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We study a special class of misspecified generalized linear models, where the

true model is a mixed effect model but the working model is a fixed effect model

with parameters of dimension increasing with sample size. We provide a sufficient

condition both in linear models and generalized linear models under which the MLE

derived from the misspecified working model converges to a well defined limit, and is

asymptotically normal. The sample variance under the linear model is biased under

model misspecification; but there exists a robust variance estimator of the MLE

that converges to the true variance in probability. Criterion-based automatic model

selection methods may select a linear model that contains many extra variables,

but this can be avoided by using the robust variance estimator for the MLE β̂n in

Bonferroni-adjusted model selection and by choosing λn that grows fast enough in

Shao’s GIC. Computational and simulation studies are carried out to corroborate

asymptotic theoretical results as well as to calculate quantities that are not available

in theoretical calculation. We find that when the link function in generalized linear



mixed models is correctly specified, the estimated parameters have entries that are

close to zero except for those corresponding to the fixed effects in the true model.

The estimated variance of the MLE is always smaller (in computational examples)

than the true variance of the MLE, but the robust “sandwich” variance estimator

can estimate the true variance very well, and extra significant variables will appear

only when the link function is not correctly specified.
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Chapter 1

Background and Preliminaries

1.1 Background

“The method of maximum likelihood is, by far, the most popular technique

for deriving estimators” (White[32], p.1). A fundamental assumption underlying

classical asymptotic large-sample results on maximum likelihood estimation is that

the stochastic law which determines the behavior of the data is known to lie within a

specified parametric family of probability distributions (the proposed models). The

true probability distribution (the correct model) is assumed to be one of the distri-

butions in the specified family, or in other words the model is “correctly specified”.

In many situations, this might not be true. “Model misspecification” means that the

specified probability family does not include the true probability law that governs

the data.

Discussions of model misspecification go back to the 1960’s. White [32] has

a detailed account of past literature in the introductory section of his paper. He

also examined the consequences and detection of model misspecification when us-

ing maximum likelihood techniques for estimation and inference. He proved under

some regularity conditions in a setting with large samples of independent and iden-

tically distributed (iid) data that the estimator maximizing the working likelihood

converges to a well defined limit, and gave more general robust statistics that are
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analogous to Wald tests of significance for the “correctly specified” case.

The main objective of our analysis is to study a special class of misspecified

models, where the true model is a mixed effect model, while the working model

fails to account for the random effect, using fixed effects only. Moreover, in all but

the simplest problems, some models with relatively large numbers of parameters

are considered, particularly when the sample size is large. So we are allowing the

dimension of the parameter space to expand at some rate less than the sample

size. If we assume that different parameter values identify different probability

laws in the parametric family, then the parameter space is the set including all the

possible parameter values. Most statistical procedures depend heavily on asymptotic

methods which rely on the central limit theorem for the parameter estimators and

provide good approximations for remarkably small sample sizes when the dimension

of the parameter space is fixed and not too large. When we allow the parameter space

of our working model to grow with the sample size, the validity of the approximation

need to be carefully examined. Portnoy [20] studied the asymptotic behavior of

likelihood methods in natural exponential families when the number of parameters

tends to infinity, and gave a rate at which the number of parameters can increase

(compared to the sample size) so that the asymptotic distributional approximations

for maximum likelihood estimators and likelihood ratio tests may be accepted as

reliable. Other discussions of this sort include Strawderman and Tsiatis [27] and He

and Shao [12], who focused on consistency and asymptotic normality of M-estimators

when the parameter space is increasing with the sample size.

Our problem has two aspects that are in violation of assumptions of classical
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statistical analysis: the misspecification of the model, and the increasing dimension

of the parameter space. Apparently, the past works of White [32] and Portnoy

[20] and each addressed one aspect of the problem but not the other: White [32]

assumed that the data are independent and identically distributed (iid) , and the

parameter space is fixed, while Portnoy[20] assumed that the data are iid and the

model is correctly specified. Therefore our case is not a direct application of any of

theirs. But their previous work provides a variety of tools we can use in our special

situation.

With a fixed-effect working model with expanding dimension when the true

model is a fixed-dimensional mixed effect model, we want to study the effects of

misspecification on the number of spurious variables in model selected by automatic

model selection. Various papers discussed strategies of choosing the optimal model

according to certain criteria by an automatic selection procedure. The selected

model will minimize (maximize) the specific criterion, and in this setting consistency

and asymptotic efficiency of the final model have been well studied for models of

a fixed dimension. (See, for example, Rao and Wu[21] for a list of these selection

methods and their asymptotic properties.) Since any model selected will still be a

fixed-effect model and thus cannot be the right one, we are more concerned about

the number of spurious variables in the model, i.e. the number of variables in the

selected “optimal model” that are not the true fixed effects. We want to determine

if leaving out the random effect will lead us to include more variables than necessary

in the final model chosen by an automatic model selection method.
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1.2 Overview

The main topics we cover in this project are the effects of the specific model

misspecification as outlined in Section 1.1 on parameter estimation and model se-

lection.

Results are demonstrated in the two subsequent chapters. In Chapter 2 we

focus on the normal-linear regression models, and in Chapter 3 we discuss the Gener-

alized Linear Models with the Logistic and Poisson regression models as two special

cases.

Section 2.2 discusses in detail the asymptotic behavior of the estimators de-

rived from the working model, including the Least Squares (LS) estimator and the

sample variance as a variance estimator. Results on asymptotic behavior of the

estimators, when the dimension of the parameter space is fixed or when the model

is correctly specified, are available from the past literature. Asymptotic analysis of

the estimators under our specific setting is neither discussed elsewhere nor a direct

application of past results. We use techniques of Portnoy [20] to study the conditions

under which the LS estimator is still consistent and asymptotically normal. We also

prove that the sample variance is a biased estimator of variance of the LS estimator,

propose a robust version of the variance estimator, and prove its consistency under

the model misspecification using techniques of White [32].

Sections 2.3 and 2.4 both study the effect of model misspecification on criterion-

based model selection procedures. The quantity we are interested in is the expected

number of extra variables in the optimal model selected by a model selection pro-
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cedure. We prove in Section 2.3 that the Bonferroni-adjusted model selection pro-

cedure will choose a model that contains a number of extra variables that goes to

infinity with the sample size if we use the sample variance as the variance estimator,

but if we use the robust sandwich variance estimator, the experiment-wise error rate

will be controlled at the right level. In Section 2.4 we study Shao’s GIC, which rep-

resents a class of popular model selection methods, and conclude that the expected

number of extra variables can be near zero if we let λn in Shao’s GIC increase fast

enough.

In Chapter 3, we first discuss the consistency and asymptotic normality of

the MLE in a general setting in Section 3.2. We give conditions under which the

MLE is consistent and asymptotically normal. These conditions are then checked

in Section 3.3 and 3.4 as special cases. Unlike the normal-linear regression case

where the MLE converges to the parameters in the true model, in generalized linear

models the MLE converges to the point in the parameter space which minimizes

the Kullback-Leibler distance between the true and the working models. We also

calculate or approximate this limit in Section 3.3 and 3.4. The computation and

simulation studies in Section 3.5 confirm the theoretical results and suggest results

that are not theoretically available.

1.3 Notations

Throughout our analysis we assume that the data are clustered samples. Clus-

tered samples arise frequently in practice. This clustering may be due to gathering
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repeated measurements on experimental units as in longitudinal studies or may be

due to subsampling the primary sampling units. The latter type of design is com-

mon in fields such as ophthalmology, where two eyes form natural clusters, and

teratology, where one gathers data on all members of a litter.

The data consist of a response variable yij together with a pn-dimensional

vector of covariates xij ∈ Rpn, that is, xij are row vectors of dimension pn. The

data are gathered in clusters or groups, and i ∈ {1, · · · ,m} indexes clusters while

j ∈ {1, · · ·ni} indexes units within clusters. Therefore, there is a one-to-one cor-

respondence between the single and double indexing: (i, j) ↔ t =
∑i−1

k=1 nk + j for

j ∈ {1, · · · , ni}, i ∈ {1, · · · ,m} and t ∈ {1, · · · , n}, where ni is the total number

of objectives (responses) in the ith cluster, and n =
∑m

i=1 ni is the sample size.

For the subsequent chapters, we will assume that the true model is a mixed-

effect model, and the working model is a fixed-effect model. We denote by X∗
n the

n × p∗ design matrix of the true model, and β∗ its p∗ × 1 fixed effects parameter

vector. The random effect is assumed to be a random intercept at the cluster level.

The vector of random effects of the true model is denoted by u, a m × 1 random

vector. The n×pn design matrix Xn of the working model includes all the columns of

the true model, i.e. Xn = (X∗
n|X0

n), where X0
n is a n× qn matrix. The pn × 1 vector

βn denotes the parameter vector in the working model. The number p∗ of fixed

effects in the true model is fixed but we will allow qn (and therefore pn = p∗ + qn) to

depend on n. The situation where the design matrix of the working model does not

include all the columns of the true model (“Omitted Covariates”) was discussed in

Neuhaus [19] and Drake and McQuarrie [8], and will not be considered here.
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With clustered data, it is useful to mention two special types of covariates.

The first type, a cluster-constant or cluster-level covariate, has the same value for

all the units in the cluster. This is the type of covariates we assume in Chapter

2, with the additional assumption that the (distinct) cluster-level covariates come

from a common distribution. The second covariate type, a designed within-cluster

covariate, varies with identical distribution across the units within each cluster. This

is the type of covariates we assume in Chapter 3, with further assumption that all

the covariates come from a common distribution.

Since we have two types of covariates (the cluster-constant and designed within-

cluster covariates), we use the notations X̃n and ñ instead of Xn and n as generic

notations in this chapter. With cluster-constant covariates, X̃n is the m×pn matrix

consisting of the row vectors of Xn from the m clusters (or, the m cluster-level co-

variates), and ñ = m. With designed within-cluster covariates, X̃n = Xn and ñ = n.

The number pn of parameters in the working model is the same in both types of

covariates, so the generic notation for pn is still pn.

We denote by x̃t̃ for t̃ ∈ {1, · · · , ñ} the ñ rows of X̃n. Let xij or xt be the row

vectors of Xn, let x∗
ij or x∗

t the row vectors of X∗
n, for j ∈ {1, · · ·ni}, i ∈ {1, · · · ,m}

and t ∈ {1, · · · , n}. We use the pair (ij) exclusively for indices of the double-indexed

responses or rows of X∗
n and Xn, and t for the corresponding indices of the single-

indexed responses or rows. The column vectors of Xn are x(k) and the column

vectors of X̃n are x̃(k) for k ∈ {1, · · · , pn}. We suppress the subscript n in these

notations but they all depend on n. All boldface lowercase letters except for the

letter x (with subscripts and/or superscripts) are column vectors. Prime of a vector
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or matrix denotes transpose, while prime of a function denotes derivative.

1.4 Definitions

In this section we will list the definitions that are needed in the following

chapters.

Definition 1.1 (Special Matrix Notations) The following notations are reserved

for special matrices:

1. Jn : the n × n matrix whose elements are all 1’s.

2. In : the identity matrix of size n.

3. 1n : the n × 1 vector whose entries are all 1′s.

4. D = diag(d1, d2, · · · , dn) : the n × n diagonal matrix with d1, d2, · · · , dn as its

diagonal elements; when d1, d2, · · · , dn are square matrices, the notation means

that D is a block-diagonal matrix with d1, · · · , dn as its diagonal sub-matrices

and zero matrices (of the right dimension) as its off-diagonal sub-matrices.

Definition 1.2 (Op, op, O and o) We say: Vn = Op(Rn) if and only if Vn =

RnOp(1), where Op(1) denotes a sequence that is bounded in probability. Vn = op(Rn)

if and only if Vn = Rnop(1), where op(1) denotes a sequence that goes to zero in

probability. Similarly, for two functions f and g, f = O(g) means f(x)/g(x) stays

bounded as x → ∞, and f = o(g) means f(x)/g(x) → 0 as x → ∞.
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Definition 1.3 (Ordering of matrices) We say that the n×n symmetric matrix

P1 is less than another n× n symmetric matrix P2 in the matrix sense, denoted by

P1 ≤ P2, if

v′P1v ≤ v′P2v (1.1)

for all unit vectors v ∈ Rn. The strict ordering P1 < P2 means that the inequalities

(1.1) are strict for all unit vectors v.

There are two immediate conclusions we can draw if P1 ≤ P2 :

1. (P2 − P1) is a nonnegative definite matrix;

2. trP1 ≤ trP2.

Definition 1.4 (Lp Norm for a random variable) For p > 1, and random vari-

able ξ, if E|ξ|p exists, then the Lp norm of ξ is ‖ξ‖p = (E|ξ|p)1/p.

There are many norms defined for a vector or a matrix. In the subsequent

chapters when we use the norm ‖ · ‖, we mean the Euclidean norm of a vector and

the operator norm of a square matrix:

Definition 1.5 (Norm of A Vector) For a vector v = (v1, v2, · · · vn) ∈ Rn, the

Euclidean norm is

‖v‖ =

(
n∑

i=1

v2
i

)1/2

=
√

v′v.

Definition 1.6 (Norm of a Square Matrix) For a square matrix M, the oper-

ator norm is

‖M‖ = sup
‖v‖=1,v∈Rn

v′Mv.
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For a nonnegative definite symmetric square matrix M, all eigenvalues are

nonnegative real numbers. Let λmax(M) and λmin(M) be the largest and smallest

eigenvalues of M, or equivalently:

Definition 1.7 (Alternative Definition of λmax(M) and λmin(M))

λmax(M) = sup
‖v‖=1

v′Mv

λmin(M) = inf
‖v‖=1

v′Mv.

A direct application of Definition 1.7 is

‖M‖ = λmax(M) (1.2)

for nonnegative definite symmetric matrix M.

Definition 1.8 (∇ and ∇⊗2) The gradient of function f(v) with respect to vector

v is defined by

∇vf ≡ ∂f(v)

∂v

and the Hessian of f with respect to v is defined by

∇⊗2
v f ≡ ∂2f

∂v∂v′.

For a n × 1 vector v,

v⊗2 = vv′.

Definition 1.9 (Modes of approximation) For two real sequences an and bn,

we say

1. an ≈ bn if and only if an − bn → 0 when n → ∞.
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2. an ∼ bn (with bn 6= 0) if and only if an/bn → 1 when n → ∞.

If at least one of the sequences is random, we use
p
≈ and

p∼, and the limit is in

probability.

A similar definition is available for functions:

Definition 1.10 (Modes of approximation for functions) For two functions f1(x)

and f2(x) we say

1. f1(x) ≈ f2(x) at x = x0 if and only if limx→x0(f1(x) − f2(x)) = 0.

2. f1(x) ∼ f2(x) at x = x0 if and only if limx→x0 f1(x)/f2(x) = 1.

Definition 1.11 (ε− Ball) The ε−ball of a vector v ∈ Rn, denoted by Bε(v), is

the compact set

Bε(v) = {w ∈ Rn : ‖w − v‖ ≤ ε}.

Definition 1.12 (Asymptotic Normality (Strong Sense)) The pn×1 estima-

tors θ̂n are said to be asymptotically normal if for any unit vectors vn ∈ Rpn the

standardized scalars
√

nσ−1
vn

v′
nθ̂n are standard Normal.

The triangular array wi,n is row-independent if for each n the sequence wi,n

for 1 ≤ i ≤ n consists of independent variables. Let E[wi,n] = 0 for all i and n and

σ2
n =

∑n
i=1 E[wi,n]

2, then

Definition 1.13 (Lyapunov Condition for Triangular Arrays) The row -independent

triangular array wi,n is said to satisfy the Lyapunov condition if there exists δ > 0

such that
∑n

k=1 E|wi,n|2+δ

σ2+δ
n

→ 0. (1.3)
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The Lyapunov condition is a sufficient condition for the Central Limit Theorem

to hold(see, for example, Shiryaev [26]). For sequence wt,n satisfying the Lyapunov

Condition (1.3), the normalized row sum converges to standard normal when n →

∞.

1.5 Assumptions

Assumption 1.1 The elements of the vector β∗ ∈ Rp∗ satisfy |β∗
i | > 0, ∀i ∈

{1, · · · , p∗}.

For large sample results, we need to control the rate at which the number of

parameters in the working model is growing with the sample size, which leads to

the next assumption:

Assumption 1.2 The total number of parameters in the working model is pn = p∗+

qn, where pn = O(nθ), with θ < 1/4. Particularly, we assume that pn = [anθ)] where

[x] means “the greatest integer less than or equal to x, or pn = anθ(1 + O(1/ log n))

for some constant a > 0.

Our response data are not independent and identically distributed (iid), since

the responses from the same cluster share the same unobservable random effect. To

be able to use the large sample theory in the literature, we can view x̃t̃ as a random

sample from a random vector ξ(n), and discuss the problems at the cluster level,

where a function of the response and the covariates is iid. Therefore we make the

following assumption:

12



Assumption 1.3 For each n, the rows of X̃n are iid from the same distribution

F
ξ(n) . Let ξ

(n)
k be the kth element of ξ(n). Then

E|ξ(n)
k |4r < C, for k ∈ {1, · · · pn}, and r >

2θ

1 − 2θ
.

That is, the (4r)th moments of the elements of ξ(n) are uniformly bounded where r

is a fixed number.

Remark: By allowing uniformly bounded higher moments on the elements of

X̃n, the matrix ñ−1X̃′
nX̃n can be better controlled when ñ goes to infinity. In later

discussions, we will give sufficient conditions on how large r should be for various

purposes. 2

Let the pn × pn matrix Σ(n)
x ≡ E

[
ξ(n)⊗2

]
be defined for 1 ≤ k, l ≤ pn by

{Σ(n)
x }kl ≡ E[ξ

(n)
k ξ

(n)
l ].

Assumption 1.4 There exist positive constants m∗ and M∗ independent of n such

that for every n,

m∗Ipn ≤ Σ(n)
x ≤ M∗Ipn.

Remark 1: Because we allow the number of parameters to go to infinity with the

sample size n, we might face multicollinearity problems when there are too many

parameters in the model; Assumption 1.4 bounds Σ(n)
x below and above so that it

is always a nonsingular matrix, and as we prove later that (ñ−1X̃′
nX̃n) is very close

to Σ(n)
x , the multicollinearity problem is avoided because X̃n will have full rank. 2

Remark 2: Assumption 1.4 also guarantees that for any b ∈ Rpn with ‖b‖ 6=

0, the random variable ξ(n)b will not degenerate to 0, and for ‖b‖ < ∞, the random

13



variable ξ(n)b has finite second moment. To see this, note that E[b′ξ(n)′ξ(n)b] =

b′Σ(n)
x b is bounded away from both 0 and ∞ by Assumption 1.4. 2

Up to now we have not discussed the assumptions on the cluster sizes ni. In a

clustered data structure, there are two ways to increase the sample size: to increase

the number of clusters (m → ∞) or to increase the cluster sizes (ni → ∞). We

consider the first case and view ni as a sample from some population with finite

moments. Since m goes to infinity at the same rate as n, we exchange O(m) and

O(n) in the subsequent chapters without specific comment. Moreover, in the generic

notation, O(ñ) = O(n) for both types of covariates, and we do not make further

comment about the difference between O(ñ) and O(n) in this chapter, either.

Assumption 1.5 The numbers ni, i = 1, · · · ,m are independent, identically dis-

tributed random variables with 1 < ni ≤ Nmax almost surely, En1 = N1 > 1 and

En2
1 = N2 < ∞.

The following assumption provides iid clusters:

Assumption 1.6 For each n, the pairs (x̃t̃, nt̃) are iid for different t̃.

1.6 The Problem of Increasing Dimension

In classical statistical analysis, the number of parameters in the model is usu-

ally fixed. But in real statistical analyses the complexity of a model is often related

to the size of available data. The asymptotic distribution of the parameter esti-

mates are usually derived by taking the sample size to infinity for a fixed number
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of parameters. Usually in large sample inference, when the dimension of X′
nXn is

fixed and Xn has iid rows, the stability of the matrix (n−1X′
nXn) follows from the

Law of Large Numbers(LLN) applied to the p columns of Xn and virtually poses

no additional difficulty beyond applying LLN finitely many times. When we have a

parameter space of increasing dimension, this method is no longer valid. Firstly, we

need to point out that when the dimension of Xn grows with n, the convergence of

(ñ−1X̃′
nX̃n)−1 is in the sense of operator norm. That is,

∥∥∥(ñ−1X̃′
nX̃n) − Σ(n)

x

∥∥∥ → 0

with probability approaching 1. For this “convergence in operator norm”, we need

the contribution ( of the difference between (n−1X′
nXn) and its expectation) from

each column to be controlled to order p−1
n . This can be done by assuming finite

higher order moments for the entries of ξ(n) and using the Burkholder Inequality

(See Proposition B.1). This is similar to the approach Portnoy [20] took.

Theorem 1.1 Under Assumptions 1.2 and 1.3, when r > 2θ/(1 − 2θ), there exists

a sequence añ → 0 when ñ → ∞ such that with probability going to 1,

1

ñ
X̃′

nX̃n − Σ(n)
x ≤ añIpn. (1.4)

Proof: By the Cauchy-Schwarz inequality,

E|ξ(n)
k ξ

(n)
l |2r ≤

√
E|ξ(n)

k |4rE|ξ(n)
l |4r ≤ C

for each k, l ≤ pn. So the sequence η
(kl)

t̃
= x̃t̃kx̃t̃l −

(
Σ(n)

x

)
kl

is iid with zero mean

and finite (2r)th moment uniformly in k and l. By Proposition B.1 in the Appendix,

E

∣∣∣∣∣∣
1

ñ

ñ∑

t̃=1

η
(kl)

t̃

∣∣∣∣∣∣

2r

≤ C2r
2r‖η

(kl)
1 ‖2r

2rñ
−r.
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Let ε = r(1 − 2θ) − 2θ > 0 and 0 < δ < ε/2r. By Chebyshev’s inequality,

P



∣∣∣∣∣∣
1

ñ

ñ∑

t̃=1

x̃t̃kx̃t̃l −
(
Σ(n)

x

)
kl

∣∣∣∣∣∣
≥ ñ−δp−1

n




= P




∣∣∣∣∣∣
1

ñ

ñ∑

t̃=1

η
(kl)

t̃

∣∣∣∣∣∣

2r

≥ ñ−2rδp−2r
n




≤ C2r
2r‖η

(kl)
1 ‖2r

2rñ
2rδ−rp2r

n . (1.5)

Therefore,

P


 max

1≤k,l≤pn

∣∣∣∣∣∣
1

ñ

ñ∑

t̃=1

η
(kl)

t̃

∣∣∣∣∣∣
≥ ñ−δp−1

n




≤ p2
nP




∣∣∣∣∣∣
1

ñ

ñ∑

t̃=1

η
(kl)

t̃

∣∣∣∣∣∣

2r

≥ ñ−2rδp−2r
n




≤ Mrñ
2δr−rp2r+2

n (1.6)

where Mr is a constant that depends on r but not k, l or ñ. Since pn = O(nθ) = O(ñθ)

and δ < ε/2r,

ñ2δr−rp4r+2
n = O(ñ2δr−r+2θr+2θ) = O(ñ2δr−ε) → 0.

Let M(ñ) ≡ 1
ñ
X̃′

nX̃n − Σ(n)
x . Then the element of M(ñ) in the kth row and lth

column is M
(ñ)
kl = ñ−1∑ñ

t̃=1 η
(kl)

t̃
, and so far we have proved that

P
[

max
1≤k,l≤pn

∣∣∣M(ñ)
kl

∣∣∣ ≥ ñ−δp−1
n

]
= O(ñ2δr−ε) → 0. (1.7)

If v ∈ Rpn with ‖v‖ = 1, and let vk denote the kth element of v. By using Cauchy-

Schwarz twice, we get

v′M(ñ)v =
pn∑

k=1

pn∑

l=1

M
(ñ)
kl vkvl

≤

√√√√
pn∑

k=1

v2
k

pn∑

k=1

(
pn∑

l=1

M
(ñ)
kl vl

)2
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=

√√√√
pn∑

k=1

( pn∑

l=1

M
(ñ)
kl vl

)2

≤ √
pn max

1≤k≤pn

∣∣∣∣∣

pn∑

l=1

M
(ñ)
kl vl

∣∣∣∣∣

≤ √
pn max

1≤k≤pn

√√√√
pn∑

l=1

v2
l

pn∑

l=1

(
M

(ñ)
kl

)2

=
√

pn max
1≤k≤pn

√√√√
pn∑

l=1

(
M

(ñ)
kl

)2

≤ pn max
1≤k,l≤pn

∣∣∣M(ñ)
kl

∣∣∣ , (1.8)

and sup‖v‖=1 v′M(ñ)v ≤ pn max1≤k,l≤pn

∣∣∣M(ñ)
kl

∣∣∣ . Let añ = ñ−δ; then

P
[
1

ñ
X̃′

nX̃n − Σ(n)
x ≥ añIpn

]
= P

[
sup
‖v‖=1

v′M(ñ)v ≥ ñ−δ

]

≤ P
[
pn max

1≤k,l≤pn

∣∣∣M(ñ)
kl

∣∣∣ ≥ ñ−δ
]

(1.7)

≤ O(ñ2δr−ε) → 0 (1.9)

Therefore, with probability approaching 1, there exists a sequence añ = ñ−δ → 0

such that M(ñ) = 1
ñ
X̃′

nX̃n − Σ(n)
x ≤ añIpn. 2

The following corollary is obvious by defining η
(kl)

t̃
≡
(
Σ(n)

x

)
kl
− x̃tkx̃tl and

following the exact same arguments:

Corollary 1.1 Under Assumptions 1.2 and 1.3, there exists a sequence añ → 0

when ñ → ∞ such that

Σ(n)
x − 1

ñ
X̃′

nX̃n ≤ añIpn.

Theorem 1.1 and Corollary 1.1 therefore give a bound for the difference be-

tween ñ−1X̃′
nX̃n and Σ(n)

x :

−añIpn ≤ 1

ñ
X̃′

nX̃n − Σ(n)
x ≤ añIpn.
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Corollary 1.2 Under Assumptions 1.2 and 1.3, ‖ 1
ñ
X̃′

nX̃n −Σ(n)
x ‖ = Op(añ).

Proof: From Theorem 1.1, with probability approaching 1,

∥∥∥∥
1

ñ
X̃′

nX̃n − Σ(n)
x

∥∥∥∥ = sup
‖v‖=1

v′
(

1

ñ
X̃′

nX̃n − Σ(n)
x

)
v ≤ sup

‖v‖=1
v′añIpnv = añ.

2

Corollary 1.3 Under Assumptions 1.2-1.4, the matrix Σ(n)
x is positive definite for

any n, and for n large enough, the matrix (ñ−1X̃′
nX̃n) is also positive definite.

Proof: Under Assumption 1.4, for any v ∈ Rpn,

v′Σ(n)
x v ≥ m∗v′Ipnv = m∗ > 0,

so Σ(n)
x is potsitive definite. Since añ → 0, for ñ large enough añ < m∗ and

1

ñ
X̃′

nX̃n ≥ Σ(n)
x − añIpn ≥ (m∗ − añ)Ipn,

which makes (ñ−1X̃′
nX̃n) potsitive definite. 2

Corollary 1.4 Under Assumptions 1.2-1.4, the eigenvalues of (ñ−1X̃′
nX̃n) are bounded

below and above by (m∗ − añ) and (M∗ + añ), respectively.

Proof: From Theorem 1.1 and proof of Corollary 1.3,

(m∗ − añ)Ipn ≤ 1

ñ
X̃′

nX̃n ≤ (M∗ + añ)Ipn.

The corollary follows then by Definitions 1.3 and 1.7. 2

Corollary 1.5 Under Assumptions 1.2-1.4,

∥∥∥∥
(
ñ−1X̃′

nX̃n

)−1
−
(
Σ(n)

x

)−1
∥∥∥∥ = Op(añ).
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Proof: By Assumption 1.4 and Definition 1.7,

λmin

(
Σ(n)

x

)
≥ m∗

∥∥∥∥
(
Σ(n)

x

)−1
∥∥∥∥ = λ−1

min

(
Σ(n)

x

)
≤ 1

m∗

and similarly

∥∥∥∥
(
ñ−1X̃′

nX̃n

)−1
∥∥∥∥ = λ−1

min

(
ñ−1X̃′

nX̃n

)
≤ 1

m∗ − añ
.

Therefore

∥∥∥∥(ñ
−1X̃′

nX̃n)−1 −
(
Σ(n)

x

)−1
∥∥∥∥ ≤

∥∥∥∥
(
ñ−1X̃′

nX̃n

)−1
∥∥∥∥
∥∥∥∥
(
Σ(n)

x

)−1
∥∥∥∥
∥∥∥ñ−1X̃′

nX̃n − Σ(n)
x

∥∥∥

≤ 1

m∗(m∗ − añ)

∥∥∥ñ−1X̃′
nX̃n − Σ(n)

x

∥∥∥ = Op(añ).(1.10)

2

In later chapters, when we discuss the asymptotic limit of pn × pn matrices,

we often need the quantity maxt≤n,k≤pn |x̃tk| to be bounded in probability by some

power of ñ. We need the following lemma on th maximum of independent variables

to prove Theorem 1.2.

Lemma 1.1 Let wt,n be a row-independent triangular array, where for each n, the

sequence wt,n is iid for 1 ≤ t ≤ n. If there exists a constant C > 0 such that

E|wt,n|p ≤ C < ∞, then for any δw > 0,

max
1≤t≤n

|wt,n| = Op(n
1/p+δw).

Proof For any δw > 0, ε ≡ 1/p + δw > 1/p and constant K > 0, we have

P [max
1≤t≤n

|wt,n| > Kn1/p+δw] = 1 − P [max
1≤t≤n

|wt,n| ≤ Knε]
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= 1 − (P [|w1,n| ≤ Knε])n

= 1 − (1 − P [|w1,n|p > Kpnεp])n

≤ 1 −
(

1 − E|w1,n|p

Kpnεp

)n

= 1 −
(

1 − nE[w1,n|p

Kpnεp
+ O(n2−2εp)

)

= O(n1−εp) → 0

for ε > 1/p. 2

Theorem 1.2 For any δ1 > 0,

max
t̃

‖x̃t̃‖2 = Op(n
1
2r

+δ1pn).

Proof: Let wt̃,ñ ≡ ‖x̃t̃‖2/pn. Then wt̃,ñ is a row-independent triangular array.

E|wt̃,ñ|2r = p−2r
n

(
E‖x̃t̃‖2

)2r

= p−2r
n

( pn∑

k=1

Ex̃2
t̃k

)2r

≤ p−2r
n p2r

n max
k

(Ex̃2
t̃k)

2r

≤ max
k

E|x̃t̃k|4r ≤ C;

So according to Lemma 1.1, for any δ1 > 1, maxt̃ |wt̃,ñ| = Op(n
1
2r

+δ1), or

max
t̃

‖x̃t̃‖2 = Op(n
1
2r

+δ1pn).

2
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Chapter 2

Linear Models

Linear models are a special type of models that have an appealingly simple

and interpretable analysis. This is the most widely treated branch of statistics, both

in theory and in practice. The response variables are ordinarily assumed to be linear

combinations of the regressors of fixed dimension plus iid zero-mean normal errors.

We are interested in violating these assumptions in three ways: the responses are not

independent under the true model; the number of regressors are not fixed; and the

model is not correctly specified. We want to show the effect of omitting a random

intercept in a normal linear model on parameter estimation, hypothesis testing and

model selection.

2.1 General Notations and Assumptions

The True Model: We assume that the true model is a mixed-effect linear model with

a random intercept:

yn = X∗
nβ∗ + Znu + e,

(
u

e

)
∼ N


0,




σ2
uIm 0m×n

0n×m σ2
eIn





 , (2.1)
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where

Zn =




1n1 0 · · · 0

0 1n2 · · · 0

· · ·

0 · · · 1nm




n×m

, (2.2)

yn is the n × 1 vector of responses, X∗
n is the n × p∗ design matrix, and the

p∗ × 1 vector β∗ is the coefficients of the fixed effects and u is a m× 1 vector

of iid normal random variables with mean 0 and variance σ2
u.

The Working Model: We assume that the working model is a standard fixed-effect

linear model:

yn = Xnβn + ε, ε ∼ N
(
0, σ2

0In

)
(2.3)

where the n × pn matrix Xn is the design matrix of the working model, and

the pn × 1 vector βn is the vector of coefficients of the fixed effects. Also the

working model assumes that the entries of the n × 1 vector ε are iid normal

variables.

As we mentioned in Chapter 1, we assume in the linear models that we have cluster-

level covariates. This means that

Assumption 2.1 With Zn defined in (2.2),

Xn = ZnX̃n. (2.4)

Under Assumption 2.1, we have xij = x̃i for 1 ≤ j ≤ ni. According to As-

sumption 1.6, the pair (x̃i, ni), 1 ≤ i ≤ m are iid 1 × (pn + 1) row vectors, with
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x̃i satisfying Assumption 1.3 and ni satisfying Assumption 1.5. Therefore, we can

define two matrices:

{
Σ

(n)
x,1

}
kl
≡ E[niξ

(n)
k ξ

(n)
l ]

and

{
Σ

(n)
x,2

}
kl
≡ E[n2

1ξ
(n)
k ξ

(n)
l ].

Throughout this chapter we discuss only the Least Square (LS) estimator of βn

(which, in normal linear regression, is also the Maximum Likelihood Estimator under

the working model):

β̂n = (X′
nXn)−1X′

nyn.

2.2 Asymptotic Behavior of the Estimators

Asymptotic behavior of the LS estimators under regularity conditions are well

studied in the literature. These conditions include the independence of the data, a

fixed dimension and normal errors. Various papers try to relax these assumptions.

Lai, Robbins and Wei [15] discussed the strong consistency of least squares esti-

mates in multiple regression with independent errors under minimal assumptions on

the design and weak moment conditions on the errors, and Eicker [9] relaxed the

identically distributed assumption on the errors. But neither discussed the problem

with increasing dimension. We will first establish the stability of (n−1X′
nXn) under

Assumptions 1.2-1.6, and then prove the consistency of the LS estimators.

Theorem 2.1 Under Assumptions 1.2-1.6, with probability going to 1,

−m−δIpn ≤ m−1X′
nXn − Σ

(n)
x,1 ≤ m−δIpn,
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and

−m−δIpn ≤ m−1X′
nZnZ

′
nXn − Σ

(n)
x,2 ≤ m−δIpn,

where 0 < δ < ε/2r is arbitrary and ε = r(1 − 2θ) − 2θ > 0.

Proof: For Zn defined in (2.2), the following are true:

Z′
nZn = diag(n1, · · · , nm) ≡




n1 · · · 0

. . .

0 · · · nm




m×m

, (2.5)

and

ZnZ
′
n = diag(Jn1, · · · ,Jnm) ≡




Jn1 · · · 0

. . .

0 · · · Jnm




n×n

(2.6)

where Jni is the ni × ni matrix whose elements are all 1’s. With the repeated rows,

X′
nXn = X̃′

nZ
′
nZnX̃n =

m∑

i=1

nix̃
′
ix̃i,

and

X′
nZnZ

′
nXn =

m∑

i=1

n2
i x̃

′
ix̃i.

Since the pair (xi, ni) are iid, we can use the same arguments as in the proof of

Theorem 1.1 with the new iid random variables
√

nix̃i and nix̃i instead of x̃t̃. The

only thing we have to prove, is that the (4r)th moments of
√

nix̃ik and nix̃ik are

uniformly bounded for all i and k. Under Assumption 1.5, ni ≤ Nmax almost surely;

with Assumption 1.3, E|√nixik|4r ≤ N2r
maxE|x̃ik|4r ≤ N2r

maxC, and E|nix̃ik|4r ≤

N4r
maxC. 2
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Remark: With Theorem 2.1, we have proved the stability of the two matrices

(m−1X′
nXn) and (m−1X′

nZnZ
′
nXn). Moreover, we can bound the two expectation

matrices Σ
(n)
x,1 and Σ

(n)
x,2 in terms of bounds for Σ(n)

x and ni :

m∗Ipn ≤ Σ
(n)
x,1 ≤ M∗NmaxIpn (2.7)

and

m∗NmaxIpn ≤ Σ
(n)
x,2 ≤ M∗N2

maxIpn. (2.8)

Then similar to Corollary 1.1 to 1.5, we can find the bounds (in the sense of ordering

in matrices) for (m−1X′
nXn) and (m−1X′

nZnZ
′
nXn). 2

2.2.1 Consistency of the LS Estimator

We show in this section that in the model misspecification of (2.1) and (2.3),

the least squares estimator for the coefficients β̂n is still consistent. Let

β0 =

(
β∗

0

)

pn×1

,

then

X∗
nβ∗ = Xnβ0. (2.9)

The following theorem provides a version of consistency for β̂n. For simplicity, we

drop the subscript n in Xn, yn and Zn, but bear in mind that they all depend on n.

Theorem 2.2 Let β̂n be the Least Squares Estimator of the working model. Then

under Assumptions 1.2-1.6 and 2.1, ‖β̂n −β0‖ = Op(pn/
√

n) as n → ∞, where the

probability is taken under the true model.
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Proof: First of all,

β̂n = (X′X)−1X′y

= (X′X)−1X′(Xβ0 + Zu + e)

= β0 + (X′X)−1X′(Zu + e),

so

‖β̂n − β0‖2 = (β̂n − β0)
′(β̂n − β0) = (Zu + e)′X(X′X)−2X′(Zu + e) ≡ vn > 0,

and for constant K > 0,

P

[
‖β̂n − β0‖ >

Kpn√
n

]
= P

[
vn >

K2p2
n

n

]
≤ Evnn

K2p2
n

.

To have ‖β̂n −β0‖ = Op(pn/
√

n), it suffices to prove that Evnn/p2
n → 0 as n → ∞.

Since [X(X′X)−2X′] is nonnegative definite and the diagonal matrix Z′Z ≤

NmaxIm, Corollary A.1 implies

tr
[
X(X′X)−2X′ZZ′

]
≤ Nmaxtr

[
X(X′X)−2X′

]
= Nmaxtr

[
(X′X)−1

]
.

The random vector (Zu + e) has variance-covariance matrix

var(Zu + e) = σ2
uZZ′ + σ2

eIn,

so

Evn = E
[
(Zu + e)′X(X′X)−2X′(Zu + e)

]

= tr
[
X(X′X)−2X′(σ2

uZZ′ + σ2
eIn)

]

= σ2
etr

[
(X′X)−1

]
+ σ2

utr
[
X(X′X)−2X′ZZ′

]

≤ (σ2
e + Nmaxσ

2
u)tr

[
(X′X)−1

]
. (2.10)
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By Theorem 2.1,

Σ
(n)
x,1 − m−δIpn ≤ m−1X′

nXn ≤ Σ
(n)
x,1 + m−δIpn.

Moreover, the matrix Σ
(n)
x,1 satisfies

m∗Ipn ≤ Σ
(n)
x,1 ≤ NmaxM

∗Ipn,

therefore

(m∗ − m−δ)Ipn ≤ m−1X′
nXn ≤ (NmaxM

∗ + m−δ)Ipn

and by Corollary 1.3, m−1X′
nXn is positive definite when m is large enough. So the

smallest eigenvalue of m−1X′
nXn is bounded below:

λmin(m
−1X′

nXn) ≥ m∗ − m−δ,

and

tr
[
(X′X)−1

]
=

1

m
tr



(

X′X

m

)−1

 ≤ 1

m
pnλ−1

min(m
−1X′

nXn)

≤ pn/[m(m∗ − am)] = O(pn/n). (2.11)

In conclusion,

P

[
‖β̂n − β0‖ >

Kpn√
n

]
≤ O(pn/n · n/p2

n) = O(p−1
n ) → 0,

implying ‖β̂n − β0‖ = Op(pn/
√

n). 2

Remark: Therefore, even though the model is misspecified, the LS estimator

of the coefficients derived from the working model is still consistent. Theorem 2.2

not only proves that the LS estimator asymptotically converges to β0, it also gives

the rate of consistency in probability. From the proof we can see that the result

holds as long as θ < 1/2. 2
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2.2.2 The Asymptotic Variance of β̂n

It is obvious that under the specification (2.1) when both u and e are normal

vectors conditionally given X :

y|X ∼ N (Xβ0,V),

where V = σ2
uZZ′ + σ2

eI, and

β̂n|X = (X′X)−1X′y ∼ N (β0,Σ ˆβn

),

where

Σ ˆβn

≡ (X′X)−1X′VX(X′X)−1.

In other words, under the true model, both y and β̂n are normal conditional on X.

Since

m−1X′VX = m−1(σ2
uX

′ZZ′X + σ2
eX

′X) = m−1

(
σ2

u

m∑

i=1

n2
i x̃

′
ix̃i + σ2

e

m∑

i=1

nix̃
′
ix̃i

)
,

by Theorem 2.1 we get

∥∥∥m−1X′VX −
(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)∥∥∥ p→ 0,

and
∥∥∥∥mΣ ˆβn

−
[
σ2

u

(
Σ

(n)
x,1

)−1
Σ

(n)
x,2

(
Σ

(n)
x,1

)−1
+ σ2

e

(
Σ

(n)
x,1

)−1
]∥∥∥∥

p→ 0. (2.12)

Therefore, the asymptotic variance of β̂n is (m−1 multiplied by)

ΣA = σ2
u

(
Σ

(n)
x,1

)−1
Σ

(n)
x,2

(
Σ

(n)
x,1

)−1
+ σ2

e

(
Σ

(n)
x,1

)−1
. (2.13)

2.2.3 Asymptotic Normality of β̂n

In this section we are going to derive the asymptotic normality of
√

m(β̂n−β0).
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Theorem 2.3 Under Assumptions 1.2–1.4 and 2.1, if r > 5θ/[(2(1− 3θ)], then for

any sequence of unit vectors vn ∈ Rpn,

√
mσ−1

vn
v′

n(β̂n − β0) → N (0, 1) (2.14)

where σ2
vn

= v′
nΣAvn and ΣA is defined in (2.13).

Proof: Let the pn × 1 vectors ζ i be defined as ζi ≡
∑ni

j=1(yij − x̃iβ0)x̃
′
i and

note that

m∑

i=1

ni∑

j=1

(yij − x̃iβ0)x̃
′
i = X′

n(Zu + e).

Then

β̂n − β0 = m−1(m−1X′X)−1X′(Zu + e)

=
(
Σ

(n)
x,1

)−1 1

m

m∑

i=1

ni∑

j=1

(yij − x̃iβ0)x̃
′
i

+
[
(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
]

1

m

m∑

i=1

ni∑

j=1

(yij − x̃iβ0)x̃
′
i

=
(
Σ

(n)
x,1

)−1 1

m

m∑

i=1

ζi +
[
(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
]

1

m

m∑

i=1

ζi.

To prove (2.14), since σvn is uniformly bounded away from 0 and ∞, we only

need to have:

• m−1/2v′
n

[
(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
]∑m

i=1 ζ i = op(1).

• The sequence v′
n

(
Σ

(n)
x,1

)−1
ζ i satisfy the Lyapunov condition for any sequence

of unit vectors vn ∈ Rpn.

Actually, if Σζ denotes the covariance-variance matrix of ζi, and since (M∗)−1Ipn ≤
(
Σ

(n)
x,1

)−1
≤ (m∗)−1Ipn, the vector

v∗
n =

(
Σ

(n)
x,1

)−1
vn∥∥∥∥

(
Σ

(n)
x,1

)−1
vn

∥∥∥∥
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is also a unit vector in Rpn. If we can prove that

(v′
nΣζvn)

−1/2v′
n

1√
m

∑

i

ζ i → N (0, 1)

for any sequence of unit vectors vn ∈ Rpn, then

[
v′

n

(
Σ

(n)
x,1

)−1
Σζ

(
Σ

(n)
x,1

)−1
vn

]−1/2

v′
n

(
Σ(n)

x

)−1 1√
m

m∑

i=1

ζi

=
[∥∥∥∥
(
Σ

(n)
x,1

)−1
vn

∥∥∥∥ v∗′
n Σζv∗

n

∥∥∥∥
(
Σ

(n)
x,1

)−1
vn

∥∥∥∥
]−1/2 ∥∥∥∥

(
Σ

(n)
x,1

)−1
vn

∥∥∥∥v
∗′
n

1√
m

m∑

i=1

ζi

=
(
v∗′

n Σζv∗
n

)−1/2
v∗′

n

1√
m

m∑

i=1

ζ i → N (0, 1).

This indicates that the sequence v′
n

(
Σ

(n)
x,1

)−1
ζi satisfies the Lyapunov condition

(Definition 1.13 for any sequence of unit vectors vn if the sequence v′
nζ i satisfies the

Lyapunov condition for any sequence of unit vectors vn.

Hence, we are going to prove instead that

1. m−1/2v′
n

[
(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
]∑m

i=1 ζ i = op(1).

2. For any sequence of unit vectors vn ∈ Rpn, the sequence v′
nζi satisfies the

Lyapunov condition for central limit theorem.

As stated in Shiryaev [26], the Lyapunov condition is a sufficient condition for

Lyapunov central limit theorem.

Let ei· = n−1
i

∑ni
j=1 eij be the average of eij in the ith cluster. Then given x̃i and

ni, the random variable (ui + ei·) is normally distributed with mean 0 and variance

(σ2
u + σ2

e/ni), and therefore has finite (4r)th moment. Therefore ζi are iid pn × 1

random vectors with mean zero and

E |ζ ik|
4r = E

∣∣∣∣∣∣

ni∑

j=1

(yij − x̃iβ0)x̃ik

∣∣∣∣∣∣

4r

≤ ME |nix̃ik|4r ≤ C < ∞ (2.15)
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uniformly over k. Since

∥∥∥∥∥
1

m

m∑

i=1

ζ i

∥∥∥∥∥ =
1

m

√√√√
pn∑

k=1

(
m∑

i=1

ζik

)2

≤ √
pn max

1≤k≤pn

∣∣∣∣∣
1

m

m∑

i=1

ζ ik

∣∣∣∣∣ ,

for any 0 < δ < r(1−2θ)−2θ
2r

, and any constant K > 0, by Chebyshev Inequality,

Burkholder’s Inequality and (2.15),

P

[∥∥∥∥∥
1√
m

m∑

i=1

ζ i

∥∥∥∥∥ > Knδ−ε

]

≤ P

[
√

pnm max
1≤k≤pn

∣∣∣∣∣
1

m

m∑

i=1

ζ ik

∣∣∣∣∣ > Knδ−ε

]

≤ pnP



∣∣∣∣∣
1

m

m∑

i=1

ζik

∣∣∣∣∣

4r

>
(
Knδ−εm−1/2p−1/2

n

)4r




≤ Mrpnm−2rK−4rm2rn−4rδ+4rεp2r
n

= O(p1+2r
n n−4rδ+4rε) → 0, (2.16)

if ε > 0 is sufficiently small and 4rδ > θ(1 + 2r). Since δ < r(1−2θ)−2θ
2r

is arbitrary,

when

θ(1 + 2r)

4r
<

r(1 − 2θ) − 2θ

2r
,

or r > 5θ/[2(1 − 3θ)], we have

∥∥∥∥∥
1√
m

m∑

i=1

ζi

∥∥∥∥∥ = Op(n
δ−ε)

for ε sufficiently small and any δ such that

θ(1 + 2r)

4r
< δ <

r(1 − 2θ) − 2θ

2r
.

Note that

5θ

2(1 − 3θ
) >

2θ

1 − 2θ
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for all 0 < θ < 1/3, so r > 5θ/[2(1− 3θ)] automatically means that r > 2θ/(1− 2θ)

for θ < 1/4.

This is to say that for any unit vectors vn ∈ Rpn, there exists δ > 0 such that
∥∥∥∥(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
∥∥∥∥ = Op(n

−δ) and
∥∥∥m−1/2∑m

i=1 ζ i

∥∥∥ = Op(n
δ−ε).

Therefore

√
mv′

n

[
(m−1X′X)−1 −

(
Σ

(n)
x,1

)−1
]

1

m

m∑

i=1

ζ i

≤ ‖vn‖
∥∥∥∥(m

−1X′X)−1 −
(
Σ

(n)
x,1

)−1
∥∥∥∥ ·
∥∥∥∥∥

1√
m

m∑

i=1

ζi

∥∥∥∥∥

≤ Op(n
−δnδ−ε)

= op(1) (2.17)

The first condition is proved.

Now we need to check the Lyapunov condition in Definition 1.13 for each

sequence m−1/2v′
n

∑m
i=1 ζ i. In other words, if σ2

n,vn
=
∑m

i=1 var[v′
nζ i], then we need

to prove that σn,vn is bounded away from zero for any unit vector vn and

m∑

i=1

E|v′
nζ i|3

σ3
n,vn

→ 0.

First of all, by Chebyshev inequality, triangular inequality and (2.15),

E|v′
nζi|3 = E

∣∣∣∣∣

pn∑

k=1

vnkζik

∣∣∣∣∣

3

≤ E[
pn∑

k=1

v2
nk

pn∑

k=1

ζ2
ik]

3/2

=

∥∥∥∥∥

pn∑

k=1

ζ2
ik

∥∥∥∥∥

3/2

3/2

≤
( pn∑

k=1

‖ζ2
ik‖3/2

)3/2

≤ p3/2
n max

1≤k≤pn

E|ζ ik|3
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≤ p3/2
n C. (2.18)

Moreover,

E|v′
nζi|2 = E


E







ni∑

j=1

(yij − x̃iβ0)x̃ivn




2

|ui, ni, x̃i







≥ E


E







ni∑

j=1

(yij − x̃iβ0 − ui)x̃ivn




2

|ui, ni, x̃i







≥ σ2
eE(x̃ivn)

2

≥ σ2
ev

′
nE [x̃′

ix̃i]vn

≥ σ2
em

∗ (2.19)

Therefore,

m∑

i=1

E|v′
nζi|3

σ3
n,vn

≤ mp3/2
n C

m3/2(σ2
em

∗)3/2
→ 0,

and for any sequence of unit vectors vn ∈ Rpn,

[
v′

n

(
Σ

(n)
x,1

)−1
Σζ

(
Σ

(n)
x,1

)−1
vn

]−1/2

v′
n

(
Σ

(n)
x,1

)−1 1√
m

m∑

i=1

ζ i → N (0, 1). (2.20)

Finally,

Σζ = E[ζiζ
′
i] = E


x′

i




ni∑

j=1

(yij − x̃iβ0)




2

xi




= E


x′

iE







ni∑

j=1

(yij − x̃iβ0)




2

|ui, ni, x̃i


xi




= E
[
x′

i(n
2
i σ

2
u + niσ

2
e)xi

]

= σ2
uΣ

(n)
x,2 + σ2

eΣ
(n)
x,1, (2.21)

which implies for any sequence of unit vectors vn,

[
v′

n

(
Σ

(n)
x,1

)−1
Σζ

(
Σ

(n)
x,1

)−1
vn

]−1/2

v′
n

(
Σ

(n)
x,1

)−1 1√
m

m∑

i=1

ζi → N (0, 1)
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by Lyapunov CLT. By the definition of ΣA in (2.13), we can see that

(
Σ

(n)
x,1

)−1
Σζ

(
Σ(n)

x

)−1
= ΣA

and therefore for any unit vectors vn ∈ Rpn,

√
m(v′

nΣAvn)
−1/2v′

n(β̂n − β0)

=
[
v′

n

(
Σ

(n)
x,1

)−1
Σζ

(
Σ

(n)
x,1

)−1
vn

]−1/2

v′
n

(
Σ

(n)
x,1

)−1 1√
m

m∑

i=1

ζ i + op(1)

(2.20)→ N (0, 1), (2.22)

which, by Definition 1.12, means that (β̂n − β0) is asymptotically normal. 2

Remark: The asymptotic normality discussed in Theorem 2.3 is very strong,

since it implies that each entry of β̂n is asymptotically normal. For this result to

hold, it is clear that θ has to be less than 1/3. This means that the rate at which

pn must grow is smaller for asymptotic normality than for consistency of β̂n. 2

2.2.4 The Variance Estimators

The estimator of the variance σ2
0 under the working model (2.3) is usually the

mean Residual Sum of Squares (RSS):

s2 = (n − pn)−1(y − Xβ̂)′(y − Xβ̂).

Let

H = X(X′X)−1X′.

Then clearly

H2 = X(X′X)−1X′X(X′X)−1X′ = X(X′X)−1X′ = H,
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so the symmetric matrices H and (I− H) are idempotent. Therefore

s2 = (n− pn)−1(y − Hy)′(y − Hy) = (n− pn)−1(Zu + e)′(I − H)(Zu + e). (2.23)

When the model is correctly specified, this estimator is consistent (s2 p→ σ2
0). The

following theorem establishes the limit of s2 in probability when n → ∞.

Theorem 2.4 The sample variance s2 under the working model converges to (σ2
u +

σ2
e) in probability, where the probability is taken under the true model.

Proof: To see the asymptotic limit of s2 under the true model (2.1), note that

for any random variable T, P (|T −ET | > ε) ≤ varT/ε2. The first step is to find the

expectation and variance of s2. First,

Es2 = (n − pn)−1E [(Zu + e)′(I −H)(Zu + e)]

= (n − pn)−1tr((I − H)V)

(2.5)
= σ2

e +
n − tr(HZZ′)

n − pn
σ2

u, (2.24)

where the expectation is taken conditional on X under the true model. For nonneg-

ative definite matrix X̃(X′X)−1X̃′ and diagonal matrix Z′Z, by Proposition A.1

tr[HZZ′] = tr[X̃(X′X)−1X̃′Z′ZZ′Z]

≤ Nmaxtr[X̃(X′X)−1X̃′Z′Z]

= Nmaxtr((X
′X)−1X′X) = Nmaxpn. (2.25)

So tr(HZZ′) = o(n) since Nmax < ∞ and pn = o(n). Therefore, when n → ∞,

Es2 → σ2
u + σ2

e .
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Under normal-distribution assumptions on u and e in (2.1), the variance of s2

is equal to

var((Zu + e)′(I − H)(Zu + e)) = 2tr[((I − H)V)2]

= 2tr
[
((I − H)(σ2

uZZ′ + σ2
eI))

2
]

= 2σ4
utr [(I − H)ZZ′(I − H)ZZ′]

+ 4σ2
uσ

2
etr [(I− H)ZZ′] + 2σ4

etr(I − H)

(2.6)
= 2σ4

u [tr(ZZ′ZZ′) − 2tr(HZZ′ZZ′) + tr(HZZ′HZZ′)]

+ 2σ4
e (n − pn) + 4σ2

uσ
2
e(n − o(n)). (2.26)

Note that

tr(ZZ′ZZ′)

n
=

∑m
i=1 n2

i

n
=

∑
i n

2
i

m
· m
∑

i ni
→ N2

N1
< ∞,

tr[(HZZ′ZZ′) = tr[(X′X)−1X̃′diag(n3
1, n

3
2, · · · , n3

m)X̃] ≤ N2
maxpn = o(n),

and

tr[HZZ′HZZ′] = tr[ZX̃(X′X)−1X̃′Z′ZZ′ZX̃(X′X)−1X̃′Z′ZZ′]

≤ Nmaxtr[X̃(X′X)−1X̃′Z′ZZ′Z]

≤ N2
maxtr[(X

′X)−1X̃′Z′ZX̃′]

≤ N2
maxpn = o(n). (2.27)

Thus the variance of s2 satisfies

var(s2) =
2σ4

u(O(n) + o(n)) + 4σ2
uσ

2
e (n − o(n)) + 2σ4

e (n − pn)

(n − pn)2
= O(n−1).

From the above calculation we see thatEs2 → σ2
u + σ2

e and var(s2) → 0 as n → ∞,

which implies s2 p→ σ2
u + σ2

e . 2
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Remark: The sample variance s2 derived from the working model is biased.

This is due to the failure of the working model to account for the variability in-

troduced by the random intercept at the cluster level. Theorem 2.4 also bounds

the difference between s2 and (σ2
u + σ2

e) in probability: s2 = σ2
u + σ2

e + Op(n
−1/2+ε)

where ε is an arbitrarily small positive number. This follows easily from Chebyshev’s

Inequality and the fact that var(s2) = O(n−1). 2

Under the working model,

β̂n|X ∼ N (Xβ, σ2
0(X

′X)−1), (2.28)

and Theorem 2.4 gives an estimator under the working model for the variance in

(2.28).

v̂ar(β̂n) = s2(X′X)−1.

There is also a robust choice of variance estimator, that is, an estimator valid under

the true model. Let l(θ) be the log-likelihood of the working model, that is,

l(θn) =
∑

i

∑

j

lij(θn) = −n

2
log(2πσ2

0) −
(y − Xβn)

′(y − Xβn)

2σ2
0

= −n

2
log(2πσ2

0) −
∑m

i=1

∑ni
j=1(yij − xiβn)

2

2σ2
0

. (2.29)

with θn = (βn, σ
2
0)

′. Recall that ∇tf denotes the gradient of a function f with

respect to t and (∇⊗2
t f) the Hessian of f with respect to t. We define

An(θn) = −m−1∇⊗2

θn
l(θn) (2.30)

and

Bn(θn) = m−1
∑

i


∇θn

ni∑

j=1

lij(θn)




⊗2
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= m−1
∑

i

( ∑ni
j=1(yij − x̃ijβn)x′

ij/σ
2
0

−1/(2σ2
0) + (yij − xijβn)

2/(2σ4
0)

)⊗2

Then the robust variance estimator for θ̂n = (β̂n, σ̂2
0)

′ is defined as

v̂arR(θ̂n) = A−1
n (θ̂n)Bn(θ̂n)A

−1
n (θ̂n), (2.31)

where σ̂2
0 = [(n − pn)/n]s2 is the Maximum Likelihood Estimator (MLE) for σ2

0

under the working model. This robust variance estimator, also called the “sandwich”

variance estimator is a (pn + 1)× (pn + 1) matrix. This is Huber’s [13] and White’s

[32] definition for the robust variance estimator. By the definition of β̂n and σ̂2, we

get:

An(θ̂n) =
1

m




(X′X)/σ̂2
0 0

0 2n/σ̂2
0


 .

Let Bn(θ̂n)11 be the pn×pn matrix at the upper-left block of Bn(θ̂n), then the upper

left block of v̂arR(θ̂n) gives an estimator for the variance of β̂n, and it is equal to

v̂arR(β̂n) =
(

1

m
X′X

)−1 1

m

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n)x̃
′
i




⊗2 (
1

m
X′X

)−1

. (2.32)

We have

Theorem 2.5 Under Assumptions 1.2-1.4 and 2.1, if further we have r > 1/[2(1−

3θ)], then

∥∥∥ ˆvarR(β̂n) − ΣA

∥∥∥ p→ 0,

i.e., the “sandwich” variance estimator converges to the true variance ΣA in prob-

ability.

Proof: Since
∥∥∥∥(m

−1X′X)−1 −
(
Σ

(n)
x,1

)−1
∥∥∥∥

p→ 0
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and

(M∗ + an)
−1 ≤ ‖(m−1X′X)−1‖ ≤ (m∗ + an)−1,

by the definition of ΣA in (2.13), it suffices to show that

∥∥∥∥∥∥∥
m−1

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n)x̃′
i




⊗2

−
(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
∥∥∥∥∥∥∥

p→ 0. (2.33)

To prove (2.33), note that

∥∥∥∥∥∥∥
m−1

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n)x̃
′
i




⊗2

−
(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
∥∥∥∥∥∥∥

≤ 1

m

∥∥∥∥∥∥∥

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n)




2

x̃′
ix̃i −

m∑

i=1




ni∑

j=1

(yij − x̃iβ0)




2

x̃′
ix̃i

∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥

1

m

m∑

i=1




ni∑

j=1

(yij − x̃iβ0)




2

x̃′
ix̃i −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
∥∥∥∥∥∥∥
.

Let the pn × pn matrix

M ≡ 1

m

m∑

i=1




ni∑

j=1

(yij − x̃iβ0)




2

x̃′
ix̃i −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)

=
1

m

m∑

i=1

n2
i (ui + ei·)

2x̃′
ix̃i −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)

where ei· = n−1
i

∑ni
j=1 eij is the average of eij’s in the ith cluster. Let

Mkl =
1

m

m∑

i=1

n2
i (ui + ei·)

2x̃ikx̃il −
(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
kl

be the elements of M for 1 ≤ k, l ≤ pn, and let

η
(kl)
i ≡ n2

i (ui + ei·)
2x̃ikx̃il −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
kl

,

then for each k and l, Mkl is the average of m iid random variables with

Eη
(kl)
i = E(n2

i E(ui + ei·)
2x̃ikx̃il) −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
kl
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= E
[
n2

i x̃ikx̃ilE
(
(ui + ei·)

2|ni

)]
−
(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
kl

= σ2
uE[n2

i x̃ikx̃il] + σ2
eE[nix̃ikx̃il] −

(
σ2

uΣ
(n)
x,2 + σ2

eΣ
(n)
x,1

)
kl

= 0. (2.34)

And since given ni, (ui + ei·) ∼ N (0, σ2
u + σ2

e/ni) and has finite (4r)th moment,

E|n2
i (ui + ei·)

2x̃ikx̃il|2r = E
[
|n2

i x̃ikx̃il|2rE((ui + ei·)
4r|ni)

]
≤ CE|n2

i x̃ikx̃il|2r ≤ C∗

for C∗ < ∞ uniformly in k and l by Assumption 1.3. Therefore the matrix M

consists of a sum of zero-mean random variables with uniformly bounded (2r)th

moments. Following the same arguments as in Theorem 1.1, there exists δM > 0

such that ‖M‖ ≤ n−δM → 0 with probability approaching 1.

On the other hand,

1

m

∥∥∥∥∥∥∥

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n)




2

x̃′
ix̃i −

m∑

i=1




ni∑

j=1

(yij − x̃iβ0)




2

x̃′
ix̃i

∥∥∥∥∥∥∥

=
1

m

∥∥∥∥∥∥∥

m∑

i=1







ni∑

j=1

(yij − x̃iβ̂n)




2

−




ni∑

j=1

(yij − x̃iβ0)




2

 x̃′

ix̃i

∥∥∥∥∥∥∥

=
1

m

∥∥∥∥∥∥

m∑

i=1




ni∑

j=1

(yij − x̃iβ̂n + yij − x̃iβ0)






ni∑

j=1

(yij − x̃iβ̂n − yij + x̃iβ0)


 x̃′

ix̃i

∥∥∥∥∥∥

=
1

m

∥∥∥∥∥
m∑

i=1

[
2ni(ui + e·) + nix̃i(β0 − β̂n)

]
ni(x̃i(β0 − β̂n))x̃′

ix̃i

∥∥∥∥∥

≤ 2

m

∥∥∥∥∥
m∑

i=1

n2
i (ui + ei·)x̃i(β0 − β̂n)x̃

′
ix̃i

∥∥∥∥∥+
1

m

∥∥∥∥∥
m∑

i=1

n2
i (x̃i(β0 − β̂n))

2x̃′
ix̃i

∥∥∥∥∥

≤ max
i

|x̃i(β0 − β̂n)|
∥∥∥∥∥

2

m

m∑

i=1

n2
i (ui + ei·)x̃

′
ix̃i

∥∥∥∥∥ + max
i

|x̃i(β0 − β̂n)|2
∥∥∥∥∥

1

m

m∑

i=1

n2
i x̃

′
ix̃i

∥∥∥∥∥ .

Since
∥∥∥m−1∑m

i=1 n2
i x̃

′
ix̃i − Σ

(n)
x,2

∥∥∥ p→ 0 and
∥∥∥Σ(n)

x,2

∥∥∥ is bounded, ‖m−1∑m
i=1 n2

i x̃
′
ix̃i‖ =

Op(1). Therefore, we need to prove that

1. maxi |x̃i(β0 − β̂n)| ‖m−1∑m
i=1 n2

i (ui + ei·)x̃
′
ix̃i‖

p→ 0;
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2. maxi |x̃i(β0 − β̂n|2
p→ 0.

Let the pn × pn matrix W ≡ m−1∑m
i=1 n2

i (ui + ei·)x̃
′
ix̃i, then each element of W is

the average of m iid random variables with E[Wkl] = E[n2
i (ui + ei·)x̃

′
ix̃i] = 0 and

E|Wkl|2r = E[|n2
i x̃ikx̃il|2rE(|ui + ei·|2r|ni)] ≤ CE|n2

i x̃ikx̃il|2r ≤ C∗

uniformly in k and l for C∗ < ∞. Again W is a matrix whose elements are average

of iid zero-mean random variables with uniformly finite (2r)th moments. Therefore

‖W‖ = ‖m−1
m∑

i=1

n2
i (ui + ei·)x̃

′
ix̃i‖

p→ 0 (2.35)

with probability approaching 1.

By Theorem 1.2 and Theorem 2.2 for r > 1/(2(1 − 3θ)), let δ4 = (1 − 3θ −

1/(2r))/2 > 0, then

max
i

|x̃i(β0 − β̂n)|2 ≤ max
i

‖x̃i‖2‖β̂n − β0‖2

= Op(pnn
1
2r

+δ4p2
nn−1)

= Op(n
− 1

2
(1−3θ− 1

2r
)) → 0. (2.36)

by (2.36) and (2.35), maxi |x̃i(β̂n − β0)|‖m−1∑m
i=1 n2

i (ui + ei·)x̃
′
ix̃i‖

p→ 0. Finally,

1

2(1 − 3θ)
>

2θ

1 − 2θ

whenever θ < 1/3. The theorem is therefore proved. 2

Remark: Theorem 2.5 tells us that when the model is misspecified, we can

still get a consistent variance estimator for β̂n in the operator norm. Therefore,

when θ < 1/3 and r is large enough, the LS estimator derived from the working

model is consistent, asymptotically normal, and has a consistent variance estimator.

2
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2.3 Bonferroni-Adjusted Model Selection Procedure

Under the model misspecification indicated by (2.1) and (2.3), one quantity

is of great interest to us: the expected number of extra regression coefficients to

be tested significant in multiple hypothesis testing. The most commonly controlled

quantity when testing multiple hypotheses is the experiment-wise error rate, which

is the probability of yielding one or more false positives out of the pn hypotheses

tested:

PH0(∃ at least one false positive) ≤ α. (2.37)

Standard linear model theory and Analysis of Variance (ANOVA) treat the Multiple

Comparison Procedure (MCP) with the statistics β̂
(k)

n /
√

γks2, where β̂
(k)

n is the kth

entry of β̂n, s2 is the sample variance derived from the working model, and γk is the

kth diagonal element of the matrix (X′X)−1. The coefficient βk is said to be signif-

icant if and only if the absolute value of its standardized estimator is greater than

some threshold decided by level α. Another Multiple Comparison Procedure often

considered is that of Scheffé, which controls the error rate for any linear combination

of the estimated coefficients to exceed a threshold. However, this procedure is not

applicable for our model-selection procedures because we wish to select model terms

one by one and not in linear combinations. Under either the working or the true

model,

PH0(∃ at least one false positive) = 1 − PH0(
|β̂

(k)

n |√
γks2

≤ t,∀k = 1, · · · , pn). (2.38)
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By the Bonferroni Inequality,

PH0(
[|β̂(k)

n |√
γks2

≤ t, ∀k = 1, · · · , pn) > 1 −
pn∑

k=1

PH0(
|β̂(k)

n |√
γks2

> t).

Under the null hypothesis H0 : βk = 0, the standardized estimator of the coefficient

is t−distributed, and (2.38) becomes

PH0(∃ at least one false positive) ≤ pnP (|T | > t),

where T is t−distributed under the working model. Therefore, to have (2.37), it is

sufficient to have P (|T | > t) ≤ α/pn. Since under H0 the standardized estimator

converge to normal when n gets large, in large-sample asymptotics we usually use Z,

a standard normal rather than T. Hence to control the experiment wise error rate at

level α, we have P (|Z| > t) = 2(1−Φ(t)) ≤ α, where Φ(·) is the cumulative density

function of a standard normal variate. The threshold t could thus be determined

under the working model:

t = Φ−1

(
1 − α

2pn

)
. (2.39)

This is derived from the Bonferroni Inequality, and is a rather stringent thresh-

old to select significant variables, especially when β̂
(k)

n ’s are correlated. A Bonferroni-

Adjusted model selection has type I error controlled at level α. Our main interest lies

in Ne, the expected number of extra variables that will be significant in a Bonferroni-

Adjusted Model Selection due to the model misspecification. Ideally this should be

controlled.

Theorem 2.6 Suppose that the true model is specified as (2.1) and we are selecting

a model according to the working model (2.3). Under Assumptions 1.2-1.4 and
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2.1, we use the statistic β̂
(k)

n /
√

γks2 in the multiple hypothesis testing, then for

r > 2θ/(1 − 4θ), the Bonferroni-Adjusted Model Selection at level α with thresh-

old t determined in equation (2.39) gives us a model with expected number of extra

variables

Ne ∼
pn∑

k=p∗+1

r
−1/2
k

(
α

anθ

)rk

(πθ log n)
rk−1

2

where rk is the ratio of the kth diagonal element of the two matrices (σ2
u+σ2

e )
(
Σ

(n)
x,1

)−1

and ΣA.

Proof: First of all, for any large positive number x (see proof in Appendix, Propo-

sition B.2),

1 − Φ(x) =
1√
2πx

e−
x2

2 (1 + O(x−2))

Note that t is large because α is fixed but pn is large. This means

α

2pn
=

1√
2πt

e−t2/2(1 + O(t−2)). (2.40)

Since pn = [anθ], taking logarithms on both sides of (2.40) yields

log α − log(2a) − θ log n = −1

2
log(2π) − 1

2
log t2 − t2

2
+ log(1 + O(t−2)).

Evidently the top order of t2 is log n, and t−2 is small, so that

log(1 + O(t−2)) = O(t−2) = O((log n)−1).

Let t2 = 2θ log n + Rn where Rn/ log n → 0; then (2.40) becomes

log

(
α
√

2π

2a

)
+

1

2
log

[
(2θ log n)

(
1 +

Rn

2θ log n

)]
+

Rn

2
= O((log n)−1),
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and

log

[
(2θ log n)

(
1 +

Rn

2θ log n

)]
= log(2θ) + log log n + log

(
1 +

Rn

2θ log n

)

= log(2θ) + log log n +
Rn

2θ log n
+ O(R2

n(log n)−2)

= log(2θ) + log log n +
Rn

2θ log n
+ o(Rn/ log n) (2.41)

since we assume that Rn/ log n → 0. Therefore (2.40) becomes

Rn =

[
log

(
a2

α2πθ

)
− log log n + o(Rn/ log n

](
1 +

1 + o(1)

2θ log n

)−1

=

[
log

(
a2

α2πθ

)
− log log n + O((log n)−1)

] [
1 + O((log n)−1)

]

= − log log n + log

(
a2

α2πθ

)
+ O

(
log log n

log n

)
. (2.42)

Therefore

t2 = 2θ log n − log log n + log

(
a2

α2πθ

)
+ O

(
log log n

log n

)
. (2.43)

From (2.12) the true conditional variance given X for β̂n = (X′X)−1X′y is

Σ ˆβn

. Therefore the true variance for the kth entry of β̂n, var(β̂
(k)

n ), is the kth diagonal

element of the matrix Σ ˆβn

,
(
Σ ˆβn

)

kk
. However, the working model uses s2(X′X)−1

as the variance estimator of β̂n, so that the kth entry has an estimated variance of

v̂ar(β̂
(k)

n ) = s2 ((X′X)−1)kk . From Theorem 2.1, there exists δ1 > 0 such that

∥∥∥∥mΣ ˆβn

− ΣA

∥∥∥∥ = Op(n
−δ1),

∥∥∥∥m(X′X)−1 −
(
Σ

(n)
x,1

)−1
∥∥∥∥ = Op(n

−δ1),

and from Theorem 2.4, s2 = (σ2
u +σ2

e)+Op(n
−1/2+ε1) for a sufficiently small number

ε1 > 0. By the definition of operator norm, it is easy to show that the diagonal

elements of a positive definite matrix are uniformly bounded by its operator norm,
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therefore

m
(
Σ ˆβn

)

kk
= (ΣA) + Op(n

−δ1), and m (X′X)
−1
kk =

(
Σ

(n)
x,1

)−1

kk
+ Op(n

−δ1)

uniformly in k. The ratio of the true standard deviation to the estimated standard

deviation is therefore

√√√√√
s2 ((X′X)−1)kk

(Σ ˆβn

)kk

=
√

rk(1 + Op(n
−δ1)) (2.44)

uniformly in k, and the constants in Op(n
−δ1) do not depend on k.

The first p∗ coefficients β∗
k are all nonzero under Assumption 1.1 and since β̂n

is consistent, we expect that

P


 β̂

(k)

n√
γks2

≤ Φ−1

(
1 − α

2pn

)
 (2.45)

is small enough to be ignored for our interest. Certain probabilities such as

P [(m−1X′X)−1 ≥ C∗m
1/3], P [s2 ≥ C∗m

1/3]

and P [m
(
Σ ˆβn

)

kk
≤ C∗m

−1/3] need to be estimated for constant C∗ to check that

(2.45) is ignorable; but for our purposes we only need (2.45) to be of the order

n−1 and the three probabilities mentioned can be checked with a little care and

further calculations. We will limit our attention only to the later entries of β̂n. For

k ≥ p∗ + 1

P


 |β̂(k)

n |√
γks2

≥ Φ−1(1 − α

2pn
)




= P




|β̂k|√
(Σ ˆβn

)kk

≥

√√√√√
s2γk

(Σ ˆβn

)kk
Φ−1(1 − α

2pn
)
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= P




|β̂k|√
(Σ ˆβn

)kk

≥
√

rk(1 + O(n−δ1))Φ−1(1 − α

2pn
)




= 2
[
1 − Φ(

√
rk(1 + Op(n

−δ1))t)
]
. (2.46)

Since t = O(
√

log n), and the pdf of standard normal is bounded by 1/
√

2π,

∣∣∣Φ(
√

rk(1 + Op(n
−δ1))t) − Φ(

√
rkt)

∣∣∣

≤ 1/
√

2π
√

rktOp(n
−δ1)

= Op(n
−δ1

√
log n)

where the constants in Op(n
−δ1

√
log n) are uniform in k since all rk are bounded by

1. It follows that

Ne =
pn∑

k=p∗+1

P

[
|β̂k|√
γks2

≥ Φ−1(1 − α

2pn
)

]

= 2
pn∑

k=p∗+1

[
1 − Φ(

√
rk(1 + Op(n

−δ1))Φ−1(1 − α

2pn
))

]

= 2
pn∑

k=p∗+1

[
1 − Φ(

√
rkt) + Op(n

−δ1

√
log n)

]

Using Proposition B.2 one more time, we get

1 − Φ(
√

rkt) =
1√

2πrkt
e−rk t2/2(1 + O(t−2))

=




n−θrk (
√

log n)rk

(
a

α
√

πθ

)−rk

√
2πrk

√
2θ log n − log log n

(1 + O(t−2))




= O(n−θrk (
√

log n)rk−1)(1 + O(t−2)). (2.47)

where the constants in O(t−2) are uniformly bounded by 1 and therefore do not

depend on k. Comparing Op(n
−δ1

√
log n) with O(n−θrk (

√
log n)rk−1), it is obvious

that the Op term is negligible if δ1 > θ, since all rk’s are bounded by 1. Here 0 < δ1 <
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(r(1−2θ)−2θ)/(2r) is an arbitrary number, so we only need θ < (r(1−2θ)−2θ)/(2r),

or r > 2θ/(1 − 4θ) for such a δ1 to exist. Therefore,

Ne = 2
pn∑

k=p∗+1

[1 −Φ(
√

rkt)] + Op(n
θ−δ1

√
log n)

= 2
pn∑

k=p∗+1




n−θrk (
√

log n)rk

(
a

α
√

πθ

)−rk

√
2πrk

√
2θ log n − log log n

(1 + O(t−2))


+ O(nθ−δ1

√
log n)

∼
pn∑

k=p∗+1

r
−1/2
k

(
α

anθ

)rk

(πθ log n)
rk−1

2 (2.48)

2

Remark: It is worth mentioning that the approximation in Theorem 2.6

requires that θ < 1/4. Even though each Op terms in (2.44) is small, when adding

qn of them, this could be non-negligible compared to the main term (1 −Φ(
√

rkt)).

Nevertheless we have established the asymptotic equality (2.48). 2

Corollary 2.1 If instead of s2(X′X)−1 we use in hypothesis testing the sandwich

variance estimator (2.32) for β̂n, then under Assumptions 1.2-1.6 and 2.1, for

r > max

(
1

2(1 − 3θ)
,

2θ

1 − 4θ

)
,

the experiment-wise error rate is controlled at level α.

Proof: As proved in Theorem 2.5, the sandwich variance estimator converges to

the true variance of β̂n in matrix norm. Therefore the ratio in (2.44) is equal to

(1 + Op(n
−δ1)) and

Ne = 2
pn∑

k=p∗+1

[
1 − Φ(t) + Op(n

−δ1

√
log n)

]

=
pn∑

k=p∗+1

[
α

2pn
+ Op(n

−δ1

√
log n)

]

= α + Op(n
θ−δ1

√
log n). (2.49)
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Here 0 < δ1 < (r(1 − 2θ) − 2θ)/(2r) is an arbitrary number. As long as δ1 is also

greater than θ, we the Op term in (2.49) will dissappear and the experiment-wise

error rate will be controlled at the right level α. For such a δ1 to exist, we only need

θ < (r(1 − 2θ) − 2θ)/(2r), or r > 2θ/(1 − 4θ) > 2θ/(1 − 4θ). 2

Remark: Corollary 2.1 encourages the use of the sandwich variance estimator

when we do multiple hypothesis testing. Although the sample variance s2 estimates

consistently the true variance of yij, under the working model, it is still problem-

atic to base our statistical inference on the variance structure that the working

model assumes. This can be corrected by a using robust variance estimator, the

“sandwich” variance estimator defined in (2.32), which estimates consistently the

variance structure of the estimated coefficients and thus can lead to much more

accurate conclusions. 2

The formula in Theorem 2.6 can be reduced if we make the following additional

assumption:

Assumption 2.2 The cluster sizes ni are independent of xi.

Then,

Corollary 2.2 If in addition to the assumptions in Theorem 2.6 we further impose

Assumption 2.2, then

Ne ∼ A

(
nθ

√
log n

)1−%

,

where

% =
σ2

u + σ2
e

σ2
e + N2

N1
σ2

u
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and

A =
α%

√
%

(
a√
πθ

)1−%

.

Proof: Under Assumption 2.2,

Σ
(n)
x,1 = N1Σ

(n)
x , Σ

(n)
x,2 = N2Σ

(n)
x .

So the ratio rk is equal to

% =
σ2

u + σ2
e

σ2
e + N2

N1
σ2

u

for all k = p∗ + 1, · · · , pn. Therefore

Ne = 2
pn∑

k=p∗+1

[
1 − Φ(

√
%(1 + Op(n

−δ1))t)
]

= 2qn

[
1 −Φ(

√
%(1 + Op(n

−δ1))t)
]

where the Op terms are uniform in k. Using the approximation (2.43) and then

Proposition B.2 again, we get:

Ne = 2qn

[
1 −Φ(

√
%t) + Op(n

−δ1

√
log n)

]

= anθ%−1/2
(

α

anθ

)%

(π% log n)
%−1
2 + Op(n

θ−δ1

√
log n)

∼ A

(
nθ

√
log n

)1−%

.

2

Remark: Theorem 2.6 assumes that r > 2θ/(1−4θ), and this is not necessary

for Corollary 2.2. The Op term Ne is negligible as long as θ(1 − %) > θ − δ1. So δ1

has to be greater than θ%, which means we need r > 2θ/(1 − 2θ − 2%θ). 2

As we mentioned, Bonferroni Multiple Comparison Procedure is a rather strin-

gent procedure, especially when the coefficient estimates are not independent. When

the standard deviations of β̂n are correctly estimated, the expected number of extra
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variables is controlled at a fixed small number α. But even this stringent procedure

can not control the experiment-wise error rate at the expected level because of the

model misspecification. The number % defined in Corollary 2.2 is always strictly less

than 1, since at least one of the clusters should have more than one observation.

Therefore Ne goes to infinity as the sample size grows, and the rate is determined

by % and θ. The smaller % is, meaning that N2/N1σ
2
u >> σ2

e , the faster Ne is going

to infinity. On the other hand, the faster we allow pn to grow with n, the faster Ne

will grow with n as well.

2.4 Shao’s GIC

Automatic model selection is a class of procedures to choose the optimal model

by a certain criterion. There are many different selection criteria proposed in the

literature. See Rao and Wu [21] for a detailed discussion. Asymptotic properties of

these selection methods are also discussed by Shao [24]. The desirable asymptotic

properties, according to Shao, are consistency and loss efficiency, where the final

model is chosen to minimize or almost to minimize the criterion with high proba-

bility. Shao proposed a criterion GICλn that can specialize to several well-known

model selection criteria, including AIC, BIC, Cross Validation, Mallows’ Cp, etc.

He also summarized in his paper the asymptotic behavior of various model selection

procedures in different situations. Since Shao’s GIC unifies a class of model selec-

tion methods, we are interested in studying the expected number of extra variables

in the model selected by Shao’s GIC, and in a way summarize what to expect for
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various model selection methods.

2.4.1 Notations and definitions

We will adopt Shao’s notations and definitions in this part of the chapter.

Let An be a class of subsets α ⊂ {1, · · · , pn} each of which represents the

column-indices from Xn for a proposed model. The number of models in An is finite,

but may depend on n. For each α ∈ An, let pn(α) be the size of α (the number

of parameters in model α), and In(α) be the pn × pn(α) matrix of zeros and ones

such that (In(α))ik = I[i ∈ α, and i is the kth element of α]. Then X(α) = XIn(α)

is the design matrix for the model containing precisely the predictors with indices in

α. The Least Square Estimator of y under model α is denoted by ŷ(α) = Hn(α)y,

where Hn(α) = X(α)[X′(α)X(α)]−1X′(α). Since we are more interested in the extra

number of variables chosen by model selection under misspecification (2.1) and (2.3)

than the effect of omitting one important covariate, we further assume for simplicity

that ∀α, {1, 2, · · · , p∗} ⊆ α ∈ An, i.e. the true fixed effects are always included in

all models considered. The loss function is defined as follows:

Ln(α) =
‖µn − µ̂n(α)‖2

n
,

where µn is the expectation of y conditional on the covariates in the true model,

µ̂n(α) = Hn(α)y is the LSE of y under model α, and ‖ · ‖ is the Euclidean norm.

The goal is to minimize Ln(α) among all the models in An, but since Ln(α) is not

observable, we instead select the model that minimizes the GICλn criterion:

Γn,λn(α) =
‖y − ŷ(α)‖2

n
+

λnpn(α)σ̂2(α)

n
(2.50)
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over α ∈ An where pn(α) denotes the number of variables in model α, ŷ(α) is the

LSE of y under model α, σ̂2
n(α) is an estimator of σ2 , and {λn} is a sequence of

non-random numbers no less than 2 such that λn/n → 0. Shao did not impose any

restriction on the variance estimators σ̂2(α) in his definition of (2.50), but for our

purposes we use the sample variance under model α, discussed in Section 2.4.3.

2.4.2 The Loss Function

The loss function Ln(α) is a criterion most model selection methods try to

minimize, but whether choosing according to the loss function gives us the same

model as choosing according to a specific model selection method needs to be checked

carefully. The minimizer of the loss function can be obtained analytically only in

special cases. We are now going to look at these cases and discuss the model that

minimizes the loss function. The loss function is a measurement of the discrepancy

between the estimated mean and the conditional mean of y. With a cluster-structure

for the data, we want to take into account the difference among clusters in the mean

of y. This means that aside from the fixed effects, we also should condition on the

random effect u. The loss function for model α is

Ln(α) = n−1‖X∗β∗ + Zu −Hn(α)y‖2

= n−1‖(In − Hn(α))Zu − Hn(α)e‖2

= n−1 (u′Z′(In − Hn(α))Zu + e′Hn(α)e) . (2.51)

In Section 2.3, we call a variable “extra” when it is not one of the first p∗ fixed

effects in the true model (2.1) but is tested significant in a hypothesis testing; we
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use the same name for a variable that is not one of the true fixed effects in (2.1) but

is chosen in the final model of a selection procedure. Let αL denote the model that

minimizes the loss function, and pn(αL) denote the total number of variables in αL.

Balanced Data, Orthogonal Design

The first special case we will discuss assumes that

Assumption 2.3 ∀1 ≤ i ≤ m, ni = b and

X′X = diag(γ−1
1 , γ−1

2 , · · · , γ−1
pn

).

This is the simplest case of all, a balanced-data, orthogonal design. For this

case we have

Theorem 2.7 Under the basic assumptions and Assumption 2.3, pn(αL) − p∗ ∼

Binomial(qn, Pa), where

Pa =
1

2
+

1

π
arcsin

(
bσ2

u − σ2
e

bσ2
u + σ2

e

)
.

Since we assume that ∀α ∈ An, {1, 2, · · · , p∗} ⊆ α, we only choose from the

models that are “larger” than the minimal model, the model with only the p∗ fixed

effects. Suppose that the model αs contains ps variables, among which are the p∗

fixed effects, and ps − p∗ extra variables. The n × ps design matrix of the model αs

is X(αs). Let x(k), k = 1, 2, · · · , pn be the columns of X. Suppose that the models

αs1 and αs2 are those with design matrices X(k) = (Xs|x(sk)), for k = 1, 2. Evidently,

αs1 and αs2 are obtained by adding the corresponding variables x(sk) into αs. The

following lemma represents the difference of αsk
and αs in the loss function.
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Lemma 2.1

nLn(αsk
) − nLn(αs) = −bσ2

uηsk
+ σ2

eζsk
,

where

ζsk
≡ σ−2

e γsk
x(sk)x(sk)′e ∼ χ2

1,

and

ηsk
≡ b−1σ−2

u γsk
u′Z′x(sk)x(sk)′Zu ∼ χ2

1

are independent random variables both following a χ2
1 distribution.

Proof: Since ni = b, ∀i = 1, 2, · · · ,m,

Z′Z = bIn. (2.52)

Let x̃(k) be the kth column of X̃, then

x(k) = Zx̃(k) (2.53)

x(k)′x(j) = γ−1
k δk,j; (2.54)

and

x̃(k)′x̃(j) = b−1x(k)′x(j) = b−1γ−1
k δk,j. (2.55)

Note that

(X(k)′X(k))−1 =




X′(αs)X(αs) X′(αs)x
(sk)

x(sk)′X(αs) x(sk)′x(sk)




−1

=




X′(αs)X(αs) 0

0′ γ−1
sk




−1

.
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Now, for k = 1, 2

Hn(αsk
) = X(k)(X(k)′X(k))−1X(k)′

= (X(αs)|x(sk))




X′(αs)X(αs) 0

0′ x(sk)′x(sk)




−1

(
X′(αs)

x(sk)′

)

= Hn(αs) + γsk
x(sk)x(sk)′. (2.56)

Therefore by (2.51)

nLn(αsk
) − nLn(αs)

= u′Z′(Hn(αs) − Hn(αsk
))Zu + e′(Hn(αsk

) − Hn(αs))e

= −γsk
u′Z′x(sk)x(sk)′Zu + γsk

e′x(sk)x(sk)′e (2.57)

Both (γsk
u′Z′x(sk)x(sk)′Zu) and (γsk

e′x(sk)x(sk)′e) are rank-1 quadratic forms in nor-

mal variables of
√

γsk
x(sk)′Zu and

√
γsk

x(sk)′e. For v ∼ N (0,Σv), the quadratic

form v′Mv follows a central χ2
rv

distribution if and only if the matrix MΣv is idem-

potent, where the degrees of freedom rv = rank(MΣv). Details and proofs of these

widely-known results can be found in Searle [23], Chap.2. Note that e ∼ N (0, σ2
eIn),

and

γsk
x(sk)x(sk)′γsk

x(sk)x(sk)′ (2.54)
= γ2

sk
x(sk)γ−1

sk
x(sk)′ = γsk

x(sk)x(sk)′.

Therefore the rank-1 matrix

σ−2
e γsk

x(sk)x(sk)′σ2
eIn = γsk

x(sk)x(sk)′

is idempotent and

ζsk
≡ σ−2

e γsk
x(sk)x(sk)′e ∼ χ2

1,
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or

γsk
e′x(sk)x(sk)′e = σ2

eζsk
,

where ζsk
∼ χ2

1.

On the other hand, u ∼ N (0, σ2
uIm), and since

γsk
Z′x(sk)x(sk)′Z = b2γsk

x̃(sk)x̃(sk)′ = bγsk
x(sk)x(sk)′,

so

(
b−1γsk

Z′x(sk)x(sk)′Z
)2

= γsk
x(sk)x(sk)′ = b−1γsk

Z′x(sk)x(sk)′Z.

Therefore the rank-1 matrix

b−1σ−2
u γsk

Z′x(sk)x(sk)′Zσ2
uIm = b−1γsk

Z′x(sk)x(sk)′Z

is idempotent, which makes

ηsk
≡ b−1σ−2

u γsk
u′Z′x(sk)x(sk)′Zu ∼ χ2

1,

or

γsk
u′Z′x(sk)x(sk)′Zu = bσ2

uηsk
,

where ηsk
∼ χ2

1. Finally, ηsk
and ζsk

are independent because u and e are. 2

Lemma 2.2 For two independent standard normal variables Z1, Z2, and two posi-

tive real numbers C1, C2,

P (C1|Z1| > C2|Z2|) =
1

2
+

1

π
arcsin

(
C2

1 − C2
2

C2
1 + C2

2

)
.

Proof: First of all, let

(
W1

W2

)
∼ N




(
0

0

)
,




1 ρ

ρ 1





 ,
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the probability that W1 and W2 have the same sign is

P (W1W2 > 0) = P (W1 < 0,W2 < 0) + P (W1 > 0,W2 > 0) = 2P (W1 > 0,W2 > 0).

Note that the joint density of W1 and W2 is

f(w1, w2) =
1

2π
√

1 − ρ2
exp{−w2

1 − 2ρw1w2 + w2
2

2(1 − ρ2)
},

so

P (W1W2 > 0) = 2
∫ ∞

0

∫ ∞

0
f(w1, w2)dw1dw2

=
1

π
√

1 − ρ2

∫ ∞

0

∫ ∞

0
exp{−w1

2 − 2ρw1w2 + w2
2

2(1 − ρ2)
}dw1dw2

=
1

π
√

1 − ρ2

∫ π
2

0

∫ ∞

0
r exp{−r2(1 − 2ρ sin θ cos θ)

2(1 − ρ2)
}drdθ

=
1

π
√

1 − ρ2

∫ π
2

0

1 − ρ2

1 − ρ sin 2θ
dθ

=

√
1 − ρ2

π

∫ π

0

1

2(1 − ρ sin θ)
dθ

=

√
1 − ρ2

π

1√
1 − ρ2

arctan

(
tan θ

2
− ρ√

1 − ρ2

)∣∣∣∣∣

π

0

=
1

π

[
π

2
+ arctan

(
ρ√

1 − ρ2

)]

=
1

2
+

1

π
arcsin(ρ). (2.58)

By the linear transformation

(
Z∗

1

Z∗
2

)
=




1
2C2

− 1
2C1

1
2C2

1
2C1




(
Z1

Z2

)
(2.59)

which maps R1 = {(x, y) : −C1/C2x < y < C1/C2x, x > 0} into the first quadrant

and R2 = {(x, y) : C1/C2x < y < −C1/C2x, x < 0} into the third quadrant, we

convert calculating P (C1|Z1| > C2|Z2|) into calculating P (Z∗
1Z∗

2 > 0). Under (2.59),

Z∗
1 ∼ N (0,

1

4C2
2

+
1

4C2
1

), Z∗
2 ∼ N (0,

1

4C2
2

+
1

4C2
1

),
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and correlation of Z∗
1 and Z∗

2 is

corr(Z∗
1 , Z∗

2) =
C2

1 − C2
2

C2
1 + C2

2

.

Finally, P (C1|Z1| > C2|Z2|) = P (Z∗
1Z

∗
2 > 0) = 1

2
+ 1

π
arcsin

(
C2

1−C2
2

C2
1+C2

2

)
. 2

Now we can proceed and prove the theorem.

Proof of the Theorem: By Lemma 2.1, the difference in the loss function

by introducing an extra variable into the model is a linear combination of two

independent χ2
1 random variables. Furthermore, by (2.53), (2.52) and 2.55),

γs1Z
′x(s1)x(s1)′Zγs2Z

′x(s2)x(s2)′Z = b2γs1γs2Z
′x(s1)x̃(s1)′x̃(s2)x(s2)′Z = 0,

and

x(s1)x̃
(s1)′x̃(s2)x(s2)′ = 0.

Therefore, nLn(αs1) − nLn(αs) and nLn(αs2) − nLn(αs) are independent random

variables. Let αs1s2 be the model with both xs1 and x(s2) added into model αs,

then

nLn(αs1s2) − nLn(αs1) = −γs2u
′Z′x(s2)x(s2)′Zu + γs2e

′x(s2)x(s2)′e

= nLn(αs2) − nLn(αs). (2.60)

In other words, the difference in loss function by adding one more variable does

not depend on the variables that are already in the model. Therefore the order by

which the variables are added into the model does not change the probability that

this specific variable will reduce the loss function. Choosing the minimizer of the

loss function is equivalent to a series of yes-no questions, starting from the smallest
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model (with only the p∗ true fixed-effects), and a “yes” means the loss function

gets smaller by adding the variable. Therefore, the number of extra variables in

the model follows a Binomial distribution, with parameters qn, and Pa, which is the

probability of answering “yes”:

Pa = P [nLn(αsk
) − nLn(αs) < 0] = P [−bσ2

uηk + σ2
eζk < 0] = P [

√
bσu|Z1| > σe|Z2|]

where Z1 and Z2 are independent standard normal variables. Using Lemma 2.2 with

C2
1 = bσ2

u and C2
2 = σ2

e ,

Pa =
1

2
+

1

π
arcsin

(
bσ2

u − σ2
e

bσ2
u + σ2

e

)
.

2

Remark: The expected number of extra variables in this case is qn · Pa. The

probability Pa is determined solely by the ratio bσ2
u/σ

2
e . Moreover, Pa ≈ 0 when

bσ2
u � σ2

e and Pa ≈ 1 when σ2
e � bσ2

u. Therefore when bσ2
u is large enough compared

to σ2
e , the model that minimizes the loss function will choose a model that is very

large, and the closer Pa is to 1, the bigger the final model is; on the other hand, if

bσ2
u is relatively small (in which case, the model misspecification is negligible and is

not an issue any more), the model that minimizes the loss function will only include

the p∗ fixed effects. 2

Sequential Selection

The second special case we consider is sequential selection, when there is a

specific order with which new variables are allowed into the model. In this case, if
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the original design matrix is not orthogonal, we can first orthogonalize by Gram-

Schmidt procedure. Since the ith column of the orthogonalized matrix is a linear

combination of the first i columns of the original matrix, selecting the ith variable in

the orthogonalized model means selecting the first i variables in the original matrix,

so the selection order is preserved with the orthogonalization. Therefore, when there

is an order, it does not matter if it is an orthogonal design matrix or not. But we

do need balanced data structure to calculate some of the probabilities. Again we

assume that only models that include all the p∗ fixed effects are included in An.

Assumption 2.4 For any i ∈ {1, · · · ,m}, ni = b and An = {αp∗+1, · · · , αpn}, where

αk = {1, · · · , k}.

Theorem 2.8 Under Assumption 2.4, the expected number of extra variables in the

model that minimizes the loss function (2.51) is

Pa(1 − P qn
a )

1 − Pa
,

where qn = pn − p∗ is the total number of “added” candidate variables and

Pa =
1

2
+

1

π
arcsin

(
bσ2

u − σ2
e

bσ2
u + σ2

e

)
.

Proof: The proof is exactly the same as Theorem 2.7, concerning the difference

(2.57) and the distribution that this difference follows (Lemma 2.1). What is differ-

ent is in the way we choose the final model: with a specific order, we stop asking

“yes-no” questions once we get a “no”( adding the specific variable in the queue will

not decrease the loss function), while without specific order, we don’t stop until all
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the qn questions are asked. Therefore, if qo is the number of extra variables in the

final model of an order selection, with Pa being the probability of answering “yes”,

P (qo = 0) = 1 − Pa,

P (qo = k) = P k
a (1 − Pa)

for k = 1, · · · , qn − 1, and

P (qo = qn) = P qn
a

Therefore,

Eqo =
qn∑

k=0

kP (po = k)

= (1 − Pa)
qn−1∑

k=1

kP k
a + qnP

qn
a

=
qn∑

k=1

kP k
a −

qn∑

k=1

P k+1
a + qnP

qn
a

=
qn−1∑

k=1

P k
a − (qn − 1)P qn

a + qnP qn
a

=
1 − P qn+1

a

1 − Pa

− 1

=
Pa(1 − P qn

a )

1 − Pa

2

Note that again the number of extra variables chosen by a sequential selection

will depend on the probability Pa. The expectation of qo is close to 0 when Pa ≈ 0,

meaning that the final model chosen contains no extra variables; when bσ2
u is large

compared to σ2
e , on the other hand, since (1 − P qn

a )/(1 − Pa) ∼ qn when Pa is close

to one, the expectation of qo will be close to Paqn.
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Remark: From the above two special cases, we see that when there is no

correct model in An, minimizing the loss function does not necessarily mean selecting

a parsimonious model. In both of our cases, when bσ2
u is large compared to σ2

e , the

model minimizing the loss function will select a final model with approximately qnPa

extra variables. 2

2.4.3 The Variance Estimators

There are many possible choices for the variance estimator in (2.50). We

restrict our attention to

σ̂2
2(α) = s2(α) =

y′(In − Hn(α))y

n − pn(α)
. (2.61)

This is the sample variance under the model α, and is a very popular choice of

variance estimator. Sometimes people use n instead of (n− pn) in the denominator,

but since pn/n → 0 as n → ∞, this difference does not affect the limit or the

distribution of the variance estimator, so we will only discuss the estimators defined

in (2.61). For any α ∈ An fixed, it is not hard to prove that s2(α)
p→ σ2

u + σ2
e

following the same arguments as in Theorem 2.4. But since the size of An could

be as large as 2pn, the uniform convergence over sets of models can not be taken

granted and needs to be treated carefully.

Theorem 2.9 Under Assumptions 1.2-1.6 and 2.1 the variance estimators s2(α)
p→

σ2
u + σ2

e uniformly for all α ∈ An.
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Proof: Since for any α ∈ An,

|s2(α) − (σ2
u + σ2

e)| =

∣∣∣∣∣
1

n − pn(α)
(Zu + e)′(In − Hn(α))(Zu + e) − (σ2

u + σ2
e)

∣∣∣∣∣

≤
∣∣∣∣∣
(Zu + e)′(Zu + e)

n − pn(α)
− (σ2

u + σ2
e)

∣∣∣∣∣

+

∣∣∣∣∣
(Zu + e)′Hn(α)(Zu + e)

n − pn(α)

∣∣∣∣∣

Let ei· = n−1
i

∑ni
j=1 eij be the average error of the ith cluster; then

(Zu + e)′(Zu + e)

n − pn(α)
=

∑m
i=1 niu

2
i + 2

∑m
i=1 niuiei· +

∑m
i=1

∑ni
j=1 e2

ij

n − pn(α)
.

Since the sequences ui and eij are iid sequences, and uiei· is a zero-mean independent

sequence with finite fourth moment, and ni’s are assumed to be independent of ui’s

and eij’s,

1

n

∑

i

niu
2
i =

m

n
· 1

m

∑

i

niu
2
i

p→ σ2
u

by the Strong Law of Large Numbers and Slutsky’s Theorem. Similarly,

1

n

∑

i

niuiei·
p→ 0,

and

1

n

∑

i

∑

j

e2
ij

a.s.→ σ2
e .

Therefore it suffices to show that

∣∣∣∣∣
(Zu + e)′Hn(α)(Zu + e)

n − pn(α)

∣∣∣∣∣
p→ 0 (2.62)

uniformly in α ∈ An. First of all, by Theorem 1.1,

(m∗ − an)Ipn ≤ m−1(X′
nXn) ≤ (M∗ + an)Ipn.
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Then by Corollary 1.4

(M∗ + an)
−1 ≤ λmin

[
1

m
(X′

nXn)
−1
]
≤ λmax

[
1

m
(X′

nXn)
−1
]
≤ (m∗ − an)

−1,

and

(M∗ + an)−1Ipn ≤ m(X′
nXn)−1 ≤ (m∗ − an)

−1Ipn.

The choosing matrix In(α) has the properties

I′n(α)In(α) = Ipn(α),

and

I′n(α)P1In(α) ≤ I′n(α)P2In(α)

if P1 ≤ P2, and I′n(α)PIn(α) is nonnegative-definite if P is. Therefore

m−1(M∗ + an)
−1Ipn(α) ≤ (X′

n(α)Xn(α))−1 ≤ m−1(m∗ − an)
−1Ipn(α),

and

I′n(α)X′
n(Zu + e)′(Zu + e)XnIn(α)

is nonnegative-definite. Moreover,

(Zu + e)′Hn(α)(Zu + e) = |tr[(Zu + e)′Hn(α)(Zu + e)]|

= tr[(X′
n(α)Xn(α))−1I′n(α)X′

n(Zu + e)(Zu + e)′XnIn(α)]

≤ m−1(m∗ − an)−1tr[I′n(α)X′
n(Zu + e)(Zu + e)′XnIn(α)]

≤ pn(α)

m(m∗ − an)
λmax (I′n(α)X′

n(Zu + e)(Zu + e)′XnIn(α))

=
pn(α)

m(m∗ − an)
‖I′n(α)X′

n(Zu + e)(Zu + e)′XnIn(α)‖

≤ pn(α)

m(m∗ − an)
‖(Zu + e)′XnIn(α)‖2
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≤ pn(α)

m(m∗ − an)
pn(α)max

k∈α
|(X′

n(Zu + e))k|

≤ p2
n

m(m∗ − an)
max

1≤k≤pn

∣∣∣∣∣
m∑

i=1

x̃ikni(ui + ei·)

∣∣∣∣∣ (2.63)

The sequence {x̃ini(ui + ei·)}i is an iid sequence with 0-mean and 4rth moment.

By arguments similar to Theorem 1.1,

P

[
max

1≤k≤pn

∣∣∣∣∣
1

m

m∑

i=1

xikni(ui + ei·)

∣∣∣∣∣ >
(n − p∗)(m∗ − an)

p2
n

]

≤ pn max
1≤k≤pn

P

[∣∣∣∣∣
1

m

m∑

i=1

xikni(ui + ei·)

∣∣∣∣∣ >
(n − p∗)(m∗ − an)

p2
n

]

≤ Mrp
8r+1
n n−2r(n − p∗)−4r

= O(n(8r+1)θ−6r) (2.64)

where Mr is a constant over n. Finally, if r > 2θ/(1 − 2θ) > θ/(6 − 8θ), for any

0 < ε < (2r(3 − 4θ) − θ)/4r,

P

[
1

n − pn(α)
(Zu + e)′Hn(α)(Zu + e) ≥ n−ε

]

≤ P

[
max

1≤k≤pn

∣∣∣∣∣
1

m

m∑

i=1

xikni(ui + ei·)

∣∣∣∣∣ ≥
(n − p∗)(m∗ − an)

p2
nnε

]

= O(n(8r+1)θ−6r+4rε) → 0 (2.65)

Therefore (2.62) is proved. 2

The following theorem provides the bound for E|s2 − (σ2
u + σ2

e)| :

Theorem 2.10 Under Assumptions 1.2-1.4 and 2.1,

E|s2 − (σ2
u + σ2

e)| = O(n−1/2).

Proof: First of all,

E|s2 − (σ2
u + σ2

e)| = E|(n − pn)
−1(Zu + e)′(In −Hn)(Zu + e) − (σ2

u + σ2
e)|
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≤ E|(n − pn)
−1(Zu + e)′(Zu + e) − (σ2

u + σ2
e )|

−E|(n− pn)−1(Zu + e)′Hn(Zu + e)|. (2.66)

The random vector (Zu + e) is a n × 1 vector of zero-mean random variables with

variance-covariance matrix V = σ2
uZ

′Z+σ2
eIn. The quadratic form (Zu + e)′(Zu + e)

therefore has moments

E[(Zu + e)′Zu + e)] = tr[V] = n(σ2
u + σ2

e ),

and

E[(Zu + e)′(Zu + e)−n(σ2
u+σ2

e)]
2 = 2tr[V2] = 2

[
σ4

u

m∑

i=1

n2
i + nσ4

e + 2nσ2
uσ

2
e

]
= O(n).

Therefore

E|(n − pn)−1(Zu + e)′(Zu + e) − (σ2
u + σ2

e)|

≤ (n − pn)−1E|(Zu + e)′(Zu + e) − n(σ2
u + σ2

e)| +
(

n

n − pn
− 1

)
(σ2

u + σ2
e )

≤ (n − pn)−1
√

E[(Zu + e)′(Zu + e) − n(σ2
u + σ2

e)]
2 + O(pn/n)

= O(n−1/2) + O(pn/n). (2.67)

If we let η
(k)
i ≡ x̃ikni(ui + ei·), then η

(k)
i are iid zero-mean random variables

with finite (4r)th moment uniformly in k. Moreover,

E

[
m∑

i=1

x̃ikni(ui + ei·)

]2

= E

[∑

i

η
(k)
i

]2
iid
=

m∑

i=1

E
[
η

(k)
i

]2
≤ mC∗ (2.68)

for all 1 ≤ k ≤ pn. Note that

m−1(M∗ + am)−1Ipn ≤ (X′X)−1 ≤ m−1(m∗ − am)−1Ipn
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and

X′(Zu + e)′(Zu + e)X = [X′(Zu + e)]
⊗2

is positive definite By Corollary A.1 and Definition 1.7,

tr [(Au + e)′Hn(Zu + e)] = tr
[
(X′X)−1X′(Zu + e)(Zu + e)′X

]

Col.A.1
≤ m−1(m∗ − am)−1tr [X′(Zu + e)(Zu + e)′X]

≤ m−1(m∗ − am)−1pnλmax [X′(Zu + e)(Zu + e)′X]

Def.1.7
= m−1(m∗ − am)−1pn ‖X′(Zu + e)(Zu + e)′X‖

≤ pnm−1(m∗ − am)−1 ‖X′(Zu + e)‖2

= pnm−1(m∗ − am)−1
pn∑

k=1

[
m∑

i=1

x̃ikni(ui + ei·)

]2

. (2.69)

Therefore

(n − pn)−1E|(Zu + e′Hn(Zu + e)|

≤ pn(n − pn)−1

m(m∗ − am)

pn∑

k=1

E

[
m∑

i=1

x̃ikni(ui + ei·)

]2

(2.68)

≤ pn(n − pn)−1

m(m∗ − am)
· pn · mC∗

= O(p2
n/n) (2.70)

In conclusion,

E|s2 − (σ2
u + σ2

e)| = O(n−1/2) + O(pn/n) + O(p2
n/n) = O(n−1/2)

when θ < 1/4. 2

Remark: Not only does s2 converge to (σ2
u + σ2

e ) in probability, but the distance

|s2 − (σ2
u + σ2

e)| is of order (n−1/2+ε) in probability and of order n−1/2) in L1 norm,

namely, the distance |s2 − (σ2
u + σ2

e )| is integrable. 2
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Since s2 converges to a point (σ2
u + σ2

e ), the expectation of certain functions

should be well approximated by the function evaluated at the point (σ2
u + σ2

e). The

following corollary states this result:

Corollary 2.3 Let gn(x) be a sequence of piecewise smooth functions defined on

[0,∞). Suppose that there exist Ng and 0 < Cg < (σ2
u + σ2

e) such that gn(x) are

uniformly bounded for 0 ≤ x ≤ Cg and g′
n(x) exist and are uniformly bounded for

x ≥ Cg for all n ≥ Ng. Let the nonrandom sequence tn > 2 be O(n1/2−δ) with

0 < δ ≤ 1/2. Then

|E[gn(tns
2)] − g(tn(σ2

u + σ2
e))| = O(n−δ).

Proof: First of all, with 0 < Cg < σ2
u +σ2

e and 2 < tn = O(n1/2−δ), Cg/tn < σ2
u +σ2

e

and |Cg/tn − (σ2
u + σ2

e)| = (σ2
u + σ2

e) + O(t−1
n ). Therefore by Chebyshev’s inequality

P [s2 ≤ Cg/tn] ≤ P [|s2 − (σ2
u + σ2

e)| ≥ (σ2
u + σ2

e) + O(t−1
n )]

≤ O(n−1)
[
(σ2

u + σ2
e) + O(t−1

n )
]2

= O(n−1) (2.71)

since O(t−1
n ) ≤ O(1). Let Mg be the uniform bound of |gn| on [0, Cg] and Mg′ be the

uniform bound of |g′
n| on [Cg,∞). Then

E
[
|g(tns

2) − g(tn(σ2
u + σ2

e))|I[tns2≤Cg ]

]
≤ 2MgP [tns

2 ≤ Cg] = O(n−1)

and

E
[
|g(tns

2) − g(tn(σ2
u + σ2

e))|I[tns2≥Cg ]

]
≤ E

[
Mg′tn|s2 − (σ2

u + σ2
e )|I[tns2≥Cg ]

]

≤ Mg′tnE[|s2 − (σ2
u + σ2

e)|]

≤ O(n1/2−δ)O(n−1/2) = O(n−δ).
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Therefore

|E[gn(tns2)] − gn(tn(σ2
u + σ2

e))|

≤ E
[
|gn(tns

2) − gn(tn(σ
2
u + σ2

e))|
]

≤ O(n−1) + O(n−δ)

= O(n−δ).

2

Remark: From the proof of Corollary 2.3 we can see that the result still holds

if we let Cg depend on n but be uniformly bounded away from (σ2
u + σ2

e).

2.4.4 The Minimizer of Γn,λn

We mainly discuss two types of variance estimator in (2.50):

ΓG1
n,λn

(α) = n−1‖y − ŷ(α)‖2 + n−1λnpn(α)s2 (2.72)

where s2 is the sample variance of the full model, and

ΓG2
n,λn

(α) = n−1‖y − ŷ(α)‖2 + n−1λnpn(α)s2(α) (2.73)

where s2(α) is defined in (2.61). Thus, ΓG1
n,λn

has a universal variance estimator for

all the α ∈ An and ΓG2
n,λn

has different variance estimators for each α.

Analytical results about the final model chosen by ΓG1
n,λn

can be obtained only

in some special cases, but analytical results about the final model chosen by ΓG2
n,λn

are not available even in the simplest special cases.

70



Balanced Data, Orthogonal Design

Theorem 2.11 Under Assumption 2.3, with λn = o(n
1
2
−δ) for 0 < δ ≤ 1/2, then

the model that minimizes ΓG1
n,λn

contains (p∗+p1) variables, where given s2, p1 follows

a Binomial distribution. The unconditional expectation is Ep1 = qnP G1
a , with

P G1
a = 2


1 − Φ



√√√√λn(σ2

e + σ2
u)

bσ2
u + σ2

e




 + O(n−δ). (2.74)

Proof : With s2 = σ̂2(α) as in (2.50), then

nΓG1
n,λn

(α) = (Zu + e)′(In − Hn(α))(Zu + e) + λnpn(α)s2;

and for two models αs and αs1 where X(αs1) = (X(αs)|x(s1)), the difference in their

GICλn is

nΓG1
n,λn

(αs1) − nΓG1
n,λn

(αs) = −γs1(Zu + e)′x(s1)x(s1)′(Zu + e) + λns2. (2.75)

For the normal vector (Zu + e) ∼ N (0,V) where V = σ2
eIn + σ2

uZZ′,

γs1x
(s1)x(s1)′V = σ2

eγs1x
(s1)x(s1)′ + σ2

uγs1x
(s1)x(s1)′ZZ′

(2.53)
= σ2

eγs1x
(s1)x(s1)′ + σ2

uγs1x
(s1)x̃(s1)′Z′ZZ′

(2.52)
= σ2

eγs1x
(s1)x(s1)′ + bσ2

uγs1x
(s1)x̃(s1)′Z′

(2.53)
= (σ2

e + bσ2
u)γs1x

(s1)x(s1)′.

Since (γs1x
(s1)x(s1)′) is idempotent, the rank-1 matrix [(σ2

e + bσ2
u)

−1γs1x
(s1)x(s1)′V] is

also idempotent, and therefore the quadratic form

(bσ2
u + σ2

e)
−1(Zu + e)′γs1x

(s1)x(s1)′Zu + e) = ηs1 ∼ χ2
1,
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and the probability that the difference (2.75) is less than 0 is

P G1
a (s2) ≡ P [−γs1(Zu + e)′x(s1)x(s1)′(Zu + e) + λns2 < 0]

= P [−(bσ2
u + σ2

e)ηs1 + λns2 < 0]

= P

[
ηs1 >

λns2

bσ2
u + σ2

e

]
(2.76)

Note that again

nΓn,λn(αs1s2) − nΓn,λn(αs1) = nΓn,λn(αs2) − nΓn,λn(αs). (2.77)

This means that the difference is the same regardless of the other terms in the

model. Again selecting the model that minimizes the loss function involves a series

of “yes-no” questions, with “yes” meaning that adding the variable will reduce the

loss function. The difference in loss function by adding the kth variable into the

model is

−γk(Zu + e)′x(k)x(k)′(Zu + e) + λns2.

All the differences share the same variable s2, so the series of questions can not be

independent. Note that

s2 = (n − pn)−1(Zu + e)′(In −Hn)(Zu + e)

is also a quadratic form of normals. From Searle [23] Chapter 2, we know that

two quadratic from of normal variables v′M1v and v′M2v for v ∼ N (µ,Σv) are

independent if and only if M1ΣvM2 = 0. Since

x(k)x(k)′(σ2
uZZ′ + σ2

eIn)(In −Hn)

= σ2
u(x

(k)x(k)′(ZZ′ −ZZ′Hn)) + σ2
ex

(k)x(k)′(In − Hn)

72



= σ2
u(x

(k)x̃(k)Z′ZZ′ − x(k)x(k)′ZZ′ZX̃(X′X)−1X)

= bσ2
ux

(k)x(k)′(In −Hn)

= 0, (2.78)

the two random variables ηk and s2 are independent for k = p∗ + 1, · · · , qn.

To select the optimal model that minimizes ΓG1
n,λn

,

• There are altogether qn “yes-no” questions asked. Whether or not a variable

should be included in the chosen model depend on the answer to the question:

does adding this variable reduce ΓG1
n,λn

? The order in which we ask these

questions does not matter, by (2.77);

• The probability of answering “yes” to the question is the same for each vari-

able, by (2.76);

• The differences in ΓG1
n,λ between adding one variable and adding another are not

independent. But each difference is a linear combination of two independent

variables, and given a common variable that is shared by all the differences,

they are independent.

Therefore, we can calculate the expected number of p1 by conditioning on the

common variable s2 first. Given s2, the differences [−(bσ2
u+σ2

e)ηk+λns2] for k ∈ {p∗+

1, · · · , pn} are independent variables with the same distribution. Therefore, given s2

the number of extra variables p1 follows a Binomial distribution with parameters qn

and P G1
a (s2). Hence

Ep1 = E[E[p1|s2]] = 2qnE


1 − Φ



√√√√ λns2

bσ2
u + σ2

e
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Let gn(x) = 2(1 − Φ(
√

x)) and tn = λn/(bσ2
u + σ2

e) in Corollary 2.3. Then gn(x)

is uniformly bounded for all n and x, and since g′
n(x) = −x−1/2φ(

√
x), g′

n(x) is

uniformly bounded for x ≥ (σ2
u + σ2

e )/2. Therefore by Corollary 2.3,

Ep1 = qnE[gn(λns2)] = qn

[
gn(λn(σ2

u + σ2
e)) + o(n−δ)

]
= qnP

G1
a

where P G1
a = 2

[
1 −Φ

(√
λn(σ2

u+σ2
e)

bσ2
u+σ2

e

)]
+ O(n−δ). 2

When we use (2.61) as the variance estimator in (2.50), for two models αs and

αs1 where X(αs1) = (X(α)|x(s1)) and ps = pn(αs),

nΓG2
n,λn

(αs) = ‖y − ŷ(αs)‖2 + λnpss
2(αs)

= y′(In −Hn(αs))y +
λnps

n − ps
y′(In −Hn(αs))y

=

(
1 +

λnps

n − ps

)
(Zu + e)′(In − Hn(αs))(Zu + e)

and

nΓG2
n,λn

(αs1) =

(
1 +

λn(ps + 1)

n − ps − 1

)
(Zu + e)′(In −Hn(αs1))(Zu + e)

=

(
1 +

λn(ps + 1)

n − ps − 1

)
(Zu + e)′(In −Hn(αs) − γs1x

(s1)x(s1)′)(Zu + e).

Therefore,

nΓG2
n,λn

(αs1) − nΓG2
n,λn

(αs)

= λn

[
ps + 1

n − ps − 1
− ps

n − ps

]
(Zu + e)′(In −Hn(αs)(Zu + e)

−
(

1 + λn
ps + 1

n − ps − 1

)
(Zu + e)′γs1x

(s1)x(s1)′(Zu + e)

=
nλn

(n − ps)(n − ps − 1)
(Zu + e)′(In − Hn(αs))(Zu + e)

−
(

1 + λn
ps + 1

n − ps − 1

)
(Zu + e)′γs1x

(s1)x(s1)′(Zu + e)

=
nλn

n − ps − 1
s2(αs) −

(
1 + λn

ps + 1

n − ps − 1

)
(bσ2

u + σ2
e )ηs1
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where

ηs1 ≡ (bσ2
u + σ2

e)
−1(Zu + e)′γs1x

(s1)x(s1)′(Zu + e) ∼ χ2
1.

Evidently,

nΓG2
n,λn

(αs1s2) − nΓnn, λG2(αs1) 6= nΓG2
n,λn

(αs2) − nΓG2
n,λn

(αs).

So the probability that adding x(s2) reduces GICλn depends on the variables that

are already in the model. Finding the model that minimizes (2.50) is no longer as

simple as asking “yes-no” questions, and the approximate distribution of the number

of extra variables is not available.

Sequential Selection

Theorem 2.12 Under Assumption 2.4, with λn = O(n
1
2
−δ) for 0 < δ ≤ 1/2, the

expected number of extra variables E[pG1
o ] in the model that minimizes ΓG1

n,λn
is

E[pG1
o ] =

PG1 (1 − [PG1 ]
qn)

1 − PG1

+ O(n−δ)

where PG1 = 2
[
1 −Φ

(√
λn(σ2

u+σ2
e)

bσ2
u+σ2

e

)]
.

Proof: In sequential selection, the difference in GICλn of two subsequent models is

nΓG1
n,λn

(αk) − nΓG1
n,λn

(αk−1) = −(Zu + e)′γkx
(k)x(k)′(Zu + e) + λns2.

As we proved in Theorem 2.11, this difference is a linear combination of two inde-

pendent quadratic forms of normal variables, and

P [nΓG1
n,λn

(αk) − nΓG1
n,λn

(αk−1) < 0] = P [ηk >
λns2

bσ2
u + σ2

e

].
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Conditional on s2, the differences in ΓG1
n,λn

by adding one variable are independent,

and the let expected number of extra variables be pG1
o , then

P [pG1
o = k|s2] = [PG1(s

2)]k(1 − PG1(s
2))

for 1 ≤ k ≤ qn − 1, and

P [pG1
o = qn|s2] = [PG1(s

2)]qn

where

PG1(s
2) ≡ 2


1 − Φ



√√√√ λns2

bσ2
u + σ2

e




 .

The conditional expectation of pG1
o is therefore

E[pG1
0 |s2] = PG1 (s

2)
1 − [PG1(s

2)]qn

1 − PG1(s
2)

.

Let hn(x) = x(1 − xqn)/(1 − x). In the interval [0, δ∗] for any δ∗ < 1, the

functions hn(x) satisfy

hn(x) =
x(1 − xqn)

1 − x
≤ x

1 − x
≤ δ∗

1 − δ∗

and

h′
n(x) =

(1 − xqn) − qnx
qn(1 − x)

(1 − x)2
≤ 1

(1 − x)2
≤ 1

(1 − δ∗)2
.

Let f(x) = 2(1−Φ(
√

x)) and δ∗ = f(ε∗). Then f(x) ∈ [0, δ∗] when x ∈ [ε∗,∞).

Finally let gn(x) = h(f(x)) and tn = λn/(bσ2
u +σ2

e ). We can see that on the interval

[ε∗,∞), the functions gn(x) are uniformly bounded by δ∗/(1 − δ∗) and g′
n(x) are

uniformly bounded by 1/(1 − δ∗)
2 · ε−1/2

∗ φ(
√

ε∗). Therefore we can apply Corollary

2.3 with Cg = ε∗ and conclude that

E[pG1
o I[tns2≥ε∗]] =

PG1 (1 − [PG1 ]
qn)

1 − PG1

I[tn(σ2
u+σ2

e)≥ε∗ ] + O(n−δ).
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Since tn is bounded below,

E[pG1
o I[tns2≥δ∗]] =

PG1 (1 − [PG1 ]
qn)

1 − PG1

+ O(n−δ)

for ε∗ sufficiently small. Now on the interval [δ∗, 1] the functions hn(x) are bounded

by qn. By Chebyshev’s inequality and the fact that var(s2) = O(n−1),

P [tns
2 ≤ ε∗] ≤ P [|s2 − (σ2

u + σ2
e)| ≥ (σ2

u + σ2
e ) − ε∗/tn] ≤ O(n−1)

since tn is bounded below. Therefore

E[pG1
o I[tns2≥ε∗]] ≤ qnP [tns

2 ≤ ε∗] = O(pnn−1).

The theorem is proved by noting that pn = O(nθ) with θ < 1/4. 2

2.4.5 The Various Selection Criteria

As Shao mentioned in his paper, GICλn unifies many other model selection

methods. We say two selection methods are equivalent if asymptotically the func-

tions they minimize are equal. In this section we discuss the equivalence of GICλn

to other popular selection methods and the number of extra variables in the final

model chosen by these various selection methods.

Let

Sn(α) = y′(In − Hn(α))y = (Zu + e)′(In − Hn(α))(Zu + e)

be the residual sum of squares for model α, and s2(α) and s2 are defined in (2.61)

and (2.23), respectively. Table 2.1 demonstrates the relationship between GICλn

and these selection procedures.
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Table 2.1: Comparison of GICλn to other Selection Methods

Name Criterion σ̂2
n(α) λn Reference

AIC n log(n−1Sn(α)) + 2pn(α) s2(α) 2 Akaike

BIC n log(n−1Sn(α)) + (logn)pn(α) s2(α) log n Schwartz

Cp Sn(α) + 2pn(α)s2 s2 2 Mallows

FPEλ Sn(α) + λpn(α)s2 s2 λ > 2 Shibata [25]

GIC Sn(α) + Cnpn(α)s2 s2 Cn Rao and Wu[22]

The sequence Cn in the table satisfies

Cn → ∞,
Cn

n
→ 0,

Cn

log log n
→ ∞.

Note that Mallows’ Cp, Shibata’s FPEλ and Rao and Wu’s GIC are special cases of

GICλn; the criteria AIC and BIC are equivalent to GICλn in the sense that asymp-

totically, the minimizer of AIC in An is the same as the minimizer of GICλn and

the minimizer of BIC is the same as that of GICλn in An. To see this equivalence,

note that when we use s2(α) as σ̂2(α) in (2.50),

ΓG2
n,λn

(α) =
Sn(α)

n
+

λnpn(α)

n

Sn(α)

n − pn(α)
=

Sn(α)

n

[
1 +

λnpn(α)

n − pn(α)

]
. (2.79)

Therefore,

log[ΓG2
n,λn

(α)] = log
Sn(α)

n
+ log

[
1 +

λnpn(α)

n − pn(α)

]
.

It is our assumption that pn = O(nθ) with θ < 1/4 and λnpn/n → 0 as n → ∞.

Using Taylor expansion,
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log

[
1 +

λnpn(α)

n − pn(α)

]
= λn

pn(α)

n − pn(α)
+ O



(

λnpn(α)

n − pn(α)

)2



= λn



(

1 − pn(α)

n

)−1

− 1


+ o

(
λnpn

n

)

= λn

[
pn(α)

n
+ o

(
pn

n

)]
+ o

(
λnpn

n

)

=
λnpn(α)

n
+ o

(
λnpn

n

)
, (2.80)

and therefore

log[ΓG2
n,λn

(α)] = log
Sn(α)

n
+

λnpn(α)

n
+ o

(
λnpn

n

)
.

Therefore

log[ΓG2
n,λn

(α)] −AIC = o(pn/n)

and

log[ΓG2
n,λn

(α)] − BIC = o(1).

When n → ∞, the criterion they minimize are close enough, so the methods are

equivalent.

Let

r̃ =
σ2

u + σ2
e

bσ2
u + σ2

e

< 1.

Under Assumption 2.3 , if we use s2 in (2.50), then according to Theorem 2.11,

the number of extra variables chosen by minimizing GICλn is

E[qo] = qnP
G1
a = 2qn[1 − Φ(

√
λnr̃)] + O(nθ− δ

2 ).

Approximately,
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• Cp and FPEλ with λ > 2 a constant: When λn in (2.50) is a constant, so is

P G1
a and therefore E[qo] = O(nθ), the expected number of extra variables is

going to infinity at the same rate as pn.

• Rao and Wu’s GIC: Rao and Wu’s GIC is the special case when we use s2 as

σ̂2(α) and λn = Cn, where Cn goes to infinity slower than n but faster than

log log n. The sufficient condition for E[qo] → 0 when n → ∞, i.e. for the

GIC to choose a model that contains only the p∗ true fixed effects, is that Cn

grows at least as fast as log n. To see this, note that for Cn = c log n,

qn(1−Φ(
√

r̃Cn)) = qn
e−

r̃Cn
2

√
2πr̃Cn

(1+O(C−2
n )) =

anθ− cr̃
2

√
2πr̃c log n

(1+O([log(n)]−2)).

and since s2 = (σ2
u + σ2

e) + Op(n
−1/2),

qn

∣∣∣∣∣∣
Φ(
√

r̃Cn) −Φ



√√√√ r̃s2

bσ2
u + σ2

e



∣∣∣∣∣∣
≤ O(nθ)

√
log nOp(n

−1/4) → 0.

Therefore

E[qo] = 2qn[1 − Φ(
√

Cnr̃)(1 + o(1))

and

– The expected number of extra variables E[qo] → 0 when θ − r̃c
2
≤ 0.

– The expected number of extra variables E[qo] → ∞ when θ − r̃c
2

> 0.

If Cn grows to infinity slower than log n, then E[po] → ∞, and the faster Cn

grows, the slower E[po] grows.

Let

φK ≡ 2


1 − Φ



√√√√K(σ2

u + σ2
e)

bσ2
u + σ2

e




 . (2.81)
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Under Assumption 2.4, by Theorem 2.12 the expected number of extra variables in

a sequential model selection

• Cp and FPEλ with λ > 2 a constant:

E[pG1
o ] = φK(1 − φqn

K )/(1 − φK) + O(n−δ) → φK/(1 − φK)

where φK is defined in (2.81).

• Rao and Wu’s GIC: When λn → ∞, PG1 → 0 and

E[pG1
o ] = PG1(1 − [PG1 ]

qn)/(1 − PG1) + O(n−δ) → 0

when n → ∞.

Remark: From the above, we can see that λn has to grow to infinity fast

enough to make GICλn choose a parsimonious model in balanced-data, orthogonal

design; but in sequential selection, as long as λn → ∞, asymptotically, the expected

number of extra variables will be 0. 2

2.5 Conclusions

We discussed the effect of omitting the random intercept in linear models.

In this special simple model class, the MLE β̂n under the working model is still

consistent in the sense that the Euclidean norm of the difference ‖β̂n−β0‖ converges

to zero in probability. Therefore omitting the random effect does not give us wrong

estimates for the parameter estimates, and should not give us spurious variables in

hypothesis testing or model selection. On the other hand, because the model fails
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to correctly specify the variance structure of the data, it is not surprising to find

the estimated variance structure of the β̂n is not correct. The main reason that

the inferences are unreliable when it comes to hypothesis testing and automatic

model selection is because of the nonconsistent variance estimator. But this can be

fixed by adopting a robustified variance estimator (2.32). The problem of increasing

dimension is another reason to see spurious variables. When the dimension of the

parameter space is fixed, a nonconsistent estimator for the variance structure will

produce wrong inferences about the coefficient estimates in hypothesis testing and

automatic model selection, but will not give us a number of spurious variables that

goes to infinity. When the dimension is increasing with n, with the same probability

of making a mistake, we will have infinitely many number of spurious variables due

to failure to estimate the variance structure consistently. We therefore recommend

that especially when the data have a clustered structure, to use the robustified

variance estimator because even when the model is not correctly specified, this can

still lead to correct statistical inferences, and avoid fitting a mixed effect model,

which is more computationally burdensome than a fixed effect model.
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Chapter 3

Generalized Linear Models

Generalized linear models(McCullagh and Nelder [17]) are used for regression

analysis in a number of cases, including categorical data, where the classical assump-

tion on normality of the data are violated. The statistical analysis of such models

is based on the asymptotic large-sample properties of the maximum likelihood es-

timator. In this chapter we present the conditions that the MLE converges to a

well-defined limit and is asymptotically normal under our design matrix assump-

tions, and will demonstrate the results with two special cases: the Logistic model

and the Poisson model.

3.1 Notations

In this chapter we assume that the working model is a fixed-effect generalized

linear model (GLM), while the true model contains a random effect for each cluster

(GLMM).

The True Model: The response vector y is assumed to consist of independent ele-

ments conditional on the random-effect vector u, each with a distribution with

density from the exponential family:

yij |u
indep.∼ fYij |u(yij|u), i = 1, · · · ,m, j = 1, · · · , ni

fYij|u(yij|u) = exp{[yijγ
∗
ij − b∗(γ∗

ij)]/τ
∗2 − c∗(yij, τ

∗)}. (3.1)
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We model the transformation of the conditional mean of yij as a linear model

in both the fixed and random effects:

E[yij|u] = µ∗
ij (3.2)

g∗(µ∗
ij) = x∗

ijβ
∗ + ui

Here the link function g∗(·) is assumed known, x∗
ij is the (

∑i−1
k=1 nk + j)th row

of the model matrix for the fixed effects corresponding to the response yij, and

β∗ is the p∗×1 fixed effects parameter vector. The parameter γ∗
ij is in an open

region in R and is related to x∗
ijβ

∗ through

∂b(γ∗
ij)

∂γ∗
ij

= µ∗
ij = g−1(x∗

ijβ
∗ + ui).

To that specification we have added u, the random effects vector. Finally,

we assume that the random effect ui’s are iid from known density fU (u) for

i = 1, · · · ,m.

The Working Model: The vector y is assumed to consist of independent measure-

ments from a distribution with density from the exponential family:

yij
indep.∼ fYij (yij), i = 1, · · · ,m j = 1, · · · , ni

fYij (yij) = exp{[yijγij − b(γij)]/τ
2 − c(yij, τ )}. (3.3)

The link function g(·) relates the transformation of the mean, µij, as a linear

model in the predictors:

E[yij] = µij =
∂b(γij)

∂γij

.
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g(µij) = xijβn, (3.4)

where g(·) is a known function, xij is the double-indexed row of the model

matrix corresponding to the response yij, and βn is the pn × 1 parameter

vector in the linear predictor. Again the parameter γij is related to xijβ

through

∂b(γij)

∂γij
= µij = g−1(xijβn).

In this chapter we assume that the covariates are designed within-cluster covariates,

or X̃n = Xn with all rows stochastically independent. We will therefore use the

notation Xn only.

3.2 The General Model

Conditions to assure consistency and asymptotic normality of the MLE for

exponential families have previously been discussed in the literature under regular-

ity conditions. See Berk [2], Fahrmeir and Kaufmann [10] for detailed discussions.

There are also discussions of these conditions with parameters of increasing dimen-

sions. Portnoy [20] discussed consistency and asymptotic normality for the MLE

of the population mean of the exponential family when the number of parameters

tends to infinity, and He and Shao [12]considered M-estimators of general paramet-

ric models with expanding dimensions. Both authors gave the rate at which pn is

allowed to grow for the asymptotic distributional approximations of the estimators

(MLE for Portnoy) to be still valid, but Portnoy did not consider the case where

the model is misspecified while Shao and He’s conditions are not easy to check even
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with the logistic model in our case; Strawderman and Tsiatis [27] applied the Inverse

Function Theorem to get consistency results when the parameter space is expanding

and the model could be misspecified, but their conditions are too restrictive for us

to apply. White [32] discussed the asymptotic properties of the MLE under model

misspecification, but only considered the case where the parameter space is fixed,

and the data are iid. Our special situation cannot be an application of any of these

past discussions. But in this chapter, we can use methods that are similar to those

used in White [32] and Portnoy [20] to get our own conditions for consistency and

asymptotic normality of the MLE under the working model.

3.2.1 The Likelihood Equations

We will first look at the likelihood equations, which are discussed in various

textbooks. We adopt the notations in McCulloch and Searle [18]. The log likelihood

for the working model (3.3) is given by

ln(βn) =




m∑

i=1

ni∑

j=1

[yijγij − b(γij)]/τ
2 −

m∑

i=1

ni∑

j=1

c(yij, τ )


 . (3.5)

Define

gµ(µij) =
∂g(µij)

∂µij
,

v(µij) =
∂2b(γij)

∂γ2
ij

,

wij = [v(µij)g
2
µ(µij)]

−1,

and use two very useful identities in generalized linear models:

∂γij

∂µij

=

(
∂µij

∂γij

)−1

=

(
∂2b(γij)

∂γ2
ij

)−1

=
1

v(µij)
; (3.6)

86



and

∂µij

∂βn

=
∂µij

∂g(µij)

∂g(µij)

∂βn

=

(
∂g(µij)

∂µij

)−1
∂xijβn

∂βn

=

(
∂g(µij)

∂µij

)−1

x′
ij. (3.7)

Then we have

∂ln(βn)

∂βn

=
1

τ 2

m∑

i=1

ni∑

j=1

[
yij

∂γij

∂βn

− ∂b(γij)

∂γij

∂γij

∂βn

]

(3.2)
=

1

τ 2

∑

i

∑

j

(yij − µij)
∂γij

∂βn

=
1

τ 2

∑

i

∑

j

(yij − µij)
∂γij

∂µij

∂µij

∂βn

(3.6)(3.7)
=

∑

i

∑

j

(yij − µij)

v(µij)gµ(µij)
x′

ij

=
1

τ 2

∑

i

∑

j

(yij − µij)wijgµ(µij)x
′
ij. (3.8)

We can write this in matrix notation as

∂ln(βn)

∂βn

=
1

τ 2
X′W∆(y − µ), (3.9)

with

Wn×n = diag(wij) and ∆n×n = diag(gµ(µij)), for j ∈ {1, · · · , ni}, i ∈ {1, · · · ,m}.

(3.10)

The ML equations are thus given by

X′W∆y = X′W∆µ, (3.11)

where W, ∆ and µ involve the unknown βn. Note that the MLE of βn remains

the same in the presence of the nuisance parameter τ. Typically these are not linear

functions of βn and so cannot be solved analytically.
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3.2.2 Consistency of MLE under Nonstandard Conditions

The usual regularity conditions on the existence of a unique and consistent

solution to the likelihood equations include that the underlying probability distri-

bution of the data is a member of the parametric family considered, and that the

dimension of the parameter is fixed. These conditions are not satisfied in our case.

By studying the working likelihood at the cluster level, we can use large-sample

asymptotics to draw conclusions analogous to that of White [32] when the parame-

ter space has a fixed dimension.

Suppose that the parameter space Bn for βn is an open region in Rpn. Let

Gn(βn) ≡ m−1ln(βn) be the normalized log likelihood, and β?
n be the solution to

E
[
∇βn

Gn(βn)
]

= 0; then we have

Theorem 3.1 Suppose that there exists ε > 0 independent of n such that

1. Gn(βn) is a concave function of βn,

2.

∥∥∥∥∇βn
Gn(β?

n)

∥∥∥∥ = op(1);

3. ∇⊗2

βn

Gn(βn) ≤ −CIpn for all βn ∈ Bε(β
?
n), with probability approaching 1 as

n → ∞, for a constant C that could depend on ε but not on n.

Then as n → ∞, with probability approaching to 1 there exists a unique solution

β̂n ∈ Bε(β
?
n) to the equation ∇βn

Gn(βn) = 0, and ‖β̂n−β?
n‖ = Op(

∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥).

Proof: Any continuous function has a local minimum or maximum in a compact

set, and for concave functions, a local maximum is also the global maximum. If

we can prove that outside the ε−neighborhood of β?
n there cannot be a maximizer
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of Gn(βn), then within the compact ε−neighborhood of β?
n the concave function

Gn(βn) must have a unique maximum and the theorem is proved.

For ‖βn − β?
n‖ ≤ ε, the following Taylor expansion (in Mean Value Theorem

form) holds for some β̃n between βn and β?
n :

Gn(βn)−Gn(β
?
n) =

(
∇βn

Gn(β?
n)
)′

(βn −β?
n)+

1

2
(βn −β?

n)
′∇⊗2

βn

Gn(β̃n)(βn −β?
n).

By Condition 2,

(βn − β?
n)

′∇⊗2

βn

Gn(β̃n)(βn − β?
n) ≤ −C(β − β?

n)
′(βn − β?

n) = −C‖βn − β?
n‖2.

Therefore, there exists a sequence αn = op(1) such that

Gn(βn) − Gn(β?
n) ≤ αn‖βn − β?

n‖ −
C

2
‖βn − β?

n‖2 < 0 (3.12)

for ‖βn − β?
n‖ ≥ 2αn/C. For n large enough 2αn/C < ε, and Gn(βn) −Gn(β?

n) < 0

as long as ‖βn − β?
n‖ > ε. This means that the maximum cannot be outside of

the ε−neighborhood of β?
n. Within the compact set Bε(β

?
n), the concave function

Gn(βn) has a maximizer β̂n which solves ∇βn
Gn(βn) = 0, and ‖β̂n − β?

n‖ =

Op

(∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥
)

p→ 0. 2

Since

E[yij|xij] = Eu[g
∗−1(x∗

ijβ
∗ + u)] =

∫
g∗−1(xijβ0 + u)fU (u)du,

it follows that

E[∇βn
Gn(βn)] =

1

mτ 2
E(xi,ni)

∑

i

∑

j

[
(E[yij|xij]− µijwijgµ(µij)) x′

ij

]

=
1

mτ 2
E(xi,ni)

∑

i

∑

j

[(
Eu[g

∗−1(xijβ0 + u)]

−g−1(xijβn)w(xijβn)gµ(xijβn)
)
x′

ij

]
(3.13)
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where the subscript in the expectation denotes the variables over which the expec-

tation is taken. We write w and gµ as functions of xijβn to emphasize the fact

that both of them depend on xijβn and cannot be written out of the expectation.

The expectation is taken under the joint density of xij and ni. For simplicity of the

notations we further assume that

Assumption 3.1 xij are independent of ni for all i and j.

Under this Assumption, (3.13) becomes

E[∇βn
Gn(βn)] =

1

τ 2
Ex

[(
Eu[g

∗−1(xβ0 + u) − g−1(xβn)w(xβn)gµ(xβn)
)
x′
]
.

The solution to (3.13), β?
n, therefore satisfies

Ex

[(∫
g∗−1(xβ0 + u)fU(u)du − g−1(xβ?

n)w(xβ?
n)gµ(xβ?

n)
)

x′
]

= 0.

Remark 1: This result is analogous to that of White [32] because β?
n in

Theorem 3.1 is actually the parameter in Bn that minimizes the Kullback-Leibler

[14] information. Under the model misspecification and assumptions we impose on

the regressors xij, we have proved that the MLE of the working model (Quasi-MLE

in White’s discussion [32]) converges in probability to a well defined limit. 2

Remark 2: We impose Assumption 3.1 only to reduce the formula to a more

interpretable form; to have the conditions on Gn(β?
n) and its derivatives satisfied,

we only need moments of x′
ij to be well defined, and as ni’s are bounded almost

surely, conditions on expectation taken with respect to the joint density is virtually

the same as those on expectation taken with respect to the density of xij alone.

Therefore without loss of generality we will continue to impose Assumption 3.1

throughout this chapter.
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3.2.3 Asymptotic Normality

When the parameter space has fixed dimension, under regularity conditions

(Berk [2]) the MLE is asymptotically normal with p × 1 mean and p × p variance

matrix. Even when the model is not correctly specified, the asymptotic normality

can still be established when the number of parameters is fixed (White [32]). Since

each β̂n is a pn × 1 vector, with pn increasing with n, we need another form of

asymptotic normality. Definition (1.12) in Chapter 1 is a strong version of normality

in the Central Limit Theorem that was used both in Portnoy [20] and Shao and He

[12], since apparently it implies the element-wise normality of β̂n.

First notice that the gradient ∇βn
G(β?

n) can be written as:

∇βn
Gn(β?

n) =
1

mτ 2

∑

i

∑

j

[yij − µijwijgµ(µij)]x
′
ij =

1

m

m∑

i=1

ζ i,

where under the true model the pn × 1 random vectors

ζi ≡
ni∑

j=1

(yij − µijwijgµ(µij))x
′
ij (3.14)

are iid with Eζi = 0 and

E
[
ζ⊗2

i

]
= mE

[(
∇βn

Gn(β?
n)
)⊗2

]
(3.15)

Then we can take the same approach as White [32] to establish the asymptotic

normality of (β̂n − β?
n) :

Theorem 3.2 Under Assumptions 1.2-1.4, if there exists a ε > 0 not shrinking

with n such that for all βn ∈ Bε(β
?
n)

1. Gn(βn) is a concave function for βn;
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2.
∥∥∥∥∇βn

Gn(β?
n)
∥∥∥∥ = Op(pn/

√
n);

3. For a constant C that could depend on ε but not on n,

∇⊗2

βn

Gn(βn) ≤ −CIpn

and there exists a δ1 > 0 such that

sup
‖βn−β

?

n‖≤ε

∥∥∥∥∥

(
∇⊗2

βn

Gn(βn)
)−1

−
(
∇⊗2

βn

Gn(β?
n)
)−1

∥∥∥∥∥ = Op(p
−1−δ1
n );

4. There exists a δ2 > 0 such that

∥∥∥∥∥

(
E
[
∇⊗2

βn

Gn(β?
n)
]−1

)
−
(
∇⊗2

βn

Gn(β?
n)
)−1

∥∥∥∥∥ = Op(p
−1−δ2
n ) (3.16)

5. For any sequence of unit vectors vn ∈ Rpn the sequence v′
nζi, 1 ≤ i ≤ m

satisfy the Lyapunov condition for central limit theorem.

Then for any sequence of unit vectors vn ∈ Rpn with σ2
vn

= v′
nA

−1
n BnA

−1
n vn,

√
mσ−1

vn
v′(β̂n − β?

n) → N (0, 1).

Here

An = −E
[
∇⊗2

βn

Gn(β?
n)
]

and

Bn = E
[
ζ⊗2

i

]

where the expectations are taken under the true model.

Proof: Since ‖β̂n − β?
n‖ = Op(pn/

√
n), the Taylor expansion of the function

∇βn
Gn(βn) at β̂n yields

0 = ∇βn
Gn(β̂n) = ∇βn

Gn(β?
n) + ∇⊗2

βn

Gn(β̃n)(β̂n − β?
n)
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for some β̃n between β̂n and β?
n by Mean Value Theorem. By Condition 3,

−∇⊗2

βn

Gn(β̃n) ≥ CIpn

uniformly in the ε−neighborhood of β?
n, so −∇⊗2

βn

Gn(βn) is invertible in the ε−neighborhood

of β?
n, and

β̂n − β?
n =

(
−∇⊗2

βn

Gn(β̃n)
)−1

∇βn
Gn(β?

n)

=
(
E
[
−∇⊗2

βn

Gn(β?
n)
])−1

∇βn
Gn(β?

n)

+

{(
−∇⊗2

βn

Gn(β̃n)
)−1

−
(
E
[
−∇⊗2

βn

Gn(β?
n)
])−1

}
∇βn

Gn(β?
n).

Uniformly for any unit vector vn ∈ Rpn,

v′
n

{(
−∇⊗2

βn

Gn(β̃n)
)−1

−
(
E
[
−∇⊗2

βn

Gn(β?
n)
])−1

}
∇βn

Gn(β?
n)

≤
∥∥∥∥∥

(
−∇⊗2

βn

Gn(β̃n)
)−1

−
(
E
[
−∇⊗2

βn

Gn(β?
n)
])−1

∥∥∥∥∥

∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥

≤
∥∥∥∥∥

(
E
[
∇⊗2

βn

Gn(β
?
n)
])−1

−
(
∇⊗2

βn

Gn(β?
n)
)−1

∥∥∥∥∥

∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥

+

∥∥∥∥∥

(
∇⊗2

βn

Gn(β̃n)
)−1

−
(
∇⊗2

βn

Gn(β?
n)
)−1

∥∥∥∥∥

∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥

= Op(n
−1/2p−δ1

n ) + Op(n
−1/2p−δ2

n ). (3.17)

Therefore, uniformly for any unit vector vn ∈ Rpn,

√
mv′

n(β̂n − β?
n) =

1√
m

v′
nA

−1
n

m∑

i=1

ζi + Op(p
−δ1
n ) + Op(p

−δ2
n ).

By Condition 5

1√
m

σ̃−1
vn

m∑

i=1

v′
nζi → N (0, 1)

where

σ̃2
vn

= v′
nE

[
ζ⊗2

i

]
vn.
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Finally, similar to the proof of Theorem 2.3 in Chapter 2, ‖A−1
n ‖ is bounded and

v′
nA

−1
n ζi satisfies the Lyapunov condition. So

√
mσ−1

vn
v′

n(β̂n − β?
n) → N (0, 1)

where σ2
vn

= v′
nA

−1
n E

[
ζ⊗2

i

]
A−1

n vn. 2

Remark 1: Theorem 3.2 gives a result analogous to that of ordinary linear

regression models, namely, a robust estimator for the variance of the MLE. Because

the random effect was omitted in the working model, part of the variability of the

data is not explained by the working model, and the usual working-model variance

estimator for β̂n will be biased. Aside from the fact that β̂n is not necessarily

consistent (‖β?
n − β0‖ 6→ 0), the bias in estimating the variance of β̂n could lead

to unreliable statistical inferences as we have seen in Section 2.3 and 2.4. We will

see in the computational part of the discussion (Section 3.5) that the “sandwich”

variance estimator estimates the variance of β̂n very well, even when the model is

misspecified. 2

Remark 2: The assumptions will be verified in particular models in later

sections of this Chapter. 2

3.3 Logistic Regression: A Special Case

In this section, logistic model as a special case of generalized linear models

is studied. There are many desirable features about the logistic model: the data

are bounded therefore have infinitely many finite moments; the natural link function

makes the log likelihood a linear function of yij, so that the Hessian of ln(βn) does not

94



involve yij; and the Hessian matrix of ln(βn) is negative definite so ln(βn) is concave

in βn. Therefore β?
n is unique if it exists. For the moment we only consider the case

where the link function is correctly specified, namely, the case where g(·) = g∗(·),

b(·) = b∗(·) and c(·) = c∗(·) in (3.1) and (3.3). In this section, we are going to discuss

in detail what to expect of β?
n when σ2

u, the variance of ui, is in different ranges.

3.3.1 Notations and Assumptions

The Logistic-Normal model makes the following assumption about the density

of the random effect:

Assumption 3.2 The random effects, ui, are i.i.d. normal variates with mean 0

and variance σ2
u.

The log likelihood of the working model with sample size n is therefore

ln(βn) =
m∑

i=1

ni∑

j=1

log
(
µ

yij

ij (1 − µij)
1−yij

)

=
1

n

∑

i

∑

j

[
yij log

(
µij

1 − µij

)
+ log(1 − µij)

]
, (3.18)

where

µij = Eyij = P [yij = 1]

and both the expectation and the probability are taken under the working model.

The GLM notations for this case are

τ 2 = 1,
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γij = log

(
µij

1 − µij

)
,

b(γij) = − log(1 − µij) = log(1 + eγij),

and

c(yij, τ ) = 0.

Using the canonical link

g(µ) = log

(
µ

1 − µ

)
,

(3.18) becomes

ln(βn) =
∑

i

∑

j

[
yijxijβn − log(1 + exijβn)

]
. (3.19)

3.3.2 Asymptotic Limit of β̂n

First of all, with the working model in mind, we can see that

Gn(βn) =
1

m
ln(βn) =

1

m

∑

i

∑

j

[
yijxijβn − log(1 + exijβn)

]
,

∇βn
Gn(βn) =

1

m
∇βn

ln(βn) =
1

m

∑

i

∑

j


yij −

exijβn

1 + exijβn


x′

ij, (3.20)

and

∇⊗2

βn

Gn(βn) =
1

m
∇⊗2

βn

ln(βn) = − 1

m

∑

i

∑

j

exijβn

(1 + exijβn)2
x′

ijxij. (3.21)

Therefore β?
n under Assumptions 3.1 and 3.2 satisfies

E[∇βn
Gn(β?

n)] = Ex





∫

exβ0+σuz

1 + exβ0+σuz
φ(z)dz − exβ?

n

1 + exβ?

n


x′


 = 0, (3.22)

where φ(·) is the pdf of a standard normal distribution.
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Theorem 3.3 Under Assumptions 1.2-1.4, as n → ∞, a unique solution β̂n of

the equation ∇βn
Gn(β̂n) = 0 exists in a fixed neighborhood Bε(β

?
n) about β?

n with

probability going to one, and ‖β̂n − β?
n‖ = Op(‖∇βn

Gn(β
?
n)‖).

Proof: By (3.14) and (3.20),

∇βn
Gn(β?

n) =
1

m

m∑

i=1

ζi ≡
1

m

m∑

i=1




ni∑

j=1


yij −

exijβ
?

n

1 + exijβ
?

n


 x′

ij


 .

where the iid pn ×1 random vectors ζi satisfies E[ζi] = 0. Let ζik be the kth entry of

ζi, then by Assumption 1.3 and the fact that
[
yij − exijβn(1 + exijβn)−1

]
is bounded

for all i, j and βn ∈ Bn, we have E|ζik|4r < ∞ uniformly in 1 ≤ k ≤ pn. Therefore

for any constant K > 0,

√
pnP

[
max

1≤k≤pn

∣∣∣∣∣
1

n

m∑

i=1

ζik

∣∣∣∣∣ ≥
Kpn√

n

]

≤ p3/2
n P

[∣∣∣∣∣
1

n

m∑

i=1

ζ ik

∣∣∣∣∣ ≥
Kpn√

n

]

≤ Mrp
3/2
n n2rp−4r

n n−2rK−4r (3.23)

= O(p3/2−4r
n ) → 0

for r > 1, where (3.23) follows by Proposition B.1 in the Appendix. Therefore

∥∥∥∥∇βn
Gn(β?

n)
∥∥∥∥ =

∥∥∥∥∥
1

n

m∑

i=1

ζ i

∥∥∥∥∥

≤ √
pn max

1≤k≤pn

∣∣∣∣∣
1

n

m∑

i=1

ζik

∣∣∣∣∣

≤ Op(pn/
√

n). (3.24)

For the logistic model, Gn(βn) is always concave, and

−∇⊗2

βn

Gn(β?
n) =

1

m

∑

i

∑

j

exijβ
?

n

(1 + exijβ
?

n)2
x′

ijxij ≤
1

4m
(X′

nXn) ≤ 1

4
(M∗ + an)Ipn
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by Theorem 1.1. Therefore the conditions in Theorem 3.1 are met and
∥∥∥β̂n − β?

n

∥∥∥

converges to zero in probability. 2

Generally, though we can prove the existence of β?
n and the consistency of β̂n,

neither the likelihood equations or E[Sn(βn)] = 0 can be solved analytically. In the

subsequent sections, we study the special cases where σu is in an extreme range and

we can use Taylor expansion to get an approximation of β?
n.

3.3.3 Asymptotic Normality of β̂n

We will check the conditions in Theorem 3.2 in the logistic model to establish

the asymptotic normality of β̂n. Define functions

p(x) =
ex

1 + ex

and

d(x) =
ex

(1 + ex)2
.

Theorem 3.4 Under Assumptions 1.2-1.4, if r > 1/[2(1 − 3θ)] and

max
vn∈Rpn :‖vn‖=1

E|xijvn|2+ε ≤ Cε < ∞

for some ε > 0, then

√
mσ−1

vn
v′

n(β̂n − β?
n) → N (0, 1)

where σ2
vn

= v′
n(An)−1Bn(An)−1vn,

An = E
[
x′

ijd(xijβ
?
n)xij

]

and

Bn = E




ni∑

j=1

(yij − p(xijβ
?
n))x

′
ij




⊗2

.
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Proof: Condition 1,2 and the first part of Condition 3 are easily checked by the

proof of Theorem 3.3. What we need to prove for Condition 3 and 4 of Theorem

3.2 is that there exist δ1 > 0 and δ2 > 0 such that

∥∥∥∥
(
X′

nD̃Xn

)−1
− (X′

nD
?Xn)

−1
∥∥∥∥ = Op(p

−1−δ1
n ),

and

∥∥∥(X′
nD

?Xn)
−1 − (E [X′

nD
?Xn])

−1
∥∥∥ = Op(p

−1−δ2
n ).

where D̃ and D? are n × n diagonal matrices defined by

D̃ ≡ m−1diag
(
d(x11β̃n), · · · , d(xmnm β̃n)

)

and

D? ≡ m−1diag (d(x11β
?
n), · · · , d(xmnmβ?

n)) .

By Assumption 1.3, for βn in a compact set in Bn, xijβn is bounded almost surely,

so there exist M1 and M2 such that

0 < M1 < d(xijβn) ≤ M2 < 1

for βn in an ε-neighborhood of β?
n. Therefore both n−1X′

nD̃Xn and n−1X′
nD

?Xn are

bounded below by M1(m
∗ − an)Ipn and above by M2(M

∗ + an)Ipn with probability

approaching 1 as n → ∞, and n−1E [X′
nDXn] is bounded below by M1m

∗Ipn and

above by M2M
∗Ipn. Therefore it suffices to prove that

‖X′
nD

?Xn − E [X′
nD

?Xn]‖ = Op(p
−1−δ2
n ) (3.25)

and

∥∥∥X′
nD̃Xn − X′

nD
?Xn

∥∥∥ = Op(p
−1−δ1
n ) (3.26)
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for some positive numbers δ1 and δ2. By Theorem B.1, (3.25) is satisfied when

r > θ/(1−4θ) because d(xijβ
?
n) is bounded (and therefore has infinitely many finite

moments). To see (3.26), note that d(x) and its first derivative are both bounded

and when r > 1/(2(1 − 3θ)), for any δ4 > 0

∥∥∥X′
nD̃Xn − X′

nD
?Xn

∥∥∥ ≤ 1√
n

∥∥∥D̃ −D?
∥∥∥

√
1

n
‖X′

nXn‖

≤
√

M∗ + an

n
max
1≤t≤n

|d(xtβ̃n) − d(xtβ
?
n)|

≤ C

√
M∗ + an

n
max

t
|xt(β̂n − β0)|

≤ C

√
M∗ + an

n

√
pn max

t,k
|xtk|‖β̂n − β0‖

Th.1.2
= Op(n

−1/2p1/2
n pnn

1
4r

+δ4pnn−1/2)

= Op(p
1/2
n n−1/2) (3.27)

and therefore there exists some δ2 > 0 such that (3.26) is satisfied. The only thing

left to check is Condition 5. For ζi =
∑ni

j=1(yij − p(xijβ
?
n))x

′
ij, to prove that for any

unit vector vn ∈ Rpn the sequence ζivn satisfy the Lyapunov condition, we have:

E|v′
nζi|3 = E

∣∣∣∣∣

pn∑

k=1

vnkζik

∣∣∣∣∣

3

≤ E[
pn∑

k=1

v2
nk

pn∑

k=1

ζ2
ik]

3/2

=

∥∥∥∥∥

pn∑

k=1

ζ2
ik

∥∥∥∥∥

3/2

3/2

≤
( pn∑

k=1

‖ζ2
ik‖3/2

)3/2

≤ p3/2
n max

1≤k≤pn

E|ζ ik|3

≤ p3/2
n C. (3.28)

100



where C is a constant, since ζ ik has uniformly bounded (4r)th moment for all 1 ≤

k ≤ pn. On the other hand,

E|v′
nζ i|2 = E




ni∑

j=1

(yij − p(xijβ
?
n))(xijvn)




2

= E


E







ni∑

j=1

(yij − p(xijβ
?
n))(xijvn)




2
∣∣∣∣∣∣∣
ui, ni,xij







≥ E


E







ni∑

j=1

(yij − p(xijβ0 + ui))(xijvn)




2
∣∣∣∣∣∣∣
ui, ni,xij







= E


E







ni∑

j=1

d(xijβ0 + ui)(xijvn)




2
∣∣∣∣∣∣∣
ui, ni,xij







≥ 1

2
E
[
d(xijβ0)(xijv)2

]

(3.29)

Use the fact that

E(xijvn)
2 = E[v′

nx
′
ijxijvn] = v′

nΣ
(n)
x vn

and Assumption 1.4, we have

m∗ ≤ E(xijvn)
2 ≤ M∗.

For any a∗,

m∗ ≤ E(xijvn)
2

= E [(xijvn)I[|xijvn| ≤ a∗]] + E [(xijvn)I[|xijvn| ≥ a∗]]

≤ a∗M
∗ + E [(xijvn)I[|xijvn| ≥ a∗]]

Holder
≤ a∗M

∗ +
(
E|xijvn|2+ε

) 1
2+ε

(
E [I[|xijvn| ≥ a∗]]

2+ε
1+ε

) 1+ε
2+ε

≤ a∗M
∗ + C

1
2+ε
ε P [|xijvn| ≥ a∗]

1+ε
2+ε (3.30)
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For a∗ small enough, m∗ − a∗M
∗ > 0 and

P [|xijvn| ≥ a∗] ≥


m∗ − a∗M

∗

C
1

2+ε
ε




2+ε
1+ε

(3.31)

On the other hand, for any A > 0,

P [|xijvn| > a∗, |xijβ0| > A] ≤ E(xijβ0)
2

A2
≤ M∗‖β0‖2

A2
(3.32)

By (3.31) and (3.32),

P [|xijvn| > a∗, |xijβ0| ≤ A] = P [|xijvn| > a∗] − P [[|xijvn| > a∗, |xijβ0| > A]

≥

m∗ − a∗M

∗

C
1

2+ε
ε




2+ε
1+ε

− M∗‖β0‖2

A2

> 0 (3.33)

if we choose a∗ to be small enough and A to be large enough.

Therefore,

E
[
d(xijβ0)(xijvn)

2
]
≥ a2

∗d(A)P [|xijvn| > a, |xijβ0| ≤ A] ≥ A1 > 0,

and

m∑

i=1

E|v′
nζi|3

σ3
n,vn

≤ mp3/2
n C

m3/2A
3/2
1

→ 0.

The last condition in Theorem 3.2 is satisfied. At last, the r has to be the largest

of 2θ/(1 − 2θ), θ/(1 − 4θ) and 1/[2(1 − 3θ)], which is the last one when θ < 1/4. 2

3.3.4 Limiting Case: σu → 0

When σu is small enough, we expect β?
n not to be very far from β0. Using

Taylor expansion, we can approximate the difference (β?
n − β0) when σu = 0+ :
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Theorem 3.5 When σu is in a sufficiently small neighborhood of 0, the difference

(β?
n − β0) satisfies the equation

G∗(β?
n − β0) =

σ2
u

2
h∗ + O(σ4

u), (3.34)

where

G∗ = Ex


 exβ0

(1 + exβ0)2
x′x


 ,

and

h∗ = Ex


exβ0(1 − exβ0)

(1 + eβ0)3
x′


 .

Lemma 3.1 When σu = 0, β?
n = β0.

Proof of Lemma: As the unique solution to E[∇βn
(βn) = 0], β?

n ≡

β?
n(β0, σ

2
u) is evidently a function of σu and β0. Let

h∗(σu) ≡ Eu(g
−1(xβ0 + u)) =

∫
exβ0+σuz

1 + exβ0+σ0z
φ(z)dz (3.35)

and let

g∗(σ
2
u) ≡ g−1(xβ?

n(β0, σ
2
u)) =

exβ?

n(β0 ,σ2
u)

1 + exβ?

n(β0 ,σ2
u)

. (3.36)

Then β?
n satisfies

Ex

[(
h∗(σu) − g∗(σ

2
u)
)
x′
]

= 0. (3.37)

Moreover, at σu = 0, the model is not misspecified,

h∗(0) = g−1(xβ0),

and β?
n satisfies

Ex

[(
g−1(xβ0) − g−1(xβ?

n)
)
x′
]

= 0.
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The solution of E[∇βn
Gn(βn)] = 0 is β?

n = β0, and again it is the only solution by

concavity of the log likelihood. 2

Remark: Theorem 3.3 and Lemma 3.1 concludes that when all the assump-

tions are satisfied, at σu = 0, a unique solution to the likelihood equations exists in

a neighborhood about β0 with probability going to one, in other words, the MLE is

consistent. 2

Proof of the Theorem: If we write β?
n as a function of β0 and σu, from

Lemma 3.1 we have

β?
n(β0, 0) = β0.

By the Inverse Function Theorem, β?
n(β0, σ

2
u) is a smooth function of σ2

u. So the

Taylor expansion of β?
n at σu = 0 is

β?
n(β0, σ

2
u) = β0 + σ2

u

∂β?
n

∂σ2
u

∣∣∣
σu=0

+ O(σ4
u),

or

∂β?
n

∂σ2
u

∣∣∣
σu=0

=
β?

n − β0

σ2
u

+ O(σ2
u). (3.38)

where the constant in O(σ2
u) is independent of x. The following are true for the

function h∗(σu) defined in (3.35):

h∗(0) =
exβ0

1 + exβ0

,

∂h∗(0)

∂σu
=
∫

z
exβ0+σuz

(1 + exβ0+σuz)2
φ(z)dz

∣∣∣
σu=0

= 0,

and

∂2h∗(0)

∂σ2
u

=
∫

z2 exβ0+σuz(1 − exβ0+σuz)

(1 + exβ0+σuz)3
φ(z)dz

∣∣∣
σu=0

=
exβ0(1 − exβ0)

(1 + exβ0)3
.
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It is easy to see that h∗(σu) is an even function of σu. Therefore, the Taylor expansion

around 0 for h∗(σu), up to third order, with remainder, is:

h∗(σu) = h∗(0) + σu
∂h∗(0)

∂σu
+

σ2
u

2

∂2h∗(0)

∂σ2
u

+ O(σ4
u)

=
exβ0

1 + exβ0

+
σ2

ue
xβ0(1 − exβ0)

2(1 + exβ0)3
+ O(σ4

u) (3.39)

where the constant in O(σ4
u) is uniformly bounded and therefore independent of x.

On the other hand, the following are true for the function g∗(σ
2
u) defined in (3.36):

g∗(0) = g−1(xβ?
n(β0, 0)) =

exβ0

1 + exβ0

,

∂g∗(0)

∂σ2
u

=
∂g−1(xβ?

n)

∂σ2
u

∣∣∣
σu=0

=
∂g−1(xβ?

n)

∂(xβ?
n)

· ∂(xβ?
n)

∂σ2
u

∣∣∣
σu=0

=
exβ0

(1 + exβ0)2
x

∂β?
n

∂σ2
u

∣∣∣
σu=0

. (3.40)

Therefore, the Taylor expansion for function g∗(σ
2
u) around 0 is

g∗(σ
2
u) = g∗(0) + σ2

u

∂g∗(0)

∂σ2
u

+ O(σ4
u)

=
exβ0

1 + exβ0

+ σ2
u

exβ0

(1 + exβ0)2
x

∂β?
n

∂σ2
u

∣∣∣
σu=0

=
exβ0

1 + exβ0

+ σ2
u

exβ0

(1 + exβ0)2
x(

β?
n − β0

σ2
u

) + O(σ4
u)

=
exβ0

1 + exβ0

+
exβ0

(1 + exβ0)2
x(β?

n − β0) + O(σ4
u) (3.41)

where the constant in O(σ4
u) is uniformly bounded for x. Now (3.22) is equal to

E[Gn(β
?
n)] = Ex

[(
h∗(σu) − g∗(σ

2
u)
)
x′
]

= Ex




σ2

ue
xβ0(1 − exβ0)

2(1 + exβ0)3
− exβ0

(1 + exβ0)2
x(β?

n − β0) + O(σ4
u)


x′




=

[
σ2

u

2
h∗ − G∗(β?

n − β0)

]
+ O(σ4

u),
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which implies that the root β?
n satisfies (3.34). 2

Remark: The difference (β∗ − β0) is of the order σ2
u. Therefore, when σu is

close to zero, the difference is very small, indicating that the later entries of β∗ are

close to zero. 2

3.3.5 Limiting Case: σu → ∞

The limiting case where σu → ∞ might not be as realistic as the limiting case

of small σu, but as a continuous (and infinitely differentiable) function of σu, the

behavior of β∗ at large σu values should also be studied carefully.

Lemma 3.2 β?
n(β0,∞) = limσu→∞ β?

n(β0, σ
2
u) = 0.

Proof: First let us look at the function h∗(σu) defined in (3.35):

lim
σu→∞

exβ0+σuz

1 + exβ0+σuz
=





0 : z < 0

exβ0

1+exβ0

: z = 0

1 : z > 0

.

Therefore, by Dominated Convergence,

h∗(∞) =
∫

lim
σu→∞

exβ0+σuz

1 + exβ0+σuz
φ(z)dz =

∫

z>0
φ(z)dz =

1

2
.

So β?
n satisfies

Ex

[(
1

2
− lim

σu→∞
g∗(σu)

)
x′
]

= 0. (3.42)

Again, one obvious solution to the above equation is

g∗(∞) = lim
σu→∞

g∗(σ
2
u) = lim

σu→∞

exβ∗(β0,σ2
u)

1 + exβ∗(β0 ,σ2
u)

=
1

2
,
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or equivalently,

β?
n(β0,∞) = lim

σu→∞
β?(β0, σ

2
u) = 0.

Suppose there is another solution to (3.42), say, β̃n 6= 0, then

Ex

[(
1

2
− p(xβ̃n)

)
x′
]
β̃n = 0

where p(x) = ex/(1 + ex). Since (1/2 − p(x)) and x always have opposite signs, this

implies that the random variable (xβ̃n) degenerates to zero, which is a contradiction

to Assumption 1.4 when β̃n 6= 0. Therefore β?
n = 0 is the only solution. 2

To see how fast β∗ is approaching to 0 when σu approaches infinity, we first

need to see how rapidly h∗(σu) approaches 1/2 when σu → ∞.

First, consider the following lemma:

Lemma 3.3 For large σu,

∫

z>0
e−(xijβ0+σuz)φ(z)dz = e−xijβ0

(
1√

2πσu

− 1

2σ3
u

)
+ o(σ−3

u ),

and
∫

z<0
exijβ0+σuzφ(z)dz = exijβ0

(
1√

2πσu

− 1

2σ3
u

)
+ o(σ−3

u ).

Proof: By Proposition B.2,

∫

z>0
e−(xijβ0+σuz)φ(z)dz = e−xijβ0

∫ ∞

0

1√
2π

exp{−σuz − z2

2
}dz

= exp{−xijβ0 +
σ2

u

2
}
∫ ∞

0

1√
2π

exp{−(z + σu)
2

2
}dz

= exp{−xijβ0 +
σ2

u

2
}(1 − Φ(σu))

= exp{−xijβ0 +
σ2

u

2
}e−

σ2
u
2

σu


 1√

2π
− 1

2
√

σ2
u + σ4

u


 + o(σ−3

u )

107



=
e−xijβ0

σu


 1√

2π
− 1

2σ2
u

√
1 + σ−2

u


 + o(σ−3)

= e−xijβ0

(
1√

2πσu

− 1

2σ3
u

)
+ o(σ−3

u ). (3.43)

And similarly, by change of variable we get

∫

z<0
exijβ0+σuzφ(z)dz = exijβ0

∫ 0

−∞

1√
2π

exp{σuz − z2

2
}dz

= exijβ0

(
1√

2πσu

− 1

2σ3
u

)
+ o(σ−3

u ). (3.44)

2

Remark: It is worth mentioning that the constants in o(σ−3
u ) in (3.43) and

(3.44) involve e−xijβ0 and exijβ0, respectively.

The following lemma states the rate at which h∗(σu) goes to 1/2 when σu → ∞.

Lemma 3.4 For large σu,

h∗(σu) −
1

2
= C(1)σ−1

u + C(2)σ−3
u + o(σ−3

u )

where

C(1) =
exβ0 − e−xβ0

√
2π

,

and

C(2) =
e−xβ0 − exβ0

2
.

Proof: When σu is large and z < 0,

exβ0+σuz

1 + exβ0+σuz
∼ exβ0+σuz,

and for z > 0,

exβ0+σuz

1 + exβ0+σuz
≈ 1 − e−xijβ0−σuz.
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Therefore,

h∗(σu) −
1

2
=

∫
exβ0+σuz

1 + exβ0+σuz
φ(z)dz − 1

2

≈
∫

z<0
exβ0+σuzφ(z)dz +

∫

z>0
[1 − e−xβ0−σuz]φ(z)dz − Φ(0)

=
∫

z<0
exβ0+σuzφ(z)dz −

∫

z>0
e−xβ0−σuzφ(z)dz

≈ (exβ0 − e−xβ0)

(
1√

2πσu

− 1

2σ3
u

)

≡ C(1)σ−1
u + C(2)σ−3

u + o(σ−3
u ). (3.45)

2

Remark: The constant in o(σ−3
u ) in (3.45) involves both e−xijβ0 and exijβ0.

2

If in addition we assume that

Assumption 3.3 The expectation E[e|xβ0|] exists, and

µe ≡ Ex

[(
exβ0 − e−xβ0

)
x′
]
.

Then when taking expectation with respect to the o(σ−3
u ) terms the constants

involving exijβ0 or e−xijβ0 are all bounded and o(σ−3
u ) can be taken out of the

expectation. Therefore we have the following Theorem:

Theorem 3.6 The solution to (3.22) when σu is large, is

β?
n =

4

σu

[
1√
2π

− 1

2σ2
u

] [
Σ(n)

x

]−1
µe + o(σ−3

u )Ex[x′] + o(‖β?
n‖2). (3.46)

Proof: Note that the Taylor expansion for the function

h(t) = g−1(t) =
et

1 + et
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around zero is

h(t) = h(0) + h′(0)t + h′′(0)
t2

2
+ o(t2) =

1

2
+

1

4
t + O(t2).

Therefore the Taylor expansion for g∗(σ
2
u) = h(xβ?

n) around β?
n = 0 is

g∗(σ
2
u) =

1

2
+

1

4
xβ?

n(β0, σ
2
u) + o((xβ?

n)2).

As β?
n gets close to 0, xβ?

n will get close to 0 as well, and when taken the expectation

with respect to x, the o((xβ?
n)2) becomes o(‖β?

n‖2). Using this and Lemma 3.4 in

(3.22), we find

Ex

[(
h∗(σu) − g∗(σ

2
u)
)
x′
]

= Ex

[(
1

2
+ C(1)σ−1

u + C(2)σ−3
u + o(σ−3

u ) − 1

2
− 1

4
xβ?

n + o((xβ?
n)2)

)
x′
]

= Ex

[(
C(1)σ−1

u + C(2)σ−3
u + o(σ−3

u

)
x′
]
− 1

4
Σ(n)

x β?
n + o(‖β?

n‖2)

=

[
1√

2πσu

− 1

2σ3
u

]
µe + o(σ−3

u )Ex[x
′] − 1

4
Σ(n)

x β?
n + o(‖β?

n‖2).

which means that β?
n satisfies (3.46). 2

Remark: It is obvious that with σ2
u large, the effect of xij are “washed out”

and all the entries of β?
n are close to zero.

3.4 Poisson Regression

In this part of the discussion, we impose Assumptions 1.2-1.4 as well as As-

sumption 3.1. In the Poisson regression model, the log likelihood function of the

model with sample size n is

ln(βn) =
m∑

i=1

ni∑

j=1

log(
e−µijµ

yij

ij

yij!
)
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=
m∑

i=1

ni∑

j=1

[−µij + yij log µij − log(yij !)] , (3.47)

where

µij = Eyij

with the expectation taken under the working model. In the GLM notations,

τ = 1,

γij = log µij,

b(γij) = µij = eγij

and

c(yij, τ ) = log(yij!).

With the canonical link

g(µ) = log(µ),

(3.47) becomes

ln(βn) =
∑

i

∑

j

[
yijxijβn − exijβn − log(yij!)

]
.

Without specifying the distribution fu, we can see that

∂ln(βn)

∂βn

=
∑

i

∑

j

[
yij − exijβn

]
x′

ij.

Therefore,

∇βn
Gn(βn) =

1

m

∂ln(βn)

∂βn

=
1

m

∑

i

∑

j

[
yij − exijβn

]
x′

ij (3.48)

and

E[∇βn
Gn(βn)] = Ex

[(
Eu(g

−1(xβ0 + u)) − exβn

)
x′
]
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where

Eu(g
−1(xβ0 + u)) =

∫
exβ0+ufU(u)du.

The solution β?
n to the equations E[∇βn

Gn(βn)] = 0 therefore satisfies

Ex

[(∫
exβ0+ufU(u)du − exβ

?

n

)
x′
]

= 0, (3.49)

and it is unique because of concavity of the log likelihood.

Furthermore, we have

Theorem 3.7 Under the Assumptions 1.2-1.4, as n → ∞, a unique solution β̂n to

Gn(βn) = 0 exists in a neighborhood about β?
n with probability going to one, and

‖β̂n − β?
n‖ = Op(‖∇βn

Gn(β?
n)‖).

Proof: We can use the same arguments as in the proof of Theorem 3.3. Note that

on a compact set of βn the function exijβn is bounded. Assuming β?
n exists, then

−∇⊗2

βn

Gn(β?
n) is bounded in the matrices sense by a constant multiplied by Ipn, and

‖∇βn
Gn(β

?
n)‖ ≤ Op(pn/

√
n) by Theorem 1.1 and the boundedness of (yij − exijβ

?

n)

uniformly over i and j. 2

Theorem 3.8 Under conditions and assumptions in Theorem 3.4, the (β̂ − β?
n) is

asymptotically normal.

Proof: Note that in the proof of Theorem 3.4 we only need d(x) to be locally

uniformly positive. The function ex has the same property and we can follow exactly

same arguments to prove the asymptotic normality of β̂n −β0. Therefore details of

the proof will not be supplied here. 2
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Since the Poisson model assumes that the mean and variance of the data are

the same, there are many discussions in the literature concerning the validity of

this assumption, in particular, when the variance of the data is bigger than what

the model explains( in Poisson, the mean), which is often called “overdispersion”.

Papers by Breslow [3] [4], Dean and Lawless [7] and Wilson [33] have considered

overdispersion relative to Poisson regression and log-linear models. In these discus-

sions the authors acknowledged the fact that the variability in the data can not be

fully explained by the mean-variance relationship assumed in a Poisson regression.

Different test statistics were proposed to test overdispersion in Poisson model, or

Quasi-Likelihood Equations are solved instead of log-likelihood equations to get a

better variance estimator for the coefficients β. Clearly β?
n depends on the distri-

bution of u. We will discuss the value of β?
n with two different assumptions on the

conditional mean µij. One is the Normal random intercept: ui
iid∼ N (0, σ2

u), and the

other is ui
iid∼ Gamma(α, β). Whenever β?

n exists, it is unique because of concavity

of the loglikelihood for Poisson model.

3.4.1 Normal Random Effects

Under Assumption 3.2,

Eu(g
−1(xijβ0 + u)) =

∫
exijβ0+σuz 1√

2π
e−

z2

2 dz

= exp{xijβ0 +
σ2

u

2
}.

Therefore

E[∇βn
Gn(βn)] = Ex

[(
exβ0+

σ2
u
2 − exβn

)
x′
]
. (3.50)
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One obvious solution to (3.50) is

β?
n = β0 + σ2

u/2,

where a scalar σ2
u/2 is added to the first element of β0, i.e., the intercept term

of β0. By the concavity of the log likelihood, it is unique. Therefore, a normal

random intercept in Poisson regression places an offset on the intercept estimate.

This is true whenever the working model contains an intercept term. Even when

the true model does not contain a fixed intercept, the intercept estimate of the

working model will converge to σ2
u/2. Therefore with Normal random intercept, all

the coefficient estimators are consistent except for the intercept. This is a well-know

fact mentioned in McCulloch and Searle [18].

3.4.2 Gamma-Poisson Model

We next assume instead of Assumption 3.2 that

Assumption 3.4 ui
iid∼ Gamma(α, β), for 0 < β < 1 and α > 0.

Then

Eu(g
−1(xijβ0 + u)) =

∫ ∞

0
exijβ0+u uα−1e−

u
β

βαΓ(α)
du

=
exijβ0

Γ(α)βα

∫ ∞

0
e−u( 1

β
−1)uα−1du

= exijβ0(1 − β)−α

and

E[∇βn
Gn(βn)] = Ex

[(
exβ0(1 − β)−α − exβ

)
x′
]
. (3.51)
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Therefore the unique solution to (3.51) is

β?
n = −α ln(1 − β)β0. (3.52)

β?
n contains the same number of non-zero entries as β0, and with α > 0 and 0 <

β < 1, −α ln(1 − β) > 0, which means that every entry of β?
n has the same sign as

that of β0. Whether the entries of β?
n are larger or smaller in absolute value than

the corresponding entries of β0 depends on the values of α and β.

• 1− e−1/α < β < 1, then elements of β∗ are larger in absolute value than those

of β0;

• 0 < β < 1 − e−1/α, then elements of β∗ are smaller in absolute value than

those of β0;

• β = 1 − e−1/α, β∗ = β0.

It is obvious that at least on the basis of Kullback-Leibler minimization, we should

not have a coefficient that is falsely large, since the coefficient estimates are consis-

tent in the sense that when n → ∞, all the zero-entries of the coefficients should

have estimates that are close to zero. But again the variance estimator under the

working model does not account for the extra variation that’s provided by the ran-

dom effect, and therefore in hypothesis testing, the smaller variance estimator can

lead to false inference, picking coefficients that are not really in the model.
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3.5 Computations and Simulations

As mentioned before, most ML equations in Generalized Linear Models do not

have a closed-form solution. In Logistic-normal regression discussed in Section 3.3,

we can approximate β?
n to top order when σu is extremely large or small, but can

not do so when σu is moderate; we postponed discussion of the case where the link

function is misspecified. We will demonstrate the behavior of β?
n and β̂n with the

help of numerical computation and simulation studies.

3.5.1 Logistic Regression: Moderate σu

We showed in Section 3.3 in both extreme cases (σu → 0 and σu → ∞) that

the entries of β?
n get small for indices larger than (p∗ + 1). This means that when

σu is in extreme ranges, the variables that are not in the true model will not have

significant coefficient estimates. We want to know if this is also true when the value

of σu is in the moderate range. Since Taylor expansion is not an option when σu

is in the moderate range, we first compute β?
n numerically and then carry out a

simulation to check agreement with the theoretical calculation.

Suppose that the rows of the design matrix Xn are iid from some distribution

fx. The data summarized in the tables were generated from a conditional binomial

distribution given x using iid normal random variable u with mean 0 and variance

σ2
u, according to the true model, then fitted by a logistic regression (the working

model). The average cluster size is taken to be discrete uniform with N1 = 5 and in

each dataset there are m = 200 clusters. Therefore we have datasets of size 1000.
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We also tried different choices of the distribution fx, with the rows of Xn iid

multivariate normal with different choices of the variance-covariance matrix Σx (in

order to control the correlation between the rows of Xn to see if high correlation

among variables would give β?
n very different from the low-correlation case. We also

tried discrete distributions of x where we could also control the correlations among

variables via the definition of the joint density function. To see whether “added”

variables (columns p∗ + 1, · · · , pn of Xn) highly correlated with the earlier variables

would have coefficient estimates that are very different from those uncorrelated (or

not highly correlated) with the p∗ true variables, we also arranged different variables

to be added into the model. What we found in all of these cases was vary similar.

We display results only for the case of binary Xn entries as a demonstration.

In this particular example, Xn has binary rows. There are four true effects

in the model: three binary random variables, and the interaction of two of them.

The added variables include another variable that is independent of them, and the

remaining two interaction terms of the variables. Table 3.1 illustrates β?
1000 when σu

is in different ranges, and Table 3.2 displays the average coefficient estimates
¯̂
β1000

in a simulation of 1000 repetitions of datasets of size 1000.

We can see from Table 3.1 that for the zero elements of β0, the corresponding

coefficient estimates are also close to zero, throughout the range of σu; for the non-

zero elements of β0, the corresponding coefficient estimates have the same signs,

but are attenuated. The extent to which the coefficient estimates are attenuated is

determined by σ2
u. The bigger σ2

u is, the bigger the percentage is. For the same σ2
u,

this ratio is roughly the same across different entries of β0, leading us to believe that
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Table 3.1: β?
n at different values of σ2

u, and the percentage of relative error with

respect to β0. The first of the two columns for each σ2
u value is the numerical value

of β?
n, and the second column demonstrates the ratio of ‖β?

n −β0‖/‖β0‖. The later

rows have blanks because β0 is zero in those rows.

σ2
u = .1 σ2

u = .5 σ2
u = 1 σ2

u = 4 σ2
u = 10 σ2

u = 100

β0 β?
n % β?

n % β?
n % β?

n % β?
n % β?

n %

0.5 0.49 2.4 0.45 10.0 0.41 17.2 0.36 27.2 0.22 56.0 0.03 93.6

0.7 0.69 2.0 0.64 9.0 0.59 16.0 0.52 26.1 0.31 55.1 0.06 91.7

-1 -0.98 2.3 -0.90 10.0 -0.83 17.2 -0.73 27.2 -0.44 56.1 -0.06 93.7

0.4 0.39 1.8 0.37 8.5 0.34 15.5 0.30 25.5 0.18 55.3 0.04 90.8

0.6 0.58 2.7 0.54 10.8 0.49 18.2 0.43 28.2 0.26 56.7 0.03 95.3

0 0.00 0.00 0.00 0.00 0.00 0.01

0 0.00 0.00 0.002 0.00 0.00 -0.04

0 -0.00 0.00 0.00 0.00 0.00 -0.01
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Table 3.2: β̂1000 vs β?
1000 : Comparing MLE β̂n under the working model to β?

n when

the sample size is large. For each value of σ2
u, the first column gives the average of

β̂1000 and the second column gives β?
1000.

σ2
u = .1 σ2

u = .5 σ2
u = 1 σ2

u = 4 σ2
u = 10

β0 β̂n β?
n β̂n β?

n β̂n β?
n β̂n β?

n β̂n β?
n

0.5 0.49 0.49 0.45 0.45 0.41 0.41 0.32 0.36 0.23 0.22

0.7 0.69 0.69 0.64 0.64 0.59 0.59 0.46 0.52 0.31 0.31

-1 -0.99 -0.98 -0.91 -0.90 -0.86 -0.83 -0.61 -0.73 -0.47 -0.44

0.4 0.41 0.39 0.38 0.37 0.37 0.34 0.25 0.30 0.22 0.18

0.6 0.59 0.58 0.54 0.54 0.52 0.49 0.34 0.43 0.33 0.26

0 0.01 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 -0.03 0.00

0 0.00 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.05 0.00

0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00
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the ignored random effect is the main reason that β?
n is different from β0. Extreme

values of σu in Table 3.1 (cases where σ2
u = .1 or σ2

u = 100.) also confirm the findings

in Section 3.3.

The two columns corresponding to the same σ2
u value are quite close when

σ2
u is small. When σ2

u gets to the moderate range 1 ≤ σ2
u ≤ 10, β?

n is not as well

approximated by the average. This could be due to the simulation errors and bigger

variance for the data. When σ2
u gets too large, the effect of xij’s are “washed out”

by the random effect that has a large variance, the coefficients are close to zero.

Theorem 3.3 in Section 3.3 is confirmed by Table 3.2.

As we see in the linear model, omitting the random effect will leave the vari-

ance estimators biased. The estimated standard error for the coefficient estimates

are always smaller than the actual standard error, as shown in Table 3.3. Let β̂
(k)

1000,i

denote the kth element of β̂1000 at the ith simulation, and diag(M) denote the diag-

onal elements of matrix M; then the kth element of SDemp and SDest are

SD
(k)
emp =

√√√√ 1

999

1000∑

i=1

[
β̂

(k)

1000,i −
¯̂
β

(k)

1000

]2
,

and

SD
(k)

est =
1

1000

1000∑

i=1

ŜD
(k)

i

where ŜD
(k)

=
√

diag [(X′WX)−1]k. The weight-matrix W is defined in (3.10).

SDemp is always bigger than SDest, and the bigger σu is, the bigger the

difference between SDemp and the corresponding SDest is. This is because in

the usual generalized linear models we use the inverse of Fisher information as

our asymptotic variance estimator and it is obviously biased when the model is
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Table 3.3: Bias in Variance Estimation–Empirical Standard Error vs Estimated

Standard Error in A Simulation. For each σu value, the column “SDemp” is the

empirical standard error in 1000 repetitions, while the column “SDest” is the aver-

age of the estimated standard errors in 1000 repetitions.

σ2
u = 0.5 σ2

u = 1 σ2
u = 4 σ2

u = 10

β0 SDemp SDest SDemp SDest SDemp SDest SDemp SDest

0.5 0.1903 0.1621 0.2317 0.1730 0.2525 0.1469 0.2486 0.1296

0.7 0.7854 0.6496 0.8576 0.6423 0.9761 0.6185 1.1123 0.5946

-1 0.5290 0.4189 0.4834 0.3594 0.5102 0.3099 0.5554 0.2893

0.4 0.2609 0.2252 0.2847 0.2194 0.3630 0.2090 0.4637 0.2447

0.6 0.6083 0.4892 0.6100 0.4555 0.7063 0.4352 0.7693 0.4006

0 0.8031 0.6670 0.8157 0.6183 0.9126 0.5835 1.2153 0.6363

0 0.6613 0.5466 0.6402 0.4800 0.6989 0.4244 0.9994 0.5164

0 0.2747 0.2252 0.2876 0.2194 0.3291 0.2090 0.4765 0.2447
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misspecified.

Also as we have seen in linear models, there is a robust version of variance

estimator that converges to the true variance in probability. Table 3.4 compares

several estimates for standard deviation at different σu levels. The kth element of

ŜDR and SDR are

ŜDR =

√
diag

(
A−1

n (β̂n)Bn(β̂n)A−1
n (β̂n

)
k

and

SD
(k)
R =

√
diag

(
E[A−1

n (β̂n)Bn(β̂n)A−1
n (β̂n)]

)
k
,

respectively. Definitions of An and Bn can be found in (2.30) and (2.31).

ŜDR is close to SDemp at all levels of σ2
u. Since SDemp is the closest we get for

the estimator of standard deviation of β̂n, this suggests that the robust “sandwich”

variance estimator is actually doing a good job estimating the true variance of the

coefficient estimates. The empirical standard deviation SDemp is usually larger

than the other two because this is the true standard deviation of the β̂n’s in a

repetition of 1000 datasets sharing the same design matrix for the fixed effect. Part

of the variability also comes from the sampling variablility in the simulations.

3.5.2 Another Kind of Misspecification

In this section, we no longer assume that the link function g(·) or functions

b(·) and c(·) are correctly specified. From (3.13) we can see that only the true link

function g∗(·) is involved in solving β?
n. Therefore Theorem 3.3 should still work

as long as both g∗(·) and fU(·) behave well enough so that the conditions in the
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Table 3.4: The Variance Estimators: Robust vs Empirical. For each σ2
u value the

first column is the numerical calculation of the theoretical robust standard deviation

estimator(SDR), the second column is the corresponding average in a simulation

run (ŜDR), and the last column is the empirical standard deviation of β̂n in 1000

repetitions.

σ2
u = .5 σ2

u = 1 σ2
u = 4

No. SDR ŜDR SDemp SDR ŜDR SDemp SDR ŜDR SDemp

1 0.174 0.185 0.188 0.191 0.201 0.198 0.236 0.255 0.264

2 0.728 0.815 0.849 0.795 0.981 0.999 0.970 1.103 1.129

3 0.388 0.415 0.450 0.429 0.483 0.519 0.528 0.553 0.579

4 0.261 0.347 0.377 0.283 0.389 0.446 0.341 0.406 0.434

5 0.515 0.564 0.591 0.564 0.683 0.699 0.691 0.771 0.809

6 0.728 0.893 0.952 0.794 1.006 1.067 0.967 1.102 1.126

7 0.564 0.667 0.710 0.619 0.778 0.882 0.763 0,856 0.906

8 0.261 0.347 0.380 0.283 0.389 0.437 0.341 0.406 0.421
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theorem are satisfied. If we assume that the true model is defined as (3.1), and the

working model is a logistic regression model, we wish to see if the results in Section

3.3, i.e. the variables that are not in the true model will not have significantly large

nonzero coefficient estimates, are still valid under the wrong link function.

Table 3.5 demonstrates the difference between β?
n under the right and the

wrong link function. In this experiment, we have three discrete variables X1, X2

and X3 that we consider to be the fixed effect, as well as the interaction of X1 and

X3. To compare the effect of correlation among variables in β?
n, the three added

variables we consider in the model are X4, another variable that has correlation

with the three true variables but is not a function of any of them, and two variables

that are functions of the true variables, one being the interaction between X2 and

X3, and the other being the indicator X5 = I[X1 ≥ X2]. The random intercept of

this experiment is assumed to be iid Normal variates with mean 0 and variance σ2
u.

Let FBeta be the cdf of Beta(1, 1), we use the function

g∗−1(x) = FBeta(arctan(x)/π + 1/2) (3.53)

as our true link function. It is easy to see that with g∗ defined in (3.53) and fU the

normal density, the conditions in Theore 3.3 are satisfied and the MLE β̂n converges

to β?
n in probability. We numerically calculate the value of β?

n at four levels of σ2
u

values, σ2
u = 0, 0.1, 0.5 and 1. Also to compare with the results of Section 3.3, we

list the value β?
n at the corresponding σu level when the link function is correctly

specified.

From Table 3.5 we can see that with the wrong link function, the behavior of
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Table 3.5: Wrong Link vs Right Link: the effect of the true link function g∗ on

β?
n. The first column lists the variables that are included in the working model,

and the second column is the corresponding coefficients of these variables under the

true model. Note that the last variables are not in the true model (β0 = 0 in the

last three entries). For each of the Wrong Link or Right Link column, four levels

of σ2
u values are considered: σ2

u = 0, 0.1, 0.5, 1. In the columns are the numerically

calculated β?
n values.

Wrong Link Right Link

X β0 0 0.1 0.5 1.0 0 0.1 0.5 1.0

1 0.5 0.674 0.715 0.707 0.606 0.500 0.488 0.446 0.403

X1 0.4 0.285 0.318 0.367 0.373 0.400 0.397 0.384 0.366

X2 -0.6 -0.890 -0.890 -0.807 -0.690 -0.600 -0.587 -0.541 -0.495

X3 0.3 0.443 0.409 0.332 0.297 0.300 0.295 0.280 0.264

X1X3 -0.7 -0.890 -0.872 -0.796 -0.772 -0.700 -0.689 -0.650 -0.609

X4 0.0 -0.028 -0.020 -0.008 -0.002 0.000 0.000 0.002 0.002

X2X3 0.0 0.024 0.028 0.027 0.016 0.000 -0.001 -0.004 -0.006

X5 0.0 0.328 0.207 0.021 0.015 0.000 -0.002 -0.004 -0.002
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β?
n can be quite different from with the right link function. The first thing that draws

our attention is the bottom line of Table 3.5, where the variable X5 = I[X1 ≥ X2],

which is not in the true model, has a nonzero coefficient even when σu = 0. The

entry of β?
n corresponding to X5 stays nonzero for small σ2

u values, and then shrinks

to much smaller value when σ2
u gets larger. This is significant because it is different

from what we have seen in Section 3.3 or Table 3.1: We actually find a situation

where a variable that is not in the model has a significant nonzero coefficient, and

will be falsely included in the model.
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Figure 3.1: The distance between β?
n and β0 (‖β?

n − β0‖
2) when the link function is

correctly specified (dotted line) and when the link function is incorrectly specified
(solid line).

As seen in Table 3.1, when σu is small and the link function is right, the

difference between β?
n and β0, i.e., the Euclidean norm of the vector (β?

n − β0), is

small, and the bigger σ2
u is, the bigger the difference is. In the misspecified link case,

we see different behavior. The difference between β?
n and β0 is big when σ2

u is small

and it gets smaller when σ2
u gets larger. It grows large again at larger σ2

u values, and

when σ2
u is extremely large, β?

n with the wrong link function is essentially the same

as that with the right link function–they tend to be close to zero. Figure 3.1 shows

this effect by drawing the distance ‖β?
n − β0‖2 as a function of σ2

u. When the link

function is correct, the distance ‖β?
n − β0‖2 is an increasing function of σ2

u, going

127



•

•

•

•

•

•
• • • • •

•

•

•

•

Variance of the Random Effect

T
ru

e 
P

ar
am

et
er

 D
is

ta
nc

e

0 2 4 6 8 10

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

• • • •
•

•
•

•
•

•
•

•

•

•

Wrong Link
Right Link

Figure 3.2: The distance between β?
n and β0 at the nonzero entries of β0 (β∗) when

the link function is correctly specified (dotted line) and when the link function is
incorrectly specified (solid line)

from 0 when σ2
u = 0 to larger values when σ2

u gets large. When the link function is

not correct, though, the distance ‖β?
n − β0‖2 decreases at small σ2

u values and then

increase when σ2
u continues to grow.

If we only compare the components of β?
n and β0 at the nonzero entries of

β0(β
∗,) there seems to be the same trend (Figure 3.2).

3.6 Conclusions

In this Chapter, we have presented the sufficient conditions under which the

MLE β̂n for the working model converges in probability to a well defined limit β?
n
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when the model is misspecified and the number of parameters is going to infinity

with the sample size, which have not been discussed in any existing paper in the

literature. This limit β?
n may or may not be the true parameter, but is the param-

eter that minimizes the Kullback-Leibler distance between the true distribution of

the data and the distribution of the data under the working model. Sufficient con-

ditions for the MLE to be asymptotically normal according to Definition 1.12 were

discussed. These results are elaborated in Section 3.3 and 3.4 under specific distribu-

tional assumptions on the random effect. When analytical approximations were not

available, we numerically calculated quantities of our interest in a logistic-normal

model and checked them with simulation studies. So far both the simulations and

numerical calculations have supported our conjectures about the behavior of β?
n and

the variance estimators of β̂n.
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Appendix A

Linear Algebra Results

Inequalities regarding to operator norm, Euclidean norm and trace of a ma-

trix that are of particular use to us are discussed here. Most of the results are

straightforward and can be derived directly from the definition.

Proposition A.1 If the two n×n matrices P1 and P2 are both nonnegative definite,

then

tr[P1P2] > 0.

Proof: Since both P1 and P2 are nonnegative definite, their symmetric square

roots, P
1/2
1 and P

1/2
2 exist and both are nonnegative definite. Therefore,

tr[P1P2] = tr[P
1/2
1 P1

1/2P
1/2
2 P

1/2
2 ] = tr[PP′] ≥ 0

where P = P
1/2
2 P

1/2
1 . 2

A direct application of the proposition is

Corollary A.1 If P1 ≤ P2 and P3 is nonnegative definite matrix of the same

dimension, then

tr[P1P3] ≤ tr[P2P3].

Proof: Since P1 ≤ P2, the matrix (P2 −P1) is nonnegative definite and by Propo-

sition A.1,

tr[P3P2 − P3P1] = tr[P3(P2 − P1)] ≥ 0.
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Proposition A.2 For n×1 vector w, the norm of the rank-one matrix ww′ satisfies

‖ww′‖ ≤ ‖w‖2.

Proof: For any unit vector v ∈ Rn, by the Cauchy-Schwartz inequality, v′ww′v =

(v′w)2 =
∑n

i=1 v2
i w

2
i ≤∑n

i=1 w2
i = ‖w‖2. 2

Proposition A.3 For n × n symmetric nonnegative definite matrix M,

trM ≤ nλmax(M) = n‖M‖.

Proof: The trace of a matrix is the sum of its eigenvalues, and for a nonnega-

tive definite matrix all the eigenvalues are nonnegative, so trM ≤ nλmax(M). The

equality follows from Definition 1.7. 2

Proposition A.4 For full rank n × m matrix X and n × n diagonal matrix D =

diag(d1, · · · , dn),

‖X′DX‖ ≤ ‖D‖
√
‖X′X‖ ≤ max1≤k≤n|dk|

√
‖X′X‖.

Proof: For any unit vector v ∈ Rn,

‖D‖ = sup
w 6=0

w′Dw

‖w‖
≥ v′X′DXv

‖v′X′‖
,

so

v′X′DXv ≤ ‖D‖ · ‖v′X′‖ = ‖D‖
√

v′X′Xv

for any unit vector v ∈ Rn. Therefore

‖X′DX‖ ≤ ‖D‖
√
‖X′X‖,
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and v′Dv =
∑n

k=1 v2
kdk ≤ max1≤k≤n|dk| since

∑n
i=1 v2

k = 1, so ‖D‖ ≤ maxk |dk|. 2

Appendix B

Probability and Statistical Results

B.1 Sum of iid 0−Mean Sequence

For iid random variables ξi with E[ξi] = 0 and E|ξi|p < ∞, one variant of the

Burkholder Inequalities is

(
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣

p)1/p

≤ Cp


E

[
n∑

i=1

ξ2
i

]p/2



1/p

, (B.1)

where Cp is a constant over n. The following proposition follows directly from (B.1):

Proposition B.1 If iid random variables ξi satisfy E[ξi] = 0 and E|ξi|p < ∞, then

E

∣∣∣∣∣
1

n

n∑

i=1

ξi

∣∣∣∣∣

p

≤ Cp
p‖ξ1‖p

pn
−p/2 = O(n−p/2). (B.2)

Proof: By the triangle inequality, for iid 0-mean sequence ξi and p > 2,

‖
n∑

i=1

ξ2
i ‖p/2 ≤

n∑

i=1

‖ξ2
i ‖p/2,

which means that


E

[
n∑

i=1

ξ2
i

]p/2



2/p

≤
n∑

i=1

(
E[ξ2

i ]
p/2
)2/p

= n‖ξ1‖2
p.

Therefore, (B.1) becomes

(
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣

p)1/p

≤ Cp


E

[
n∑

i=1

ξ2
i

]p/2



1/p

≤ Cp‖ξ1‖pn
1/2,

or E
∣∣∣ 1
n

∑n
i=1 ξi

∣∣∣
p
≤ 1

np Cp
p‖ξ1‖p

pn
p/2 = Cp

p‖ξi‖p
pn

−p/2 = O(n−p/2). 2
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Theorem B.1 Let M be a pn × pn matrix such that each element of M is the

average of n iid 0−mean random variables with finite (4r)th moment, i.e.

Mkl =
1

n

n∑

i=1

ζ
(i)
kl ,

where ζ
(i)
kl are iid random variables with E

[
ζ

(i)
kl

]
= 0 and E

∣∣∣ζ(i)
kl

∣∣∣
4r

< ∞ for 1 ≤

k, l ≤ pn. If pn = O(nθ) with 0 < θ < 1/4 and r > θ/(1 − 4θ), then there exists

δ > 0 such that ‖M‖ = Op(p
−1−δ
n ).

Proof: Let ε = r(1 − 4θ) − θ > 0 and 0 ≤ δ ≤ ε/2rθ, then

P
[
‖M‖ > p−1−δ

n

]
≤ P

[
pn max

k,l
|Mkl| > p−1−δ

n

]

≤ P
[
max

k,l
|Mkl| > p−2−δ

n

]

≤ p2
n max

k,l
P


|Mkl|4r >

(
1

p2+δ
n

)4r



Prop.B.1

≤ Mrp
2
nn−2rp8r+4rδ

n

= O(nθ(2+8r+4rδ)−2r) → 0

where Mr is a constant that does not depend on k, l or n. 2

B.2 Approximation of Φ(x) at large positive x

The cdf of standard normal, Φ(x), does not have closed form; at large positive

x values, though, it can be approximated:

Proposition B.2 For large, positive number x,

1 − Φ(x) − e−
x2

2

√
2πx

∼ − e−
x2

2

2x
√

x4 + x2
.

where Φ(·) is the standard normal cumulative distribution function.

133



Proof: Let φ(·) be the standard normal density function. For any x > 0,

1 −Φ(x) − e−
x2

2

√
2πx

= 1 −Φ(x) − φ(x)

x

=
∫ ∞

x
φ(z)dz − 1

x

∫ ∞

x
zφ(z)dz

=
∫ ∞

x
φ(z)

[
1 − z

x

]
dz

= −x
∫ ∞

0
φ(x(w + 1))wdw

= − x√
2π

∫ ∞

0
exp{−x2(1 + w)2

2
+ lnw}dw. (B.3)

Let

f(w) = −x2(1 + w)2

2
+ lnw.

Then

f ′(w) = −x2(1 + w) +
1

w
,

and

f ′′(w) = −x2 − 1

w2
< 0.

Let w∗ > 0 be the unique point at which f(w) is locally maximized. Then

f ′(w∗) = −x2(1 + w∗) +
1

w∗ = 0,

and

w∗ = −1

2
+

1

2

√
1 +

4

x2
.

Then at w = w∗, since f ′(w∗) = 0,

f(w) ≈ f(w∗) +
f ′′(w∗)(w − w∗)2

2
,

When x is a large positive number, 4/x2 is small, so

w∗ = −1

2
+

1

2
(1 +

4

x2
)1/2 = −1

2
+

1

2
(1 +

1

2

4

x2
+ O(x−4)) = x−2 + O(x−4) ≈ x−2.
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Therefore,

f(w∗) = lnw∗ − x2(1 + w∗)2

2

≈ ln(x−2) − x2

2
. (B.4)

f ′′(w∗) = −x2 − (w∗)−2 = −x2 − x4(1 + O(x−2))−2 ∼ −x2 − x4,

and

Φ(w∗) ≈ 1

2
.

Therefore (B.3) becomes

− x√
2π

∫ ∞

0
ef(w)dw

∼ − x√
2π

∫ ∞

0
exp{f(w∗) +

f ′′(w∗)(w − w∗)2

2
}dw

= −xef(w∗)
∫ ∞

0

1√
2π

exp{−(w − w∗)2

2
(−f ′′(w∗)}dw

= − xef(w∗)

√
−f ′′(w∗)

Φ(w∗)

∼ − e−
x2

2

2x
√

x2 + x4
. (B.5)

2

As a corollary of Proposition B.2, we get

1 − Φ(x) =
e−

x2

2

√
2πx

(1 + O(x−2)).
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