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Abstract. The Boltzmann distribution used in the steady-state analysis of the simulated
annealing algorithm gives rise to several scale invariant properties. Scale invariance is first
presented in the context of parallel independent processors and then extended to an abstract
form based on lumping states together to form new aggregate states. These lumped or aggre-
gate states possess al of the mathematical characteristics, forms and relationships of states
(solutions) in the origina problem in both first and second moments. These scale invari-
ance properties therefore permit new ways of relating objective function values, conditional
expectation values, stationary probabilities, rates of change of stationary probabilities and
conditional variances. Such properties therefore provide potential applications in analysis,
statistical inference and optimization. Directions for future research that take advantage of
scale invariance are a so discussed.
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2 Fleischer and Jacobson

1. Introduction

In recent years, the concept of scale invariance, often described in terms of
self-similarity, has received much attention. It describes such disparate phe-
nomena as the structure of a snowflake to the behavior of the stock market
(Mandelbrot, 1983). These two cases represent the extremes with which scale
invariance is apparent. The repeating geometrical patterns at different scales
often found in nature are quite compelling even while the mathematics that
fully describes this scale invariance is quite arcane. At the other extreme is
the scale invariance associated with stochastic and diffusion processes. In this
realm, scale invariance departs from the visual and wends its way into the ab-
stract where the probabilistic nature of sample paths becomes the cornerstone
of pattern finding.

The notion of pattern finding is key in discovering and utilizing the con-
cept of scale invariance. Thus, the perspective of an analyst is paramount:
finding any pattern depends on how you look at things. Indeed, it is often
possible to find scale invariance in almost any phenomenon if one stretches
definitions sufficiently; whether such scale invariance is useful or even real
depends on the vantage point from which such scale invariance is discovered
and whether interesting patterns persist in related areas.

This paper identifies aform of scale invariance in the simulated annealing
(SA) agorithm. This scale invariance is manifest in several ways. (Fleischer,
1999) shows scale invariance associated with paralel, independent proces-
sors. Thisarticle describes ascale invariance based on lumping solution states
together to form aggregate states.

To fully describe this scale invariance requires a definition of the type of
scales used. Section 2 provides this necessary background and illustrates a
scale invariance with respect to a system of independent processors thereby
providing the basis for comparisons. It also describes the indexing method
used in conjunction with aggregate states. These methods are then used in
Section 3 to show scale invariance in SA between individual solution states
and aggregate solution states. Section 4 describes potential applicationsin the
areas of analysis, statistical inference and in optimization. Finally, Section 5
provides a summary of this article, describes areas of future research, and
some concluding remarks.

2. Background and Motivation
The concept of scale invariance in the literature on dynamical systems per-
tains to phenomena that retains some property at different scales. Demon-

strating this property therefore requires a comparison of some phenomenon
at different scales and, hence, an appropriate description of the phenomenon
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Scale Invariance Properties in the Simulated Annealing Algorithm 3

that is being compared and aso a description of the type of scaling used. In
other words, it must be shown that something issimilar to something else even
though its scale or definition is different. The following equations provide the
foundations for these comparisons and are well known (see e.g., (Mitraet al.,
1986; Aarts and Korst, 1989)) in the context of SA. These results concern
the stationary probabilities associated with state 4 in a discrete optimization
problem.

If the SA agorithm is executed at some fixed temperature ¢, then the fre-
guency of visits to some particular state i € Q2 where () is the state space is
given by the stationary probability distribution

e—filt
Zjeﬂ e filt’
where f; is the objective function value associated with state i. (Mitra et a.,

1986) shows that the rate of change of the stationary probabilities associated
with some state 7 with respect to the temperature parameter ¢ is

mi(t) = D

0 mi(t
—7Tz'(t) — t(g)

[fi = (N (B)] )

(Mitra et a., 1986; Aarts and Korst, 1989) where (f)(¢) is the expected
objective function value at temperature ¢.

Mitra also shows how thisrate of change depends on the quantity in brack-
ets (Mitra et al., 1986, p.755-6). For an optimal state #*, f;- < (f)(¢) for
t > 0, hence the derivative is negative. Consequently, the stationary proba-
bilities of the optima monotonically increase with decreases in temperature
values.

Equations (1) and (2) form the basis of the scale invariance first described
in (Fleischer, 1993), and further developed in this paper. These equations have
been used in many of the theoretical results on the convergence of SA and its
finite-time performance, yet the scale invariance associated with (1) and (2)
has yet to be fully described and exploited.

The next section provides some background on the concept of scale in-
variance, the definitions that are needed for identifying aggregate states, and
describes the scale invariance in SA using several lemmas and theorems.

3. Scalelnvariancein SA
The term scale invariance is usually employed to describe phenomena and
properties that seem to exist or persist on different scales. These scales can

be the physical dimensions of an object, time, or some other property that is
associated with the phenomenon of interest. Indeed, in self-similar systems

| unpi ngRev1b. tex; 26/03/2002; 13:55; p.3



4 Fleischer and Jacobson

as they are sometimes called, it is often impossible to determine the scale of
the relevant phenomenon in question merely by observing it. For example, in
diffusion processes (such as Wiener Processes), the scale of the physical di-
mension of sample paths cannot be ascertained simply by viewing the sample
paths as they appear and mathematically behave the same at any scale (Ross,
1970). Thesameistruein fractal geometry: the patterns that emerge from the
application of recursive functionals are repeated at all levels of magnification
or scale (Mandelbrot, 1983). The system on one scale appears like itself on
another scale. Such properties, whether they are the behavior or the attributes
of some system that are invariant in terms of scale indicate some form of scale
invariance.

The foregoing description of scaleinvariance isunfortunately rather vague
and a more concrete description of scale invariance is desirable. A more
appealing way to define scale invariance is in the following abstract terms:
if statement A implies B, then scale invariance exists if a transformation
applied to A resulting in A’, and applied to B resulting in B', implies that
A’ implies B'. This definition suggests that exploring valid examples of scale
invariance requires reasonable definitions of various mathematical elements
and a showing of how they relate to those mathematical quantities that reflect
scale invariance.

In SA, thisscaleisnot based in terms of physical dimensions or time, but is
more abstract and relates to the states of discrete optimization problems. The
scaleisbased onthelevel of aggregation of states beit intermsof the states of
several processors or in terms of the states in a single processor system. The
invariant properties associated with these aggregate states involves the rela
tionships between their stationary probabilities, objective function values, the
rate of change of their stationary probabilities, and the variance of objective
function values when the SA algorithm is applied to a discrete optimization
problem. Before exploring the scale invariance of aggregated states, however,
abrief description of scale invariance in the context of parallel processing is
presented.

3.1. PARALLEL PROCESSING IN SA

To motivate the notion of aggregating states in SA, consider a system of
parallel processors each running the SA algorithm on a given combinatorial
optimization problem. Such a system of processors aso exhibits a form of
scaleinvariance (see (Fleischer, 1999)) in that the stationary probabilities and
the rate change of the stationary probabilities associated with a system state
has the same form as the analogous quantities in a single processor system.
For a system of p independent processors, each of which is in some state
i, the system state can be represented in a product space by i, 1o, ..., %,

and its stationary probability represented as;, ;,...;, (). In (Fleischer, 1999)
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Scale Invariance Properties in the Simulated Annealing Algorithm 5

showed that
(0 e~ fitsin,ip/t @)
T yiyeni = I —
! Dt ingip € fiyuignip/t
where fi iy..i, = Yom—1 fi,, TePresents the system's objective function

value (the sum of the objective function values associated with each proces-
sor). Note that the form of (3) is similar to (1).

The following equations extend this result by showing that the rate of
change of the stationary probability with respect to temperature ¢ for p par-
ale processors has the same form as the rate of change of the stationary
probability associated with a single processor. Taking the derivative of (3)
with respect to temperature ¢,

87ri17i27,,,,z-p(t) 2 e*fil,iz ..... iplt
ot 8t2i1,i2, ,ip e firsiz,ip/t

TG0 459 ,nnyt P
— 325 717 [Z fzm <Z flm> (t)]
m=1

= 71—1'1,12272,11;() [le,w, wip <fi1:i27""i1’> (t)] (4)

where (4) is similar to (2). This similarity is apparent simply because of
how f;, ,....;, has been defined. Thus, by making meaningful and logical
definitions of other elements associated with SA it is possible to extend the
similarity apparent from the aggregation of states of multiple processors to
the aggregation of states in a discrete optimization problem.

3.2. AGGREGATING STATES IN SA

To show how lumping states together into an aggregate state exhibits scale
invariance, it is necessary to identify these aggregate states. This requires
some method for indexing these states so they can be uniquely identified.
How thisisdoneis crucial towards demonstrating scale invariance.

In many discrete optimization problems, the index associated with a state
is either arbitrary and merely used to distinguish between states (such asin a
proof) or used to indicate some other information about the state it represents.
In such a case, some specific attribute that not only uniquely describes the
particular state but also provides other useful information must be devised. In
SA, and in particular, in terms of the stationary probability associated with
states, this is often done by using an arbitrary ¢ for a non-optimal state and
an * for an optimal state. Thisindex is of limited use however for aggregate
states as more information than simply distinguishing an optimal state from
other states is necessary.
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6 Fleischer and Jacobson

In lumping states together, not only is some method of designating them
required, but their objective function values must also be designated. The no-
tion that such aggregate states have an objective function value must therefore
be considered. The following definitions provide the indexing conventions
used in the next several sections. These conventions denote states, collections
of states, stationary probabilities, and objective function values, and are based
on both arbitrary denotations and denotations reflecting some ordering of
objective function values.

3.3. DEFINITIONS

The following definitions are needed to show how lumped states have self-
similar properties as individua states. These basic definitions are used later
to define new characteristics of lumped states such as their indices, objective
function values and stationary probabilities.

Definitions:
Q) the entire set of states in a discrete optimization problem.

1 an arbitrary state in a discrete optimization problem that identifies a partic-
ular state.

m;(t) the stationary probability of state at temperature ¢.
fi the objective function value associated with state ;.

F arandom objective function value produced by the SA algorithm. Thus, its
probability distribution is Pr{F = f} =, _;e it/ 3, qe~1i.

(F)(t) = X ;cqmi(t) fi, expected objective function value at temperature ¢.

3.4. AGGREGATING STATES

To show scale invariance based on lumping states together to form aggre-
gate states, these aggregate states must have similar attributes and similar
mathematical relationships associated with individual states. It is therefore
necessary to assign stationary probabilities and objective function values to
these states based on some reasonable and logical criteria and then investigate
their relationships to determine whether they are similar to the corresponding
relationships associated with individua states.

3.4.1. Sationary Probabilities

Let A = {i1,49,...,%,} be some arbitrary set of m states where A C Q.
A reasonable approach for defining the stationary probability of A is based
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Scale Invariance Properties in the Simulated Annealing Algorithm 7

on the frequency of occurrence of any state in the set A. Using indicator
variables, define

1a(t) = { 1 if thecurrent state 7 € A at temperature ¢
4 0 otherwise '

Note that for each state i, 1;(¢t) = 1(0) if the current state in SA at tem-
perature ¢ is (not) 4. Thus, the stationary probability may be defined using
indicator variables and the law of total probability:

ma(t) = E{1a(t)} = Pr{1a(t) =1}
= Z 7Ti(t) = Zﬂ—iz (t) )
=1

1€EA

These definitions formalize the notion that when the SA agorithm visits
any state in A, the algorithm visits A itself, i.e., the frequency of visitsto A,
ma(t), isthe sum of the frequency of visitsto statesin A.

3.4.2. Objective Function Values

Defining objective function values for aggregate states is not quite as ssimple
asinthe caseinvolving stationary probabilities. Inthiscase, avisitto astatein
A gives A an associated objective function value that may differ fromthat of a
previous visit. Thus, instead of simply counting visitsto any state to establish
the relative frequency of that state, the attribute of each state—its objective
function value—must be taken into account. Note also that the frequency of
visits to each element of set A is dependent on the temperature ¢.

Given that the objective function values associated with set A may vary
over the course of an SA experiment, the most reasonable approach for as-
signing an objective function value is to take the time average of the objective
function values obtained over the course of visits to set A. This suggests an
expression based on conditional expectation. Define the objective function
value of lumped node A by

Falt) = E{F | 1a(t) = 1)
= Y fiPr{F = fi|14(t) =1}

S
o fiPI‘{F:fZ'/\lA(t) = 1}
- l% Pr{l4(t) =1}

_ XEmOfy g mill)f

= . 6
S () 2 mal) ©

Thus, the objective function value of set A is the weighted average or convex
combination of the objective function values of the states it contains, i.e.,
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8 Fleischer and Jacobson

the expected objective function value of statesin set A. Note that using the
definition in (6), the identity

holdsfor all ¢t > 0.

3.4.3. Consistency

For scaleinvariance to exist, the valuesfor 4 (t), itsrate of change, and f4 (¢)

must have similar relationships as the corresponding values for individual
states. Further, true scale invariance must be consistent, that is it must be
evident at all scales. This means that aggregations of aggregate states should
obey the samerelational rules. Toillustrate, let A and B be digoint aggregate
states. Then from (6), the objective function value of aggregate state AU B is

faon(t) = Z ;i (t) fi

icAuB TAUB (t)

. Wi(t){;') 'y mi(t) fi

icA TAUB icB mauB(t)
a0 Falt) + 7a(0) ()
=T At () @

where (7) is obtained by dividing and multiplying each summation by 4 (%)
and 7 (t), respectively and using the definitions of f4(¢) and fp(t). Scale
invariance is manifest in (7) because this equation of the objective function
of unions of digjoint aggregate states has the same formulation in terms of the
aggregate states as (6) has in terms of individua states.

3.4.4. Scalelnvariant Relationships

These scale invariant relationships become further apparent using (5) and (6)
to determine the rate change of 7 (¢) with respect to ¢,

oma(t) 0 ua _
or &;W’l(t)
0
> g0
= 3 [P0 (5, - )] ©
=1

B EEY

| unpi ngRev1b. tex; 26/03/2002; 13:55; p.8



Scale Invariance Properties in the Simulated Annealing Algorithm 9

where (2) is substituted into (8) for each 4 to yield (9). Noting the definitions
in (5) and (6) and substituting these expressions into (10) yields
Oma(t) _ ma(®)falt) ma(®){f))
ot 12 12
Tal(t
= 01700 - (). 1

The similarities in (2) and (11) suggest a scale invariant structure due to the
parallel relationships between individual states and aggregate states in terms
of their stationary probabilities, derivatives with respect to temperature, and
objective function values. The following lemma and its corollary expands
on these relationships in a property referred to as objective function comple-
mentarity. This lemma establishes a general relationship between aggregate
states, their complement aggregate states, and their objective function values.
The following definitions are needed:

Definition. Aggregate states A and 2 \ A are said to be complementary
states. If A C B C Q then sets A and B \ A are said to be complementary
relative to set B or simply are relative complements with respect to B.

LEMMA 1. (Objective Function Complementarity) Given any non-empty
aggregate states A and Q \ A4, for all ¢t > 0,

Fa() = (F)() = fa(t) = falt) = m\a(®) [fa(t) = faad)] (12

Proof. From the definitions of f4(¢) and (f)(¢),

fa(t) = ())(t) = fa(t) - (Zm(t)fﬂr > m(t)fi)

icA ie\A
— () — mA() ieami®)fi  movalh) Xieayami(h) fi
ma(t) T (1)
= fa(t) —ma(t)fa(t) — mo\a(t) fora(t)
= [1=ma®)] falt) — ma\a(t) fara(?)
Since A and 2\ A are complement sets, then 1 — 74 (t) = mq\ 4(t) and the
result follows. B

Observe in the lemmathat the aggregate state A isobviously contained in
Q. This provides a clue for generaizing the property of Objective Function
Complementarity by considering aggregate states that have some comple-
mentary relationship with respect to some subset of 2. This generalization is
stated in the following corollary.
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10 Fleischer and Jacobson

Corollary 1 to Lemma 1: Let sets A and B \ A be non-empty relative
complementswhere A C B C . Thenfor all ¢ > 0

_ maal?)

fa(t) = fB(t) 5)

[£a(t) = Fa®)] -

Proof. Applying the lemma and noting that

fa(t) = 7p(t) fB(t) + 7o\ B(t) fo\B(1)
and substituting this into the left-hand side of (12) and expanding the right-
hand side yields
fa®) = (5t f5(t) + 7o\ 5(0) forp (1) =
To\a(t) fa(t) — moa(t) faa(t)  (13)
Adding 7o\ g (t) fo\ p(t) and subtracting o, g (%) f5(t) to both sides of (13)
yields
fa(t) = fB(t) = ma\a(t)fa(t) — o\ a(t) fora(t)
+ mo\B(t) fa\s(t) — ma\5(t) fB(1) (14)

Now, since A C B, thenQ\ A = (B\ A)U(2\ B), aunion of two digjoint sets.
Thus, from the consistency property described earlier (see Section 3.4.3),

me\a(t)fm\a(t) + ma\(t) fors(t)
e\ A(t) + T\ 5(?) '

fana(t) = (15)

Note that mp\ 4(t) + T\ B (t) = mo\ 4(t), hence (15) becomes

To\a(t) fara(t) = ma\a(t) fe\a(t) + o5 () fors(2)

and substituting thisinto (14) along with the expansion of o 4 (%) above and
simplifying yields

fa(t) = f(t) =
Tia(t) [Fa(t) = Foa(t)] + 7a\s(t) [fa(t) = f5(H)].  (16)

Since T\ p(t) = 1 — m(t) then upon further re-arranging and simplifying
of (16) the result follows. B

Note that when B = (2 this corollary reduces to the statement in Lemma 1

(Although this indicates that the corollary is a more general statement, it
better demonstrates consistency when stated as a corollary).
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Scale Invariance Properties in the Simulated Annealing Algorithm 11

Corollary 2 to Lemma 1. Given any non-empty complementary aggregate
statesAand 2\ A, fa(t) < fo\a(t) if and only if

fa(t) < (HE) < fara(?).

Proof. The implication leading to the statement fa(t) < fo\ 4(t) is obvi-
ous. Proving the other direction, if f4(t) < fq\ 4 (%) then from (12) it follows
that f4(¢) < (f)(t) since both sides of (12) must be negative. Switching the
sets A and Q2 \ A and applying the Lemma again, (12) becomes

fara(®) = (1)(t) = fora(t) = falt) = 7a(®) [fara(®) — F4(0)]
with both sides positive and the result follows. B

Corollary 3toLemma 1: For any non-empty aggregate states A and Q2 \ 4,

Oma(t)  —Omqalt)
ot ot

for all ¢t > 0.
Proof. Theresult follows from the simple application of (11) and Lemmal.

This lemma and its corollaries show that by virtue of scale invariance, a
richer and more general set of relationships among objective function val-
ues and stationary probabilities can be illuminated. Indeed, the significance
of these relationships is amplified by how certain aggregate states mirror
the globally optimal state. The following section establishes an important
relationship between optimal aggregate states and other states.

3.5. OPTIMAL AGGREGATE STATES

Define Sy C 2 to be the set of optimal states. Therefore, any 7 € Sy has a
special characteristic, namely, its objective function value is strictly less than
al other objective function values for statesnot in ., i.e.,

fi- < fifordli g Sy a7

Note that in SA this property of the globally optima is supplemented by the
fact that f;- < fo(t) a any temperature ¢t > 0 (see the text associated
with (2)). Scaleinvariant relationships should therefore al so be exhibited with
respect to aglobally optimal aggregate state or supernode.

Defining a supernode is complicated by the fact that the objective func-
tion value associated with an aggregate state is a function of temperature
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12 Fleischer and Jacobson

t. Nonetheless, it is possible to draw analogies from the basic attributes of
an optimal state in order to identify reasonable requirements for defining a
supernode:

1. A supernode should have the same properties as (17), i.e., an objective
function value that is less than that of any other state or sets of states not
in the supernode;

2. an objective function value always less than or equal to the expected
objective function value.

One approach for defining asupernode satisfying these requirements involves
ordering and indexing states according to their objective function values. This
requires that the states be aggregated based on their objective function values
(states with the same abjective function value are thus aggregated together).
Define sets .Sy through .S, asfollows:

forali,j € S, fi = fj and

fso < fsy <+ < fs; < [0 <o < [fs,, (18)

for p distinct objective function values, where fs, = f; for dl ¢ € Sj..

Therefore, S; isthe set of states with the i best (after the optimal) objec-
tive function value. A supernode, Sy, is therefore defined as the aggregation
of all setswith the & lowest objective function values,

k
S'k = U S;. (19)
=0

The stationary probability of 5, can then be defined (using (5)) as the sum of
the stationary probabilities of the states within the supernode

k

g, (1) = Z s, (t).

1=0

The objective function value associated with supernode Sj, can be defined
(using (6)) as
>io s (8) /5, (1)

Ef:o Ts; (t)

Using these definitions, the supernode S}, has all the attributes and proper-
ties of the globally optimal state: an index k, a stationary probability ( ),
and an objective function vaue f; ( ). Moreover, this supernode has anal o-
gous relationships to other states in terms of these attributes and properties.
Notethat from the ordering in (18), fsk( ) has alower value than the objective

fe (t) =

| unpi ngRev1b. tex; 26/03/2002; 13:55; p.12



Scale Invariance Properties in the Simulated Annealing Algorithm 13

function value of any S; ¢ S Lemma 2 further shows that like the optimal
states, the Si(t) has an objective function value that is aso less than the
expected objective function value for al ¢ > 0.

LEMMA 2. The objective function value of a supernode as defined in (19)
is less than the expected objective function value for all ¢ > 0. Thus, given
a state space with p objective function values, for all £ < p — 1 and all
temperaturest > 0, fg () < (f)(?).

Proof. Let S}, be asupernode and Q\gk be the corresponding complement
aggregate state. From the ordering of sets S; and the definition of Sy, every
i € Sy issuchthat f; < f; for every j € Q\ Sj. Consequently, any convex
combination of objective function values of statesinSj, is less than any con-
vex combination of objective function values of statesin €2 \ Sy. Therefore,
foral ¢ >0, fs (t) < fﬂ\ék (t). From the property of objective function
complementarity in Lemmal, forall ¢ >0, fg (t) <(f)(t). ®

Thislemmais used to prove the following theorem.

THEOREM 1. The stationary probability of a supernode S;, monotonically
increases with decreases in the temperature parameter ¢ (i.e., for all ¢, At >
0, with At < ¢, T4, (t - At) > TS, (t))

Proof. From Lemma 2, fs (t) < (f)(t). Applying (11) where S}, is the
aggregate node, omg, (t)/ot < 0 for al t, which establishes the result. B

The scale invariance exhibited by Theorem 1 indicates an interesting rela
tionship among the states. Recall from (2) that states with objective function
values greater than (f) (¢) have stationary probabilities that monotonically de-
crease ast decreases. (Mitraet al., 1986, p.755-6) observed that non-optimal
states ¢ with f; < (f)(¢) have stationary probabilities that increase as the
temperature ¢ is decreased down to some critical value where f; = (f)(t).
As (f)(t) continues to decrease with decreasing temperature ¢, f; > (f)(¢)
and the stationary probabilities of these non-optimal states monotonically
decrease.

This behavior of increasing and decreasing stationary probabilities is also
exhibited within a supernode as the temperature is decreased. Observe that
a supernode S, contains the non-optimal states in sets S; . . . Sk. This means
that the stationary probabilities of these non-optimal aggregate statesincreases
and then decreases as the temperature passes through some critical tempera-
ture. Thus, the states within the supernode with objective function values less
than fo(t) increase while those with objective function values greater than
fa(t) decrease. Yet from Theorem 1, the stationary probability of a supernode

| unpi ngRev1b. tex; 26/03/2002; 13:55; p.13



14 Fleischer and Jacobson

Supernode S,
$S - SiS. o &
)

Increasing objective function values —

Figure 1. Aggregate States Ranked by Objective Function Value

monotonically increases. This must therefore indicate that the states within
the supernode with increasing stationary probabilities more than offsets those
states within the supernode with decreasing stationary probabilities.

To see this, consider Figure 1 where aggregate states S . . . Sy form su-
pernode Sy and where fs, < (f)(t) < fs,,, for states S; and S;;; both
contained within the supernode (thus, < + 1 < k). In this case, for states S;
with j <4, dmg,(t)/0t < 0, hence these aggregate states have increasing
stationary probabilities in accordance with (2) and Theorem 1. However, for
aggregate states S; C Si with j > 4, g, (¢)/0t > 0, hence have mono-
tonically decreasing stationary probabilities. But from Theorem 1, the entire
supernode has 87r§k (t)/0t < 0. From this, and based on (5),

O (1)  Omg (t) Omg, g (1)
o ot ot

<0,

hence
aﬂ'gi (t) - —aﬁgk\gi (t)
ot ot

and the magnitude of the rate of increasing probability of SZ is greater than

the magnitude of the rate of decreasing probability of stateSy, \ S;. Therela

tionships between these rates suggests that any aggregate state that contains
asupernode will have a monotonically increasing stationary probability. This
point motivates the following discussion and theorem.

Theorem 1 is based on the abjective function value ordering in (18) and
the definition of a supernode i.e., al objective function values of states con-
tained in the supernode are strictly less than objective function values for all
states not in the supernode. Although this ordering preserves the properties
of the optimal states, it is also somewhat restrictive. The following theorem
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generalizes Theorem 1 by only requiring that the aggregate state contain all
the optimal states, i.e., also alowsit to contain other states.

Define a partial supernode A = S U A where A is a set of non-optimal
states and Sy, and A are separated, i.e., there exists some intervening states
with objective function values greater than the maximum objective function
value in S, and less than the minimum objective function value in A (see
Figure 2 for an illustration).

THEOREM 2. Given a supernode S, C  and a partial supernode A C
S, where the objective function values over the entire state space are non-
negative (f; > 0 for all i € Q), then there exists a temperature ¢ where
fo(t") < min{f; :i € S, \ A} such that the stationary probability of the
partial supernode monotonically increases, i.e., for decreasing 0 < ¢ < ¥,
i.e, dm4(t)/0t < 0.

Proof. To clarify the proof, let B = S, \ A, the relative complement of
A with respect to supernode S,,,. Since temperature ¢ is such that fo(t') <
min{f; :i € B} thenitfollowsthat foral 0 <t <, fa(t) < fp(t). But

fB(t) = falt) = f(t) — fg (1) + fg, (£) = fa(t) >0 (20)
Re-writing (20) using Lemma 1
TA(t)
T (1)
where A = S, \ B.

Now note that the second term in (21) is always negative (from Lemmas 1
and 2), hence the first term must be positive. Consequently, in reversing fz ()
and f4(t) in (21) and adding the second term yields

5 (t)
T (1)

Applying Lemma 1 and this time noting that B = S,,, \ A, thetermsin (22)
become

[£B(1) = fal)] + 7o g, () [£5, () — farg, (0] >0 (1)

[Falt) =[] +7qug. [fo, () = fas, ()] <0 (22)

[Fat) = £5, ()] + [£5,,(6) — fa(®)] <0

hence, for al 0 < t < ¢, fa(t) — fa(t) < 0 and therefore from (11),
o A(t)/0t < 0 and the stationary probability of the partial supernode mono-
tonically increases. B

The monotonic behavior of the objective function values for the supernode

and the partial supernode, as well as the form of the rate of change of the
stationary probability demonstrate scale invariance in the SA algorithm.

| unpi ngRev1b. tex; 26/03/2002; 13:55; p.15



16 Fleischer and Jacobson
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Figure 2. Partial Supernode with arbitrary and separated aggregate state A

3.6. SCALE INVARIANCE IN SECOND MOMENTS

The scale invariance described so far involved only the first moments of ob-
jective function values—expressions and formulations with f. This section
presents results on scale invariance involving second moments with terms
containing f2. Once again, a basis for comparison is needed. One useful
relationship is the derivative of the expected objective function value with
respect to temperature:

KW _ 0falt) _ (O ~[HOF _ b g

ot ot t2 12
(Aarts and Korst, 1989, p.20) where the second moment of f is defined by

() =Y mt)fl.

1€Q

and o} (t) is the variance of objective function values over the entire state
space at temperature ¢.

As noted earlier, scale invariance requires showing that reasonable defi-
nitions of certain quantities for aggregated states have similar relationships
to other quantities as do the analogous quantities for individual states. To
that end and using the same approach and justifications as in (6), define the
variance of the abjective function of a lumped node A by the conditional
variance

oh4(t) = E{(F — fa(t) | 1a(t) = 1}
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= > lfi— fA@PPr{F = f; | 1a(t) = 1}
=)
3 [fi = FA@)PP Pr{F = fi AN14(t) = 1}
= Pr{l,(t) =1}
-y [f7 = 2fifat) + [fa@®)]] mi()
icA ma(t)
Yicami(t)f;  Yieami(@)[fa(t))?

WA(t) WA(t)

= () alt) — [fa()]? (24)

where the second moment of the objective function of lumped node A at
temperature ¢ isindicated by (f2) 4(t).

Now that a suitable definition for the variance of alumped node has been

defined, scale invariance can be seen in the following similar relationship as
in (23):

ofalt) 0 (ZieAﬂ(ﬂfi)

ot ot Ta(t)
_ 0 (mi(t)fi
B g} ot < ma(t) ) (25)

Taking derivativesin (25) leads to

Gilmi(t) filma(t) — Wi(t)fiQWA(t)>
ot ot . 26
ZA< =10 29
Recall that 250 = TO[f; — fo(t)] and 240 = T40[£, (1) — fo(r)).
Substituting these expressions into (26) and simplifying leads to
ofalt) 1« m®fi,,
o T Bl )
_ 1l em@®fF 1 milt)fifat)
N tZieZA ma(t) tQ% ma(t)
= & [0 - A0
02
=3 (27)

with scale invariance shown in the correspondence between equations (23)
and (27)—scale invariance thus holds for second moments. The next section
describes how scale invariance in SA can be used in avariety of waysthat, in
some instances, are unavailable in other optimization schemes.
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18 Fleischer and Jacobson

4. Applications

One of the hallmarks of SA that makesit especialy attractive isits generality.
Indeed, it is SA’svery foundation in thermodynamics that permitsit to be used
as ametaheuristic—an optimization scheme that can be applied to numerous
optimization problems. It is also this foundation that gives rise to its scale
invariance by virtue of the exponential form of the Boltzmann Distribution.
It is this universality that provides clues as to the benefits of SA’'s scale
invariance—benefits that provide numerous avenues for the development of
new methodol ogies that take advantage of SA’s scale invariance.

The fundamental utility of scale invariance as a property of some under-
lying phenomenon is that it permits inferences to easily be made on different
scales based on some observed phenomenon or mathematical characteristics
associated with some given scale. It can therefore enable or facilitate the
analysis of aphenomenon at different scales or when information is available
only for contrived situations. In addition, if statistically based inferences are
possible at one scale, which is certainly the case with SA, scale invariance
can enable or facilitate statistical inference on other scales. Since SA is used
as an optimization scheme for many different types of problems, it is not
surprising that its scale invariance properties offer some advantages over
other optimization schemes. Scale invariance properties in SA can therefore
provide tools that facilitate the solution of both theoretical and practical prob-
lemsin analysis, statistical inference and optimization. This section provides
examples that explore and highlight these three potential application areas of
SA’s scale invariance properties and offers directions for future research in
the development of new experimental and computational methodologies.

Section 4.1 describes an example where SAs scale invariance was used
in analysis to extend results of a contrived situation to a more general situ-
ation. Section 4.2 describes how scale invariance in SA offers new avenues
for performing statistical inference with SA by showing how it is possible
to define confidence intervals for the value of specified decision variables in
the optimal solution without necessarily converging to the optimum. Finally,
Section 4.3 extends the ideas in Section 4.2 and describes a type of branch
and probability bound algorithm based on scale invariance that may improve
the finite-time efficiency of SA.

4.1. EXAMPLES OF SA'S SCALE INVARIANCE IN ANALYSIS

Scale invariance often provides an attractive angle of attack in the analysis
of problems. Indeed, this was the motivating factor in creating and exploring
SA'sscaleinvariance property in (Fleischer, 1993). (Fleischer, 1993) obtained
an analytical result for the contrived situation where the expected objective
function at temperature ¢, fo(¢), wassuchthat fs, < fa(t) < fs,— between
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the least cost and next-to-least cost objective function values. Such asituation
arisesin practical circumstances only after SA has ailmost converged.

The analysis to which scale invariance was applied involved the transitions
between the two sets of states, fs, and fs, and the distribution of typical (this
termisareference to the Asymptotic Equipartition Property from information
theory) annealing sequences (Goldie and Pinch, 1991). This contrived situa-
tion made the analysis more tractable since it was easier to define “typicality”
(see (Fleischer and Jacobson, 1999; Fleischer, 1993)).

Extending this result to the more genera circumstance where for some
k, fs, < fa(t) < fs,,,, required anew definition of an optimal solution so
that the analysis of this more general situation could proceed in an analogous
manner as in the contrived situation. By lumping the states with the lowest
k objective function values together thereby creating a supernodesS;, with al
of the same properties as the optimal solution, the subsequent analysis was
possible and made much easier due to SA's scale invariance property. Other,
as yet unknown, problems in analysis may very well be facilitated by using
the scale invariance property of SA.

4.2. STATISTICAL INFERENCE BY SIMULATED ANNEALING

The scale invariance of second moments and variances described above sug-
gest applications in the realm of statistical inference. This application, re-
ferred to as statistical inference by simulated annealing (SISA), congtitutes a
new way to perform statistical inference using SA. Since lumped states can
be defined by appropriate constraints on decision variables, new methodolo-
gies and new anaytical and experimental tools become available to assess
guantities associated with the lumped states. One potential value of this is
evident:

If the partitioning of the solution space is effected by putting constraints
on a specified variable, the value of that variable in the optimal solution
can be determined with a specified level of confidence.

This permits values of specified decision variables to be statistically ascer-
tained without necessarily obtaining a good estimate of the entire ensemble
of decision variables. This possibility constitutes afeature of SA that appears
to be unique among metaheuristics.

This section briefly describes the potential avenues for statistical infer-
ence based on SA’'s scale invariance using basic ideas and concepts. The goal
here is to introduce some of the basic aspects of SISA and how various test
statistics can be engineered to take advantage of SAs scale invariance. Issues
regarding sampling, the use of ratio estimates, the convergence of these es-
timates, and the exact distribution of the relevant random variables and test
statistics may therefore become active areas of future research.
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20 Fleischer and Jacobson

It is worth noting that SISA is intimately connected to the mathematics
of Markov chains. Recall that SA itself is embodied by a Markov chain.
As such, the statistical methodologies associated with Markov chain Monte
Carlo (MCMC) techniques are applicable (see (Norris, 1997)). These tech-
niques require that the SA algorithm isexecuted at afixed temperature and the
various objective function values produced at each iteration recorded. These
objective function values provide the raw data needed to cal cul ate various test
statistics.

The basic idea behind SISA isto partition the domain space of a problem
into mutually exclusive subsets, say A and Q2 \ A, and to make inferences
as to which subset contains the global optimum. This is done by comput-
ing estimates of fo(t), fa(t), fa\a(t), 0§ (t), and 0% (t), and testing whether
fa(t)— fa\a(t) = 0.Fromthe property of Objective Function Complemen-
tarity (see Lemma 1 and its corollaries), if fa(t) — fo\a(t) < 0(> 0), then
it is possible to infer that A (2 \ A) contains the globa optimum.

Consider the following illustrative example: Let P be a decision problem
with an n vector of decision variables x = {1, z2,...,z;,...,z,}, Where
x € {0,1} for all k. Partition the domain space into two mutually exclusive
and exhaustive sets A = {x € Q@ 1z, = 0} and N2\ A = {x € Q :
xy = 1} for some specified k. Therefore, sets A and €2 \ A constitute two,
complementary lumped states.

SISA is performed to ascertain the value of the specified decision variable
x. Thus, SA (MCMC) experiments are executed at some fixed tempera
ture ¢ for m iterations and output analysis is done in the standard way (see
e.g., (Hobert, 2001) for recent work on MCMC). Each such experiment pro-
duces two stochastically generated sequences of objective function values
and solution states of length m. For the " experimental replication of SA
at temperature ¢

{fiatitjmr = {fia+1s fiar2, -5 fiatm}
constitutes the sequence of objective function values and
{Xiatitim1 = {Xia+1,Xiat2, - Xijatm ) (28)

constitutes the sequence of corresponding solution states, where a is some
index count sufficiently high so as to ensure that the simulation achieves

Steady-state.
A somewhat less efficient though simpler experimental design to analyze
istorun: = 1,...,r independent replications of SA with the same initial

conditions and different sequences of pseudo-random variables. This pro-
duces the following realizations of objective function values (the subscript
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a isignored to simplify the expressions):

flla R flja AR flm

f2.17 SRR f2]7 ) f2m (29)

frla ) frja ey frm

Each column of (29) represents a set of i.i.d. realizations of objective function
values (see (Law and Kelton, 1991, Ch. 9)) approximately distributed accord-
ing to the Boltzmann Distribution at temperature ¢ (to avoid cumbersome
notation, the temperature parameter and the reference to the /" column are
dropped, where it is understood that the realizations of random variables are
i.i.d. with the simulation executed at temperature t). Define the following
random variables based on the random objective function value FE; generated
in the j™ iteration of experiment i as

P i Fyllie ) o Y Fyli € Q) A)
AT e d) T T T 1€ 0\ A)
and
D = Fy — Fg 4.

This naturally leads to the following definitions, for agiven column j, for the
test statistics:

fa= —Zi:rl fzilA‘a fora = it fZiIQ\A—a fo = Za=1 /i (30)
i=1 +A i=1 2\A r
as estimators of fa, fo\a, and fq, respectively. Note that in the denomina-
torsin (30) and for any column 5,37 14 =7 — >3i_; 1o\ 4. Using the
estimates in (30), define L
D= fa— fa\a

as an estimate of d = f4 — fq\a With three degre% of freedom (it can be
shown via the Central Limit Theorem that D—>N((fA — fa\a); o%). Fur-
ther analysis will shed light on the exact distribution function for finite-time
executions of SA).

Using these estimates, various forms of statistical inference are possible.
One approach is to test the following null hypothesis against the aternative
hypothesis:

H(): d =0
Hy: d <0or d>0

Should the test statistics result in the decision to reject Hy then, depending
on whether D < 0 or D > 0, one could infer that d < 0 or d > 0 and from
the corollary to Lemma 1, that f4 < (>)fq\ 4. One can then conclude that
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A or '\ A contains the global optimum and hence that z; = 0 (1) in the
optimal solution. This also suggests that computing a confidence interval on
the value of d can also be useful in deciding whether 2; = 0 or 1 provided
it does not contain 0. The foregoing a so suggests how a confidence measure
can be assigned to the entire ensemble of decision variables.

One of the implications of SISA isthat confidence intervals for each one
of the n decision variables can be obtained by using the data in (29) and
appropriate definitions of lumped states. This provides an approach to opti-
mization where one can assign a confidence level to each decision variable
in a putative solution—something not readily available in other optimization
schemes. Furthermore, it may be possible to improve on this approach and
the efficiency of running SA by modifying the search algorithm to search
only the partition deemed to have a high probability (high confidence level)
of containing the optimal solution. Thisideaisthe subject of the next section.

4.3. PARTITIONING ALGORITHMS

A practical application of the scale invariance in SA is in the design of a
partition, or branch and probability bound agorithm. See (Shi andOlafsson,
2000) for a description of a type of partition algorithm based on so-called
nested partitions. Such a partition algorithm would use SISA on each par-
tition to identify those subsets containing states with certain characteristics
(such as the optimal objective function value; see e.g., (Pinter, 1996)). For
these types of algorithm, the search is continued using the remaining subsets
as a new domain space. This process continues and sequentially shrinks the
search space in the hopes that it provides a more efficient search.

Because the decision rule for excluding a subset is probabilistic, such
a partition agorithm is aso a type of branch and probability bound algo-
rithm in which a subset containing some desirable feature is identified with a
high probability based on some prospectiveness criterion (Zhigljavsky, 1991,
p.147). The scale invariance in SA readily lends itself to both partition and
branch and probability bound type algorithms and the development of novel
prospectiveness criteria.

Whereas the example of SISA above employed partitioning the state space
into two mutually exclusive subsets to determine the value of a single, spec-
ified decision variable, it is also possible and, perhaps desirable, to partition
the domain space into a larger number of mutually exclusive subsets. Once
this is done, the subset deemed least likely to contain the optimum is then
excluded from further search. This provides a more conservative decision
rule for shrinking the domain space and hence lowers the probability of Type
| errors—i.e., the probability of excluding portions of the domain space con-
taining the global optimum. A natural question to then ask is how to rank the
various partitions.
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One way of ranking the partitions is based on the scale invariance ex-
hibited by (11) which is a measure of the rate of change of the stationary
probability with respect to temperature. An estimate of (11) for each partition
provides more information than the value of D = f4 — faa since (11)
weights the quantity D by the quantity 7 4 /#2.

Using these ideas, a recursive partitioning algorithm can be designed in
which partitioning isrepeated at successive iterations to shrink the state space.
Consider a partition of a discrete optimization problem defined by the sets
Ay, Ag, ..., Ay, based on some scheme that may take advantage of some
underlying structure (although the partitioning can in fact be completely ar-
bitrary). Recall from Theorem 2 that an aggregate state containing an optimal
state has a stationary probability that monotonically increases for sufficiently
low temperatures (how low this temperature must be for monotonicity is in-
dicated in the theorem statement). Using afixed temperature ¢, an estimate of
the derivative of the stationary probability of each partition can be obtained
from estimates of each component of (11). Thus, given an SA experiment
producing a sequence of states (see (28)), define the estimator

——

Ora,  Ta, [+ -~
5 = - |[fa. — Jol (31)
wherethe f,4. and fq, are defined asin (30) and
mo1
Ra, = % (32)

is an estimator for 7, (t). The estimate in (31) is used as the prospective-
ness criterion in the branch and probability bound nomenclature (Zhigljavsky,
1991).

Each partition Ay, isthus assigned a value given by (31) which is used in
a statistical hypothesis test (similar to the one described in Section 4.2) that
tests whether the optimal state i* € Aj. The partition with the highest value
of (31), and hence the lowest p-value, is eliminated from the state space. The
process is then repeated on the remaining set of states, i.e., a new set of &
partitions are established, SA is executed on this smaller domain, and the
necessary statistics computed. The procedure is repeated until termination
OCCurs.

Note that the estimate of the rate of change can be obtained without actu-
ally changing the temperature. In effect, this allows one to use perturbation
analysis to determine those partitions in which the stationary probability is
either increasing or decreasing, hence whether it is likely to contain an opti-
mal state (Fu and Hu, 1992). Instead of running the algorithm at temperature
t, obtaining statistics, and rerunning the algorithm at the lower temperature
t — €, a single execution can be used to estimate the rate of change of the
stationary probability of each partition.
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This procedure recursively shrinks the state space. If the probability of a
Typel error is sufficiently small, this procedure may provide an efficient way
of searching for optimal states. It is worth noting that in some sense, thereis
an equivalence between annealing by lowering the temperature and annealing
by successively reducing the search space.

5. Future Research and Conclusion

This article has explored various scale invariance properties in the SA a-
gorithm. The type of scale invariance examined here was based on scaling
the size of the state space by lumping states into aggregate states. Analysis
of the SA algorithm with respect to these aggregated states indicates a form
of scale invariance because the aggregated states exhibit similar behaviors
asindividua states. When these aggregated states are assigned an objective
function value based on a conditional expectation value, various relation-
ships are preserved between their steady-state probability and the expected
objective function value. This produces a number of relational properties
such as Objective Function Complementarity (Lemma 1 and its corollaries)
and monotonicity (Theorems 1 and 2). Scale invariance properties in second
momentswere also described aswell as rel ationships between the rate change
of the expected objective function value with respect to temperature. These
results collectively suggest that groups of nodes or sets of states can be treated
or viewed as single states. Properties such as convergence in probability to a
state can therefore be extended to convergence in probability to aset of states.

Scale invariance provides a new way of viewing the SA algorithm and
provides a solid basis for new research into methodologies, applications, and
implementations of SA that take advantage of this property. Potential appli-
cations include using these scale invariance properties in analysis. Because
scale invariance properties also relate the variance of objective function val-
ues to other quantities, statistical inference is possible. SISA provides for
the possibility of making inferences about the value of any specified de-
cision variable without necessarily obtaining the optimal solution. Finally,
applications of scale invariance in optimization were described.

Applications in optimization are based on the notion of recursive func-
tionals where subsets of nodes constituting a sub-domain are partitioned into
mutually exclusive subsets. The subset least likely to contain the optimum, as
indicated by a prospectiveness criterion, isthen excluded and SA re-executed
on the remaining states. This is similar to nested partition algorithms and
branch and probability bound algorithms. The approach of scaling the state
space can be especiadly advantageous for continuous problems where this
process can be repeated ad infinitum to induce SA to converge to a small
neighborhood of an optimal state. SA can therefore be used recursively to
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yield a more efficient use of computer resources, and hence, improve the
finite-time performance of SA.

For scale invariance to achieve its true potential, however, these areas
of application in analysis, statistical inference and optimization all require
further investigation. In SISA, research into the distribution of test statistics
for finite-time executions of SA would assist in determining the efficacy of
SISA on particular problems. Experimentation may also shed light on how
best to implement SISA concepts. Such research would also support efforts
to use scale invariance properties in optimization.

The potentia use of scale invariance in analysis hints at new discover-
ies to come. As is often the case, new patterns such as those exhibited by
scale invariance, require some time to germinate before their true potential
is achieved. Connections between SA and random Markov fields (see e.g.,
(Boykov and Zabih, 1998; Li, 1995)) may provide entirely new ways of
analyzing and solving complex problems.

The SA algorithm has been used to solve numerous hard discrete opti-
mization problems. SA has been framed as a “meta-heuristic” owing to its
generality. Viewing it strictly as an algorithm, however, imposes a limited
perspective on SA and diminishes its significance. Thus, rather than view-
ing it strictly as an agorithm, SA should be used as a tool for modelling
the dynamics and complexity associated with discrete optimization prob-
lems. This perspective unleashes the hidden value of SA: the analogies it
draws between discrete optimization problems, information theory, and ther-
modynamics (Fleischer and Jacobson, 1999). The scale invariance properties
examined in this paper illustrate only a few of the many potential connec-
tions between these areas of inquiry. Other ways to take advantage of the
scale invariance described here and further development of the connections
to information theory and thermodynamics are possible. Our hope isthat this
paper will encourage similar discoveries in this remarkable algorithm.
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