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A major goal of vaccines is to induce functional immune memory, and efforts to 

improve the efficacy of vaccines targeting memory CTLs have revealed an important 

immunoregulatory role of rapamycin, a specific mTOR inhibitor. While inflammatory 

cytokines are critical for memory CTLs formation, it is unknown if cytokines such as IL-

12 mediate rapamycin’s regulation during infection. Inhibition of mTOR by rapamycin 

represses CTL expansion but enhances central memory during vaccinia virus infection in 

mice. Without IL-12, immunoregulatory effects of rapamycin on CTL expansion and 

subsequent memory formation are diminished, yet present compared to CTLs not treated 

with rapamycin. In infected mice, rapamycin directly enhances IL-12 signaling in WT 

CTLs by upregulating IL-12 receptor-β2 and STAT4 phosphorylation. Furthermore, 

secondary expansion of rapamycin-regulated memory CTLs in IL-12 receptor knockouts 



  

is impaired and resultant secondary memory CTLs are abolished. This indicates that 

interplay between cytokines and adjuvants should be considered during vaccine design.  
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Chapter 1: Introduction 

Significance 

Despite the advances made in vaccination, infectious diseases are still one of 

the top causes of fatality, resulting in over 15 million deaths worldwide per year (1). 

Vaccination has virtually eliminated smallpox and polio, but infectious diseases such 

as malaria and HIV are still prevalent (2). Traditional vaccines cannot offer protection 

against some chronic infectious diseases like HIV, because these pathogens have an 

ability to hide within the host cell, or mutate, and replicate quickly (3). To tackle 

these obstacles, a new approach is necessary to produce effective vaccines against 

these problematic diseases. While functional memory cytotoxic T lymphocytes 

(CTLs) (also called cytotoxic CD8+ T cells) are able to combat the invasion of 

intracellular pathogens, vaccine development to promote this process remains a major 

challenge (2, 4). 

Vaccines are designed to ultimately generate protective immune memory, and 

specifically soliciting memory CTLs can result in a stronger response to recurring 

pathogens (2, 4). Activation of CTLs involves several simultaneous interactions 

between surface molecules on both CTLs and antigen-presenting cells (APCs) (2, 5). 

The formation of functional short-lived effector CTLs and long-lived memory CTLs 

requires stimulation from an antigen, costimulatory molecules, and a third signal 

provided by soluble cytokines such as interleukin-12 (IL-12) or type I interferon (5-

13). The differentiation fate of effector and memory CTLs is regulated by a shift in 

balance of two cooperating transcription factors, T-bet and Eomesodermin (eomes) 
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(14). Additionally, mTOR (mammalian target of rapamycin), the master regulator of 

metabolism and cell growth, also plays a central role in CTL activation (15, 16).  

Interestingly, inhibition of mTOR by the immunosuppressive drug rapamycin can 

lead to enhanced memory CTL induction in lymphocytic choriomeningitis virus 

(LCMV) infections (17). It has been shown that the combination of rapamycin and 

IL-12 can interact in vitro to shift the balance from T-bet to Eomesodermin 

expression (14). However, whether important inflammatory cytokines such as IL-12 

are involved in mTOR regulation of memory CTLs during infection is unknown. 

Therefore, the objective of my research is to determine whether mTOR’s regulation 

of memory CTLs is dependent on IL-12 during a viral infection.  

Immunity 

Immunological protection from pathogens is provided by the innate and 

adaptive immune systems. Innate immunity evokes a rapid, non-specific response, 

while adaptive immunity provides specificity. Although both contribute to the 

elimination of foreign pathogens (2), a central feature of adaptive immunity is 

immunological memory. This produces a heightened response to recurrent invaders 

and is the ultimate goal of vaccination (2, 5). Immunological memory can be derived 

from two branches of immunity that cooperate during the adaptive immune response. 

Humoral immunity occurs when B cells interact with antigens and differentiate into 

antibody-secreting plasma cells that are capable of neutralizing extracellular 

pathogens. The cell-mediated immunity consists of T cells that recognize antigens 

through T-cell receptors (TCRs), and the antigens are presented by antigen presenting 

cells (APC) (2). T cells express one of two surface markers, CD4 or CD8. CD4+ T 
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cells assist in the activation of B and CD8+ T cell, while CD8+ T cells, or CTLs, are 

responsible for direct destruction of pathogen-infected and tumor cells (2, 5).  

CTL development begins when T-cell precursors migrate from the bone 

marrow and blood to the thymus to differentiate and develop into mature T cells (2, 

4). Within different microenvironments of the thymus, T-cell precursors undergo a 

series of developmental changes defined by phenotypic alterations of the cell surface. 

Early T cells that lack CD4 and CD8 are double-negative (DN) cells, and are 

subdivided based on the presence or absence of other cell surface molecules during 

four different DN stages (DN1-4). Along the way, T-cell precursors commit to a T-

cell lineage and rearrange their TCR gene loci and become double positive (DP) cells 

(CD4+ CD8+) after the final stage of DN4 (2). In the thymic cortex, DP cells come in 

contact with cortical thymic epithelial cells (cTECs) and are either negatively selected 

due to high major histocompatibility complex-to-peptide binding affinity, or 

positively selected to mature into single positive (SP) cells because of their 

intermediate binding affinity (2). Naïve CTLs then leave the thymus and enter into 

the circulatory system (4).  

CTL activation 

During an infection, the CTL must receive three signals that allow it to gain 

full functionality. APCs present pathogenic antigens in the form of a complex with 

their major histocompatibility complex class I (MHC-I) surface protein (2, 5). The 

antigen-specific binding of the CTL’s TCR and co-receptor with the MHC-I bound 

antigen provides the first signal for CTL activation (18). Interaction between the 

costimulatory receptors (e.g. CD28 and some TNFR family members) on the CTL 
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and their corresponding costimulatory ligands (e.g. B7 family members) on APC 

provides the second signal (18). The first and second signals initiate a transduction 

cascade that allows for the activation of transcription factors and cytokines that 

coordinate CTL proliferation and survival (2, 5). Cytokines such as interleukin-12 

(IL-12) and type I interferon alpha provide the third signal that increases clonal 

expansion and promotes full activation of naïve CTLs (5-10).  

During primary response, CTLs acquire unique functionalities allowing them 

to either directly or indirectly remove pathogens. A large portion of CTLs 

differentiates into short-lived effector CTLs that directly combat infections by 

releasing killing-related molecules such as perforin and granzymes.  Once the 

infection has subsided, a contraction phase ensues, during which 90-95% of the short-

lived effector CTL die (9, 19, 20). The CTLs that survive the contraction phase 

become memory CTLs, which provide protection during a secondary response against 

recurring pathogens (9).  These memory CTLs are formed in lymphoid tissues and 

perform their duties in secondary lymphoid organs or peripheral tissues (2). Memory 

CTLs provide long-lasting immunity to prevent recurring pathogens from mounting a 

potent infection. Upon subsequent challenge with the same antigen, memory CTLs 

display quick proliferation, and transition to effector cells to clear the pathogen 

effectively (21, 22). Effector (TEM) and Central (TCM) memory CTLs are two 

subpopulations of memory CTLs defined by their activated markers, chemokine 

receptors, and function (23, 24).  TCM express high levels of chemokine CCR7 and 

adhesion molecule CD62L, while TEM are able to produce cytokines and express low 

levels of CCR7 and CD62L (9, 25). Memory CTLs are able to persist in part due to 
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signals delivered by two cytokines, IL-7 and IL-15 (9, 21, 26-28). Studies indicate 

that the function and phenotypic specificity of memory CTLs depend on both antigen 

and pro-inflammatory cytokines (21).  

Interleukin-12 

IL-12 is essential for programming memory CTLs in vaccinia virus infection 

as memory formation is substantially reduced when antigen-stimulated CTLs lack an 

IL-12 receptor (10). IL-12 is produced by macrophages, B cells, and dendritic cells 

during infections to induce interferon-gamma (IFN- γ) production (29).  IL-12 is a 

heterodimer composed of two subunits, IL-12p35 and IL-12p40. On the CTL surface, 

IL-12p35 and IL-12p40 bind to IL-12Rβ2 and IL-12Rβ1, respectively. As a result, 

JAK2 and TYK2 are phosphorylated via tyrosine phosphorylation (29). The IL-

12Rβ2 is also phosphorylated to function as a docking site for the signal transducer 

and activator of transcription 4 (STAT4). STAT4 becomes phosphorylated once it 

binds to the IL-12Rβ2 receptor subunit, forming STAT4 homodimers, which migrate 

to the nucleus and bind to the promoters of IFN-γ and other IL-12 responsive genes 

(2, 29). This signaling then induces transcription of IFN-γ, through mechanisms that 

are still not clearly understood (29).  IL-12 is considered a natural adjuvant as it has 

the potential of enhancing the efficacy of vaccines. It has been shown to have 

dramatic effects on suppressing tumor growth in cancer therapies (30).  
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mTOR 

In addition to requiring three signals for activation, CTLs also need nutrients 

from the body to function, making cellular regulation of nutrient uptake crucial. 

Recently, mTOR, a master regulator of metabolism and cell growth, was found to be 

directly involved in CTL activation (31). mTOR is an evolutionarily conserved 289-

kDa serine-threonine protein kinase, which is part of the phosphoinositide 3-kinase 

family (32). Its ability to sense and integrate signals from the immune 

microenvironment makes mTOR a vital regulator of immune function. mTOR 

signaling occurs through two complexes, mTOR Complex 1 (mTORC1) and 

Complex 2 (mTORC2).  mTORC1 is involved in the regulation of cellular 

transcription, translation, autophagy, and production of new ribosomes. On the other 

hand, mTORC2 possibly regulates cell survival and actin cytoskeletal structuring 

(32). In the immune system, mTOR activation begins with the recruitment of PI3 

kinase (PI3K) by growth factors or cytokines, but mTORC1 can also be activated by 

other immunological factors or extracellular cues (33-35).  PI3K phosphorylates 

phosphatidylinositol 4,5-bisphosphate (PIP2) to form phosphatidylinositol 3,4,5-

triphosphate (PIP3), which directs Akt to the membrane where it is phosphorylated by 

phosphoinostide-dependent kinase 1 (PDK1). Activated Akt or extracellular signal-

related kinases 1 and 2 (ERK1/2) phosphorylates tuberous sclerosis 2 (TSC2), 

separating it from the tuberous sclerosis complex (TSC1/TSC2). This leads to 

accumulation of GTP-binding Ras homolog enriched in brain (RHEB-GTP). The 

abundance of RHEB-GTP enhances mTORC1 function (33, 35, 36). 

Immunologically, mTORC1 activation leads to the downstream enhancement of 
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immune cells because of an increase in STAT3 and STAT4 through inhibition of 

SOCS3 (33, 35-37). Unlike its counterpart, mTORC2 is poorly understood and its 

upstream and downstream regulatory mechanisms are unclear (36). 

  



 

 8 
 

 

 

 

 

Figure 1i. mTOR Signaling for the Immunologist (35). 

  

                                                
i Reprinted from Immunity, Vol 33/ Issue 3, Jonathan D. Powell and Greg M. Delgoffe, The 
Mammalian Target of Rapamycin: Linking T Cell Differentiation, Function, and Metabolism, 
Pages 301-311, Copyright (2010), with permission from Elsevier 
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Although IL-12 is known to provide the third signal for CTLs, its involvement 

in rapamycin’s regulatory effects in animals is unknown. For this reason, we want to 

investigate whether IL-12 plays a role in the regulation of rapamycin on memory 

development during viral infection. Based on prior work conducted by the lab and 

other research groups (14, 17, 38), I hypothesize that in the presence of IL-12 

signaling, rapamycin will enhance memory CTL response during vaccinia virus 

infection. 
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Chapter 2: Materials and Methods 

Mouse Model 

To conduct this research, we used transgenic mice containing OT-I cells with 

and without IL-12 receptor β1 deficiency (IL-12RKO). Mice containing OT-I cells 

have contain unique CTLs that posse TCRs specific for the SIINFEKL (amino acids 

257 to 264 of the OVA antigen epitope) (10). C57BL/6 male mice were purchased 

from the National Cancer Institute. The mice were kept under specific pathogen-free 

conditions at the University of Maryland, which were approved by the Institutional 

Animal Care and Use Committee. 

Infectious Agents 

The recognition of the OVA antigen expressed on recombinant vaccinia virus 

(VV-OVA) and recombinant listeria monocytogenes (LM-OVA) causes the activation 

of the unique CTLs in mice containing OT-I cells (38).  

Naïve T Cell Purification 

Naïve OT-I cells were extracted from the inguinal, axillary, brachial, cervical, 

and mesenteric lymph nodes from both WT and IL12RKO mice. The cells were 

incubated together with FITC-labeled antibodies that are specific for B220, CD4, 

CD44, and I-Ab. The suspension was subsequently incubated with FITC binding 

magnetic MicroBeads (Miltenyi Biotech, Auburn CA), and passed through separation 

columns attached to a MACS magnet. Cells that did not bind to the column were 

collected with a purity >95% CD8+ and <0.5% CD44hi cells. 
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Adoptive Transfer and Flow Cytomery Analysis 

Then, purified OT-I cells were injected via the tail vein into C57BL/6 mice at 

105 cells/mouse. The transferred OT-I cells were then identified as CD8+CD45.2+ 

cells. Viable cell counts were performed using trypan blue, and flow cytomerty was 

be used to determine the percentage of OT-I cells in the samples. After adoptive 

transfer, the recipient mice were infected with 5 x 106 PFUs of VV-OVA to solicit an 

immune response. Blood was drawn at different time points post-infection for 

memory CTL analysis with conjugated fluorescent antibodies.  

Intracellular Staining 

To perform intracellular cytokine staining, single cell suspension from 

adoptively transferred mice were incubated at 37oC for 3.5 hours with 2 x 106 cells/ml 

in RP-10 with 0.2 uM OVA257-264 peptide and 1 ul/mL Brefeldin A (Biolegend). 

Fixing buffer from Biolegened was added to the cells for 15 minutes at 4oC, after 

which the cells were permeabilized in Saponin-containing Perm/Wash buffer 

(Biolegend) for another 15 minutes at 4oC, then stained with PE-conjugated antibody 

to IFN gamma or APC-conjugated antibody to TNF alpha for 30 minutes at 4oC. 

Finally, the cells were washed once with Perm/Wash buffer and PBS containing 2% 

FBS. The memory CTL population forms near the end of the contraction phase and 

remains stable for a few weeks after an acute viral infection or immunization (2). 

Therefore, a one-month cutoff was implemented to observe memory CTLs formation 

after the VV-OVA infection. 
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Administration of Rapamycin and Bacterial Infection 

Rapamycin was administered to mice daily through i.p. injections during a 

defined treatment period. Two different treatment periods were used: 1) high dose 

(600 µg/kg) administered during VV-OVA infection (day -1 prior to infection to day 

10 post-infection); 2) low dose (75 µg/kg) administered during VV-OVA infection 

(day -1 prior to infection to day 30 post-infection) (17). Control mice received no 

treatment. 

After a month, the mice were challenged with an i.v. injection of LM-OVA at 

either 104 CFU/mouse (for secondary expansion of memory CTLs) or at 5 x 105 

CFU/mouse (for memory CTL protection). Three days after being challenged with 

LM-OVA, mouse spleens were harvested for bacterial culture using TSB plates to 

compare protection abilities (10).  

Tissue Harvest and Digestion 

 For tissue harvesting and digestions the mice were euthanized. Spleens and 

peripheral lymph nodes were removed and homogenized in 15 ml glass grinders. 

Lungs were first perfused with 1 x PBS at about 30 ml per mouse, cut into 1mm3 size 

pieces, homogenized with a 10 ml pipette, and resuspended in 4 ml Collagenase D. 

To ensure complete digestion, lung tissues were kept in a 37oC water bath for 25 

minutes. Then to halt digestion, 0.1 M EDTA was added and those tissues were 

homogenized using glass grinders.  
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Statistical Analysis 

Data was statistically analyzed using a two-tailed student’s t test or with two-

way ANOVA on GraphPad Prism 5.0 software. Comparisons that result in a P value 

<0.05 were considered significantly different.   
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Figure 2. Scheme of experimental plan. Purified OT-I cells from WT and IL-12RKO 
mice were transferred into recipient B6 mice. The recipient B6 mice received one of 
three treatments starting a day before VV-OVA infection: 1) high dose (600 µg/kg) 
rapamycin administered from day -1 prior to infection to day 10 post-infection; 2) 
low dose (75 µg/kg) rapamycin administered from day -1 prior to infection to day 30 
post-infection. Control B6 mice received no treatment. Samples were collected at 
days 5, 10, 17, and 30 post VV-OVA infection. At day 30, treated B6 mice were 
euthanized and memory OT-I cells were purified from spleens and transferred into a 
group of B6 mice. Spleen and blood samples were collected at days 3, 5, 10, 17, and 
30 after LM-OVA infection.  
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Chapter 3: Resultsii 
 
Rapamycin enhances memory CTLs during VV infection 
 
 Administration of rapamycin to mice can promote memory CTLs in both 

LCMV (17) and LM infections (39). We sought to understand whether rapamycin had 

similar effects on memory differentiation in VV infection. Purified naive OT-I CD8 T 

cells were transferred into naive B6 mice, and the recipients were infected with 

recombinant VV containing a chicken ovalbumin peptide (VV-OVA) (40). We 

previously found that high doses of rapamycin have a better regulatory function on 

IL-12-driven memory CTL programming in vitro than do low doses (38). In addition, 

high doses of rapamycin can accelerate the transition of effectors to memory CTLs in 

LCMV infection (17). We speculated that daily administration of high doses of 

rapamycin early in infection would be immunostimulatory, as this period corresponds 

to memory CTL programming by IL-12 in vitro (38). A high dose of rapamycin was 

injected daily intraperitoneally during different time windows based on a pilot 

experiment revealing no difference between D10 and D30 for daily administration 

(Figure 4). Memory OT-I cells were examined at D30 postinfection (PI). Consistent 

with the report by Araki et al. (17), inhibition of mTOR by rapamycin significantly 

enhanced memory CTLs during VV infection by fourfold when administered from 

D−1 to D10 PI (Figure 3a and Figure 5). The first injection window (D−1 to D4 PI) 

was not sufficient for rapamycin regulation, and continuous administration of 

rapamycin after D10 was not beneficial (Figure 3a). Thus, we used D−1 to D10 PI as 

                                                
ii Reprinted by permission from Macmillan Publishers Ltd: Genes and Immunity, advance 
online publication, 5 June 2014; doi: 10.1038/gene.2014.33 
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the standard time window for rapamycin injection for the rest of this project, unless 

otherwise indicated. The immunostimulatory effect of rapamycin was not a 

consequence of VV infection delay by rapamycin, as VV was not detectable in tissues 

(spleen, lymph node (LN), peritoneal cavity) 5 days PI in both rapamycin-treated and 

untreated mice (data not shown). In LCMV infection, low doses of rapamycin applied 

during the expansion phase increased the frequency of memory CTLs, whereas high 

doses applied during the contraction phase accelerated memory differentiation (17). 

Our data showed that administration of high-dose rapamycin during the early 

infection increased memory CTLs. The high dose did not change the kinetics of CTLs 

response but delayed both the expansion and contraction phases. The memory CTLs 

stabilized at a time (D30) comparable to the no rapamycin controls, consistent with an 

accelerated memory differentiation driven by high-dose rapamycin (17). Similar to 

LCMV infection (17), rapamycin upregulated CD62L expression in memory CTLs 

(Figure 3b). In addition, bulk splenocytes containing an equal number of memory 

OT-Is (105) were transferred into naive B6 mice. They were challenged the next day 

with recombinant LM containing chicken ovalbumin (LM-OVA) intravenously as we 

previously reported (41, 42). Memory OT-I cells generated with and without 

rapamycin achieved similar protection (Figure 3c). To further confirm the effects of 

rapamycin on the endogenous memory CTL response to VV-OVA infection, we 

infected naive B6 mice (no transfer) with VV-OVA with and without rapamycin 

treatment. Kb/OVA tetramer was used to detect endogenous OVA-specific CD8 T 

cells (40). We confirmed that rapamycin promoted endogenous memory CTLs similar 

to memory OT-I cells (Figure 3d). CD62L was upregulated in the rapamycin-treated 
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endogenous memory Kb/OVA-positive CTLs (Figure 3e). These data from both the 

transgenic system and the endogenous CTL response suggest that rapamycin 

increases the quantity of memory CTLs in response to VV infection and promotes a 

more central memory phenotype. 
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Figure 3. Rapamycin enhances memory CTLs during VV infection. Purified naive 
OT-I cells were transferred into naive B6 recipients, which were infected with VV-
OVA the next day. Rapamycin was injected daily at 600  µg  kg−1 through 
intraperitoneal at the time windows indicated in panel (a). (a) Memory OT-I cells in 
the spleens 30 days PI. (b) CD62L expression in memory OT-I cells from panel (a). 
(c) Splenocytes containing 105 memory OT-I cells were transferred into naive B6, 
which were challenged with LM-OVA the next day. Bacteria were cultured and 
counted 3 days after LM-OVA challenge in spleens. (d) Endogenous 
KbOVA+ memory CD8 cells in VV-OVA infected mice (without transfer of OT-I). 
Naive B6 mice (without transfer) were infected with VV-OVA, which were treated 
with or without rapamycin. (e) CD62L expression in KbOVA+ memory CD8 cells 
from panel (d). Rapamycin injection occurred daily from D−1 to D10 PI in panels 
(d and e). Student’s t-test was performed comparing each of the groups with no 
rapamycin controls (a, b, d and e) or with naive CTL transferred controls 
(c). *P<0.05; **P<0.01; ***P<0.001, which will be the same in the rest of this study. 
The data are representative of three independent experiments with similar results. 
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Figure 4. Rapamycin enhances memory CTLs during vaccinia virus infection. 
Purified naïve OT-I cells were transferred into naïve B6 recipients, which were 
infected with VV-OVA the next day. Rapamycin was injected daily at 600ug/kg 
through i.p at the time windows as indicated. Memory OT-I cells from spleens were 
examined on 40 days post-infection (PI). Student’s t test was performed comparing 
each of the groups with no rapamycin controls (No RAPA) *, P < 0.05. The bars 
represent the mean of six animals plus SEM. 
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Figure 5. Detection of endogenous Kb/OVA CD8 in OT-I transferred memory mice. 
Purified naïve OT-I cells were transferred into naïve B6 recipients, which were 
infected with VV-OVA the next day. Rapamycin injection was from day -1 to 10 
post-infection. CTLs were detected in the spleen from naïve (a) or memory mice (b) 
(30 days post-infection). The dot plots were cells gated on Kb/OVA tetramer-positive 
and CD8-positive. Data are representative of three experiments with similar results. 
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IL-12 increases CTL expansion following rapamycin treatment 
 
 To understand whether IL-12 signaling was required for rapamycin’s 

regulation of memory CTL formation, OT-I cells of WT or IL-12RKO mice (41) 

(Figure 7) were transferred into naive B6 recipients, which were infected with VV-

OVA the next day. The recipient mice received daily rapamycin injections from D−1 

to D10 PI as illustrated in Figure 3. Compared with untreated controls, effector CTL 

expansion in the rapamycin-treated WT and IL-12RKO groups was reduced by >10 

times at the peak of expansion (D5) (Figure 6). This is consistent with the report that 

a high dose of rapamycin inhibits expansion of effectors in LCMV infection (17). 

However, CTLs significantly expanded between D5 and D10 in the rapamycin-

treated WT and IL-12RKO groups (Figure 6a), and this expansion accelerated upon 

withdrawal of rapamycin until day 17. Notably, WT OT-Is expanded almost two 

times more than IL-12RKO OT-Is (Figure 6b) and supports the critical role of IL-12 

in CTL expansion after rapamycin treatment. Interestingly, we noticed similar 

inhibition of rapamycin on CTL expansion in vitro but observed accelerated CTL 

expansion following transfer into recipients (38). After D17, the CTL population 

contracted, and a fraction of expanded cells became memory CTLs at D30, remaining 

stable thereafter (Figure 6a and data not shown). WT OT-Is contracted more than IL-

12RKO OT-Is, based on lower expansion of IL-12RKO (Figure 6c). Therefore, IL-12 

is critical for optimal CTL expansion and memory formation after rapamycin 

treatment. 

Rapamycin treatment postponed the downregulation of CD62L until D10 

(Figure 6d), which is consistent with its effects during in vitro stimulation (38). The 
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continued expansion of OT-Is upon the withdrawal of rapamycin led to a quick 

downregulation of CD62L, although expression of CD62L remained higher than in 

their untreated counterparts (Figure 6d). CD62L was upregulated in rapamycin-

regulated memory CTLs regardless of the presence or absence of IL-12 at D30 after 

the viral infection (P<0.001, two-way analysis of variance (ANOVA)). However, 

there was a significant difference between WT and IL-12RKO OT-I cells treated with 

rapamycin—WT OT-Is with rapamycin had slightly but significantly (P=0.021, t-test) 

higher expression of CD62L than IL-12RKO treated with rapamycin. This suggests 

that IL-12 may partially contribute to the development of a more central memory 

phenotype (Figure 6d). Furthermore, IL-7 receptor α (CD127) expression was 

upregulated by rapamycin in both groups (P<0.001, two-way ANOVA), and WT OT-

I cells expressed higher levels than IL-12RKO at D17 and D30 (Figure 6e). In 

addition, KLRG1 expression was downregulated by rapamycin (P<0.001 two-way 

ANOVA), but the absence of the IL-12 signal led to differential expression levels 

(P<0.001 two-way ANOVA) (Figure 6f). These data suggest that rapamycin favors a 

central memory CTL phenotype (CD62Lhi/CD127hi/KLRG1lo), and the IL-12 signal 

may contribute to this phenotype. 
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Figure 6. IL-12 increases CTL expansion after rapamycin treatment. OT-I cells were 
purified from WT or IL-12RKO OT-I mice, which were transferred into naive B6 
mice at 105/mouse through tail vein. Recipients were infected with VV-OVA the next 
day. Daily rapamycin injection occurred from D−1 to D10 PI. (a) Comparison of OT-
I percentage of peripheral blood mononuclear cells in blood in different groups. Data 
were expressed as mean+s.e.m. of 6–10 mice for each group. (b) Comparison of 
expansion of OT-I after rapamycin withdrawal. Data were calculated by dividing the 
OT-I percentage at D17 by that at D10 (the last day for rapamycin injection). (c) 
Comparison of contraction of OT-Is after rapamycin withdrawal. Data were 
calculated by dividing the OT-I percentage at D30 by that at D17. (d–f) Comparison 
of expression of CD62L, CD127 and KLRG1 in OT-I cells in blood samples from 
panel (a). Data are representative of three experiments with similar results. Two-way 
ANOVA was performed in panels (a, d, e and f). Student’s t-test was performed in 
panels (b and c) and part of panel (d) as the square indicates. 
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Figure 7. Comparison of CD8 T cells from WT and IL-12RKO OT-I mice. CD8 T 
cells in blood were examined for expression of several surface molecules. WT: WT 
OT-I mice. IL-12RKO: IL-12RKO OT-I mice. 
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Rapamycin enhances memory CTLs in tissues 

 We sought to determine whether our observations regarding memory CTLs in 

blood also applied to CTLs in tissues. Memory mice, 40 days after VV-OVA 

infection and 30 days after rapamycin administration, were analyzed. Single cells 

were isolated from the peripheral LNs, spleen, bone marrow (two sets of femur) and 

lung. Similar to CTLs from the blood, rapamycin treatment significantly increased 

WT and IL-12RKO OT-Is in tissues compared with corresponding controls (Figure 

8a). Yet, achieving optimal CTL memory requires IL-12: the IL-12 signal (WT) 

enhanced the rapamycin-treated memory threefold compared with IL-12 deficiency 

(rapamycin-treated IL-12RKO) (Figure 8a). 

To investigate whether rapamycin altered migration of memory CTLs, we 

analyzed the tissue distribution of memory OT-Is. Although rapamycin treatment 

increased the number of memory OT-Is in tissues in both WT and IL-12RKO (Figure 

8b),  rapamycin-regulated memory OT-Is tended to remain in the spleen (P=0.057) 

compared with CTLs not treated with rapamycin (Figure 9a). This trend disappeared 

in IL-12RKO OT-Is (P=0.578), which were retained in the spleen at similar 

percentages regardless of the exposure to rapamycin (Figure 9a and b). In contrast, 

memory CTLs in the lung were significantly reduced (by about 10%) after rapamycin 

treatment in both the WT and IL-12RKO OT-I groups (Figure 9a), consistent with the 

observation of enhanced central memory phenotype due to rapamycin. The memory 

OT-Is in the spleens from rapamycin-treated mice exhibited increased expression of 

CD62L when compared with WT controls (Figure 8c and d). Similar to blood 

samples (Figure 8e and f), rapamycin-treated WT memory CTLs in the spleens had 
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slightly but significantly higher expression of CD127 but lower expression of KLRG1 

compared with their IL-12RKO counterparts (Figure 8e and f). These observations 

were similarly reflected in memory OT-Is from most tissues (some differences were 

not significant), although the expression levels varied among tissues in the same 

animals (Figure 9c-e). For example, memory CTLs in the lung had the lowest CD62L 

expression but the highest KLRG1 expression, which is consistent with an effector 

memory phenotype (Figure 9c-e). These results suggest a general trend: rapamycin 

promotes a central memory phenotype of CTLs in tissues and in the periphery. 
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Figure 8. Rapamycin enhances memory CTLs in tissues. Memory OT-I cells were 
analyzed in memory mice (similar to those in Figure 6a) 40 days after VV-OVA 
infection. (a) Comparison of total memory OT-I cells from the peripheral LNs, 
spleen, lung and two sets of femur from each mouse. (b) Tissue distribution of 
memory OT-I cells in the spleen and lung. Data were calculated by dividing the 
number of memory OT-I in one tissue by the number in all the examined tissues. (c) 
Representative expression of CD62L/CD127/KLRG1 and corresponding statistics 
(Student’s t-test) (d–f) of memory OT-I cells in the spleens from panel (a). The 
experiment was repeated three times and similar results were obtained. 
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Figure 9. Memory CTLs are enhances in tissues by rapamycin. Memory OT-I cells 
were analyzed in memory mice (the same mice in Figure 3a) 40 days after VV-OVA 
infection. A-B. Tissue distribution of memory OT-I cells.  Data were calculated by 
dividing the number of memory OT-I in one tissue by the number in all examined 
tissues. C-E. Representative expression of CD62L/CD127/KLRG1, and 
corresponding statistics (Student’s t test), in memory OT-I cells in tissues from mice 
in (A). The experiment was repeated three times and similar results were obtained. 
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Memory CTLs derived from rapamycin treatments in the absence of the IL-12 signal 

are functional 

Quantitative measurements of memory CTLs do not necessarily reflect 

functionality, as demonstrated by exhausted CTLs in chronic LCMV infection (43-

45). To test whether the CTLs in this study were functional, memory mice were 

challenged with LM-OVA (38, 41). The memory mice that had originally received 

IL-12RKO OT-Is were not protected against LM-OVA challenge, as is consistent 

with our previous report (41) (Figure 10a). Notably, treatment with rapamycin 

rescued functions of IL-12RKO CTLs and enabled them to respond to challenge, 

reaching levels of protection similar to WT with or without rapamycin treatments 

(Figure 10a). Endogenous Kb/OVA CD8 T cells were undetectable (data not shown), 

suggesting that memory IL-12RKO OT-Is were responsible for the enhanced memory 

protection in IL-12RKO OT-I transfer mice. IFN-γ and tumor necrosis 

factor α (TNFα) have been closely associated with memory CTL function, and these 

rapamycin-regulated memory IL-12RKO CTLs had slightly but significantly higher 

production of both molecules compared with WT controls (Figure 10b-d). Notably, 

there were significant differences in IFN-γ and TNFα production by memory CTLs 

from different tissues within the same individual: CTLs in the lungs produced the 

lowest amount of IFN-γ and TNFα, whereas CTLs in the spleens, LNs and bone 

marrow produced more of these cytokines (Figure 10c and d and data not shown). 

These data suggest that the rapamycin-regulated memory CTLs are functional and 

protective, even in the absence of IL-12. 
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Figure 10. Rapamycin-regulated memory CTLs are functional in the absence of the 
IL-12 signal. (a) Memory mice (similar to those in Figure 6a) were challenged with 
LM-OVA, and bacterium was recovered from the spleen 3 days after challenge. (b–d) 
Resting memory OT-I cells in different tissues were examined for the production of 
IFN-γ and TNFα. Representative cytokine expression in the spleen (b) and 
comparison between the spleen and lung (c and d). These are representative of three 
independent experiments with similar results. 
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IL-12 is required for secondary expansion of memory CTLs regulated by rapamycin 

A functional memory response is characterized by rapid expansion and quick 

control of reinfection upon pathogen re-challenge (1, 21). To test secondary 

expansion ability, an equal number (105) of memory OT-Is from each treatment group 

was transferred into naive recipients, which were then challenged with LM-OVA. 

OT-Is became detectable at D5, peaked at D7 and contracted thereafter (Figure 11a). 

IL-12RKO OT-Is had the smallest expansion at D7, which was significantly lower 

than the other groups (Figure 11b). Furthermore, this group (IL-12RKO) contracted 

the most, becoming almost undetectable at D14 postchallenge (Figure 11a). 

Interestingly, rapamycin-regulated WT memory OT-Is were significantly lower than 

WT memory controls at D7 (Figure 11b), but both achieved a similar level of 

secondary memory (D30 after re-challenge Figure 11a). Additionally, the absence of 

IL-12 signaling in the primary response caused weaker activation of memory CTLs, 

as demonstrated by a lower KLRG1 expression and reduced downregulation of 

CD62L at D7 (Figure 11c and Figure 12a-c) and D5 (data not shown). The extent of 

expansion was predictive of the resultant secondary memory: secondary memory 

CTLs were undetectable in the IL-12RKO+ rapamycin group (Figure 11d). 

Secondary memory from either WT memory or WT+ rapamycin memory CTLs was 

higher than in naive controls (Figure 11d). To confirm the absence of memory CTLs, 

memory mice in the IL-12RKO+rapamycin group and WT+ rapamycin group were 

challenged with VV-OVA at D60 after LM-OVA infection. There was no detectable 

expansion of OT-I at D5 in the IL-12RKO+ rapamycin group, whereas a huge 
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expansion was detected in WT (Figure 11e). Collectively, lack of the IL-12 signal 

causes defective secondary expansion and abolishes secondary memory formation. 
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Figure 11. IL-12 is required for secondary expansion of memory CTLs regulated by 
rapamycin. Naive mice having received naive or IL-12RKO OT-I cells were split into 
two groups: rapamycin-treated and untreated control. These mice were then infected 
with VV-OVA. Splenocytes containing 105 memory OT-I cells from each of the 
treatments were transferred into naive B6 mice, which were challenged the next day 
with LM-OVA. Memory IL-12RKO OT-Is without rapamycin were at or below 
detectable level, hence were excluded in transfer. OT-I populations were tracked in 
the blood at various time points. (a) Kinetics of OT-I populations. Data are expressed 
as mean+s.e.m. of 4–7 mice. Comparison of OT-I percentage of peripheral blood 
mononuclear cells at D7 (b) or D30 (d) after LM-OVA challenge. (c) Comparison of 
the expression of KLRG1/CD127/CD62L in OT-Is at D7 after LM-OVA challenge. 
(e) Mice that have received rapamycin-treated first memory OT-Is (IL-12RKO and 
WT) were infected with LM-OVA as carried out in panel (a). These memory mice 
were challenged again with VV-OVA 60 days after LM-OVA infection, and CTL 
expansion was examined on D5. The results are representative of two separate 
experiments with similar results. Student’s t-test was performed in panels (b, d and e). 
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Figure 12. Secondary expansion of memory CTLs regulated by rapamycin requires 
IL-12. Naïve mice having received naïve or IL-12RKO OT-I cells were split into two 
groups: rapamycin-treated and untreated control. These mice were then infected with 
VV-OVA. Splenocytes containing 105 memory OT-I cells from each of the treatments 
were transferred into naïve B6 mice, which were challenged the next day with LM-
OVA. Memory IL-12RKO OT-Is without rapamycin were at or below detectable 
level, so were excluded in transfer. OT-I populations were tracked in blood samples. 
A-C. Comparison of expression of KLRG1/CD127/CD62L in OT-Is at day 7 after 
LM-OVA challenge. The results are representative of two separate experiments with 
similar results. Student’s t test was performed. 
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Rapamycin enhances IL-12 signaling in early infection and consistently inhibits T-bet 

expression 

 Rapamycin’s enhancement of memory CTL formation may be due to direct 

interactions with IL-12 signaling within CTLs or result indirectly from interactions 

with other cells. To address this question, naive WT and IL-12RKO OT-I cells were 

transferred into recipient B6 mice, which were infected with VV the next day. 

Rapamycin was administered as in Figure 6. OT-Is were analyzed for IL-12 signaling 

and other pathways at different time points PI. IL-12 receptors are composed of two 

subunits, β1 (shared with IL-23) and β2 (binding p35 of IL-12, so is unique to IL-12) 

(46-48). Our IL-12RKO OT-Is are deficient in the β1 subunit. β1 and β2 are 

differentially expressed in immune cells (2). In naive CD4 cells, β1 is expressed but 

β2 is absent (49). The expression of β2 is induced by IFN-γ but inhibited by IL-4 

during activation (49). In CD8 T cells, both β1 and β2 can be regulated by cytokine 

stimulation (IL-12 or type I IFN), but the speed and magnitude of upregulation is 

different between the two subunits. The transcriptional expression of β2 was 

upregulated earlier and with greater magnitude than was β1 (50). Administration of 

rapamycin increased IL-12R β2 expression in both WT and IL-12RKO OT-Is during 

early infection (days 3–5) but not β1 (Figure 13a and data not shown). Type I IFN 

receptor subunit 1 was not affected by rapamycin (Figure 14a). This indicates that IL-

12R β2 is upregulated by rapamycin. In addition to the receptor expression, 

rapamycin upregulated the phosphorylation of STAT4 in both WT and IL-12RKO 

OT-I cells but not the expression of Janus-activated kinase 2 on the protein level 

(Figure 13a). This suggests that rapamycin directly enhances STAT4 activation 
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during early infection through the IL-12 signaling pathway and/or other cytokines 

(41, 51-53). T-bet is a transcription factor responsible for CTL effector function (54, 

55). Rapamycin regulates IL-12-driven memory programming by inhibiting T-bet and 

promoting Eomes expression (14). Consistent with this, administration of rapamycin 

suppressed T-bet expression in both WT and IL-12RKO CTLs at days 5 and 10 PI 

(Figure 13b and data not shown), but Eomes expression was not affected (Figure 

14b). Thus, rapamycin’s suppression of CTL effector function may contribute to the 

enhanced memory in both WT and IL-12RKO OT-Is. Interestingly, mTOR 

phosphorylation was not altered by rapamycin at days 5 and 10 PI, indicating that 

rapamycin may work through pathways other than mTOR (Figure 14c). Therefore, 

our findings suggest that rapamycin can both directly augment IL-12 signaling during 

early infection and suppress CTL effector function. 

To confirm the direct effects of rapamycin on IL-12 signaling observed in 

animals, sorted naive OT-I cells were cultured in the presence (3SI) or absence (2SI) 

of IL-12 in addition to antigen and B7 stimulation (38, 56). Indeed, rapamycin 

directly enhanced and extended STAT4 phosphorylation when IL-12 was present 

(Figure 13c). Consistent with the data in VV infection (Figure 13a), rapamycin 

directly inhibited T-bet expression independent of IL-12 (Figure 13c) as previously 

reported (14). In contrast to in vivo, IL-12Rβ2 was inhibited by rapamycin in both 2SI 

and 3SI stimulation (data not shown). Therefore, rapamycin can directly enhance IL-

12 signaling, but this does not necessarily occur through direct regulation of IL-12 

receptors. 
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Figure 13. Rapamycin enhances IL-12 signaling in early infection and consistently 
inhibits T-bet expression. Naive WT or IL-12RKO OT-I cells were transferred into 
recipient B6 mice, which were infected with VV-OVA the next day. High doses of 
rapamycin were administered daily between D−1 and D10 after VV-OVA infection. 
OT-I cells in the spleens were examined at days 5 (a) and 10 after infection (b). The 
results are representative of five mice per group, and similar data were obtained in 
two separate experiments. (c) Sorted WT OT-I cells were stimulated with 3SI 
(antigen+B7+IL-12) or 2SI (antigen+B7) in the presence or absence of rapamycin as 
we have previously reported (38). Programmed CTLs were examined at day 3 
poststimulation. The T-bet was examined on effector CTLs generated in vivo (b) 
and in vitro (c). These are representatives of two independent experiments with 
similar results. 
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Figure 14. Effetcs of rapamycin on IFNαR1, EOMES and mTOR. Naïve WT or IL-
12RKO OT-I cells were transferred into recipient B6 mice, which were infected with 
VV-OVA the next day. High doses of rapamycin were administered daily between 
days -1 and 10 post VV-OVA infection. OT-I cells in spleens were examined at days 
3, 5 and 10 after infection. A. Comparison of IFNαR1 expression at day 3 post 
infection. B. Comparison of EOMES expression at days 5 and 10 post infection. C. 
Comparison of mTOR activation at days 5 and 10 post infection. The results are 
representative of 5 mice per group, and similar data were obtained in two separate 
experiments. 



 

 40 
 

Long-term administration of rapamycin at low doses is equally effective as high doses 

 Long-term administration of low doses of rapamycin enhances memory CTLs 

in LCMV infection (17). To test whether the same is true in VV infection, naive OT-I 

cells were transferred into B6 mice, which were infected with VV-OVA. Rapamycin 

was administered at either low doses from −1 to 30 days PI or high doses from −1 to 

10 PI. Indeed, high doses of rapamycin (from −1 to 10 PI) dramatically suppressed 

CTL expansion in both WT and IL-12RKOs (Figure 15a). Yet, low doses of 

rapamycin inhibited CTL expansion in both WT and IL-12RKO CTLs, albeit more in 

IL-12RKOs (Figure 15a). This suggests that inhibition of CTL expansion by 

rapamycin is dose-dependent, and the IL-12 signal may lessen this inhibition, at least 

partially. 

With regards to surface molecules, there was no significant difference in 

KLRG1 and CD127 expression levels between both doses (data not shown). 

However, high expression of CD62L was associated with high doses of rapamycin 

(Figure 15b), whereas CD62L expression was dampened under low doses of 

rapamycin in both WT and IL-12RKO. Interestingly, rapamycin’s regulation of 

CD62L at the expansion stage is not dependent on IL-12 signaling (Figure 15b). 

Despite the differences in expansion and expression of surface molecules, memory 

CTLs reached similar levels in both WT and IL-12RKO OT-Is regardless of the dose 

of rapamycin (Figure 15c). Furthermore, CTLs from both doses tended towards 

central memory phenotype—CD62L positive and mostly KLRG1 negative and 

CD127 positive (Figure 15d and data not shown). These data suggest that the long-
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term administration of low doses of rapamycin has similar effects on memory CTLs 

compared with short-term administration of high doses. 
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Figure 15. Long-term administration of low doses of rapamycin enhances memory 
CTLs to levels comparable to high doses. Naive WT or IL-12RKO OT-I cells were 
transferred into recipient B6 mice, which were infected with VV-OVA the next day. 
Low doses of rapamycin were administered daily between D−1 and D30 after VV-
OVA infection, whereas high doses were administered between D−1 and D10 PI. OT-
I populations were tracked in blood samples. (a, c) Comparison of OT-I percentage of 
peripheral blood mononuclear cells at day 5 (a) or memory OT-Is in the spleen at day 
40 (c) after VV-OVA infection. (b, d) Comparison of expression of CD62L in OT-Is 
in blood samples at D5 and D40 after VV-OVA infection. The results are 
representative of two separate experiments with similar results. Student’s t-test was 
performed in panels (a–d). 
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Requirement of the IL-12 signal for memory expansion is independent of the 

rapamycin dosage 

It is possible that the impaired secondary expansion of rapamycin-regulated 

memory IL-12RKO CTLs is a consequence of high dosage. To address this question, 

spleen cells containing an equal number of memory OT-Is from each treatment (high 

and low doses of rapamycin) were transferred into naive B6 recipients, which were 

challenged with LM-OVA the next day. At the peak of response (day 7 after re-

challenge), rapamycin-regulated IL-12RKO OT-Is were significantly lower than WT 

regardless of the dosage used during primary activation (Figure 16a), and expansion 

was only detectable 5 days after re-challenge (data not shown). Consistently, resultant 

secondary memory CTLs were abolished in IL-12RKO OT-Is derived from both high 

and low doses of rapamycin (Figure 16b). No phenotypic difference was observed in 

resultant secondary memory CTLs from low and high dose rapamycin-regulated 

primary WT memory (data not shown). Therefore, the requirement of IL-12 for 

secondary memory expansion is independent of the rapamycin dosage. 
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Figure 16. Requirement of the IL-12 signal for memory expansion is independent of 
the rapamycin dosage. Naive mice, having received naive or IL-12RKO OT-I cells, 
were infected with VV-OVA with high or low doses of rapamycin. Splenocytes 
containing 105 memory OT-I cells from each of the treatments were transferred into 
naive B6 mice, which were challenged the next day with LM-OVA. Naive and WT 
memory controls (without rapamycin) were included. OT-I populations were tracked 
in blood samples at different time points. (a) Comparison of OT-I percentage of 
peripheral blood mononuclear cells in the blood at D7 (a) or at D30 (b) after LM-
OVA challenge. The results are representative of two separate experiments with 
similar results. Student’s ttest was performed in panels (a, b). One-way ANOVA was 
performed in panel (b) for comparison of three groups. 
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Chapter 4:  Discussioniii 
 

Inhibiting mTOR by rapamycin effectively enhances memory CTLs in LCMV 

and Listeria infections (17, 39). Yet, whether the immunostimulatory effects of 

rapamycin require the presence of inflammatory cytokines is unknown. In this report, 

we confirmed that rapamycin enhances the formation of functional memory CTLs in 

VV infection and demonstrated that IL-12 signaling is necessary for achieving the 

optimal memory CTL response. 

Consistent with our previous report (41), IL-12 signal is required for memory 

formation. Deficiency of the IL-12 signal led to almost undetectable memory, despite 

similar effector expansion (Figure 6a). When rapamycin was administered to 

recipients, memory CTLs increased (Figure 6a). However, the presence of IL-12 

signaling significantly enhanced the effects of rapamycin by 3–4 fold and shifted the 

CTL population to a more central memory phenotype. As IL-12 has a critical role in 

the differentiation of T helper type 1 and the establishment of a strong CTL response 

(57, 58), it is not surprising that this cytokine is required for optimal memory CTL 

formation following rapamycin treatment. Cessation of rapamycin treatment in 

primary VV-OVA infection enhanced effector expansion (Figure 6b) and 

subsequently improved memory CTL formation (Figure 6a). Consistent with a recent 

report from Ahmed et al. (17), high doses of rapamycin inhibited effector expansion 

(Figure 6a). However, this strong inhibition did not abolish expansion—CTLs still 

expanded substantially when high doses of rapamycin were administered (Figure 6a). 

                                                
iii Reprinted by permission from Macmillan Publishers Ltd: Genes and Immunity, advance 
online publication, 5 June 2014; doi: 10.1038/gene.2014.33 
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In addition, these effectors exhibited a period of delayed expansion upon termination 

of rapamycin treatment, and IL-12 contributed to the strength of this post-rapamycin 

expansion (Figure 6a). Compared with long-term administration of low doses of 

rapamycin, high doses yielded a similar effect within a shorter time window (Figure 

15c). 

Rapamycin promotes a central memory phenotype in a monkey model (17) 

and can program memory CTLs in short-term culture in vitro in the presence of IL-12 

(14, 38). In support of these findings, we found that rapamycin drove upregulation of 

CD62L regardless of the presence or absence of IL-12. However, the lack of the IL-

12 signal reduced the expression of CD127 (IL-7 receptor alpha), which suggests 

decreased responsiveness to IL-7, a critical cytokine for the maintenance and 

homeostasis of memory CTLs (12, 59-62). Furthermore, the absence of IL-12 signal 

increased KLRG1 expression, an inhibitory receptor for T cells and a marker for 

short-lived effectors (63, 64). IL-12 marginally affected CD62L expression, if any 

(Figures 6d, 8d, 15b and Figure 9c). These data indicate that memory CTL regulation 

by rapamycin requires IL-12 to maintain a strong and healthy central memory CTL 

phenotype. This quantitative and qualitative regulation by rapamycin was similarly 

achieved from both high (Figure 6) and low doses (Figure 15). The requirement of 

IL-12 for the secondary memory response is evident. Rapamycin-regulated memory 

IL-12RKO CTLs expanded much less than WT CTLs treated with rapamycin. 

Moreover, there was no detectable secondary memory (Figure 11 and 16). As a 

common practice in vaccination, boosting with either vectors or adjuvant is used to 

increase the quantity and quality of memory CTLs (42, 65-67). Our data clearly 
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suggest that enhancing memory CTLs using an mTOR inhibitor, such as rapamycin, 

requires IL-12 for both optimal primary memory and functional secondary responses. 

Of course, this does not necessarily exclude the need for other inflammatory 

cytokines, such as type I IFN, which are critical for the immune response against 

certain infectious pathogens, such as LCMV (1).  

Rapamycin may directly and indirectly regulate IL-12 signaling. IL-12R β2 

expression was enhanced by rapamycin, whereas no change was observed in β1 

expression during infection (Figure 13a). This could indicate that rapamycin affects 

IL-12 function in memory generation through differential regulation of IL-12 receptor 

subunits. However, both IL-12Rβ1 and β2 were inhibited by rapamycin in CTLs 

when IL-12 was provided in vitro (Figure 13c). Therefore, the enhanced expression of 

IL-12Rβ2 by rapamycin during infection may be indirect, possibly occurring through 

other mechanisms. More importantly, inhibition of mTOR in vitro in the presence of 

IL-12 leads to enhanced memory programming (14, 38), suggesting that mTOR may 

affect downstream IL-12 signaling. Although the IL-12 signaling was disrupted in IL-

12RKO OT-Is due to β1 deficiency, the STAT4 phosphorylation was similarly 

upregulated by rapamycin during the early infection (Figure 13a). In addition, 

rapamycin enhanced STAT4 phosphorylation in CTLs in vitro only in the presence of 

IL-12 (Figure 13c), suggesting that this may be due to the combined effects of IL-12 

and other cytokines, such as type I IFN (51-53, 68) and IL-3, IL-5 and IL-6 (69-76).  

Importantly, these effects were transient and only happened early in the infection, 

suggesting that the regulatory function of rapamycin for cytokine signaling may be 

generally short-lived. Rapamycin might also influence other components involved in 
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IL-12 signaling that have not been addressed in this study. A global comparison of 

transcriptome or protein profiling between rapamycin-treated and control in both WT 

and IL-12RKO OT-Is is currently underway and will provide more defined answers 

about the molecular mechanisms underlying rapamycin regulation. 

It was recently reported that a third signal is required for secondary expansion 

of memory CTLs in a pathogen-dependent manner (1). Different pathogens may 

cause distinct inflammatory milieus, and the induction of memory CTLs depends on 

unique cytokines, such as type I IFN for LCMV (77) and IL-12 for VV and LM (1, 

41). The ability of CTLs to undergo secondary expansion requires the presence of 

pathogen-specific third-signal cytokines during priming (1). Our data further support 

this discovery by illustrating that rapamycin-regulated memory CTL expansion 

requires a third signal during priming. We cannot rule out the possibility that IL-12 is 

required for the secondary expansion of memory CTLs, as in this experimental setting 

there is a lack of IL-12 signaling in both priming and memory stages. Once available, 

a conditional knockout model will be more suitable to address this question. Although 

the requirements for reactivating memory CTLs are still subject to debate, dendritic 

cells are essential for optimal CTL responses to secondary infections (78, 79). This 

implies that co-stimulation and/or inflammation is essentially involved in the 

reactivation of memory CTLs (80). Recently, we reported that boosting with peptide 

requires adjuvant for memory CTL generation (42), hence it appears that cytokines 

are needed. The immune response to live attenuated pathogens is usually stronger 

than that against killed vaccines (66, 81). Thus, induction of functional memory CTLs 

using killed vaccines is very challenging and often requires effective adjuvants and 
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multiple boosts (20, 66, 81-83). As shown in this report, the inhibition of mTOR and 

the provision of the IL-12 signal may provide the stimulation necessary to enhance 

the immune response against killed pathogens. 

In summary, we found that IL-12 is critical for rapamycin regulation of 

memory CTLs in two aspects: (1) IL-12 enhances the regulatory function of 

rapamycin quantitatively and qualitatively. (2) The presence of IL-12 during priming 

is required for secondary expansion of memory CTLs regulated by rapamycin. When 

an mTOR inhibitor is used as an adjuvant to enhance memory CTLs during 

vaccination, it is important to provide sufficient required inflammatory cytokines, 

such as IL-12. 
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