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Various insect species utilize certain types of self-motion to perceive struc-

ture in their local environment, a process known as active vision. This dissertation

presents the development of a continuous-time formulated observer for estimating

structure from motion that emulates the biological phenomenon of active vision. In

an attempt to emulate the wide-field of view of compound eyes and neurophysiology

of insects, the observer utilizes an omni-directional optic flow field. Exponential

stability of the observer is assured provided the persistency of excitation condition

is met. Persistency of excitation is assured by altering the direction of motion suf-

ficiently quickly. An equal convergence rate on the entire viewable area can be

achieved by executing certain prototypical maneuvers. Practical implementation of

the observer is accomplished both in simulation and via an actual flying quadrotor

testbed vehicle. Furthermore, this dissertation presents the vehicular implementa-

tion of a complimentary navigation methodology known as wide-field integration of

the optic flow field.



The implementation of the developed insect-inspired navigation methodolo-

gies on physical testbed vehicles utilized in this research required the development

of many subsystems that comprise a control and navigation suite, including avionics

development and state sensing, model development via system identification, feed-

back controller design, and state estimation strategies. These requisite subsystems

and their development are discussed.
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Chapter 1

Introduction

Over the past several decades, Unmanned Aerial Vehicles (UAVs) have seen

increasing use in military [2, 3] operations and have the potential to greatly affect

civilian applications [4]. More recently, a new interest has arisen regarding the de-

velopment of a smaller class of flying robotic platforms, known as micro air vehicles

(MAVs). Whereas larger UAVs are designed for missions at high altitude, MAVs are

designed to operate lower to the ground, capable of navigating complex outdoor and

indoor environments filled with obstacles with stealth, low cost, and low operator

workload. Ideally, it is envisioned that these vehicles will operate in swarm forma-

tions as a single organic entity capable of performing missions such as surveillance,

chemical plume detection, and radiation detection which no single vehicle would be

capable of alone.

The ability of a MAV to navigate through an unknown environment requires

that it be capable of estimating distance to relevant obstacles in the environment,

or perhaps at minimum, detecting unsuitable proximity to these obstacles. The

ability to sense and detect obstacles surrounding the vehicles reliably is currently

considered an advanced capability, even for larger vehicles.

Vision is an attractive method for providing environmental awareness, as the

visual field is a rich source of information about the surrounding environment. Tradi-
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tional machine vision approaches [5, 6, 7, 8, 9, 10] that infer proximity and velocity

information from camera imagery have been demonstrated. These methods have

been computationally expensive and typically require off-board visual processing,

even on vehicles with significant payloads [11]. Furthermore, these implementations

of navigation tend to result in behavior where their speed and direction is limited

not by the dynamics of the vehicle, but by the obstacle avoidance processing speed

and field of view. The vehicles that currently utilize vision tend to be large as they

must accommodate the necessary hardware and sensing for machine vision, and

must move slowly enough for the algorithms to be effective.

Operating in this manner is clearly an impediment to the spirit of the operation

of micro air vehicles. Drifting unnecessarily slowly towards a target objective would

be a waste of propulsion energy, as would lifting the bulky processing and sensing

hardware, and would not make use of the maximum flight envelope the vehicle is

capable of. Furthermore, as the vehicle size decreases, maneuverability and overall

quickness tends to increase, thus the capability gap between the responsiveness of a

given MAV and current typical navigation solutions becomes even more apparent.

The limited payload of MAVs, with the additional requirement that the visual

system be capable of reacting quick enough to allow the vehicle to fly within its full

flight capabilities remains a challenge. New ways of approaching the visual naviga-

tion problem are required to provide the necessary capabilities within a reasonable

hardware and energy footprint.

Fortunately, nature provides an excellent example of robust visual perception,

as flying insects are capable of navigation within uncertain environments without the

2



computational complexity that current machine vision algorithms require to perform

the same tasks. Recent studies at the behavioral and neurophysiological levels have

provided insight on the neural mechanisms that give rise to these sophisticated

capabilities. Insects encode optic flow [12], the characteristic patterns of visual

motion that form on their retinas as they move.

Specialized neurons called tangential cells [13], parse these complex optical flow

patterns over large swaths of the visual field to extract visual cues for navigation,

such as visual odometry. Furthermore, biological organisms are capable of detecting

and tracking small targets, particularly conspecifics, comparatively swiftly and easily

even against highly textured backgrounds[14, 15, 16].

Finally, they are able to perform prey pursuit interception[17] and predator

evasion through motion camouflage[18], and structure identification from motion[19].

Compared to current robotics technology, these are amazing feats and we wish to

replicate, or at least emulate to provide the next generation of micro air vehicles

with the most advanced navigation systems possible.

1.1 MAV System Design

The development of a MAV guidance, navigation, and control system requires

forethought and planning to prevent unnecessary bottlenecks in performance. There

are many components of such a system that need to work together at once and must

be matched to do so efficiently. Figure 1.1 shows the typical architecture of a control

and navigation system utilizing feedback. It is desired that the vehicle’s actual
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Figure 1.1: Typical Navigation and Control Architecture using Feedback

motion, x, closely track some desired set of states or criteria xref . The feedback

control law specifies how to change the vehicle’s control inputs to best accomplish

this tracking. Appropriate design of the feedback control law assumes reasonable

knowledge of how the vehicle moves in response to these inputs, given by the dynamic

model, typically represented a set of differential equations. The feedback control law

requires knowledge of certain states to ensure good tracking. If a particular required

state is not directly measured by a sensor, it must be estimated using the sensors

that are available, suggesting the need for a state estimation methodology as well.

The performance of the entire system relies on adequate performance of each of

the components in figure 1.1, therefore MAV control and navigation design should be

approached from a systems-level design perspective. Improvements to overall system

performance can result from more efficient processing of sensory information, better

control via a better understanding of vehicle dynamics, and designing the overall

control and navigation architecture such that the stability and navigation control

methods are closely intertwined.
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To address these points, this research is dedicated to advancing the state of

the art in biologically-inspired visual navigation while also specifically addressing

the requisite design aspects of avionics design, sensor integration, state estimation,

feedback control and utilizing system identification as a practical method of MAV

dynamic model establishment, as the performance of the visual control is dependent

on these factors performing adequately as well.

1.2 Vehicle Testbeds

To demonstrate the practical and realistic feasibility of the developed theory,

research in this thesis was physically implemented on flying vehicles when possible.

Two separate vehicle testbeds were utilized for this purpose. The first vehicle is

a single main rotor electric hobby helicopter(Esky), figure 1.2, that was retrofit to

include the sensors and avionics required. The second was a commercially available

quadrotor vehicle(Ascending Technologies) that was also retrofit.

1.3 Thesis Contributions and Organization

This dissertation is organized as follows. Chapter 2 presents the development

of a prototype custom avionics and the integration of optic flow sensors designed

specifically to support laboratory testing of the developed navigation algorithms.

Chapter 3 presents useful on-board state estimation methods that have been im-

plemented, with a focus on estimating attitude dynamics. Chapter 4 presents how

system identification techniques can be used to efficiently develop reasonable ve-
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Photo: John Consoli

Figure 1.2: Honeybee Testbed Vehicle

Figure 1.3: Quadrotor Testbed Vehicle
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hicle models and attain insight into vehicle behavior. The system identification

and subsequent analysis of vehicle dynamics of a single main rotor micro helicopter

is presented. Chapter 5 discusses the implementation of both velocity regulated

and position regulated feedback control, typically used to augment the visual sta-

bility algorithms. This chapter focuses on feedback that is directly unrelated to,

yet supports, the subsequent visual navigation algorithms. Chapter 6 presents the

implementation of the wide-field integration(WFI) navigation methodology, a prior

developed biologically inspired technique enabling the extraction of pose informa-

tion from optic flow. Chapter 7 presents a continuous-time nonlinear observer for

structure from motion utilizing omni-directional optic flow. A Lyapunov analysis is

used to prove stability. The persistency of excitation requirement for the observer

is compared to the prototypical motions exhibited by insects for the purpose of en-

vironmental structural identification through active vision. Chapter 8 discusses the

conclusions of this research and presents some directions for future work.
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Chapter 2

Micro Air Vehicle Sensing and Avionics

This chapter presents the development of micro air vehicle avionics that are

custom designed for research and development. For any actual vehicle implementa-

tion, the avionics sensing and processing capabilities limits the possible theory and

algorithms that can be practically implemented. Vehicles of the target MAV weight

have limited payload capability and sensor accuracy is usually the tradeoff to obtain

lighter components. Nevertheless, care must be taken in the design to minimize the

reduction in theoretically attainable system performance caused by avionics design

tradeoffs.

2.0.1 Commercially Available Autopilots

A number of autopilots have been developed, both by research institutions and

commercially, for enabling fixed-wing and rotary-wing autonomous flight. End user

solutions typically utilize built-in estimation algorithms to provide state estimates.

The usage of inertial sensing for attitude estimation is fairly ubiquitous. Most

current designs also rely on accommodating GPS and pressure sensing to provide

translational motion estimation. A comparison of currently available commercially

available avionics is shown in table 2.1.

Current methods of sensing translational motion are not suitable for slow-
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Company Model Weight Sensors Wireless Telemetry

Procerus Kestrel v2.4 16.7 gm. triaxial accel, rate, mag none built-in

Micropilot MP2128 28 gm. triaxial accel, rate 100 Hz max

O NAVI PhoenixAX 43.5 gm. triaxial accel, rate 100 Hz (separate

kit)

Continental Control

and Design

Tiny Guid-

ance Engine

13 gm. triaxial accel, rate, mag 50 Hz (separate kit)

UMD AVL Avionics v3.4 16.9 gm. triaxial accel, rate, mag >300 Hz accel/rate,

∼30 Hz Mag

Table 2.1: Avionics Comparison

speed flight in highly cluttered environments. GPS cannot be relied upon indoors,

and pressure sensing does not provide velocity or height estimates at a sufficient

resolution for the low range of motion of the test vehicle. Furthermore, some method

of being able to detect proximity to surrounding obstacles is required. This reinforces

the primary motivation for the development of vision-based translational motion

sensing and obstacle avoidance. Traditional machine vision is difficult to implement

as the necessary processing hardware is prohibitively heavy and power hungry. To

fully utilize the benefits of vision while permitting operation on small palm-sized

vehicles, new ways of approaching the sensing and processing are required.
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Figure 2.1: UMD Generation 3.1 Avionics Board

2.0.2 MAV Avionics Board

To facilitate the research described in the following chapters, a highly recon-

figurable avionics package was developed and fabricated[20]. A primary motivator

for a custom design has been to accommodate VLSI-based optic flow sensors de-

signed by Centeye, Inc. The board, shown in figure 2.1, weighs under 15 grams, and

includes triads of accelerometers, rate gyros, and magnetometers. Two 8-bit PIC

microcontrollers enable on-board processing tasks, one for sensor data acquisition

and communications interfacing, and one for the time critical on-board feedback

control calculations and actuator outputs. The board is capable of interfacing with

up to 8 Radio Control (RC) servos or RC motor speed controllers. Two Class 1

Bluetooth radio modems(Blueradios) are integrated that can be used for uplinked

commands and telemetry data. The Bluetooth module has a limited communica-

tions range of less than 100 meters line-of-sight, however it was selected for the

10



Cμ

1 2 3 4 5 6

V CCP
PPM

PPM

Cμ

SPI (5V)

Analog (0-5 V)

Aux analog
Rate Sensing

IDG-300 (3V)

ADIS16100 (5V)

Magne�c Field

Accelera�on

MicroMag3

5
3

SPI (3V)

LIS3LV02DQ (3V)

5
3

Op�c Flow

Centeye Op�c Flow 
Sensors

Sonar

Devantech SRF10

I2C (5V)

I2C

(3V)

Op�c Flow

Centeye Op�c Flow 
Sensors

GPS

Antaris GPS

UART 5V
(Alt Input)

UART 3V

UART

5
3

5
3

Bluetooth Com2

Bluetooth Com1

I2C (5V)

UMD Genera�on 3.4 MAV 
Avionics Suite

ADS8344

SCP1000

Pressure

Figure 2.2: UMD Generation 3.4 Avionics Board Diagram

capability of providing high bandwidth telemetry. Although each modem is ca-

pable of bi-directional communication, two modules were used in single direction

communication to minimize the random byte gap delays inherent to full duplex

(bi-directional) communications over a single module. The Bluetooth connection is

capable of real-time telemetry of on-board data at a rate that is currently unmatched

among commercially available competitors in the same weight class. Additionally,

the board has an input port that allows a user to send commands using a traditional

RC receiver. The flexibility of the I2C bus, originally utilized for optic flow sensor

integration, has also been used for interfacing with a sonar range finder, useful for

altitude measurements.
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2.0.3 Calibration

Calibration of the rate gyros was performed using a rate table. The accelerom-

eters were calibrated by successively rotating the unit at orthogonal angles to the

known gravity vector. The magnetometer triad required additional consideration

for calibration. The direction of the magnetic field varies at different locations on

Earth, and the magnetic field is generally not orthogonal to the gravity vector. Fur-

thermore, the local magnetic field is easily affected by hard iron errors and soft iron

errors. Hard iron errors are local materials in the building on on the vehicle itself

that introduce a constant additive local field. Soft iron errors do not create a local

magnetic field, but rather distort the field such that the error might be orientation

dependent.

To minimize the effects of these errors, it is best if calibration is performed in

the area of operation with the sensors mounted on the vehicle in the final configura-

tion in which it is to be operated. This type of in-situ calibration can be performed

using nonlinear estimation methods. One on-line estimation procedure is presented

in [21, 22] and experimentally verified in [23]. As the sensor unit is rotated, it is

expected that the magnitude of the sensor triad stay constant, essentially sweep-

ing out a sphere in 3D space. This same calibration procedure can be utilized for

accelerometers as well as the magnetometers without modification. The magnitude

of the sphere would be the magnitude of gravity in the accelerometer case and the

magnitude of the local magnetic field in the magnetometer case.
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2.1 Optic Flow Sensing

Optic flow is defined as the apparent motion of the visual field perceived by

an observer in response to its rotation and translational motion through the imaged

environment[24, 25]. In the general sense, the optic flow field in an image of the

environment is a 2D distribution of apparent velocities that can be associated with

time varying changes in the intensity field of the image[26]. Optic flow does not

require following specific feature points within the visual field, but rather can be

simply thought of as the ratio of the temporal change in image luminance to the

spatial luminance rate of change. Optic flow is quantified in units of radians/sec as

the optic flow generated by an object perceived by an observer appears as an angular

change in the location of that object. Optic flow is the primary method of visual

perception that many insects employ. Insects compute optic flow continuously over

their entire field of view using spatio-temporal correlation neurons[27].

2.1.1 VLSI Optic Flow Sensing

Optic flow can require significant processing capabilities to compute quickly

given raw images, however if the field is preprocessed using VLSI circuitry, much

of computation can be performed in the analog domain and in parallel. Optic flow

can then be estimated from the spatio-temporally preprocessed visual array quickly

using a digital signal processor (DSP) or equivalent. The integration of a single

optic flow sensor and sonar distance sensor is shown in figure 2.3.

The I2C bus on the avionics board supports dozens of sensors. For optic flow
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Figure 2.3: Single Optic Flow Sensor System Setup.

coverage around the azimuth of the Honeybee vehicle, a sensor ring was developed,

shown in 2.4, comprised of 6 individual sensors. This concept was later upgraded

to a sensor ring comprised of 8 Centeye Faraya optic flow sensors, figure 2.5, for use

with the Quadrotor vehicle.

2.1.2 Omni-directional Vision Pod

As an alternative to the VLSI sensors, an omni-directional vision pod was

developed, based on a commercially available camera board (Surveyor), consisting

of a 500 MHz Blackfin fixed point processor (Analog Devices), which interfaces to

a camera sensor (Omnivision OV 7725). The camera captures images of size 160

× 120 at 55 fps. A 360 degree field of view is obtained from a parabolic mirror

installed above the quadrotor, with the camera pointing upward facing the mirror
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Figure 2.4: Sensor ring composed of 6 Centeye “ARZ-lite” sensors.

Figure 2.5: Sensor ring composed of 6 Centeye “Faraya” sensors.
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Figure 2.6: Omni-directional image processing pod.

(Figure 2.7).

The firmware contains code for performing optic flow computations and wide-

field integration. The optic flow is computed using a gradient based method [28].

Since the processor is fixed-point, all computations were performed with scaled

integers.

The computed optic flow from two successive grayscale image frames deter-

mines the motion field around the azimuth of the vehicle. To compute this azimuthal

optic flow efficiently, the algorithm tracks only the movement of a set of 1000 tar-
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Figure 2.7: (A) Bottom View: (1) Centeye Optic Flow Sensor, (2) Sonar Sensor, (3) In-

House Avionics, (B) Side View: (1) Surveyor Camera, (2) Parabolic Mirror, (3) Blackfin

Processor, (4) X-UFO Proprietary Avionics.

get pixels, all located in one of four concentric rings of pixels at fixed radii from

the mirror center (Figure 2.8). Each ring captures a different line of approximately

constant height. Measurements from four rings are averaged vertically to improve

performance for wall regions with poor contrast. The component of the shift tangent

to the ring is used in the controller. By taking the dot product of the shift vector

with the ring tangent vector, an estimate is obtained of the 1-D optic flow at 20-220

discrete angular azimuthal locations.

2.2 Off-Board Kinematic Motion Capturing

To provide an accurate measurement of the vehicle kinematics, a Vicon visual

tracking system, seen in Figure 2.9, was used to obtain direct estimates of the

position and orientation of the vehicle at 350 Hz. The system operates by using a
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Figure 2.8: Optic flow sampling rings in parabolic mirror.

set of 8 high speed cameras to triangulate and track retro-reflective markers affixed

to the vehicle. A collection of markers fixed relative to each other constitutes a rigid

body and allows the determination of vehicle orientation.

This direct measurement of vehicle inertial-referenced position and orientation

was valuable for system identification, feedback control and trajectory following

verification, among other things. For system identification, a direct measurement of

the inertial position and orientation improves the overall quality of the identification,

as this avoids the use of state estimation algorithms that may introduce artificial

observer dynamics that would need to be considered. Likewise, for feedback control,

availability of a direct Euler angle estimate allows a comparison with an on-board

IMU estimated orientation. Similarly, an inertial position estimate allows regulation

of a vehicle to a specific point in the test area, a feature that is difficult to replicate

without advanced visual processing.
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Chapter 3

State Estimation

This section presents strategies that have been utilized or developed to esti-

mate vehicle kinematic states using on-board sensor measurements. Model-based

observers allow the reconstruction of state estimates given a subset of sensor read-

ings so long as the observability condition is satisfied. If a model is not available,

sensor estimates can be fused based on a complimentary filter approach designed to

mitigate complimentary noise characteristics in the sensors.

A primary application for state estimation on MAVs is a reliable attitude esti-

mate. Attitude feedback is generally the first level of control in a cascaded feedback

loop design and therefore an accurate, high bandwidth attitude estimate is critical

for efficient operation. Estimating attitude given various input measurements is a

widely researched and well documented process. However, while there are several

proven methods to accomplish the goal, selection of the ideal method depends upon

available sensors and processing power, both of which tend to be limited on smaller

vehicles.

3.1 Attitude Representation

The vehicle attitude, or orientation of the vehicle with respect to some in-

ertially fixed coordinate system, can be represented in several varying ways. Two
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of the most widely used methods, Euler angles and quaternions, each have unique

benefits and drawbacks associated with their usage. Both representations have been

employed in this research, with conversions occurring as necessary.

3.1.1 Euler Angles

Euler angles are a traditional representation of attitude in which an orientation

in 3D space can be described by three successive rotations about orthogonal axes. A

resulting orientation is sensitive to the order in which the rotations are performed,

therefore the aerospace community has generally agreed that the order should be

to first rotate by the yaw angle, then pitch, then finally the roll angle, to transform

a vector from inertial to body coordinates. To transform from body to inertial

coordinates, the procedure is reversed, from roll to yaw using negative angles. Given

angles ψ, θ and φ, all three successive rotation matrices can be multiplied to produce

a single transformation matrix, given as

Rbi =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ cosψ cos θ sinψ − sin θ

sin θ sinφ cosψ − sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ sinφ cos θ

sin θ cosφ cosψ + sinψ sinφ sinψ sin θ cosφ− cosψ sin θ cosφ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

Each successive rotation is described by an orthogonal rotation, and the prod-

uct of three orthogonal matrices is also orthogonal, granting the above matrix the

property that its inverse equals its transpose. From this the reverse transformation

matrix is:
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Rib = R−1
bi = RT

bi (3.1)

Given angular rates in body coordinates, the corresponding Euler rates depend

upon the current Euler angles and can be calculated using[29]:

φ̇ = p+ tan θ(q sin(φ) + r cos(φ)) (3.2)

θ̇ = q cosφ− r sinφ (3.3)

ψ̇ = sec θ(q sinφ+ r cosφ) (3.4)

One concern for some applications is that a singularity exists when the vehicle

is pointing straight up, (Pitch = 180o). An additional concern for embedded imple-

mentations is that each rotation involves several trigonometric calculations. This

becomes a noticeable drawback when the processing resources are limited, such as

they are with microcontrollers. For a typical 8-bit microcontroller, a sin(x) calcula-

tion can require over 200 times the number of clock cycles of a floating-point multiply

operation, thus suggesting the investigation of the alternate, more computationally

tractable, attitude representation in quaternions.

3.1.2 Quaternions

Quaternions were first described by William Rowan Hamilton as a class of

hyper-complex numbers. They follow the rules of associativity but not commutativity[30].

A unique orientation is represented by a single rotation, D, about a single axis mak-

ing angles of A,B,C with the inertial coordinate system. By using 4 parameters,
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given as

e0 = cos
D

2
(3.5)

e1 = cosA sin
D

2
(3.6)

e2 = cosB sin
D

2
(3.7)

e3 = cosC sin
D

2
(3.8)

the representation is over parameterized and therefore avoids singularities at

all orientations. The transformation matrix from inertial to body coordinated is

given as:

Rib =

⎡
⎢⎢⎢⎢⎢⎢⎣
e2o + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 + e0e1)

2(e0e2 + e1e3) 2(e2e3 − e0e1) e20 − e21 − e22 + e23

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Equating the corresponding elements of the above matrix with the aerospace-

sequence Euler angle matrix, quaternions can be found in terms of Euler angles,

given below[29].

e0 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2
(3.9)

e1 = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2
(3.10)

e2 = cos
ψ

2
sin

θ

2
cos

φ

2
+ sin

ψ

2
cos

θ

2
sin

φ

2
(3.11)

e3 = − cos
ψ

2
sin

θ

2
sin

φ

2
+ sin

ψ

2
cos

θ

2
cos

φ

2
(3.12)
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It can be seen from the above that using quaternions for attitude represen-

tation can greatly reduce presence of trigonometric evaluations, thus making them

attractive for embedded applications. Quaternion rates can be computed from body

rates using the following equations:

ė0 = −1

2
(e1p+ e2q + e3r) (3.13)

ė1 =
1

2
(e0p+ e2r + e3q) (3.14)

ė2 =
1

2
(e0q + e3p+ e1r) (3.15)

ė3 =
1

2
(e0r + e1q + e2p) (3.16)

where p, q, and r are the rates in the body-fixed coordinate system. For a

given quaternion to appropriately represent a point on a four-dimensional hyper-

sphere and therefore a particular orientation, the magnitude must be unity, i.e.√
e20 + e21 + e22 + e23 = 1. Numerical roundoff errors arising from quaternion op-

erations can be checked by re-normalized after any operation. For their simpler

computational complexity and lack of singularities, quaternions were chosen as the

preferred method of attitude representation for this research whenever practical.

3.2 Attitude Estimation Techniques

States can be estimated using deterministic and statistical frameworks. Deter-

ministic methods are required if only one source of data for a given state is available

but demonstrate an added advantage of simplicity. Statistical methods are more

suitable for combining measurements given multiple sources of the same state. Iner-
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tial measurement in general is better suited to detecting attitude than translational

motion, thus translational motion estimation using inertial measurement is unreli-

able unless additional translational sensor information is known, such as GPS(Global

Positioning System) position and velocity data, or vision-based sensing.

Attitude estimation is the process of comparing known sensor information in

the body coordinates and attempting to deduce the current attitude with respect

to an inertial reference system. Most often, the known inertial reference coordinate

system represents a dynamic equilibrium point for the body under observation. The

known inertial reference used for a rotary-wing MAV is straight up with respect to

gravity, with no off-axis pitch or roll angle. Sensor information is often available

as a sensor triad where three orthogonal sensors detect the projection of measured

quantity along each axis, such is the case with tri-axial magnetometers and tri-axial

accelerometers. Given a multitude of such tri-axial vector measurements, usually

pre-filtered, a classic solution for condensing many measurements down to a single

rotation matrix was proposed by Wahba[31], where the individual contributions

from each vector measurement are combined and weighted by a cost function. The

fundamental requirement for Wahba’s solution, as well as any attitude estimation

technique, is the knowledge of at least two non-coincident vectors.

One additional method of estimating rotation angle that does not rely on

observing external measurements in the body frame is the time integration of ro-

tation rate. Rate gyro sensors are often available to provide a direct estimate of

rate. Integrating rotation rate numerically, especially using MEMS-based rate gy-

ros, will result in a relatively fast diverging error. This method however is reliable
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for short term measurements, and can be very effectively combined with a method

that directly measures attitude.

The TRIAD algorithm is a deterministic algorithm to find an attitude rotation

matrix given two measured non-parallel vectors in the body frame. Assume �ab and

�bb are two such given measurements in the body frame. The vectors are known to

be �ai and �bi in the inertial frame. A rotation matrix can be constructed by finding

a matrix Rbi such that �ab = Rbi�ai and �bb = Rbi
�bi. In general, due to errors in the

measurements causing non-orthogonality of the vectors, the same rotation matrix

Rbi will not fit both transformations. To estimate a single rotation matrix requires

coercion of one or both measurement vectors.

3.2.1 Traditional TRIAD Algorithm

The traditional TRIAD algorithm [32] assumes one measurement is known

with a greater accuracy than the other. In this case, finding Rbi involves the inter-

mediate step of finding two matrices, Rbt and Rti such that Rbi = RbtR
T
it. The new

intermediate frame, t, is defined as follows:

First, the more reliably known measurement vector, denoted as �ab, is defined

unchanged to be t1b, given as equation 3.18. Likewise, �ai, the known inertial com-

ponent vector for the first measurement is defined as t1i, as given in equation 3.19.
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t̂1 = â1 (3.17)

t1b = ab (3.18)

t1i = ai (3.19)

Secondly, t2b and t2i are given as the normalized cross product between the

two vectors in each frame. t2b is given in equation 3.21, and t2i is given in equation

3.22.

t̂2 = â× b̂ (3.20)

t2b =
ab × bb
‖ab × bb‖ (3.21)

t2i =
ai × bi
‖ai × bi‖ (3.22)

The third step is to calculate the normalized cross product of t̂1 and t̂2 to find

the third orthogonal vector, as given in equations 3.24 and 3.25. If �a and �b were

originally exactly perpendicular, this third step would yield a vector collinear with

�b. Otherwise, this operation will coerce �b into an orthogonal representation with �a,

which can be seen in figure 3.1.

t̂3 = t̂1 × t̂2 (3.23)

t3b =
t1b × t2b
‖t1b × t2b‖ (3.24)

t3i =
t1i × t2i
‖t1i × t2i‖ (3.25)
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Figure 3.1: TRIAD Vectors

Finally, these calculated values for t̂b and t̂i are used to fill in the columns of

Rbt and Rit, respectively, given as

Rbt = [t1b | t2b | t3b] (3.26)

Rit = [t1i | t2i | t3i] (3.27)

Rbi is given by

Rbi = RbtR
T
it (3.28)

3.2.2 A Modified TRIAD Algorithm

A modified TRIAD algorithm[33] exists that is not sensitive to which vector

is chosen as the primary. Given �a and �b as above, in both the inertial and body

coordinates, unit vectors can be found as
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îb,i =
�ab,i +�bb,i

‖�ab,i +�bb,i‖
(3.29)

ĵb,i =
îb,i × (�ab,i −�bb,i)
‖̂ib,i × (�ab,i −�bb,i)‖

(3.30)

k̂b,i = îb,i × ĵb,i (3.31)

The matrices Rbt and Rit, described above can be calculated by filling in the

columns with the calculated î, ĵ and k̂ vectors, as below,

Rbt = [̂ib | ĵb | k̂b] (3.32)

Rit = [̂ii | ĵi | k̂i] (3.33)

3.2.3 Complementary Filter

The complementary filter provides a simple method for combining measure-

ments with complementary noise characteristics. This filter is an ideal method for

combining measurements from a numerically integrated rate gyro signal and ac-

celerometer/magnetometer direct attitude sensors. Integrating rate gyro signals nu-

merically provides a good estimate of angle for short term periods, but integration

drift causes inevitable divergence. The direct measurements of attitude provided

by the accelerometers and magnetometer are sufficient only for long term angular

estimate, as they are corrupted by translational acceleration and electro-magnetic

interference, respectively. The accelerometer/magnetometer estimate provides the

low-pass filtered input to the complementary filter, while the integrated rate gyro
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Figure 3.2: Complementary Filter

signals provide the high-passed input signal.

This implementation is shown in figure 3.2, where G(s) corresponds to a low-

pass filter and (1−G(s)) is the complementary high pass filter. In this figure, n1(t)

is noise associated with the accelerometer measurements and n2(t) is associated with

the integrated rate gyro measurements. The signal y(t) is the resulting improved

attitude estimate.

3.2.4 Quaternion-Based Complimentary Filter for Attitude Estima-

tion

A useful quaternion-based complementary filter was developed by Bachmann,

et al.[1] for estimating limb orientation for virtual reality applications. The flow

chart for this algorithm is given in figure 3.3. The algorithm is initialized with some

arbitrary q̂. The direct accelerometer and magnetometer readings are concatenated

into one vector, known as the measurement vector, yo. The computed measurement

vector, y(q̂), is found from the initialized quaternion using q̂−1mq̂ and q̂−1nq̂, where

m and n are 4x1 pure quaternions defining the sensor outputs in inertial coordinates.

The gravity vector in inertial coordinates,m, is given as [0 0 0 1]T , while the magnetic

field vector, n must be known for a given location and is given as [0 nx ny nz]
T .
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Figure 3.3: Quaternion-based Complementary Filter[1]

The error between the computed measurement vector and the measurement vector

is given as ε(q̂). The matrix X is given by Xij =
[
∂yi
∂qj

]
. The error quaternion rate

q̇ε is added to the quaternion rate given by the rate gyros, and then integrated in

time. The algorithm utilizes Gauss-Newton iterations calculated from the direct

attitude measurement to correct the drift inherent to the numerical integration of

the rate gyro signals. The resulting quaternion q̂ is more accurate compared to

the estimates obtained by either the accelerometer/magnetometer estimate or the

integrated rate gyro estimate would be alone. The feedback nature of the algorithm

allows one to vary the confidence in the direct attitude estimate with the confidence

in the integrated rate gyro estimate simply by varying the gain parameter k, where

0 < k < 1.
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3.3 Rotor RPM Estimation from Gyro Signal Frequency Analysis

The E-sky Honeybee electric helicopter is a fixed pitch helicopter that relies

on variable rotor RPM to generate variable thrust, while larger helicopters generally

utilize a governor to ensure rotor speed stays constant, and vary thrust via collective.

A step change in throttle will not result in an instantaneous change in rotations per

minute(RPM), due to the blade and motor inertia. Furthermore, the mapping from

throttle position to steady-state rotor rotation rate is unknown.

Knowledge of the actual rotor RPM would help to give a better estimate of

the current thrust produced rather than the throttle input. Embedded in the rate

gyro signals is the expected two-per-rev high frequency oscillation associated with

the rotor aerodynamics. The actual rotor RPM can be estimated without directly

monitoring the RPM of the rotor. Using only additional processing power, a short-

time Fourier transform analysis can extract the rotor RPM which is encoded in the

high frequency content of the gyro rate signal.
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Figure 3.5: Short-Time Fourier Transform of Gyro Signal

Using the open source WaveLab[34] time-frequency analysis package, a Short-

Time Fourier Transform(STFT) was applied to the post-flight unfiltered rate gyro

data. The average frequency of the high passed STFT was computed for each

time step. The lower frequencies were excluded to avoid corrupting the average

frequency estimate with the angular rates due to the rigid body dynamics. The

resulting function provided a good indication of the current rotor RPM. The actual

rotor RPM can be obtained by simply dividing the 2/rev frequency estimate by 2.

It was found from this analysis that the typical main rotor speed for hover was in

the range of 20-21 Hz.

Figure 3.4 shows a typical variation in throttle during flight, while figure 3.5

shows the variation in 2/rev frequency of the main rotor for the same time segment.

The slower, lagging response of the rotor RPM can be observed.
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3.4 On-board Complimentary Filter for Heave Velocity Estimation

To implement on-board height control, a sonar range finder was utilized with

the z-axis accelerometer present on the vehicle. While given altitude and vertical

acceleration however, there is no direct velocity estimate. To obtain this, a compli-

mentary filter concept was utilized that was presented in [35]. The resulting velocity

estimate is the sum of filtered versions of the sonar and accelerometer output. A

particular frequency cutoff control allows a tradeoff adjustment between confidence

in the absolute position estimate and the acceleration measurement.

3.5 Translational Velocity Estimation from Ventral Optic Flow

Measurements of translational velocity for are not typically available at a high

update rate, particularly when relying upon GPS or pressure sensors. A simple

implementation of optic flow that would permit a high bandwidth estimate of trans-

lational velocity utilizes the sensor combination in figure 2.3.

A diagram of how the optic flow sensor and sonar altimeter can be used for

translational velocity estimation is shown in figure 3.6. In the figure, an MAV is

shown translating with some velocity, V , a rotation rate, ω, and at a height, h, from

the ground. The one dimensional optic flow, ξ, assuming the average optic flow in

a small field of view, induced by this sensor arrangement is given as

ξ = −ω + V/h (3.34)

Referring to equation 3.34, assuming negligible pitch or roll rotation, the ob-
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served optic flow field is proportional to the ratio of V/h. The velocity field is not

uniform for a given fixed translational speed, however. Assuming the sensor is imag-

ing a flat ground surface, the distance to each point in the visual field varies. The

distance, h, denotes the distance along the optical axis to the ground. It should

be emphasized that in this configuration the vehicle would only sense and avoid

ventrally located obstacles.

Optic flow itself is insufficient to determine translational velocity, particularly

if the depth of the imaged environment is unknown. However, by operating the

vehicle only over flat terrain, or terrain that can be regarded as flat from a distance,

such as a field with short grass, the translational velocity can be estimated by

knowing the distance to one point in the field of view, along with the self rotation.

In this case, an ultrasonic ranging sensor, shown in figure 2.3 was used to provide a

direct measurement of distance to the ground (along the body coordinate z axis in

figure 3.6), and an on-board rate gyro provided rate information.

This is sufficient to constrain the solutions of the optic flow equation to then

extract translational velocity. The optic flow due to rotation was first separated

using the rate gyro data. This separation is shown in figure 3.7. The the optic

flow due to translation is scaled by the current sonar height estimate, as shown in

figure 3.8. Noise in the optic flow and the structured uncertainty that arises when

attempting to subtract off the rotation rate limits the transient accuracy of the

estimate, and hence limits the overall gain that can be applied to a feedback loop

that utilizes the estimate.
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3.6 Off-board State Estimation

The Vicon obtained estimates for position and orientation are directly mea-

sured and exceptionally low noise compared to those that can be obtained from

on-board sensors. The position and orientation noise variances were estimated by

recording data while the vehicle remained stationary. The variance of the noise for

the position was estimated to be 3.54× 10−3 meters, the variance corresponding to

the orientation was estimated to be 2× 10−5 rad.

The inertial-frame fixed positions can be numerically differentiated to provide

velocities in the inertial frame. The inertial velocity can be calculated as:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ż

⎞
⎟⎟⎟⎟⎟⎟⎠

=
d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.35)

Body fixed velocities can be directly computed using the direction cosines

matrix representation of the orientation estimate, Rbi and the inertial velocities as

seen in equation 3.36. The body fixed velocity of the vehicle’s center of gravity

(CG) is given by u,v, and w for longitudinal velocity, lateral velocity, and heave

velocity, respectively. The body-fixed velocities have an estimated noise variance of

6.4× 10−2 m/s.

⎛
⎜⎜⎜⎜⎜⎜⎝

u

v

w

⎞
⎟⎟⎟⎟⎟⎟⎠

= Rbi

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ż

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.36)
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Chapter 4

System Identification of an Electric Micro-Helicopter

This chapter focuses on the development of micro air vehicle dynamic modeling

with particular application to the single main rotor Honeybee vehicle. A typical ap-

proach to autonomous operation of a rotary wing MAV requires sensing, processing,

feedback control, and state estimation. The feedback control and state estimation

strategies can employ a dynamic model of the vehicle to aid in the calculation of

the current states and control inputs required to regulate the vehicle. Typically, a

linearized model is sufficient to describe the dynamics close to some desired flight

condition.

A linearized model can be obtained from the full nonlinear equations of mo-

tion for the vehicle using first principles derivations. Considering the full nonlinear

model of a helicopter, this approach may yield a model of unknown accuracy due to

often drastic assumptions required to simplify the problem. Additionally, it might

be difficult to measure or estimate the physical characteristics of the vehicle. Micro

air vehicles below a certain scale operate in a range of Reynolds numbers where the

aerodynamics do not behave as predicted for larger vehicles[36], therefore aerody-

namic predictions from first principles can be unreliable.

For these aforementioned reasons, the following sections present the identifica-

tion of a linearized model using flight data as an alternative to first principles vehicle
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modeling. The identification methodology utilized frequency responses to estimate

transfer functions between inputs and outputs. The frequency response method was

based on prior work of Tischler[37] and Mettler[38] for larger vehicles, including the

identification of BO-105 dynamics and the Yamaha R-max dynamics. Frequency re-

sponse analysis was performed using the Comprehensive Identification of FRequency

Responses (CIFER R©) software developed at Army Aeroflightdynamics Directorate

(AFDD) located at Moffett Field, CA.

A state space model in the form of equations 4.1 and 4.2 was then constructed

from the computed transfer functions, where x is the state vector, μ is the control

vector, A is a linear, time invariant system matrix, B is a matrix of constant con-

trol sensitivity derivatives, and C is the output equation matrix. The state space

model representation was assembled to match that of a typical linearized helicopter

model[39], which allowed a direct comparison of stability derivatives with other

larger helicopters.

ẋ = Ax+Bμ (4.1)

y = Cx (4.2)
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Figure 4.1: Helicopter Coordinate System

4.1 Experimental Setup

4.1.1 Flight Test Vehicle

The flight vehicle is the commercially available E-sky brand Hobby Helicopter,

shown in figure 1.2. The main rotor is 50.5 cm in diameter, and the tail rotor is

14.5 cm in diameter. With the original components integrated, the vehicle weighed

288 grams. The original vehicle electronics were replaced with the custom designed

avionics package. Additionally, the original NiMh battery was replaced with two

Thunderpower R© Lithium Polymer batteries, one for the vehicle and one for the

electronics. The vehicle modifications resulted in a final gross vehicle weight of

390 grams. The chosen body-fixed coordinate system is shown in figure 4.1 and

follows the standard flight vehicle convention with the X-axis positive forward, Z

positive downward, and Y positive starboard. The avionics board provides the cen-
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tral interface between the sensors, actuators, and communications. The component

connection diagram is shown in figure 4.2. The servos and speed controllers are

standard RC components.

The flight test vehicle configuration is similar to a standard helicopter and

as such, utilizes a single main rotor for thrust, a single tail rotor for counteracting

main rotor torque and yaw control, and a swashplate mechanism for cyclic control.

The cyclic control on the test flight vehicle is implemented via a Hiller style flybar

assembly that influences the main rotor flapping angles. The rotorhead assembly can

be seen in figure 4.3. The flybar flapping completely determines the angle of attack

of the main blades and there is no direct linkage between the servos and the main

rotor angle of attack. The main blades are molded plastic material and relatively

stiff. The blades are firmly cantilevered at the rotor hub and as such, constitute a

hingeless rotor design which maximizes the induced moments about the rotor hub.

Small weights attached to the paddles provide additional inertia to slow the rotor

response. The thrust generated by the tail and main rotors is dependent on variable

speed and not collective control as is common with larger helicopters.

4.2 Available Inputs and Outputs for Identification

4.2.1 Vehicle Inputs

Nothing was presumed to be known about what forces or deflection angles

were generated given a change in the actuator, therefore all control inputs simply

normalized. The cyclic commands are given by μlat and μlon for lateral or roll input
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and longitudinal or pitch input, respectively. These inputs were normalized such

that μlat ∈ [−1, 1] and μlon ∈ [−1, 1], while the tail input, μy, and main rotor input,

μt, were normalized such that μy ∈ [0, 1] and μt ∈ [0, 1]

4.2.2 Available Kinematic Outputs

The inertial position and orientation and body-fixed kinematics were available

using the Vicon visual tracking system. The rotor speed was estimated from the

numerical derivative of the rotor Euler yaw angle estimate. Observation of the rotor

rotational velocity was useful to the identification of the heave dynamics for this

vehicle, as the main rotor thrust is affected directly using the main rotor speed

rather than the more traditional collective blade pitch control. The roll and pitch

orientation of the rotor was not considered during the analysis. The inertial positions

were also not useful for the subsequent analysis. The kinematic state vector made

available to the identification process is shown in equation 4.3.

y =

[
p q r φ θ ψ u v w Ωmr

]T
(4.3)

4.3 Flight Test Data

Piloted maneuvers were performed that excited the vehicle over a range of

frequencies. All flight testing was performed within the capture volume of the visual

tracking system. Low frequency inputs generally lead to large translations, hence the

physical capture area limited the lowest frequency inputs possible. Additionally, the
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inherent high responsiveness of the vehicle made long, unbroken frequency sweeps

difficult. Flight data sufficient for identification, was possible via the concatenation

of a series of ’doublet’ style inputs and short chirp-like frequency bursts between

periods of returning the vehicle to the center of the testing area. A typical portion

from a recorded data set is shown in Figures 4.4 and 4.5.
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Representative Flight Data (Longitudinal)

lonμ

q

-1

0

1

-2

0

2
0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

rad/s

θ

u

-0.2

0

0.2

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16
-1

0

1

time( sec)

m/s

rad

Figure 4.5: Representative Longitudinal Flight Data Maneuver.

46



4.4 Model Structure

The structure of the vehicle state space model was based primarily on prior

successful work on the identification of helicopter models[40, 41, 39]. Some charac-

teristics unique to the test vehicle required a basic model derivation of the linear

dynamics from first principles. While the result was a full state space model of all

relevant dynamics, the identification proceeded by analyzing decoupled subsystems

independently and concatenating to build the full model.

4.4.1 Cyclic Inputs to p and q Body Rates

The lateral and longitudinal cyclic inputs influence the flapping angle of the

rotor disk, thus altering the moments about the vehicle. Helicopters typically ex-

hibit a non-negligible coupling between the cyclic inputs and the induced off-axis

moments. The cyclic actuation mechanism of the test flight vehicle is typical of

current low cost micro helicopters, however, it is somewhat atypical compared to

those of larger vehicles. There is no direct linkage between the cyclic inputs and

the blade pitch angle. Instead, a weighted flybar with Hiller-style paddles governs

the angle of attack of the main blades, and the pilot cyclic inputs only affect the

cyclic angle of attack of the flybar. Most larger unmanned helicopters also utilize

a flybar for stability, however they also generally include some direct mechanical

linkage between the pilot inputs and the main rotor blade pitch, often referred to

as a Bell-Hiller mixer[42]. One benefit for using the flybar only as the input to the

main rotor blades is that no forces are transmitted back to the servos, thus reducing
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power required for actuation. Additionally, the response of the rotor to inputs and

gusts is slower than if the servos directly actuated the rotor blades.

Several general assumptions were made which were consistent with similar

prior work[39, 42]. The hingeless main rotor blades can be modeled as hinged rotors

with an effective offset hinge and a root spring. The blades were assumed to exhibit

no lead or lag motion, and the inflow dynamics were neglected, assuming the inflow

angle to be small.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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The model structure used in this analysis is the hybrid model structure, initially

proposed by Tischler and Cauffman[40]. This formulation, as opposed to the simpler

quasi-steady model, accurately captures the coupled rotor/fuselage dynamics and is

applicable to a wide range of design configurations. Mettler[39] utilized this formu-

lation for the identification of the Yamaha Rmax dynamics and provided further

validation that the hybrid model formulation was sufficient to capture the relevant

dynamics while the quasi-steady model proved sufficient only for low frequencies.

The hybrid model structure, in state space form, is given in equation 4.4. As

formulated, this model does not account explicitly for the dynamics of the flybar and

instead considers the rotor and flybar to be a lumped system, with an effective time

constant given as τf . The flapping angle states, b and a, describe the flapping angles
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of the lumped rotor/flybar system. The fuselage roll and pitch rates, respectively

are given by p and q. Ba and Ab capture the off-axis dynamics between flapping

states, and Lb andMa are the rotor moment derivatives, capturing the roll and pitch

moments induced by the rotor. The primary control derivatives are Blat and Alon

which represent the rate of change in cyclic angle to the swashplate given changes in

the normalized pilot inputs. Blon and Alat are included to capture off-axis couplings.

The control inputs are the normalized cyclic inputs to the flybar, μlat and μlon.

4.4.2 Yaw Input to Yaw Rate

Yaw rate is affected by the torque generated as a function of main rotor torque

and torque generated by the tail rotor. The torque generated due to the main rotor

is given in equation 4.5.

Tmainrotor =
1

6
ρR3

mrΩ
2
mrcmrCdmr × # of blades (4.5)

where ρ is the air density, Rmr is the radius of the rotor, Ωmr is the rotor

speed, cmr is the blade chord, and Cdmr is the drag coefficient of the main rotor.

The torque about the vehicle center of gravity (CG) can be given as:

Ttail =
1

6
ρR3

tailΩ
2
tailctailClαtail

∗ (# of tail blades) (4.6)

where Clα is the tail lift coefficient and ctail is the tail rotor chord. Given these

inputs, a nonlinear equation of motion for the yaw degree of freedom is given in

equation 4.7 where Nr is the aerodynamic drag-induced torque about the vehicle
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CG ahd ltail is the length of the tail moment arm.

ṙ = −Nrr + ltail
1

3
ρR3

tailΩ
2
tailctailClαtail

− 1

3
ρR3

mrΩ
2
mrcmrCdmr (4.7)

Note that Ωtail is the rotational speed of the tail rotor and Ωmr is the main rotor

rotational speed, both of which are the independent control inputs. A linearized

version of this equation about the hover condition can proceed by assuming Ωmr =

Ω1 and Ωtail = Ω2, where Ω1 and Ω2 are the nominal speeds of the main and tail

rotors to affect a net zero torque in the hovering flight condition. Assuming the

throttle changes very little and slowly about hover and any vertical heave motion is

slow, the following linearized equation, equation 4.8, can be used.

ṙ = −Nrr +Nμyμy (4.8)

The yaw input is represented by μy, and the output, r, is the yaw rate. An

open loop mixing does exist where the yaw input increases linearly with the throttle

input. This mixing was preset and is known exactly, therefore can be taken into

account during the identification. The identification proceeded assuming these first

order dynamics.

The identification of the transfer function from the yaw input to the yaw rate

was complicated by the presence of the feedback to make the vehicle pilotable. To

obtain the yaw transfer function, the vehicle was fixed to a freely rotating test stand

that allowed motion only in the yaw degree of freedom. Beginning from the nominal

trim, a computerized frequency sweep was given to the vehicle with no feedback and
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the response was recorded. The rotational inertia and friction of the test stand was

assumed to be negligible compared to the vehicle dynamics and this test sweep was

included in the analysis. No coherence was observed between the rotational rate in

flight and the heave velocity therefore the Nw stability derivative, which describes

the vertical acceleration induced by yaw motion, was not identified and fixed to

zero.

4.4.3 Input to Body Orientation Transfer Function Estimation

The angular velocity of the vehicle in body coordinates can be transformed

into the angular velocity expressed in inertial coordinates, the time derivative of the

Euler angles, via the following transformation:
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(4.9)

Considering the case where the vehicle is linearized about the hover condition,

the body and inertial rate vectors are approximately equal, ωb ≈ ωi, therefore

θ̇ ≈ ωby, φ̇ ≈ ωbx, and ψ̇ ≈ ωbz in the linearized model. This implies that the

transfer functions for the cyclic inputs to the roll and pitch angular orientation

should simply be the transfer functions from the cyclic inputs to the body rates

multiplied by 1
s
.
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4.4.4 Orientation to Translational Velocity Transfer Function Esti-

mation

Due to a lack of excitation and high control coupling at low frequencies, direct

estimation of translational velocity damping from the lateral and longitudinal inputs

may be difficult. Instead, the lateral damping stability derivatives can be estimated

as first order poles in transfer functions from the roll and pitch angular orientations

to the lateral and longitudinal translational velocities. This method, using the

simplified first order equations in equation 4.10, was employed to identify the Yv

and Xu damping derivatives.

v̇ = Yvv + gφ

u̇ = Xuu+ gθ

(4.10)

The corresponding transfer functions from the orientation to translational ve-

locities are given as:

v
φ
(s) = g

s−Yv

u
θ
(s) = g

s−Xu

(4.11)

Once these derivatives were identified independently, they were then included

in the full state space model.
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Figure 4.6: Schematic of Thrust Dynamics for Electrically Driven Helicopters

4.4.5 Throttle to Heave Velocity

For the configuration of most manned and unmanned helicopters, the main

rotor and tail rotor are slaved together, either using a gear-based drivetrain or a

flexible belt drive, and thrust is generated by varying the collective pitch of the

blades. The tail and main rotor forces for the test vehicle in this research, however,

are independently controlled via the rotational speed of electric motors, with no

collective control. Figure 4.6 shows the drivetrain of the test vehicle, composed

of RC hobby components. Each component of the drive system contains internal

dynamics and contributes small nonlinear effects, but these effects are negligible in

comparison to the primary inertial and aerodynamic forces and moments, therefore

in the interest of keeping the model simple, it was assumed that the pilot’s command

generates some unknown torque that is transmitted to the rotor with some small

delay Δth. The transfer function from throttle input to rotor speed was modeled as

a simple first order response, seen in equation 4.12, accounting for the rotor inertia

and drag on the spinning blades.

Ω̇mr = −TΩmrΩmr + Tμtμt (4.12)

Given a rotor speed, Ωmr, the lift generated by the main rotor can be given
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as:

Tmr =
1

6
ρR3Ω2cmrClα × # of blades (4.13)

From this equation is it apparent that varying the rotor speed to change lift is

a nonlinear relationship. If the assumption is made that the thrust varies very little

about the operating condition, then a linearized first order model of Ωmr to w can

be estimated.

A linear transfer function between the rotor speed and heave velocity was

estimated in the attempt to capture the heave damping. The equation describing

the linearized heave dynamics is given in equation 4.14, where Zw describes the

damping with vertical velocity and ZΩmr is the heave acceleration in response to a

change in rotor speed.

ẇ = −Zww + ZΩmrΩmr (4.14)

Equations 4.14 and 4.12 can be collected into the state space model describing

the heave dynamics. This model, used for the identification process, is given in

equation 4.15.

⎧⎪⎪⎨
⎪⎪⎩

ẇ

Ω̇mr

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣ Zw ZΩmr

0 TΩmr

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

w

Ωmr

⎫⎪⎪⎬
⎪⎪⎭+

⎡
⎢⎢⎣ 0

Tμt

⎤
⎥⎥⎦μt (4.15)
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4.4.6 Lv and Mu Derivatives

The Lv and Mu stability derivatives are the source of the unstable modes

inherent in rotorcraft. These derivatives typically induce very low frequency oscil-

latory modes. These derivatives were first fixed to zero, until good estimates were

obtained for the derivatives in equation 4.4. Once the parameters in equation 4.4

were identified with good confidence, and the the lateral and longitudinal speed

derivatives were identified and fixed, these derivatives freed along with the other

parameters and allowed to converge.

4.4.7 Full State Space Model

The full assembled state space model is given in equation 4.16. In general,

there may exist many specific state space models that would exhibit the frequency

responses identified during testing, however by assembling the state space structure

based on the physics of the vehicle, the resulting degrees of freedom in the identi-

fication are reduced, as is evident by the large number of zero values in equation

4.16. By fitting the constrained model to the identified transfer functions, the result-

ing identified stability derivatives have some physical significance that can provide

useful insight into the vehicle dynamics.

The control inputs are primed in equation 4.16 indicating that these inputs

include the pure delays given in table 4.1. The Δtμcyclic term is the pure delay in

seconds for both cyclic actuators. The terms Δtμt and Δtμy specify the delay for

the throttle and yaw motors, respectively.
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ḃ

ṗ

ȧ

q̇
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θ̇

ṙ

ẇ

v̇

u̇

Ω̇mr
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− 1
τf

−1 Ba
τf
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Ab
τf

0 − 1
τf

−1 0 0 0 0 0 0 0
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0 0 0 0 0 −g 0 0 0 Xu 0

0 0 0 0 0 0 0 0 0 0 TΩmr
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(4.16)

4.5 System Identification using CIFER R©

As an initial step in the identification process, computing the coherence func-

tion can provide a measure of the extent to which an output is linearly related to

some input over some frequency range. The magnitude squared coherence, γ2xy(ω)

between two signals is given as:

γ2xy(ω) �
|Rxy(ω)|2

|Rxx(ω)| |Ryy(ω)| (4.17)

whereRxy is the cross spectral density between the input and output, Rxx is the
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auto-spectral density of the input and Ryy is the auto-spectral density of the output.

An input/output pair with low coherence implies that either the input has no effect

on the output or that the effect is entirely nonlinear. Conversely, an input/output

pair with a high coherence can most likely be well modeled using a linear model

such as a transfer function or state space model. Tischler[43] suggests a coherence

above 0.6 for some useful frequency range is required for accurate transfer function

identification. The DERIVID subroutine included in CIFER R© utilizes coherence

weighting to ensure frequency ranges with the best coherence contribute the most

toward the transfer function estimate.

Given a flight data set with sufficient coherence, the software package CIFER R©

implements a series of subroutines that support frequency responses-based system

identification. The first procedure, following data acquisition and scaling, was to

apply the Frequency Response Identification (FRESPID)subroutine in CIFER R©

using multiple windows of appropriate lengths, which provided transfer function

and coherence estimates. Considering recommendations in prior work[43], window

lengths of 3, 6, 9, 12, and 15 seconds were used. A smaller window supports better

averaging, however the largest window determines the lowest frequency that can

be computed. The rotor/fuselage dynamics were assumed to be coupled, hence the

lateral and longitudinal inputs influence the off-axis responses. To account for con-

trol cross-coupling, the (MISOSA) Multi-Input Conditioning subroutine was run

to condition the data set considering the presence of multiple inputs. Following

these procedures, the Window Combination subroutine (COMPOSITE) was run to

appropriately combine the multiple responses. The resulting responses were the
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processed and conditioned transfer function and coherence estimates used for state

space model determination.

4.6 Results

The resulting estimated model compares well with the calculated transfer func-

tion estimates, suggesting that the relevant dynamics were captured. The transfer

functions of the identified model are plotted with the computed transfer function

estimates from the flight data in figures 4.7 through 4.19. The coherence functions

plotted for each input/output pair indicate the degree to which the output is linearly

related to the input at a particular frequency.

The identified state space model parameters, along with the associated error

bounds, are given in Table 4.1. Percentage error Cramer-Rao (CR) bounds, as com-

puted using CIFER’s subroutine DERIVID, are included along with the computed

insensitivity (Ī) percentages. The Cramer-Rao bounds are theoretical minimum lim-

its for the expected standard deviation σ in the parameters estimates that would be

obtained from many experiments[43]. Tischler suggests valid parameter estimates

are most likely to be obtained for the following conditions:

CR% <= 20% Ī% <= 10% (4.18)

The Xu and Yv parameters exhibited the highest uncertainty, with Xu slightly

exceeding the recommendations in 4.18. The identification of the Yamaha R-max he-

licopter discussed in Mettler’s book also resulted in relatively high errors for the lat-
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Table 4.1: Honeybee Identified Model Parameters with Cramer-Rao Error Estimate

parameter value CR % Ī %

τf 0.15 5.467 1.996

Ba 1.55 5.829 1.712

Lb 1273 3.354 1.329

Ab -2.82 10.94 3.569

Ma 341.6 2.672 0.9205

Lv -8.246 10.94 3.569

Mu 3.599 8.497 3.217

Yv -0.4799 16.44 7.685

Xu -0.5214 23.92 11.18

Blat 0.245 2.408 1.114

Blon 0.043 9.280 4.277

Alat 0.044 7.309 2.974

Alon -0.202 2.455 1.053

Nr -0.8786 5.342 2.472

Zw -0.6802 6.792 2.784

ZΩmr 0.170 6.447 2.484

TΩmr -6.182 4.362 1.142

Nμy 39.06 4.407 2.189

Tμt 1449 5.081 1.576

Δtcyclic 0.033 7.884 3.550

Δtμt 0.1163 1.686 0.602

Δtμy 0.069 2.551 1.187

g 9.81 - -
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Figure 4.7: Roll Input to Roll Rate Transfer Function.
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Roll Input to Pitch Rate
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Figure 4.8: Roll Input to Pitch Rate Transfer Function.
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Figure 4.9: Pitch Input to Roll Rate Transfer Function.
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Pitch Input to Pitch Rate
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Figure 4.10: Pitch Input to Pitch Rate.
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Roll Input to Roll Angle
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Figure 4.11: Roll Input to Roll Angle Transfer Function.
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Figure 4.12: Roll Input to Pitch Angle Transfer Function.
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Pitch Input to Roll Angle
M

ag
ni

tu
de

 (D
B)

Ph
as

e 
(D

eg
)

Co
he

re
nc

e

Frequency (Rad/sec)

Frequency (Rad/sec)

Flight Results

Model

20

0

-20

-40

-60

-150
-250
-350
-450
-550
-650

1

0.8

0.6

0.4

10
0

10
1

10
2

0.2

Frequency (Rad/sec)

-750

Figure 4.13: Pitch Input to Roll Angle Transfer Function.
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Pitch Input to Pitch Angle
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Figure 4.14: Pitch Input to Pitch Angle Transfer Function.
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Roll Angle to Lateral Translational Velocity
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Figure 4.15: Roll Angle to Lateral Velocity Transfer Function.
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Figure 4.16: Pitch Angle to Longitudinal Velocity Transfer Function.
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Yaw Input to Yaw Rate
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Figure 4.17: Yaw Input to Yaw Rate Transfer Function.
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Throttle Input to Rotor Speed
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Figure 4.18: Throttle Input to Rotor Speed Transfer Function.

71



Throttle Input to Heave Velocity
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Figure 4.19: Throttle Input to Heave Velocity Transfer Function.
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eral and longitudinal stability derivatives, Yv and Xu, suggesting poor low-frequency

content in the flight data as the cause. This assumption seems consistent with this

research as well, as flight tests were carried out in an indoor facility without the

physical space required to obtain very low frequency translational velocity flight

data.

Note that both the resonant frequencies of the rotor/fuselage dynamics can be

observed in the roll (lateral) input to roll rate and roll angle, however the pitch input

to pitch rate and pitch angle computed transfer functions did not exhibit sufficient

coherence to observe both resonant frequencies. The relatively low roll inertia of

the vehicle resulted in a relatively high roll bandwidth of approximately 35 rad/s as

compared to the pitch dynamics where the bandwidth is closer to 17 rad/s.

Additionally, the low frequency phugoid dynamics cause a slight increase in

the magnitude of the rate responses observed at the lower frequencies. This effect

is most clearly observed in the off-axis rate responses creating a noticeable “bucket-

like” magnitude response.

4.7 Time Domain Verification

One qualitative method of checking how well a model predicts the dynamics is

to simulate the model using the input signals acquired from a flight test, and then

compare the predicted output with the actual output. Time domain comparisons

were performed using the VERIFY subroutine included in the CIFER package. This

subroutine estimates the input and output bias values to minimize the error accu-
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mulated by integrating the model numerically. Figures 4.20 through 4.23 present

representative time domain comparisons for each of the available outputs. These

plots demonstrate that the model does capture the major dynamic behavior of the

vehicle in the frequency range of interest.

4.8 Analysis of Vehicle Dynamics

The eigenstructure of the linearized model can provide much information about

the behavior of the vehicle, as observation of the eigenvector makeup allows an

examination of which state variables are dominant in each mode. The eigenvectors

were computed according to the traditional left eigenvector equation in equation

4.19, where A is the system matrix, λ is the vector of eigenvalues, and I is the

identity matrix.

det[λI− A] = 0 (4.19)

The lateral and longitudinal dynamics were developed and identified separately

from the heave and yaw dynamics, as low coherences suggested very little dynamic

interaction between these subsystems. These three subsystems can therefore be

analyzed separately. The model eigenvalues, with the associated mode names, are

given in table 4.2. The yaw rate mode is a simple first order response. The heave

dynamics, including the heave velocity w and rotor speed Ωmr, constitute a second

order over-damped response where both poles are on the negative real axis. The

eigenvalues for the lateral and longitudinal dynamics, however, are fully coupled and
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Figure 4.20: Time Domain Comparison with Lateral Excitation.
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Figure 4.21: Time Domain Comparison with Longitudinal Excitation.
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Table 4.2: Eigenvalues of Identified Model

eigenvalue no. value (Rad/s) mode

1 -3.71+38.57i lateral flapping

2 -3.71-38.57i lateral flapping

3 -2.71+16.76i longitudinal flapping

4 -2.71-16.76i longitudinal flapping

5 -0.87+0.86i stable phugoid

6 -0.87-0.86i stable phugoid

7 0.28+0.84i unstable phugoid

8 0.28-0.84i unstable phugoid

9 -0.879 yaw mode

10 -0.68 heave velocity mode

11 -6.161 rotor speed mode
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Table 4.3: Eigenvectors for Rotor/Fuselage Dynamics of Identified Model

-0.003+0.03i -0.003-0.03i 0.008+0.003i 0.008-0.003i

1 1 0.091-0.63i 0.091+0.63i

-0.018-0.003i -0.018+0.003i 0.008-0.05i 0.008+0.05i

-0.01+0.16i -0.01-0.16i -1 -1

are worth further examination.

The eigenvectors associated with only the rotor/fuselage dynamics are given

in table 4.3. Note each column was scaled such that the maximum absolute value

would be one to facilitate comparisons. Eigenvalues 1-4 in table 4.2 are associated

with the eigenvectors in table 4.3. The pure lateral flapping mode does not induce

as much pitch rate and pitch flapping as a pure longitudinal flapping induces a roll

rate and lateral flapping. Since the rotor characteristics are the same for the lateral

and longitudinal degrees of freedom, this is a direct result of the lower lateral inertia,

Ixx, as compared to the longitudinal inertia, Iyy. The roll rate of the lateral flapping

model exhibits approximately 20% coupling with the pitch axis, and the pitch rate

in the logitudinal mode exhibits close to 65% coupling with the roll rate.

Including the control sensitivity matrix however, reveals an additional source

of coupling that originates from the actuators. The amount the pitch and roll inputs

each affect the pure lateral and longitudinal flapping modes can be given as:

Bξ = V −1B (4.20)
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where V is the matrix of eigenvectors, B is the model’s control sensitivity

matrix, and Bξ is the control sensitivity matrix transformed into modal coordinates,

and is shown in table 4.21. Here, it can be seen that an input to the lateral control

would result in an approximate 30% excitation of the longitudinal flapping mode.

Conversely, an input to the longitudinal control would induce a 45% excitation in

the lateral flapping mode. It is speculated that this high degree of coupling exhibited

in the control matrix is mostly due to gyroscopic forces, as the B matrix captures

coupling due to applied forces. The coupling exhibited by the A matrix eigenvectors

is assumed to be aerodynamic in origin as it arises from induced rates.

Bξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.22− 24.60i 6.75− 4.3i

−2.22 + 24.60i 6.75 + 4.3i

3.93 + 2.94i 0.62− 10.8i

3.93− 2.94i 0.62 + 10.8i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

A pole map is shown in figure 4.24 that shows how the eigenvalues, or poles,

of the Honeybee model compare to the poles of the Yamaha R50, as identified

by Mettler[39]. The rotor/fuselage poles of the Honeybee exhibit a slightly lower

damping ratio than those of the Rmax, but act on a quicker time scale, as intuitively

expected. The unstable eigenvalues of the Honeybee have a slightly lower real part

than the R50. As this mode is due to Mu and Lv, a smaller rotor coning angle

would explain this, as a lower coning angle would result in a lower moment induced

by translational velocity. The lower damping ratio of the phugoid dynamics is a

result of the lower identified values for the Yv and Xu derivatives, resulting in lower
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Table 4.4: Froude Values for Various Vehicles

Vehicle Froude No.

Honeybee 541

UH-1H 862

R22 1134

R-50 1230

X-Cell 2165

translational velocity damping. The lower translational velocity damping is not

surprising as the Honeybee does not have a large fuselage profile, which is typically

a large contributing factor.

Froude scaling was employed to compare the Honeybee to larger counterparts

in a more meaningful way. The Froude number can be given as[39]:

F =
(ΩR)2

Rg
(4.22)

where Ω is the rotor speed, R is the rotor radius, and g is gravitational accel-

eration.

A table of computed Froude numbers computed for various helicopters is given

in table 4.4. If two vehicles are dynamically similar, determined by comparing

their Froude numbers, then scaled comparisons between vehicle parameters can be

considered physically meaningful. The Honeybee was compared to the UH-1H, as

their Froude numbers are the most similar. The analysis proceeded by scaling the

82



Table 4.5: Froude Comparison between UH-1H and Honeybee

Parameter Honeybee Honeybee (scaled) UH-1H

rotor radius (ft) 0.83 24 24

weight (lb) 0.86 20800 8000

rotor speed (rad/s) 145 27 34

Lb 1273 44.1 19.2

ωn (rad/s) 35 6.51 4.38

τfΩ 21.75 21.75 5.7

Honeybee up by matching the rotor radii. Table 4.5 shows some original and scaled

Honeybee parameters as compared to the UH-1H. The parameter τfΩ is the non-

dimensional rotor time constant, ωn is the natural frequency of the roll rate response,

and the stability derivative Lb is the lateral rotor flapping stiffness parameter.

Additionally, the scaled version of the Honeybee would weigh over two and a

half times as much as the UH-1H. Small micro air vehicles typically require a higher

fraction of the vehicle dedicated to the power systems and structure as compared to

scaled up counterparts, therefore it is not unexpected that the empty weight fraction

of the Honeybee is high. Other scaled terms confirm expected results. The Lb term

is over twice the corresponding value for the UH-1H, indicating a high comparative

stiffness. Likewise, the natural frequency of the scaled Honeybee rotor/fuselage

dynamics is 1.5 times higher and the non-dimensional rotor flap constant is 3 times

that of the UH-1H. The scaled rotor speed, however is 80% that of the UH-1H.
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Examining the heave dynamics can also provide information regarding the

vehicle’s maneuverability. The transfer function from throttle to heave velocity

can be used to estimate the maximum acceleration possible at the linearized flight

condition. The derivative of the heave velocity is the acceleration, the maximum

value of which is the thrust divided by the vehicle’s weight. The plot of the model s∗

TFμt−>w, seen in Figure 4.25, reaches a maximum of 28 m/s2 (2.8g) at approximately

3.6 rad/s. This estimate can be compared to the identified heave accelerations for

the X-Cell and R-50 helicopters of 21 m/s2 and 11 m/s2, respectively.

While it is intuitively expected that a small vehicle would exhibit faster dy-
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namics than a larger vehicle, this analysis shows that the vehicle is more maneu-

verable even when accounting for size. This is due to the fast control responses,

high thrust to weight, and hingeless rotor design. The dynamics are, however, quite

representative of a rotary wing vehicle, hence the same hybrid model utilized for

larger counterparts can be successfully employed on vehicles at this scale.

4.9 System Identification Summary

Using frequency response identification techniques, a state space model of a

small electric helicopter, linearized about hover, was identified. The identification

showed that the hybrid model structure, previously successfully utilized to model

the rotor/fuselage interaction on larger vehicles, has been shown to also successfully

work for small micro rotorcraft. The dynamics of the vehicle are similar in structure

to that of a larger helicopter, however evolve on a much faster time scale. Finally, this

represents one of the first vehicle identifications performed using a visual tracking

system for kinematic measurements.

85



Chapter 5

Feedback Control

Typically, attitude control for rotorcraft is implemented by first controlling

the attitude dynamics, then placing that control loop within an outer translational

loop, resulting in a cascaded control loop architecture. In chapter 4, regarding the

system identification of the Honeybee single main rotor helicopter, a full state space

model was assembled that captured the 6 DOF motion of the vehicle assuming a

nominal trim condition at hover. It was found that cross couplings between many

of the states were negligible due to low coherence. Without any loss in accuracy,

assuming the physical model in chapter 4, the heave, yaw rotation, and “cyclic”

dynamics can be isolated, examined, and controlled independently.

5.0.1 Rotary Wing Cyclic Dynamics Control

The control of the cyclic dynamics is concerned with the roll and pitch angles

of the vehicle, as well as the translational motion in the forward and side directions

as well. Consider the state space model (5.1), which includes orientation in addi-

tion to the states in (4.4). Note again the sources of off-axis coupling. There are

aerodynamic sources captured by the stability Ba and Ab and there are gyroscopic

couplings captured in the control sensitivity matrix, Blon and Alat.
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For illustrative purposes, consider only the transfer function for roll angle from

roll input given a 1 degree of freedom assumption,

φ(s)

μlat(s)
=

(BlatLb/τf )μlat(s)

s(s2 +
1

τf
s+ Lb)

(5.2)

From this transfer function, if the control law includes rate feedback, it can

be detrimental to transient performance of the roll angle. Instead, it is best if

the effective rotor time constant can be reduced. Small weights are added to the

vehicle’s Hiller-style paddles, thus increasing rotational inertia, to slow the response

of the rotor blade and make the vehicle more pilotable for a human controller. With

feedback, this demonstrates that it is best to move the weights inward, or remove

them all together to improve the response time of the orientation dynamics without

causing unacceptable levels of overshoot.

In the limit, where the rotor time constant is small, the pilot input almost

instantaneously becomes a rate response, thus reducing (5.2) to a second order

response from a third order.
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It was found that a parsimonious yet highly effective controller for the orienta-

tion of the Honeybee single main rotor vehicle was a simple proportional controller.

Feedback tends to obscure the cross-coupling inherent in the vehicle dynamics. For

the applications the Honeybee was used for, simple independent loops were sufficient

to control the vehicle. The quadrotor vehicle includes single DOF on-board attitude

control loops.

Regardless of the vehicle, the reduced dynamic models for translational motion

in the longitudinal and lateral degrees of freedom allow the inputs to the vehicle

to be reference roll and pitch angles and not raw actuator inputs. This greatly

improves vehicle stability and allows any translational controller to assume only a

first order dynamic model for translational motion.

5.0.2 Heave/Height Control

Heave velocity and height control was implemented for each test vehicle to

restrict the vehicle to planar motions. The Honeybee vehicle is slightly more com-

plicated in that there is a distinct transfer function between the throttle input to

the main rotor speed due to the larger rotational inertia of the rotor system. The

expected transfer function between a change in rotor speed, or collective speed in

the case of the quadrotor, and heave velocity is present in both vehicles.

For altitude control, a proportional/derivative controller was implemented on

both the Honeybee and Quadrotor vehicles. The ViconTM system was able to provide

the inertial height estimate and indirectly the heave velocity measurement success-

88



fully. It was desired that the vehicle be capable of height control without requiring

access to off-board estimates, however. The complimentary filtered heave velocity

estimate discussed in chapter 3 was used to provide the required estimate. This was

used in conjunction with the sonar height estimate to create a P-D controller.

5.0.3 Yaw Control

Yaw control on the Honeybee helicopter was implemented using simple yaw

rate gyro feedback. This slowed down the yaw dynamics sufficiently for either the

ViconTM tracking or visual control to take over. The ViconTM system was used

when necessary to provide an absolute heading reference.

5.0.4 Translational Control using Ventral Optic Flow

Availability of ventral optic flow provides a source of feedback for translational

motion control. The concept of utilizing a height sensor and ventral optic flow was

presented in chapter 3.

Consider the transfer function from roll angle as an input to lateral transla-

tional velocity,

v(s)

φ(s)
=

g

s+ Yv
. (5.3)

If optic flow is fed back directly, then the effective velocity gain is height de-

pendent, with the effective gain decreasing as the vehicle increases in height. In

theory, this gain change is not detrimental to stability, however in practice, pure
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delay, noise, and structured uncertainty in the removal of the rotational optic flow

limits how low the vehicle can be if optic flow is fed back unscaled. With scaling

using a height estimate, the desired gain can be set, resulting in consistent damping

performance. The optic flow estimate has also been implemented in tracking con-

figuration, such that the vehicle moves in such a way as to attempt to tracking a

desired velocity set-point.

At this time, while both approaches have been implemented, the ventral VLSI

optic flow sensor was highly susceptible to the spatial frequency of the floor, thus

limiting practical usefulness relative to the velocity control the ViconTMcan provide.

5.1 Summary of Reduced Order Dynamics

Assuming orientation feedback implemented with sufficiently high bandwidth,

and it can be assumed that the dynamics of the translational degrees of freedom

are sufficiently slow relative to the orientation bandwidth, then a set of effective

dynamics can be assumed while attempting to utilize vision for the translational

dynamics. The quadrotor vehicle bandwidth for these effective dynamics is signif-

icantly higher than the Honeybee vehicle due to inherent vehicle design and more

advanced actuators. A visual navigation loop operating on the effective orientation

dynamics represents a cascaded control loop architecture.

The effective translational motion dynamics assumed for the implementation

of visual navigation are
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v̇ = Yvv + gφr (5.4)

u̇ = Xuu− gθr. (5.5)

(5.6)

The effective yaw dynamic model for both the Honeybee and quadrotor vehicle

is

ṙ = Nrr +Nqyawμyaw, (5.7)

although with differing constants.

In most testing scenarios, it was desired to keep the height constant to allow

the assumption of planar motion, thus simplifying implementation. The reduced

dynamics for heave motion were considered negligible in this case as the vehicle

maintained a constant altitude.
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Chapter 6

Implementation of Wide Field Integration for Navigation

The feedback control methodologies presented in the previous chapter are fo-

cused only on vehicle stability augmentation. Furthermore, the inertial sensing

and ventral optic flow sensing capabilities presented in chapter 3 do not provide

any information regarding objects surrounding the vehicle. The ability to navigate

through an environment requires capabilities for detecting pose relative to obstacles.

The benefits of using optic flow for proximity detection, and the implementation of

optic flow processing in VLSI circuitry, was established in chapter 2. This chap-

ter presents the implementation of optic flow-based navigation capabilities that are

inspired by the neural architecture of insects.

Flying insects are capable of robust navigation in uncertain environments with-

out the computational complexity that current machine vision algorithms require

to perform the same tasks. Recent studies at the behavioral and neurophysiolog-

ical levels have provided insight on the neural mechanisms that give rise to these

sophisticated capabilities. Insects encode optic flow [12], the characteristic patterns

of visual motion that form on their retinas as they move. Specialized neurons called

tangential cells [13], parse these complex optical flow patterns over large swaths of

the visual field to extract visual cues for navigation. The remarkable thing is that

insects are capable of executing visual-based behavior with direct sensory feedback,
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i.e., without the use of observer-based estimation schemes.

The discovery of honeybee-inspired optic flow ’heuristics’ by M. V. Srinivasan

[44, 45] has spawned several approaches for local navigation [46, 47, 48, 49, 50, 51,

52], speed control [53, 54, 55, 56], and landing [57, 58]. Additionally, behavioral

observations of expansion cues in fruit flies [59] have inspired reflexive obstacle

avoidance strategies [60, 61, 62].

Insects mitigate the inherent noise of their local optic flow computations by

implementing a form of weighted spatial summing in their lobula plate tangential

cells to fuse the many optic flow estimates available over large swaths of their retina

[63, 64, 65]. Control of locomotion is achieved via feedback of tangential cell outputs

to the flight motor [66]. In doing so, they extract the relative information contained

in optic flow for control and do not deal with absolute quantities. This is a promis-

ing approach for implementation in small vehicles as they typically have limited

processing capabilities. In fact, it has been shown that a control system designed

around this methodology can completely eliminate the need for dynamic estimation

of absolute quantities by utilizing output feedback of optic flow [67, 68, 69].

Insects utilize tangential cells to extract relevant information about the envi-

ronment by applying weighting functions to the observed optic flow field. Central to

the power of this method is that control computations for the insect as well as the

vehicle form a tight loop that relies only on these spatial weighting functions with

no state estimator dynamics. The lack of a traditional Kalman filter or other state

observer greatly simplifies the control computations and allows a higher update rate.

The cost is simply that all velocity and positioning estimates are relative and there-
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fore result in a control theoretic architecture with moving poles. The benefit is that

as long as the movable poles remain stable, the benefit in terms of computational

burden outweighs the downsides.

The following chapter utilizes a mathematical formalism called Wide-Field In-

tegration [69], which allows the extraction of relative state information from spatially

weighted optic flow patterns. This framework is such that tools from control theory

can be utilized to prove local stability of the resulting closed loop system.

The implementation described herein assumes availability of optic flow mea-

surements on the azimuthal axis of the vehicle. It is shown that weighted outputs

of the resulting spatially periodic optic flow signal are sufficient to enable a flying

micro helicopter to negotiate a corridor while the optic flow feedback controls its

orientation and lateral position. This methodology is designed to closely mimic the

spatial decompositions of the sensed motion field performed within the insect vi-

suomotor system by tangential cells. Implementations were performed for both the

Honeybee vehicle and the Quadrotor vehicle, with results from each presented.

6.0.1 Planar Optic Flow Model

To facilitate the development of the spatial weighting functions and control

methodology that follows, the optic flow field and the spatial distribution of objects

in the environment are modeled as continuous functions of the body-frame-referred

viewing angle γ. The nearness function is defined as

μ(γ,x) =
1

d(γ,x)
, (6.1)
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Figure 6.1: Planar Tunnel Coordinate Definitions.

where d(γ,x) is a continuous representation of distance to the nearest point in the

visual field and x = (x, y, ψ) is the pose of the vehicle within the environment. The

nearness function is assumed to be a bounded, piecewise continuous function with

a finite number of discontinuities.

Given this definition, the tangential component of the optic flow on a circular-

shaped sensor that is constrained to 3-DOF motion in the horizontal plane can be

expressed as a 2π-periodic function in the viewing angle γ:

ξ(γ) = −ω + μ(γ,x) (u sin γ − v cos γ). (6.2)

6.0.2 Wide-Field Integration

This section summarizes the wide-field integration theory developed by Humbert[67,

68, 69]. Given the tangential component of optic flow (6.2) as a function of the body-

fixed viewing angle γ, a methodology is required to interpret the patterns of optic
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flow that arise during motion. The structure of the visuomotor pathway of insects

provides inspiration for a method of extracting relevant information from patterns

of optic flow. Tangential cells respond with graded membrane potentials whose

polarity depends on the direction of motion [63, 64]. Essentially, the output is a

comparison between its preferred wide-field pattern of motion and that of the vi-

sual stimulus. Mathematically, this process can be represented as an inner product

〈f, g〉, analogous to the dot product between vectors, which tells us how similar two

objects f and g are.

The intuition behind this approach is shown in Figure 6.2. Forward motion

of a vehicle constrained to move in three degrees of freedom (forward and lateral

translation along with yaw rotation) in the horizontal plane generates an optic flow

pattern with a focus of expansion in the front field of view, a focus of contraction in

the rear, with the largest motion on the sides. If plotted as a function of the angle

γ around the retina, this is approximately a sine wave (Figure 6.2A). Perturbations

from this equilibrium state of a constant forward velocity u0 along the centerline

of the tunnel introduce either an asymmetry in this signal for lateral displacements

δy (Figure 6.2B), or a phase shift for rotary displacements δψ (Figure 6.2C). If

the forward speed is increased by δu, the amplitude of this signal increases (Figure

6.2D), and if the vehicle is rotating at angular velocity r = ψ̇ about the yaw axis a

DC shift in the signal of equal magnitude occurs. Therefore, the amplitude, phase,

and asymmetry of the pattern of optic flow around the yaw axis encode important

information that could be used for navigation and speed regulation.

In the case of Figure 6.2, the patterns are assumed to reside in L2[0, 2π], the
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space of 2π−periodic and square integrable functions, where the inner product is

given by

z(x) = 〈ξ, F 〉 =
1

π

∫ 2π

0

ξ(γ,x) · F (γ) dγ. (6.3)

Here ξ(γ,x), given in (6.2), is the measured optic flow about the yaw axis, F (γ)

is any square integrable weighting function such that (6.3) exists, and z(x) is the

resulting output which is a function of the state x of the insect with respect to the

environment. This expression, which would represent either a shift in membrane

potential or a change in spiking frequency, gives a number that is maximum if

the patterns line up, negative if the pattern has the same structure but is in the

opposite direction, and zero if the patterns are completely independent (orthogonal)

of one another. Hence, the resulting set of outputs generated by a set of weighting

functions represent a decomposition of the motion field into simpler pieces that

encode perturbations from the desired pattern.

6.1 Navigation of Honeybee Vehicle

This section describes the implementation of the WFI theory on the single

main rotor Honeybee vehicle. A state space model of the helicopter dynamics, lin-

earized about the hover condition, has been presented in chapter 4. This identified

model confirms the lateral and longitudinal dynamics are highly coupled and high

order. Additionally, the heading degree of freedom is highly sensitive to the yaw

input and disturbances due to the low rotational damping and inertia. This degree
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of freedom is modified via on-board integrated yaw rate feedback to add additional

damping. While the helicopter is clearly not a planar constrained vehicle in gen-

eral, given a fixed altitude and non-aggressive maneuvers, a planar analysis and

implementation can be assumed.

The ViconTMvisual tracking system provides an off-board feedback capability

that reduces the effective dynamics of the vehicle. Direct measurements of the

vehicle orientation, position, and velocity are available at 350 Hz at 10 ms latency.

Attitude feedback for the lateral and longitudinal, roll and pitch, degrees of freedom

greatly reduces the cross coupling effects inherent in the dynamics, thus allowing the

lateral and longitudinal degrees of freedom to be considered separately, and modeled

by the set of reduced order dynamics given by

v̇ = Yvv + gφref (6.4)

u̇ = Xuu − gθref , (6.5)

where Yv and Xu are aerodynamic damping derivatives, g is gravity, and φref

and θref are the reference orientation values for roll and pitch, respectively, which

can be considered to be the same as the actual roll and pitch values, φa and θa, for

low frequencies. The corresponding transfer function form, given only for the roll

degree of freedom, is

v(s)

φref
=

g

s + Yv
(6.6)

(6.7)
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These effective lateral and longitudinal transfer functions can be further mod-

ified via a simple proportional velocity tracking feedback, given a control gain Kv

and a desired velocity vref , resulting in a transfer function of the following form for

the roll degree of freedom:

va
vref

=
Kvg

s+ (Yv +Kvg)
(6.8)

(6.9)

A transfer function of identical form is valid for the longitudinal degree of free-

dom. The velocity tracking loop further reduces the effect of the cross coupling in

the vehicle dynamics and adds effective damping. The optic flow derived lateral con-

trol operates on the lateral desired commanded velocity. The forward commanded

velocity is fixed to a constant value.

Heading control is also augmented using the visual tracking system to supply

rate tracking capability. The open loop heading dynamics are given as

ṙ = Nrr + Nμyμy, (6.10)

(6.11)

where r is the yaw rate, Nr is the yaw damping, Nμy is the control sensitivity,

and μy is the tail motor input. The term Nr is naturally aerodynamic in origin,

however we include in this term the effects of the on-board yaw rate damping as well.

Simple proportional feedback is again used to provide yaw rate tracking capability,
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resulting in the following transfer function, from desired reference rate, rref to the

actual rate, ra :

ra
rref

=
KrNμy

s+ (Nr +KrNμy)
(6.12)

(6.13)

The optic flow derived rate control operates on rref .

6.1.1 Control Methodology: Honeybee Vehicle

For experimental implementation, we consider the task of navigating a corri-

dor, thus linking perturbation of Fourier harmonics to deviations in desired position

and orientation within the tunnel

For the case of a straight corridor, the nearness function μ(γ,x) is independent

of the axial position x and can be expressed in closed form as a function of the lateral

position y, body frame orientation ψ, and the tunnel half-width a:

μ(γ,x) =

⎧⎪⎪⎨
⎪⎪⎩

sin (γ+ψ)
a−y 0 ≤ γ + ψ < π

− sin (γ+ψ)
a+y

π ≤ γ + ψ < 2π

. (6.14)

The dynamic model of the vehicle’s motion is provided in the body frame

of reference, however navigation through a corridor requires consideration of the

inertial frame of reference. We denote x and y as the longitudinal and lateral tunnel

positions, respectively, and denote the heading orientation as ψ. The equivalent

reduced order helicopter dynamic equations for the lateral and rotation degrees of

freedom in the inertial frame of reference are:
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ÿ = −(Yv +Kvg)va +Kvgvref (6.15)

ψ̈ = −(Nr +KrNμy)ψ̇ +KrNμyrref (6.16)

Outputs suitable for feedback are computed using equation 6.3, with weighting

functions that extract the relative lateral position and orientation in the tunnel.

Lateral position in the tunnel is obtained using the weighting function F (γ) =

cos 2γ. Orientation can be extracted using the weighting function F (γ) = sin 2γ for

0 <= γ < π and F (γ) = − sin 2γ for π <= γ < 2π.

The analytical result of this spatial inner product is nonlinear, however each

inner product can be linearized assuming the vehicle is in the desired center lateral

position in the tunnel with heading directed straight down the tunnel. Doing so

results in the linearized outputs of z1 = −uref
2a2

y and z2 = − 1
a
(urefψ + 1

2
ẏ), where

uref is the fixed forward velocity. The motivation for each weighting function is now

apparent as the linearized outputs are linear functions of the desired quantities we

wish to control. Including these outputs, with arbitrary gains Ky for lateral and Kψ
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for orientation, the closed loop state space model can be computed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ

ÿ

ψ̇

ψ̈

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−Ky
urefKvg

2a2
−(Yv +Kvg) 0 0

0 0 0 1

0 −Kψ
KrNμy

2a
−Kψ

urefKrNμy

a
−(Nr +NμyKr)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y

ẏ

ψ

ψ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.17)

The Fourier coefficient feedback gains can be adjusted to position closed loop

eigenvalues for desired stability.

6.1.2 Results: Honeybee Vehicle

A test utilizing a bent tunnel was conducted to demonstrate the wide-field

integration-based feedback on the micro helicopter. A representative trajectory is

shown in figure 6.4. The heading of the vehicle at various points on the trajectory

is given by the L-shaped markers. This test with the micro helicopter, using noisy

sensors on a heavily vibrating platform, demonstrates the potential for using the

wide-field integration architecture to fuse relatively noisy optic flow estimates to

provide feedback outputs sufficient for navigation.

6.2 Navigation of Quadrotor Vehicle

This section describes the implementation of the WFI theory on the quadro-

tor vehicle. Emphasis in this case, was placed on eliminating off-board feedback

control. Testing of the optic flow navigation method was performed on the X-UFO
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Figure 6.4: Micro Helicopter Flight Trajectory

quadrotor, Figure 1.3, which has a gross weight of 680 grams. The lateral damping

was performed with a single ARZ-Lite VLSI optic flow sensor from Centeye, IncTM.

The altitude regulation was accomplished using an onboard Devantech SRF08 ul-

trasonic range finder. The reference altitude was set to h0 = 0.5 meters. Both of

these sensors were located on the underside of the vehicle, facing downward. The in-

house avionics consisted of two boards with yaw rate gyros and Bluetooth uplinks.

These boards send outer-loop control commands to the X-UFO avionics boards. The

X-UFO avionics board(X-BASE) performed attitude feedback stabilization (Figure

2.7).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇

v̇

φ̇

θ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 −g

0 Yv g 0

0 0 Lφ 0

0 0 0 Mθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

v

φ

θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

Llat 0

0 Mlon

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

μlat

μlon

⎫⎪⎪⎬
⎪⎪⎭ (6.18)

A state space model for the quadrotor was obtained using system identification

methods used previously [70], as well as prediction error minimization techniques[71].

The lateral, longitudinal, heave, and yaw dynamics are considered as decoupled,

independent systems. The structure of the longitudinal and lateral model is given

in (6.18). The dynamic model for the roll and pitch orientations of the vehicle

to translational velocity are modeled as first order transfer functions. This set of

dynamics is given by

u̇ = Xuu − gθr,

v̇ = Yvv + gφr, (6.19)

where Yv and Xu are aerodynamic damping derivatives, g is gravity, and φr and

θr are the commanded orientation values for roll and pitch, respectively. System

identification of the quadrotor vehicle dynamics suggests that for low frequencies

the commanded roll and pitch angles can be considered the same as the actual

angles, φ and θ.

The lateral and longitudinal dynamics were augmented via proportional ve-

locity damping feedback using averaged translational optic flow estimates ξu = u/h0

and ξv = v/h0 in the u and v directions, respectively. The rotational component
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of optic flow provided by the ventrally located Centeye sensor was removed from

these measurements using the on-board roll and pitch rate gyro estimates. Given a

control gain Kv, the resulting transfer function for the lateral degree of freedom is

v

φr
=

g

s+ (Yv +
Kv

h0
)
. (6.20)

A transfer function of identical form is valid for the longitudinal degree of freedom,

using a longitudinal velocity feedback gain, Ku.

The dynamic model of the heading degree of freedom is also modeled as a first

order system. The on-board avionics provide yaw rate tracking such that the open

loop heading dynamics are given as

ṙ = −(Nr +Kr)r + Nμyawμyaw, (6.21)

where r is the yaw rate, Nr is the yaw damping, Nμyaw is the control sensitivity, and

μyaw is the yaw input. The term Nr in this case determines the time constant of the

closed loop tracking bandwidth as provided by the on-board avionics.

The heave dynamics are regulated via the fusion of a sonar ranging sensor and

a vertically oriented accelerometer. The transfer function for the heave dynamics

was identified as a first order system,

ẇ = Zww + Zμthμth, (6.22)

and altitude control is implemented as a PD feedback control loop. The heave

velocity estimate, w, required for the derivative feedback, was estimated via a com-

plimentary filtering algorithm using the sonar and accelerometer as presented in

[35]. The desired height reference for testing was set to a constant 0.5 meters.
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Figure 6.5 shows the overall control architecture that was employed, including

the inner stabilization loops and outer visual navigation loops. The gains Kr, Kφ

and Kθ are adjustable, but internal to the X-UFO avionics.

6.2.1 Control Methodology: Quadrotor Vehicle

In this section, we describe the outer loop control methodology that was im-

plemented to achieve navigation of a straight corridor. The above lateral (6.20)

and yaw (6.21) dynamics are provided in the body frame of reference. To facilitate

the selection of the spatial weighting functions, we express these equations, along

with (6.2), in terms of the pose of the vehicle x = (x, y, ψ), where x and y denote

the longitudinal and lateral positions relative to the corridor, respectively, and the

heading orientation is denoted as ψ. The equivalent inner-loop, reduced order ve-

hicle dynamics for the lateral and yaw degrees of freedom in the inertial frame of

reference are

ẍ = −(Xu +
Ku

h0
)ẋ+ gθr

ÿ = −(Yv +
Kv

h0
)ẏ + gφr

ψ̈ = −(Nr +Kr)ψ̇ +Nμyrr. (6.23)

Given that the altitude is held constant, the desired roll angle, φr, pitch angle,

θr, and yaw rate input rr are available to control the motion of the vehicle through

the tunnel environment. The pitch input is set to a constant value to induce a

fixed forward flight speed. Control commands are computed from the wide-field

integrated optic flow field and used directly as inputs to the lateral and heading
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inputs.

Outputs suitable for outer-loop feedback commands φr and rr are computed

using (6.3), with weighting functions that extract the relative lateral position and

orientation in the corridor. The output proportional to the relative lateral position

in the corridor, z1, is obtained using the weighting function Fy(γ) = cos 2γ, and

the output that contains the orientation relative to the tunnel centerline, z2, can be

extracted using the weighting function Fψ(γ) = cos γ. These weighting functions

are shown in Figure 6.6. For our analytical model of optic flow (6.2), the spatial

inner products expressed in inertial coordinates can be expressed as

z1 = 〈ξ, Fy〉 = − y

2(a2 − y2)
(ẋ cos 2ψ + ẏ sin 2ψ)

z2 = 〈ξ, Fψ〉 =
4a

3π(a2 − y2)
(2ẋ cosψ + ẏ sinψ). (6.24)

The equilibrium condition x0 for centering behavior is that the vehicle is posi-

109



tioned at a height h = h0, lateral position y = 0, with zero orientation offset, ψ = 0,

and with a forward velocity, u = u0. The linearized outputs are

z1 = − u0
2a2

y

z2 =
1

a
(u0ψ − 1

2
ẏ). (6.25)

To close the outer feedback loop that governs heading and lateral control, reference

inputs φr and rr in (6.23) are set equal to (6.24), scaled by gains Kψ and Ky:

φr = Ky 〈ξ, Fy〉

rr = Kψ 〈ξ, Fψ〉. (6.26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ

ÿ

ψ̇

ψ̈

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−Ky
u0g
2a2

−(Yv +
Kv

h0
) 0 0

0 0 0 1

0 Kψ
Nμyaw

2a
−Kψ

u0Nμyaw

a
−(Nr +Kr)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y

ẏ

ψ

ψ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The resulting closed loop linearized dynamics are given in (6.27). The feedback

gains Ky and Kψ, which determine the amount of lateral and rotational stiffness

added to the dynamics, can be adjusted to position closed loop eigenvalues for

desired stability and performance. For this demonstration, gains were selected such

that the Ky gain was equal to that of the Kψ gain.

6.2.2 Results: Quadrotor Vehicle

In this section, the results of the corridor navigation experimentation are

presented and interpreted. Using the feedback methodology described above, the
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Figure 6.7: Corridor Test Environment.

quadrotor was capable of navigating a corridor-like environment autonomously. The

experimentation was performed in a corridor 1.5 meters wide and 9 meters long (Fig-

ure 6.7). The procedure for each flight test was to lift off and position the vehicle at

its initial flight condition at the beginning of the corridor, engage the sonar-based

altitude control, input a step in reference pitch angle θr to the vehicle to begin

moving down the corridor, and engage optic flow for lateral and orientation control.

The vehicle trajectories of six separate flights are shown in Figure 6.8A. To col-

lect this trajectory data, a ViconTMvisual tracking system was implemented. The

vehicle clearly avoids collision with the walls. The circular marker in Figure 6.8A

indicates the point in one of the trajectories to which the optic flow in Figure 6.8B

corresponds. Figure 6.8C displays the time history of the WFI coefficients with the
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point corresponding to Figure 6.8B marked by a vertical line. The spatial optic flow

distribution demonstrates how the optic flow has an asymmetry as the vehicle drifts

too close to one side of the corridor. Figure 6.8C shows the increase in the linearized

WFI output at this instant in time, leading to a lateral and orientation input that

returns the vehicle to the center of the corridor. The vibrations and orientation

changes present on the quadrotor reduce the quality of the optic flow estimates,

however as is demonstrated, the wide-field integration methodology is sufficient to

affect navigation capabilities, in spite of these difficulties.

Figure 6.9 displays the timetraces of the forward velocity, altitude, lateral

offset, and orientation. They indicate that altitude was held constant, and that

forward speed changed minimally. This speed change was due to a low forward
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speed regulation gain, and turbulent flow in the corridor due to rotor downwash.

The vertical line, which indicates the instant in time corresponding to Figure 6.8B,

depicts a negative lateral offset and essentially no yaw angle. This corresponds to

the trajectory in Figure 6.8A and the WFI coefficients in Figure 6.8C. The optic

flow control for orientation and lateral position were disengaged at approximately

10 seconds into the flight test. Due the destabilizing effect of the sideslip on the z1

output it was required that the heading gain be small. Additional lateral velocity

damping would hypothetically allow a higher gain for the z1 output.
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Chapter 7

Nonlinear, Omni-directional Structure from Motion Observer

7.1 Active Vision in Insects

Chapter 6 discussed prior research demonstrating how insects are capable of

using optic flow to provide relative motion cues that enable navigation. A conver-

gence layer within the insect brain takes optic flow information available from a wide

field of view and produces a small number of outputs that can be fed directly back

to the flight motor system for control. Wide field integration of the omni-directional

optic flow field was shown to be a mathematical analog to this process of creating a

few outputs from a large number of noisy optic flow measurements.

This process inherently favors the low spatial frequency structure, as perceived

by the observer, within the environment. That is, large objects are weighted such

that they are more important than small objects. Many smaller objects, such as

posts or wires, can present a fatal collision hazard just as serious as larger objects

can present.

Insects are known to be able to detect, track, and either pursue or avoid

conspecifics [72], and can find structural elements that take up a relatively small

portion of the overall visual field [73, 74].

One particular insect capability that is of interest for this research is the ability

to find structural elements that take up a relatively small portion of the overall visual
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field [73, 74]. As they generally lack stereoscopic vision, insects apply active vision,

the extraction of structure by induced self-motion, to identify these element[75]. For

instance, members of a particular wasp species have been shown to leave their nest,

memorize the structure of the area immediately surrounding their nest, and be able

to easily find their nest again when they return by executing a few simple flight

maneuvers. Figure 7.1, reproduced from [75], shows example flight paths flown by

the wasp species Odynerus spinipes when investigating a small styrofoam ball.

For instance, members of a particular wasp species have been shown to leave

their nest, memorize the structure of the area immediately surrounding their nest,

and be able to find their nest again when they return by extracting the structure.

Insects are not capable of stereo vision in general to discriminate structure. In-

stead, they perform flight maneuvers to generate optic flow, and from the structural

information comes from relative magnitudes and local changes in the optic flow field.

The process whereby insects utilize self motion to extract structural information is

known as active vision[75]

This chapter presents a dynamic observer that is designed to emulate the

insects ability to extract structure by exploiting active vision. The design leverages

the continuous-time processing and near omni-directional visual field exhibited by

insects to produce a detailed depth map of an arbitrary environment.
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Figure 7.1: a-c: The zig-zagging flight of Odynerus spinipes. a. A flight directed

towards a black styrofoam ball as seen from above. b. Different wasp flight path;

nest entrance denoted by black dot. c. Motion directed towards a moving object.[75]

7.2 Structure from Motion Literature Survey

An attempt to extract environmental structure from either tracked features

or optic flow in the computer vision community is typically referred to as structure

from motion. The concept of extracting structure from a series of images began

in the early 1980’s[76, 77, 78]. Typically, structure from motion is broken into
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two distinct procedures. First, a set of distinct features must be identified in two

frames and their displacements identified. This is usually referred to as solving the

correspondence problem. Secondly, the structure of the environment is extracted

from the list of features. Earlier developments focused on the usage of imagery with

typical angular fields of view (∼40-50 deg diagonal) and considering two images

at once[79, 80, 81, 82, 83, 84]. It is possible to estimate structure from motion

without directly identifying correspondence points by computing optic flow of the

image sequence. Optic flow will generally result in more densely packed motion

estimates, at equidistant intervals, however since these algorithms estimate spatio-

temporal gradients and don’t explicitly attempt to establish correspondence, the

motion estimates are less accurate.

While the underlying theory for various structure from motion implementa-

tions are related to the same fundamental ideas[85, 86], particular estimation meth-

ods can take advantage of additional assumed constraints[87] or varying fields of

view[88].

Furthermore, improvements in the structural estimation are possible by using

a set of several or more images[89] to compute structure. Processing several images

at once, also referred to as batch processing would result in a significant delay if

the estimate was desired in real-time. Instead, it is possible to formulate structural

estimation in a recursive nature, allowing a continuously refined estimate to be

available after each new image is considered.

Kalman filtering is an attractive approach for continuously improving an es-

timate given new information, however the traditional formulation of the Kalman
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filter is linear. If the estimation algorithm is linear in nature, then only a smaller

field of view is possible, and linear methodologies such as epipolar optimization are

inherently unreliable using small fields of view[90].

The traditional Kalman filtering approach can be adapted to handle the inher-

ent nonlinear nature of identifying structure via extended Kalman filtering[91, 92].

These approaches however, lack a complete guarantee of convergence[93].

Nonlinear approaches utilizing Lyapunov stability proofs can guarantee con-

vergence, however an appropriate Lyapunov function must be identified and expo-

nential convergence must be explicitly shown[94].

As they are developed without the smaller field of view assumptions typical

of linear estimation strategies, full nonlinear estimation strategies will benefit from

maximizing the field of view. An omni-directional visual field has the advantage that

tracked features over the image sequence are less likely to result in ambiguities that

result from a small field of view[95]. Omni-directional structure from motion can be

formulated to use both two-step approaches[96, 97, 98] and recursive approaches[99,

100, 101].

Recursive and omni-directional structure from motion observers utilizing feature-

tracking have been recently developed [93, 102]. This particular research focuses

on the development of a recursive structure from motion observer utilizing omni-

directional availability of optic flow estimates. Formulating the observer utilizing

optic flow as the input maintains a plausible connection to biological processes. The

continuous-time formulation is appropriate given the continuous-time nature of bi-

ological computation and the effective rate at which new motion estimates become
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available. The omni-directional field of view best represents the wide-field of view

insects exhibit with compound eyes. Insects are not purported to be computing

structure from motion when performing maneuvers associated with active vision,

however. Instead, this structure from motion observer is designed to capture the

effects of the, as yet, unknown process by which insects extract and memorize envi-

ronmental structure.

7.3 Nonlinear Observer Design

The observer assumes attitude control such that the vehicle motion limits

roll and pitch angles and is effectively limited to translation and yaw rotation on

the plane normal to gravity. For this reason, the one-dimensional representation

for omni-directional optic flow, ξ(γ), utilized in the previous research on wide-field

integration, is deemed suitable.

ξ(γ) = −ω + μ(γ)u sin(γ)− μ(γ)v cos(γ). (7.1)

Figure 7.2 shows the chosen coordinate system . The self rotation, ω, and

forward/lateral translational velocities, u and v, are assumed to be known, either

through a separate measurements or perhaps via a dynamic model of the vehicle

dynamics. The nearness μ(γ), a function of viewing angle γ, is the inverse of the

current distance to objects in the environment. The notation μ(γ, ψ, x, y) reflects

the fact that the nearness depends on pose within the environment.

Defining λ(γ) = u sin(γ)− v cos(γ) as the velocity distribution,
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Figure 7.2: Coordinate System Definition for Observer

ξ(γ) = −ω + μ(γ)λ(γ), (7.2)

is a convenient method expressing the optic flow for the following analysis. The

goal of this observer is to determine a current estimate of μ̂(γ), given a continuous

measurement of ξ(γ).

Given ξ(γ), the goal is to determine an estimate μ̂(γ). It is assumed that ω,

u and v is known to within some error bound.

A well known problem regarding the simultaneous estimation of structure and

motion is that they can only be determined within a scaling constant. Simply by
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inspection of equation 7.2, one can see that the same ξ(γ) can result from an infinite

set of μ(γ)λ possibilities. With additional information about either term, however,

these terms can be determined uniquely.

7.4 Static Estimation of Structure

Assuming self-motion is known, a static estimate of the structure, μ(γ), can

be obtained from equation (7.2) as

μ(γ) = (ω − ξ(γ))
1

λ(γ)
. (7.3)

This estimate must neglect areas where λ(γ) = 0 as the estimate is undefined.

Furthermore, for practical consideration, areas where ξ(γ) or λ(γ) are even close

to zero will result in noisy structure estimates. It is for this additional reason the

problem is formulated in terms of a continuous-time observer which avoids this

possibly ill posed inversion.

7.4.1 Proof Assuming no Structured Uncertainty

A Lyapunov proof, demonstrating convergence follows in this section. Given a

generally changing retinal pattern of ξ(γ), the goal of the observer is to continuously

drive the estimated nearness function estimate, μ̂(γ) towards the true nearness,

μ(γ). Formally, the goal is represented as the minimization of the L2 function norm

‖μ(γ)− μ̂(γ)‖. Here, ξ(γ) ∈ L2[0, 2π] and μ(γ) ∈ L2[0, 2π].

A nonnegative energy function W was chosen to represent the deviation of
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μ(γ) from μ̂(γ) as

W =
1

2ρ
‖μ̂(γ)− μ(γ)‖ =

1

2ρ

∫ 2π

0

(μ̂(γ)− μ(γ))2dγ =
1

2ρ

∫ 2π

0

μ̃(γ)2dγ. (7.4)

The term ρ is simply a positive scalar value and μ̃(γ) is used to denote the

difference between the estimate and the actual nearness. A minimum of this energy

function is attained if Ẇ = 0, and stability is ensured by ensuring Ẇ < 0. This

results in:

Ẇ =
1

ρ

∫ 2π

0

(μ̂(γ)− μ(γ))( ˙̂μ(γ)− μ̇(γ))dγ (7.5)

The term ˙̂μ(γ) can be specified such that Ẇ is ensured negative. One possible

choice for ˙̂μ(γ) is

˙̂μ(γ) = μ̇m(γ)− ρξ̃(γ)λ̂. (7.6)

Here, μ̇m(γ) is included to cancel the effect of how the nearness function is

expected to change over time, given the current nearness and egomotion.

Substituting equation (7.6) into (7.5) results in

Ẇ =
1

ρ

∫ 2π

0

μ̃(γ)(μ̇m(γ)− μ̇(γ))− ρμ̃(γ)ξ̃(γ)λ̂(γ)dγ (7.7)

Assuming μ̇m(γ) = μ̇(γ), this simplifies to

Ẇ =
1

ρ

∫ 2π

0

−ρμ̃(γ)ξ̃(γ)λ̂(γ)dγ (7.8)
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The integrand contains the term ξ̃(γ) for which a substitution can be derived

from equation 7.2 as follows.

Consider the difference between the estimated and actual optic flow,

ξ̃(γ) = (ω̂ − ω) + μ̂(γ)λ̂− μ(γ)λ. (7.9)

This can be rearranged as

ξ̃(γ) = ω̃ + μ̃(γ)λ̂+ μ(γ)λ̃. (7.10)

Assume initially that ω̃ and λ̃ are zero, indicating perfect knowledge of ω, u,

and v. Doing so reduces equation (7.10) to

ξ̃(γ) = μ̃(γ)λ̂ (7.11)

and substitution of this modifies equation (7.8) to become

Ẇ ≤ −
∫ 2π

0

λ̂(γ)2μ̃(γ)2dγ (7.12)

Compare to the original storage function in (7.4) and the similarity is apparent.

Ẇ is the spatial inner product of the two positive functions λ̂(γ)2 and μ̃(γ)2. If λ̂(γ)2

was some positive constant, then exponential stability could be concluded directly.

This is not the case in general therefore the assurance of a non-zero λ̂(γ)2 term

represents a persistency of excitation requirement that must be satisfied.
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7.4.2 Requirement for Sinusoidal Motion

Considering equation 7.12, it is at first not apparent why sinusoidal motion

is required for examining a particular region of interest. In fact, given motion or-

thogonal to the desired viewing convergence area, a constant velocity would induce

the fastest convergence rate. The reason for this is that the formulation that has

been developed does not explicitly account for the effects of inertial location on the

nearness function. Consider a point on an obstacle in inertial space that is directly

orthogonal to the current motion of the vehicle. As the vehicle moves, the gamma

coordinate associated with the object being viewed shifts. Over time, as the inertial

point moves to a viewing angle that is closer to the focii of expansion or contrac-

tion, the convergence rate drops off. For this reason, if the structure at particular

inertial location is to be resolved, the best motion is that which maximizes velocity

orthogonal to the viewing angle of the structure and yet attempts to maintain the

object at that viewing location.

One might suggest a flight path that encircles the structure, thus allowing

both of the above requirements to be met without sinusoidal motion, however a

particular structure will not generally elicit the same nearness from all angles. The

nearness function associated with a particular obstacle structure will indeed be posi-

tion dependent and assumed to be unique. One only needs to consider a rectangular

obstacle, shown in figure
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7.4.3 Persistency of Excitation

Given equation (7.12), it is difficult to separate the λ̂2(γ) term from the integral

such that exponential convergence can be shown in a spatially global sense. It is

certainly true that

Ẇ ≤ −minγλ̂(γ)
2

∫ 2π

0

μ̃(γ)2dγ. (7.13)

The square of the velocity distribution, λ(γ), is

λ(γ)2 = u2 sin2(γ)− 2uv sin(γ) cos(γ) + v2 cos2(γ). (7.14)

The velocity distribution can be assured to be exactly zero at two locations

of γ at all times, however. These two locations are, in fact, the focus of expansion

and focus of contraction, which can be found by solving equation (7.14) for the zero

locations:

γ0 = atan
(v
u

)
(7.15)

The presence of these points ensure that minγλ̂(γ)
2 = 0 for all time. Given a

particular u,v and γ, λ(γ)2 can be thought of as a gain on the exponential conver-

gence of the estimation error.

If λ(γ)2 can be shown to be a non-zero, positive constant for all γ, then

exponential stability can be inferred directly. This is, however, impossible at any

one time. For constant values of u and v, there is no guarantee of convergence for

all γ locations. To guarantee exponential stability of the observer, a constraint must
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be placed on (7.14), such that the term is never zero at any γ location for more than

a short period of time.

To best illustrate the global spatial convergence of the observer, consider (7.13)

assuming a piece-wise constant discretized form of the original Lyapunov function,

with a time dependent velocity distribution. The discretization is actually appro-

priate from the standpoint of the practical implementation of the observer. The

nearness function estimate is approximated with a finite number of values. The

analysis will proceed assuming piecewise-constant discretization:

W =
K−1∑
k=0

Wk; k = 1...K − 1 (7.16)

Wk =

∫ 2π(k+1)/K

2πk/K

μ̃(γ)2dγ (7.17)

and

Ẇ =
K−1∑
k=0

Ẇk (7.18)

Ẇk = −
∫ 2π(k+1)/K

2πk/K

λ̂(γ, t)2μ̃(γ)2dγ (7.19)

Define

αk(t) = minγ=[ 2πk
K
, 2πk+1

K
]λ̂(γ, t)

2. (7.20)

Then

Ẇk = −αk(t)
∫ 2π(k+1)/K

2πk/K

μ̃(γ)2dγ = −αk(t)Wk (7.21)
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The persistency of excitation requires that there exists some finite time, T ,

such that for every t > 0 and every value of k the following condition holds:

∫ t+T

t

αk(τ)dτ ≥ α0 > 0. (7.22)

Given the discretization of the Lyapunov function, there are two values of k for

which αk will be zero at any given time. An overall average exponential convergence

can be guaranteed by continually altering λ̂(γ)2 such that αk is only zero for a short

time. The shorter time γ0 is such that αk is zero at a particular location, the shorter

T can be to ensure a positive αk The alteration of λ̂(γ)2 is affected via appropriate

u(t) and v(t) designed to alter γ0 continuously.

7.4.4 Prototypical Flight Paths for Optimal Spatial Observer Con-

vergence

Assuming a particular velocity profile over a set length of time, λ(γ, t)2, the

time integrated velocity profile indicates coverage over all γ locations over a fixed

period of time. To optimize the velocity profile for coverage over a period of time,

consider the minimization of a cost function of the spatial variance of the integrated

velocity profile.

The time integrated velocity profile will be denoted as λ́(γ):

λ́(γ) =

∫ T

0

λ(γ, t)2dt (7.23)

Minimizing the variance of this would amount to minimizing
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V ar(λ́(γ)) =

∫ 2π

0

(λ́− ν)2dγ (7.24)

where ν is the spatial mean of λ́(γ).

Taking the derivative of the variance and setting to zero to identify the ex-

trema:

∫ 2π

0

2(λ́(γ)− ν)
∂λ́(γ)

∂γ
dγ = 0 (7.25)

Assuming a fixed forward velocity is desired, it can be immediately seen that

λ́(γ) will in fact be zero at γ = 0, π, therefore some level of sideslip, v, is required to

ensure better coverage over all γ locations. Assume a periodic v(t) = v0 sin(t) with

the fixed forward velocity u0 = 1, integrating temporally from 0 to 2π (one period)

and substituting into equation (7.25).

∫ 2π

0

2(4 sin2(γ)π + 2v20 cos
2(γ)π − 2π − v20π)v0 cos

2(γ)πdγ = 0 (7.26)

Integrating to eliminate the dependence on γ:

−2v0π
3 + v30π

3 = (v2 − 2)v = 0 (7.27)

This leaves three possibilities for values of v0 that will produce an extremum

in the cost function. The trivial case, v = 0, is a worst case which minimizes the

coverage of the squared velocity distribution. v = +/−√
2 maximizes the coverage,

and in fact results in a constant value for all γ at the conclusion of each cycle.
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Figure 7.3: Prototypical Bow-tie Flight Pattern for Omni-directional Convergence

Consider a sinusoidal forward velocity profile next, u = sin(t) and a lateral

velocity profile, v = v0 sin(t). Minimizing (7.25) assuming this results in:

∫ 2π

0

2(2 sin2(γ)π + 2v20 cos
2(γ)π − π − v20π)v0 cos

2(γ)πdγ = 0 (7.28)

Neglecting the trivial minimum, v0 = 0, then the maximum is attained if

v0 = +/ − 1, which confirms that translational motion in a circle, of an arbitrary

radius, allows equal adaptation for all γ locations at the conclusion of each period.

One additional possibility that assures
∫ 2π

0
λ́(γ, t)dt = 1 for all values of γ is

that of a bow-tie shaped periodic flight pattern, shown in figure 7.3.

Given again that u(t) = sin(t), but assuming v(t) = v0 cos(2t) the optimum

value for v0 is again +/- 1.

The first case scenario is the best to consider for actually moving the vehicle

around. For a desired translational velocity, u0, the persistence of excitation of the

adaptive observer is sufficiently ensured by adding a sinusoidal velocity component,

of any desired frequency, with an amplitude equal to
√
2u0.
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7.4.5 Analytical Results for Flight within a Tunnel Environment

In this section, the solution to the above adaptive observer assuming a tunnel-

environment and a bow-tie flight pattern is evaluated. First, consider the adaptation

law with no modeling the changing nearness and explicitly noting the dependence

on time:

˙̂μ(γ, t) = −ρξ̃(γ, t)λ̂(γ, t). (7.29)

Using equation (7.11) as a substitution gives

˙̂μ(γ, t) = −ρλ̂(γ, t)2μ̃(γ, t) = −ρλ̂(γ, t)2μ̂(γ, t) + ρλ̂(γ, t)2μ(γ, t). (7.30)

The right hand side in a form that is recognizable as the time varying differ-

ential equation is

˙̂μ(γ, t) + ρλ(γ, t)2μ̂(γ) = ρλ(γ, t)2μ(γ, t), (7.31)

which has the solution

μ̂(γ, t) =

∫
p(γ, t)ρλ(γ, t)2μ(γ, t)dt+ μ(γ, 0)

p(t)
(7.32)

with

p(t) = e
∫
ρλ(γ,t)2dt (7.33)

For an observer in tunnel environment, and assuming a constant orientation
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in line with the inertial axes and with the origin located in the center of the tunnel,

μ(γ) can be analytically defined as

μ(γ, x, y) =

⎧⎪⎪⎨
⎪⎪⎩

sin(γ)
a−y 0...π

− sin γ
a+y

π...2π

(7.34)

For a bow-tie flight pattern, it is assumed that ẋ = sin(t) and ẏ = cos(2t) and

hence the positions can be found by integrating the velocities, giving a position time

history of

x(t) = − cos(t) (7.35)

y(t) = sin(2t) (7.36)

Using this, μ(γ, t), required for equation (7.32), can be found by substitution

μ(γ, t) =

⎧⎪⎪⎨
⎪⎪⎩

sin(γ)
a−sin(2t)

0...π

− sin γ
a+sin(2t)

π...2π

(7.37)

The solution path μ̂(γ, t) in equation (7.32) is plotted from two sets of initial

conditions, μ(γ, 0) = 1 in figure 7.4 and μ(γ, 0) = 0 in figure 7.5. In both cases,

a = 5, and ρ = 1. Within 8 seconds at these initial conditions and the selected value

of ρ, the characteristic double hump pattern associated with the nearness function

of a tunnel is apparent.
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Figure 7.4: Solution for μ̂(γ, t) given μ̂(γ, 0) = 1.
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Figure 7.5: Solution for μ̂(γ, t) given μ̂(γ, 0) = 0.
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7.4.6 Discretization for Implementation

The continuous form of the observer, while having desirable properties the-

oretically, will typically require discretization in both space and time for practical

implementation. The continuous nature of the theory allows the discretization to

be performed at the last possible stage in the hardware implementation, thus sup-

porting the continuous nature of computations performed using VLSI circuitry.

The spatially global persistency of excitation argument in section 7.4.3 utilized

a discretized form of the nearness function, μ̂(γ) to permit an intuitive proof of

exponential convergence. In most cases, it can be assumed that the 1D azimuthal

optic flow function, ξ(γ), will be available as spatially and temporally discrete,

equidistantly sampled measurements. In this case it is assumed that

ξ[γk, n+ 1] =

∫ (n+1)Δt

nΔt

∫ 2π(k+1)/K

2πk/K

1

Δt

ξ(γ, t)dγdt (7.38)

which leads to a discrete implementation of the observer as

μ̂[γk, n+ 1] = −ρξ̃[γk, n]λ̂[γn, n]Δt + μ̂[γk, n] (7.39)

7.4.7 Proof Assuming Presence of Structured Uncertainty

In the previous section, the presence of structures uncertainty and noise was

neglected. Here, these disturbance sources are considered. As a preemptive method

to ensure stability of the observer in the presence of noise and structured uncertainty,

a sigma modification term is included in the adaptation law.
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The adaptation law becomes

˙̂μ(γ) = μ̇m(γ)− ρξ̃(γ)λ− ρσμ̂(γ). (7.40)

Substituting this into (7.5),

Ẇ =
1

ρ

∫ 2π

0

μ̃(γ)(μ̇m(γ)− μ̇(γ))− ρμ̃(γ)ξ̃(γ)λ̂(γ)− ρσμ̃(γ)μ̂(γ)dγ (7.41)

The middle term in the integrand contains μ̃(γ)λ for which the substitution is

ξ̃(γ) = ω̃ + μ̃(γ)λ̂(γ) + μ(γ)λ̃(γ). (7.42)

which includes the structural uncertainty induced by limited knowledge of the

self-motion.

Using this and distributing 1/ρ, Ẇ becomes:

Ẇ =

∫ 2π

0

−μ̃(γ)2λ̂(γ)2−(ω̃+μ(γ)λ̃(γ))μ̃(γ)λ̂(γ)+
(μ̇m(γ)− μ̇(γ))μ̃(γ)

ρ
−σμ̃(γ)μ̂(γ)dγ

(7.43)

After completing the square, the above becomes

Ẇ ≤
∫ 2π

0

−1

2
μ̃(γ)2λ̂(γ)2 +

1

2
(Δω +Δλμ)

2 − 1

2
σμ̃(γ)2 +

1

2
(
Δμ̇

ρ
+ μ(γ)σ)2 (7.44)

Here, Δμ̇, Δω, and Δλμ denote the maximum expected absolute value of the

terms μ̇m(γ)− μ̇(γ), ω̃ and λ̃(γ)μ(γ), respectively, over all values of γ.
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If the persistency of excitation, requiring a non-zero λ̂(γ), cannot be concluded

to ensure exponential stability, the sigma modification term can do so, however it

destroys the steady state convergence of the observer. In a practical application,

the observer should be run first without the sigma modification and then included

only if necessary.

7.5 Adaptation Simulation Results

7.5.1 Simulation of Entrance Identification

Given that insects utilize active vision to identify nest holes, one apt measure of

the qualitative performance of the observer would be to use it to identify a similar

type of entrance. For this simulation a vehicle is located in front of a tunnel-

like entrance. In figures 7.8 and 7.8, the vehicle simply strafes back and forth

perpendicular to the entrance. Note that convergence does not occur at the viewing

angles located at the focii of expansion and contraction. In figures 7.9 and 7.10, the

motion is the suggested prototypical bow-tie pattern, thus ensuring convergence at

all viewing angles.

7.5.2 Simulation in a Tunnel Environment

A simulation was performed where an initialized nearness estimate was allowed

to converge to the actual nearness over time. The simulation allowed the vehicle’s

trajectory to be specified and computed Lucas-Kanade optic flow as computed using

OpenCV C functions on the imagery. The continuous-time algorithm was discretized
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Figure 7.6: Top down view of Entrance Environment

and propagated in time using standard Euler integration.

Figure 7.11 shows the setup. The vehicle is positioned in the center of a tunnel-

like environment. The vehicle executed a bow-tie pattern flight path reminiscent of

insect zig-zagging behavior. With the estimated nearness initialized to be μ̂(γ) = 1,

after 80 iterations of the algorithm, figure 7.12 shows the resulting comparison be-

tween the estimated nearness function and the actual truth nearness. The value

of the Lyapunov function, equation 7.5, is computed and plotted as a function of

iteration number in figure 7.13. The norm of the estimate error is driven exponen-

tially to zero. This simulation does not attempt to include the effects of μ̇m(γ) and

therefore this neglected term will manifest itself as structured uncertainty and hence

a disturbance to W .
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Figure 7.7: Converged Nearness Estimate Assuming 1-dimensional Motion
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Figure 7.8: Lyapunov Energy as a Function of Iterations for 1D Motion
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Figure 7.9: Converged Estimate Assuming Bow-tie Pattern
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7.5.3 Simulation within Bent Corridor

The prototypical bow-tie motion was repeated for the vehicle in a corridor

environment with a 90 degree bend. Figure 7.14 shows a top down view of the

environment. Figure 7.15 shows the resulting converged nearness function compared

with the actual truth nearness. Finally, the Lyapunov function is plotted as a

function of time in figure 7.16.
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Figure 7.14: Top Down View of Bent Corridor Environment
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7.5.4 Simulation within a Forest Environment

To test the ability of the observer to detect small obstacles, the simulation

was run similar to the previous runs, however using a “forest-like” environment

comprised of various pillars. The top down plotted actual nearness is shown in figure

7.17. The converged estimate is shown in figure 7.18, and the plotted Lyapunov

function over time is shown in figure 7.19.
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Figure 7.16: Lyapunov Energy as a Function of Iterations Assuming Bow-tie Flight
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7.5.5 Navigation using the Cost Function Minimization Method

Given a particular distribution of obstacles surrounding a vehicle, represented

by a nearness function μ(γ), one possible direction of motion would be away from

the closest obstacles and towards open areas, excluding any higher level guidance

requirements. The optimal solution for this direction can be determined by mini-

mizing a cost function that considers obstacle location and nearness. The cost of

heading in a particular direction, γd, is determined by considering how close an ob-

stacle is and the difference in angular orientation between its location on the retina

146



Non-dimensional X units

N
on

-d
im

en
si

on
al

 Y
 u

ni
ts

-60 -40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

Figure 7.17: Top Down View of “Forest” Environment

and γd. The cost is accumulated by considering all obstacles on the retina at once.

A suitable cost function can be constructed as

S(γd) =

∫ 2π

0

μ(γ)e−a0(γd−γ)
2

. (7.45)

The constant a0 in this is a decay parameter that sets the sensitivity of the

cost to angular distance between γd and an object at γ.

It can be recognized that equation 7.45 can be rewritten as the convolution of

μ(γ) with a Gaussian kernel:
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S(γd) = μ(γ) � e−a0(γd−γ)
2

. (7.46)

The optimal direction would involve minimizing this cost function. A gradient

descent formulation for finding the minimum allows the creation of a differential

equation for the estimation of the minimum. This can be given as

˙̂γmin = −b0∂S(γd)
∂γd

(7.47)

with b0 as a positive constant, and γ̂min ∈ [0, 2π].

Unless there is only one minimum for S(γd), the minimization strategy of

equation 7.47 will lead only to a local minimum. A local minimum is typically an
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acceptable direction of travel, so long as the magnitude of S(γd) at that minimum

is below a certain acceptable level. To prevent a collision brought on by a local

minimum that is too high relative to other possible directions, a “saccade” reaction

can be created. If the local minimum grows beyond a certain threshold, the global

minimum of S(γd) is computed and γ̂min is set to this location, thus initiating a

sharp “step” change in the desired direction of travel.

To address the possibility that the minimum seeking real-time optimization

algorithm is stuck in a local minimum that represents an impending collision, a

saccade reaction is included that causes the vehicle to switch its desired direction of
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travel to the global minimum via a brute force search. This is a necessary inclusion

to compliment the continuous minimum seeking nature of the minimum seeking

algorithm.

7.5.5.1 Navigation within a Forest Environment

The above developed basic navigation algorithm was simulated in a forest-

like environment. The simulation results are shown in figure 7.20. Note that the

vehicle doubles back on its initial path. A primary purpose of this simulation is to

demonstrate that while the observer does not explicitly account for the continuous

change in the actual nearness function, the observer is still capable of performing

well in a dynamically changing environment so long as the gain ρ is sufficiently high.

7.6 Experimental Validation on a Flying Quadrotor Platform

This section presents the validation of the observer using an actual flying

testbed platform. The azimuthal optic flow was provided by the Centeye Faraya

Ring, providing 56 optic flow measurements, shown in figure 7.21. The angular

spacing between optic flow elements was assumed to be constant, although slight

offsets due to manufacturing tolerances were present. The individual sensor fields

of view overlap slightly, ensuring complete coverage of the azimuth.

The raw output of the sensors needed to be calibrated to physical units. This

calibration was performed using a yaw rate table test stand, shown in figure 7.22. A

representative optic flow output curve is shown in figure 7.23. A linear calibration
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Figure 7.20: Simulation of Navigation in a Forest-like Environment
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curve was estimated for each sensor independently using the approximately linear

range of [−2, 2] rad/s.

A top down view of the experimental setup is shown in figure 7.24. A diagram

of this setup is shown in 7.25. The objective was to identify the azimuthal angular

location and approximate nearness of the three pillar obstacles using small deviations

from the starting position.

The estimated nearness after approximately 23 seconds of flight is shown in

7.26. The influence of the three pillars can be seen, however a slight offset between

the actual nearness and the estimated nearness is noted. This is due to the perceived

azimuthal locations of the pillars changing as the vehicle moves. The resulting

estimate reflects a spatial averaging effect. This can be reduced if the obstacles

are at a greater distance given the same pattern of self-motion, or if the pattern

of self-motion deviates less from the starting position. Furthermore, a distinct over

prediction in the nearness is noted. An overprediction in the nearness is due to a

over prediction in the optic flow. The likely reason for this is an over prediction

in the linear calibration curve within the range of operation that the sensors were

used for the test. Finally, while the indicated “actual” nearness function is zero

between the pillar obstacles for illustrative reasons, it is apparent from the actual

photo, figure 7.24, that the walls and boxes around the edge of the room are close

enough to account for the non-zero nearness between obstacle azimuthal locations

in 7.26. Nevertheless, this experimental implementation, as well as the simulations,

demonstrate that the structure from motion observer presented in this thesis shows

promise as a realistic approach to navigation.
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Figure 7.21: Quadrotor Experimental Setup with Centeye Faraya Sensor Ring

Figure 7.22: Calibration Yaw Rate Test Stand
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Chapter 8

Conclusions and Future Work

While the primary focus of this thesis involves visual navigation, it also ad-

dresses many aspects of a complete micro air vehicle control and navigation system.

A motivating factor throughout this research was the desire to physically implement

developed theory to demonstrate the feasibility. To accomplish this goal, several con-

tributions involved developing and advancing the prerequisite theory and hardware

comprising actual experimental MAV testbed experiments.

A primary prerequisite for attempting to implement visual navigation theory

is the availability of a sufficiently stable platform with which to work. A stable

platform requires that many subsystems work together efficiently. For this reason,

this thesis also presents advances in avionics development, feedback control, and

state estimation, as well as the demonstration of the practicality of using system

identification to estimate useful yet minimum complexity flight dynamics models for

MAVs.

8.1 State Sensing

Several generations of avionics systems were custom developed to facilitate

the implementation of autonomy on the desired testbed vehicles. Unlike commer-

cially available models, emphasis was placed on ease of integration and telemetry
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bandwidth.

8.2 System Identification

System identification was performed on the Honeybee single main rotor electric

helicopter. Investigation of the identified vehicle dynamics showed that the hybrid

model typically used for large scale helicopters is also applicable to these micro

rotorcraft. This identification also allowed the assumption of the cyclic, heave, and

yaw dynamics as independent dynamic models for control design purposes.

8.3 Feedback Control

Feedback control was implemented both on-board and off-board as necessary

to support the demonstration of the desired visual navigation experiments. The

lateral/longitudinal dynamics, heave dynamics, and yaw dynamics were decoupled

and treated as separate systems, allowing certain degrees of freedom to be controlled

using off-board feedback and others to be controlled using on-board feedback as

desired. Most typically, a particular desired height was maintained to permit the

assumption of planar motion in the environment.

8.4 State Estimation

State estimation algorithms were used primarily to permit an attitude estimate

using on-board inertial sensing. The developed visual algorithms, however, can be

viewed as a form of state estimation as well, with proximity to obstacles as being
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the “states”.

8.4.1 Relative Proximity Navigation using Wide-Field Integration of

Optic Flow

The visual navigation development was implemented as an outer loop to the

inner loop control that stabilized the vehicle. Prior developed wide-field integration

theory was demonstrated successfully for the first time on a 6 DOF flying vehicle.

This successfully demonstrated the mimicry of the neural architecture and behavior

of insects in an artificial flying robot.

8.4.2 Structure from Motion Observer

The core contribution of this thesis, however, is the theoretical development

of a nonlinear observer for structure from motion with omni-directional spatial ex-

ponential convergence, on average, assuming the persistency of excitation condition

is met. The proposed observer is ideal for vehicles that exhibit hovering and uncon-

strained motion through the environment due to the usage of omni-directional mo-

tion estimation. The persistency of excitation condition can be intuitively thought

of as not allowing the focus of expansion and focus of contraction to remain at

the same viewing angles for too long. In fact, best performance of the observer,

in terms of omni-directional spatial convergence, is possible if the vehicle follows

certain prototypical motions. The persistency of excitation requirement provides

mathematical insight as to why some insect species perform zig-zagging flight pat-
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terns to extract structure from the environment, through a process known as active

vision. Structured uncertainty regarding the self-motion of the vehicle or how the

environment changes with position, as well as random noise, will be manifest as

disturbances to the Lyapunov function. These disturbances will not destroy the

inherent exponential stability of the observer.

8.5 Future Work

This observer was implemented in simulation and experimentally and has been

demonstrated to be a feasible, practical, and realistic approach to optic flow-based

obstacle detection. This initial theoretical design can be improved upon in several

ways. It may not be the case that any knowledge of the self-motion is available,

either through direct measurement or through knowledge of a dynamic model. In

this case, the observer must be modified to allow the optic flow to estimate the self-

motion as well, which would result in well known structure and motion identification

ambiguities. The observer can be extended to the case where other measurements,

such as absolute distance sensors or radar, can be incorporated to aid in this case.

Furthermore, one obvious deficiency of the observer is the restriction to planar

motion. To accommodate more aggressive maneuvering, the observer should be

extended to the cylindrical, or more elegantly, the spherical case, utilizing 3D omni-

directional optic flow.

Finally, while the observer recognizes that the actual nearness of the envi-

ronment does change, according to μ̇(γ), there is no explicit attempt in this thesis
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to account for it. A modified approach would be to attempt to explicitly account

for the change in the nearness as the vehicle’s inertial position changes, through

inclusion of inertial states in the observer.

Given the addition of a model of μ̇(γ), the observer is ideally suited for the

detection of small obstacles from optic flow. As a small object moves across the

retina, or imaging space, if no attempt is made to capture where the object is

expected to be on the retina as a function of time, the influence of the optic flow

generated by that object tends to be averaged over the spatial domain along which

it moved.
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