APPLICATION OF THE THEORY OF NUMBERS
TO THE MAGNETIC PROPERTIES

OF A FREE ELECTRON GAS

By

Martin C. Steele

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy

1952

-



UMI Number: DP71127

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishang

UMI DP71127
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

Prot

uest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346



ACKNOWLEDGMENTS

It is a pleasure to thank Professor R. D. Myers for his
supervision of this work; M. F. M. Osberne not only for
suggesting the problem but also for many stimulating and
fruitful discussions; and Professor M. H. Johnson for his
helpful interest.

170703



TABLE OF CONTENTS

Chapter Page

i.

4.

5.

INTRODUCTION . . ¢ ¢« o ¢ o o o o o o o o o « 1
1.1 General aspect of the problem
1.2 Purpose of present work
QUANTUM STATISTICAL FORMULAE AND THEIR RELATION
TO THE THEORY OF NUMBERS . . . . .+« +« « ¢ « 3
2.1 Free energy
2.2 Magnetic moment

2.3 Relation to the theory of numbers

SPIN PARAMAGNETIEM . . . .« ¢ o o o « o o o = 7
3.1 Content
3.2 Schrodinger equation
3.3 Free energy
3.4 Magnetic moment
3.5 Summary
DIAMAGNETISM AND THE DE HAAS-VAN ALPHEN EFFECT
FOR A SPINLESS ELECTRON GAS e e e« o e e . . . 14
4.1 Content
4.2 Schrodinger equation
4.3 Free energy
4.4 Magnetic moment
EFFECT OF SPIN ON THE MAGNETIC MOMENT OF AN
ELECTRON GAS . . . o ¢ o ¢ o« « s o = o+ =
5.1 Content

L - 40

5.2 Eigenvalues
5.3 Distribution function G(E)
5.4 Magnetic moment



chapter Page

6. SIZE EFFECTS DUE TO A FINITE CONTAINER
(SPINLESS ELECTRONS) . + &+ « &+ + @« « « o« o« « . 45

6.1 Content
6.2 Distribution function G(E)
6.3 Magnetic moment
6.4 Summary
7. SIZE EFFECTS DUE TO A FINITE CONTAINER
(ELECTRONS WITH SPIN) . . . +« @« « + « + « . . 54
7.1 Content
7.2 Eigenvalues
7.3 Distribution function G(E)
7.4 Free energy
7.5 Magnetic moment

APPENDIC Es - - - L] - L] L 4 . L L - . - - - - L] 6 1

REF ERENC ES . » - L » - * - - - L] - * - - . - 8 z



CHAPTER 1

INTRODUCTION

1.1 General Aspect of the Problem

The fundamental problem in applying statistical thermodynamics
to the theory of metals is to find the proper energy level distribution
function. Once this function has been found, the energy, entropy, heat
capacity and magnetic moment can readily be determined. Many
mathematical procedures have been used to compute distribution
functions. In the final analysis they all strive to replace summations
by integrals. In fact, advancements in the theory have been the result

of more accurate replacement of sums by integrals,

i.2 Purpose of Present Work

There are two purposes for the present work, The first, and
rmore general, objective is to propose a diiferent mathematical method
fior getting distribution functions. The particular method to be used is
often applied to the number theoretical problem of counting the lattice
points within or on a closed surface., Subsequent chapters will deal
with the correspondence between number theory and quantum mechanics,
It is believed that the proposed method could be applied to a variety of
problems in solid state physics and to studying statistical properties of
nuclei., However, in this paper we will restrict our applications to the
simple free electron theory of a metal,

Dur second aim, therefore, is to apply number theoretical methods
to the specific problem of the magnetic properties of a free electron gas.
It would appear as though this particular problem is a guinea pig for new
methods since Pauli's work (Ref, 7) on the ' spin paramagnetism  of

electrons was also the first application of Fermi-Dirac statistics to



the theory of metals, In fact, another new idea was used in the samae
problem when lLandau (Ref. 6) proved the existence of a diamagnetic
eifect caused by the discreteness of electronic levels in a magnetic
field, Almost simultaneocusly with the theoretical work of ilandau,

de Haas and van Alphen (Ref., 4) found experirmentally that at sufficiently
low temperatures the diamagnetism of bismuth shows an anomalous
dependence on magnetic field strength, The discovery of the de Haas-
van Alphen eifect ! was an impetus to further theoretical work., Peierls
(Ref. 8) was the first to show that the d-v-¢ could be explained quantum
mechanically. His theory has subsequently been amplified by Blackman
(Ref. 1) and Landau (Ref. 9) to include anisotropic media such as
crystals of the bismuth type, Although we will be concerned with the
d-v-e, our efforts will be restricted, as stated above, to the free
electron concept of a metal,

The effect of using a finite container to hold the electron gas has
been the subject of a number of recent papers, Since the results
reported are widely divergent, it will be of interest to examine this
aspect of the problem by the proposed method.

it is hoped that the method and applications to be given here may

prove of heuristic value in furthering the theory of solids,

Throughout the remainder of this work de Haas-van Alphen
effect will be designated by d-v-e,



CHAPTER 2

FUANTUM STATISTICAL FORMULAE AND

THEIR RELATION TO THE THEORY OF NUMBERS

Since much of the material that follows will make use of formulae
based on Fermi-Dirac statistics, it is convenient to discuss these
relations before embarking upon the detailed calculations. Such dis-
cussion has the further advantage of introducing the correspondence

between quantum statistics and the theory of numbers,

2.1 Free Energ

The free energy of a system of N non-interacting electrons

{obeying Fermi-Dirac statistics) is
F o= NE_ - kTZlog (1 ¢ e(E“'Ei)/kT) (2-1)
A
where Eg4 is the Fermi energy; k is Boltamann's constant; T is the

absolute temperature; and £, are the energy levels for any one of the

electrons., E_, and Iv are related through the normalizing condition

1
N o= Z TRl (2-2)

Both (2-1) and (2-2) are derived} on the assumption that there are only
electrons of one value of spin present in the system. When both values

of spin are allowed all sums are multiplied by two if N still refers to

1 . . .
¥For details of the derivation of these relations see, for

example, R. H. Fowler, Statistical Mechanics (Cambridge University
Press, 1937).



the total number of electrons.

If we now assume the existence of an energy distribution function

aG(E)
{ de

equal to or less than ¥, the surnmations in (2-1) and (2-2) can be

) dE, where G(E) denotes the number of states having energies

replaced by integrals., The free energy can then be written

(S <]

. oNE dG(E) . SEo-E)/kT, .
o NEQ - kT ~£; -—3}-:——— 1@g (} L -4 }d£ (2-3}
L

where E; is the lowest energy level of the electron. Integrating once

by parts gives

oo
F = NEj - kT E-G(EL) log (1 e(EC"E‘L)/kT) + E’i'f J\G(E) {E)dE| (2-4)
EL

where f{(E) is the Fermi function, i.e.

H{E) = - Q;E'"Egm (2-5)

2.2 Magnetic Moment

In all the work that follows the magnetic moment will be obtained

irom the formula

| az«*)
W = - - (206)
(aH v, T

where M is the magnetic moment; H is the magnetic field intensity;
and V is the volume. We shall consider only systems in which N is
held constant so that E, and H can be considered as the variables that

determine M., Then (2-6) can be written as

This is true when the spin interaction with applied fields is
not accounted for. When spin energy is included one has two
independent sums to consider,
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But from (2-!) and (2-2) we have

a8
o

OF . i
amcnem—— = i - - = {} 2—
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s0 that

1 = - [QF - .| BF - NEJ) -
M (OE);&Q [ oOH ]EQ (2-9)

2.3 Relation to the Theory ?”f Numbers

From (2-9) it is clear that we must find F before computing M,
But {2-4), which is the desired expression for I, shows that our
immediate aim is to evaluate the function G(E).

For the particular problem of the diamagnetism of {ree electrons
landauv {Ref. 8} used the Euler-Maclaurin fsr'mulas for getting G{E},
In the course of repeating lLandau's calculation the present author found
that the resuits obtained by using the Euler-Maclaurin formula depended
not only on the order of sumnmation over guantum numbers but also on
the particular form of the formula. Z5Since it was believed that the theory
of physical phenomena should be independent of order of summation, a
detailed study was undertaken to resolve the difficulty. It was at this
stage that the concepts of number theory were first employed,

i.et us suppose that for a particular problem the solution of
Schrodinger's equation gives rise to an eigenvalue relation in which the

energy levels are expressed as explicit functions of quantum numbers.

For the derivation and application of the Euler-Maclaurin
formula, see, for example, Whittaker and Robinson, Calculus of
Observations (Blackie & Sens, London, 1932) p. 134



Then by fixing the energy parameter at £, the eigenvalue relation will
describe some surface in quantum number space., Now the computa-
tion of G{Z) resolves itself into the problem of counting the number of
gquantum states within or on the particular energy surface. This
counting is completely analogous to the number theory problem of
finding the number of lattice points within a closed surface located in
a grid of discrete unit cells, (A lattice point is defined as a point
having integers for coordinates.) The discreteness of the quantum
numbers is sufficient to indicate that there will be corrections to the
result obtained bymerely computing the volurmne enclosed by the energy
surface.

Lattice point problems have been considered in great detail by
mathematicians., The lattice points of a circle have received particular
attention since this problem is considered the most fundamental as well
as the most intere sting.4 Generally, the matbematician is more con-
cerned about finding the order of magnitude of the corrections to the
number of lattice points than actually getting an explicit relation for
the desired total number, Although order of magnitude relations are
of value in solid state problems, it was felt more desirable to strive
for explicit relations in all cases. Unfortunately, we shall see that
even in relatively simple gquantum mechanical problems the task of
getting an explicit representation for G(E) becomes quite formidable.

Number theorists have used a variety of methods in solving
lattice point problems. The particular procedure to be used through-
out this paper follows closely the work of Kendall (Ref. 5) ou the number
of lattice points inside a randomn oval. Details of the method, as applied

to gquantum mechanics, will be given in the text that follows.

An interesting historical account of the lattice points of a circle
is given by J. R, Wilton, Messenger of Math. 58, 67 (i929)



CHAPTER 3

SPIN PARAMAGNETISM

3.1 { ontent

In this chapter we consider the application of number theory to
the problem of spin paramagnetism, The principal value of this is to
illustrate the use of existing results of number theory to a specific
problem. From a physical point of view the development is wrong
since we will be assuming plane waves for the electronic motion in a
magnetic field. But the results obtained here can be compared to Pauli's
work since he too assumed plane waves. Subsequent chapters will deal

with the proper electronic wave functions in 2 magnetic field.

3.2 Schrcdingff Equation

In the absence of a magnetic field the Schrodinger equation for

an electron in a box of dimensions L.-x. LY, Lz, isg

‘%‘%VZ‘.}, + (U - E)\‘) = 0 (3-1)

Here m is the mass of the electron; B is Planck's constant divided by
2w; I.P is the wave function; Uis the potential energy; and E is the energy.
If we assume u = 0 inside the box, and u-=°0 on the walls, the wave

functions are

q) - sin wnjixx) sin(s%z) min(a_'_:%%) (3-2)

where n,, 0,, B, are integers. This wave function satisfies the condition
of vanishing at the walls. However, it is more convenient for the purposes

of this chapter to take for the wave function
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AL L
= e ES Ly z {3-3)

which is periodic along the three axes with periods Lx. Ly' and Lz
regpectively. This wave function does not satisfy the boundary con-
ditions, but simplifies the number theory problem by allowing positive
or negative values for the integers ni. nz. n3.
The energy levels obtained from (3-3) are

L6 6 @]

where nl. mz. n, can now take on all positive and negative integer

3
values,

We now introduce the magnetic field H to this system of electrons.
If we assume that H only acts on the spin of the electron (i.e. no effect

on the spatial wave function) then the new energy levels will be

RS @ @ e

where $ is the Bohr magneton

-

Zmc

3.3 Free Ener&

In quantum number space {3-5) describes two ellipsoids when E
is fixed., The calculation of G{(E) is therefore equivalent to finding the
number of lattice points of a three-dimensional allipsoid. Since we

have two such ellipsoids G{E) can be written as
G(E) = -G%(E) + G (E) {3-6)

corresponding to FHH in (3-5). Introducing (3-6) and the proper lowest

energy values into (2-4), the free energy is given by



F-NE, = - [§G+(E}f(ﬁ) aE + 5&_(:&:}“2}) d.%:] (3-7)
~pH PH

since both GJ-;‘BH) and G _(BH) are zero.

The lattice points of an ellipsoid is one of the classic problems
in number theory. In fact it is one that has been solved explicitly.
Consider the ellipsoid

> pA
AZi' ( g-‘-a) < X (3-8)

{which represents (3-5) when/x = % \/Em{Ei’ BH) )

1
It is shown in number theory that the number of lattice points within

or on this ellipsoid is

_ 4w .
G{x) = 3 x +'V“xnn . = . 3/4 (3-9)
= {z: Nl
=
where 33/2 is the 3/2 order Pessel function of the first kind; /U =
LRLZLB; 'and Z, means we do not count n, = n, = n3 = §, The first

term in (3-9) is just the volume of the ellipsoid, while the terins that
follow are the corrections which arise from the discretenesz of the
lattice. From the properties of Bessel functions it is clear that the
correction terms are oscillatory functions of the parameter X and

the guantities Li'

An explicit expression for the lattice points of an n-dimen-
sional ellipsoid is given in Kendall's paper (Ref. 5)
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3.4 Magnetic Moment

a. Non-oscillatory Term.

The total volume of both ellipsoids in quantumn space gives rise
to a non-oscillatory term in the magnetic moment, The calculation
of this moment has been the subject of several papers even since the
original work of Pauli (Ref. 7). 1t is sufficient to give the result here
since the algebra involved can be found in great detail in several
papers. 2 The result obtained here is in agreement with previously
published results. To first approximation {neglecting temperature

dependence) one finds that the non-oscillatory term (n.o.) is
_ 4wV 3/2,2_1/2

If the Fermi energy is assumed to be of the order of one electron volt,

we get

Mn. °. U 1 g"‘é H
V .

b. Oscillatory Terms.

The remaining question is How large are the oscillatory terms?
Before answering this question we first need to estimate the effect of
temperature on the amplitude of these oscillatory terms. FPhysically
it seems reasonable to expect that as the temperature increases the
amplitude of the oscillatory termms will decrease. This estimate is
based on the fact that the Fermi distribution is smeared out with
increasing temperature. It would then seem plausible that by estimat-

ing the oscillatory term at T = 0K we will have the maximum effect.

5ee, for example, the work of E. C. Stoner (Ref. 18)
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Since we are concerned with an order of magnitude calculation it will
be sufficient to consider only one term in the sum of (3-9). Setting

n ziandnzxn3
JG,:s

/
§a, = V{zmlﬁ (Eﬁzﬁm 33/ [3&’- (2m)l/zLX(E N ﬁﬁ)i/z]

= {, the correction term in G+(E), designated by

LN
{3-11)
Substituting (3-11) into (3-7) and designating this correction to (F - NEO)
by 5'} (= - N?Eo}. we have at T = 0°K
EO

(S* (r - NEQ) = - K\g (E + ﬁﬁ} a/z[o((E & ﬁH)i/ﬂd“‘
_PH
(3-12)
where
K V{2m) /
h 2 Lx
and

By setting OlL(E + ﬁH)l/z = 47 s (3-12) gives
if2
REo¥
S, (r-nE) = ‘%73 $ 3, (p) ad (3-13)
O

where E  =E_+ 8H. The value of the integral in (3-13) is given in
Jahnke and E mde, Tables of Functions, p. 145, Therefore
5/4

- 2KE | , (dLi/a) (3-14)

5+(F'NE6) -—-&-—'—-——- 5/

But since OLE;{ 2 >>1, we can use the asymptotic formaula for
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oLE}'/ } to get {upon resubstituting the values of K and ol
g

5/2
VE ;
8_,_ (r - %EQ)N .__2_9"'?. sin [Zr (2m)1/z %" E;{Z} {3-15)
v L
%

Introducing (3-15) into the expression (2-9) gives the correction to M
designated by §, M. Neglecting higher order terms it is

‘ 1/2 1/2
3 Mo~y V(Zm)‘ BEoy cos [217 (Zrn)l/z { 1/2] {(3-16)
+ 2
w Lx h

Considering the same correction (n = landn, = n_, = 0) to G (E}, we

2 3
have for 5 M, the value

1/2

/2
S M~ T V(2m) PE,. cos |2w (Zm)l/z Ix Elfz (3-17)
- ? h o~

m Ly h

where Eo = Eo - BH. The net correction to M is the sum of {(3-16) and
(3-17). For E, >> BH, it is found that

Sm = 3+M £ & M

1/2__1/2
zv(zz?z :Eg in \:2'(2 )1/2 Lx Ez/ﬂ cin [ﬂq /2 Lx ;ml/z]
o Ly

(3-18)

In order of magnitude the amnlitude of this correction is

Lg

Although it would appear that this correction might become comparable

e



i3

to the non-oscillatory term (3~10) at sufficiently low fields and small
dimensions, it can be inferred that most likely the effect will be com-~
pletely negligible. This inference is based on the fact that the argument
of the first sine term in {(3-18) is so large. Suppose there were an
uncertainty of 5 1.; in the dimension Ly . How small must ) lx be

in order that the term

sin [Zw(Zm)z/z Iy Ei/‘z]

h
have a definite value? A simple answer to this question is to require

that the uncertainty § Ly should not change the phase of the term by

more than w/2. This criterion imposes the condition

h

Sie <
b 4(2m}}/z E‘,i/i

(3-:19)

In terms of numbers this requires
Si, £ 108 cm.

This severe restriction on the accuracy with which L, must be known is
enough to assure that for all laboratory specimens the correction (3-18)

will be negligible.

3.5 Summary

This treatment of spin paramagnetism by number theoretical
methods has shown that there are corrections to the non-oscillatory
term in M, but that from an experimental point of view these corrections
are negligible. The principal value of this work has been to introduce the
uge of number theory in solving a relatively simple problem. In one of
the following chapters we will deal with the effect of spin in a more

rigorous manner.



CHAPTER 4

DIAMAGNETI:M AND THE DE HAAS-VAN ALPHIN

EFFECT FOR A SPINLESS ELECTRON GAS

4. Content

In this chapter we consider magnetic properties other than the
gpin paramagnetism. The effect of spin will be merely to introduce
an additional degeneracy of two in the various energy levels. Number
theory concepts will be used to compute the iree energy and magnetic
moment, We will restrict this development to such magnetic field
strengths and dimensions of the container as to avoid, seemingly, the
need for considering the effect of surface states., The latter will be

treated in a later chapter.

4.2 Schrodinger Equation

The Hamiltonian function for an electron in a magnetic field is

H e 2 2 2 e 2 . )
mm | P e A oy oA et g %)] voo (el

‘-'
where A is the vector potential defined so that

—

—-
H = curl A (4-2)

In {4 -1) ¢ is the absolute value of the electronic charge. If the applied
—>
field H is along the z axis of our box containing the electrons, a

suitable vector potential is

—

A = (o, Hx, o) (¢-3)

The potential energy, U, is set equal to zero within the box so that the

SZchradinger equation is



2 2
i 2,2 =°A° 2en D e )
Zm [""‘ v o2 - o Ay bYs ‘P T tP (4-4)

This equation can be separated into two ordinary differential equations

if we assume a solution of the form

2uwingy

\]b = 4)(&) ‘g(z) e Ly {4-5)

Substituting (4-5) into (4-4) and introducing separation constaats gives

2

2 .
“ﬁ ‘d é x |4 hﬂﬁﬁ & Z IS '
2m dxz/ Yo Ly - E’AY} = £y (4-6)
and
2 2
-m° a®%
m 4 xz ”J? = EZ (4"7)

where £ = }'cl% + Ef.;z. The motion in the direction of the {field is clearly
that of a free particle so that we can immediately write the eigenvalues
as

2 2

B, = i"__’{izi_ (4-8)

2m 1.
H

if we assume periodic boundary conditions in the =z dimension. With
this assumption the quantum number n, takes on all positive and nega-
tive integer values {including zero).

We will now use the WKB approximation to solve for the eigenvalue
Eiil since this is the method which will be subsequently applied to estimate
the effect of surface states. However, in this cha pter we will restrict
our development to problems in which such surface effects are apparently
negligible. Eoguation (4-6) is the Schrodinger zguation of a one-

dimensional system with a classical Hamiltonian of the form
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2
=P Jj o= K -
H 2wy U 1 (4-9)
where
i hn e 2
IT = Y. - I A
v 2m ( Ly c 4 y )

Inserting the value of A given in (4-3) the classical turning points
& Y o

of the motion becomae

= ﬁ.ﬁ! ok ..f....._ 2 -
x 5T 5 Vlrawi {4-10)

(For symmetry it is convenient to set the origin of coordinates such
that the walls are at +Lx/2.) Using these turning points in the WKB

quantum condition

f 33xdx = (n+ 1/2)h (4-11)
leads to the eigenvalue relation

E, = 28H(n+ 1/2) (4-12)

These levels are recognized as the energy values of a simple harmonic
oscillator having a frequency of eH/2mmnc. Fromr (4-17) we see that
the equilibrium position of the oscillator (center of the orbit) is
chny/eHLY and the orbit radius is gﬁ. 2mE.. The eigenvalues
ziven by (4-12) are highly degenerate because of the multitude of o
values that can be assigned in the orbit center (ny takes on the same
range of values as nz). In fact the degeneracy will be fixed by the

maxirnum value that can be assigned to n, and still have the parabelic

4
potential determine the turning points. For \nv‘ greater than this

critical value (4-12) will no longer be applicable since one turning
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point will then be f{ixed at %l /2, where the potential is assumed to

be infinite. We will now obtain an explicit expression for this degeneracy
since this will clarify the approximations to be made. If we {ix the

value of £, the harmonic oscillater solution (4-12) will fail when the
condition U = Ei 1s satisiied simultaneously with the condition that

one of the turning points is at +L,/2. This leads to the restriction
< |2Hixty | by Some }
}ny\ < l S h i Er“u*i
on ny. The total degeneracyv of the level (4-12) is therefore

. - z -
f%kx. - ._.%ii.y ZmE, (4-13)
if ny is allowed to take on values outside of the above range we would
have to obtain a new expression for the eigenvalues. ! The states

resulting from this extension in ny are our so-called surface states.

At this point we follow Landau (Ref. 6) in specifying that for sufficiently
strong magnetic fields and/or large enough 1., we can neglect the
second term in (4-13) and designate the degeneracy, D, of the level
{(4-12) by

p = 2HIuly (4-14)

ch

This specification is equivalent to saying that the orbit radius corre-
sponding to energies of the order of the Fermi energy is small compared

to the dimeasion L. Vhen LIN i electron volt this requires

2eV 2l A~y

-
HL, -~

io

The quantuin number By can actually take on all integer values in
the range | n?\ £ \%ﬂ + }—“};X-i ZmE; |. In Chapter 7 we deal with

the complete range.
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This condition is satisfied even for relatively low fields if we use
macroscopic dimmensions.

Before proceeding with the calculation of the free energy, it
should be noted that in treating the magnetic susceptibility with a
classical model omission of the surface states under any circumstances
would lead to a huge diamaygnetism. z The guestion therefore arises
as to the legitimacy of our neglecting the surface states in the quantumn
mechanical case. At this stage we merely indicate that some compen-
sation was made for omitting the surface states when we increased the
degeneracy of the interior states from {4-1i3) to (4-i4). If this coin-
vensation happens to restore the effects of the neglected states then we
have justified the use of the increased degeneracy. Detailed calculations
given in a later chapter will show that the compensation is fortuitously
exact. But without such calculation it is not at all obvious that _.andau's
(Ref, 6) argument for neglecting the surface states is valid. An elabora-
tion of this point was believed to be in place here since there has appeared
in the literaturea a somewhat misleading qualitative physical explanation

to justify Landau's approximation.

4.3 Free Energy

Combining (4-8) and (4-12) gives

w2 o2
A e B 2RH(n + 1/2) {(4-15)

2m L.
z

This level is deyg enerate in the guantum number ny to the extent D given

in (4-14). Zqguations (4-15) and {(4-14) describe a parabolic cylinder in

For a complete account of this development see, for example,
J. H. Van Vieck, Theory of Electric and Magnetic Susceptibilities,
(Oxford University Press, !'932) p. 100,

See, for example, ¥F. Seitz, Modern Theory of Solids,
(McGraw-5ill, 1940) p. 585,
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gquanturmn number space. Our calculation of G(E) is therefore equivalent
to the problem of finding the number of lattice peints within sach a
cylinder bounded by the n = § plane., 3Gince the degeneracy is indepen-
dent of £ we need only consider the two-dimensional lattice point
problem in the n, n_ plane. iIn that plane (4-15) described a parabola
which is cut off by the line n = §. The particular number theory problem
of coraputing the lattice points under such a curve had not been considered
at the time this work was initiated. Dut following the work of Kendall
{(itef. 5) it is possible to obtain here an explicit representation for the
number of lattice points, A detailed account oi this calculation is given
below since the method employed inay be of value in other problems.
il.et us allow the parabela (4-15) in the n, a_ plane to be randomly
located but with its axis parallei to the n axis. Then we can write the

eqguation of the parabola as

£ = A, -0,)) ¢ Bla+1/2 - (4-16)
where

A = hz;’ZmLi

B = 28H

Now the numnber of lattice points under this parabola (cut off by the line
= O(l) will be periodic in di and 0(2 with a periodicity of a single
lattice spacing (unity) along either the n or n_ axes. We can therefore

represent G{E) as a doubly-periodic function in a Fourier series,
2uwiflkol: + AX )
HE) = D 2, Z O’l e wx(i + AX2) (£-:7)
Z—00 \z-00 {)A

The Fourier coefficients CL,(,A depend on the parameter E as well as
the factors A and B. Before proceeding with the determination of Ct,{,,\

we must examine the question of where the parabola should be cut off.
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In the final analysis we must zet O(l = 0<2 = O in order that the parabola
(4-16) be correctly oriented in accordance with the guantum mechanical
requirement {(4-15). FTurther, the lowest valuz of n i¢ supposed to be
zero. Howevar, by setting 0(}_ = & and leaving the cut-off of the para-
bola at n = ¢, the Fourier serizs will only count one-half of the states
along the nn = 2 line, This would be due to the large discontinuity
experienced by the number of lattice [oints as one slides the parabola
{along the n axis) co that the ¢nt-off pasces through an integer value of

n. The Fouricr series would then gzive the average of the two values on
either side of the discontinuvity., Since the discontinuity would correspond
to the number of ztates along n = 0 we would be undercounting the states
by one half the amount along that line. In order to avoid this difficulty
and still rnaintain the requirement D(i = 0(3 = 0, it is convenient to move
the cut-off from n = 8 to n = -1/2. This shift of the cut-off increases

the area enclosed by our closed curve but it does not change the number

of lattice points. The particular choice of n = -1/2 for the cut-off may

appear to be arbitrary at this stage since we could have chosen any value
in the range

-1 n <G

without changing the number of lattice points. ¥e shall see that the value
n = -1/2 simplifies the problem enormously.
Let G{EX) also be represented by the sum
G(E) = D 2 Cny, ~g» n+ 1/2 - X)) {(4-18)
NNy,
where C(u,v) is equal to unity or zero according as {u,v) does or does

not fall in the range

>
AvS + Bu L E, u>¢0 (4-19)

The summation in (4-18) is extended over all lattice points but only a

finite number of these contribute non-zero terms. From (4-17) and the



periodicities in O(z and 012 it follows that

Y
O S S G“‘“"’zﬁk) o~ 2m(1{ 1 lg) ao; 4o, (4-20)
[ O

if w2 now make the transformation

= n+ 1/2 - D(}
~21
NS (4-21)
and use (4-18) we get
Nzl n-i
(L'( \ = ? SC(u v) e ‘l{teztl('{uivkv)dudv
’ nnz nz n+.-
or
a,{ . = { S‘S ezti(.{unw} du dv (4-22)

Ave+BusE

Since 0(1 and 0(2 will both be set to zexo, and the cut-off will be at
n= -1/2, it follows from {4-21) that the limits of integration in the
u, v plane will be

u: from 0 to £/B

v: from {E/A)I/Z to (E/A}I/z
From (4-22) we have Q = {Q, K _R)*. al{- Az (a—r[.?a.)*’ and

O,K ) = (1'{ _y + SO that G(E) can be written as

(E) = nZ’a g o +2 %’ R(Q, )+ 2 ®(0_ )+ s 0 = '

‘ ):-00 - )\" y 'i,k'-' !
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{where R denotes ‘the real part of '), Utilizing the symmetry of our
boundary curve with respect to v it follows from (4-22) that

R (Q h) = (-1))i yy cos (Zmia} cos (2riv) du dv (4-24)
& sz+Bu$;E

The coefficient 2o which corresponds to the area of the closed curve,
s

ig found to be simply

~3/2
a_ = i%""‘i/z (4-25)
’ 3IBA

(This is the first advantage of having chosen n = -1/2 as the cut-off.)

The general coefficient R(a ) can be expressed as (for § * 0)

I(,k
R, - -0t 82y, (wn/al/Ze@®? (4-26)
where
_ 4wKE
. AmKE

(4-27)

i

b 4

2w ‘}E/A

and U3/2(w. y) is the 3/2 order Lommel function of two variables discussed
by Watson {(Ref. 11) in his Bessel function treatise. The Lomumel function

Uy (w,¥y) is a series (of the Neumann type) defined by

= V+2
LW o+
Bytmy) = 20 0T 3 (4-28)
mz=o
Details of the evaluation of R{a, in terms of Lommel functions are

e %)
given in Appendix I.
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From the results given above, G{E) is given explicitly by the

expression
4D ZDB {-1) ’7

G(E) = + . —————-—72— i (w,0) + 2D 2 2{Q
sa'/? A% E (2l{)3 2 e A= 0, )

1/2 22 K
. 4DB (-1) w )
+ W-;T %.‘:' Wa U3/2( +¥) (4-29)

The free energy can now be given formally by substituting {(4-29) into
(2-4). It is noted that by shifting the cut-off to n = -i/2 we have

changed E1, from SH to zero. This is very convenient in (2-4) since
‘(1) then becomes zero. In fact this is the second advantage of
choosing n = -1/2 instead of some other values for the cut-off. If we now

take into account the factor of two due to spin degeneracy we get

0
F - NEg = ;-—-ii 1/2 J\o 1&3/ 2 {E)dE
- 1 /2 o0 °°_ﬁ K
1%37’2.__ > %2-%372 Uy /{w: o) () dE
A w =\
0
(2.8 oo
4D D Rla, ,) (e)ex
)\zl (o]
oo
1/2 — K
f}%’%—- -Li).g 72 Us sp(wey) H(E)dE (4-30)

A 3 If,,\:l 0(2){)

Before continuing with the evaluation of this expression it is possible to
make some general statements concerning the nature of the result. The
first integral in (4-30) is one which occurs frequently in applications of

the Fermi~Dirac statistics., A detailed treatiment of the evaluation of
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such integrals is given by Brillouin (Ref, 2). The impertant thing to
note in this first term is that there is no explicit dependence on the
magnetic field. In fact we shall show that it is identically the term
which results from treating free electrons in 2 box in the absence of

a magnetic field. On the other hand, the double sum and the single
sum on K in {4-30) are very definitely a function of the magnetic field.
Further, from the oscillatory nature of the Lommel functions we can
suspect that these terms may give rise to periodic (in magnetic field
strength) fluctuations in the free energy. These general features will
also describe the bebavior of such properties as the heat capacity and
the magnetic moment. In the case of magnetic moment the oscillatory

terms can be plausibly identified with the experimentally observed d-v-e,
A. Non-oscillatory term (A = 0, ¥ = 0)

Using the results given by Brillouin (Ref, 2) for Fermi-Dirac
integrals at sufficiently low temperatures, the non-oscillatory term

(n.o.) is found to be

(F-NEJ) = —7 | ttE* 13_':';) (4-31)

- 16DE>/? l: 5 2 kT.%
15BA

The condition EQ >> kT must be fulfilled for (4-31) to be valid. Inserting

the values of D, B and A we can rewrite {(4-31) as

3/2..5/2 2
- - 16wV(2m)™ "E_ ., 5 2 kT
(}? - N Mo)n. o. 3 [1 b -é" ‘H’Z (?C:;) (4*33)

15 h

where V = Lx Ly Lz.
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B. Gscillatory terms,
in general, the integrals appearing within the summations
of (4-30) can not be evaluated in closed form. "We shall now treat the
summations individually since certain of the terms will not be of
importance in determining the magnetic moment,
1. Terms with I{ = §, X\ & 0.
Using the series representation of the Lommel function

it can be shown that

E3/4A§/4

N
‘11_5;1’(!;1 ':';-%'573 US/E(W-Y) = W 33/2(‘73 (4-33)

This expression corresponds to the value

E3/4A1/4
R(SQ.}) = W Js/z(Y) (4-34)

*

for the Fourier coefficients a, - It can also be shown by direct inte~
' ¥

gration of (4-24) that this is the correct value of R(aa . ). Details of

o M

such a calculation are given in Appendix II.

Thus ¥ = 0 gives rise to the infinity of terms

&
- /\Zﬂ .WL; { : £4~_. 1, /Z(—Ts-z’“‘ YZmE) £f(E) dE

“ (4-35)

in the value of (F - NE_,). Since none of these terms contain the
magnetic field explicitly there will be no need to carry out the integration
in (4-35) if we restrict our attention to the evaluation of the magnetic

morment.
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2. Terms with § # 0.
The terms with ¥ & 0 in the sums of {(4-390) are all depen-
dent on the magneatic field. In order to evaluate the magnetic moment

we will need to transform these intecgrals. TIntegrating by parts gives

0 (o ]
£U3 /z(w.y) f{£)4E = [f(}:«:} J‘Us /2(%3’) dzz:] —
o
o0 (4-36)
f [—-—-——-—nﬂg ) j‘Us /z(w, ¥) d?é”‘} dg
o
But it is shown in Appendix III that

Since US/Z(O, o) = 0, the integrated part of (4-36) vanishes and we are
left with

LUS/Z(W,'}?)&E = .2-..- J‘ 5/?(;?,3') df(I;) aE {4-38)

With this transformation the remaining terms in (4~30) becc.ne (in terms

of our physical quantities)

1/2 _3/2_5/2

[o ) '{ fo'e)
2vVe(zm)/%p*/%n (~1% j“ JHE) 4o
= h"C :f2=‘:" i o 5/3(‘” ¥ TaE

r4v e (2m)'/23/245/2 5 (-s;"ﬁ. fm )
(w,y) —3u— 4E
w2 B C K3z (X) 0 Us/2

{4-39)
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For convenience in discussing the rmagnetic moment, the total expression

for (F - NEG) is given below

—_ 16rV{Zm)3/2E205/3

15 h3

-Z‘Lx(

F - NE
O

4
5 2 kT
trer (E)

3/2
2m) J.' 3/4 3/2( ZehLlgy m) {E)AE

1/253/2

ZT f)'fzv (sz

5/2 N .
7.7 = j‘ Ug fa(™ ”‘"“"‘dgg')' aE
w C K 0

(4-40)

: )1 for =90
where Tx"{z for N+ 0 °

4.4 Magnetic Moment

The magnetic moment is obtained by substituting (4-40) into (2-9)
and carrying out the indicated differentiation. Since the integrated term
and the single sum on % in {4-40) do not contain H explicitly, they do not
contribute anything to the magnetic moment. Differentiating the double

sum gives

i 1/2 3/2 oo
M“"’ZT (~1) ZVe%Z*n) _g 3/2J‘ S/z(w.y)df(za)d}:
= n°c ngz
A=C

1/2 A00
" Lﬁs/z(w' ) e

. ﬁ:xﬁ;szas/ 2 J‘ (w.y af( m.)
KA 7/2 4

{(4-41)
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The last two integrals in {4-4i) arise from the relation

pA
) . - WKE wh B »
3 Uﬁ/ziw- y) = ‘;;I‘f— 753/2(’@' y) - W E?/Z(W-Y) (4-42)

The proof of this identity is given in Appendix IV, Eguation {4-4!) is an
exact represeniation of the magnetic moment. But in order te obtain an
answer in integrated form we have to impose some restriction on the
relative magnitudes of E and $H. In addition, we will limit ourselves

te the low temperature region.

Case I: E, >> gH

The first case we consider is for
By >> BRH (4-43)

This requirement will allow us to use the asymptotic expansion of the
Lommel function Uy (w,y).
1. Terms with X = 0.

For purposes of later discussion it is now again convenient to
break up the sum of (4-41) into two parts, i.e, > = D and X ¥ O,

o

For L = U we have the asymiptotic expansion

O
+ i y® Z' (-1)F
U, (w,o)~cos (5w - ) + e
Y & 2 p=e (v -1- Zp){%w)thy He

{(4-44)
for | wl large. In our case (4-43) exprescec the condition | w I
large. Cince the series in (4-44) is rapidly convergent we nesd only

retaie the first teron of the sum., Thus we have

2-Y
A K E ZakE  y=w B L4t
I}y( 5 o)~ cos { = = ) + S {4-45)

[T¢»- 1) (aaﬁﬁ;}‘?"



This gives rise to the sum

_ Z (- 1)‘iav (2m lfzﬁs/z 5 4 3/2 r;g (___5__

o

2 Zalc WE/Z 3
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&ﬁmJ

I 9F

1/2 S\ 1/2 &f(,m) dE

ch Ezng 3:: df(b)wé;

(4-46)

in the value of M. The second integral of {4-46) is a standard type

Fermi-Dirac integral. At low temperatures we have

f‘ /2 ai(E) / ¢ ¢
1/2 alE) ,.. _ _1/2 ° kT
BT ogg 4k = - Ey {1“2?(5.:;’

(o]

so that this part of the sum becomes

v h C

/2. .1/2 2 2] =, X
+3Ve{g§x_g§ pHEL { kT Z(-l)

1-2—.(“0 )i:l lYZ

But since
(o8]
Syt L - o
bi:! |i - ﬁ
(4-48) becomes

- 2Ve(2m) / 1/2 «% kT 2
5— - sz(z)
3nh C e

This part of the magnetic mornent is not periodic in H,

(4-47)

(4-48)

(4-49)

(4-50)

In fact it is



identically the ordinary Landau (Ref. 6) diamagnetism with the correction
due to temperature, The result obtained here agrees with the previous
work of Stener (Ref. i0), who investigated the temperature dependence
of the Landau ctiﬁ.a:rnmgm&:*!::‘v.z;rm..4

The two other integrals of (4-46) give terms in M which are

periodic functions of the magnetic field. Their contribution to if is

Z( y2ve(ze )1/263/% [ setiur’/? cos (BAEe - 31
1: h C l(m 1/2

2 sinh (w2 ngﬁ"—!)

2 1/2 . ,wmxE 3w
- =“kTH mn(~%§;~ =)
Fal 3 2 ¥
B sinh (w© x e )

+ ot X (k’i‘) cosh(wviﬁ—ﬁ)s (—%:9 ~----)

;32 Hi/z sinh (v |i§;§;§-)
- ,3K3 kT £, cos (f—g;—g— - -3{-)

(4-51)

Details of the evaluation of the first and third integrals in (4-46) are

ziven in Appendix V. If we invoke our conditions

It is noted that Stoner expresses his results in terms of €
the Fermi energy at T = 0°K and H = 0, whereas the Eo used in the
present work is a function of T and H. E, can be expressedas a
function of €, T, H to bring the two results into coincidence.
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08

P kT
and By >> BH

we can neglect the first three terms appearing in the brackets of (4-51)
compared to the fourth., The significant contribution to M from the
terms with )\ = O therefore becomes (using the definition of 3, the Bohr

magneton, to transform the non-periodic term)

-— :;awV{Zm)s/zﬁziaé/zﬂ 1- tz (E_}: )2
24 'E

3
*h (4-52)
. Z’o (-t ZwkTV’e{Zm)l/z Ey cos (tﬁj" - %‘i)
=1 ‘i}/z——-;z C ﬁl/i—Hlﬁ sinh (w?igg )

2. Terms with A 0.

Before obtaining the contribution from the terms with A 3 0§ we must
examine the relative magnitudes of y and w appearing in the argument of
the Lommel functions. For A # 0 we find that y~ & when £ = £ and
H > 10 gauss (if L, is of order cm). Therefore if we require |w| >> 1 in
our asymptotic solution we must simultaneously require |yl >> 1. This
situation arises from the physical parameters which determine the argument
of the Lommel functions. Unfortunately, it also means that we cannot use
{(without caution) the asymptotic development for U, (w,y) given by Watson
{Ref. 11i), in which only lwl>> 1.

‘When both |yl >> 1 and |w|>>1 we can use the method of critical
points (see Appendix VI) to get the asymptotic development of U, (w, y).

The result is dependent upon whether y é w. The three expansions for

LS/Z(V. y) are given below.
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L 1/2 3/2
3w 2 w cos ¥
cos (3 + ;—s;u ) ) mrTy e YW
1 * cos W -
Ussa{wev)o 3 cosfw-3) + S372_17Z_172° iEw
2 1/2 w / cos y
(;;) P ¥ > w
(w* - y%)

(4-53)

The singular case of y = w is not of great physical significance since it
only occurs at a specific value of H, We are more concerned with the
cases y § w since there H can take on continuous values. Before
proceeding to the moments resulting from X\ 3+ 0 we note that y< w

requires that (for £ = Eg)

K hEl/z

(4-54
Lg{(2m) /Zﬁﬁ )

<L

After carrying out the calculations to get the magnetic moment,
it is found that only those terms arising from the condition vy < w are

significant. The specific contribution to M from these terms is

(\
{-l)"éwkTVe(Zm)i/zﬁl/zHS/z % mL ﬁw.‘«,)
2
.i:}fL(H,A)% cos (TiZa 2en’mpLin _ 3= >
>< pH ‘ ,ihi 4
L sinh {n'z l( kT )
(4-55)
where {; (H,2) is the integral part of
A Ly (2m) 1/2 B H
n et /2
u&--"a
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3. Discussion of Magnetic Moment,

For the case Eg >> $H the magnetic moment is the sum of (4-52)
and (4-55). We have already discussed the non-periodic term. The
re: aining terms are all pericdic functions of H. We shall separate the
discussion of the single sum in (4-52) and the double sum in (4-55). But
we identify the totality of these terms with the experimentally observed
d-v-e,

Consider now the single sum on ¥ . If we express our result in
terms of the magnetization, »/V, then both the amplitudes and fre-
quencies of all the terms in this sum are independent of the dimensions
of the box., These terms are identically those found by Landau (Ref. 9)
in his theory of the d-v-e., Before going on to the other terms it must
be reemphasized that the results given here are subject to the conditions
Eg > kT, 5 >> gH. There is no condition on the magnitude of kT
relative to BH., The physical significance of these conditions will be
discussed later in this chapter,

We now examine the double sum in (4-55). The fundamental
difference between these terms and those of the single sum is that the
amplitudes and frequencies are now functions of the dimension Lz. By
invoking an argument similar to that used in Chapter 3 we shall show
that the contribution of the double sum can be neglected. Suppose there
is an uncertainty 1., in the dimension Lz, Then in order for the
cosine term to have a definite value {when H is fixed) we require that

S Ly should not change the phase by more than w/2. This leads to the

condition

X _n°
822 mp L H

SL, < (4-56)

If we set » = 1 and K equal to the lowest possible value compatible
with (4-54) this becomes
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1/2
2
Sia < Sy (4-57)
ﬁ:’o

8m

Using the {ree electron value for m and £ as 1 ev this requires

SLg < 3x }9'8 cm

This severe restriction on the uncertainty in L, cannot be met in a
laboratory specimen, Therefore the cosine term in the double sum
will average to very nearly zero. The next question to answer is
"what happens to JLy when K becomes very large?  Certainly as

i{ grows the restriction on SLj becomes less severe. In fact the
above argument fails completely when >>\. Under such circumstances
we have another factor which will nullify the significance of the double
sum, It is the damping factor

kT

2
l/sinh(wli:gﬁ,

For { large the damping factor will rmake the amplitude of the oscillation
negligible,

As a result of this analysis we can completely negleét the double
sum given by (4-55). This is equivalent to saying that the “Landau’
counting of states leads to no significant size effect in the magnetic
moment.

We now consider the feasibility of experimentally observing the
magnetic moment, Since the discussion above has indicated that the

double sum can be neglected we are left with
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A
_ 4av(zm)?/2s2e} 2y 2 (k'r)
M 3 ° - Layg-e:
3h
v KE
(" )izu’k'?Va(Zm)}/z cos { “%ﬁ& - =T )

¥ 1 /2"‘“.’5. /2"‘ 1/2
li: { i

sinh ( "z’zli g)
(4-58)

At sufficizntly low temperatures the non-periodic (n.p.) term will be

) ~ -10"%H {(4-59)

n. p.
if Eg ~~ 1 electron volt.

In order to examine the periodic terms we need to specify the
relative magnitude of kT toe BH. Consider first the case where kT > BH.
Then because of the damping factor

kT
8

. 2
1 / sinh (w'K
the amplitude of the second term in the sum will be less than 1&*4 timnes
the first term. Therefore we need only consider the H = 1 term in the
sum. It then follows that
[z

\___‘ N'r(zs (4-60)

Now we can compare the non-periodic and periodic terms as a function
of temperature and field strength. Let us first take T = 4. 2°K (normal
boiling point of helium). Then for H = 103 gauss

\E‘g.l ~ 1073
n. p.
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while

n}-ZSB

<=
2N

The periodic term would be completely negligible, At T = 1°K and
H=1.5x 2&4 gauss

lM \ -2
v n. P.
while
t;‘:&‘ < 10
m‘

Although the periodic term is again the smaller one it is apparent that

at still lower temperaturcs there may be an inversion in the relative
1
magnitudes. In fact going to the T_I_?Q o We get from (4-58)

lim (-éi) = _4‘(2m)3/a§2E;/2H + Ze(Zm)l/zEgﬁifzﬁl/a
Z
TR 3h§ sh” C
(4-61)
o0
(-1 cos (%{%ﬂ - ?;:;f_
I‘: | K‘m

In this limit we have

M -
I"V—;, ~ 1D 611

n. p.

while for the first term of the sum



So for H € 165 gauss {limit of fields available in the laboratoery) the
amplitude of the periodic term will be greater than the non-periodic

terrn.

The analysis given above applied to a free electrom gas. However,

since the alkali metal properties are described gquite nicely by the free
electron model these results can be used to indicate the conditions that
may be needed to detect the d-v-e in a metal such as sodium. To
minimize the effect of the strong damping term we can say quite
generally that one would need very low temperatures and very high
magnetic fields. Specifically, the theory suggests that for T < I1°K
and H > 10% gauss the d-v-e might be observed in sodium. Although
such conditions are available in a number of cryogenic laboratories,

the particular experiment with sodium has not yet been performed. 5

Case 1I, Eo PH.

For strong fields SH approaches the order of magnitude of E,,.
In this range of fields the magnetic moment given by (4-41) cannot be
expressed in closed form. Numerical integration could be used to
obtain M as a function of H.

We can, however, consider a particular set of conditions which
will give a closed form for M, To simplify matters let us examine
the magnetic moment of our system at the absolute zero of temperature

for field strengths so high that

BH £ &, < 3pH (4-62)

The result we obtain here can then be compared to the magnetic moment

5 The author has recently learned that D. Shoenberg of the Royal
Society Mond iLaboratory, Cambridge, is currently designing apparatus
for the possible detection of the de Haas~van Alphen effect in sodium.
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given by (4-61) for lower field strengths, We have chosen the condition
{4-62) so that the quantum number n can then only take on the value
zero (from a discrete point of view). It then follows from (4~15) that

E = —2% + pH (4-63)

and that this level is still degenerate to the extent given by (4-14).
Our number theory problem is now simplified to one dimension, In

fact from (4-63) and (4-14) it follows immediately that

2Ve(2m) 1/ 2h

1/2 '
(E) (& - pr)/ (4-64)°
h C
Since we assume T =z 0°K (2-4) becomes
E,
1/2 ©
F-NE = ZVe(%m) H ‘S\ (£ - sm)i/ 2 4 (4-65)
‘ h C pH

Carrying out the integration gives {accounting for the spin degeneracy of

two)

; 1/2
o = —3V_§%Zm) H (c, _ﬁms/z (4-66)

3 C

This leads to a magnetic moment

8ve(zm)'/?

(£ - pm)l/? (Eo - 2 pH (4-67)
3% ¢ ° ° -z )

M

6 There is actually an uncertainty of = ZeHI.é in G(EX) as

expressed by (4-64). But the effect of this uncertainty on the magnetic
moment is negligible.
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We can put (4-67) into a more useful form by noting from (4-66) and
{2-8) that

4Ve(2m)i / y (Eg - ﬁﬂ‘)i/a (4-68)
" C

N

Solving this for E, as a function of H gives
2 2

4 NR"C
E. = BH + {(4-69)
° (we(zm) 1724

With (4-68) and (4-69) we can express M as

NS hé CB
3

2 2

= (4-70)
48V 7e mH

M = «-8N +

It then follows that for very high fields M approaches the saturation
value -BN. This result is in agreement with the work of Peierls (Ref.
8). It is noted that at such high fields the oscillatory character of M
{as expressed by (4-61)) disappears.



CHAPTER 5

EFFECT OF SPIN ON THE MAGNETIC MOMENT
OF AN ELECTRON GAS

5.1 Content

In Chapter 4 we accounted for the electron spin by mercly intro-
ducing a degeneracy of two in the Fermi summations, Actually the
spin will alter the eigenvalues, so that we now counsider how this
affects the magnetic moment. Number theory methods will be used

for this calculation,

5.2 Eigenvahxes

If we assume that the total wave function is separable into a
product of a spin function and a spatial coordinate function, then the

. i
eigenvalues of our electron become

E = Ani + B{n+ 1/2) &?‘% {5-1)

This level is still degenerate fo the extent D given in (4-14).

5.3 Distribution Function G(E)

Our function G(E} must now be written as
HE) = G(E) + G_(E) (5-2)

where the ¥ subscripts refer to the eigenvalues obtained from (5-1) with

B
'y re spectively.

We assume all the conditions that exist in Chapter 4 except that
now we include the spin energy.
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1. G.(£)

: . B,
The eigenvalue relation for - 5 is

E = A ni + Bn {5-3)

We now proceed to find G_{£) by the number theory method described
in Chapter 4, The essential difference is that we shall leave the cut-off
of this parabola at n = §. It then follows from our previous discussion
in Chapter 4 that the Fourier series will only count one-half the points
along the cut-off. This is objectionable since the energies along this
line correspond to n = , and so they will c:ertain};y'?’ be filled states.
But our computation of G {E) will show how to overcome this under-
counting of the number of states.

From this point on the calculation is similar to the previous one

and leads to the result

3/2 Tkﬁx/zU AW, ¥)
G_(E) = 6 + D 3/2
- A/t %; at/ (Zlf)mw
-t 3/4 1/4

+ 2 Z W 33/2(?’) (5-4)

where 6_ is equal to one-half the number of points along the cut-off

n = 0, and the remaining symbols have the same meaning as before.

The eigenvalue relation for + v is
2
L = Ang + B{n+ 1) (5-5)

To compute Gu(E) we move the cut-off of this parabola from n = § to

2 Rather than with a probability of 1/2 as our counting would
indicate.
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n= -1, Then the Fourier series will give a result which is greater
than the correct number by exactly one-half the number of states along
the cut-off n = -1,

It then follows from the calculations that

G(e) = -E, + a(m) - € (5-6)

“p

where 8 + is equal to one-half the number of points along the cut-off
n= =i,
But from {5-3) and (5-5) it follows that the length of the cut-off

0 for the G_(E) parabola is exactly equal to the length of the cut-off

H

n = -} for the G,(E) parabola. This immediately leads to the conclusion
E. - 8«l— (5-7)

It is this fortuitous equality which allows us to compute the effect of
spin by number theory. It is also noted that for both G _(E) and G, (&)
the lowest energy level is set at zero by our choice of cut-offs. This
allows us to add G_(E) and G,(E) for the entire range of energies.

From the relations found above we get

-~3/2 o0 TkﬁifoS/z(w.y) = 3/ 41 /% 5.,
\ - i ' ¥)
oE) = D e 172 + 4] 2G0T, * 4; B 3/2

K=
):O
(5-8)

This G{E) differs from the one in Chapter 4 {4-24) by a factor of two
and the absence of the alternating sign (-1)\ .
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5.4 Magmeﬁc Moment

If we again restrict the magnetic field such that £, >> 3H, the

magnetic moment resulting from (5-8) becomes

3/2,2,1/2 2 pr.?
M = 8aV(2m 3;3 ES H (1 . i‘f{‘""") >

(5-9)

K122 1725072 (w2 gﬁm )

E. 2wk T Ve(2m) 1/2 E, cos (Ege--}%’ - %)

li:::
The non-periodic term is now paramagnetic. It is numerically zqual
te the algebraic sum of the Pauli spin paramagnetism and the Landau
diamagnetism. The periodic parts differ from the spinless case by
having a phase difference of #w for terms with ¥ odd. At finite tempera~
tures we have shown that only the term K = 1 is of importance, therefore
the result obtained here will differ from the spinless case by the phase
change 2w,

Finally we consider the case of very strong fields at T = 0°K,

By restricting the Fermi energy to the limits

0 < E, < 28H {(5-10)
we get
. i/2_ _1/2
G_(E) BVe(ZxZA) HE
h™ C
(5-11)
G,(E)

It then follows from (2-4) that

- 4V e (2m)! /2 £3/2

3n?c

F-NE (5-12)
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This gives a magnetic moment

4Ve(2m) 1/ zmg/ z
3n’c

M (5-13)

In order to show the explicit dependence of M on H we must obtain E,
as a function of H. This is readily accomplished from the normalizing
condition (2-2). It leads to

2 2
- Nh C .
By = | — (5-14)
(ZVe(Zm) 1/ H

Now M can be expressed as

3.4 .2
M= N B C {5-15)

24ve e2 ;m 3

For very high fields M approaches the value zero,



CHAPTER 6

SIZE EFFECTS DUE TO A FPINITE CONTAINER
(SPINLESS ELECTRONS)

6.1 Content

The rasults obtained in previous chapters were all dependent on
the use of an eigenvalue degeneracy given by (4-14). In Chapter 4 we

indicated that there is no a priori reason for believing that this degeneracy

takes proper account of the surface states in a finite container., The
present chapter is concerned with an examination of this question in light

of the WKD approximation and number theoretical methods.

6.2 Distribution Function G(E)

The method we shall follow here is different from that used in the
earlier chapters. Previcusly we utilized an eigenvalue relation with an
assumed degeneracy to compute G{E). To find the effect of the surface
states using such a method would first require an appropriate cigenvalue
relation. Although it is possibie to accompiish this via the WKB approxi-
mation, the resulting expression does not give the energy as an explicit
function of the three quantum numberé. Because of this difficulty it is
easier to leave the gquantum number n in phase integral form and exprzss
G(E) as a triply periodic Fourier series in the quantumn numbers., We
shall show that such a procedure will allow us to draw certain general
conclusions about the magnetic moment of an electron gas in a finite
container.

We start with the WKB guantum condition for the motion in the x

direction

fpdx = {n+ 1/2)h {6-1)



if we suppose ®y and X, are the classical turning points for a given

orbit with energy El we have

*2
2 H
n o= = pdx - 3 (6-2)
%1
where for our probl&ml
2 2
£ = 282 o
2mL.,
h eHx 2
p = ,/2mE, - (= . =X (6-3)

Cur number theory problem is now to count the lattice points within or
on the energy surface £ ia the three dimensional quantum number space.
No assumption is rnade about a degeneracy. If the counting is done
properly all questions of degeneracy will be automatically answered.

Let G(E) be represented by a triply periodic Fourier series

o(B) = %’;’ Z aﬂ,h'%ezﬂ“‘dl’”dz““"‘ﬂ (6-4)
where 041,013,0(3 correspond to translations along the n, n . 0, axes
respectively. In order to avoid a discontinuity in G{X) when 0(1.052.0(3
are all set to zero we must move thée lower limit of n from ¢ to ~1/2.
This is done to count all the states in then,, n plane. Leaving the

cut-off plane of the surface at n = 0 would result in countiag only one-half

the states in the n_, ny plane.

See Chapter 4 for details, The notation here follows that used
previously.
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Following the method in Chapter 4 we find that

oE) = A, Z%R(al(.o.o) zgma o)
> > >
+ 20 Ra ) o+ -Szf{(a ) + 40 Ra, . )
ey By Oy i Ko p=t Ho A i ﬂ%’:I Ko 2o
v 40 Rla, )+ 40 Ra 2
/\}th ’ y) ’(' KD ol

wheres

R(ali’k'}l) = (-i)ﬂ S\fgcos(Zuqn) cos(z‘xhny) cas(?.mnz) dndny dn, (6-5)
J(p
and the integration is over the volume 7(p) throughout which p is a real
number. z This volume will include both the harmonic oscillator states
of Chapter 4 and our surface states. Consider first the principal
coefficient a Lo, which corresponds to ths volume of our energy surface.
This coefficient will be, by far, the largest term in the expansion of

C{®). The other terms will represent the number theorv correction to

the replacement of a sum by an integral.

i. The a Term:
I3 O. 0

From (6-5) we have

3 o0 = R(ao.a. S‘S‘g dndn da_ {6-6)

5(p)
Integrating first over n, using the upper limit v pdx and the lower
' X

limit zero gives !

2
2, 0.0 - & X\S‘Y pdxdnycinx {6-7)

7(p)

2 The lower limit for the n appearing in (6-5) is zero. This

results from the shift in cut-off as explained in Chapter 4.
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where 7 ,(p) is the volume in x, ny, n_ space throughout which p is
real. It is now more convenient to integrate over ny first. The
limits on ny are determined by the condition p = 0. This gives the

upper {(u) and lower (1) limits
- eﬁéix s :
(2y), e % ZmE,

(ny)l = M - %\) szI

o

(6-8)

The limits on x are determined by the extreme values of the classical
turning peoints. By assuming an infinite potential at the walls of the

hox these limits become
(x) = =¥ (6-9)

L
() = -3¢

Finally, the limits on n_ are obtained directly from (6-3) with £, set

to zero. This gives

(mm}u = %ﬁ;}:&
(nz)l = - L‘Eﬁ- V 2mi

Having thus defined 7 '(p) we carry out the integration of (6-7) in the

(6-10)

order ay. Xy B_. This gives

4:v{z§gg)3/3

Y A 3h3

(6-11)

which is exactly the number of states for free electrons in a box without



s
A&

a magnetic field. In fact, (6-11) is identical to the result obtained in
Chapter 4 when we modified the degeneracy to eliminate (hopefully)
the need for calculating the effect of surface states. To this extent
the calculation given here is a justification of Landau’s argument.
From a physical point of view our calculation shows that Landau's
overcounting of the harmonic oscillator states exactly compensates

his neglecting the surface states.

2. The a Terms:
‘i. 0’ ‘0

Although the two methods of counting give the same total volume
term it is evident that the corrections will be different., The question
that remains is how much of a change in the correction terms is
brought about by the surface states? Qualitatively, the energy
surface will approach that of Chapter 4 as H becomes large since
the harmonic oscillator states then comprise the greatest part of the
volume, Under such conditions it seems plausible to say that G{i&)
would be given by (4-29) plus higher order corrections. This con-
clusion could be made still more plauvsible by allowing the dimension
Lx to be large. However, the situation for low fields and finite Lx
does not offer any obhvious conclusions. Under such conditions the

effect of the surface states is emphasized.

From the results given in Chapter 4 we know that to compute
the magnetic moment we need only consider those correction terms
in which the frequency of the oscillatory part is not a function of the
dimensioans of the box. In the present Fourier expansion this

corresponds to using only the terms Ra Our immediate task

Ks O o}'
is therefore to calculate those coefficients. It seems plausible that
the results of Chapter 4 should be identifiable in such a calculation.

In this sense we have some control on the validity of the analysis.



From (6-5) we have

R(a‘. o, s) = («-1)K ggS cos {Zwyn) dn dng dn (6-12)
5P

Integrating first over n, and inserting the limits, gives

R (-ul) 41:){ \j‘\"z 6
R aK’ o, 0) Zw g sin pdx) dnydn, (6-13)

Now we break the integral into two parts, corresnponding to the oscillator

states and the surface states. The division is determined by the value of

ny. In Chapter 4 we found that for

Il £ |y - e

we had oscillator states, but for

|ty Lyyzmig)| ¢ |ay) 2

we got surface states. For the oscillator states the turning points

eBrxly . Ly \zmr,

2hi h

X}, X%, are given by the equations

= E—% - -E. K,

®q eHLy <H ZmkEy
hC C

xz = Eﬁ%ﬁ; v gy imE

For the surface states we have (the subscript s denotes surface)

_}3;{_:'_3_51 - —E me}_
i, 5 eri.uy eH

N
i

]
#
'3
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Thus (6-13) can be written as

-I-;-?’Zmﬁ

eHL. —~ 3
D ( R - A
x2
sm(i‘%i S\ pdx) dn
b
x1
Dy=0
l( Y
R(a - 4(-1)
TV Ke 00 ™I <
) eHIlxL. 3 - ?
| SR JNEmE,
4 "z,s
+ sin(-—-g—"- J\ pdx) dn
3 ¥y
i, s
eHL. i =
| SRR - PfemE, )
o .
(6-14)°

If we now impose the restriction £, S>> pBH, it is possible to obtain

the asymptotic value of .“ﬁ(aK o)' The evaluation of (6-14) is dependent

2 Oy
on the use of the Method of Critical Points recently introduced by van der

Corput (Ref. 3). With a plausible interpretation of this method it is found
that

-0'08'%u_, (w.o) (1L L (2m)z!/2p'/?

~ 3/2 ) Y =z cos (¥ - 33_)
Ks ©s© AI/zw(Zq)m « zl/i‘iZ?Z hi F

+ (-1) LYLzsz"/?’az/:‘ p(s/3) P (11/12) 173 3776

he ¥ 573

P(r7/12) 4§7§

(6-15)

3 The factor of 4 appearing in (6-14) results from using the

symmetry properties of the integral with respect to ny and ng to change
the limits appropriately.
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The symbols in (6-15) have the same valucs as in Chapter 4.
Details on the use of the method of critical points for the evaluation

of {6~-14) are given in Appendix VI,

6.3 Ma:éxxetic Moment

With the re stric:tion4 Eg >> SH the magnetic moment resulting

from R{a )} is
li’ T G
2
. - anv(2m)/2p2pl/ 2y w’ KT
3h t e

2 (-If‘ZwkTVe(Zm)I/Z Eo cos (&'EEP- é—’i)
YE

+ —
Z ,‘1/2";2' C gﬁ272 Hz/f sinh (w2 K LX kT

= 3a !
Z°'i, ('-1)'121':&’1‘1;?1.53(2111) Eg/z cos (1%—% - %—“—)
= KI/E—E pl/2 172 oion (=% g_g)
2
LyLeaeyeg%e? 0 - G 8 > r@ ey =257 @3
ne 'l 73 . ?75 B (%

{6-16)

where % {(5/3) is the Riemann Zeta-Function of argument 5/3. The first
and second terms of (6-16) give exactly the result obtained in Chapter 4.

4 The condition E, >> S8H imposes an upper bound on the magnetic
field strength., However, it must be emphasized that the result given by
(6-16) is also dependent on H having a lower bound. Our use of the WKB
approximation has not considered states which have turning points deter-

mined by the infinite potentials at both walls {(+L./2) simultaneously. This

imposes the restriction that H > 2CY2r mEg/ely for the applicability of
(6-16).
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This identification serves to confirm ocur conjecture that the size effects
might appear as 8 correction to the previous results. The third and
fourth terms of {6-16) give the effect of the finite size of the box. It is
seen that both the oscillatory and non-oscillatory parts of the moment
are affected by size,

The two oscillatory parts of (6-16) become of the saine order of
magnitude when

H = I-ic ~ Ece;x-——-—m (6-17)
(where H. denotes the critical field strength). This is exactly the field
condition below which our solution fails, An extension of these calcu-
lations to fields below H_, might reveal some interesting features in the
size dependence of the magnetic moment.

The additional non-oscillatory correction is noteworthy since it
varies as H~}/3. It is a diamagnetic effect which {for specimen dimen-
sions of the order of cm) is comparable to the Landau diamagnetism at
fields below a thousand gauss. Further discussion of this term will be
delayed until after we have considered the effect of eleciron spin in
Chapter 7.

6.4 Summary

We have shown here that a finite container does introduce size
effects in the magnetic moment of a spinless eclectron gas., The size
effect of the d-v-e becomes comparable to the result found in Chapter
4 for low fields and specimens of small dimensions, There is also a
size effect in the non-oscillatory part of the magnetic moment, but

details of its behavior will be postponed until the next chapter.



CHAPTER 7

SIZE EFFECTS DUE TO A FINITE CONTAINER

(ELECTRONS WITH SPIN)

7.1 Content

In this chapter we complete the calculation by considering the

effect of both the electron spin and a finite container.

7.2 Eigen\mlmes
Assuming that the total wave function is separable into a product
of a spin function and a spatial coordinate function, we can write the

electronic eigenvalues as

E = An. + E, *pH (7-1)

7.3 Distribution Function G(E)

The function G{E} must now be written as

G(2) = G, (E) + G _(E) (7-2)

where the ¥ subscripts refer to the eigenvalues obtained from (7-1)

with 7 BH respectively.

1. G, (E).

If we move the cut-off plane ton = -1/2 {just as for the spinless
case in Chapter 6) we get identically the number theory problem con-
sidered in Chapter 6 with E replaced by (E + $H). By designating the
spinless distribution function as Gn a.(E}' wea can write

G, (E) = G_ _ (E+pH) (7-3)
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where G_ . {E) is given by (6-5). It must be noted that the minimum

-

value of £ for which {7-3) holds is -£H. In other words, G (-8H) = 0.

2. G.(E).

Following the above reasoning we can write

i

G () = G_ _ (E-gH) (7-4)

n. s,

if we move the cut-off againton = ~-1/2. In {7-4) the minimum value

of E is BH since G _(BH) = 0.

7.4 Free Energ__y

The iree energy for this case is given by

oo co
(F - NEg) = - ( §G+(E)f(£)&§; + jcjz)ﬂx)ax) (7-5)
-8H gH

We transform the first integral by the substitution
E+pH = &

and the second integral by the substitution
E-fH = &£~

This gives

o0 [ o]
(F-NE) = - ( fG%(a.?‘g‘SH)f( et pmyact 4 §G~(a'+gn)f(a‘+§ﬂ)da“>
© [+ ]

(7-6)
However, from {7-3) and (7-4) we have

+ +



o

G(c +pm) = G (&)

so that we can write

ol 0
(F-NE) = - ( f G, (e’ pmac’ 4 fem L & rpsnac)
L L

(7-7)

In (7-7) there is no need to distinguish between et and £ since they
are both integration variables. By setting '

8* = & =&

we have finxlly

oo ©0
(F-NE) = - ( ,YG;. Jeme -pmac + fﬁm ,_(amamn)ga)

o o

(1-8)

If we again restrict our interest to the terms %, 0.0 and R{&m a,o)
inG _ {E), the asymptotic value {when E >> pH) of (7-8) is found
to be
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2

3

. 3/zj‘ < 2
| - 2 .
(F-NZ ) = 3"";’(5:’) (EG+:§3H)5/ ?‘l:; 2‘;'...(3‘ %H)} (“‘o-ﬁﬁ)w é “"‘%"‘E‘Eﬁ%ﬁ’

2 2

2
p2pd) /2l S kT e /2|, =%, kT
(La"'ﬁﬂ) 1-2_.(% ’ ﬁH)—j ¥ (ﬁo-ﬁﬁ); i.,.z__{é EQQ-?»H)

Egt

+ wv(2m)>/?

35>

E:Vekf(z m)1/2g1/2,3/2 ssn(ig%—l - 3

g
k=1 C sinh (r kl kT

ZL i (z )@1/‘?“ "/3};'1' si (.ﬁ—;? - ..._.) 1 ‘
eorei 2, (o o2

M

= ‘igg:’;)
6L L (z )5”3}12/3 P(3) P(IZ) /3 7/6(22/3-1) 3(551)
2373 i by "2‘) 457'3 22/3
4/3 2v’, xT 2 4/3 ¢
b4 (Eg+§H) —W(W} *P(ED-‘E33> 1 “""E?“(w *QH)
(7-9)

The methods used for evaluating {7-8) have been described in the previocus

chapters and appendices,

T.5 ?yiagneﬁa Moment.

The magnetic moment for this system of electrons is obtained from
the partial differentiation of (7-9) with respect to H. This leads to a com-
plicated result which contains many factors of the form

(B, = pr)*P/?
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where p takes on the values 1,3,5. These factors can all be expanded
in power series with gH/ Eo. as the variahle since in our asymptotic
region ﬁH/Eo << 1.

After performing these expansions and combining terms, we {ind

that the magnetic moment is

M = AViZ = oeg (1 - 55 & ) L (-’53")2)
313 24 Ly
- anv(zm)*/2p% !y ( s (5-":")2)
3h 24 \E
N 0o ZrkTVe(Zm)l/z‘ﬁ:a cos (E;%—'? - ........)
Z 772 2 172 172 _ 2 KT
K=l H Cp H 8 (v x fﬁi}

i i zwkT(Zm)LYLzEf;/ 2 co s(’%ﬁfg -
'illz_zzﬁi/zﬁm sinh (v% Té‘ﬁ)

li:l
4/3 /3

- L L_(2m)E 2
R E( :fi (“%(%i}) - zv(w)>

h H hd o

_r@rap a5 @220

7/3 17
M (1z) (7-12)

We shall now identify and discuss each of the five terms which comprise
the magnetic mo cnt {(7-16).

1. The first term is the Pauli spin paramagnetism with higher
order temaperature and field corrections. (It is noted that the explicit
dependence upon temperature and field could be obtained if E, were
given explicitly in the variables T and H. This could be accomplished
through the use of the normalizing condition (2-2).).



Z. The second term is the ordinary lLandau diamagnetism with
higher order corrections.

3. The third term is the usual d-v-e obtained when no surface
effects are included. The same result was found and discussed in
Chapter 3.

4. The fourth term is the surface state cerréctian to the d-v-e.
it differs from the corresponding term found in Chapter (: by a phase
cilference of &% when K is odd. This correction becomes comparable

to the usual d-v-e when
H = H,Z ~ 2CV2mEs / el (7-11)

It is re-emphasized here that (7~11) expresses the field condition below
which the entire solution fails.

5. The fifth term is a non-oscillatory diamagnetic effect arising
from the surface states. Since it was also found in Chapter 6 we can
say that this effect is independent of electron spin. In light of this
circumstance we will now focus our attention on this surface’”
diamagnetism., For a free electron gas with EQ ~ 1 ev, the surface

{s) magnetization (M/V) is

M yn=3 1/3
(?{})sN - 10 /LxH (7-12)

while the remaining {r) non-oscillatory magnetization from the Pauli
and lLandau terms ise

M
() ~ 1076y (7-13)
x

For the assumed value of £y we also bhave

H, ~ 10/ 1Ly (7-14)
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From (7-12) and {(7-13) we find that )(M/’V}sl is about equal to
] (M/‘J}rl when

H =H_,rv 3x 102 / Lgﬂi (7-15)

x

In order to comment on the feasibility of {inding the surface diamagnetism
experimentally, we shall now examine the above quauntities for real
specimens:

a) If Lx is of order cm, HcN 10 and HoN 300 gauss. For lcc
of material at 300 gauss we would have to be able to measure a magnetic
moment of about 1{}”4 cgs units in order to cbserve the surface diamagne-
tism. Although this is experimentally feasible, it is not an easy task.

b) If L, were of order 10™> cm, H_~v 10> while Hy~v 6 x 103
gauss., Now we would need to measure moments of about 5 x 1&"3 cgs
units in order to cbserve the surface diamagnetism. Such moments can

be measured accuratsly without elaborate arrangzements.,

The analysis given above suggests that experiments be performed
to test the theoretical prediction of surface diamagnetism. It would be
desirable to use 2 monovalent metal such as Cuv, Ag, Na or Au for such
an experiment since these metals are most closely represented by a free
electron model. The specimen could be in powder form with individual
particles (clectrically insulated frowm one another) having dimensions of
order 10”2 cm. Finally, the experiment could be performed at room
temaperature since even at T = 300°K the corrections to the moment

arc small compared to the temperature independent termas.
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APPENDIX I

EVALUATION OF THE INTEGRAIL:

S‘S‘ cos (2wxu) cos (2w\v) du dv
2

Av +Bu<f

The Fourier coefficient R(:auli k) in Chapter 4 is
t ]

ILEFL(m'1 k) = (—1).{ SS\ cos (2wku) cos {(2whv) du dv {(i-1)
&Vz*ﬁ’BHSE

The lower limit of u in this integral is taken to be zero. We will show

here that R(aK h) can be expressed in terms of Lommel functions.

Integrating first with respect to u gives

1y YE/A (E-av?)/B
R(ak.’k) i S cos (2w\v) |sin ZrKujL av
—VE/A
or (1-2)
K VE/A
R(av\.k) = EZ"—-:TI‘—)— S cos {2#\v} sin [ﬁ%i_‘?_ {1 - %vzﬂ dav
o
Substituting

v :@ a- {(1-3)

transforms (I-2) into

(- Zﬁf | E 2wKE 2
R(a‘\ k) = e Ccos (2!1\[;0“‘) sin[—-&-— (1 -07) daa
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But since

pe 1/2
cos 5 = (-—z‘-)—) J-I/Z (7) (i-5)
we can write / /
1/2 1/2
{‘1)’1{%) 2(%) ‘ L [w 2 1 /z
R(al(:h} = 2‘!){ 3_ 1/Z(YO") 51!3[2—(1 ‘O.ﬂ (Yf) a6
o (1-6)
where

w = 4wKE/B
g 1/2 (1-7)
y = 2m(3)

But from page 540 of Watson's book
w ' w 2 v
U‘?+I(W’Y) = ;-\-,-:}. J\ Jv-l(yo-) sm[i(l -0 _)J a aa {1-8)
o

where U, is the vth order Lommel function of two variables. The series
representation of U,{w,y) is given in Chapter 4 (Eq. 4-28). From a
comparison of (I1-6) and {I-8), it follows that

1/2
Ra, ) = ,3’ ’2,5— U, /(%) (1-9)
K+ * *(2x)

This result was given in Eq. (4-26) of Chapter 4.
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APPENDIX 1I

Es/z; 1/4 /2

3
PRCOQOF OF: R(ao A 13 /2(7)/"3"

.?x)

With K = 0 we get from (4-24)

R{ao. }\) = S\S\z cos {Zw\v) du dv {11-1)

Av +BusE

where the limits are the same as in Appendix I, Integrating first with

respect to u, and substituting the limits, gives

E/A
Rla_ ) = 2 (£ - Av%) cos (2m.V) dv (11-2)
o, M 7 B -
(o]
Substituting
1/2
v=(5) [ (u-3)

transforms (II-2) into

| |
2372

1/2
R(am x) = m (i —ﬂz) cos E&th ( -{E) Q] aQ {11-4)

o

But from page 48 of Watson's  book

2(%)” ! v-1/2
Jv(y) = 1/:»:[1 y g (1 ~0‘?‘) cos {yg) 40 {I1-5)
® {(v+ 1/2) Yo

provided R(Y)> ~1/2. From a comparison of (II-4) and (II-5) it
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fpllows that

R(a 35;3/4 A1/4 3/2 (11-6)

o, 'A) 33/2(7) / wB

where y is defined as in (I-7) of Appendix 1. This calculation serves
as a2 check on the resuli {4-33) obtained from the Lommel function in

the lim.
K—>0
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APPENDIX 11

PROOF OF: y S/Z(W’ y)dE = B ﬁﬁ/ztw. y) / 2wk

¥From the series representation of a Lommel function it follows

that
oo m w 3/2 +Zm
U, jplw.y) 4E = g::o(-l)“ ) I3/202mly) 4E  (II-1)

In our problern w and yare defined by (1-7). The substitution
1/2

E
$ = 2m $)

transforms (Iil-.) into

oo o 1/2 5, 1/3 3 ram+l +2m+
S\Uyz(w’ /) aE - ZZ(_I)L ‘ﬁ%__ y2 m("z‘.“") m ‘Pﬂ : Js(ibz)deP
m=o =
(111-2)
But since
p+l = ptl
S“P Tplp) a¢ AN S
we can write (in terms of w and y)
B oo m w §{+zm
SUS/Z(WDY) dE = '2;-;{_ %’\: (‘}) (?) J%,-c-{zyhz
or (1-4)

gUS/E(w' y)dE = B US/Z‘W' y) / 2wy

This result was given in (4-37) of Chapter 4.
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APPENDIX IV

E tkﬁu

PROOF OF: 3-—- Ug /p(wy) = Uy ol y) - =5 Vg fp(™ey)

From the series representation of a Lommel function we have

oW

a‘bﬂ 5/2("'?) Z( 1) (" + 2m )(—-)Z t 2m-1 % E3 1) J (Y) (Iv-1)

m=o E +2m

since 2;’1 = 8, (w and y are the same quantities appearing in the

previous Appendices.) Using the identity

Jg ly) = —gf— I, (y) + I, (¥) (1v-2)
g-'f‘gf.’ﬁ Z(z $ Zgn) ( E + 2 Ym %+§m>

and the value

.;33..;.‘.;. = - 2uxE/BH° (1v-3)
we get
2
aﬁslz(w.v) . __“g? u, /z(w,y)-l,.::.;g; Uy ptwey) (av-4)

This result was given in Eq. (4-42) of Chapter 4.



APPENDIX V

EVALUATION OF THE INTEGRALS:

Qo

‘ - (2THE 5% af(E) i

LR gocas( B 4) <5 dE
® L 2zmyE 3w, d(E)

2. 1, = S\cms( B -T) 35 B EE
o

We can express the {irst integral as

) ei(zw?ﬁzﬁ - 51 gw ei 225 (£-E ) = ]
1, = = o (s BT, (), S BB/,

kT

where R denotes 'the real part of°'. The substitution
$ = (E - E )KT

transforms 1. to
-

R{-—eizrﬁﬁ; ‘%) SPO 310(4) do 1
(3+e¢}(l+e~¢)

-Eo/kT

where ol is a real number with the constant value

oA = ZmikT/B

67

(v-1)

(v-2)

At sufficiently low temperatures (Eu >> kT) the nature of the integrand

permits us to replace the lower limit -§Ia/k‘r by ~co without introeducing



any significant error. Our srobliemm is therefore to evaluate

(e -]
iolp
A (v-3}
¢ -¢ !
{(: +e¥){i+e V)
- 00
This integration is most readily carried out in the complex plane,
The poles of the integrand occur at
$y= = wi(2p + 1) (v-4)

where p = 0, 1, 2, . . . I1f we consider a contour consisting of the
real axis and a semicircle of radius R in the upper half plane, only
the poles in the upperxr half plane are included., By letting R —>-<0

the contribution to the integral fromn the semicircle vanishes and we

have from Cauchy's Theorem

(e ~] ,, (o« .
f e P § e L,
(I+e¢){},+e‘¢) p=o C{:p(}&eb)(l +e-¢)

-—O0

Expanding the numerator and denominator of the integral {under the

summation sign) in Taylor series around 4) = Cba and then dividing,

gives

2 iold °°§ , ‘ z
: d i oL

ool + e (14 ™) pmo o (¢-0)" (& -40)

(v-6)
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Since the integral under the swrunation is now in Laurent series

form we can write

o oo ‘ co
= 20 zaifine ¥ P0) = L2gq D) e Am2ptD) (V-7)
oo p=o p=0

The geometric series in {V-7) can be summed to give

o0
- ol

= STaEER) (v-8)
Y oo sinh{wal

it now follows that

sz)\k'r cos (-2-:%?—9- ~ %!‘) (v-9)

B cinh (z;ﬁ.i kT/B)

Ilz

Following the same procedure for the second integral gives

. . gRwKE 3w
kT sin ._-.E.?—_Q. - ..z.}

Iaﬂ

sinh (Zailﬁ kT/'B)

- 2&'3}( {k'r}a cosgh (Z’Z"l kT/B) sin {E—'%Eﬂ - -:-2-!—)

- (v-10)
B srinhi (zuzq kT/B)

2 2u K E 3w
+ Zw K kT cos { -——é—-ﬂ - =)

B  sinh (sz.( kT/B)
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APPENJIX V1

The Method of Critical Peints

i. In this appendix we shall show how the method of critical
points can be used to evaluate the coefficient R(a'i , o, 0). represented
by Eq. (6-14) in Chapter 6.
We shall consider the two integrals of Eq. {(6-14) separately,
and designate by 11 and Iz the first and second integrals respectively,
By substituting
e - hny eHx (VI-1)

T ~ ~C

L
Yy
in Ii and carrying out the integrations over © and ny we get
22 \ZmE
4(-1)% eH Ly . ZwKE
I T \S\ (—%—ﬂc -5 \)?.mEl) sin { SE ) dn_ {Vi-2)

awK

o

Now comnsider the first part of this integral. Setting

h
¢ e " (V1-3)

transforms this part to

1
2(-1)°t eﬂbfbygzﬁmﬁ X sin‘-:zjzé%?» {: - 43’@ ad (vi-4)

2xKkh“C

The integral in (VI-4) is a special case of the more general integral
evaluated in Appendix I. Following the methods described there we get
the resuit
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(-i)KDBI/Z 133/3(w, o)/ AI/Z w (zla):‘/?‘ (Vi-5)

for (VI-4).

If we use the samne substitution {VI-3), the second part of (VI-2)

becomes

Koo 0 (o i
U iglemn) (g7 5in[§-<1—¢ﬂ ap  (V1-6)
*K
<o

The evaluation of this integral will require the use of the method of
critical points.

IZ' the second part of Eq. (6-14), can be put into the form:

I, = 4(- i)'i (zmﬁ) ‘g‘j‘(i -d‘> ) sin[ {1 -431
ﬂ‘l‘h

cos[%(: - ¢)Z) f{S"ﬂ 47 4ad {vi-7)

where

HT) =T0V1-6% + sin”lo

This can be further trangsformeé to give
1 1 b

- 1) Ly L (2mE _a21/2 sinl ¥ (1 - 6% - ~
f - Al W\ -2 sm[F0 - g v o] a5 ap +
ﬁx ] -
(-2 sl Z 00BN - o)

e ® (vi-8)
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We shall use the method of critical points to evaluate both of the
double integrals in (VI-8).

2. Details of the method of critical points., Consider the

general integral

I = g{x) Eiwf(x) dx (vi-9)

where a, b, f{x) and g{x) are independent of the parameter w. It is
further assumed that f{x) and g{x) are infinitely often differentiable

in the closed interval a < x £b. We seek the value of I for |w| > 1.
Van der Corput (Ref, 3) asserts that the asymptotic character of [ is
completely determined if the behavior of f{x) and g{x) is given in the
vicinity of the critical points. 1 These points are the end points a and

b and the points between a and b where the phase wi{x) is stationary.
The contribution of each critical point is called the residue at that point.
The residue at a critical point E can be developed asymptotically in

i/ m. where m is the smallest positive integer

ascending powers of 1/w
such that the ™ derivative of f(x) at ; is not zero. To establish the
natire of the residuc at & we expand g{x) and f{x) in Taylor series

around § . The regsidue then becomes

€,
(25 + e ) -5y v ..] e

§_ {vi-19)

'wf% £ E x- m coe
iw [ £ »£2LE) (x-5)7 ]dx

! This condition on f(x) and g{x) is weaker than the requirement that
f{x) and g{x) be infinitely often differentiable in the closed intervala < x
£ b, Im practice we use the weaker condition for evaluation of integrals,
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17 we make the substitution

g 1/m
(x-5) = ; (Vi-11)

wfmig))
the first integration of (VI-10) becomes

ot m+i
) o R ; [Qiﬂ)\gw)‘/’"‘ (4’"‘(%7 R ':ldy
(Z®)""
e o- (vi-12)

Since the major part of this integral is contributed at y~v0, we can safely
extend the upper limit te ©© . Further, the exponent of the second
exponential in the integrand will be small compared to the first in the
region of importance so we may expand it as

S lvie + ... {vi-13)

This leads to the value

iy 1%(%) (
LAWH(5) | — /m(?m(g}) i/m S\ dy + —3 75 ] (srx'féTW =
(e -]
b 5
X S‘ym«&l eiy d{} (vi- i4)3
o

In choosing the limits o to c0 for the integrals in { vI-14), we have
assumed that § is the lower bound of the interval. If were an intevior
point the limits would be - ®0to . If 5 were the upper bound of the
interval, the limits would be ~ 2 t¢ o,

2
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for (VI-12}). The integrals in (VI-14} are examples of the genesral

type

Q@ , Cs + 1)
it z i n o/ ;
S\ e t df = C‘;‘;’D z:;(z;i'_‘ - {Vi-15)

From {Vi-14) and (VI-15) it follows that the contribution of the first
integration of (V1- 10) can be written as

ei“"f@}[ i%"}'m + % ¥ ] (VI-16

where
S =) |
ﬁi’ y T NYL iﬁ—n (VI-17)
2
and
5 ™M B!
221 ” T527m ey (vI-18)

(e + 1)) ¢L5) (m + 2) -1)

The second integration of {(VI-16) is carried out analogously and
leads to the value

a a
iwf(*g)[ 2,2 3,2 ]
e g+ 7 +t ... (Vi-19)
wz;m w§;:h‘"1 !
. 2/m
In order to be able to get the complete coefficient of the 1/w term

we show the value of az it is

»2°
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(5 (!
2,2 T TmyeN2/m 37
(f__g.?l) 2 (-i) i

ml

a {(Vi-20)

Continuing this operation shows that the complete residue at ; can
be put into the form

iwf(E) [ €1 %2 €3 , €s :{ 3
© Wi;m f w7 ;m ¥ -wr ;m- o w‘%ﬁ;m‘t‘..' {VI"Z}}

where
€1 % 2y,
< = a + 8
2 2,1 722,2
€3 T 23 ;ta; yt2y 4

The general coefficient c is found to be

_8-1 s/m |
- S (§) m! B/X%) o
C EEG) e

8

R i(%;i)j NS p-l £y £+ 5P
3 ’ ‘) m 2 (5) )
(o 8) ()R ANy Lo - 1l + s - )
{vi-22)
3. Let us now apply this development to the integrall appear-

i,2
ing in (VI-6). To put it into the desired form we write

1
1, =-Yﬁy @) R S L (Vi-23)

van der Corput gives this form for the residue without showing
the explicit values of Cis €p0 v o &
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where

ald) = (1 - 6H!/?
() = @/ - ¢%)

The critical points are 0 and 1, The point 0 is a stationary phase
»oint as well as an end point, After obtaining the Taylor expansions
around the point 0 the residue (designated as Res) there is found to
be

VN
(Ras)‘pzﬂ = e Z wi/ﬁ 1/2( 1}

(vi-24
- @232 (3/2) !
@) 11372 31y

Since the function g{d) cannot be expanded into a Taylor series
around the point 1 we must make an appropriate transformation to get

the residue there. If we let

2,1/2

(: -0 Z {Vi-25)

we would require the residue at Z = 0, The transformed integral is

1

2
,
5 (i-z57%

E oAl
Nig

£

az (Vi-26)

so that we can now e¢xpand our functions around Z = €. Carrying out
the details of expansion leads to
3/2

2(z1)%/ % (3/2)) (V1-27)

(Res}z.—.{} = {Re$)¢z} 372 (2)‘ 3(-i)
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By neglecting the terms Q“‘?ﬁ} and taking the imaginary part of the
residues, we get
T 1/2 i w 3w
I}’zl\J (i) ;—172- COS(E - --;-{) (Vi-28)

4., We now consider the double integrals in (VI-8). The general
philosophy in bandling double integrals is to apply thie previous develop-
ment in succession., There are additional features which make the double
integration more complicated, but rather than discuss them generally
we shall note them in solving the specific examples. We designate by

Iz i and I 5 the first and second double integrals in {(VI-3). Then
» oy

Iz. 2 can be wyritten as
i i
=r§lj‘ f o) YD) 4544 (v1-29)
3 o
where
2.1/2
ao.5) = (1 -5
3 2
P, T) = ‘Lg?—’(; Y PR sin-lf)‘)

The critical points here are first the points within the region of integration

P F
where the phase wF{{,T ) is stationary, i.e. where % = %—-0-:,- = Oy

then the vertices of the boundary of the region; finally those boundary
peoints are critical where F{,7) taken alon~ the boundary curve is

stationary. For our integrall the following points (infinite in number)

2,2
are critical:
b=¢;0=21
b=1; 07 5 1
3§Cb=.<—1;5==1
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To get the residue at the point (0, 8) we expand g{d,7) and
F($,7) in double Taylor series around that point. Substituting these
expansions into the integrand gives

>
i

(Res)g,ﬁ = e

i §

)e a%4ad

oo ©O ~ 2
j‘j‘(l— 2 iw(-%«—%—-*..)
@ o (Vi-30)

Integrating first on O (holding ¢ fixed) and keeping only the largest

term gives

Bl °o e
ea’ ﬁ iW("'%"-..)
(Res)a'e . —— (1 - 5 - s} ® dd (Vi-31)
o
We now integrate over ¢ to get
i3 Iy
(Res) = == ( —l1/2) - ) (vi-32)
0,0 . YL {‘1/4)1;’2‘ {-i)llf

i
This residue is O( —grs) .
w- 3/2

Next we consider the residue from the points 0 = & £ 1, 7= 1.
The function F({,T) cannot be expanded in a Taylor series around any
point having 0 = 1. Therefore we must resort to a suitable transformation
{just as we did in the single integral case) to accomplish the calculation.

I we let

sin"15 = © (Vi-33)
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we would require the residue from the points

[~
L

® £ 1; O =gn/2

By expanding the functions in the integrand around O = #/2 we can
express the residue from this entire boundary (designated as (Res}bl)

as

"y L wi-¢%) 4 g3
(Res)y, = f j‘( ¢3)1/2(®-.3.. 3_)e & (3’ Zi@dcb
L+ o

(V1-34)
where
® = -(0-x/2)

The integration over ® follows from the general development for single
integrals. Ii we keep only the largest term of the resulting expansion,

the residue is

/ 1
. 3/3 (3%) d o
(Reodu) 321273 f ETﬁ’W‘ (vi-39)
2

The integral in (VI-35) is a standard type, so that the final result can

be written as

| (3/3)l (3w)2/3 1”"‘["(11/12)
(Res)y {(vi-36)
. ?‘73 1)273 4 [" (17/12)

This residue is O ( ——217-3—- ).
w
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Finally we have the boundary = 1; 0 £5 21 to consider.

Here we must again make the transformation

(-42"2 -z

The integral itself then becomes

i i
zz
X f j —Zan

After carrying out the J integration completely we will be concerned

2 ;
. W o ,——-,{—‘—‘:3" . -.i,-»)
i -IN1 - - gin J
ew (g N ajdz

(Vi-37)

with the residue from the point Z = 8. The D integration is a single
integral problem of the type considered previously. Its critical points
are 0 and 1. However, we need oanly keep the rasidue from the point
JT=0, Z=0 since the point = 1, Z = 0 corresponds to the point
=1, $=1 and its residue is already included in (Res), ; Biven by
{Vi-36). This calculation therefore reduces to the evaluation of the
residue of {(VI-37) at the point 2 = 0,0 = 0. The result is

2¢ (1/2)}
{Res),,_ o= = {Vi-38)
Z=0, =0 wszﬁ . (‘i)z/z
This residuc is © (-—;72}.
w
The complete evaluation shows that the largest term in 1 is

2,2

}; *

given by the imaginary part of {Vi-36) which is © (“""‘7‘; 35 .
w'

The integral 12, 1

above. It is noted that two parts of 1
{VIi-32) and {(VI-38) of IZ
3

can be evaluated by the same procedure as given

2.1 exactly cancel the contributions
ol

' . . i
o+ The largest term in Iz. , 18 © { =77 )
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Combining the results of the two integrations Iz 1 and iz 2
-9 : ]
we find that

~ 9"/8r (s/3T 1/12)
8 M{(17/12) w7

(Vi-33)

I,

From (Vi-5), {V1-28) and {VI-33), we get the value for R“‘i' efo)
given by Eq. (6-~15) in Chapter 6.
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