed that there are 642
displacement graphs from which all the 7-link EGTs can be derived.

It is evident that the literature in this area contains a significant number of
papers addressing the issue of graph enumeration. However very little work has
been done in the area of constructing mechanisms from graphs; i.e., specifying the
ground, input and output links to create useful mechanisms from graphs. Notable
is the paper by Olson, et al. (1991) which addressed this issue and analyzed EGTs

of 5 links. The other area that has attracted little attention is the sketching of

11



EGTSs from their graphs. As mentioned in section 1.1.2 there isn’t any one-to-one
correspondence between the graphs and the mechanisms since the graphs do not
differentiate between the external and internal gear pairs. Hoeltzel et al. (1990)
gave an algorithm for sketching the mechanisms assuming that all the gear pairs
are external. Thus, the process of sketching the mechanism from a graph is still

largely dependent on the designer’s ingenuity.

1.2 Scope of the Thesis

The power train (See Fig. 1.3) that transfers power from the engine crankshaft to
the drive wheel of an automobile, consists of a transmission unit, a final reduction
unit, and a differential. The transmission unit is a speed ratio change unit that
maintains a proper balance between the speed and torque capabilities of the
engine and the speed and torque demanded by the drive wheel. The ratio of
the speed of the input shaft (which brings power from the engine) to that of the
output shaft is called speed ratio or the reduction ratio. The transmission unit
can be of two types - manual and automatic. The main component of a manual
transmission unit is its gear train, which has its gears mounted on parallel non-
revolving shafts. Such type of gear boxes are called layshaft or countershaft type
of gear boxes. The changing of speed ratio is controlled by the driver.

Tsai, et al. (1988) have shown that unlike manual transmission units most

of the gear boxes of the automatic transmission units use EGTs! to achieve the

1A few using countershaft type of arrangement is also available in the market. A hybrid

12
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Figure 1.3 Components of a power train of a typical manual transmission.

desired reductions. Some of them use one-dof EGTs. Others use fractionated
mechanisms, each fraction of which is a one-dof EGT. They have also identified
some of the structural characteristics required by an EGT to qualify for auto-
matic transmissions, and have shown that of the many non-isomorphic graphs of
the six links only six graphs can be used in automatic transmission gear boxes.
Henceforth, we will call the mechanism formed by an EGT and the casing of
an automatic transmission gear box an Epicyclic Gear Mechanism (EGM). An
EGM typically has two dofs.

The objectives of this thesis are to

e develop a convenient canonical graph representation for EGMs

e identify structural characteristics of EGMs and translate them into the

language of graph representation.

type using a combination of both is also possible

13



¢ develop a methodology that takes into account the above characteristics

and systematically enumerates the EGMs

e develop a systematic method of sketching the functional schematics of

EGM:s.

1.3 Organization of the Thesis

Chapter 2 gives a brief description of a typical automotive automatic transmis-
sion units and categorizes the gear trains used in most transmissions. Chapter
3 identifies the structural characteristics required of an EGM and develops a
canonical graph representation for them. Chapter 4 introduces the idea of prela-
beling and formulates a systematic method to generate these EGMs. Chapter 5
describes a methodology for drawing the functional schematics of these EGMs.
A commercially available software program called PHIGS? has been used as a
graphics aid for this purpose. Chapter 6 tabulates the results, summarizes this
work and suggests some future extensions.

Appendix B contains all the 6 and 7 links EGMs. Appendix C contains all
possible 8-link EGMs, while Appendix D contains the 9-link EGMs. In addition
Appendices B, C, and D also give the functional representation of some of the 6,

7, 8 and 9-link EGMs.

2PHIGS is an acronym for Programmer’s Hierarchical Interactive Graphics System. PHIGS
standard is an international graphics programming standard developed by the International

Standards Organization (ISO) and the American National Standards Institute (ANSI).
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Chapter 2

Transmissions

Automotive transmissions can be broadly classified as manual and automatic.
Both types of transmissions are discussed in this chapter, with the automatic
transmission being discussed in more detail. Most of the materials included in
this chapter have been compiled from published work (Larew, 1966; Levai, 1966;
Erjavek 1990; Gotts, 1991). What is new is the study of the gear trains used in
various types of transmissions from the viewpoint of their kinematic structures

and graph representations.

2.1 Manual Transmissions

A manual transmission unit typically consists of a rotating clutch, a system of
gears and gear synchronizers. The gears are mounted on parallel non-revolving
shafts. The clutch is used to engage and disengage the gear system from the

engine. When the clutch is engaged power flows from the engine to the gear
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C. Input Gear G. First/Second Gear Synchronizer K. Driven Fifth Gear O. Reverse ldler Gear
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Figure 2.1 Manual transmissions: (a) five-speed rear wheel drive , (d) five-speed
front wheel drive (Transaxle), (b) and (c) graph epresentations of (a), (e) and

(f), graph representation of (d).
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system. Figs. 2.1(a) and (d) show the typical arrangement of gears in a rear
wheel drive and a front wheel drive transmission, respectively. In Fig. 2.1(a) the
input and output shafts are coaxial. One of the gears (link no. 1) is permanently
keyed to the input shaft and serves as the input link for all reductions. The
transmission unit of a front wheel drive as shown in Fig. 2.1(d) is sometimes
referred to as a transaxle, since the output shaft is offset from the input shaft.
Hence, there is no direct drive. To engage a gear with a revolving shaft (input or
output) both of them have to be brought to the same speed. This is done with
the help of the synchronizer. The reverse gear is obtained with the help of an
idler that rotates about a third (intermediate) axis. The transmissions described
above are the fully synchronized constant mesh type transmissions and are found
in all modern automobiles. The term constant mesh signifies that all the gears
are in constant mesh with each other. In some cases the idler gear for reverse is
not in constant mesh and reverse is obtained by shifting gears rather than with
the help of a synchronizers.

To sketch the graph representations of the gear trains we consider the gear-
box to be in the neutral position. This implies that none of the synchronizers
are engaged with the gears and there is no output from the gear-box. The graph
representations of the gear trains are depicted in Figs. 2.1(b) and (e), respectively.
We apply vertex selection (see page 9 of Section 1.1.2) to these graphs to bring
out special features of the mechanisms they represent. Kinematically this won’t

make any difference. The resulting graphs are shown in Figs. 2.1(¢c) and (f).
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From the graph of Fig. 2.1(c) it is clear that the mechanism of Fig. 2.1(a)
is a fractionated two-dof mechanism. The vertex No. “0” represents the casing,
which is also the transfer vertex for all the gear pairs. The various reductions
are obtained by engaging one of the links 1, 3, 4, 5, 7, and 8 to the output shaft
(link 9) through the synchronizer. Thus, from the kinematic point of view the

gear train of a manual transmission has the following features.

(i) The gear train has only one carrier, which is the casing. The carrier usually

has three axes, one of which carries the idler for the reverse gear.

(ii) Different speed ratios are obtained by engaging an appropriate gear with
the input or the output shaft by means of synchronizers. When no gear is
engaged either with the input or the output shaft, the gear train is said to
be in a neutral position and no power flows through the gear train. Also,
for direct drive, the input and output shafts are coupled to each other and

no power flows through any of the gears.

(iii) For rear wheel drive vehicles, the input and output shafts are usually coax-
ial. For front wheel drive vehicles, the input and output shafts are located

at two different axes of the carrier.

2.2 Automatic Transmissions

The main components in a typical automatic transmission (see Fig. 2.2) are
torque converter, epicyclic gear train(s), and clutch control system. There ex-
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E. Casing J. Turbine of (©

Figure 2.2 Automatic Transmission: (a) Schematic, (b) Graph Representation
of the EGT.

ists another type of automatic transmissions that uses the layshaft type gear
arrangement used in manual transmissions. This type of layshaft transmission is

discussed at the end of this section.

2.2.1 Torque Converter

The torque converter consists of an impeller, a turbine and one or more stators.
Part C in Fig. 2.2(a) is the schematic representation of a torque converter. The
impeller gets power from the engine and therefore imparts motion to the fluid
contained in it. The fluid escapes through its outer circumference and enters the

turbine. The fluid leaves the turbine at the inner circumference of the blades and
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enters the impeller again through the stator blades. The stator blades redirect the
flow from the turbine to the impeller blades to achieve a torque multiplication.
This process continues until the impeller and the turbine are rotating at the same
speed. When torque multiplication is not needed the stator free-wheels with the
turbine and the torque convertor is reduced to a hydraulic coupling. The torque

converter allows the engine to start from rest with a torque multiplication.

2.2.2 Epicyclic Gear Train

The power from the converter enters the EGT through a system of clutches. In
Fig. 2.2(a) the EGT is formed by links 1, 2, 3, 4, 5 and 6. The EGT itself has
one-dof. The EGT is supported by bearings housed in the casing. The resulting
EGM formed is thus a fractionated two-dof mechanism in which the EGT as a
whole can rotate freely with respect to the casing. The graph representation of
the EGT along with the casing is shown in Fig. 2.2(b). The various speed ratios
are obtained by clutching different links of the EGT to the output shaft of the
torque converter and by fixing different links to the casing. These two actions are
achieved by rotating clutches and band clutches, respectively. The clutches are
usually controlled by hydraulically actuated mechanisms, and change of speed
ratios are achieved without interruption of power flow by allowing slippage in the
clutches. The epicyclic gear train of an automatic transmission has the following

features.

(i) There can be more than one carrier that are not fixed in space
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(i1) The same output link is used in all reductions.

(iii) The EGM is a fractionated two-dof mechanism in which the EGT can rotate

freely with respect to the casing.

(iv) A desired speed ratio is typically obtained by clutching one link of the EGT
to the power source and another to the casing. In all reductions, other than
the direct drive, one of the links is fixed on to the casing and another is
connected to the power source. In case of direct drive, none of the links of
the EGT is fixed to the casing, and two of the links are connected to the

power source. Hence, the EGT rotates as a rigid body.
(v) The output and input links are coaxial with each other.

Some transmissions employ fractionated epicyclic gear trains. These are
formed by connecting two one-dof EGTs with a common link. In such cases
either two links have to be fixed to the casing by band clutches or two links, one
from each EGT, have to be connected by clutches in order to get a reduction ra-
tio. An example of such a gear train is shown in Fig. 2.3. The clutching sequence
is also shown in the same figure and where an X indicates that the corresponding

clutch is activated for the speed reduction given in the first column.

2.2.3 Automatic Layshaft Transmissions.

The gear train of an automatic layshaft transmission (ALT) has the same fea-
tures as that of a manual layshaft transmission. Here, also, the different speed
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ratios are obtained by engaging different gears of the gear train with the input
and/or output shafts. The difference lies in the action being performed auto-
matically without any driver’s efforts. In this respect there are two types of ALT
(Gotts, 1991). One of them retains all the features of a manual layshaft trans-
mission, including its synchronizers, and only automates the actuations of these
mechanisms. These are called automated layshaft transmissions. The other type
uses multidisc clutches instead of synchronizers for each gear to be connected to
the input or output shaft. These are true ALTs since they allow for a change of
speed ratio without interruption of power flow. This type of transmission some-
times requires more than two parallel shafts to provide the required number of
forward speeds. Fig. 2.4 shows an ALT that provides four forward speeds and
one reverse speed. The dog clutch is engaged manually, but only once at the
start of the motion, to set the transmission either in the forward mode or in the

reverse mode.

2.2.4 Hybrid Transmissions

A combination of EGT and layshaft type arrangement results in a hybrid trans-
mission system. The casing is connected to a one-dof EGT through a revolute
joint. The input, output, and the fixed links of the EGT are coaxial with the
axis of this revolute joint. The casing also serves as the carrier for a layshaft type
arrangement. Therefore if a link of the layshaft type arrangement is connected

to any of the above mentioned coaxial links through a shaft (see Fig. 2.5(a)),
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the resulting mechanism is a three-dof fractionated mechanism. The graph of
the mechanism is shown in Fig. 2.5(b). The graph shown in Fig. 2.5(c) is ob-
tained after the application of vertex selection to the graph of Fig 2.5(b). From
the graph it is clear that the mechanism is indeed fractionated since it has two
articulation points (vertices 1 and 0).

One of the fractions represents the layshaft type of arrangement that has one
link fixed (casing represented by vertex no. 0). Therefore after engaging the
dog clutch, if one fixes any of the links of the other fraction (other than that
represented by the articulation point i.e. vertex 1) the mechanism will require
one input to give a unique output. The output can be tapped from link 1 or
7 by appropriate engagement of the dog clutch. Also, if two of the links of the
EGT are engaged with the input, the EGT will act as a locked structure and
the mechanism is reduced to a simple layshaft type structure with link 1 as the

input link.
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Chapter 3

Canonical Graph
Representations and Structural

Characteristics

In this chapter we will concentrate only on EGMs. These, as one may recall, are

mechanisms, each consisting of a non-fractionated one-dof EGT and its casing.

3.1 Canonical Graph Representation

An EGM typically consists of a one-dof EGT supported by the casing on one axis,
which results in a fractionated two-dof mechanism. Fig. 3.1(a) shows an EGM
employing the Simpson gear train as the multi-speed reduction unit. The graph

of the Simpson gear train along with the casing is shown in Fig. 3.1(b). Tsai et al.
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(1988) after examining existing transmissions found out that only coaxial links of
an EGT are used as input, output or fixed links. These coaxial links are mounted
on concentric bearings that are housed in the casing. It’s obvious that the input,
output and the fixed links have to be coaxial, otherwise one of the links will
have its axis moving in space and it won’t be possible to connect it either to the
output shaft of the torque converter or to the final reduction unit. In an EGM
the output link is never changed. The desired reduction ratios are obtained by
changing the input and the fixed links. Also, it is always possible to achieve a
direct drive by locking all the links in the EGT together such that they rotate
as a single link. Thus if N, links of an EGT are coaxial, then it is possible to
get (N. - 1)(Ne - 2) + 1 number of speed reductions. Therefore if the desired

number of speed reductions is N,, then N, will be limited by the equation
N, < (N, —1)(N, —2) +1 (3.1)

For example, if a four-speed-reduction (four forward and one reverse speed) unit
is desired the EGT must have a minimum of four coaxial links.

The casing of an EGM is a unique link in its kinematic structure. Therefore,
we will take advantage of this fact and introduce a canonical graph to represent
the EGM. In such a representation the vertex representing the casing will be
marked as the root of the graph. Recall that when there are three or more coaxial
links in a mechanism, the joints connecting these coaxial links can be rearranged
without affecting the functionality of the mechanism (Tsai, 1988). Among various
arrangements of the coaxial joints there exists a unique configuration such that
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all the thin edged paths originating from the root and ending at all the other
vertices will have distinct edge labels. This unique graph representation is called
the canonical graph representation. Using canonical graph representation, the
vertices can be divided into several levels. The casing is denoted as the ground
level vertex. A vertex that is connected by only one thin edge to the root is
defined as a first level vertex. A vertex that is connected to the root by two thin
edges is defined as the second level vertex and so on. Thus, each vertex at any
particular level is connected to exactly one vertex at the immediate preceding
level by a thin edge. All thin edges having the same label' must have one common
lower level vertex. The canonical graph representation of the Simpson gear set
shown in Fig. 3.1(a), is shown in Fig. 3.1(c). The canonical graph representation
helps overcome the problem of pseudo-isomorphism explained in Section 1.1.2.
Henceforth, all the vertices at a particular level that are connected to a lower
level vertex by thin edges of the same label, will be referred to as members of a

family.

3.2 Structural Characteristics

This section discusses the structural characteristics of an EGM and their man-

ifestation in the canonical graph representation. The canonical graph by virtue

!Note the difference between label and level. A label denotes the location of the axis of a
link in space while the word level denotes the location of a link in the kinematic chain relative

to the casing.
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of its definition has one special feature, i.e.

C1: All the thin edges of the same label should be incident to a common lower

level vertex.

Since an EGM is virtually a two-dof EGT with a fractionated link, it should
also conform to the rules R1 to R4 (Section 1.1.2) that apply to EGTs. Conse-
quently, all the fundamental characteristics of a graph of an EGT as described in
Section 1.1.2 also apply to the canonical graph. These are described in section
3.2.1 under the heading General Characteristics. An EGM, besides possessing
the characteristics of an EGT, also has its own specific characteristics because it
is a mechanism that performs some special functions. These characteristics and

their expressions in canonical graph representation are discussed in Sections 3.2.2

and 3.2.4.

3.2.1 General Characteristics

The canonical graph of an EGM has no articulation point. It possesses the

following characteristics :

C2: If there are n vertices in the canonical graph of an EGM then it must have
n — 1 thin edges and n — 1 — F geared edges, where F' is the number of dof

of the EGM. In this paper we shall limit ourselves to F' = 2 mechanisms.

C3: The subgraph formed by removing the geared edges is a tree.
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C4: A geared edge can only be incident with one of the following pairs of ver-

tices.

(a) Two vertices at the same level, provided that they are connected to

the same lower level vertex by thin edges of different labels.

(b) Two vertices at adjacent levels, if they are connected by a path of

exactly three thin edges having two different labels.

(c) Two vertices one at level k and another at level £ —2, if there is a path
of exactly two thin edges between them. For every vertex at level k&
there is only one vertex at level k — 2, to which it can be connected

by a geared edge.

The characteristics C2 and C3 are just restatements of F1 and F2. The

characteristic C4 follows from fundamental characteristics F3 and F8.

3.2.2 Coaxial Links

The first level vertices in the canonical graph of an EGM represent potential
candidates for the input, output or fixed links. These links are connected to
the casing by coaxial revolute joints. None of the links of an EGM should be

connected to the casing by a gear joint?. Therefore,

?Note that it is possible to have one of the links of an EGT permanently fixed to the casing.

This, however, will reduce the flexibility of obtaining more speed ratios from the gear train.
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C5:  The first level vertices are connected to the root by thin edges of the same

label.
C6: No geared edge can be incident to the root.

C7: If N, is the number of required speed reductions (including reverse), then
the number of first level vertices N, in the canonical graph must satisfy

Eq.( 3.1).

Fig. 3.1(c) shows the canonical graph representation of the Simpson gear set
shown in Fig. 3.1(b). There are four first level vertices and two second level
vertices. The first level vertices represent the potential input, output or fixed
links of the EGM. The second level vertices represent the planet gears. There
are no vertices located at a level higher than the second level. A review of
the work of Larew (1966), Levai (1966), Gott (1991), and Tsai, et al. (1988)
has not revealed a single automatic transmission gear box having a link located
on the third or higher levels. However, since no physical reason can be found
for this observation, it will not be considered a structural characteristic of such

gearboxes.

3.2.3 Locked Chains

A set of links forming a part of a mechanism is said to be locked if they undergo no
relative motion when the mechanism is in operation and, hence, can be replaced

by one link without altering the functional characteristics of the mechanism. Rule
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R3 (Section 1.1.2) states that a geared kinematic chain having a partially locked
structure cannot be considered as an EGT. However, mechanisms obeying the
fundamental characteristics F1 through F9 do not necessarily satisfy this rule.
Consider the canonical graph of an EGM shown in Fig. 3.2(a) that satisfies
all the fundamental characteristics. However, the subgraph formed by removing
vertices 0, 1, 2, 3, and 4 from the graph represents a kinematically locked chain.
This is because the subgraph has 5 vertices but 4 geared edges. Fig. 3.2(c) shows
a graph formed by replacing vertices 5, 6, 7, 8, and 9 in Fig. 3.2(a) by a vertex

5, that will perform the same functions.

C8: An EGM contains a locked chain if there exists a subgraph of p verices in

the graph of the EGM such that

(a) the transfer vertex of each of the geared edges in the subgraph lies in

the subgraph, and

(b) the number of geared edges in the subgraph is more than p — 2.

A methodology is described in the next chapter that prevents the generation

of EGM with locked chains during the enumeration process.

3.2.4 Redundant Links

The other desired feature for an EGM to qualify for automatic transmission is

that it should not have any redundant link.
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Figure 3.2 : (a) A canonical graph containing a locked chain, (b) functional
representation of the mechanism, (c) graph obtained by removal of locked chain,

(d) functional representation of the resulting mechanism.
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Definition of redundant links - A link is said to be redundant, if it is
never used as an input, output or a fixed link, and the removal of such a link
does not change the degrees of freedom of the EGT. Such a link will not carry
power during the operation of the mechanism at any of its reductions.

A one-dof EGT communicating, that is, giving and taking power, with the
external environment requires at least an input, an output and a reaction (fixed)
link. Thus, to function effectively it requires at least three ports of communi-
cation with the external environment. Similarly, a two degrees of freedom EGT
requires at least four ports of communication, a three degrees of freedom EGT
requires five ports of communication, and so on.

In the canonical graph representation of an EGM if there exists a subgraph
that represents an n-dof EGT, then it must have at least n+2 ports of com-
munication with the external environment. Otherwise, those links that can not
interact with the external environment would be redundant. The external en-
vironment includes both the rest of the gear train and the outside world. Two

things are to be noted here.

1. The subgraph of a canonical graph represents an EGT if and only if the car-
rier of any gear pair within the subgraph is also a member of the subgraph.
For example, the subgraph formed from the canonical graph of Fig. 3.3(a)

by deleting vertices 0, 1, 2, 4, and 6 does not represent an EGT.

2. Some of the ports of communication at a first glance may not be obvious.
For example, in the graph shown in Fig. 3.3(a), let vertex 1 represent the
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Figure 3.3 Canonical graph of an EGM with a binary carrier represented by

vertex no. 6.
input link, vertex 2 the fixed link, and vertex 4 the output link. Consider
the subgraph formed by deleting vertices 0, 1, 2, 4, 5, and 7. It appears as if
the subgraph has only two ports of communication, namely 3 and 8. How-
ever, the carrier represented by vertex 6 is also a port of communication.
This is because vertex 6 is the transfer vertex of the geared pair connecting
vertices 7 and 8, and vertex 7 is external to the subgraph. Therefore, the
subgraph has actually three ports of communication. One may note that
the removal of vertex 6 from the graph of Fig 3.3(a) does change the dof

of the mechanism.

From the above observations we will derive several conditions that the canon-

ical graph of an EGM must satisfy. These conditions are necessary, but not
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Figure 3.4 A tree obtained by removing the geared edges from a canonical graph

sufficient. The importance of these conditions lies in the fact that they simplify
the enumeration procedure to be described in the next chapter, and drastically
reduce the number of graphs with redundant links. The remaining few can be

weeded out by inspection or by a methodology described in the next chapter.

Condition 1:

Consider the branches of a tree of a canonical graph emanating from vertex V; as
shown in Fig. 3.4. Let the level immediately above and arising from V4 contain n
vertices V1,V5 ...V, that belong to one family, i.e. they are connected to V; with
thin edges of the same label. Let the branches emanating from these vertices have

Ny,N; ... N, vertices, respectively. Now the branches emanating from vertex V3,

38



along with Vj, form a subgraph that represents an EGT, because a geared edge
joining any two vertex of the subgraph will have its transfer vertex contained
in the subgraph. Let all such subgraphs be named G,,G;...G,, and let them
have F\,F;...F, degrees-of-freedom, respectively. Then G; will have N; - F;
geared edges and will require at least F; + 2 ports of communication. One port
of communication is the vertex V; itself. The rest of the ports of communication
will communicate through gear edges with any of the vertices V5 to V, other
than V;. A geared edge coming from any port of GG; cannot connect to any vertex
other than V; to V,, of the EGM.

Next consider the subgraph Gy formed by vertices V4 to V,, and the branches
emanating from Vj to V,,. The minimum number of geared edges that Gy should
have in order that none of the links represented by vertices in the subgraphs
G1,G; ... Gy, is rendered redundant can be calculated by summing the number
of geared edges in each subgraph, and the number of geared edges required by
each subgraph to maintain the minimum number of ports of communication.

Thus the number of geared edges in G should be at least

n

Z(Ni+1—E“1)+i(E+l)=£:Ni+n (3.2)

i=1 =1

The number of geared edges in a subgraph representing an EGT must be less
than the number of vertices by 2 or more, otherwise it will be locked. Since Gy
has Y, N; + n + 1 vertices, this condition can not be satisfied for the above
case. Therefore, not all the members of a family can give rise to branches. If one
of the members does not give rise to any branch, then the number of vertices in
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Gy will be Z?;ll N; + n + 1 and the minimum number of geared edges required
to prevent redundancy will be at least 37! N; + n — 1. Thus, if one of the
members does not give rise to any branch, the above condition is satisfied. Also,
if more than one member of a family does not give rise to any branch the above
condition can be satisfied.

Let V1,V5. ..V, represent the first level vertices, and vertex Vj represents the
root of the EGM. Since an EGM has exactly two degrees of freedom, the number
of geared edges must be less than the number of vertices by 3. Applying this
condition and following the above logic one can prove that there must be at least
two vertices in the first level which should not give rise to any branch.

Thus, we get the following two conditions.

C9: For those vertices located at the higher levels, there must be at least one

member in a family that does not give rise to any branch.

C10: There must be at least two vertices in the first level that do not give rise

to any branch.

As a special case of Condition 1, a vertex cannot give rise to any branch if it

is the only vertex in the family.

Condition 2:

The subgraph formed by vertices 3, 6, and 4 in Fig. 3.5 represents a one-dof EGT.

Hence it should have at least three ports of communication. But it has only two
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ports of communication, namely vertices 3 and 4, and the removal of vertex 6
does not change the dof of the mechanism. Therefore, vertex 6 represents a link
that is redundant and can be removed. This is generally true for any link that is
not used as the input, output or fixed link and is connected by only one revolute

joint and one gear joint. Thus,

C11: If a vertex is not located at the first level and is incident by only one thin

edge, then it must be incident by at least two geared edges.

C12: If a vertex is located at the first level and is incident by only one thin edge,

it must be incident by at least one geared edge.

(@) (b)

Figure 3.5 : (a) A canonical graph containing a vertex (vertex no. 6) representing

a redundant link, (b) functional representation of the mechanism.
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Condition 3:

Consider the graph shown in Fig. 3.6(a). The subgraph formed by vertices 3,
5, 6, 7 and 8 represents a two-dof EGT. However, it has only three ports of
communication, namely 3, 5, and 7. Therefore, the links represented by vertices
6 and 8 are redundant. Note that the vertex 6 represents a binary vertex that
is not connected to any other vertex by a geared edge. According to Condition
C9, a binary vertex of this kind can only occur at the penultimate level of a
branch. If the vertex at the higher level that is connected to the binary vertex
is incident by two geared edges, then there are two possible ways of connecting
them. These two ways are shown in Figs. 3.6(a) and (c). In both these cases the
binary vertex, and the higher level vertex that is incident to it are redundant.
In Fig. 3.6(c) links represented by vertices 5 and 7 are redundant because the
subgraph formed by vertices 1, 5, 6 and 7 represents a one-dof EGT that has

only two ports of communication. Thus,

C13: If a binary vertex is not at the first level then of the two vertices that it
connects, the higher level vertex must be incident by more than two geared

edges.

Fig. 3.3 shows the graph of an EGM that has a binary vertex, but no redun-
dant links. In this case the higher level vertex (vertex No. 8) that is connected

to the binary vertex 6 is incident by three geared edges.
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Figure 3.6(a) A canonical graph containing vertices (No. 6 & 8) representing

redundant links, (b) functional representation of the mechanism.
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Chapter 4

Graph Enumeration

Most combinatorial enumeration procedures such as the graph enumeration pro-
cedures that require the enumeration of all possible solutions satisfying certain
constraints, are done through the process of generating and testing. The pro-
cedure is thus divided into two parts (Hayes-Roth et al., 1983): a generator of
all possible solutions and a tester that selects only those solutions that meet the
constraints. For example, in order to generate canonical graphs of n vertices
that represent fractionated two-dof freedom EGMs, we could first generate all
the graphs representing one-dof EGTs with n — 1 links. Then from Eq. 3.1 we
could calculate the minimum number of coaxial links required. Using it as a
criterion some of the graphs of one-dof freedom EGTs could be pruned. The
remaining graphs could then be converted into canonical graphs by using the
vertices representing the coaxial links as the first level vertices and adding an

extra vertex as the root to represent the casing. Finally, we could have chosen
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those canonical graphs that satisfy the characteristics C9 to C12 mentioned in
Chapter 3. This method was used by Lin and Tsai(1989) for the creation of
robotic wrist mechanisms.

The advantage of the above process is that we don’t have to think of any
new generating method since more than one method for enumerating graphs of
EGTs exist. However, only graphs with up to 7 vertices for EGTs have been
enumerated (Tsai, 1987; Kim and Kwak, 1991). Also the method used by Kim
and Kwak does not generate graphs in which geared edges form a closed loop.
This section presents a method to enumerate canonical graphs directly. The
direct enumeration of canonical graphs is inherently more efficient because of the

following two reasons.

1. The canonical graph has a unique vertex - the root, with reference to which
other vertices are divided into several levels. Thus, there is already some
arrangement among the vertices. One can therefore think of obtaining a
unique arrangement of vertices by adding some rules. This can then be
used to develop a unique code for each graph that will serve as a reliable

tool for an isomorphism test.

2. As mentioned in Section 3.1, the canonical graph by requiring thin edges of
the same label to be arranged in a particular manner prevents the creation

of pseudo-isomorphic graphs.

The enumeration procedure described below uses a hierarchial generating
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and testing technique. A part of the canonical graph is generated at each step,
and a test is carried out to prune out those solutions that will not give rise to
canonical graphs with the desired characteristics. The generator in any graph
enumeration procedure always gives rise to isomorphic solutions. Therefore, after
completion of each step isomorphic solutions must be identified and eliminated.
This is done as mentioned above by developing a unique code for each solution
and comparing them. An important issue in using a generating and testing
technique is the distribution of knowledge between the generator and tester. The
generator produces solutions satisfying some of the constraints. The tester then
selects those solutions that satisfy the rest of the constraints. By distribution
of knowledge we mean the division of constraints between the tester and the
generator. Usually, putting more knowledge in the generator results in a more
efficient procedure.

The following observations are made before formulating an efficient enumer-

ation procedure.

1. Most of the characteristics described in Chapter 3 are applicable to the tree

of a canonical graph, rather than the canonical graph as a whole.

2. The definition of the canonical graph requires the edge labels to be dis-

tributed in a particular way.

3. Characteristic C4, which prescribes the allowable geared edge connections,

presumes the existence of a labeled tree.

46



Therefore, it follows that an efficient enumeration procedure can be achieved
if it is divided into two phases. In the first phase labeled trees that will give
rise to admissible canonical graphs are enumerated. In the second phase geared
edges are added to these trees to create the canonical graphs. Each of these
phases has various steps. These two phases are described in Sections 4.1 and 4.3,
respectively. Section 4.2 lists the procedure for identifying isomorphic graphs.
Though the isomorphism test is carried out at the end of each step involved in
the two phases, the procedure for it is described in a separate section to show

how it relates to the overall enumeration procedure.

4.1 Enumeration of Trees

The characteristics C1, C2, C5 to C8, C9 and C10 are used to formulate the

procedure for enumerating trees with n vertices.

Step 1. From C7 calculate the minimum number of coaxial links required. This
gives the minimum number of vertices that a tree should have at the first

level.

Step 2. Distribute the remaining vertices into various levels. While making such
a distribution, remember that all levels other than the highest level must

have at least 2 vertices in order to satisfy C9.

Step 3. Divide the vertices at each level into families ( see Section 3.1). At

all levels other than the highest level there must be at least one family
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with two or more members in order to satisfy C9. One must note that the
distribution of vertices into families is same as the problem of partitioning
of integers. An algorithm to this end can be easily developed by using the

concept of generating functions, explained in the book by Liu (1968).

Step 4. Start adding the vertices of the first level. According to C4 all the
vertices at the first level should be connected to the root with thin edges

of the same label.

Step 5. Next connect the vertices of the second level to the first level vertices.
According to C10, two of the vertices at the first level should not give rise
to any branch. The definition of a canonical graph requires the members
of the same family to be connected to the same lower level vertex by edges
of the same label. Therefore, while adding the second-level vertices, add
one family at a time. Start with the family that has the lagest number
of members. If a family of vertices is added in all possible ways a lot of
isomorphic graphs would be generated. To reduce the number of isomorphic
graphs we digress and introduce the concept of graph automorphism and

similar vertices.

4.1.1 Graph Automorphism

Consider the graph shown in Fig. 4.1. The edges of the graph are unlabeled

and its vertices are numbered. If we permute the numbering of the vertices,
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5 01100 1 00110 4 0110
10110 5 00111 1011
11001 i}ggé 1 1100
4 01001 4 0100
00110 01100 5 0011
2 2 3
(a) ) (©)

Note : The matrix beside each graph is the link to link adjacency matrix.

Figure 4.1 Graphs in (a) and (b) are isomorphic but not automorphic, Graphs
in (a) and (c) are automorphic.

isomorphic graphs are produced. Most of these isomorphic graphs have their
corresponding vertices numbered differently. However, some specific permuta-
tions produce graphs whose corresponding vertices bear the same number as the
original one. These graphs are called automorphic graphs. For example, if we
number the vertices 1, 2, 3, 4, and 5 of the graph in Fig. 4.1(a) as 1, 3, 2, 5, and
4, the resulting graph as shown in Fig. 4.1(¢c) is automorphic. The permutation
in this case is denoted by (1)(2,3)(4,5). Elements 2 and 3 are said to form a cycle
of length 2, and element 1 a cycle of length 1. All such permutations that pro-
duce automorphic graphs form a group (Liu, 1968). Each of these permutations
is refered to as a member of the group. The application of any of the members
from the group won’t alter the adjacency matrix of the graph in any way. If two
vertices p and ¢ are contained in the same cycle of any member of such a permu-
tation group, then vertices p and ¢ are said to be similar (Yan and Hwang, 1991).
Thus, one can divide the vertices of a graph into classes by putting the similar

vertices together. If one wants to add a particular property to any vertex, then
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there can be one choice from a class of similar vertices since any choice is as good
as the other. However, once the property has been assigned to a vertex, the
similarity among vertices is destroyed. The members of the permutation group,
which contain that vertex (to which the property has been assigned) in cycles of
lengths greater than 1, has to be removed from the group since their applications
no longer produce automorphic graphs. Therefore, one has to derive new classes
of similar vertices from the remaining members in the permutation group. This
method has been given in the paper by Yan and Hwang (1991) where they used
it to assign various properties to links and joints of mechanisms.

In our case, all the edges of a tree are labeled and the labeling is arbitrary,
i.e., if we change all the edges with label @ to label b and vice-versa, the structural
topology of a mechanism won’t change. Therefore, after applying a permutation
to the vertices, we also have to permute the edge labels in all possible ways and
check if the resulting adjacency matrix becomes identical with the original one.
If it does, then we can identify similar vertices from the permutation applied.
However, this method of finding permutation group and similar vertices is time
consuming. The addition of a family or families with the same number of mem-
bers will not only require the reorganization of existing vertices into classes, but
also the creation of permutation groups for the vertices being added.

Therefore, some very simple rules are prescribed here to identify some of the

similar vertices. These rules won’t prevent the generation of isomorphic graphs

completely, but will reduce their number drastically. These rules are
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Figure 4.2 A tree showing similar vertices.

S1: Vertices belonging to the same family and incident by only one thin edge
and no other edges are similar. For example, vertices 2, 3 and 4 in Fig. 4.2

are similar.

S2: Families that have the same number of members and are connected to the
same lower level vertex form a cluster. If none of the vertices in a cluster
is incident by more than one thin edge, then all the vertices in the cluster
are similar. For example, vertices 5, 6, 7 and 8 in Fig. 4.2 are similar. If
a vertex is incident by more than one edge, then the family of vertices to
which that vertex belongs becomes dissimilar, while the rest of the families

in the cluster remain similar.

Whenever a choice for a vertex is to be made for adding a vertex, or a family of
vertices, choose only one vertex out of a class of similar vertices.

The addition of vertices at the higher levels should proceed in the same way
as the second level vertices. The only difference is that C9 is applicable instead of

C10, i.e., at least one member in each family of vertices should not give rise to any
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branches. A test to eliminate isomorphic graphs is carried out after completing
the addition of vertices at each level.

The example given below demonstrates the above enumeration method. In
this example, trees that can give rise to admissible canonical graphs which rep-

resent 9-link EGMs, capable of providing four speed reductions, are enumerated.

Step 1. There are nine links. The minimum number of coaxial links required is

four. Therefore, the first level should have at least four vertices.

Step 2. The remaining vertices can be divided into levels as shown in Ta-

ble 4.1(a).

Step 3. The vertices at each level are further divided into families as shown in

Table 4.1(b).

Step 4. This step and the next one are demonstrated by choosing two distri-
butions from Table 4.1(b). One of the distributions chosen is shown in
Fig. 4.3(a). Fig. 4.3(b) shows the tree formed after addition of the first
level vertices. The corresponding adjacency matrix is shown in Fig. 4.3(c).
The adjacency matrix has all its elements zero except for those in the rows
or columns corresponding to the root. Vertices 1, 2, 3 and 4 are similar

according to S1.

Step 5. In the second level there is only one family with two members. There
is only one choice of vertex in the first level to which this family can be
connected since all the vertices at the first level are similar. The resulting
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Table 4.1 Distribution of vertices of the graphs representing 9-link EGM into

levels and families: (a) level distribution, (b) family distribution.

Level 1 [7{6|5|5]4|4]|4

Level I [1]2(3|2]4|3]|2

Level III 1 1]2

(a)

Levels | Families || Levels | Families || Levels | Families

6 6 5 5 5 5
2 3
2 3 2,1 2 2
1,1 1,1,1
1 1

Levels | Families || Levels | Families | Levels | Families

4 4 4 4 4 4
4 3
2.2 3 2 2
4 3,1 2,1
2,1,1 1 1 2 2
1,1,1,1 1,1
(b)
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Figure 4.3 Enumeration of trees for a given family and level distribution: (a)
level and family distribution, (b) and (c) addition of first level vertices, (d) and

(e) addition of second level vertices, (f) - (i) addition of third level vertices.

34



tree is shown in Fig. 4.3(d). In terms of the adjacency matrix this would
mean the addition of two rows and columns to the matrix of Fig. 4.3(c).
The resulting matrix is shown in Fig. 4.3(e). All the elements of the new
rows and columns are zero except for element number! 1. However, some
of the zero labeled elements will be converted to ¢ when geared edges are
added. Potential geared edge connections can be found from C4. The
corresponding elements, instead of being set to zero, are therefore set to
z to facilitate the process of geared edges addition in the second phase.
The elements Ass and Ags are set to zero because there can be no geared
edge between vertices of the same family according to C4(a). All other
elements are set to z since they satisfy C4(b). This completes the addition

of vertices at the second level.

The third level contains two families each having one member. Therefore,
any one of them can be added first. The first family can be added in only
one way (see Fig. 4.3(f) ) since vertices 5 and 6 are similar. The second
family can also be added in only one way since one of the vertices at the
second level cannot give rise to any branch according to C9. The dashed
lines across the adjacency matrices divide them into various sub-matrices,
each containing information about a particular type of interactions. For

example, submatrix I in Fig. 4.3(i) represents the interaction within the

1We are following the convention of C programming language in indexing the elements of

rows and columns. The indexing starts with the number 0.
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third level vertices, submatrix II the interaction between the third and
second level vertices, and submatrix III the interaction between the third
and first level vertices. Whether an element of the submatrices I, II, and
IIT can be converted into z or not can be determined by applying C4(a),

C4(b), and C4(c), respectively.

A second chosen distribution is shown in Fig. 4.4. The process of enumeration
of the trees from the distribution is illustrated in the figure itself. There are
quite a few isomorphic trees. This is because of the presence of a large number
of families having the same number of members.

Before ending this section on enumeration of trees we note that the genera-
tor generates only those trees that have the desired characteristics. The tester
has only to identify the isomorphic graphs whose number has been reduced by

incorporating some rules in the generator.

4.2 Isomorphism

The issue of developing unique code for identifying isomorphic graphs has been
addressed by many authors ( Tang and Liu, 1988; Ambedkar and Agrawal, 1987).
Most of these papers dealt with graphs whose edges are not labeled. The labeling
of edges of a graph has both its advantages and disadvantages. On one hand,
it divides the vertices into classes that we have already named as families and,

therefore, introduces some amount of ordering among the vertices. On the other
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Level | Family 3
0 1
4
I 4
0O
1 one
choice
1 L B
I 1
(b) o
1 o . Similar
Similar vertices - 1, 2, 3, 4 vertices
2,3,4
cannot
give rise

Figure 4.4 Enumeration of trees for a given family and level distribution.
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Level Family Cluster Priority

0 ©) © ©)

I 1,234,5 | (1,234,5 |(1)2)X3)4.5)

II |(6,7)(8)(9)(10) (6,7)(8,9)(10)| (6,7)(8,9)(10

(b)

Figure 4.5 A tree having its vertices numbered according to their priority.
hand, since the labels being arbitrary they have to be permuted in all possible
ways in order to detect isomorphism. Some papers have presented graph repre-
sentations (Olson et al. 1991) that obviate the need to explicitly represent the
labels of the revolute edges in the adjacency matrices. This thesis achieves the

above objective by proposing four simple rules.

I1 Vertices at the lower levels should have higher priority than those at higher
levels. For example, vertices 1, 2, 3, 4, and 5 in Fig. 4.5 have higher priority
than vertices 6, 7, 8, 9, and 10. Hereafter, whenever we say that a vertex
has a higher priority than another it means that the former is numbered

lower than the latter.

I2 Members of a family such as vertices 1, 2, 3, 4, and 5 in Fig. 4.5, should be

consecutively numbered.

I3 All members of the families that belong to the same level and have the same
number of members should be consectively numbered. For example, ver-
tices 8, 9, and 10 in Fig. 4.5 are consecutively numbered.
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14 Families that have more members, have higher priority than those having
less. Vertices 6 and 7 in Fig. 4.5 have higher priority than vertices 8, 9 or

10.

If we number the vertices following the above rules, then there is no need to
explicitly label the edges. One can uniquely determine the labels of the edges
from the level and family distributions.

Next we propose a set of rules that decide the priorities of vertices within
a family and the priority of a family of vertices over another having the same
number of vertices. These rules should be applied successively in the order stated
below and should not alter the priorities already decided by the application of

previous rules. These rules are:

I5 Members of a cluster, e.g., vertices 8 and 9 in Fig. 4.5, should be consecutively

numbered.

16 If two clusters are of the same type?, then the one with more families has
a higher priority. For example, the cluster formed by vertices 8 and 9 in

Fig. 4.5 has a higher priority than the cluster formed by vertex 10.

I7 A vertex in a family precedes another vertex if it gives rise to more fami-
lies with a higher number of members. For example, in Fig. 4.5 vertex 1

precedes vertex 2, which in turn precedes vertex 3.

2Two clusters are of the same type if the number of members in a family of one is sarne as

in that of the other.
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Figure 4.6 Trees having their vertices numbered in order of their priority.

I8 To determine the order of families in a cluster, the vertices of the families
are compared. If the highest priority vertex of family A gives rise to more
families with a higher number of members than that of family B, then
A precedes B. If the precedence cannot be determined by comparing the
highest priority vertices of the two families then the next priority vertices
are compared. For example, vertices 5 and 6 precede vertices 7 and 8 in

Fig. 4.6(a).

I9 The priority of a cluster over another is determined similarly. Vertices 5 and

6 precedes vertices 7 and 8 in Fig. 4.6(b).

To develop the code all labels of the thin edges are replaced by 1 in the
adjacency matrix. Then, the vertices are permuted to maximize the number
formed by concatenating the elements of the upper triangular matrix (of the

adjacency matrix), starting from the leftmost element of the topmost row and
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moving along row by row downwards. This maximized number, along with the
level and family distribution gives a unique code for isomorphic trees. Since
the permutation of similar vertices does not change the adjacency matrix, only
dissimilar vertices of a family that have the same priority are permuted. Families
in a cluster that have the same priority and all of whose vertices are not similar
are permuted en bloc. Similarly, clusters of same priority are permuted en bloc.

The isomorphism test is applied after completing the addition of vertices at
each level. Rules I1 to I6 are applied to arrange the vertices in the level that has
just been added, whereas rules 16 to 19 are applied to arrange the vertices in the

immediately preceding level.

4.3 Enumeration of EGMs

The adjacency matrices that have been enumerated until now have some of their
elements labeled z. The addition of geared edges means converting some of these
r’s to g’s, and the rest to zeroes. The number of geared edges to be added can
be calculated from C1. Before we proceed further in formulating a methodology
for addition of geared edges, we describe an algorithm to find the transfer vertex
associated with each gear pair, and study the interaction among fundamental

circuits formed by the addition of geared edges.
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4.3.1 Locating the Transfer Vertex

Consider the tree and its adjacency matrix shown in Fig. 4.7. Suppose, we
connect a geared edge between two vertices 7 and 6. To find the associated
transfer vertex we scan the row corresponding to the higher level vertex (vertex
7 in this case). If both the vertices are at the same level, then we scan the row
corresponding to any of the vertices. The column number corresponding to the
first non-zero element that is not an ’x’ or a ’g’ gives the number of the transfer
vertex. In case of the above example element no. 5 of row 7 gives the number
of the transfer vertex. A fundamental circuit is characterized by the two end
vertices of a geared edge and the associated transfer vertex. Therefore, once the

transfer vertex is known, the fundamental circuit is in effect known.

4.3.2 Interaction Among Fundamental Circuits

The three vertices that characterize a fundamental circuit form a simple one-
dof EGT with three links. For example, if we connect the vertices 7 and 8
of the tree shown in Fig. 4.7(b) by a geared edge, then vertices 5, 7, and 8
that characterize the fundamental circuit, form a simple one-dof EGT. In order
to keep track of interactions among fundamental circuit we construct a matrix
whose column number corresponds to the vertex number. In the first row of this
matrix we mark the elements that correspond to the characteristic vertices of a
fundamental circuit by a label, say 1. The matrix is shown in Fig 4.8(a). When

another geared edge is added, the newly formed fundamental circuit can have
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the following relationships with the existing one.

1. It can have two of its vertices in common with the existing fundamental
circuit. The two fundamental circuits constitute a one-dof EGT. In the
first row of the above matrix we mark the element corresponding to the
non-common vertex with the same label as the other elements of the row.
For example, in Fig. 4.7(e) the fundamental circuit formed by the addition
of the geared edge connecting vertices 6 and 8 has two of its characteristic
vertices (5 and 8) in common with the previous one. Therefore, the first

row in the matrix is modified as shown in Fig. 4.8(b).

2. It can share only one of its vertices with the existing fundamental circuit. In
this case they form a fractionated two-dof EGT with the common vertex as
the articulation point. For this case we add a new row to the above matrix
and label the elements corresponding to the characteristic vertices of the

fundamental circuit that is being added with a new label, say 2.

In general if we consider a graph in which k geared edges have been added, then
the fundamental circuit formed due to the addition of the k + 1 geared edge can

have the following relationships with the existing subgraphs.

1. It can have two of its vertices in common with a subgraph representing a
one-dof EGT. In this case the resulting subgraph also represents a one-dof

EGT.
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Note : The vertices inside a dashed line envelope represent links that are locked.

Figure 4.7 Step by step enumeration of EGMs from a tree - Part 1.

64



Vertices| 1/ 2| 3] 4| 5|6] 7|8

(a)

Vertices| 1/ 2| 3| 4| 5|6 7|8

(b)

Figure 4.8 Matrices to keep track of the interaction among fundamental circuits.

2. It can have one of its vertices in common with a subgraph representing a
one-dof EGT. The resulting subgraph forms a fractionated two-dof EGT

with the common vertex as the articulation point.

3. It can have two vertices in common with a two-dof fractionated EGT, one
vertex in common with each fraction. The resulting subgraph forms a two-
dof non-fractionated EGT. In this case we also add a new row and mark

the proper elements with a new label.

4. It can have three of its vertices in common with a subgraph representing
two-dof EGT. The resulting subgraph forms a one-dof EGT. For such cases
all the rows corresponding to the subgraph should be collapsed into one
and all the elements in the row that corresponds to the subgraph should

be marked with the same label.

5. A new fundamental circuit formed cannot have three of its vertices in com-

mon with a subgraph representing a one-dof EGT, otherwise the mechanism
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will be locked.

The above observations will be used to keep a track of the subgraphs that
are being formed, and to prevent the occurrence of locked chains. It is apparent
that there can be more relationships between a newly added fundamental circuit
and the existing subgraphs. However, if we follow the enumeration procedure
described below and limit ourselves to a small number of links, say ten, no more

relationships are necessary.

4.3.3 Similar Edges

Consider the tree shown in Fig. 4.7. The similar vertices in the tree can be
identified by applying S1 and S2 as defined in Section 4.1.1. Because of the
similarity among vertices some of the candidate geared edges (represented by
label z in the adjacency matrix) are similar. Some of these sets of similar geared

edges can be identified by the application of the rule given below.

S3 When several geared edges connect a common vertex to a set of similar

vertices, they form a similar edge set.

4.3.4 Addition of Geared Edges

The methodology for addition of geared edges is introduced through an example.
Consider again the tree shown in Fig. 4.7(b). The number of geared edges to be

added Is six.
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Step 1. First add geared edges to connect vertices at the highest level. This
means submatrix I of the adjacency matrix shown in Fig. 4.7(a) is under
consideration. First add geared edges to one vertex, then to the next and
so on. For this instance there are two provisions - one of adding a geared
edge and the other of not adding any, as shown in Figs. 4.7(c) and (d),

respectively.

Step 2. Next add geared edges that connect the highest level vertices to vertices
at the lower levels, i.e., relabel the elements with label x in submatrices II
and III. Since this is the last chance of adding geared edges to the highest
level vertices, calculate the minimum number of geared edges to be added
to these vertices to satisfy C11. Add the geared edges first to one vertex
in all possible ways, starting from the minimum required to maximum
possible. For example, in Fig. 4.7(d) vertex 8 should have a minimum
of two geared edges incident on to it. The maximum number of geared
edges that can be added to it is also two. Therefore, there can be only one
way of adding the geared edges to vertex 8, which is shown in Fig. 4.7(e).
Whenever a geared edge is added, check for the possibility of forming a
locked chain following the methodology described previously. For example,
addition of two geared edges to vertex 7 of the graph in Fig. 4.7(e) results
in a locked chain as shown in Fig. 4.7(f). After the addition of geared edges
to submatrices II and III is complete, a test of isomorphism is carried out

before adding geared edges to submatrices IV, i.e., between the second and
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Redundant Links

Figure 4.9 Step by step enumeration of EGMs from a tree - Part I1.

first level vertices. The priority of vertices is decided according to some
rules described later in this section under the heading isomorphism. After
the isomorphism test only one viable gear train remains, which is redrawn

in Fig. 4.9(a).

Step 3. Since, no geared edge connecting vertices at the second level is possible
the next step is to add geared edges between the second and first level
vertices. For this purpose the previous step is repeated. The difference is
that the minimum number of geared edges to be added to the first level
vertices is also to be taken into consideration. Also note that the geared

edges that can be connected to vertex 6 are all similar according to S53.
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Therefore, only three choices are possible as shown in Figs. 4.9(b), (¢), and
(d). At the end of enumeration procedure three EGMs are formed. They
are shown in Fig. 4.9(d), (e), and (f). The one shown in Fig. 4.9(d) has
redundant links. This is because the subgraph formed by vertices 1, 5, 6, 7
and 8 represents a one-dof EGT that has only two ports of communication,
i.e., vertices 1 and 6. The generation of such graphs can be prevented if we
ensure that every subgraph (formed at the end of step II) that represents
an n-dof EGT has n + 2 ports of communication. The subgraphs and their
dof can be obtained from the matrix that has been developed to prevent
the occurrence of locked chains. However, such a verification is not required
when geared edges are added to connect the highest level vertices to the
lower level vertices, since conformation to C11 and C12 ensures that there

will be no redundant links.
Thus, the method of adding geared edges can be formulated as follows.

Step I First add geared edges connecting vertices at the highest level. For every
geared edge that is being added check whether the addition of the geared
edge results in a locked chain by the method described above. If it does,
then set the label x that corresponds to the geared edge in the adjacency

matrix to zero.

Step II Next add geared edges from the highest level to the lower levels. Before

doing this calculate the minimum number of geared edges to be added to
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each of the vertices at the highest level from C11. If the highest level is the
second level, then the minimum number of geared edges to be incident on
a first level vertex as given in C12 should also be taken into account. Care
should be taken that the total number of geared edges to be added does
not exceed that given by Cl. As before, check for locked chains for every

geared edge added.

Step III Repeat steps I and II for the next lower level vertices, i.e, the vertices
that are at one level immediately below the highest level. The only thing to
be checked, after completing the addition of a geared edge, is the presence

of any redundant links as described in the above example.

Repeat step III until the second level is reached.

Isomorphism

A test to identify isomorphic graphs is performed at the end of each step. To do
this we extend the procedure described in Section. 4.2. The rules to identify the
priority of vertices are given below. They, however, should not alter the priority
set by rules I1 to I19. Also, the rules should be applied in the order given below

and should not alter the arrangement set by the previous rules.

I10 The vertex that is connected to vertices at two levels above it with more

geared edges has the highest priority.

70



I11 Among vertices of same priority in a family, the vertex that is connected
to vertices at one level above it with more geared edges is given higher

priority.

I12 Among vertices of same priority in a family, the vertex that is connected to

vertices at the same level with more geared edges is given higher priority.

I13 Among vertices of same priority in a family, the vertex that is connected to

vertices at lower levels with more geared edges is given higher priority.

These rules are prescribed to ensure that the priority set due to the application
of isomorphism test at the end of each step of geared edge addition, is not altered
upon the application of the same test at the end of next step.

To develop a code for the graph, the ¢’s in the adjacency matrix are replaced
by 2’s. Then, the vertices are permuted to maximize the number formed by con-

catenating the elements of the upper triangular matrix as described in page 60.
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Chapter 5

Functional Representation

The graph representation of a mechanism helps in enumerating the basic config-
uration of a mechanism and stores all the relevant topological data. However,
it does not aid the designer in visualizing how a mechanism looks and how it
will work. This is a big handicap for those designers who are not familiar with
graph representation, and can prevent a smooth flow from the type-synthesis
phase to the dimensional synthesis phase. A search through the literature has
shown that very little work has been done in the area of sketching the functional
representation of a mechanism from its graph representation, especially in the
area of EGTs.

The functional representation of an EGT, unlike those of other planar kine-
matic chains, has traditionally been sketched by using a sidewise orthographic
projection. While sketching the functional schematic of an EGT the following

points, some of which have been mentioned in the previous chapters, should be
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Figure 5.1 Epicyclic gear train of 3 links: (a) graph representation, (b) func-
tional representation with three independent gear diameters, (c) functional rep-

resentation with only two independent gear diameters.

kept in mind.

e There isn’t any one-to-one correspondence between the graph of an EGT
and its functional representation, because the graph does not store any

information about the type of gear pairs.

e The coaxial links in an EGT actually form multiple joints. Therefore, the
joints between a set of coaxial links can be arbitrarily rearranged without

changing the functional characteristics of a mechanism.

¢ One of the desired features of any functional schematic of an EGT is the
absence of any crossing (or interference) between links. However, Chieng

and Hoeltzel (1990) observed that “this constraint alone cannot provide any
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control over the numerical solution of the problem and hence the problem

is ill constrained”.

Since the vertices of a graph do not carry information about the shape
of links, it is possible to draw structures that are less generalized, and
put additional constraint on the dimensions of certain links. For exam-
ple, the functional schematic shown in Figs. 5.1(b) and (c) has the same
graph representation as that shown in Fig. 5.1(a). However the EGT of
Fig. 5.1(c) must have all its gears of the same module and the diameters
of the gears are not independent. Therefore, during dimensional synthesis
the designer can choose only two parameters (diameters) for the mechanism
shown in Fig. 5.1(c) while three can be chosen for the mechanism shown in

Fig. 5.1(b).

Fig. 5.2(a) shows the canonical graph representation of the EGM shown in

Fig. 5.2(b). It has been mentioned in Section 3.2.2 that all existing EGMs stud-

ied have their links distributed only up to the second level. This mechanism is

no exception. Therefore in what follows we shall, for the purpose of sketching,

restrict ourselves only to those graphs that have at most two levels of vertex

distribution. In the following sections, first the desired features of a good func-

tional representation of an EGM is discussed. Next, the interactions among the

various types of links of an EGM are studied. A method of assigning the gear

type (external or internal) to the gear edge is described. The graph of an EGM 1s

decomposed into subgraphs having certain characteristics. We call mechanisms
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Figure 5.2 Epicyclic gear mechanism of 8 links: (a) canonical graph represen-
tation, (b) functional representation showing an inaccessible link, (c¢) functional

representation having all links accessible.

represented by these subgraphs - fundamental geared entities (FGEs). Based
on these, some primitives are developed which form the building blocks of the
FGEs. Subsequently, a methodology for generating the functional schematic of
an EGM by welding (joining) the primitives into an FGE and then the FGEs into
an EGM is formulated. The chapter ends with a discussion on the data structure
for storing the information regarding the functional schematic of an EGM, and

a method of producing the same on the computer screen.

5.1 Desired Features

The absence of crossing links, which is an important requirement of an EGT,

should be observed in sketching an EGM. In addition there are other desired
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Figure 5.3 Epicyclic gear mechanism of 8 link: (a) graph representation, (b)

functional representation showing coaxial shafts and overhead connection.

features specific to the functional representation of an EGM that are enumerated

below.

Accessibility - The first level links of an EGM are used as input, output or fixed
links. The link chosen as the output link is to be permanently connected
to the final reduction unit of a transmission. The other links are connected
either to the input shaft through rotating clutches or to the casing through
band clutches, depending on the clutching condition. Therefore, it is neces-
sary that, in the functional schematic of an EGM, these links be arranged
in such a way that they remain accessible and hence can be connected to
other elements of the transmission as, and when, required. For example,
link 2 in the mechanism shown in Fig. 5.2(b) is inaccessible. It won’t be

possible to attach any clutch to this link. However, if the joints among the
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coaxial links are rearranged as shown in Fig. 5.2(c), the accessibility is not

impaired.

Few Coaxial Shafts - Link No. 1 of the functional schematic shown in Fig. 5.3(b)
has a carrier and a ring gear connected! to each other by a shaft. This shaft
is coaxial with another shaft, which connects the carrier and the ring gear
of link 3. From a manufacturing point of view coaxial shafts are undesirable
as tolerance limits on such shafts are too rigid. Therefore, their number
should be kept as low as possible. This may result in a compromise with

some other respect as explained in what follows .

Low Inertia - Link No. 3 of the functional schematic shown in Fig. 5.3(b) has
two ring gears attached edge to edge. Such connection will be referred to as
overhead connection. This way one can reduce the number of coaxial shafts.
However, this results in a high moment of inertia of the link. It also requires
more material in its manufacture. Thus one has to strike a balance between
the two desirable features. In Section 5.5 a method of maintaining a proper
balance between coaxial shafts and overhead connection is described. For
an EGM of n links the maximum number of such connections (coaxial shaft

connections and overhead connections) is equal to the greatest even number

1The difference between the words connections and joints as used here are: two or more
members such as gears or carriers are said to be connected when they form a link with no
relative motion between them, whereas two links are said to be joined when they can have

specific relative motion with respect to each other.
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(@) (b)
Figure 5.4 Epicyclic gear mechanism of 7 links having (a) external planet gear
pair, (b) internal planet gear pair.

that is less than or equal to (n — 5). The proof of this statement is given

in Appendix A.

It should be noted that the accessibility of a link is a more desirable fea-
ture than the other two. Therefore, the latter two are overruled whenever the

accessibility of a link is in question.

5.2 Assignment of gear type

The second level vertices of a canonical graph represent planet gears or multiple

planet gears of an EGM. A gear edge connecting a second-level vertex to a first-

78



8i0000ich v
000 0:9%

a:0% 0 0:G
2000009
0i¢Ggo0i0

ym’o 9 y p—

If
@ ®)

Figure 5.5 : (a) Canonical Graph Representation of the Epicyclic Gear Mecha-

nism shown in Fig. 5.4(a), (b) Link-to-Link Adjacency Matrix of (a).

level vertex represents a planet-to-sun or planet-to-ring gear pair depending on
whether the gear pair is external or internal. A geared edge connecting two
vertices of the second level represents a planet-to-planet interaction. Hence, we
will call the gear edge connecting two such vertices as planet-to-planet gear edge.
Theoretically a gear pair between two planets can be either external or internal.
For example, the mechanism of Fig. 5.4(a) has the same features as that of
Fig. 5.4(b) except the joint connecting the two planet gears has an external gear
mesh in Fig. 5.4(a) and of the internal gear mesh in Fig. 5.4(b). However, for all
the EGMs studied, only external gear meshes between planets have been found.
Therefore to keep the sketching algorithm simple, we shall assume that a geared-
edge connecting two vertices at the second level represents an external gear pair.
In the adjacency matrix, an internal gear pair will be represented by a upper case
G and an external gear pair will be represented by a lower case g. Fig. 5.5(b)

shows the adjacency matrix for the canonical graph representation shown in
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Fig. 5.5(a)). If we remove the first row and the first column corresponding to
the root, we can divide the remaining matrix into four sub-matrices marked I,
I1, ITI, and IV in Fig. 5.5(b) according to the vertex level distributions. Since
the adjacency matrix is symmetrical, the sub-matrices III and IV are transposes
of each other. All elements in the sub-matrix I are zero, since there can be no
connections among the first level vertices. The sub-matrix II gives the interaction
among the second level vertices. The sub-matrix III represents the interaction
between the first and the second level vertices. Therefore, only those elements
of sub-matrix III that have the label ¢ can be reassigned the label G. Of course,
corresponding changes have to be made in sub-matrix IV.

After the assignments of internal and external gear pairs, some of the graphs
generated will be isomorphic. To check for isomorphism we can extend the
procedure developed in the previous chapter. We can add one more rule to the
rules of numbering the verices by assigning the vertex with the larger number of

external gear edges to have higher priority.

5.3 Fundamental Geared Entities

In this section, we shall divide the graph of an EGM into several FGEs. This
is accomplished by using the planet gears as the dividing elements. The planet
gears can either be a rigid link by itself or several planets connected together

as a planet train. From the graph point of view, the second-level vertices either
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Figure 5.6 : (a) Canonical graph of an EGM, (b,c) subgraphs representing fun-

damental geared entities.

become isolated or form several second-level vertex-chains after the removal of all
the lower level vertices. For example, in the graph shown in Fig. 5.6(a) vertices
6 and 7, along with the geared edge connecting, them forms a double planet
train, while vertex 8 represents a single planet. The mechanism represented
by a subgraph formed by an isolated second-level vertex or chain of a second-
level vertices, and all the lower level vertices connected to them by geared or
revolute edges, is called a fundamental geared entity. The links corresponding
to the vertices of a second-level vertex-chain do not interact directly with those
of the others. Figs. 5.6(b) and (c) show two subgraphs formed from the graph
of Fig. 5.6(a), each of which represents an FGE. Each of these subgraphs is
associated with a second-level isolated vertex (or a vertex-chain), and is formed
by deleting all the other second-level vertices or vertex-chain and the first-level
vertices that are not directly connected to the second-level vertex (or vertex

chain) under consideration. While drawing the functional representation of an
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Figure 5.7 Graph of an FGE having three planets in a chain.

EGM, one should draw those links belonging to one FGE of an EGM together and
then join the common links of the FGEs by means of coazial shafts or overhead
connections.

Fig. 5.7 shows an FGE having three planets. Note that this FGE can itself
serve as an EGM since it has four links at the first level. FGEs and EGMs that
have more than two planets in a chain are not very practical and will be excluded
from further consideration. In terms of the adjacency matrix of an EGM (see
Fig. 5.5(b)), this means that at most one element in each row of sub-matrix II
can be labeled g¢.

The FGEs can now be categorized into two general types, one containing
only one planet and the other containing two meshing planets. Their graphs
are shown in Fig. 5.8(a) and Fig. 5.9(a), respectively. The general form of a
single-planet FGE as it appears in the functional schematic of a mechanism is
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Figure 5.8 General Form of Single-Planet FGE.

shown in Fig. 5.8(b). The ring gears can occur only at either end of the FGE.
The general form of the functional schematic of a double-planet FGE is shown in
Fig. 5.9(b). It appears to be complicated because of the presence of a ring gear
in the middle of the FGE. If there is no sun gear meshed with the planet at the
higher label (axis c), then the ring gear can be drawn as shown in Fig. 5.9(c).
Thus, there are two general forms of the second-type FGEs. One may note
that the restriction we have imposed on the position of the ring gears (joined to
the planet at its lower label) as shown in Fig. 5.9(b) is artificial. Clearly, one
can also place the ring gears at the end by offsetting the lower label (axis b)
of the carrier (see Fig. 5.9(d)). This, however, leads to too many hidden lines
in a 2D representation and therefore is avoided. Such an artificial restriction
however may not permit the achievement of the desired features (of functional

representation) in some cases.
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5.4 Primitives

An FGE consists of only one carrier, which carries the planet(s) that interact
with the sun and ring gear of the first level. Therefore, it is natural that the
functional schematic of an FGE can be sketched by using four primitives : one
each for depicting the sun, the ring, the planet and the carrier. The dimensions
that characterize these primitives are decided by the computer based on the
arrangement of the primitives in the FGE. A methodology to decide the arrange-
ment of the primitives is described in a Section 5.5. However, since the computer
does not have any aesthetic sense, it will be given some proportions to begin

with. These are described under specific primitives in the following sections.

5.4.1 Carrier

The carrier primitive is shown in Fig. 5.10(a). All the planets in an FGE are to
be supported on the higher level axes of a carrier. The height of the axis b from
the center of the carrier (line a) is introduced as a constant in the computer. We
will call this constant the reference value. For the case of a double planet, the
ratio of the distance between two higher level axes b and c, to the reference value
is also defined. Whenever an axis corresponding to a new label is to be created
the computer creates a variation about the reference value to define its height.
The number of axes, the options of whether the carrier should face left or right,

and the other parameters are decided by the program. The coordinates of the
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numbered points 1, 2, 3 etc. as shown in Fig. 5.10(a) are expressed as functions
of the reference parameter with respect to the coordinates of the local origin of

the primitive.

5.4.2 Sun Gear

The sun gear primitive is shown in Fig. 5.10(b). The parameters characterizing
the primitive are shown in the same figure. Some of these parameters are defined
as constants in the program as they don’t affect any of the desirable features
of the functional representation. They are defined in proportion to the above
mentioned reference value. These parameters are the face width of the gear, the
gap between the teeth of two meshing gear, the hub width and the nominal hub
diameter. Another proportion that needs to be defined is the ratio of the radius
of a sun gear to that of the meshing planet. The computer always uses a pre-
specified ratio and creates a small variation about this ratio while sketching the
structure. In the graph of an FGE this primitive appears as a first level vertex

incident by a geared edge labelled g.

5.4.3 Ring Gear

The ring gear primitive and the parameters characterizing it are shown in Fig. 5.10(c).
Some parameters defined for the previous primitive also apply here. In addition,
the gear radius, the ratio of arm radius to gear radius, and the nominal edge

span as a proportion to the reference value are also defined. The computer, how-
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Figure 5.10 Primitives: (a)carrier, (b) sun gear, (c) ring gear, (d) single-planet

gear, (e) multiple planet gear.
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ever, may override these specifications under certain circumstances that will be
described later. In the case of a ring-planet pair the program also has to decide

the orientation of the primitive.

5.4.4 Planet Gear

The planet consists of one or more gears attached to each other side by side as
shown in Fig. 5.10(d) and (e). In the graph representation of an FGE it appears
as a second-level vertex or vertex chain. The number of gears in the planet is
determined by the number of geared edges incident on the vertex. In this case the

distance between planet gears are defined in proportion to the reference value.

5.4.5 Simple Planetary Gear Set
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Figure 5.11(a) shows the graph of a simple planetary gear set. A simple planet
FGE consisting of only a ring gear, a sun gear, and a carrier as shown in
Fig. 5.11(b). The structure can be made more compact as shown in Fig. 5.11(c),
and is called a simple planetary set. It is introduced as an additional primitive
because most automotive automatic transmission gear-trains contain at least one
such set. Thus, whenever a subgraph is of the form shown in Fig. 5.11(a), the
primitive shown in Figs. 5.11(b) or 5.11(c) will be used to sketch its functional
representation. The parameters for this primitive are not illustrated separately
because they are the same as those shown in Figs. 5.10(a), (b) and (c), except
that the sum of the radii of two planets and a sun gear is equal to that of the

ring gear.

5.5 Connecting the FGEs

The remaining task now is to find the sequence of links in the first level of an
FGE so that when the common links of two or more FGEs are connected there
is no crossing of links. It has already been mentioned that the common links of
the FGEs can be connected either by shafts or by an overhead connection. This
results in many possible types of connections and link arrangements. Therefore,
to reduce the number of choices we will forego the overhead connections. One
may argue that this will lead to too many coaxial shafts, and hence, one of the

desirable features of a functional schematic will not be achieved. To achieve the
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desirable features we will present a method of converting some of the coaxial
shafts to overhead connections later.

The general form of a single planet FGE is again shown in Fig. 5.12(a). This
time certain points along the axis of the FGE are labeled with letters. These
points are those that can be connected by shafts to similar points of other FGEs.
Such points will be called welding points. The left most or the right most ring
gear can have two welding points: one by coaxial shafts and the other by an
overhead connection as shown by the dashed lines labeled as (pqtR) in Fig. 5.12.
Such a construction is permissible because it does not hamper the accessibility
to any other points. In the same manner the carrier can also have two welding
points: one on the left-hand-side and the other on the right-hand-side (line mc)
of the shaft as shown in Fig. 5.12(a). Therefore, the welding points along the
axis can be represented as Rrr .. ¢.. ss. ¢ .. rr R’ where the r’s
represent the welding point of the ring gears, the c¢’s that of the carrier and the
s’s that of the sun gears. The R represents the ring gear that has two welding
points. Simalarly, the welding points of the two double planets FGEs shown in
Fig. 5.12(b) and (c) can be represented as Rrr..c..ssc ..rrc” R and
Rrr.c.sss.rr..c ..ssc” R, respectively.

The link numbers corresponding to sun gears joined to the same planet of an
FGE can be permuted among each other because of symmetry. The same thing

can be done for the ring gears that are joined to the same planet. Fig. 5.13(a)

shows a canonical graph with geared edges properly labeled. It can be divided
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Figure 5.12 Welding points of (a) single-planet FGE, (b) and (c) double-planet

FGE.
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into three subgraphs, each of which represents an FGE as shown in Fig. 5.13(b).
Each FGE consists of only one carrier, one ring gear, and one sun gear. Each ring
gear and carrier has two welding points. The welding points of the FGEs can
be arranged graphically as shown in Fig. 5.13(c). The welding points are labeled
by the number of the links. The welding points belonging to the same FGE are
joined by edges, which are called primary edges. Edges connecting two welding
points of two different FGEs are called secondary edges. A secondary edge can
only connect two welding points of the same label. The label of a secondary edge
is the same as those of its end points. A secondary edge between two points
represents a shaft connection between the two links. The secondary edges should

be drawn according to the following rules.

M1 The secondary edges should be contained in the half space below the line
ab formed by the primary edges as shown in Fig. 5.13(d). This restriction

is necessary because we are only considering shaft connections.

M2 Any two welding points of the same label should be connected by a path
consisting of either secondary edges of the same label or several primary

edges or a combination of both.

M3 There should not be a circuit formed by only secondary edges of the same

label and primary edges.

M4 A secondary edge should not intersect or coincide with another secondary

or primary edge except at its end points.
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Figure 5.13 Constructing the Kinematic Structure from Primitives.
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After all the above rules are satisfied, a test for accessibility of links should
be carried out. A welding point in Fig. 5.13(d) is accessible if one can draw
a secondary edge from that welding point to any one of the points marked by
an asterisk without tracing on or crossing any edge. Otherwise, the point is
inaccessible. A link is inacessible if all its welding points are inaccessible. For
example, the way the secondary edges has been drawn in Fig. 5.13(d), welding
point 1 is inaccessible. Fig. 5.13(e) shows the corresponding connections in the
mechanism. It is evident that link 1 is indeed inaccessible. However, if one
connects the FGEs in the way shown in Fig. 5.13(f) instead, link 1 becomes
accessible. Although this serves the purpose, a pair of connections between two
non-adjacent FGEs means two long coaxial shafts are needed. This should be
avoided, if possible. In this case, it can be avoided by arranging the FGEs as
shown in Fig. 5.13(g).

Based on the above discussion the following algorithm is proposed to find a
proper arrangement of the FGEs and that of the links within the FGEs. The
first two steps describe how the first FGE should be constructed. The rest of the

steps describe how the subsequent FGEs should be constructed.

Step 1 Draw the welding points of an FGE that has only two of its links con-
nected to other units. There is at least one such unit in any EGM. If there

is more than one such unit, choose any.

Step 2 For each link that is connected to other FGEs choose one welding point.

Place these points adjacent to each other, otherwise the welding point that
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lies between becomes inaccessible. The only welding point that can be
trapped between is the one belonging to the carrier, provided the other one

1s accessible.

Step 3 Place another FGE to the right of the preceding partially completed
mechanism schematic. Select the one that has the maximum number of
links to be connected to the preceding primary units. If there is more than
one choice, choose any. Henceforth, we will refer to an FGE that is being
added as the current FGE and its welding points as current welding points.
An FGE that has just been added in a partially completed mechanism

schematic will be referred to as the preceding FGE.

Step 4 For every current welding point, choose a corresponding welding point
in the preceding FGE to which a connection can be made without crossing
edges. If more than one such welding point is found choose the right-most
among them. If no such welding point is found, then alter the arrangement
of the welding points in the preceding FGEs. While altering the arrange-
ment of the welding points in the preceding FGEs it should be kept in
mind that the general form of the FGE as described previously should not
be changed. Also, permutations can be done only among those welding
points that are either connected to the current FGE or not yet connected.
Those belonging to the partially connected mechanism cannont be per-

muted. If this does not work, make a different choice of the preceding FGE
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and repeat Step 3.

Step 5 If a and b are two current welding points to be connected to the preceding
FGE, then a should be placed to the left of b if the corresponding welding
point a in the preceding FGE is located to the right of b (in the preceding
FGE). If this is not possible, alter the choice of the preceding welding

points.

Step 6 The first connection from a current FGE to the preceding FGE won’t
make any welding point inaccessible. However, any successive connections
could. In that case check whether the corresponding link becomes inacces-
sible. If it is so, go to Step 4 and choose a different welding point. If this
does not work, follow the permutation procedure given in Step 4. First
permute the welding points of the preceding FGEs and then change the

sequence of the FGEs themselves.

After the secondary edge connection is made so that rules M1 to M4 are sat-
isfied, some of the welding points that are not connected by secondary edges can
be removed if a corresponding welding point of the same label exists in the other
FGEs. Once the above operations are complete the EGM can be sketched by
mapping the welding points to the primitives of the links to which they belong.
We note that among several secondary edges connecting two FGEs, the top-
most edge represents the outer most shaft in a set of coaxial link. For example,

functional schematic developed by mapping the welding points in Fig. 5.14(a) is
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Figure 5.14 Constructing the Functional Schematic.
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Figure 5.15 Arrangement of Connection Point to Sketch Both Overhead and
Shaft Connections.

shown in Fig. 5.14(b). Some of the shaft connections between adjacent units can
be converted into overhead connections as shown in Fig. 5.14(c). This can be

done only if all of the following conditions are satisfied.

(i) the welding points are adjacent to each other,

(ii) they belong to a ring or a carrier,

(iii) there is one more welding point of the same label in either of the primitives.

Till now we have only discussed shaft connections and converting shaft con-
nections of adjacent FGEs to overhead connections. However, the method dis-
cussed above can easily be generalized to include all possible overhead connec-
tions by arranging the welding points of the primitives as shown in Fig. 5.15, and
then making the secondary-edge connections so that they satisfy rules M2 to M4.
This however, will result in complicated connection that won’t be easy to sketch
in practice. It is also not necessary if we limit ourselves to a small number, of
FGEs, say four.

We end this section by citing an EGM that will always have one inaccessible

link no matter how the FGEs are connected. The example is shown in Fig. 5.16.
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Figure 5.16 An EGM that cannot be constructed without an inaccessible link.

Since an inaccessible link cannot be used as an input, output or a fixed link ,

some of the links of such mechanisms become redundant.

5.6 Display of the Functional Schematic

The functional schematic of an EGM is stored in the computer as a network of
structures. For example, each of the primitives is stored as a structure. These
structures contain not only the coordinates of the points that define the dimen-
sions of the primitives, but also the pointers to other primitives to which they are
connected. Each of the primitives is created in the local coordinate system of an
FGE to which it belongs. Then the FGEs are translated to occupy their relative
position with respect to each other in the global coordinate system. The lines
corresponding to shaft connections are then created. The hub diameter of the

gears and carriers are adjusted so that they don’t interfere with the shafts. To
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display the structure on to the computer screen, graphics package called PHIGS
is used. The PHIGS window is a square window with its sides of unit length. The
lower left corner has the coordinate of (0,0) and the upper right corner has the
coordinate (1,1). Therefore, the structure before being displayed is first trans-
formed from the World Coordinate System to the Screen Coordinate System and

then scaled appropriately to fit the window.
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Chapter 6

Results, Discussion and

Suggestions for Future work

6.1 Results and Discussions

This work is divided into two parts. In the first part the structural characteris-
tics of epicyclic gear mechanisms (EGMs) that are commonly used in automatic
transmissions to obtain various speed ratios have been identified from the view
point of kinematics. A canonical graph representation for this type of mecha-
nisms has been defined. A methodology to systematically enumerate these graphs
has been developed and illustrated through various examples. The results are
tabulated in Table 6.1. The table gives the number of graphs before the assign-

ment of external and internal gear pairs. Detailed results are given in Appendices
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Table 6.1 Table of the number of graphs enumerated for EGMs with up to 9

links.
No. of Links | No. of Graphs
6 1
7 7
8 22
9 157

B, C and D. There is only one graph for 6-link EGMs!, which is in agreement
with the result given by Tsai et al. (1988). There are 7 graphs for 7-link EGMs,
which is one more than that given in the same paper. This is because that paper
has excluded those graphs in which the geared edges form a closed loop. The
verification for completeness of the set of graphs enumerated for 8-link EGMs
has been accomplished in an indirect way. From the set of graphs of 7-link EGTs
generated by Kim and Kwak (1991), those that qualify for automatic transmis-
sions were selected. A total of 20 such graphs were extracted from their paper
which is less than the 22 given in Table. 6.1. The reason is that there are exactly
2 graphs of 8-link EGMs (Figs. C.1(s) and C.2(j)) that have geared edges forming
a loop, and those graphs cannot be generated by the method of Kim and Kwak.
The completeness of the set of graphs for 9-link EGMs cannot be confirmed since

no published results exist for 8-link EGTs.

1An n-link EGM contains a (n — 1) link EGT and the casing of a transmission.
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In the second part of this thesis a method to sketch the functional schematic
of a mechanism from its graph representation has been formulated. Using this
method the functional schematic of a fairly large class of mechanisms can be
sketched automatically. At present, a C-language program has been developed to
sketch those EGMs in which each FGE contains only one planet gear. Fig. 6.1(b)
shows an 11-link EGM that is sketched from the graph representations shown in
Fig. 6.1(a) using this program.

Fig. B.1 in Appendix B lists the graphs of 6 and 7-link EGMs that have
single-planet FGEs. These graphs have their geared edges labeled as internal
or external. The functional representation of the corresponding EGM has been
sketched adjacent to each of the graphs. Fig. B.2 shows a graph whose geared
edge hasn’t been labeled yet, and which represents a 7-link EGM containing a
double planet FGE. There is only one such graph for 7-link EGM.

Column 1 of Fig. C.1 shows the graphs of 8-link EGMs that are made up
of single-planet FGEs. These graphs are shown before the types of gear meshes
are assigned. The graphs in Column 2 are formed after assigning one of the
many possible distributions of external and internal gear meshes to the graphs
of Column 1. Column 3 shows the corresponding functional schematic. Fig. C.2
shows the remaining graphs of 8-link EGMs. Fig. D.1 depicts the same thing as
Fig. C.1, but for those 9-link EGMs that contain three single-planet FGEs. The

adjacency matrices of the remaining graphs of 9-links are tabulated in Table D.1.

103



(b)

Figure 6.1 An 11-link EGM: (a) Graph Representation (b) Functional Repre-

sentation.
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6.2 Future Work

In this thesis a systematic procedure for the synthesis of the kinematic structure
of EGMs is presented. However, as mentioned at the beginning of the introduc-
tion, this is only the first phase in the overall synthesis procedure. Therefore,
more work can be done on the EGMs that have been enumerated. The following

suggestions are made.

Perform dimensional synthesis of the EGMs beginning with the identifica-

tion of different clutching sequences for each EGM.

¢ Find the optimized gear ratios (Mogalapalli et. al., 1993) and the number

of teeth to achieve a set of desired speed (reduction) ratios.

e Do the power flow, torque and force analysis of the mechanisms following

the procedure formulated by Pennestri and Freudenstein (1990).

e Finally, perform strength analyses to decide upon the dimensions of the

gear, shafts, bearings, etc.

o Achieve an optimal design for the overall transmission system by integrat-

ing all the above steps.

o Generalize the method of sketching the functional schematics to include
EGMs having other types of fundamental entities, such as the one shown

in Fig. 5.7.
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Appendix A

Interactions Among FGEs

The mazimum number of shafts and overhead connections in an EGM of n-link
should be equal to the greatest even number that is less than or equal to (n —5).
This can be proved as follows.

Let an EGM contains k¥ FGEs having Ny, N3 ... N links, respectively. The
minimum value of N; is five. Since an FGE is a two-dof gear train according to
F1 the i** FGE will have N; — 3 gear pairs. Therefore, the total number of gear
pairs in the EGM is 1%, (V; — 3). Since the EGM is also a two-dof mechanism

the total number of links that it can haveis 3% | (N; —3)43. Thus, if the number

of links in the EGM is n, then n must satisfy the equation

k
n=3Y N;—3k+3 (A.1)

=1
where NV; <5, n>6and k > 1
However, if we sum up the links of the FGEs that constitute the EGM the

number of links are %, N;. Therefore, while constructing the EGM one has to
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No. of Links 6718191101112

Maximum No. of FGEs [ 1|22 (3| 3 | 4 | 4

Table A.1 Table of the maximum number of FGEs versus the number of links
in EGMs.
reduce the number of links by 3%, N; —n = 3(k — 1) links. This can be done
by connecting (rigidly) 3(k — 1) links to other links among the FGEs. Since the
root of all the FGEs are combined together while constructing the EGM, only
3(k—1) - (k—1) = 2(k — 1) links need to be connected by means of shaft or
overhead connections. Thus, to find the maximum number of shaft and overhead
connections we have to find the maximum number of FGEs that an EGM of n
links can contain. If we set k = 2 in Eq. (A.1), then the minimum value of n
is obtained when both N; and N; are equal to five, the minimum permissible
number for an FGE. The corresponding minimum value of n is seven. Thus, all
EGMs having less than 7 links, can have only one FGE. Similarly, if we set & to
3 then the minimum value of n is 9 and hence all EGMs with links less than 9
can have atmost two FGEs. The maximum number of FGEs is listed against the
number of links in an EGM in Table A.1.

From the table it is clear that the maximum number of FGEs for an EGM
of n-link is equal to n/2 — 2 when n is even and (n + 1)/2 — 2 when n is odd.

Therefore, the maximum number of shaft and overhead connections in an EGM

of n-link is n — 6 when n is even and n — 5 when n is odd.
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Appendix B

Six and Seven-Link EGMs
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Figure B.1 Six and seven-link EGMs that have only single-planet FGEs.
Columns 1 and 3: Graph representation, Columns 2 and 4: Functional repre-

sentation.
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Figure B.1 (contd.)
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Figure B.1 (contd.)
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Figure B.1 (contd.)
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Figure B.1 (contd.)
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Figure B.1 (contd.)
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Figure B.2 Graph of a 7-link EGM made up of double-planet FGEs.
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Appendix C

Eight-Link EGMs
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Figure C.1 Column 1 : Graphs of 8-link EGMs that have only single-planet
FGEs. Column 2 : Graphs showing one of the possible distributions of internal
and external gear pairs. Column 3 : Corresponding functional representation to
Column 2.
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Figure C.1 (contd.)
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Figure C.2 Remaining graphs of 8-link EGMs.
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Appendix D

Nine-Link EGMs
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Figure D.1 Column 1 : Graphs of 9-link EGMs that have three single-planet
FGEs. Column 2 : Graphs showing one of the possible distributions of internal
and external gear pairs. Column 3 : Corresponding functional representations
to Column 2.
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Figure D.1 (contd.)
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Figure D.1 (contd.)

125



l

° ‘

EGM ¢
out an 1naccessibie [1nk

no

Figure D.1 (contd.)

126



Figure D.1 (contd.)
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Figure D.1 (contd.)
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Figure D.1 (contd.)
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Figure D.1 (contd.)
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Figure D.1 (contd.)
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Figure D.1 (contd.)
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Figure D.1 (contd.)
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Table D.1 Adjacency matrices of the remaining graphs of 9-link EGMs
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