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ABSTRACT

Tendons have been widely used for power transmission in the field of anthropomorphic
manipulating systems. This paper deals with the identification and enumeration of the
kinematic structure of tendon-driven robotic mechanisms. The structural isomorphism of
tendon-driven manipulators is defined and the structural characteristics of such mechan-
ical systems are described. Applying these structural characteristics, a methodology for
the enumeration of tendon-driven robotic mechanisms has been developed. Mechanism

structures with up to six degrees of freedom have been enumerated.

1. Introduction

An open-loop kinematic chain is considered to be the simplest structure among various
designs of manipulators. However, actuators for driving such sytem must be installed along
the joint axes, which in turn increases the inertia of the manipulator. For this reason, a
large portion of the power is consumed on driving the actuators themselves other than the
load.

An alternative way of reducing the inertia of the system is to install actuators on
the ground and transmit power or torques through tendons. A tendon-driven articulated
manipulator, such as the UTAH-MIT Hand (Jacobsen et al., 1985) and Stanford/JPL
Hand (Salisbury, 1982), has the advantage of remote control and weight reduction. A few
tendon-driven mechanical systems can be found in the literature (Leaver and McCarthy,
1087; Mason and Salisbury, 1985; Morecki et al., 1984; Pham and Heginbotham, 1986).
To date, most of the studies on such mechanical systems have been emphasized on the
mechanics of manipulation and control of some spgcialized designs. The purpose of this
investigation is to establish a method for the identification of structural isomorphism and
the enumeration of the kinematic structure of certain type of tendon-driven manipulators.

Theory of synthesis in the area of epicyclic gear trains has been thoroughly studied
by Buchsbaum and Freudenstein (1970), Freudenstein (1971), Tsai (1987), and Tsai and
Lin (1988). In this work, we extend the theory developed for epicyclic gear trains to the

structural synthesis of tendon-driven mechanisms.
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2. Principle of Operation

For tei.don-driven manipulators, Morecki, et al. (1980) carried out the structural
analysis yielding the relationship between joint angles and tendon displacements. Subse-
quently, Tsai and Lee (1988) showed that the kinematic structure of tendon-driven robotic
mechanisms can be represented by a planar schematic from which the structure matrix,
relating tendon displacements to the joint angles, can be derived systematically.

For an n-D.0O.F. (Degree-of-Freedom) manipulator with m open-ended tendons, the

equation of transformation can be written as
$=AQ (1)

where S is an m x 1 column matrix representing linear displacements of tendons, © is
an n X 1 column matrix for the joint angles and A is an m X n matrix. If we assume
that all pulleys pivoted about one joint axis are of the same radius, then Eq. (1) can be

decomposed into the following form:

S=BRO (2)

Here, matrix B whose elements consist of —1,0 and +1, is an m X n matrix which describes
the routing of the tendons and, matrix R is an n X n diagonal matrix whose non-zero
elements are the radii of the pulleys.

Resultant torques, ¢, about the joint axes in the equivalent open-loop chain, can be

related to forces exerted by tendons, f, through the principle of energy conservation:

T, T
O t=

n

f (3)
Substituting the time derivative of Eq. (2) into (3), yields
t=RTB"f (@

For a given set of joint torques, Eq. (4) constitutes n linear equations in m unknowns.
In order to achieve positive tensions in the tendons, m should be greater than n. Thus,

the solution for the forces in tendons consists of a particular solution plus an (m — n)
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dimensional homogeneous solution. The parficular solution can be determined by the
generalized inverse transformation of Eq. (4) and the homogeneous solution corresponds
to certain sets of tendon tensions that result in no net joint torques. The homogeneous
solution can be expressed as a sum of (m — n) basis vectors each of them being multiplied
by an arbitrary constant. The (m — n) basis vectors span the null space of BT. The
homogeneous solution is necessary to be non-negative. Thus, by adjusting the constants,

positive tension can be maintained in all of the tendons.

3. Structural Characteristics of Tendon-Driven Manipulators

In this paper, we require all the actuators to be installed on the base link. Thus, every
tendon regardless of which link it is attached, must be routed through the base joint of
the manipulator and connected to its actuator on the base link.

We define the Degree-of-Incidence (D.0.1.) of a tendon as the number of joints
that the tendon has been routed over. For example, if a tendon has been routed over five
consecutive joints, then we say the D.0O.1. of the tendon is five.

Let n be the D.O.F. of a robotic system, m the total number of tendons, and m; the

number of tendons with : D.O.I. Then, we have

Zm,’ =m, (5)
=1

and
m>n+1 (6)

Note that m; defines the number of columns with ¢ non-zero elements in the matrix BT.
Since the robotic system is controllable, a subsystem containing any number of links
and their associated joints taken from the far end .of the original system should be also
controllable. This means the number of tendons contained in the subsystem should also
be greater than the number of joints by a minimum of one. If we consider the link farthest
away from the base of the system and its associated joint as a subsystem, then we can
conclude that there should be at least 2 tendons routed over the last joint. Since these two

tendons must be routed over all the joints of the original system, the sum of the D.O.I. for
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these two tendons is equal to 2n. Likewise, if we consider the subsystem consisting of the
last two moving links, then it should contain at least 3 tendons, and the minimum number
of total D.O.L is 2n 4+ (n — 1). Following the same argument, we conclude the lower limit

for the sum of D.O.IL. for an n D.O.F. robotic system with m tendons is given by:
n+(n-1)+n-2)+...+1+(m-n+1)<my+2my+3mz +... +nm, (7.a)

The upper limit is reached when all the tendons are attached to the last moving link.

Hence,

my +2ma +3mz +... + nmy, <nm (7.0)

Combining Eqs. (7..5) and (7.b), we obtain
nn+3)/2+(m-n+1)<m+2me+...+nm, <nm (7.¢)

These m;’s are also subjected to the following constraints:

mnp > 2

Mp +Mu_1 23

My +Mp_1+...+m12n-+1 (8)
We observ:: that the set (mu,mn—1,...,m;), when assembled into a structure matrix,
takes the following form:
rH H # 0 0 0 - - 0 0 07
, # # O# # # # - - 0 0 0
BT=| " L. (9)
# # # # # # 0 0 O
L# # # # # # # H# H#

where the “#” sign represents the existence of a non-zero element.
In Eq. (9), the existence of a non-zero element at the i** row and j** column implies

that the j** tendon is incident with the (n — i 4+ 1)!* joint, and the sign is determined by
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the direction of the tendon routing. In this notation, the rows have been arranged in a
reversed sequence, i.e. the first row represents the last joint in a manipulator. This will
facilitate the structural synthesis to be discussed next.

Based on the above discussion, we summarize the structural characteristics for the
tendon-driven manipulators as follows:

Cl. There is a minimum of two non-zero elements and one sign change between
elements in each row. This guarantees every joint can be manipulated in both directions.

C2. Exchanging any two columns, which is equivalent to the renaming of two tendons,
does not affect the function and structure of the system.

C3. The structure matrix can always be arranged in a form such that all the zero
elements appear on the upper-right-hand corner of the matrix.

C4. Changing the sign of every element in a row does not affect the generic character-
istics of the structure. This is equivalent to a change in the definition of positive direction
of a joint axis.

C5. The rank of the structure matrix is equal to the degrees of freedom of the system.
Hence, for an n-D.0O.F. system with m tendons, at least one determinant of a submatrix
formed by deleting (m — n) columns from the structure matrix shall not be equal to zero.
Furthermore, if m = n + 1, then the determinant of a submatrix formed by deleting any
column shall not be equal to zero.

C6. There exist (m — n) dimensional homogeneous solution to Eq. (4) such that all

the elements in the homogeneous solution are non-negative.

4, Structural Isomorphism

In order to define isomorphic structures, we assign a positive direction of rotation
to each joint axis and then sketch the mechanis'm‘ in a planar schematic introduced by
Tsai and Lee (1988). According to Tsai and Lee the element of the structure matrix is
determined by the tendon routing and the definition of positive direction of rotation for
the joint axes. If the direction of a joint axis is defined in a reversed manner, then the sign
for each element in the corresponding row of the structure matrix is altogether reversed.

Since the definition of positive direction for a joint axis has no effect on the function of
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a mechanism, two tendon-driv:  manipulators are said to be structurally isomorphic if
the structure matrices of the tv systems are identical; or if they become identical after a
change of sign for every elemecnt in one or more rows, or after rearranging the sequence of
certain columns, or a combination of both.

For example, if we define the axes of positive rotation to be pointing out of the paper,

the structure matrices for the manipulators shown in Figs.1(a) and 1(b) are given by

r_[-1 1 0 r_[-1 1 0
Bl“[—l -1 1}’ and B2‘[1 1 -1]’

respectively. It can be seen that after switching the sign of each element in the second row
of BT, BT becomes identical to BY. Physically, if we flip over the base joint axis of the
mechanism shown in Fig.1(b), then it becomes identical to that of Fig.1(a). Therefore, the
two mechanisms are said to be structurally isomorphic.

Another example is shown in Fig.2. The structure matrices for the mechanisms shown

in Figs. 2 (a) and 2 (b) are given by:

-1 1 00 -1 1 00
Bl ={-1 -1 1 0|, and B =|-1 -1 1 0},
-1 1 -1 1 1 -1 -1 1

respectively. By switching the sign of each element in the first row of BT, and then
exchanging the first and second columns, B becomes identical to B . This can also be
explained as follows. If we reverse the direction of the last joint axis in Fig. 2(b) and
rename F) to F; and F, to F}, then the two mechanisms become identical. Therefore, the

two mechanisms are said to be structurally isomorphic.

5. Structure Synthesis
In what follows, we shall limit ourselves to those tendon-driven robotic systems with
the number of tendons greater than the number of D.O.F. by one. For example, if n =3,
then m = 4. Writting Eqs. (5), (7.c), and (8) for n = 3 and m = 4, yields
my+me+m3 =4 (10.a)

9<m;+2my+3ms < 12 (10b)
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mg 2> 2 (10.c)

m3 +me >3 (10.d)

Solving eq. (10.a) for my, m, and m3 subjected to the inequality constraints, eqs. (10.b -
10.d), yields (my,m2,m3) = (1,1,2), or (0,2,2), or (1,0,3), or (0,1,3), or (0,0,4). Table
1 shows the admissible structure matrices corresponding to the above possible solutions.
Note that the structure matrix for those system with m —n = 1 must have a positive homo-
geneous solution f to Eq. (4). Otherwise, it is not controllable and, hence, not admissible.
The number of admissible structure matrices increases as the number of D.O.F. increases.
Morecki, et al. (1980) predicted there could exit up to 23040 admissible structures for
six-D.0.F. manipulators having seven tendons. In what follows, we shall consider only

those systems whose structure matrix takes the pseudo-triangular form, i.e.

€11 €312 0 o --- 0
€21 €22 ez3 0 --- 0
BT = |. . . o e , (11)
€n-1,1 €n-1,2 - - .- 0
€nl €n2 : R R |
or (my,ma,ma,...,my) =(1,1,1,...,2) where

im;:m:n-}-l.
i=1

Each non-zero element in Eq. (11) can assume the value of +1 or —1 provided that the
resultant matrix satisfies the structural characteristics C1 - C6 outlined in the previous
section. Since there are n(n + 3)/2 non-zero elements in a robotic system having n-
D.O.F. and (n + 1) tendons, the number of possible structure matrices is equal to 2 to the
n(n + 3)/2th order. It would be very difficult if not impossible, to identify the admissible
structures from such a large number of possible combinations. In what follows, we present
a simpler approach.

We start the syﬁthesis with a known n by (n+1) structure, called the generic structure,

and increase the degree of freedom one at a time. In view of Eq. (11), we conclude that
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each time we increase the degree of freedom:' by one, both the number of links and the
number of joints in the equivalent open-loop chain (Tsai and Lee, 1988) should also be
increased by one. Let the new link be connected to the base-link of the generic structure
by a turning pair and let the base-link of the generic structure be the first moving link
and the added link be the base-link for the new mechanism. Then, all the tendons in the
generic structure must now be extended over the newly added joint to allow all actuators
be connected to the base. Moreover, an additional tendon is required to connect the first
roving link to the new base-link.

From the structure matrix point of view, this procedure implies that the matrix of the
generic structure are to be supplemented by an additional column and an additional row.
All the elements in the supplemental column, except the last, are to be set to zero. A new
element in the supplemental row can assume the value of +1 or —1. For convenience, we
let the last element of supplemental column (and row) be +1. Hence, there are potentially
2™ combinations. However, some of the combinations may be rejected due to the violation
of the structural characteristics, C1 - C6, or may be eliminated due to the reason of
structural isomorphism. So the number of admissible non-isomorphic structure matrices
is usually much less than 2*. This procedure can be automated by a computer program.

We summarized the systematic procedure and the results as follows:

One-D.O.F. system. We start with the most fundamental manipulator with two
links and one turning pair. The only possible structure is shown in Fig.3(a) where two
cables are routed through different sides of the joint. Figure 3(b) shows the structure matrix
of Fig.3(a). We note that the element (1,2) has been chosen to +1 and the homogeneous

solution is given by f = (1, nT.

Two-D.O.F. system. There are 2> = 4 possible combinations to supplement an
additional row of non-zero elements to the structure matrix of one D.O.F. system. Only
one form, as shown in Fig.4(a) satisfies the structural characteristics C1 - C6. The cor-
responding structure matrix is shown in Fig.4(b). The homogeneous solution is given by

f=(1,1,2)7T.

Three-D.O.F. systems. There are 2° = 8 possible combinations to supplement
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an additional row to the matrix shown in Fig.4(b). Only three were found to satisfy C1
- C6, however, two of them were structurally isomorphic. Hence, there exist only two
nonisomorphic structures as shown in Figs.5(a) and 5(c). Figures 5(b) and 5(d) show their

corresponding structure matrices.

Four-D.O.F. systems. There are 2* = 16 possible ways to supplement one addi-
tional row to each of the matrix shown in Figs.5(b) and 5(d). Since there are two struc-
turally nonisomorphic structures for the three-D.O.F. systems, totally, 16 x 2 = 32 possible
structures can be generated for four-D.O.F. systems. Thirteen of them satisfy structural
characteristics C1 - C6. But, only eleven are structurally nonisomorphic as shown in

Figs.6(a) - 6(k). The corresponding structure matrices are also shown in Figs.6(a) - 6(k).

Five-D.O.F. systems. There are 2° = 32 possible ways to supplement one additional
row to each of the matrix shown in Figs.6(a) - 6(k). Since there are eleven structurally
nonisomorphic four-D.O.F. systems, a total of 11 x 32 = 352 structures can be generated
for five-D.O.F. systems. After applying structural characteristics, C1 - C8, and checking
for structural isomorphism, we obtained 141 types of drives that are structurally noniso-

morphic.

Six-D.O.F. systems. There are 2% = 64 possible ways to supplement one additional
row to each of the matrix of five-D.O.F. systems. A total of 64 x 141 = 9024 possible
structures can be generated. Again, after checking for structural characteristics, C1 - C6,

and structural isomorphism, we obtained 3905 structurally nonisomorphic drives.

6. Summary

The structural characteristics of tendon-driven manimulator systems have been inves-
tigated. A criterion for the identification of struétﬁre isomorphism has been established
and a methodology for the enumeration of tendon-driven manipulators having pseudo-
triangular structure matrix has been developed. All the admisible structure matrices with
up to six-D.0.F. have been investigated. We have found 3905 structurally nonisomorphism

drives with six-D.O.F. as opposed to 23040 solutions obtained earlier by Morecki, et al.
(1980).
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We note that there is a planar schematic corresponding to each structure matrix.
However, each planar schematic can be converted into various different spatial mechanisms
depending on the twist angle chosen for every pair of adjacent joint axes. This is also true
for the construction of planar mechanisms, for which the twist angles can be either zero
or one hundred and eighty degrees. Hence, the number of functional mechanisms is much

larger than that of structurally nonisomorphic structures.
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Caption Summary

Fig. 1 Two structurally isomorphic tendon-driven manipulators having two-D.O.F.
Fig. 2 Two structurally isomorphic tendon-driven manipulators having three-D.O.F.

Fig. 3(a) Functional schematic of a one-D.O.F. tendon-driven manipulator.

Fig. 3(b) Structure matrix of Fig. 3(a)

Fig. 4(a) Planar schematic of a two-D.O.F. tendon-driven manipulator.

Fig. 4(b) Structure matrix of Fig. 4(a)

Fig. 5(a) Planar schematic I for three-D.O.F. tendon-driven manipulator.

Fig. 5(b) Structure matrix of Fig. 5 (a).

Fig. 5(c) Planar schematic II for three-D.O.F. tendon-driven manipulator.

Fig. 5(d) Structure matrix of Fig. 5(c).

Fig. 6 Planar schematics and associated structure matrices for four-D.O.F. tendon-driven

manipulator.
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Structure matrices for manipulators having

Table 1.
three-D.0.F. and four control tendons.

(mll m2I m3) (L, 1, 2) (0, 2, 2) (1, 0, 3) (0, 1, 3) {0, 0, 4)
4 # 0 O # # 0 O # 4 # O $# # % O # % % 4
BT ¢ # # 0 £ % # % # # # O £ % # # # % # #
 # # # # 0# % # # # # # # # % # # # # #
admissible -1 1 0 0 -1 1 0 O no 1 1-1 0 1 1 -1 -1
solution -1-1 10 Lol solution L1l 1-1-11
-1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1
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5 Calculating the Quantities Needed for the Opti-
mization Algorithm

In order to use a gradient-based numerical optimization algorithm, we need to calculate
the average distortion for a specified SSQ and the gradient of the average distortion with
respect to the SSQ parameters. In Subsection 5.1, we will describe how to evaluate the
average distortion. In Subsection 5.2, we will determine the partial derivative of the
average distortion with respect to each of the thresholds of each of the quantizers in the
transmitter. In Subsection 5.3, we will determine the partial derivative of the average

distortion with l:espect to each of the next-quantizer map p>ara.meters.

5.1 Evaluating the Average Distortion

The average distortion D incurred by an SSQ is given by (4). Thus, to evaluate D for a
given SSQ, we need to calculate the m;’s and Dj;’s. We begin with the 7;’s. We will show
that the 7;;’s can be found by solving a system of S(T — 1) linear equations in S(T' — 1)
unknowns.

From the definition of 7;;, we have

s
Tjis = Z P[S¢ =j,S¢_1 = m,Tg =t]

m=1

i

s
Z P[Sg = leg_l =m, Tt = i]P[S,_l =m, Tg = 3].

m=1
But the transmitter state T; is a function of the prior HMS switch states S,_;,S;_3,...,

and (S;)2, is a Markov chain, so
P[Sc =j|Se1 =m, T, =] = P[Sy =j|S1 = m] 2 Ajim.-
Hence

S
Tji = Z /\j|mP[S¢_1 =m, T¢ = ‘l]. (12)

m=1
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We have now used the assumption that the switch is Markov, so the rest of our derivation
will not hold for more general composite sources.
Next, we express P[S;—; = m, T, = i| in a formula that includes the transmitter state

and the index of the observed cell at the previous time instant:

T C
P[Sg-l = m,T. = 'l] = 2 E P[St_l = m,Tg = i,Tg-l = k, C¢_1 = l]
k=1 =1
T C
= Z { P[Tg = ‘iISg_l =m, T‘g_l = k, Cg_l = l]
k=1 (=1

X P[Cg = ”Sg =m,T¢ = k]

x P[S; =m,T, = k] }.
Now the quantizer that is to be used at any particular time instant is a function of the
quantizer that was used at the previous time instant and the observed cell. Conditioned
on this information, the quantizer decision is independent of the state of the switch at

the previous time instant. Thus,
P[Tt = ilsc-l =m, Ty = k,Cry = l] = P[Tt = i'Tt—l =k,Coiy = l]-

Using eq. (6) and defining

Vimk 2 P[C, =S =m,T; = k] (13)
[ an(@)d 14
= m\T ) 4T,
s 9 (14)
we obtain
T C
P[Se-i=m,Te =i = Y ) TiaViimhTrmh- (15)
h=1l=1

Combining (15) and (12) and rearranging terms,

s T C
LEDIDY (’\J’lm > Ta;u'mm;.) Tmk- (16)

m=1 k=1 =1
Define
A c
Ajijmi = Ajlon D Tt Vijmbs- (17)
{=1
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Ajims is the conditional probability of the source/transmitter system state moving to
(Se+1 = J,Teyr = i) given that (S, = m,T; = k). Equation (17) allows us to rewrite
equation (16) as
5 T
=3 3 Ajimk Tk (18)
m=1 k=1
There is one such equation for each j € Js and i € Jr, so the x;;’s satisfy ST linear
equations in ST unknowns. However, the solution for this system of equations is not
unique; for example, the all-zero vector solves (18). Of course, we are only interested in
that particular solution for which the 7;;’s define a probability distribution. By using this
constraint, we can derive a new system of equations with fewer unknowns that does have
a unique solution. Observe that
A T
P(Se=j] £ p; = Y mi (19)
i=1

Hence, we can treat m;r as a dependent variable* and replace it in equation (18) by

T-1
1r,-T=p,~—Z7rjk, j=1,2,...,S. (20)
k=1
Thus,
s T
Wi = Z 2 AjilmkTmk
m=1 k=1
s T- 1 S
= 3y Ajitmk = AjitmT)Tmk + Y AjijmTPm. (21)
m=1 k=1 m=1

This last equation must hold for each ¢ € Jr_, and j € Js, yielding S(T — 1) equations
in S(T — 1) unknowns.

We now describe one way of putting this system of equations into the standard form

$z =, (22)

4Of course, we could have made x;, with some other k € {1,2,...,7 — 1} the dependent variable;
theoretically, it makes no difference which one we select. Notationally, however, it is easier to use T,

14



so that the ;;’s can be found using any standard subroutine for solving simultaneous
linear equations.

Let 845, where a and b are integers, be the Kronecker delta function:

1, ifa=2b;
bap = (23)

0, otherwise.

Equation (21) can then be rewritten as

5 T-1 s
3" S (Ajitmk — AjitmT — Simbi)Tmik = — Y AjiimTPms (24)
m=1 k=1 m=1

with one such equation for each j € Js and 1 € Jr_;.

We will use r to index the rows of ¢ and b, and ¢ to index the columns of &. For‘
each j € Jsand i € Jr_;,let r = (j — 1)(T — 1) + 4, and for each m € Js and k € Jr_;,
let ¢ =(m — 1)(T — 1) + k. This indexing means that the x;’s are being placed into the

vector z in the following order:

T
zZ = [1!'1'1 1,3 -+ T2, T-1 M3,1 3,3 ... W3, 7-1 ... ®G1 N§3 ... "'S,T—I] y

where the superscript T means transpose (2 is a column vector). ¢ and b are now com-
pletely determined. The element in the r-th row of the vector b of (22) is given by
s
b, = — Z AjilmTpmv (25)
m=1

and the element in the r-th row and the c-th column of the matrix & of (22) is given by
®,c = Ajiimk — AjipmT — djmbin. (26)

Any subroutine for solving linear systems can now be used to get the vector 2, from which
the x;’s are obtained by observing that the element in the r-th row of z corresponds to
mji for r = (j — 1)(T —1)+14, j € Jg and i € Jr_;. The 7;7’s are then readily obtained

by using equation (20).
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We now calculate the average distortion incurred by applying the i-th quantizer to the
j-th subsource, Dj;. In general, the formula for Dj; is given by (3). Obviously, to evaluate
Dj; we need to select the reproduction levels 7. We now show how to do this optimally.

From equation (4), we get

31r,.
31,‘ J_ZIX_; JZ_;; s (27)
Note that the reproduction levels for any particular quantizer have no influence over the
next-quantizer decision rule. Therefore, m;;/8nf is equal to zero for all values of j and i,
so the first double summation vanishes. Furthermore, the reproduction levels for the i-th
quantizer do not affect the average distortion incurred by the k-th quantizer when k # i,

so the second double summation reduces to a single summation. Thus,

S aD,,.
Bm J}; ikt (28)
with
D _ ¢ o) 2tz
= dz.
N Db = (29)

To proceed, we must be more specific about the distortion measure. We will use a

weighted-squared-error criterion, with possibly a different weight for each subsource:®
d.i(z,y) = wi(z - y)zr w; >0, j€Js. (30)
Then equation (28) becomes

=2 me, / (m - 2)g(z) de. (31)

8"! j=1
Let
¢
-1
SFor example, w; = w3 = ... = wg means minimising the average squared error, while w; = 1/0}, j €

Js, with o} being the variance of the j-th subsource, means minimising the average noise-to-signal ratio.
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Table 1: Summary of the steps required for computing the weighted mean squared error
D for a given SSQ.

1. Compute the probability of each of the C cells for each of the T quantizers using
(14).

2. Compute the Ajims’s using (17).

3. Solve the linear system of equations ®z = b for the vector z, where b and ® are
given by (25) and (26), respectively.

4. Recover the 7;’s from z via the formula 7j; = z(j_1)r-1)4i, for j € Js and ¢ € Jr_;.
5. Recover the 7;r’s using (20)

6. Compute the centroid for each of the C cells of each of the T quantizers using (32).
7. Compute the optimal reproduction levels for the quantizers using (33).

8. Compute the distortion incurred by applying the i-th quantizer to the j-th source
using (3).

9. Compute the average distortion using (4).

Setting (31) equal to zero and simplifying yields
s s
0= ;_:lehwj#ujk / ,—zi T W)k - (33)
Once the optimal reproduction levels are found, the Dj's can be calculated. Having
calculated the =;;’s and the Dj’s, the average distortion incurred by an SSQ can be
evaluated using equation (4). The steps required to compute the average distortion D

achieved by a given SSQ are listed in Table 1.
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5.2 Evaluating the Partial Derivative of the Average Distor-
tion with Respect to an Arbitrary Quantizer Threshold

From (4), we get
_ om;; I 8Dy
a{l Z z DJ‘ a{l Z Z 7I..7' 0{“ ¢ (34)

Jj=1i=1 i=14=1
We now evaluate the first of the two double summations. By (19),

T 81r,-;
2 ot ="

i=1
80
5T Or.  S.T-1 67r )
Dy ok Dji — Djr) 35
L& oy ~ LD P )

The Dj;’s were computed in the last section; the remaining problem is to calculate

Recall that the =;;’s, with j € Js and i € Jr_,, were found by solving a linear system of
equations denoted by ®z = b, where the formulas for the elements of  and b were given

by equations (26) and (25), respectively. It follows that

9z

<I>_ = g9 36
5 e
with
b 0%
o -~ %
L'} 9% "3 flqz. (37)

We now explain how to compute 8b/8¢] and 8%/8¢]. Afterwards, we will be able to
give a succinct formula for the elements of the vector 6¢.

Fori,k € Jr.;and j,m € Js,definer = (j—-1)(T-1)+iand c= (m—1)(T - 1) +k.
Then the element in the r-th row and the c-th column of 8% /8¢] is given by (see eq. (26))

0%,. _ OAjimr _ O AjiimT
a¢f 8¢’ o&

(38)
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By equation (17),

8.45;',,.'. _ ¢ 8‘7n|ml|
ag = /\J'mnglr,pm aff . (39)

From equation (14),

gm(ér), if k=gqandn =1

0Ynim .
;qu= —gm(elk% if k=qandn=1[0+1;
{
0, otherwise.
Thus,
8 Ajijm Ajim (Tint — Tia41)m(€F), i k= g;
oE (40)
: 0, otherwise.
Using the Kronecker delta function of (23), we can simplify this to
8A ji|m.
32;1 : = BngAjim (Titet — Tifhd+1)gm (€F)- (41)

Since 8 Ajijmi/0¢] = 0 when ¢ # k, and since k is only taken to run from 1 through T'—- 1

when forming the matrix &, equation (38) becomes

8§rc _ 8Aji|ml¢
o —  of

= SigMjim(Tiet — Tithot1)gm(&F) (42)

for ¢ € Jr_y. For ¢ = T, equation (38) becomes

8%, _  9Ajimr
or 8
= —/\j'm(f.]ﬂ - 7'|'|T.l+l)gm(£;r)' (43)

The r-th element of the vector (8% /8¢ )z, denoted by

28

Tk
is found by taking the inner product of the r-th row of 8&/8¢f and the vector z. Because

the elements in the c-th column of 8®/8¢] and the c-th row of z correspond to the m-th
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subsource and the k-th quantizer via ¢ = (m —1)(T — 1) + k, where m € Js and k € Jr_,,

the r-th element of (8%/8¢})z is given by (recall that z. = 7, for this ordering)

8% STV 88,
—Zly = ——a 2
G = & B
s T-1
= 3 Srgdiim(Tint — Titnts1)gm (€5 ) Tmi
m=1 k=1
s
= (Tigt — Tigd+1) 3 TmaAjimgm(€f) (44)
m=1
for ¢ < T. For ¢ = T, the formula is different:
3 3@ S(T—l) aQrc
[a—fz]r = BET %
El c=1 £l

S T-1
= 3 “Ajm(mim — raras1)gm (& ) Tma
m=1 k=1

s
—(Tart — Tiras1) Y (Pm — TmT) A jimm (&), (45)

m=1
using equation (20).
We now turn our attention to the vector 8b/8¢!. For j € Js and i € Jr_;, let

7 = (j — 1)(T — 1) + i. Then the r-th element of the vector b is given by equation (25).

Hence
o | ® q#T;
ogf ~ s (46)
! — 35 Pm(BAjimr/BET), otherwise.
Using equation (41), we get
ab s r
aer = (ramaes = 7am) 2 PmAsimdm()- (47)
m=1l

We can now compute the entries of the vector 8% appearing on the right-hand side of

(36). Since 8b/8¢] equals zero when ¢ < T, we get

—gg‘;z, when ¢ < T;;

6% = v (48)

%— 9T %) when ¢ =T.



Therefore, for ¢ < T,

%
g _ [
01- [ae;} z]"
s
= —(Taqt — Tigd+1) 2 TmeAjimdm(€F)
m=1
S
= (Tilq.l+1 - "'ilql) 2 ”mq’\jlmgm(ff) (49)
m=1

for r = (j — 1)(T — 1) +i. For ¢ = T, subtracting (45) from (47) and simplifying yields

s
07 = (Tyrger = Tamt) D T Ajim gm (&1 (50)

m=1

which has the same form as (49). Hence, we can combine these two formulas into one:

S
0% = (Tyqusr — Tilgt) 2_ TmgAiimdm(&l)y g € Jr, 1 € Jo-1. (51)

m=1

Once this system of equations is solved for 8z/3¢}, we can compute (35). This com-
pletes the evaluation of the first double summation on the right-hand side of (34). We
now go after the second double summation on the right-hand side of (34).

At first glance, it might appear that a change in the thresholds of the g-th quantizer
will not affect the average distortion incurred by the i-th quantizer when g # i, which
would mean 8D;;/8¢} = 0 for i # q. However, this is not true in general because a
change in any of the thresholds affects all of the 7;’s, which in turn affects the optimal
reproduction levels for every quantizer (see equation (33)), and, of course, this affects the
average distortion incurred by each of the quantizers. Thus, 8Dy /¢! # 0 in general,
even if i # q.

Considering the reproduction levels as functions of the thresholds rather than as in-

dependent variables and applying Leibniz’s Formula (17, p. 245], we get:

9D; 8 o
ar ag;![ L 4:(3,nn)y,(=)dz]

= [ ale) s

8":(”’ ) dz + big9;(€7) [dj(ff, n) - dj(f?,mqn)] ’
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where §;; is the Kronecker Delta.

Recall that we are assuming that
dj(z,y) = wj(z — y)21 w; >0, j=1,...,M,

80

0D Bnn ;
351 B 351 /:.-x 9i(2)(nn =~ =) da

+ 5;.,wjgj(£, )(ﬂ?ﬂ - 11;')(2&" - '7?+1 - "7?)
c 371:; i
2w; E:l ‘3??‘[77“7n|ji — Pnjji]
+ 8iqw;g; (& )(niyy — nf)(2E7 — i, — nf). (52)

Observe that

DD ILE D ) [2,,,,2 Sk — o]

J=14=1 i=14=1
ixq i#q
.S S
= 2 Z E 36 M D THRW;Ynji — Y TiiWikni | -
l;l n=1 5l j=1 j=1
T#q

But the quantity inside the parentheses is zero as long as we choose the reproduction
levels to be optimal for the given thresholds and next-quantizer map via equation (33).

Thus,
5T

3L ae, = 3m ae,

Jj=1i=1 j=1
But we can simplify this expression further. Observe that

Z "':q 8{, Z”n w;g;i(&7)(nfhy — nf) (28] ~ M1 — M)

j=1 =1

+ 2w; Z X [”vﬁnln l‘nln]

S

(nfa —nf)(26] - "7?4-1 [Z wJﬂngJ(fq)

j=1
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S s
+ 2 Z « BEs (nﬁ Z TiqW;iTnljq — Z "'J'qw.il‘nliq) .

Jj=1 i=1
But the quantity inside the parentheses is zero, again by equation (33). Thus,
S T s
2> "ras 36" = (1l — 0026 — nfa —0f) | o miawsgi (6] (53)
j=1li=1 =1

Remark. This last formula looks similar to a formula encountered in the derivation

of the Lloyd-Max design equations. The difference is the presence of the function

S
Y wiqwigi(€l)
ij=1

which is not, in general, a probability density function. O
Plugging (35) and (53) into (34), we have the complete formula for the partial deriva-
tive of the average distortion with respect to the I-th threshold of the g-th quantizer when
the distortion measure is weighted squared error:
S T-1

81\',','
Z Z(DJ- - DJ'T)‘BT;;

1i=1

)
+ (0l — )2 — nia — i) [Z ~iqw;g;(§ )] (54)

j=1
for all ¢ € Jyr and | € Jo_;.

The steps required to compute 8D /€] for a given SSQ are listed in Table 2.

5.3 Evaluating the Partial Derivative of the Average Distor-
tion with Respect to an Arbitrary Next-Quantizer Map
Parameter

From (4), we get
8D s T 81!'_,','

Oram 22t B : E i

j=1i=1 j=1i=1

8qurl (59)
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Table 2: Summary of the steps required for computing the partial derivative of the average
distortion with respect to an arbitrary quantizer threshold.

To compute the derivative w.r.t. §:
1. Form 6% using (51).

2. Solve the system &y = 0% for y, where @ is given by (26).

(2]

. Recover 8r;;/8¢} from y via the formula 87;; /& = y(j-1)(T-1)+:-

'-N

. Obtain 8D/} from (54).

We now prove that the second double summation on the right-hand side of this equation

is identically zero. To begin,

i o IS [T e
= "‘;1/ g,(z)Zw,(n,,—:c) 7’" dz,

since d;(z,y) = wj(z — y)*. Using equations (32) and (14),

3D,“' c a"‘li :
= 2w; 2 [ Tnii; — Hnlij)-
Otgm El rapa 170 T Kk
Therefore,
S T s T
}: Z 7";: 31‘ = Z Z 7ji 2w;j Z dr, [”n'YnlJ: I"n|ji]
j=1i=1 alpl j=1i=1

T s s
= 2 Z E 81-, (ﬂ; }: T5iWiTnli; — Z Wjiwj#nuj) .

i=1 n=1 j=1 j=1
But the quantity inside the parentheses is zero because the reproduction levels are chosen
to satisfy equation (33). Thus, the second double summation in equation (55) is identically

zero, so (55) reduces to
s T

=S Y Dk, (56)

8"1[# j=1i=1 OTqgipt
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Equation (56) can be further simplified. Since

T
275 = pjy

=1
we have
01|','T _ T 81r,'.-
OTqipl i=1 a"'qlpl’

which enables us to rewrite the double sum as

6D
OTqlpt

> TZ-I(D Dyr) 2%t (57)
= i — Dir -
j=1i=1 ! ! OTipt

To evaluate this double sum, we can now proceed as we did in the previous subsection.
But now the the system of equations to be solved for the partial derivatives of the =;’s
has the form @y = 0%, where ® is the matrix whose elements are given by (26), and fo#
is a vector whose elements depend on ¢, p and |.

As belore, let 1,k € Jr_;, j,m € Js, and
r=G—-1)(T-1)+1 and c=(m—1)(T —1)+k.

Then the element in the r-th row and the c-th column of 3® /87, is given by (see equation

(26))
0%,  O0Ajimr _ O Ajijmr

OTqpt - OTgipt OTgipl ) (58)
By equation (17), we have
OAsmi O ¢
Bray = B 2 Tikn i)
= bigbupAjimVijma- (59)

Therefore, since k is only taken to run from 1 through T — 1 when forming ®, we have

0% e, ifp< T
rc - (60)

o - .
Talpl _Egﬂ%, ifp=T.
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Thus,

0%, SigOkpAjimMyme 1 p < T
(61)

81’,”,] "6iq/\j|m7l|mT if p= T.

The r-th element of the vector (8® /87, )z, denoted by

[ ad n
OTgipi n

is found by taking the inner product of the r-th row of 38 /874, and the vector z. Because
the elements in the c-th column of 8%/87,, and the c-th row of z correspond to the m-th
subsource and the k-th quantizer via ¢ = (m —1)(T' — 1)+ k, where m € Js and k € Jr_,,

the 7-th element of (8®/87ym)z is given by (recall that z. = Tmy for this ordering)

o® . ST-Y) 53,
r = Ze
Orgipt =1 Orgpl
s T-1
= Z Z siqskp'\jlm‘mmurmi.
m=1 k=1
s
= big ) AjimVmpTmp (62)
m=1

for p < T. On the other hand, for p = T we get

Y3 | ST-Y pg,,
Zjp = ¢
a‘rq|Tl e=1 arq]Tl
s T-1
= Y Y ~EigdjimMimT Tk
m=1 k=1
s
= —biq 3_ AjimMimT(Pm — Tm1)- (63)
m=1 .
Now
db, 9

s
=Y Ajimrom]

m=1

{0, ifp<T;

—6ig 35 1 (0AjiimT/OTqT1)Pmy P =T.

OTqipt Ot
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Thus,
8b,

S
= —§; A .
aquTl iq Z PmAjim Y mT

m=1

We can now compute the entries of the vector 8%, Since 8b/8r,, is the all-zero vector

when p < T, we get

_ 8% ,
Bry 2 when ¢ < T;;
g = (64)
)
8:"’,' - af'mz, when p = T.
Hence,
s
03" = —big Z Ajtm YtimpTmp (65)
m=1
if p<T and
s s
037 = =8 . PmdiimMimr + big D (Bm — TmT)AjimViim (66)
m=1 m=1
s
= —6ig 3 MimVimTTmT (87)

m=1

if p=T. Hence, for all ¢ € Jr_,, p € Jr, and | € J¢, the formula for the r-th element of
the right-hand side vector is given by

5

o = -5«;2;1 Ajlm VijmpTmp- (68)

Once the system of equations ®(8z/87,,) = 0% is solved, we can evaluate (57).

This completes our discussion of how to evaluate the partial derivative of the average

distortion with respect to an arbitrary next-quantizer map parameter. The steps required

to compute 8D /871y, for a given SSQ are listed in Table 3.

6 Performance Bound

In this section we obtain a lower bound for the average distortion that can be achieved

by an SSQ.
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Table 3: Summary of the steps required for computing the partial derivative of the average
distortion with respect to an arbitrary next-quantizer-map parameter.

To compute the derivative w.r.t. T
1. Form 6% using (68).
2. Solve the system &y = % for y, where & is given by (26).
3. Recover Om;;/ 97y from y via the formula 8w /01y = Y(j-1)(T-1)44-
4. Obtain 8D/87yy from (57).

Consider the situation where the transmitter knows the state of the switch~ at the
current time instant before the next-quantizer decision is made. For this case, we need a
bank of at most S quantizers because there are only at most S distinct probability distri-
butions for the next observation. For notational convenience, we will proceed as if we need
S distinct quantizers. Thus, the quantizers can be put into one-to-one correspondence
with the switch states.

Recall that D;; denotes the average distortion incurred by applying the i-th quantizer
to the j-th subsource and D; denotes the average distortion incurred by applying the i-th
quantizer. Since the i-th quantizer is now used only when the switch at the previous time
instant was pointing at the i-th subsource, we have

M
D; =Y AmjDim.
m=1
The average distortion D for the SSQ is now given by -
M
D= EPsDea
where p; = P[S; = i]. To minimize D, we need to minimize D; for each i € Js. Each
quantizer can be deéigned independently since we do not have to worry about the next-

quantizer decision rule.
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For the weighted squared error distortion of (30), we have

M L i
D; = Z Ami lz—; /:: We(z — n{)zgm(z) dz.

m=1

It is straightforward to show that

8D; i i i i i il i
32;.-‘ = (m+1 - "h)(zft =~ M1 — ) Z '\muwmg'n(ft),
m=1
and, using equations (32) and (14), that
aD; M )
T =2 Am i Wm [ mi — i)
G = 2 2 A [ Vtimi — Hapmi])

Thus, given a set of quantizer reproduction levels, the optimal decision thresholds are

given by
i _ Myt M
&= .

Given a set of decision thresholds, the optimal reproduction levels are found via

”.' _ 2:{:1 A'rv||i‘wml"'lIl'm'
| = .
Z:{:l ’\mls'wm'nlmi

Thus, a modified Lloyd algorithm [18] can be used to design each of the M quantizers.
Clearly, the average distortion incurred by this system provides a lower bound for the
average distortion of all other switched quantizer systems which have quantizers with L
levels, regardless of the number of quantizers used. This includes the Jayant Adaptive
Quantizer.®

Remark. Note that the quantizers are optimized for weighted mixtures of the sub-
source distributions, and not for the individual subsource distributions themselves. For
example, even if all of the subsources were Gaussian, the mixture function would not neces-
sarily be Gaussian (in fact, will usually not even be a density), so a Gaussian quantization

characteristic would be suboptimal for that mixture. This is an important observation,

% Actually, this number is a lower bound on all finite-state quantisation systems with tracking receivers.
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because it means that adaptive schemes which use a fixed quantization characteristic
while adjusting only the scale, like the popular Jayant Adaptive Quantizer, are inherently
suboptimal. O

If we view the switched quantizer as attempting to estimate the current switch position
before choosing the next quantizer, a tighter lower bound would incorporate the lowest
possible decision error rate. This error rate will not in general be zero (as assumed above)

since the switch is not observable. We have not yet found this tighter bound.

7 Numerical Results

We conclude this chapter with some numerical results obtained using the algorithm de-
scribed in the preceding sections. We first briefly describe how we solved the optimization
problem, and then present and discuss numerical results for several examples.

We have shown how to calculate the average distortion and the gradient of the average
distortion so we can use a gradient-based descent algorithm for solving the design problem.
It is desirable to use an algorithm which makes use of second-order information as well
so that the algorithm is efficient. We used the IMSL subroutine DNCONG (19}, which
implements a sequential quadratic programming technique [20] for solving a nonlinear
programming problem with nonlinear constraints. This routine does not require an ana-
lytic evaluation of the Hessian matrix (i.e., the matrix of second-order partial derivatives),
but uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for approximating the
Hessian matrix [20]. This subroutine is easy to use, and proved to be quite effective in
solving our problem.

Remark. The examples that follow demonstrate the kind of studies that can be
conducted using our algorithm. It is obvious, however, that there are many parameters
that could be va.ried‘ in a study of switched scalar quantizers for Hidden Markov sources;

namely, the number of quantizers, the number of quantization levels, the number of
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subsources, the Markov chain statistics, and the parameters of the subsource probability

distributions. Thus, these examples do not exhaust the possible situations of interest. O

Example 1

A major strength of our design approach is that there can be more quantizers than sub-
sources. We now give an example of how additional quantizers can improve performance.

Assume that the HMS has two memoryless zero-mean Gaussian subsources, the first
having variance o7 = 1 and the second having variance ¢ = 100. Assume that )\;; =
Az = 0.01. T_he design algorithm was used to obtain optimal SSQ’s with different
numbers of quantizers. We used C' = 4 cells per quantizer, for a coding rate of two bits
per sample. The distortion measure was taken to be the average weighted squared error,
equatioﬂ (30), with w; = 1/0?, i = 1,2. This measures the average noise-to-signal ratio.
The design was carried out for T = 2,3,4,5 and 6 quantizers. Since the performance
of the system with six quantizers was only slightly better than the performance of the
system with five quantizers, we stopped at T = 6.

The average noise-to-signal ratios achieved for the different SSQ’s are given in Ta-
ble 4. Here, D§5q(T,C) denotes the minimum average distortion achievable for an SSQ
with T quantizers, each having C cells. The case T = 1 corresponds to the optimum fixed
quantizer system. Denote the lower bound of Section 6 on the average distortion achiev-
able by any 55Q using any number of C-cell quantizers by Dysq(C). For this example,
Djsq(4) = 0.1332.

The quantizer thresholds and reproduction levels obtained for the different values
of T are listed in Table 5. The quantizers have been indexed in such a way that the

lower numbered quantizers are more appropriate for the subsource with smaller variance

TOf course, our algorithm only computes a local minimum, not a global minimum, so it is possible
that there is u better SSQ for any of the different T's considered here. We believe this to be unlikely for
this example, however, given how close we are to the theoretical limit for SSQ performance.
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Table 4: A comparison of the average noise-to-signal ratios achieved by SSQ’s with dif-
ferent numbers of quantizers. The quantizers all have C = 4 cells. The source is an
HMS with S = 2 memoryless Gaussian subsources. The HMS has parameters o = 1,
o3 = 100, A3y = Ay = 0.01. The column labeled “% Improvement” shows the reduc-
tion in the noise-to-signal ratio achieved over the SSQ with one less quantizer. The final
column compares the performance of the designed SSQ to the lower bound for all SSQ’s
using 4-cell quantizers. For this case, the lower bound on the achievable distortion is
Djsq(4) = 0.1332.

[ T | D3so(T,4) | % Improvement | D3sq(T, 4)/Dsq(4) |

1] .2663 — 2.00
2 | 2071 22.2% 1.55
3| 1852 10.6% 1.39
4| .1687 8.9% 1.27
5| .1612 4.4% 1.21
6| .1590 1.4% 1.19

and the higher numbered quantizers are more appropriate for the subsource with larger
variance. Note that each SSQ includes quantizers which are asymmetric about zero, even
though both subsources have pdfs which are symmetric about zero and the optimum

scalar quantizers for the individual subsources are known to be symmetric [8].

The joint probabilities of using the i-th quantizer to encode an output of the j-th
subsource, the =;;’s, are listed in Table 6. The probability of using the i-th quantizer,
denoted 7;, is listed in the fifth column of this table. For example, for the case T' = 4, the
first quantizer will‘be used about 41.3% of the time in a sufficiently long block of samples,
the second quantizer will be used about 7.5% of the time, etc.

Table 6 also displays the conditional probability that subsource j is active given that
we are using quantizer i, denotéd by p;;. For example, for the case T = 5, consider
those time instants at which quantizer 2 is used. For 89.4% of these time instants, sub-
source 1 will be active, while subsource 2 will be active the other 10.6% of the time.

The observed conditional distributions are consistent with our observation that the lower
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Table 5: A comparison of the thresholds and reproduction levels for the quantizers in each
of the SSQ systems designed using our algorithm, for T' = 2,3,4,5 and 6. The quantizers
all have C = 4 cells. We also include the optimal fixed quantizer parameters. The source
is an HMS with S = 2 memoryless Gaussian subsources, with o2 = 1, o3 = 100, and
Alll = Alﬂ = 0.01.

Case | Quantizer Thresholds Reproduction Levels
Index i & & U 75 7 A
T=1 1 -6.770 0.000 6.770 ] -12.730 -0.810 0.810 12.730
T=2 1 -0.636 0.600 4.203 | -1.255 -0.016 1.215 10.808
2 -6.067 0.212 6.957 | -12.200 -0.730 1.041 12.872
T=3 1 -0.863 0.205 1.389 | -1.427 -0.299 0.710 1.868
2 -3.441 0.041 3.552 | -9.644 -0.772 0.825 9.925
3 -6.180 0.298 7.069 | -12.285 -0.719 1.180 12.958
T=4 1 -0.924 0.099 1.169 | -1.471 -0.378 0.576 1.671
2 -1.537 0.000 1.537 | -2.093 -0.632 0.632 2.093
3 -3.520 0.219 5.865 | -10.218 -0.670 0.973 12.050
4 -5.852 3.072 11.867 | -12.040 -0.185 6.968 16.766
T=5 1 -0.993 0.028 1.060 | -1.523 -0.442 0.498 1.578
2 -1.258 0.000 1.258 | -1.772 -0.551 0.551 1.772
3 -3.573 0.000 3.573 | -10.041 -0.799 0.799 10.041
4 -5.113 0.279 6.500 | -11.494 -0.674 1.085 12.526
5 -6.038 3.166 11.965 | -12.179 -0.235 7.075 16.847
T=6 1 -1.006 0.000 1.006} -1.533 -0.462 0.462 1.533
2 -1.101 0.000 1.101 ] -1.618 -0.497 0.497 1.618
3 -1.434 0.000 1.434 | -1.975 -0.604 0.604 1.975
4 -3.480 0.246 5.409 | -10.062 -0.651 0.976 11.711
5 -5.552 0.305 6.645 | -11.817 -0.687 1.150 12.635
6 -6.071 3.188 11.975|-12.203 -0.257 7.094 16.855
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Table 6: A comparison of the m;;’s and the pj;;’s for each of the SSQ systems designed
using our algorithm, for T = 2,3,4,5 and 6. The quantizers all have C = 4 cells. The
source is an HMS with S = 2 memoryless Gaussian subsources, with o2 = 1, 03 = 100,
and Agpp = /\1'3 = 0.01.

Case | Quantizer ML o T P1ji Pai
Index 2

T=2 1 43724 .04648 || .48372 || .9039 .0961
2 06276 .45352 }| .51628 || .1216 .8784

T=3 1 41837 .02616 || .44453 || .9412 .0588
2 .04477 .03265 || .07742 )| .5783 .4217
3 .03686 .44120 || .47806 “ 0771 9229

T=4 1 .40054 .01279 || .41333 “ 9691 .0309
2 05996 .01508 || .07504 || .7990 .2010
3 .03034 .09046 || .12080 || .2512 .7488
4 00917 .38167 || .39084 | .0235 .9765

T=5 1 35422 .00719 || .36141 || .9801 .0199
2 10051 .01194 || .11245 || .8938 .1062
3 02540 .02256 || .04796 || .5296 .4704
4 01403 .10891 fj .12294 || .1141 8859
5 .00583 .34941 H 35524 | .0164 .9836

T=6 1 .29006 .00374 || .29380 || .9873 .0127
2 .12909 .00590 | .13499 || .9563 .0437
3 04614 .01053 || .05667 || .8142 .1858
4 .01933 .03282 i .05215 || .3707 .6293
5 01035 .11235 | .12270 || .0844 .9156
6 .00503 .33467 | .33970 || .0148 .9852
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numbered quantizers are more appropriate for the first subsource while the high num-
bered quantizers are more appropriate for the second subsource. Note that quantizer 2 of
the three-quantizer SSQ and quantizer 3 of the five-quantizer SSQ are used when we are
almost equally unsure about which subsource is active.

The average noise-to-signal ratios incurred by applying the i-th quantizer to the j-th
subsource are given in Table 7.

The quantizer transition diagrams for each of the SSQ’s are shown in Figure 1. The
numbers inside the circles are the quantizer indices. An arrow is drawn from the circle
representing quantizer ¢ to the circle representing quantizer j if there is an i-th quantizer
cell for which there is a positive probability of going next to quantizer ;. The numbers next
to the arrows indicate the cell number which can cause the transition, with the probability
of that transition given in parentheses if the decision has a random component. The
absence of a number in parentheses means that observing the given cell always causes the
specified transition. The quantizer cells are numbered from left to right, so cell number 1 is
the left-most cell on the real number line, while cell number 4 is the right-most. Consider
now the situation for T = 5. If we observe cells 2 or 3 of quantizer 1, we will always use
quantizer 1 again. If we observe cell 4 of quantizer 1, we will always use quantizer 2 at the
next time instant. On the other hand, if we observe cell 1 of quantizer 1, we will pick a
uniformly distributed random number between zero and one. If this number is no greater
than 0.563, we will again use quantizer 1. If this number is greater than 0.563, we will
use quantizer 2 at the next time instant. From the figure, we see that for T = 5 there
are three cells which have stochastic next-quantizer decision rules: cell 1 of quantizer 1,
and cell 2 of both quantizers 4 and 5. The second and third quantizer do not have any
cells which involve a stochastic next-quantizer decision. It is interesting to note that the
second and third quantizers are purely transitional quantizers for this case, i.e., we will

never use these quantizers twice in a row. All of the other quantizers have self-loops.
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Table 7: A comparison of the average noise-to-signal ratios Dj;’s for the individual quan-
tizers for each of the SSQ systems designed using our algorithm, for T' = 2,3,4,5 and
6. The quantizers all have C = 4 cells. The source is an HMS with S = 2 memoryless
Gaussian subsources, with ¢ = 1, ¢ = 100, and A, = Ay3 = 0.01.

Case | Quantizer Dy; Dy;
Index 1
T=1 1 .3635 .1691
T=2 1 1907 .5061
2 3804 .1683
T=3 1 .1263 .7636
2 3770 .2211
3 .4027 .1665
T=14 1 1196 7732
2 1702 .7077
3 3817 .1946
4 1.0280 .1348
T=5 1 1180 .7757
2 1323 .7474
3 3738 .2175
4 .3863 .1738
5 1.0549 .1338
T==6 1 1176 7781
2 1204 7671
3 1544 .7220
4 3850 .1980
5 3962 .1699
6 1.0658 .1335
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1,2,3 1,2(.891),3,4 1,2,3 3(.289) 1,2(.818),3,4

2(.109) 2,3(.711) 2(.182)

1,2,3 2(.333),3 1,2(.584),3,4

2,3" 2(.667) 2(.416)

1(.563),2,3

1(.437),4

2(.524)

Figure 1: Next-quantizer transition diagrams for T = 2,3,4,5 and 6. The quantizers
all have C = 4 cells. The HMS has S = 2 memoryless Gaussian subsources, 02 = 1,
o3 = 100, and Az = Ayy = 0.01. The numbers inside the circles index the quantizers.
The numbers next to the arrows indicate which levels will cause the encoder to go from
the quantizer at the tail of the arrow to the quantizer at the head of the arrow, with the
number in parentheses indicating the probability of that particular transition when the
transition is stochastic.
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Finally, we compare how much is gained by using a stochastic next-quantizer map
instead of a deterministic next-quantizer map. If the gain is not significant, we prefer the
deterministic next-quantizer map because it is simpler to implement. The average noise-
to-signal ratios are shown in Table 8. The deterministic SSQ was designed according to
the remark made at the end of Section 4, except that the initial next-quantizer map was
obtained by rounding off those random components of the optimal next-quantizer map
to either 0 or 1 in order to generate an initial next-quantizer map that was deterministic.
Values were rounded to either 0 or 1 depending on which number was closer, except that
care was taken to ensure that the next-quantizer map was one for which the transmitter
states could all communicate, i.e., in setting the values of the initial next-quantizer map
to 1 or 0, we picked the closest value except when this choice would cause one of the
transmitter states to be an absorbing state. The design algorithm was then run using the
equality constraints of (11) to ensure that the final system would have a deterministic
next-quantizer map. For example, for T = 3, we rounded 7333 to zero and 33 to one,
but 33,3 had to be set to zero even though it is closer to one because setting it equal
to one would mean that we could never escape from quantizer 3 once we started using
it. Note that the performance gain of the stochastic decision rule over the deterministic
decision rule decreases as T increases, until it is very small for T = 5 and negligible for
T =6.

To summarize, in this example we have observed the following things. First, some of
the quantizers in the SSQ can be asymmetric even though the quantizers that are optimal
for the individual subsource densities are symmetric. Also, there can be a mix of sym-
metric and asymmetric quantizers. This is an important observation, because it implies
that switched quantization systems like the Jayant Adaptive Quantizer that preserve such
things as quantizer Qymmetry cannot be optimal. Second, the optimum next-quantizer

map can have stochastic components. Thus, the approach that was used in order to fa-
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Table 8: A comparison of the average noise-to-signal ratios achieved by the different
SSQ’s when stochastic next-quantizer maps were allowed and when next-quantizer maps
were constrained to be deterministic. The column labeled “% Improvement” quantifies
the reduction in the noise-to-signal ratio achieved by allowing a stochastic next-quantizer
map. The HMS has S = 2 memoryless Gaussian subsources, with o = 1, ¢] = 100, and
Az = Aqyp = 0L

| N | Random NQM | Deterministic NQM l % Improvement I
2 2071 2370 12.6%
3 .1852 .2036 9.0%
4 .1687 1753 3.8%
5 .1612 .1641 1.8%
6 1580 1601 0.7%

cilitate a numerical solution turns out to be necessary for getting the optimal system.
Third, the stochastic decision rule showed significant improvement over the deterministic
rule when T was small. The performance gain of the stochastic rule decreased, however,
a8 T increased. Finally, we were able to get fairly close to the theoretical limit for SSQ’s

using a small number of quantizers.

Example 2

We now compare the segmental signal-to-noise ratio (SNRSEG) performance of our SSQ
and a Jayant Adaptive Quantizer (JAQ). The 'adva.nta.gea of using SNRSEG to compare
coding systems for speech are discussed in [8] and [21]. The operation of the JAQ is
described in [8, Chapter 4]. The segmental SNR, denoted SNRSEG, is the average of the

short-term SNR computed over successive segments of the signal:

1 ¥ | Tht Tcynsi
SNRSEG = — 3 10log,, Soxt {ezlinti (69)
Ns =1 i=1 e(l—l)ﬂ-H

where n is the segment length, s indexes the segments, i indexes the signal and error

samples within a segment, &(,_1)n4: is the i-th signal sample in the s-th segment, and
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€(s—1)n+i 18 the s-th reproduction error sample in the s-th segment. Ny is the number of
segments in the waveform being analyzed.

In order to achieve a high SNRSEG, a coding system has to have small relative errors
for all modes of the HMS. Because of this, we will use SSQ’s designed according to the
weighted squared error criterion in the comparison. Weighted squared error and SNRSEG
are not equivalent, but a system designed to minimize one of these measures should do
a reasonably good job with respect to the other, and weighted squared error is easier to
work with.

It remains to describe how we selected the parameters of the JAQ. There are basi-
cally two things to choose: the basic quantizer transfer characteristic and the stepsize
multipliers. Preliminary computer simulations showed that using a Gaussian quantiza-
tion characteristic is better than using a uniform quantization characteristic when the
subsources are Gaussian. Hence, our basic quantizer transfer characteristic will be the
Lloyd-Max quantizer for the unit-variance Gaussian source. The parameters of this quan-
tizer can be found in Table 4.3 of [8] or Table I of [22]. The next problem is to pick
the values for the stepsize multipliers. Our approach is rather involved because of our
desire to be fair to the JAQ, so the details are not discussed here; see [15]. Basically, the

multipliers were assumed to have the structure
M; =% i=1,2,3,4. | (70)

Several sets of k;’s were found that approximately satisfied the so-called stability equa-
tion (23]

3836 k; +.3226 k; + .2133 ky + .0805 k, = 0. (11)
For each set of k;’s, the best ¥ was found using an exhaustive search within a subinterval

of the positive real ﬁﬁmbers, by simulating for each v the corresponding JAQ on a long

training sequence. The best multipliers for each of the test cases, i.e., that set of multipliers
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Table 9: Optimal JAQ Multipliers, determined by simulation for L = 8 and a frame
length of 50 samples.

l U;I/\nlAnl M1 Mz M3 ML_J
25].01].001].9228 1  1.0410 1.3248
25|.01|.04|.8817 1  1.0650 1.5540
25 | .04 | .01 |.9507 .9833 1.0343 1.2450
25 | .04 | .04 .9228 9606 1.0410 1.5558

100 | .01 } .01 | .8883 1 1.0610 1.5136
100 | .01 | .04 | .8558 1 1.0810 1.7250
100 | .04 | .01 | 9518 .9756 1.0250 1.3121
100 | .04 | .04 | .9019 .9497 1.0530 1.7649

400 | .01 | .01 | .8495 1 1.0850 1.7701
400 | .01 | .04 | .8190 1 1.1050 2.0116
400 | .04 | .01 | .9518 .9756 1.0250 1.3121
400 | .04 | .04 | .8686 .9320 1.0730 2.1707

resulting in the largest value of SNRSEG for the training sequence using a 50-sample
segment length, are shown in Table 9. These were the multipliers used in the comparison.
The results of the comparison are summarized in Table 10. The frame length n for which
the segmental SNR was calculated was fifty samples.

Table 10 also includes the SNRSEG performance of the optimal fixed quantizer de-
signed using the same weighted squared error criterion as the SSQ. These results are listed

in the column labeled SNRSEGrq.

Observe that the optimal SSQ beats the JAQ in all but one case, the one for which
A2 = .01,A;; = .04, and 03 = 25. Also, for a fixed pair of transition probabilities,
as the difference between the variances of the two subsources increases, so does the gap
between the SSQ and the JAQ, with one exception. The SSQ always outperformed the
fixed quantizer, and did so by a significant amount when the comparison was based on
weighted squared error {15], but not always by a significant amount when using SNRSEG.
The JAQ usually outperformed the fixed quantizer, but failed to do so as the difference
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Table 10: SNRSEG (in dB) performance comparison between the S5Q, JAQ, and optimal
fixed quantizer, for 10,000 frames of simulated HMS samples using 50 samples/frame

02 [ M1 | 2a1 | SNRSEGssq | SNRSEGyaq | Gap | SNRSEGyyg |

251 .01{ .01 13.01 12.96 .05 11.31
251.01| .04 12.12 12.18 -.06 11.42
25| .04 | .01 13.39 13.17 .22 13.05
251 .04 | .04 12.50 11.52 .98 11.48
100 | .01} .01 12.74 12.21 .53 11.20
100 ; .01 | .04 11.64 11.22 42 10.61
100 | .04 | .01 13.26 12.68 .58 12.04
100 | .04 | .04 11.99 10.29 1.70 11.86
400 | .01 | .01 12.65 11.64 1.01 10.90
400 | .01 | .04 11.48 10.39 1.09 10.27
400 | .04 | .01 12.78 12.29 49 11.52
400 | .04 | .04 11.99 9.39 2.60 11.44

between the variances increased and the switch became more active. Hence, we conclude
that when the statistics of a Hidden Markov Source are known, a well designed SSQ will

outperform a fixed quantizer system or a JAQ, often by a significant amount.

8 Summary

We have shown how to design switched scalar quantizers for Hidden Markov sources. Our
approach provides a solution to a problem that has plagued designers of switched quantizer
coding systems for some time: the design of the optimal next-quantizer decision rule. The
solution was to parameterize the next-quantizer decision rule, and then use a gradient-
based descent algorithm for solving the resulting nonlinear optimization problem. In
parameterizing the next-quantizer map, we allowed for stochastic next-quantizer switching
rules. In many cases, it turned out that the optimal next-quantizer map did in fact require

stochastic components. We briefly discussed how such a system could be implemented in
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practice.

We have demonstrated the usefulness of the design algorithm by discussing several
design examples. We have shown how the optimal SSQ system is capable of outperforming
the most popular AQ system, the Jayant Adaptive Quantizer, when the source is a Hidden
Markov Source with known statistics.

There are several problems that remain open. First, it would be useful to extend
the design approach to more general finite-state scalar quantization systems having more
transmitter states than quantizers. While our simulations suggest that such systems might
not gain very much when the subsources are memoryless, we conjecture that for subsources
with memory the gain will be sufficient to warrant the additional complexity. Second,
the design problem could be extended to include entropy-constrained quantizers [24]. Of
course, for the entropy-constrained case, a new bound on performance will have to be
derived since our bound is applicable only for switched quantizer systems with a specified
number of quantization levels. Third, robustness of this system to channel noise remains
to be studied. The results presented in Section 7 assumed that the receiver had access
to the exact channel symbols selected by the transmitter, a situation unlikely to occur
in practice. Fourth, there is the very broad question of how to design switched scalar
quantizers in the face of uncertainty in the modeling of the subsources and the Markov
chain. Afterall, the parameters for the Hidden Markov Source model will usually be
derived from a finite data record. Finally, it will be most interesting to extend our resuits
to the design of finite-state vector quantizers (25,26,27] for the HMS.
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