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Chapter 1:   Introduction 

At most airports in the United States, air carriers are free to schedule as many 

flights as they would like into and out of those airports with very few restrictions.  

Some airports have late-night curfews, and this is particularly likely for airports with 

flight paths that come very close to residential areas.  A few airports, however, are so 

congested, that allowing this kind of scheduling freedom would lead to massive 

congestion.  In many cases, this congestion alone has not served as a deterrent to 

over-scheduling, probably because of the “tragedy of the commons” phenomenon: 

there are multiple competing airlines, and no single one of them has anything to gain 

by unilaterally reducing their schedule, since any benefits of doing so would help all 

affected carriers, but the acting carrier would yield market share.  It airports such as 

this, control over the numbers of arrivals and departures has been effected by means 

of slot controls.  The “slots” are landing rights at the airport, and a fixed number of 

them are allocated.  They are distributed amongst airlines in some manner.  Each 

corresponds to the right to schedule a flight into that airport.  Carriers are not allowed 

to schedule flights for which there are not corresponding slots owned. 

This chapter introduces the subject discussed at length in this thesis, posed 

here as a question: Given various economic concerns, and conditions specific to the 

airport under consideration, how many arrival slots should be made available to the 

market in a given time period? 

Each of the issues brought forth in this question will be addressed in detail in 

this thesis, by means of theoretical analysis, and computational experiments.  The 

problem will be posed and discussed in a variety of fashions, but the underlying goal 
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remains the same.  Likewise, the economic challenges necessarily involved in this 

analysis will not be addressed by a single omniscient solution.  A variety of 

techniques and approaches will be explored, and several will be applied.   

The majority of the analysis in this thesis lends itself to a case study of New 

York’s LaGuardia Airport (LGA).  This does not mean, however, that the techniques 

and models proposed in this thesis apply only to this facility.  This is not an 

engineering study of a technique to be applied only at LGA.  Rather, it is a collection 

of models and techniques that ought to be considered, and adapted, for use at a 

variety of airports experiencing extreme congestion. 

The remainder of this chapter is devoted to providing background material on 

the issue of slot-controlled airports in the United States, motivation for the application 

of the techniques espoused in this thesis, and an introduction to this document and its 

organizational structure. 

1.1 Slot Control Background 

The control of arrival opportunities by means of slots (“slot control”), or 

limitations on the number of arrival permitted at an airport, began in the United States 

in 1969 when the High Density Rule (HDR) was enacted.  The rule was initially 

designed to regulate five airports – Chicago O’Hare International Airport, 

Washington National Airport (now Ronald Reagan Washington National Airport), 

Newark International Airport (now Newark Liberty International Airport), John F. 

Kennedy International Airport, and LaGuardia Airport.  The HDR was originally 

intended as a temporary solution to congestion problems, but after several short 

extensions it was extended indefinitely.   
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Prior to the deregulation of the airline industry in 1978, the Civil Aeronautics 

Board (CAB) exercised significant control over which carriers operated at a given 

airport, the number of flights that they operated, and the fares they were permitted to 

charge.  At the HDR airports, scheduling committees consisting of airline and CAB 

representatives met regularly to divide the available slots.  This process was only 

possible because of the high degree of regulation of the industry under the CAB, and 

the anti-trust exemptions provided thereby.   

After airline deregulation, however, carriers were no longer bound by most of 

the restrictions placed upon them by the CAB.  They were able to fly into the airports 

of their choosing when they preferred to do so.  The HDR, however, remained in 

effect, but the scheduling committees could no longer be effective.  In addition, a 

number of new carriers were created, many of which wanted to fly into the HDR 

airports.  As a result, competitive pressures forced the carriers holding slots to guard 

them zealously, thereby preventing the new carriers from gaining access to these 

highly desirable airports. 

Obviously, these developments brought about by deregulation created 

pressure on the Department of Transportation, the FAA, and Congress to remove or 

restructure the HDR to allow new carriers to gain access to the high density airports.  

A succession of policies and laws attempted to address this issue.  These included 

rules to permit a secondary market for slots, to discourage carriers from hoarding 

slots, and to provide exemptions for several categories, including new entrant carriers, 

new international flights, and flights serving small communities.   
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An extreme rule change which was tested to alleviate the problems with the 

HDR was enacted by Congress in 2000.  One of the provisions of the “Aviation 

Investment and Reform Act for the 21
st
 Century” (AIR 21) removed slot controls and 

allowed the FAA to grant slot exemptions.  The impact of this change was 

particularly troublesome at LGA.  Delays and cancellations increased dramatically, 

and customers were extremely dissatisfied.  Because of the extremely tight 

connectivity in many carriers’ networks, the severe delays experienced at LGA were 

propagated through the NAS.  The Port Authority of New York and New Jersey was 

eventually forced to impose a moratorium on new flights, effectively rescinding some 

of the slot exemptions offered under previous policies.  The existing exemptions were 

re-distributed under a lottery.  Although several other forms of exemptions have been 

granted since, the airport continues to operate in much the same fashion as it did once 

the slot controls were re-exerted. 

At present, the HDR is discussed primarily in the context of LaGuardia 

Airport (LGA), as the rest of the airports included in this group have been able to deal 

with congestion by other means.  Newark International Airport was eventually 

exempted from the rule.  Ronald Reagan Washington National Airport (DCA) and 

John F. Kennedy International Airport (JFK) do not experience congestion at the 

same levels as LGA, and thus, do not cause the HDR to come into play.  Chicago 

O’Hare International Airport (ORD) makes uses of the HDR, but the regulating 

authorities exercise control in a slightly different fashion.  Because ORD is 

dominated by two hub carriers (United Airlines and American Airlines), the 

regulators are able to more easily demand reductions in flight operations.  The threat 
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is evident that if these two carriers do not curtail their operations to a level acceptable 

to the authorities, that administrative action will be taken to force reductions.  In this 

case, if the two carriers cooperate, they can exact significant change on the landscape 

of the airport.  At airports served by a more diverse group of carriers, this effect is not 

evident.  Any reduction by a carrier at one of these more diversified airports (LGA, 

for example) damages them significantly, while benefiting the other carriers.  No 

single carrier has any strong motivation to reduce flights, as their marginal 

contribution would be insignificant to the whole.  This is an example of the “tragedy 

of the commons” parable frequently cited to explain seemingly irrational self-

destructive behavior in various problems of unregulated resource usage, such as 

human population growth, environmental exploitation, etc. (see Hardin, 1968). 

At LaGuardia, interim policies and laws have been applied to try to react to 

the sequence of new carriers wanting access, old carriers going out of business, and to 

the myriad changes in the aviation business landscape.  At all high density airports, 

however, and at those expected to become so in the near future, what this sequence of 

events has illustrated is the need for a long-term slot allocation policy that is dynamic 

and robust.  The players will evolve over time, and carriers will come and go.  These 

airports are far too important to be used less than efficiently; thus, policies that allow 

inefficient and anti-competitive uses for slots in lieu of providing access to competing 

carriers are unacceptable.  Ball et al. (2006) and Gleimer (1996) each provide a more 

detailed explanation of the evolution of slot allocation regimes since deregulation.  

An other reference covering the time period 1968–2000 (i.e., until the slot lottery) is 

contained in a background memorandum prepared for the 2000 hearing of the House 
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Subcommittee on Aviation on the slot lottery at LaGuardia (see U.S. House of 

Representatives, 2000). 

On a related note, airports in much of Europe are slot-controlled in similar 

manners.  While the exact methods by which these allocations are done seem to be 

proprietary, it seems that many airports do, in fact, overschedule during the most 

desirable times of the day, while providing delay recovery periods during the less 

desirable times.  In this thesis, examples will be presented for LGA, but it certainly 

seems reasonable that this methodology could be applied to these European airports 

to compare the results of these models with the practices currently in place. 

1.2 Motivation for Determining the Number of Slots to Offer 

Allocating airport arrival slots has long been a topic of interest.  Primarily, 

this work has focused on how to distribute the slots, given that the number of slots to 

distribute is known.  Much of the work has focused on deriving various market 

mechanisms to distribute these slots, beginning with the proposal by Rassenti et al. 

(1982) for a sealed-bid combinatorial auction.  The work by Grether et al. (1989) on 

auction airport arrival slot was initially commissioned as a consulting study, and 

actually predated Rassenti’s, but was not published until much later.  The primary 

focus on this work was to prove that several alternatives existed to manage the 

distribution of slots, as practically any method would have been more efficient than 

the scheduling committees used previously.   

Analysis in this area has expanded significantly in recent years.  Advances in 

computing have made the combinatorial versions of the auctions proposed far more 

tractable.  Ball et al. (2006) provide a discussion of the developments in this area, and 
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slot auctions in general.  In addition, case studies have been put forth regarding 

individual airports, including Le et al. (2004) and Day (2004).  For obvious reasons, 

this is not a field of study limited to the United States.  DotEcon (2001) provides 

detailed coverage of these issues in a European context. 

This analysis has not solely been limited to proposing auctions as a means to 

regulate airport slots.  Congestion pricing has appeared as a solution in the economics 

literature, including in Daniel (1995), Brueckner (2002), and Mayer and Sinai (2003).  

Carlin and Park (1970) proposed another method for regulating runway congestion, 

far earlier than most of the other work in this field. 

There is extensive literature relating to controlling airport arrival resource 

allocation.  Most of these studies, however, have focused on specific allocation 

schemes for these slots.  In this thesis, an argument is made for controlling the precise 

number of these resources that are made available to whatever market mechanism is 

used.   

There are myriad reasons why the number of slots at congested airports should 

be regulated.  These arguments cold be supported by empirical evidence from 

scheduling, considering the interests of travelers, and reviewing the relevant literature 

in queuing theory. 

First, while rough estimates of arrival capacity under both good and bad 

conditions are known for a given airport, it is not sensible to fully schedule the airport 

using either value.  Using the upper bounds at all times will result in horrendous 

delays in even mildly bad weather.  Using the lower bounds will leave the airport 

highly underutilized.  Some value in between these two bounds could be arbitrarily 
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chosen, but it seems more reasonable to use some scientific techniques and numerical 

analysis to determine this exactly. 

Second, it is well-known that certain times of day provide more valuable 

opportunities in which to operate a flight.  Simply examining the schedule of any 

busy airport should provide evidence of this conclusion: there are more flights 

scheduled at certain times, and there must be some reason for this.  Carrier network 

effects certainly play a role in this, but nonetheless, certain times of the day have a 

larger number of flights to more desirable destinations.  Additionally, specific times 

of day are more desirable to the most valuable airline customer: the business traveler.  

For many business travelers, it is desirable to attend meetings on the same day as 

travel takes place, or even to make a single-day trip.  These customers are highly 

schedule-sensitive, and because they are valuable, the airlines try to accommodate 

this desire. 

Third, any regulations of this type must necessarily be made by the regulating 

authorities.  The carriers operating these flights, in most cases, have little motivation 

to voluntarily reduce their number of operations, as this would benefit their 

competitors at their expense, and likely not contribute markedly to overall system 

performance.  Additionally, unallocated resources at a congested airport would not be 

permitted by the rest of the market to remain unused, even if such an effort could 

benefit performance.  These unallocated slots would be quickly taken and used.  As a 

result, the burden of making these determinations falls directly on the regulating 

authorities. 
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An additional argument in favor of scientifically determining the number of 

slots to offer is provided by stochastic queueing theory.  It is well-known that delays 

early in a time period (e.g. a day) have a far greater effect on overall system 

performance than those taking place later in that same time period.  This argument 

contributes to the motivation that the number of slots must be carefully controlled, 

particularly at the beginning of the operating day.  If, however, slot valuations dictate 

that a large number of slots be offered very early in the day, potentially leading to 

heavy delays, then it could be highly beneficial to provide some type of nominally 

under-utilized recovery period immediately afterwards, during which these delays can 

be mitigated. 

Significant literature exists analyzing the eventual allocation of airport arrival 

resources by market mechanisms.  In this section, a compelling case has been made 

that the quantity of these resources to be distributed (i.e. slots) should be carefully, 

and judiciously, regulated. 

1.3 Organization 

This document is organized into six related chapters.  The first introduced the 

issue of slot-controlled airports, and provided the motivation needed for undertaking 

this study.  The second chapter will describe a variety of discrete optimization models 

that can be applied, with the appropriate input data, to determine the number of slots 

to make available.  The mathematical properties of these optimization models will be 

addressed at length.  The third chapter will discuss the process of calibrating the input 

parameters used in the various optimization models already described.  This is 

complex procedure that makes use of extensive historical data, in an effort to provide 
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as strong a fit as is possible.  The fourth chapter will address the issue of the value of 

an arrival slot in a given time period.  It is reasonable to assume that the value of 

these slots is not constant across a single day, and as such, great attention must be 

paid to the economic analysis necessary for estimating these values.  The fifth chapter 

will describe various techniques by which the relationship between the value and the 

quantity offered of an item could be incorporated into the models described thus far.  

Application of these methods could help the solution techniques described previously 

to reach a more stable equilibrium between quantity and value.  The final chapter will 

present further results from the computational experiments conducted as part of this 

analysis, including discussions of the size of the various models, and their sensitivity 

to variations in various parameters. 
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Chapter 2:  Model Structure 

In this chapter, the problem of determining the proper number of slots to offer 

in each time period is posed as a series of stochastic optimization models.  While each 

has the same general goal, they are distinguished by some important assumptions.  

There is a trade-off present in each model between realism and tractability, and the 

three models presented here represent three distinct points on this spectrum   

First, the various input data required for the models will be presented.  Then, 

three different possible formulations of the model will be discussed.  The first is the 

Base model, which is so named because it is the simplest formulation, and its 

constraint structure is encapsulated in each of the two other models.  Considerable 

attention is paid to this model, as it serves as the jumping-off point from which 

discussion of the other models can be handled most efficiently.  The second model is 

the Consolidated formulation, which has a slightly modified structure, relative to the 

Base Model, in that certain aspects of the network structure are collapsed and 

consolidated in the interest of tractability.  The third model, which will be used for 

the analysis in the sections following these discussions, is the Parametric model.  This 

model does not share the computational ease of the previous two models, but instead 

is much more economically realistic and useful.  Its name is derived from the fact that 

it incorporates important economic factors that can change across airports and 

carriers, and might be subject to some discretion at the hands of decision-makers.   

The discussion of each of the models in this section follows the same pattern: 

model structure and constraints are described, then polyhedral and integer solution 

results are proven. 
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2.1 Input Data Common to All Models 

A significant amount and variety of data are required to solve each of the 

models presented in this chapter.  As will be obvious as this document progresses, 

much of the data is common to each and every formulation of this optimization 

problem.  In this section, the necessary assumptions and background information for 

each type of data will be presented.  In later chapters, some of these parameters will 

be examined in greater detail, but they are introduced here to facilitate the discussion 

of the various optimization models. 

2.1.1 Assumptions 

Several assumptions are common to all three forms of the model.  In 

particular, some assumptions about the model structure and the decision variable 

bounds are common to every model. 

The average day that the model considers is broken into discrete time slices.  

No specific duration for these time slices is forced – the number of time slices 

necessary to represent an entire day is a parameter of the model.  It can be assumed, 

therefore, that any time resolution chosen for the model is both appropriate for the 

solution, and is a resolution at which the necessary input data are known.  It is not 

necessary, for the situations under consideration, to model the entire 24-hour day, 

because no airport is busy for this period of time.  In fact, carriers do not normally 

schedule arrivals into late hours, so these time periods can be used for congestion 

recovery on days with considerable irregular operations.  The number of time slices to 

be considered on a day is denoted by T, and the index { }1, ,t T∈ …  is used to 

represent a single time slice when subscripted to other variables. 



 

 13 

 

Given this discretization of time, this problem will now be posed as a network 

optimization problem, in which the objective is to maximize the total value of all 

objects passing through the network.  The objects on the network are the flights 

themselves.  The entries into the network represent the act of scheduling flights, while 

the exits represent acceptance (landing) or rejection (cancellation) of that particular 

flight, with the recognition that a flight might not necessarily be accommodated in the 

same time slice that it initially desired.  That is, flight delays are permitted.  There are 

arcs in the network that represent the “movement” of delayed flights from one time 

period to the next. 

It is assumed that there are minimum and maximum numbers of slots to be 

offered in each time period, denoted Dmin and Dmax, respectively.  The maximum 

number available might be related to the arrival capacity of the airport, although it is 

important to consider that it is not necessarily efficient to cap slot offerings at the 

airport’s VMC capacity value.  Due to the stochastic nature of aircraft arrivals, some 

over-scheduling (compared to the average capacity) could be acceptable, although it 

might need to be coupled with a recovery period that is forcibly under-scheduled.  

Such a strategy may lead to better airport utilization during the most highly valued 

time periods.  Of course, the implicit assumption in this analysis is that there is 

enough latent demand to make use of all slots offered in each time period.  Because 

the context of this study is high density airports, this assumption is reasonable. 

The minimum number of slots to be offered could be zero, or any other 

number less than Dmax.  It is likely that there would be some necessary political or 

economic reasons for requiring a higher number.  Finally, while the results presented 
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here use only a single value for each of these parameters across the day, these 

parameters could be time-dependent as well.  This would not affect the mathematical 

structure of the problem. 

The problem, then, is to determine what number of slots between these two 

values should be offered.  These decision variables of primary interest are denoted 

{ }tZ , and require the obvious constraint shown in (2.1): 

 { }min max 1, ,tD Z D t T≤ ≤ ∀ ∈ …  (2.1) 

2.1.2 Capacity Scenarios 

The primary constraint that prevents the maximum number of flights from 

being able to access the airport is the arrival capacity of the airport.  This is not a 

single number, however, or even a single set of numbers over the course of a random 

day, given the stochastic nature of the factors, primarily weather, which influence 

airport capacity.  However, any given airport will usually experience a finite number 

of capacity “scenarios” over the course of a year.   

It is possible to analyze historical data about a given airport and use clustering 

methods to determine a limited number of capacity scenarios and their relative 

frequencies.  Such a study was conducted by Liu et al. (2005).  This analysis made 

use of the K-means clustering technique to determine these “average days.”  Results 

shown in Figure 1 are for New York’s LaGuardia Airport.  The operations at 

LaGuardia were clustered into six different capacity scenarios, each with an 

associated frequency of occurrence.  Four scenarios had some appreciable number of 

matching days assigned to them while two strange, but unique, days never repeated.  

In Figure 1, only the 4 clusters with multiple days assigned to each are shown. 
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Figure 1 – LGA capacity scenarios 

 

Figure 2 shows the cluster data for Hartsfield-Jackson Atlanta International 

Airport (ATL).  Figure 3 shows similar data for Chicago O’Hare International Airport 

(ORD).  In each of these analyses, there were five discrete scenarios, each with an 

appreciable number of days assigned to it.  One issue of note regarding the data for 

ATL and ORD is the appearance of some periodic phenomenon in several of the 

scenarios.  The origin of this phenomenon is the data source, the Federal Aviation 

Administration’s Aviation System Performance Metrics (ASPM) database, used in 

the clustering process.  In general, the data in the ASPM system is of high quality.  

The source of this problem, however, is that the AAR is declared only once for each 

hour, while ASPM reports quarter-hourly.  These are determined by a scheme that 

divides the declared hourly rate by four, but rounds in such a way so as to guarantee 
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integer solutions that sum to the declared value.  As a result, the quarter-hour declared 

values occasionally exhibit some periodic behavior.  Because the period of this cycle 

is one hour, which is equal to the lower bound of the maximum permitted delay 

length used in this analysis, this should not significantly affect the results presented. 
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Figure 2 – ATL capacity scenarios 
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Figure 3 – ORD capacity scenarios 

 

Assuming that such historical patterns of capacity will continue into the 

future, each capacity scenario is applied to the problem on a conditional basis, with 

the ultimate levels of delay and cancellation being the expected values over the full 

range of possibilities.  The weights used for each scenario are the associated 

likelihood (i.e. historical frequency).  Thus, the index q used in the remainder of this 

thesis represents an entry into the set of capacity scenarios that have been defined for 

a given airport, with range { }1, ,q Q∈ … . 
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2.1.3 Delay Costs 

For the models presented herein, no specific cost for flight delays is assumed.  

Rather, all other values in the problem are normalized into units of delay.  That is, the 

cancellation costs { }iλ  do not represent monetary costs, but rather the number of time 

slices of delay at which a carrier would be indifferent between accepting the delay 

and canceling the flight.  This structure is essential to the formulation of the model.  

This is obviously a major assumption, and to make use of it, it must be acceptable to 

believe that such trade-offs can be determined explicitly and without regard to 

individual carrier preferences.  Because the motivation of this study is to help create 

policy for an entire airport, which should serve many carriers, such an assumption 

will suffice. 

In the Base and Consolidated models (but not the Parametric), the slots values 

are also expressed in terms of the equivalent number of units of delay.  This 

assumption makes these two models very difficult to implement, because it requires 

that the slot values be determined solely using information regarding flight delays, or 

that delay be assigned a monetary value, by which the flight delays can be 

normalized.  In either case, further significant assumptions would be required, 

rendering the model less useful, from a policy-making perspective.  That the 

Parametric model does not require such assumptions is, perhaps, the strongest 

argument for using it.   
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2.1.4 Cancellation Costs 

The cancellation of a flight is an extreme and infrequent, but sometimes 

necessary, measure.  Modeling this decision is a difficult task, largely because the 

process by which each carrier determines if and when to cancel flights is a closely 

guarded secret.  Data or even anecdotes about important causal mechanisms are not 

generally available, and carriers’ business strategies might differ from each other 

significantly.  In the present context, however, and at any level where multiple 

airlines and their respective operating strategies are in play, it is reasonable to assume 

that neither the internal data nor the operational strategies of the carriers themselves 

will be publicly known, and, as such, none of the carrier-centric predictive 

cancellation models developed to date are functional in the framework of this model.   

Therefore, the modeling of cancellations is approached from a macroscopic 

point of view, under the belief that, in the aggregate, airlines use voluntary 

cancellations primarily to hedge against excessive delays.  

As explained previously, the cancellation costs in all three formulations are 

expressed in units of delay.  The process by which this trade-off is estimated will be 

further explained in Chapter 3.  It is reasonable to suppose that the marginal cost of 

canceling an additional flight increases as the number of flights already canceled 

increases.  For this reason, cancellation costs are expressed at several levels, based on 

the number of flights which have already been canceled.  The index i stratifies the 

cancellation costs along the various cancellation arcs – the notation 
i

λ  is used to 

represent the cancellation cost on arc i.  Additionally, each cancellation arc has a 

capacity Pi, which essentially limits the number of cancellations that can be 
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accommodated at that cost.  The combination of the costs { }iλ  and capacities { }iP  

allow for the specification of a marginal cancellation cost curve that is a step function 

– presumably monotonically non-decreasing.  The total number of cancellation arcs is 

denoted by N.  The flow variable ,

i

t qθ  represents the number of flights that are 

cancelled during time slice t and suffer cancellation cost level 
i

λ , under capacity 

scenario q.  The cancellation arc capacities are enforced as shown in (2.2). 

 { } { } { }, 1, , ,  1, , , 1, ,i

t q iP t T q Q i Nθ ≤ ∀ ∈ ∈ ∈… … …  (2.2) 

 

Figure 4 shows a non-specific example of a piecewise-linear total cost 

function that would have such a marginal cost function as its derivative.  This 

function can be specified with whatever resolution is required, provided that 

sufficient data are available to calibrate the parameters of such a function.   Of course, 

increasing the number of cancellation arcs increases the size of the problem, which in 

turn affects its solution time, so the best choice of N would be the smallest that allows 

the minimum desired resolution in the cancellation cost function.   
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Figure 4 – Convex piecewise-linear cancellation cost curve 

 

2.2 Base Model 

The model presented in this section determines the number of slots to be 

allocated in each time period by optimizing a function that represents the difference 

between the value of the slots offered and the costs incurred from the resultant levels 

of delay and cancellation.  In some sense, this can be thought of as the net benefit to 

all the airlines operating at the airport.  The levels of delay and cancellation occurring 

under this slot offering are not explicitly regulated: the model will drive them to some 

“system-optimal” values, based in large part on the relative costs of all elements 

involved. 
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2.2.1 Structure 

Figure 5 shows a network representation of the Base Model.  The input nodes 

are white, and are located at the top of the diagram.  They have a maximum 

permissible input of Dmax for each of the time slices { }1, ,t T∈ … .  The flows that are 

permitted from the input nodes to the next stage in the network are the slots offered in 

each time slice, represented by the decision variables { }tZ . 

Dmax

Zt-1

Dmax

Zt

Dmax

Z1

Dmax

ZT

{ }θt,q

i { }θT,q

i{ }θt- ,q1

i{ }θ1 ,q

i

{ }Xt- q1, { }Xt,q{ }X1 ,q { }XT,q

{ }Y1 ,q { }Yt ,q-2 { }Yt ,q-1 { }Yt,q { }YT- ,q1 { }YT,q { }YT+ ,q1 { }YT+U- ,q1≤{ }C1,q ≤{ }Ct q-1, ≤{ }Ct q, ≤{ }CT q, ≤{ }CT+ q1, ≤{ }CT+U q,  
Figure 5 – Base model flow diagram 

 

Given that a slot has been offered (i.e., the slot will be utilized), a flight can 

have one of three possible dispositions: it can be cancelled, it can be delayed but 

ultimately admitted to land at the airport, or it can be admitted without delay.  The 

gray nodes at the second horizontal level of the network represent the carrier’s 

decision of whether to cancel a flight or not.  The diagram becomes slightly more 

complicated at this point, as it is now stratified in two additional dimensions, 

represented by the indices i and q representing the capacity scenarios and cancellation 

cost levels described previously.  All variables that are grouped together in strata that 

are not explicitly shown in the figure are indicated in braces. 
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The number of flights that are not canceled in time slice t under capacity 

scenario q is Xt,q.  Because each set of capacity constraints will produce a different 

optimal flow across the network, all flow variables exiting the gray nodes are 

stratified by capacity scenario.  Recall that the flow variable ,

i

t qθ  represents the 

number of flights that are cancelled during time slice t and suffer cancellation cost 

level i, under capacity scenario q.  Flow must be conserved at the gray nodes, as 

shown in (2.3): 

 { } { }, , 0 1, , ,  1, ,i

t t q t qi
Z X t T q Qθ− − = ∀ ∈ ∈∑ … …  (2.3) 

 

Flights that are not cancelled proceed through the network from the gray 

nodes to the black nodes, where the decision to be made is whether they are allowed 

to land immediately, or with delay.  If they are delayed, they are transferred to later 

time slices by moving in the right-hand direction in Figure 5.  The number of flights 

delayed from time slice t to time slice t+1 under capacity scenario q is denoted Yt,q.  

Notice that flights can be delayed into time slices later than the latest scheduled 

demand.  In fact, the maximum number of time slices that a flight can be delayed is a 

parameter denoted U.  Thus, an additional quantity, U, of black delay nodes are 

required after time slice T to allow for flights that may be delayed past the scheduled 

portion of the day.  If an airport with a curfew were being considered, the number of 

these nodes after the end of the scheduled day could be reduced to match the time 

available for the curfew.   
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Flow must be conserved at each of the black nodes.  The exact structure of the 

constraint governing each node depends on the time period in which the node lies.  

These constraints are shown in (2.4)-(2.6): 

 { }1, 1, 1, 1, ,q q qX Y C q Q− ≤ ∀ ∈ …  (2.4) 

 { } { }, 1, , , 2, , ,  1, ,t q t q t q t qX Y Y C t T q Q−+ − ≤ ∀ ∈ ∈… …  (2.5) 

 { } { }1, , , 1, , 1 ,  1, ,t q t q t qY Y C t T T U q Q− − ≤ ∀ ∈ + + − ∈… …  (2.6) 

 

Once it is time for them to land, non-canceled flights travel on the arcs going 

downward from the black nodes.  These represent landings during the given time 

period t, obviously subject to the airport capacity constraints discussed previously.  

Thus, the constant Ct,q represents the airport capacity during time slice t, under 

capacity scenario q.    Capacity constraints must be observed on these arcs extending 

down from the black nodes, as shown in (2.7): 

 { }1, , 1, ,T U q T U qY C q Q+ − +≤ ∀ ∈ …  (2.7) 

 

There is a necessary constraint on the maximum number of delay arcs that a 

given flight can traverse, which is given by the constant U described above.  Because 

this is a network flow model, the entities are not labeled; i.e., there is no ability to 

track a specific flight as it travels through the model.  However, this constraint can 

still be enforced in the aggregate by specifying capacities for the delay arcs.  Given a 

solution that satisfies these constraints, a mapping of individual flights that would 

violate the constraint at the individual level could likely be constructed; however, 

with the same aggregate solution, flight labels could be swapped and that solution 

transformed into one where the constraints were satisfied even at the individual flight 

level, with no change in optimality conditions.  In order to restrict the maximum 
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delay of any flight to U units, the capacities of the horizontal arcs – denoted Wt – are 

given by the sum of airport arrival capacities during the subsequent U time periods, 

except at the end of the day, as shown in (2.8): 

 
{ }

{ } { }
min ,

, ,

1

1, , 1 , 1, ,
t U T U

t q i q

i t

W C t T U q Q

+ +

= +

= ∀ ∈ + − ∈∑ … …  (2.8) 

 

The delay arc capacities are then enforced in a very straightforward manner, 

as shown in (2.9): 

 { } { }, , 1, , 1 , 1, ,t q t qY W t T U q Q≤ ∀ ∈ + − ∈… …  (2.9) 

 

The objective of the program is to maximize the net benefit provided by 

offering these slots.  This net benefit is the difference between the value of the slots 

offered and the penalties imposed for those delays and cancellations.  The costs of 

cancelling a flight, in units of time periods of delay, have already been described as 

{ }iλ .  The value of a slot offered in time slice t is denoted as Vt.  Again, this must be 

expressed in units consistent with the other costs used in this formulation of the 

model: periods of delay.  Obviously, this requires a value assessment on the part of 

the entity involved in setting the policy for slot availability.  Some values of { }iλ are 

estimated in Chapter 3, and some possible techniques to obtain values of { }tV  are 

presented in Chapter 4. 

The final, and obvious, constraint is that the decision and flow variables must 

be non-negative and integer-valued, as shown in (2.10). 

 { } { } { }, , ,, , , 1, , , 1, , , 1, ,i

t q t q t t qX Y Z t T q Q i Nθ +∈ ∀ ∈ ∈ ∈� … … …  (2.10) 

 



 

 26 

 

Each set of variables stratified by the index q corresponds to a specific 

capacity scenario, as described previously.  The probability (or frequency) expected 

for scenario q is given by pq.  To find the expected delay and cancellation costs, a 

weighted average (i.e., expectation) of the costs according to the weights { }q
p  is 

used.  Under this construction, the objective function for the current problem becomes 

(2.11).  The constraints for this problem are repeated in Table 1 for clarity. 

, ,max i

t t q t q i t q

t q t i

V Z p Y λθ
    

− +   
    

∑ ∑ ∑ ∑  (2.11) 

Subject to 

,

i

t q iPθ ≤  { } { } { }1, , ,  1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.2) 

, , 0i

t t q t qi
Z X θ− − =∑  { } { }1, , ,  1, ,t T q Q∀ ∈ ∈… …  (2.3) 

1, 1, 1,q q q
X Y C− ≤  { }1, ,q Q∀ ∈ …  (2.4) 

, 1, , ,t q t q t q t q
X Y Y C−+ − ≤  { } { }2, , ,  1, ,t T q Q∀ ∈ ∈… …  (2.5) 

1, , ,t q t q t q
Y Y C− − ≤  { } { }1, , 1 ,  1, ,t T T U q Q∀ ∈ + + − ∈… …  (2.6) 

1, ,T U q T U q
Y C+ − +≤  { }1, ,q Q∀ ∈ …  (2.7) 

, ,t q t q
Y W≤  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.9) 

min maxt
D Z D≤ ≤  { }1, ,t T∀ ∈ …  (2.1) 

, , ,, , , i

t q t q t t qX Y Z θ +∈�  { } { } { }1, , , 1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.10) 

 

Where 
  

{ }min ,

, ,

1

t U T U

t q i q

i t

W C

+ +

= +

= ∑  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.8) 

Table 1 – Base model formulation 

2.2.2 Mathematical Properties 

Structurally, the model given by equations (2.1) - (2.10) is an integer linear 

program (IP).  For two very simple versions of the problem, the constraint matrix is 

totally unimodular (TU).  This is a useful property, as it ensures that a linear 

programming (LP) relaxation of the problem, if solved using a vertex method like the 
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Simplex algorithm, will produce optimal integer solutions without the need for IP-

specific solution techniques such as branch-and-bound.  To prove that the versions of 

the problem in question have TU constraint matrices, a well-known result presented 

in, among other places, Nemhauser and Wolsey (1988), Section III.1 is used:  

 

Lemma 1: An integer matrix is totally unimodular if and only if for every 

possible subset of its rows, a partition of those rows can be found, for which in each 

column, the column sums on opposite sides of the partition differ by no more than 1.   

Corollary 1: A (-1,0,1) matrix is TU if every column contains at most two non-

zero entries, and if the full matrix under consideration can be partitioned in such a 

way that in every column whose two non-zero entries are the same, they must sit on 

opposite sides of the partition, while if they are very different (i.e., a 1 and a 1− ), 

they must sit on the same side of the partition.   

 

Notice that in the case of the corollary, only the full matrix needs to be 

checked – if this condition is true for the full matrix, then any arbitrary subset of rows 

can be arrived at by deleting rows from the partition that worked for the full matrix, 

but since each column contains at most two non-zero entries, deleting rows cannot 

produce a violation of the column sum condition.  Since total unimodularity is 

invariant under matrix transposition, this entire discussion is also true when all 

instances of the words “row” and “column” are interchanged. 
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Proposition 1.  Any version of the base problem with Q = 2 has a constraint 

matrix that is totally unimodular. 

Proof:  Suppose the constraints for a problem with Q = 2 are expressed in the 

canonical form A ≤x b , where A is the constraint matrix.  First, we pare down the 

matrix A by removing rows and columns whose consideration is unnecessary.  The 

validity of these steps is well-known and is stated mathematically in places like 

Nemhauser and Wolsey (1988); the reasoning is stated here verbally because it assists 

with problem understanding.  The equality constraints (2.3) are converted to a 

matched set of inequality constraints, one set representing an upper bound and the 

other a lower bound.  The rows in A for the upper bound will be the negative of those 

for the lower bound, and only one set of these rows need be considered, for the 

following reason.  Suppose r is a row representing a lower bound for constraint (2.3), 

and r´ is its matching upper bound.  Any submatrix involving only row r (not r´) will 

have a determinant whose value is the negative of what would have been obtained if r 

were replaced with r´.  Any submatrix involving both rows will be singular, because 

two of its rows are obviously linearly dependent.  Therefore, for the purposes of 

evaluating whether a matrix is TU or not, equality constraints can be imagined to be a 

single set of inequality constraints instead. 

Next, it is well known that any row or column containing only a single entry 

of 1 or -1 need not be considered, because any submatrix involving that row or 

column, when evaluated using the Laplace expansion, will involve only a single 

(unsigned) cofactor which is the determinant of a smaller matrix that needs to be 

considered anyway.  Thus, the row or column in question is redundant.  Using these 



 

 29 

 

last two results, constraints (2.1), (2.2), and (2.9) can be safely ignored, and 

constraints (2.3) can be treated as inequalities.  Furthermore, all columns representing 

variables { },

i

t q
θ  can be removed, because once the constraints (2.2) are ignored, each 

variable in { },

i

t q
θ  appears in exactly one constraint.  When working through the time 

slices backwards, constraints (2.6) and (2.7) can be removed, as can all columns 

corresponding to { },t q
Y  variables for 1T t T U≤ ≤ + − .  This last activity must be 

done step-wise, since at first only the last row from (2.7) has one non-zero entry, but 

removal of that row yields a column with only one non-zero entry, whose removal 

leaves the next-to-last entry of (2.7) with only one non-zero entry, and so on, until all 

of the specified rows and columns have been deleted.  This step-wise deletion process 

must stop at constraints (2.5), as each of those rows contains three non-zero entries. 

For the case Q = 2, the matrix that remains will consist entirely of columns 

containing exactly two non-zero elements.  For example, each of the columns for the 

variables { }tZ  will contain 1’s in the rows for constraints (2.3) for the same value of 

t, one corresponding to q = 1 and the other to q = 2.  Additionally, each of the 

columns for the remaining variables corresponds to a flow in the network that has to 

exit one node and enter a subsequent node; hence the column will have a single 1 and 

a single -1 only.  If the matrix is partitioned according to q, then each column for a 

variable in { }tZ  will have a 1 on each side of the partition.  Because the flows are 

separable across capacity scenarios, the 1 and -1 in every other column belong to 

rows associated with the same value of q.  This partition clearly satisfies the column 

sum condition mentioned above.   ■ 
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Proposition 2:  Any version of the base problem with T = 2 has a constraint 

matrix that is TU. 

Proof:  The same paring scheme and partition argument as above is used, 

except that the base partition is formed differently.  The constraint matrix is 

partitioned by columns instead of rows in this case, and segregated according to the 

variable t instead of q.  It is easy to verify that each row will satisfy the row sum 

condition across this partition.  Furthermore, an arbitrary set of columns can be 

deleted on either side of the partition without violating this condition.   ■ 

Computationally, these results are useful because in these cases, optimal 

solutions can be found on an integer lattice using linear programming (LP) relaxation 

with a vertex algorithm.  For problems that need to be executed many times (e.g., in 

real time, in a simulation setting, or in an equilibrium-seeking iterative loop), 

computational efficiency is very important.  This concern is not an issue if the 

problem needs only be solved once, and not in real time.   

Unfortunately, it is not likely that the capacity spectrum at real airports could 

be modeled adequately with only two scenarios, nor is it likely that only two time 

slices would suffice to represent the temporal dynamics at an airport.  For any more 

realistic problems, the next result shows that the constraint matrix is not TU, which 

does not necessarily prohibit integral optimal solutions coming from the LP 

relaxation, but likely makes the proof of such results more complicated. 
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Proposition 3:  Any version of the base problem with 3Q ≥  and 3T ≥  has a 

constraint matrix that is not TU. 

Proof:  For the smallest problem that meets this description, i.e., with T = 3, Q 

= 3,   N = 1, and U = 1, a 13 13×  submatrix can be found whose determinant is -2, as 

shown in Table 2. 

Constraint Label Z1 Z2 Z3 X1,2 X1,3 X2,1 X2,2 X3,1 X3,3 Y1,2 Y1,3 Y2,1 Y2,3 

(2.3) A 1   -1          

(2.3) B 1    -1         

(2.3) C  1    -1        

(2.3) D  1     -1       

(2.3) E   1     -1      

(2.3) F   1      -1     

(2.4) G    1      -1    

(2.4) H     1      -1   

(2.5) I      1      -1  

(2.5) J       1   1    

(2.5) K           1  -1 

(2.5) L        1    1  

(2.5) M         1    1 

Table 2 – Smallest non-unimodular submatrix 

 

Any problem larger than this, in conjunction with any combination of the 

dimensions T, Q, N, and U, will contain this matrix as a submatrix.  Therefore, its 

constraint matrix cannot be TU.   ■ 

Because each row of the matrix in Table 2 has exactly two non-zero entries, 

one way to analyze this matrix is to form a network connectivity graph, whose nodes 

represent problem variables, and for which arcs exist between two nodes any time the 

two appear together in a constraint row.  For this particular non-TU submatrix, the 

fact that its determinant is -2 is related to the fact that in the graph so described, the 

arc cycle shown in Figure 6 is present. 
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Figure 6 – Arc cycle present in constraint matrix 

 

The fact that for these realistically sized problems the constraint matrix is not 

TU does not necessarily mean that LP relaxation will not produce integral optimal 

solutions.  In fact, for certain types of capacity values, in fact, it can be guaranteed to 

do so, if the constraint matrix conforms to a condition that is a generalization of the 

notion of TU.  To prove this, some very recent results on a natural extension of the 

ideas of total unimodularity are required, as reported by Appa and Kotynek (2004).  

Because they are new and perhaps unfamiliar to some readers, they are repeated here.  

The presentation of Appa and Kotnyek (2004) has been modified to reflect the 

notation and vocabulary of this thesis. 

 

Definition 1:  A rational matrix is called k-regular if for each of its non-

singular square submatrices R, kR
-1

 is integral, where 2k ≥  is an integer. 

Lemma 2:  If for each non-singular square submatrix R of a matrix A, 

( ) { }det 1,R k∈ ± ± , then A is k-regular. 

Lemma 3:  The matrix A is k-regular if and only if the polyhedron 

( ) { }; | ;P A k A k= ≥ ≤b x x 0 x b  is integral for each integral vector b. 
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The important thing to recognize from Lemma 3 is that if A is a k-regular 

constraint matrix and b is a right hand side vector consisting of integers that are 

multiples of the integer k, then the feasible region ( );P A kb  has extreme points that 

can only be integer-valued vectors.  Thus, the linear programming relaxation will 

produce an optimal point that is integral.  To complete the proof, therefore, it must be 

shown that any matrix A from the base problem meets the conditions of Lemma 2 for 

k = 2, establishing that the matrices in question are 2-regular.  As of this the 

completion of this thesis, this fact has not been determined with certainty; however 

we include a sketch proof here and highlight the missing step which, if supplied, 

would complete the proof.  Importantly, having tested a very large number of 

constraint matrices, we have not found one that did not conform with 2-regularity, so 

our suspicion is strong that the proof can ultimately be successful.  If it is, then as 

long as even-valued right hand side vectors are applied, the feasible polyhedron will 

be integral.  What this implies, practically, is that in order to retain the guarantee of 

integrality provided by this theorem, the capacities in each scenarios must be limited 

to even values, since, other than the number zero (which is even of course), these are 

the parameters that appear in the right-hand side of the pared-down set of constraints 

on which the question rests. 

Begin by considering a matrix A from the base problem that has been pared 

down following the steps in Proposition 1.  While not stated explicitly here, Appa and 

Kotnyek (2004)0 also shows that these exact paring steps do not change the k-

regularity of a matrix.  Next we show that the matrix A satisfies the requirements for 

Lemma 2 for k = 2. 



 

 34 

 

Lemma 4:  Any non-singular square submatrix R of A has ( ) { }det 1, 2R ∈ ± ± . 

Proof:  This proof is not complete, but we include it anyway under the 

assumption that it can be made complete.  This missing logical connection will be 

highlighted where it appears in the proof.  We begin by showing that any non-

singular 2 2×  submatrix of A has determinant 1± .  In this problem, no pair of 

variables ever appears simultaneously in two distinct constraints; hence every 2 2×  

submatrix contains at least one zero.  Evaluating the determinant of any 2 2×  

submatrix by Laplace expansion along a row containing one element in { }1,0,1−  and 

one zero must yield a determinant of either zero or 1± . 

Next, we show that any non-singular 3 3×  submatrix has determinant in 

{ }1, 2± ± .  Any square submatrix of A has at least one row or column with at most two 

non-zero entries for the following reasons: a) the only columns with more than two 

non-zero entries are those associated with { }tZ , but for any of those that are present, 

the row from constraint (2.3) for ordered pair (t,q) must also be present for some 

value of q, and that row contains at most two non-zero entries; b) similarly, the only 

rows with more than two non-zero entries are those associated with constraints (2.5) 

for 2 t T≤ < .  Each of these, however, has some non-empty subset of the following: a 

1 in Xt,q, a 1 in Yt-1,q, and a -1 in Yt,q.  The columns associated with these variables all 

have at most two non-zero entries.  Thus, the determinant of any non-singular 3 3×  

matrix can be evaluated by Laplace expansion along some row or column with at 

most two non-zero entries, each of whose minors is either -1, 0, or 1, so the 

determinant must be in { }1, 2± ± . 
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We would now like to complete the proof of Lemma 4 by induction on the 

size of the square submatrix.  Having shown that non-singular 3 3×  matrices have 

determinants in { }1, 2± ± , the induction hypothesis is that non-singular n n×  matrices 

have determinants in { }1, 2± ± .  The remaining step would be to show that this 

implies that the same is true for matrices of size ( ) ( )1 1n n+ × + .  Suppose R is an 

arbitrary ( ) ( )1 1n n+ × +  submatrix of A.  Again, exploit the fact that R must have at 

least one row or column with at most two non-zero entries.  Furthermore, the 

induction hypothesis requires that if ( )det 2R >  is at all possible, then all rows and 

columns of R must have at least two non-zero entries. 

Any non-singular submatrix R with ( )det 2R >  must have at least one 

column corresponding to a variable in { },t q
X .  The reasoning for this is as follows.  If 

a column from { }tZ  is included, then it has non-zero entries in rows corresponding to 

constraints (2.3).  In order for these rows to have at least two non-zero entries, then 

corresponding columns from { },t q
X  variables must also be present in the matrix.  

Similarly, if a variable from { },t q
Y  is included, it must be matched with another 

column in order to present rows with at least two non-zero entries.  The other column 

might come from { },t q
X  or it might come from a different variable in { },t q

Y , from a 

different time slice.  The process then has to be repeated for that new { },t q
Y  variable, 

so again its matching column can be from { },t q
X  or from a different variable { },t q

Y , 

moving in the same direction time-wise as the previous step.  Importantly, however, 
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this sequence of necessary { },t q
Y  variables cannot proceed forever, because ultimately 

this process with end with a { },t q
Y  variable either from a constraint of type (2.4), if 

moving backwards in time, or of type (2.5) with 1t T= − , if moving forwards in time.  

In either case, the only way to provide the second non-zero entry in the row in 

question is to include a column from { },t q
X . 

In the pared matrix we are considering, columns from { },t q
X  have exactly two 

1’s as entries, one from a constraint of type (2.3) and one from either (2.4) or (2.5).  

In any event, the determinant of this matrix can be found by Laplace expansion along 

a column of { },t q
X  with exactly two 1’s.  The rows of the matrix can be interchanged 

until the rows with those two 1’s are adjacent, and this affects the sign but not the 

magnitude of the determinant. 

In order for the proof to succeed, what needs to be demonstrated at this point 

is that the two (unsigned) cofactors involved in that Laplace expansion are of equal 

sign.  Then, since the rows are adjacent, the determinant of the submatrix in question 

is their difference.  By the induction hypothesis, the unsigned cofactors must lie in 

{ }0,1,2 , the difference between any pair of these numbers is at most 2 in absolute 

value.  At this point, the proof would be complete.  The missing part is showing that 

the unsigned cofactors have the same sign.  The n n×  matrices used to determine 

these cofactors are identical except for one row, and this is probably critical to the 

proof.  In general, non-singular matrices that differ in only one row can have 

determinants of opposite sign, so what is sought is a condition imposed by the 

structure of this problem that prevents this for the matrices in question. 
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Proposition 4:  Any version of the base problem even-valued capacities will 

solve optimally to integer values using LP relaxation. 

Proof.  If Lemma 4 turns out to be provable, then A can only have submatrix 

determinants in { }0, 1, 2± ± .  Thus, by Lemma 2, A is 2-regular, and by Lemma 3, the 

proof is complete.   ■ 

2.3 Consolidated Model 

It is possible to alter the structure of the Base model in such a way that the 

constraint matrix can be guaranteed to be TU.  This requires consolidation of the 

cancellation and delay decisions to the same nodes, and so the model is called the 

Consolidated model.  This formulation of the model maximizes the same objective as 

the Base model.  The cost for this gain in computational tractability is that this model 

requires economic assumptions that may be strict and unrealistic.  At the very least, 

however, the structure of the Consolidated model provides an important context for 

discussing the third formulation. 

2.3.1 Structure 

It is possible to pose the slot determination problem in a slightly different way 

that can be shown to be TU, even for large numbers of time slices and capacity 

scenarios.  The trick is to change the order in which decisions are made.  In the Base 

formulation, the cancellation decision is made first, and then only those flights not 

cancelled are considered for delay.  In this formulation, the cancellation and delay 

decisions are consolidated in the same (gray) nodes.  See Figure 7 for a network 
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diagram that illustrates this problem.  The white nodes remain the source nodes for 

flights, and all variables are defined as before. 

Dmax

Zt-1

Dmax

Zt

Dmax

Z1

Dmax

ZT

{ }θt,q

i { }θT,q

i{ }θt- ,q1

i{ }θ1 ,q

i

{ }Y1 ,q { }Yt ,q-2 { }Yt ,q-1 { }Yt,q { }YT- ,q1 { }YT,q { }YT+ ,q1 { }YT+U- ,q1

≤{ }C1,q ≤{ }Ct q-1, ≤{ }Ct q, ≤{ }CT q, ≤{ }CT+ q1, ≤{ }CT+U q,  
Figure 7 – Consolidated model flow diagram 

 

In this problem, the Base formulation constraints (2.1), (2.2), and (2.6)-(2.9), 

including the pre-processing step (2.8), and the objective function (2.11) remain the 

same.  The flow conservation constraints must be replaced, with the airport capacity 

incorporated explicitly, as shown in (2.12) and (2.13). 

 { }1 1, 1, 1,C 1, ,i

q q q

i

Z Y q Qθ− − ≤ ∀ ∈∑ …  (2.12) 

 { } { }1, , , ,C 2, , ,  1, ,i

t t q t q t q t q

i

Z Y Y t T q Qθ−+ − − ≤ ∀ ∈ ∈∑ … …  (2.13) 

 

As the Xt,q variables are removed, the integrality and non-negativity 

constraints now become (2.14). 

 { } { } { }, ,, , 1, , , 1, , , 1, ,i

t q t t qY Z t T q Q i Nθ +∈ ∀ ∈ ∈ ∈� … … …  (2.14) 

 

The objective function remains the same as in the Base model, as shown in 

(2.15).  The entire Consolidated formulation is repeated in Table 3. 
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, ,max i

t t q t q i t q

t q t i

V Z p Y λθ
    

− +   
    

∑ ∑ ∑ ∑  (2.15) 

Subject to: 

,

i

t q iPθ ≤  { } { } { }1, , ,  1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.2) 

1 1, 1, 1,Ci

q q q

i

Z Y θ− − ≤∑  { }1, ,q Q∀ ∈ …  (2.12) 

1, , , ,Ci

t t q t q t q t q

i

Z Y Y θ−+ − − ≤∑  { } { }2, , ,  1, ,t T q Q∀ ∈ ∈… …  (2.13) 

1, , ,t q t q t q
Y Y C− − ≤  { } { }1, , 1 ,  1, ,t T T U q Q∀ ∈ + + − ∈… …  (2.6) 

1, ,T U q T U q
Y C+ − +≤  { }1, ,q Q∀ ∈ …  (2.7) 

, ,t q t q
Y W≤  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.9) 

min maxt
D Z D≤ ≤  { }1, ,t T∀ ∈ …  (2.1) 

, ,, , i

t q t t qY Z θ +∈�  { } { } { }1, , , 1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.14) 

 

Where 
  

{ }min ,

, ,

1

t U T U

t q i q

i t

W C

+ +

= +

= ∑  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.8) 

Table 3 – Consolidated model formulation 

 

2.3.2 Mathematical Properties 

The advantage of the consolidated formulation is that the constraint matrix is 

always totally unimodular, so an integer optimal solution is guaranteed by the LP 

relaxation with a vertex method.  The proof of this claim is presented here. 

  

Proposition 5:  Any version of the consolidated problem has a constraint 

matrix A that is totally unimodular. 

Proof:  Begin by using the same paring steps as in Proposition 1.  This 

process will yield a matrix containing only rows for constraints (2.12) and (2.13).  

Each of these rows corresponds to a unique ordered pair (t,q). Define Rt,q as the row 

of the pared constraint matrix A associated with ordered pair (t,q).  Row Rt,q contains 
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a 1 in the column for variable Zt and a -1 in the column for variable Yt,q.  Additionally, 

for t > 1, row Rt,q also contains a 1 in the column for variable Yt-1,q.   

Now it will be shown that the constraint matrix is TU by a row partitioning 

argument.  Imagine any arbitrary subset *R  of the set of rows { },t q
R .  Form the 

members of *R  into open chains according to the recipe shown in Table 4. 

1. Set t = 1. 

2. Find the lowest value of q for which *

,t qR R∈  and Rt,q has not yet been 

assigned to a chain, if any exist.  If none exist, go to step 4.  Otherwise, set   

s = t and continue to step 3. 

3. Notice that if it is also true that *

1,s qR R+ ∈ , then rows Rs,q and Rs+1,q must 

occupy the same side of any valid row partition of *R , because the column 

associated with variable Ys,q contains exactly one 1 and one -1.  Thus if 

*

1,s qR R+ ∈ , connect row Rs+1,q onto the end of the chain containing row Rs,q, 

set s = s + 1, and go back to step 3.  If *

1,s qR R+ ∉ , then the chain containing 

Rs,q is terminated at this point.  Go back to step 2. 

4. Set t = t + 1.  If t < T, go to step 2; otherwise, go to step 5. 

5. Set all unassigned rows to singleton chains.  These will only correspond to 

rows where t = T. 

Table 4 – Procedure for partitioning *R  into open chains 

 

Upon completion of this procedure, every row Rt,q will be assigned to exactly 

one chain (possibly a singleton).  Every chain represents a set of rows that can be 
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moved across any row partition of *R  without affecting the column sum condition in 

any column for { },t q
Y , since all possible conflicts in those columns have been 

consolidated and rectified in the construction of the chain. 

Now, form a new matrix R´ that has a row for each chain, and a column for 

each value of t.  Each row (chain) represents only a single value of q.  In each row of 

R´, put 1’s in those cells corresponding to values of (t,q) that are represented in the 

chain, and zeros everywhere else.  Because links in the chain can only be formed for 

consecutive values of s, the matrix R´ has 1’s in consecutive columns only; thus, it is 

the transpose of an interval matrix.  Furthermore, a row partition of R´ has column 

sums that correspond exactly to the column sums for the variables { }tZ  in *R .  

Because R´ is the transpose of an interval matrix, it is totally unimodular.  Therefore, 

it has a row partition that satisfies the column sum requirement to be TU.  Two rows 

of *R  will be considered equivalent if they belong to chains on the same side of this 

partition of R´.  This equivalence relation forms a row partition of *R  that satisfies 

the column sum condition for all columns.  Thus, A is TU.   ■ 

 

Now that the Base and Consolidated model formulations have been introduced 

and their mathematical properties analyzed, attention is turned to a slightly modified 

version of these models.  It will concentrate not on finding a system optimal level of 

delay and cancellation, but rather, will determine the number of slots to make 

available given these levels of system delay and cancellation as parameters.  Hence, it 

is called the Parametric model.  Much of the analysis in the remainder of this thesis 

will focus on the application of this model, for reasons to be explained. 
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2.4 Parametric Model 

The network underlying the Parametric formulation of this problem is 

structurally identical to the Base model.  The added complication in this model is a 

pair of side constraints that cap the levels of delay and cancellation, as expected over 

all capacity scenarios.  That is, the solutions presented have certain maximum delay 

and cancellation levels as parameters. 

Unlike the Base and Consolidated models, which present their solutions at 

system-optimal levels of delay and cancellation, the Parametric model determines the 

number of slots to offer at any given combination of cancellation and delay 

parameters.  It is important to keep in mind that there are a number of stakeholders in 

this decision, and they will likely not agree on what “system-optimal” means anyway, 

so departing from this presumption and providing more user controls might be better 

anyway.  Thus, with the Parametric model, the decision about what levels of delay 

and cancellation are acceptable is not left to the model.  Rather, these decisions are 

left open to debate by policymakers. 

In this section, a fairly brief discussion of the model structure will be 

provided, along with an analysis of the mathematical properties of the Parametric 

model.  Although this section may be brief, it is important to remember that much of 

the work has been presented in discussing the first two formulations of the model: the 

Parametric model merely builds on the work already developed. 
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2.4.1 Structure 

The structure of the underlying network in this formulation is identical to the 

Base formulation.  It is repeated in Figure 8 for clarity. 
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Dmax
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Dmax
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i { }θT,q
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{ }Xt- q1, { }Xt,q{ }X1 ,q { }XT,q

{ }Y1 ,q { }Yt ,q-2 { }Yt ,q-1 { }Yt,q { }YT- ,q1 { }YT,q { }YT+ ,q1 { }YT+U- ,q1≤{ }C1,q ≤{ }Ct q-1, ≤{ }Ct q, ≤{ }CT q, ≤{ }CT+ q1, ≤{ }CT+U q,  
Figure 8 – Parametric model flow diagram 

 

The white nodes are again the source of flights in the network.  At the gray 

nodes, the cancellation decision is made, using the piecewise linear cost function.  At 

the black nodes, the decision between landing immediately and experiencing a delay 

is made.  The { }tZ  decision variables represent the number of slots offered in each 

time period t.  The flow variables are again { },

i

t q
θ , { },t q

X , and { },t q
Y , representing 

cancellations, uncanceled flights, and delayed flights, respectively.  

The unique features of the Parametric formulation, however, are the side 

constraints that regulate the levels of delay and cancellation.  These create 

conditional, or parametric, solutions.  The expected delay per flight over all capacity 

scenarios, γ , is calculated as shown in (2.16). 

 
,t q

t
q

q t

t

Y

p
Z

γ

 
 =  
 
 

∑
∑

∑
 (2.16) 
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Because, however, integer solutions are required for this problem, inserting 

(2.16) into our formulation would likely cause problems with feasibility, depending 

on the specific value of γ  selected.  As a result, (2.16) is converted to a linear 

inequality, and is rearranged as shown in (2.17). 

 , 0
q t q t

q t t

p Y Zγ− ≤∑ ∑ ∑  (2.17) 

 

In a parallel fashion, the constraint limiting the level of cancellations 

permitted can be developed.  The metric used is the expectation over all scenarios of 

the percentage of flights cancelled per day, referred to here as ρ .  This constraint is 

shown in (2.18). 

 , 0i

q t q t

q i t t

p Zθ ρ− ≤∑ ∑∑ ∑  (2.18) 

 

As a result of these two constraints, the objective function is simplified by 

removing the penalties associated with delays and cancellations in units equivalent to 

slot values.  Thus, the goal is to maximize the total economic value of the slots 

offered.  The new objective function becomes simply (2.19).  This removes the 

obvious equivocation in pecuniary terms between slot values and delays and 

cancellations. 

 max
t t

t

V Z
 
 
 
∑  (2.19) 

 

Obviously the constraints shown in (2.17) and (2.18) are inequalities, and as 

such, are not guaranteed to be binding.  However, it should be obvious that allowing 

some small and finite marginal amount of delay and cancellation would permit an 
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extra slot to be offered.  Thus, by using this objective function, the resultant solution 

should yield delay and cancellation levels as close to those specified as permitted by 

the integrality constraints. 

It is important to note that the previously discussed cancellation cost vector 

{ }i

q
λ  appear neither in the constraints (2.17) and (2.18), nor in any other portion of 

the Parametric formulation.  Initially, this may seem to be a seriously failing in the 

model, as it would make the model ambivalent between cancellation and delay.  That 

is, the decision to cancel or to delay one period would be equally costly.  While it is 

true that this assumption does result in each of these decisions being equally costly, 

the total deleterious effect of delays and cancellations is not of concern in this 

formulation.  Rather, because this is a maximization problem, the model will tend to 

use as many of the cancellation and delay arcs as are permitted by the side 

constraints, in order to make more slots available and increase the value of the 

objective function.  Obviously this implies that careful consideration must be paid to 

the number (N) and capacity (Pi) of delay arcs, the maximum delay length (U), and 

the maximum number of slots that can be made available in each period (Dmax). 

To complete this mathematical program, constraints (2.1) – (2.10) are retained 

from the base problem.  The entire formulation for the Parametric model is repeated 

in Table 5 for clarity. 
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max
t t

t

V Z
 
 
 
∑  (2.19) 

Subject to 

,

i

t q iPθ ≤  { } { } { }1, , ,  1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.2) 

, , 0i

t t q t qi
Z X θ− − =∑  { } { }1, , ,  1, ,t T q Q∀ ∈ ∈… …  (2.3) 

1, 1, 1,q q q
X Y C− ≤  { }1, ,q Q∀ ∈ …  (2.4) 

, 1, , ,t q t q t q t q
X Y Y C−+ − ≤  { } { }2, , ,  1, ,t T q Q∀ ∈ ∈… …  (2.5) 

1, , ,t q t q t q
Y Y C− − ≤  { } { }1, , 1 ,  1, ,t T T U q Q∀ ∈ + + − ∈… …  (2.6) 

1, ,T U q T U q
Y C+ − +≤  { }1, ,q Q∀ ∈ …  (2.7) 

, ,t q t q
Y W≤  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.9) 

min maxt
D Z D≤ ≤  { }1, ,t T∀ ∈ …  (2.1) 

, , ,, , , i

t q t q t t qX Y Z θ +∈�  { } { } { }1, , , 1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.10) 

, 0
q t q t

q t t

p Y Zγ− ≤∑ ∑ ∑   (2.17) 

, 0i

q t q t

q i t t

p Zθ ρ− ≤∑ ∑∑ ∑   (2.18) 

 

Where 
  

{ }min ,

, ,

1

t U T U

t q i q

i t

W C

+ +

= +

= ∑  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.8) 

Table 5 – Parametric model formulation 

2.4.2 Mathematical Properties 

With any realistic set of capacity scenarios, (2.17) and (2.18) introduce two 

row to the constraint matrix A that renders it not totally unimodular.  Because there is 

more than one scenario, the probabilities { }q
p  are themselves not integral, nor are 

they, in all likelihood, identical.  Thus, the delay and cancellation level constraints 

cannot be scaled to produce coefficients exclusively in the set {-1,0,1}, so there will 

be submatrix determinants that are also not confined to this set of values.   

The matrix is also not k-regular in any sense, and thus the results presented for 

the Base model cannot apply to this model.  As a result, the feasible region for this 

problem is not guaranteed to be bounded by an integral polyhedron, and it is likely 



 

 47 

 

the problem will not solve to integral optimality using its linear programming 

relaxation.  Computational results presented later will confirm this conclusion that 

conventional integer programming techniques such as branch-and-bound are 

necessary.  As with previous problems, provided the size of the problem is 

manageable and that real-time solutions are not required, this should not be an 

onerous requirement.  Problems of realistic size can be solved in a matter of minutes. 

2.5 Formulation Discussions 

Three alternative formulations of the problem of determining the number of 

slots to make available for a market mechanism have been presented.  In this section, 

they will be compared, based on their relative strengths and weaknesses in the areas 

of prime concern: solution time and economic assumptions required.  Various 

potential modifications to each will be addressed. 

2.5.1 Model Solution Times 

Having quick solution times may or may not be very important, depending on 

the further context in which this model is used.  If it is to be used once, and with a 

fixed set of slot values, then solution time is not important, given the problem size.  

The model would solve in a matter of minutes.  If, however, this were to be 

implemented in a simulation environment, or in an iterative model to account for the 

price-quantity dynamic of the number of slots offered, then solution time becomes 

considerably more important. 

In terms of solution times, the competition in this category is quite simple.  

The Consolidated model has a constraint matrix which is totally unimodular for each 
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and every set of input values.  The Base model has a TU constraint matrix for limited 

sets of right hand side values.  The Parametric model does not have a TU constraint 

matrix, or any other properties that assure integrality under any useful conditions, and 

thus tends to require traditional integer programming techniques to solve to 

optimality. 

That is not to say, however, that a formulation that does not solve to an integer 

optimal solution using the linear programming relaxation will not solve fairly quickly, 

as these models do not constitute huge integer programs.  In fact, under reasonable 

assumptions, these problems will have somewhere between several hundred and 

several thousand variables and constraints.  Problems of this size can be solved in 

reasonable time.  Issues relating to problem size and computation time will be further 

explored in Chapter 5. 

2.5.2 Structural Assumptions 

All three models suffer from many of the same structural assumptions.  

Primarily, these relate to the method by which cancellation decisions are made.  

These assumptions are reasonable, for modeling, given the tremendous complexity of 

the cancellation decision.  In addition, there is a strong, but necessary, assumption in 

all three models that each and every flight has the same maximum amount of delay it 

can suffer that does not vary between carriers, or time of day, or by load factor, etc. 

The Consolidated model, however, has an addition complication.  Because the 

order of decision-making within the model has been altered, it would now be possible 

for this model to produce a solution that requires that a given flight be delayed for 

some number of time slices and subsequently cancelled.  One could imagine that this 
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occurs in practice, but in this case the model is not “aware” of the coincidence 

between the delay and the cancellation.  Thus, the proper amount of “hesitance” to do 

this is not being observed by the model.  Of course, the model only works with flows 

and not individual flights, so such a result is not obvious.  But, it is possible that a 

solution could be produced where the only possible mappings of flows to flights 

included such aberrations.  This could only be strictly prevented by requiring that the 

marginal cancellation cost be less than the unit delay cost.  Obviously this assumption 

is not realistic, and would lead to excessive numbers of cancelled flights. 

2.5.3 Economic Assumptions 

The implicit and explicit economic assumptions in these models present 

several challenges to determining a solution to the problem being studied.  Primarily, 

these challenges relate to the nature of the assumptions about the various costs and 

values used in the model.  Coping with these challenges is certainly not an 

insurmountable problem, but is one that requires economic expertise and access to 

data. 

The primary economic challenge presented in the Base and Consolidated 

models is the requirement that all costs be expressed in equivalent units.  The 

modeling assumption was made that a delay lasting one time period t was the unit 

cost.  Cancellation costs and slot values are then be expressed relative to this unit 

cost.  Obviously these values need not be estimated in terms of delays, but rather 

could be determined in monetary units and normalized.  The challenge present in this 

assumption does not lie in estimating each of these quantities in monetary units, as 

they each obviously have some monetary value.  Rather, the challenge lies in 
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extracting that monetary value in compatible units.  Given certain (likely proprietary) 

data, the values of each of these quantities could certainly be estimated in terms 

useful to the Base and Consolidated models, at least from the perspective of a single 

carrier.  The advantage to using these models, because all quantities are specified in 

compatible units, is that the system-optimal levels of delay and cancellation are 

revealed. 

The Parametric model, which is a slightly modified version of the Base model, 

addresses this challenge by separating the problem of estimating the costs and values 

in the problem.  Because delay and cancellation costs are specified in units 

independent of the slot values, considerable freedom is gained in estimating each of 

these relationships, and less proprietary data are required. 

2.5.4 Objective Function Assumptions 

There are two different objective functions discussed for the three 

formulations presented in this chapter.  The objective function for the Base and 

Consolidated models is the same, and includes pecuniary equivocations between slot 

values, delays, and cancelled flights, while that for the Parametric does not. 

In the objective function utilized for the Base and Consolidated models, the 

quantity being maximized is the difference between the total value of the slots 

offered, and the resultant levels of delay and cancellation.  Any choice of cost 

translation parameters amounts to a value judgement about how society (dis)benefits, 

and in what relative measures, from slot opportunities, delays, and cancelled flights.  

Thus, while it is colloquial to call such an objective function a “sytem-opimal” 
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pursuit of net benefit to society, it is important to remember that there would not be 

unanimity of opinion on the coefficients used to perform this equivocation.  

In the Parametric objective function, the total value of all slots being offered is 

maximized.  In this case, the quantity being maximized is the total benefit to the 

airport operating authority, and presumably to the carriers as a whole (but probably 

not to any individual carrier).  The operating authority is receiving the maximum 

possible value of its goods, subject to the delay and cancellation cap constraints.  In 

truth, airports are more likely to discuss measures of performance such as passenger 

enplanements, and load factors are not included in this model.  At congested airports, 

however, it might be safe to assume that there is enough latent demand to fill the 

flights, and that even if this were not the case, that part of the value for each slot is 

derived from the passenger demand that would seek to use that slot; therefore an 

argument can be made that the explicit goal of the airport operating authority is 

encapsulated implicitly in the slot value functions. 

2.5.5 Incorporating Other End-of-day Effects 

Several considerations could be made about operations at the airport regarding 

what takes place as operations cease, relating to the amount of time the airport can 

stay open after the scheduled operations end, and the actual airport capacity at this 

time. 

Some airport have a strict curfew after the end of the scheduled operations, 

either taking effect immediately afterwards, or with some short lag.  In either of these 

cases, it would be possible to modify the model formulations to incorporate this effect 

by changing the assumptions about the maximum delay length parameter U.  Because 
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this parameter is assumed constant across the entire day, the delay portion of the 

model structure is extended past the end of the slot offerings (see Figure 5 for an 

example).  At the end of the day, this maximum delay parameter could be reduced 

from its nominal value.  If it were reduced to zero, then the extra delay arcs past the 

scheduled day shown in the flow diagrams would be eliminated.  Alternatively, at an 

airport that allowed some flexibility in breaking this end-of-day condition, this 

parameter could take on a value greater than 1, but less than the nominal maximum 

delay length value.   

In either case, this consideration would require modifying the flow structure 

of the model to remove some periods past the end of the day.  In addition, the 

quantity Wt, which defines the capacity of the delay arcs would be changed as shown 

in (2.20), where U
∗  is defined as the number of time periods beyond the end of the 

scheduled day during which the airport is still open for arrivals.  Potentially this value 

is zero. 

 

{ }min ,

, ,

1

t U T U

t q i q

i t

W C

∗+ +

= +

= ∑  (2.20) 

 

The other consideration regarding the end-of-day conditions is related to the 

arrival capacity of the airport in the case in which it is open past the end of the 

scheduled day.  In the examples presented in this thesis, the capacity values used for 

these hours have been those values from the corresponding hours from the capacity 

scenario analysis.  However, it may be more reasonable to consider that the airport, at 

these late hours, is not able to operate at the full declared capacity (AAR values).  For 

reasons relating more to operations, such as availability of gates, ground crew, and 
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airport staffing, the capacity of the airport to accept these late arrivals may be 

significantly less than the values specified.  As a result, in some scenarios at some 

airports, it may be reasonable to heuristically define lower capacity values for these 

unregulated hours. 

2.5.6 Conclusions 

There are many instances where the computational costs associated with these 

models are not paramount.  In these cases, the economic and structural concerns may 

be more important drivers of the choice of model formulation.  As mentioned, these 

concerns are primarily derived from the availability of data to calibrate various 

parameters in compatible units.  Because of the data available in conducting this 

study, the Parametric model will be used for much of the remainder of the analysis 

undertaken.  This will produce solutions at various levels of delay and cancellation 

that will be specified a priori, and will not reveal the system optimal number of slots 

and delay and cancellation levels.  Analysis using the other two models would 

produce interesting but likely not significantly different results, as compared to the 

Parametric model. 

The calibration procedure presented next in Chapter 3 is applicable to all three 

formulations of this problem, and does not rely on any of the aforementioned 

formulations in the results presented.  A slightly modified version of the Base model 

will be applied for calibration.  The Base and Consolidated models make use of all 

the parameters estimated.  The Parametric model uses the estimates of the structural 

parameters, but does not require the cancellation cost vector, for reasons described 

previously.  The results presented in Chapters 4 and 5 will rely on the use of the 
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Parametric model.  Consider that portion of the analysis a case study in applying the 

Parametric model to a specific airport, as sufficient data are not presently available to 

apply the other two models under consideration. 
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Chapter 3:  Model Calibration 

In this section, the procedures are described by which most of the parameters 

used in the various models described in Chapter 2 are calibrated.  First, the modeling 

framework used for calibration with historical data will be described.  Then, the 

assumptions about the time resolution of the modeling presented in this thesis will be 

discussed in further detail.  Next, the parameters relating to flight delay (maximum 

permissible length of delay U) and cancellation (number of discrete cancellation arcs 

N, capacity of each cancellation arc Pi, cost of each cancellation arc 
i

λ ) will be 

described, with particular attention paid to the assumptions and procedure used for 

the cancellation parameters.  The discussion of the slot value parameters will be 

reserved for discussion in the following chapter. 

3.1 Parameter Calibration Model 

  In this section, the process by which the model parameters are calibrated is 

discussed.  The model described is structurally similar to those in Chapter 2, but it 

does not serve the same purposes.  That is, it cannot be used to estimate the number 

of slots that should be made available to a market mechanism.  The presentation of 

the Calibration model in this section is structured in the same fashion as the main 

models (Base, Consolidated, and Parametric) in this paper: discussions of the 

structure of the model, and of the mathematical properties relating to finding integer 

solutions. 
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3.1.1 Structure 

This calibration process is cast as a minimum cost network flow model, where 

the objects flowing through the network are the flights themselves, as before.  The 

objective of this model is to minimize the cost of the delays and cancellations 

experienced, presuming that, all other things being equal, carriers would prefer to 

suffer as little as possible from these deleterious effects.  The network structure of the 

model is nearly identical to the Base model, as shown in Figure 9, absent the 

stratification due to capacity scenarios.   
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Figure 9 – Parameter calibration model flow diagram 

 

The demand source nodes reflect the true number of scheduled flights on the 

day being considered, and the capacity sink nodes are the declared capacity of the 

airport.  In other words, the demands and capacities on any given historical day are 

known, so the goal of the model is not to predict, but rather to help choose a 

combination of parameter values that make the cancellation and delay results from the 

model match most closely with historical results. 

As before, the demand is shown at the top-most level of the diagram at the 

white nodes.  The amount is denoted as Dt, but is not a bound as was previously used.  
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Rather, the entire supply must flow through the network and exit either as a 

cancellation, or as a landing.  Thus, in this model, the variable Zt is retained in the 

network flow diagram shown in Figure 9, but is not needed in the formulation.  The 

notation is retained to demonstrate the similarity in structure between this calibration 

model and the Base model. 

At the gray nodes, various flights are cancelled.  As before, cancellation costs 

are stratified, to model the increasing marginal cost when canceling many flights.  

These various costs are denoted { }iλ , with N the number of cancellation arcs in each 

time period, and { }1, ,i N∈ …  again referring to the cancellation arc being used.  Each 

cancellation arc i is subject to a capacity Pi.  This leads to the constraint shown in 

(3.1). 

 { } { }1, , ,  1, ,i

t iP t T i Nθ ≤ ∀ ∈ ∈… …  (3.1) 

 

The flights that are not canceled and thus permitted to land at some time are 

again denoted as Xt.  To maintain flow conservation at the gray nodes, the constraint 

shown in (3.2) is needed. 

 { }0 1, ,i

t t ti
D X t Tθ− − = ∀ ∈∑ …  (3.2) 

 

At the black node, the flights Xt may either land immediately, or may be 

delayed, and permitted to land at some later time.  The flights that are delayed to be 

considered in the next time period are denoted Yt.  Obviously the number of flights 

permitted to land in time period t must be less than, or equal to, Ct.  These 

observations lead to the constraints shown in (3.3)-(3.5).  Each differs slightly, as 
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before, because of the boundary conditions.  Recall that flights can be delayed at most 

U units of time past the time at which demand ends. 

 1 1 1X Y C− ≤  (3.3) 

 { }1 2, ,t t t tX Y Y C t T−+ − ≤ ∀ ∈ …  (3.4) 

 { }1 1, , 1t t tY Y C t T T U− − ≤ ∀ ∈ + + −…  (3.5) 

 

Because no flights can be delayed more than U time periods, and the demand 

ends at time period T, all flights permitted to land must do so by the very end of the 

day, as shown in (3.6). 

 1T U T U
Y C+ − +≤  (3.6) 

 

The delay arc capacities are calculated as previously, with the removal of the 

q subscripts, as shown in (3.7).  They are then enforced in a very straightforward 

manner, as shown in (3.8). 

 
{ }

{ }
min ,

,

1

1, , 1
t U T U

t q i

i t

W C t T U

+ +

= +

= ∀ ∈ + −∑ …  (3.7) 

 { }1, , 1t tY W t T U≤ ∀ ∈ + −…  (3.8) 

 

Because of the network-flow formulation of the model, integer-valued 

solutions are guaranteed by using linear programming, thus while non-negativity 

should be stated explicitly, integrality need not be, yielding (3.9).   

 { } { }, , 0 1, , , 1, ,i

t t tX Y t T i Nθ ≥ ∀ ∈ ∈… …  (3.9) 

 

A proof that the constraint matrix is totally unimodular, and hence that LP 

relaxation produces integer optimal solutions, is offered in Section 3.1.2 of this thesis. 
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As mentioned above, the objective of this problem is to minimize the total 

cost experienced by all flights operating at the airport, as shown in (3.10).  The 

constraints for this model are repeated in Table 6 for clarity. 

   
1

1 1 1

min
T U T N

i

t i t

t t i

Y λθ
+ −

= = =

 
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Subject to: 

0i

t t ti
D X θ− − =∑  { }1, ,t T∀ ∈ …  (3.2) 

1 1 1X Y C− ≤   (3.3) 

1t t t t
X Y Y C−+ − ≤  { }2, ,t T∀ ∈ …  (3.4) 

1t t t
Y Y C− − ≤  { }1, , 1t T T U∀ ∈ + + −…  (3.5) 

1T U T U
Y C+ − +≤   (3.6) 

t t
Y W≤  { }1, , 1t T U∀ ∈ + −…  (3.8) 

i

t i
Pθ ≤  { } { }1, , ,  1, ,t T i N∀ ∈ ∈… …  (3.1) 

, , 0i

t t t
X Y θ ≥  { } { }1, , , 1, ,t T i N∀ ∈ ∈… …  (3.9) 

 

Where 
  

{ }min ,

,

1

t U T U

t q i

i t

W C

+ +

= +

= ∑  { }1, , 1t T U∀ ∈ + −…  (3.7) 

Table 6 – Calibration model formulation 

3.1.2 Mathematical Properties 

Given the calibration procedure being undertaken, it is highly desirable that 

this model be solvable rapidly.  One way to guarantee reasonable solution times is to 

prove that the linear programming relaxation will yield integer solutions by 

demonstrating that the constraint matrix defining the problem in totally unimodular. 

A special case of the row partition argument that was used previously in this 

thesis to demonstrate that a matrix is TU can be invoked when a column has at most 

two non-zero elements.  In previous formulations, the presence of the { }tZ  columns 

prevented this method of proof.  For the calibration model, however, we can exploit it 
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as follows.  Per Proposition 3.2 in Nemhauser and Wolsey (1988), one possible set of 

sufficient conditions for a matrix A to be totally unimodular is shown in Table 7  

1. Each element aij is in the set {-1,0,1} 

2. Each column contains, at most, two nonzero elements. 

3. There exists some partition of the rows such that the column sums (only of 

those columns with two nonzero elements) of each partition are equal. 

Table 7 – Conditions for total unimodularity 

 

The first step in evaluating the total unimodularity is to convert the equality 

constraints in this formulation into inequalities.  As described in the discussion of the 

mathematical properties of the Consolidated model formulation, treating equalities as 

inequalities has no effect on the TU properties of the constraint matrix.  Then, 

examining the formulation of the Calibration model presented in Table 6, it is obvious 

that the first condition is met.  The second and third conditions are demonstrated to be 

met simultaneously.  First, remove from consideration columns containing Zt and i

t
θ , 

as they flow to or from source or sink nodes, and thus appear in only one row.  The 

remainder of the variables must appear in exactly two rows, to satisfy mass balance 

considerations.  Because of mass balances, these two coefficients must always be a 

pair {1,-1}, representing the flow out of one node and the flow into another node.  An 

obvious partition of the rows would be to include all rows in one set, and none in the 

other.  Thus, by the previous statement, each column in the non-empty partition must 

sum to 0, while those in the empty partition necessarily sum to 0.   ■ 
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3.2 Time Resolution 

While any arbitrary division of time is structurally permissible in the 

Calibration model, very few divisions are truly feasible, due to several practical 

concerns.     

First, it is necessary that each time period be of equal length.  First, this makes 

the problem logically tractable.  Second, the values of { }iλ  are relative to a single-

period delay cost.  As such, if the time periods were of different length, the costs for 

using the delay arcs would have to be scaled to be relative to the length of the time 

period under consideration.  This would add an unnecessary complication.  The third 

concern is the nature of the historical data available for calibrating the parameters.  

Although individual flight records could be grouped into any arbitrary division of 

time, more accessible sources, including the FAA’s Aviation System Performance 

Metrics (ASPM) data collection, have data available in both hourly and quarter-

hourly bins. 

It is also important to consider the structure of the Chapter 2 models in 

choosing the time resolution used in the Calibration model.  The requirement relating 

the time scales of the two models is that the parameters estimated in the calibration 

procedure be scalable to the time resolution used in the Parametric model.  As such, it 

seems reasonable to use the briefest time periods possible in the Parametric model, in 

order to provide the greatest flexibility in choosing the time scale of the Parametric 

model.   

Given these requirements, and the available sources of data, a reasonable time 

scale to use in calibrating the model is quarter-hours, and this is the approach taken in 
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this thesis.  This choice will permit the time scale of the Parametric model used in this 

thesis to be any multiple of a quarter-hour.  If hourly time periods are chosen for the 

analysis, then the maximum delay length parameter U set in the calibration procedure 

must be some multiple of four quarter-hours, as flights can only be delayed an integer 

number of time periods. 

3.3 Calibration Procedure 

Because the structure of this model is explicitly dependent on the choice of 

several of the parameters being calibrated, it does not lend itself to a traditional 

optimization routine to select the optimal parameter set.  It would be best if U, N, P, 

and λ  could all be incorporated as decision variables into some structured 

mathematical program, but this is just not feasible because several of these 

parameters partially define the structure of the model.  In particular, U determines the 

number of time slices at the end of the day, and N determines the number of 

cancellation arcs to include, as illustrated in Figure 9. 

As a result, the calibration procedure undertaken is more heuristic in nature.  

The basic premise of the process is to run the model using a test data set and a large 

number of possible parameter combinations, and then to select the best combination 

based on several metrics.  By combining manual, but careful, evaluation of 

incremental results and bounds on the parameter space, this heuristic is able to 

produce a strong fit between the observed and predicted data.  
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3.3.1 Parameter Bounding 

The first step of this heuristic search is to identify appropriate bounds for the 

parameters.  The first constraint to consider is that three of the four parameters being 

calibrated are necessarily restricted to integer values.  Because the maximum delay 

length U and number of cancellation arcs N are structural parameters, they must be 

integer valued.  In addition, the capacity Pi of each cancellation arc { }1, ,i N∈ …  

should logically be integer valued, as an integer number of units are flowing through 

the network.  The cancellation arc costs{ }iλ , however, need not necessarily be 

integer valued.  In this analysis, they will be restricted to conform to some pre-

specified lattice of points { }iζ , as shown in (3.11).  The parameter α  will be 

calibrated in this analysis, subject to some assumption about the structure of the 

vector { }iζ . 

 { } { }i iλ α ζ=  (3.11) 

 

Considering the data being used in the calibration procedure, the bounds on 

the variables set forth in Table 8 were established.  Obviously these bounds are fairly 

arbitrary, but a common sense evaluation of the underlying data justifies them. 

Parameter Lower Bound Upper Bound 
Additional 

Constraints 

U 4 20 Multiple of 4 

N 1 5  

P 2 6  

α  1 10  

Table 8 – Parameter bounds 
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It is likely that some combinations of the parameter values in the ranges above 

will not produce feasible linear programs.  This will likely arise from scenarios which 

combine low numbers of cancellations arcs N and cancellation arc capacities Pi.  In 

the worst (most limited) capacity scenarios, there will not be sufficient capacity at the 

demand nodes (arrivals and cancellations) to accommodate all of the supply.  As there 

are no other release points from the network, the problem will have no feasible 

solutions.  

There are obviously an infinite number of combinations of values to uniquely 

define the vector { }iζ .  As mentioned earlier, the premise of the various cancellation 

arc costs was that as the number of cancellations increases, the marginal cost of 

cancellation should also increase.  The vector { }iζ  should thus be defined to satisfy 

the conditions shown in (3.12) (initial condition), (3.13) (increasing sequence), and 

(3.14) (increasing marginal cost). 

 1 0ζ =  (3.12) 

 1 1
i i

iζ ζ +< ∀ ≥  (3.13) 

 ( ) ( )1 1 2i i i i iζ ζ ζ ζ− +− < − ∀ ≥  (3.14) 

 

Given knowledge of the problem structure and the assumptions presented thus 

far, a form can be assumed for { }iζ , as defined in (3.15).  The difference between 

each successive pair of numbers is one unit greater than the difference between the 

previous pair.  This sequence of integers is called the central polygon numbers, or the 

“lazy caterer’s sequence.”  Obviously, in any given test run, only the first N elements 

of this sequence will be used. 

 { }1, 2, 4,7,11,ζ = …  (3.15) 
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3.3.2 Calibration Metrics 

For a given combination of parameters values, the calibration model is run for 

each day in the calibration data set.  The most interesting outputs from the calibration 

model are the vectors describing the number of cancellations taking place at each 

cancellation cost level { }itθ .  Obviously, the real data to which the model is being 

calibrated do not specify cancellations at the artificial cost levels output by the model, 

so for each time period t, the cancellations on each arc must be summed to produce a 

vector { }tψ  in which each element describes the total number of cancellations in that 

time period, as shown in (3.16). 

 
1

N
i

t t

i

ψ θ
=

=∑  (3.16) 

 

Now, the real cancellation data Qt can be compared with the predicted 

cancellation data 
t

ψ .  Several metrics provide interesting information about the 

relationship between these two quantities.  These metrics will be grouped into two 

categories: trend and profile.  The trend metrics are of prime interest in this analysis, 

but the profile metrics could be highly applicable in other situations. 

The trend metrics explain the strength of the relationship between the daily 

cancellation levels observed and predicted.  Recall that the results discussed thus far 

reflect some division of each day.  That is, an additional index could be added to Qt 

and 
t

ψ  indicating the day drawn from the calibration data set.  For the trend metrics, 

the observed cancellation percentage is averaged across each day, as is the model 

output 
t

ψ .  These operations produce two new vectors describing the average 
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observed and predicted cancellation levels for each day in the calibration data set, as 

in (3.17) and (3.18). 
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The trend metrics are then derived from the relationship between the vectors 

{ }dQ  and { }dψ .  The relationship is examined using ordinary least squares (OLS) 

regression with the observed daily cancellation percentage Q
d
 as the dependent 

variable, and predicted daily cancellation percentage dψ  as the independent variable.  

This relationship is represented in (3.19), with dε  representing the disturbance term 

in this regression equation. 

 0 1

d d d
Q γ γ ψ ε= + +  (3.19) 

 

Considerable information may be gleaned from the regression model 

estimated in (3.19).  First, the resultant coefficient of determination R
2
 explains the 

amount of variance in the observed data that is being explained by the predicted data.  

Having a higher R
2
 value with one set of parameters indicates that the Calibration 

model is better able to explain the variance in the observed cancellation data than it 

can with another set of parameters.  In some sense, this is a measure of how well the 

model is predicting cancellations. 

In addition, the coefficients 0γ  and 1γ  in (3.19) can be useful in determining 

the quality of a given set of calibration parameters.  The intercept value 0γ  indicates 
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what percentage of cancellations are taking place for reasons other than the 

congestion explicitly accounted for in the Calibration model.  Empirical examination 

of historical cancellation data at any airport will reveal this effect, as carriers cancel 

flights for myriad other reasons, even on good weather days, including system 

connectivity, crew availability, weather elsewhere, and maintenance issues.  This 

effect is further discussed in Ball et al. (2006) and Mukherjee et al. (2007). 

The coefficient 1γ  represents the slope of the line describing the relationship 

between the predicted and observed cancellation data.  For a proper set of parameters, 

this value should approach 1.0, indicating that input data that yield a prediction of a 

single additional cancellation will have a corresponding historical data point in which 

the number of cancellations increased by one.  The relationship between the two 

quantities should not only be linear, but with a unit slope. 

Another trend metric that will be examined for the daily-level predicted 

cancellations is the percentage of days in the calibration data set on which the model 

predicts no cancellations.  Examination of the output of the outputs produced by the 

calibration procedure suggests that this may be an issue that would otherwise not be 

apparent from the other trend metrics, as such a scenario could yield a regression 

model with reasonable coefficients and an acceptable correlation.  Examination of the 

scatter plot would clearly suggest that such a parameter set produces unacceptable 

results. 

The other category of metrics mentioned previously was the profile metrics.  

These metrics are not used in the analysis described herein, but are discussed for 
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completeness.  A more extensive examination of the applications of such metrics to 

aviation data, particularly delays and cancellations, can be found in Ball et al. (2006).   

This class of metrics for calibrating a cancellation prediction model was 

developed to examine the temporal distribution of cancellations over the course of a 

day.  The question being examined is: how well does the time profile of the predicted 

cancellations throughout the day match that of the observed cancellations?  Obviously 

this is a difficult question to answer for a single day, given the large number of other 

potentially influential factors.  However, if data are averaged across a sufficiently 

large period of time, the profile of observed and predicted cancellations for the 

“average” day should match sufficiently well.   

Once these data were aggregated, a simple numerical metric was used to 

quantify the similarity between the observed and predicted cancellation profiles in 

each period and, more important, to estimate the single vertical offset (or translation) 

that provides the best superimposition of the two profiles for each period.  “Best” in 

this case is defined as the superimposition that produces the least sum of squared 

differences between the vertices (i.e., the hourly values of average delay) of these two 

piecewise-linear profiles.  The associated offset can also be thought of as a rough 

indicator of the average amount of background (non local congestion based) 

cancellations taking place for the various causes mentioned earlier. 

3.3.3 Calibration Data 

Data for this calibration procedure were drawn from the Analysis section of 

FAA’s ASPM system.  Quarter-hourly observations for various airports were used.  

The data for the demand in the Calibration model were taken from the “Scheduled 
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Arrivals” (SCHARR) field, denoted here as Dt.  These data are taken directly from the 

airport schedules published in the Official Airline Guide (OAG).  The capacity data 

were taken from the “Airport Arrival Rate” (AAR) field, denoted here as Ct.  These 

data are declared by the airport and reported in, among other places, the ASPM 

system.  The historical cancellation data were taken from the field “Cancelled 

Arrivals” (CANCARR), denoted here as Qt.  As mentioned elsewhere, these data could 

have been derived independently, but the simplicity and accessibility of the ASPM 

system make such an analysis unnecessary. 

3.4 Calibration Results 

The primary driver of this calibration procedure is matching the predicted 

cancellations with the observed cancellations.  As described, metrics derived from 

this relationship are those that determine which set of parameters is best.  As such, the 

delay parameter being calibrated (maximum permissible delay length) is estimated as 

a part of calibrating the models for cancellation performance. 

To demonstrate the calibration process and its utility for varied airports, data 

for several airports will be examined.  The informal hypothesis being examined by 

using data for several airports is whether the calibration procedure will yield results 

for each airport consistent with outside knowledge of the operations and procedures 

in effect at that airport.  The airports that will be examined are New York’s 

LaGuardia Airport (LGA), Chicago O’Hare International Airport (ORD), and 

Hartsfield-Jackson Atlanta International Airport (ATL).  The datasets used in this test 

are summarized in Table 9.  The missing observations occur almost exclusively 
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during the overnight hours between 0200-0400 local time, during which traffic levels 

are negligible.  Thus, these missing data are not of concern to this calibration effort. 

Airport Year 
Number of 

Days 

Number of 

Observations 

Number of Missing 

Observations 

ORD 2005 365 34634 406 

ATL 2005 365 33985 1055 

LGA 2005 365 28157 6883 

Table 9 – Datasets used in calibration procedure 
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3.4.1 Results for ORD 

The ASPM data for Chicago O’Hare International Airport in 2005 were tested 

using the calibration process previously described.  The five best parameter sets, as 

determined by highest R
2
 value are presented in Table 10, while the five best, as 

measured by nearness of regression slope 1γ  value to 1.0 are shown in Table 11. 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

20 4 3 0.821 85.7% 2.281 0.017 

20 4 4 0.810 85.7% 1.899 0.018 

20 6 3 0.808 88.7% 2.326 0.018 

20 [4 8] 2 0.806 85.7% 1.926 0.018 

16 4 5 0.799 85.7% 1.677 0.018 

Table 10 – Best (by R
2
 value) potential parameter sets for ORD 

 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

4 [4 8] 6 0.774 85.7% 1.320 0.019 

4 [4 8 16] 4 0.774 85.7% 1.356 0.019 

4 [4 8 16] 5 0.774 85.7% 1.337 0.019 

4 [4 8 16] 6 0.774 85.7% 1.322 0.019 

4 [4 8 16 28] 3 0.774 85.7% 1.396 0.019 

Table 11 – Best (by slope value) potential parameter sets for ORD 

 

These results seem fairly unsuitable, based upon the percentage of days that 

were predicted to have no cancellations.  Unfortunately, this problem seems to be 

evident, to a greater or lesser degree, in all of the scenarios tested for this airport.  

Fortunately, for the analysis presented in the remainder of this thesis using the 

Parametric model, some of these values ( λ , in particular) are not needed.  The 

remaining values can be estimated by other heuristic approaches.  In a study in which 
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the Base or Consolidated model were to be applied, great care would obviously have 

to be taken to ensure better results for this analysis.  This analysis is, however, not 

without merit.  In Mukherjee et al. (2007) a very similar process was used to calibrate 

these models with better results.  

A scatter plot of the observed and predicted daily cancellation percentages for 

the scenario U = 4, Pi = 6, λ = [4 8] is shown in Figure 10.  The regression line for 

this data is also shown.  As can be seen, there is a strong correlation between the 

observed and predicted data.  Unfortunately, much of the data lies on the y-axis.  In 

addition, the y-intercept is present at a level consistent with the background 

cancellation rate. 
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Figure 10 – Sample scatter plot for ORD 
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3.4.2 Results for ATL 

The ASPM data for Hartsfield-Jackson Atlanta International Airport in 2005 

was tested using the calibration process previously described.  The five best 

parameter sets, as determined by highest R
2
 value are presented in Table 12, while the 

five best, as measured by nearness of regression slope 1γ  value to 1.0 are shown in 

Table 13.  The results are again fairly unacceptable. 

 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

4 4 6 0.408 46.4% 2.581 0.017 

4 [4 8] 6 0.408 46.4% 2.581 0.017 

4 [4 8 16] 6 0.408 46.4% 2.581 0.017 

4 [4 8 16 28] 6 0.408 46.4% 2.581 0.017 

4 [4 8 16 28 44] 6 0.408 46.4% 2.581 0.017 

Table 12 – Best (by R
2
 value) potential parameter sets for ATL 

 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

4 4 3 0.388 46.4% 2.6791 0.017 

4 4 4 0.390 46.4% 2.5833 0.017 

4 4 5 0.399 46.4% 2.5689 0.017 

4 4 6 0.408 46.4% 2.5809 0.017 

4 [4 8] 2 0.375 46.4% 2.6493 0.018 

Table 13 – Best (by slope value) potential parameter sets for ATL 
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3.4.3 Results for LGA 

The Calibration model was test for the ranges of parameters described in 

Table 8, and the cancellation cost structure vector in (3.15).  Unfortunately, initial 

results suggested that the model was unsuitable for this task, as it could not produce 

fits with an R
2
 value greater than 0.1.  Clearly, a stronger correlation is necessary, and 

has been achieved for other airports, as described in Mukherjee et al. (2007).   

There were three possibilities for the source of this problem.  First, it could 

have come from a poorly chosen parameter set.  This effect can be discounted, as 

tests exceeding even the previously specified parameter ranges suggested that the 

model was overpredicting.  Second, the demand being considered could be greater 

than the true demand.  This can also be discounted, as the demand being considered is 

simply the schedule, as recorded in the Official Airline Guide.  Errors in this data 

seem highly improbable.  The final source of error could be in the capacity values 

being used.  As mentioned previously and in Churchill et al. (2006), the capacity 

values at LGA may not be reflective of the capacity of the airport as it used.  That is, 

the number of actual operations conducted frequently, and for extended periods of 

time, exceeded the declared Airport Acceptance Rate.   

To account for this capacity information problem, a simple capacity-inference 

heuristic was developed, using data available in the ASPM system.  The extra data 

used was the field reporting “Arrivals for Metric Computation” (METRICARR), 

denoted here as Mt.  This is the actual count of arrivals that took place during the time 

period under consideration.  Thus, if an airport is truly highly congested and 

operating at capacity, these data could be used to infer the arrival capacity of the 

airport.  The heuristic described in Table 14 was developed to infer airport capacity. 



 

 75 

 

1. Set t = 1. 

2. If Mt > Ct, then set 
t t

C M
• = .  Else, set 

t t
C C

• = .  Set t = t + 1. 

3. If t < T, go to step 2.  Otherwise, go to step 4. 

4. Set C C
•=  

Table 14 – Procedure for heuristically correcting declared capacities 

 

The model was tested for every combination of parameters as bounded in 

Table 8 using capacity values corrected by the heuristic in Table 14.  These results are 

summarized in Table 15 and Table 16.  The first of these shows the five best 

combinations, as determined by the highest R
2
 values.  Similarly, the second shows 

the five best combinations, as determined by the nearness of the slope value to 1.0. 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

12 1 2 0.661 38.7% 2.500 0.015 

16 1 2 0.661 38.7% 2.500 0.015 

20 1 2 0.661 38.7% 2.500 0.015 

8 1 3 0.647 38.7% 2.166 0.017 

12 1 3 0.647 38.7% 2.166 0.017 

Table 15 – Best (by R
2
 value) potential parameter sets for LGA 

 

Parameters Metrics 

U λ  Pi R
2
 

Percent 

predicted=0 

Slope  

( )1γ  

Intercept 

( )0γ  

4 1 4 0.634 38.7% 2.029 0.017 

4 1 5 0.635 38.7% 2.016 0.017 

4 1 6 0.634 38.7% 2.011 0.017 

4 [1 2] 2 0.622 38.7% 2.061 0.018 

4 [1 2] 3 0.631 38.7% 2.035 0.017 

Table 16 – Best (by slope value) potential parameter sets for LGA 
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The results are again disappointing, for reasons unknown.  In the remainder of 

this thesis, whenever a value is needed for a numerical example, it will be selected 

heuristically, based on judgment and values commonly accepted in the literature 

regarding the tradeoffs between delay and cancellation. 

Now that the method by which model parameters are to be estimated has been 

discussed, the attention of this thesis will be turned towards the slot valuations.  This 

is a difficult and multi-faceted issue with which to cope.  The next chapter will 

concentrate and listing and discussing various methods by which the slot valuations 

might be estimated.  An extensive example will be given using the technique deemed 

most practical. 
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Chapter 4:  Slot Valuation 

This section discusses several methods by which the value of an airport arrival 

slot may be inferred or estimated.  These slot valuations are critical to the modeling 

effort undertaken in this thesis.  Unfortunately, they can also be very challenging to 

estimate.  Given the framework used in this thesis, these slot valuations must 

represent average values across all carriers seeking to utilize the airport, recognizing 

that this results in a loss of detail when compared to individual carrier values. 

The methods suggested here do not comprise the totality of the various 

methods by which slot values could be estimated.  Rather, they are suggestions for 

several feasible methods.  In any application of the models described in this thesis, an 

extensive economic analysis would have to be undertaken, using all available data 

specific to the airport under consideration, to ascertain these, or similar, values. This 

analysis would comprise the major portion of the work at any airport at which these 

models were implemented.   

The first part of the presentation describes several necessary assumptions 

about the slot values.  Then, several possible sources of slot values will be described 

in varying detail, including obtaining information from carriers, inferring information 

from ticket price data, and making use of the results of the initial rounds of a slot 

auction.  The third method will be described in greater detail, as it is deemed most 

practical to implement in an auction setting.  Computational experiments were 

conducted using the final technique, and will be discussed as an illustrative example 

of this method. 
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4.1 Necessary Assumptions 

In this section, several claims are made regarding assumptions that are either 

strictly necessary, or at the least, very helpful, regarding the slot values used in these 

models.  

The first of these assumptions is that the value of slots is time-variant.  That 

is, slots during different time periods of the day are more valuable than those in other 

time periods.  Without such an assumption, the framework presented in this thesis 

would likely be inappropriate, and ought to be replaced by an analysis making 

extensive use of queueing theory.  Obviously then, this is a reasonable assumption for 

the models presented herein.  This assumption can be confirmed empirically by 

myriad different methods.  First, simply examining the published schedules of 

carriers at any moderately busy airport should suggest that certain times of day have 

more flights scheduled.  Conversations with any scheduled carrier would also confirm 

this assumption.  In addition, it is useful to consider when many travelers generally 

need or want to travel.  There are periods during the day during which it is more 

beneficial to travel, in order to best make use of time.  No assumptions are made 

about the nature of this time-variance, other than that it exists, and has a measurable 

effect on the results of these models. 

Another assumption is that each carrier has similar preferences for slots in a 

given time period.  Carrier slot valuation may differ for many reasons, including 

operating aircraft of different sizes, and for different purposes (e.g. shuttle service vs. 

leisure-oriented service).  These differing motivations could clearly yield different 

value judgments.  The models presented in this thesis assume a single value for a slot 

in any given time slice.  This can be interpreted to mean that carriers have the same 
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value functions, or, preferably, that enough slots are available and enough carriers to 

spread them amongst in each time slice that these numbers could represent average 

valuations across carriers without concern for differences between carriers.  This 

assumption is reasonable because it is common for market mechanisms such as this to 

limit the percentage of the total resource owned by any individual entity (and in this 

case, in any individual time slice) to some maximum number, thereby assuring that 

monopolistic forces cannot be invoked.  It is assumed, therefore, that the slot values 

described in this section attempt to capture the mean values across all carriers, and 

that the values of each carrier do not differ significantly from their averages.  It is 

important to recall that the quantity of interest in the Parametric model is not the 

absolute slot value for each time period, but rather the relative slot values across all 

periods.  These assumptions thus seem more reasonable when applied to the 

Parametric model.   

In addition, each slot in a given hour is assumed to be identical in terms of its 

utility for operating a flight.  No explicit considerations are made regarding aircraft 

size, and the resultant separation and runway occupancy time requirements.  In the 

analysis presented in this thesis, it is assumed that such assumptions have already 

been incorporated into the capacity values specified for each time period.  This 

assumption is aided by the fact that the capacity values commonly used for such 

analysis are the Airport Arrival Rates, as specified by the FAA.  These values are not 

specified conditionally on the fleet mix being used at the airport under consideration, 

but rather include these characteristics implicitly. 
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4.2 Revelation of Proprietary Information 

 Those entities owning airport arrival slots (primarily airlines) necessarily 

have some idea of the value of these resources. This information is useful to them in 

utilizing their resources, setting fares, and participating in the secondary slot market.  

Airlines are understandably quite controlling of proprietary financial information in 

this competitive industry.  However, if someone were able to extract some of this 

information from one or more slot owners, then these values could be used to drive 

the models determining how many slots to make available.  For the Base and 

Consolidated models, these values would necessarily have to be monetized in 

comparable units.  This would obviously present significant challenges, depending on 

the number of entities willing to share their valuations.  For the Parametric model, 

only the relative values of these quantities would be of interest. 

The situation that is potentially most valuable is one in which a single entity 

owns many slots across the entire day.  In this case, concerns about monetizing the 

values are negated.  In addition, if the Parametric formulation of the model is being 

applied, then the absolute values of these slots is not of paramount import.  Rather, 

the relative value of these slots is the quantity of interest.  This case seems most likely 

to see any modicum of success in garnering data from the airlines.  The ideal case 

would be to find a carrier that purchased a large number of slots at some time in the 

past, and to convince them to provide the modeler with just the relative values of 

these slots.  The carrier might be less reluctant to part with such data, as it would not 

precisely reveal such delicate financial information. 

In addition, if the airline were sufficiently well motivated, it seems likely that 

they would be able to provide information about the tradeoff between the number of 
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slots and the value of offering a flight in a given time period.  Again, this is likely 

information that they would have some grasp on, as it likely helps to drive pricing 

decisions. 

4.3 Inference from Ticket Prices 

Another method by which slot values could be inferred is to make use of 

information about actual itineraries purchased, or available for purchase, by revenue 

passengers.  One source of such historical data is the US Department of 

Transportation’s Airline Origin and Destination Survey (DB1a).  This database 

provides a 10% random sample of itineraries flown in the US.  While this database 

provides excellent information about itineraries flown, including the market and the 

total paid, it does not provide any flight-specific information that could aid in 

determining what time of day the flight operated (i.e. what slot was used).  

Fortunately, similar datasets, such as the Market Information Data Transfer (MIDT) 

database, are available for purchase that provide information about routes flown, time 

of day, and fare information for a sample of passengers.  Unfortunately, such data are 

prohibitively expensive for the purposes of writing a thesis, but might be exploited in 

a real application of these methods.   

If one possessed the resources necessary to purchase such information, several 

methods could be employed that would enrich the slot valuation analysis.  Of 

particular utility would be the scenario in which the airport under consideration is 

involved in a shuttle service with another airport.  If that were the case, one could 

analyze the ticket data available for itineraries flown on this shuttle route.  Given the 

time of day of a flight (i.e. slot(s) used), and information about the fares paid to fly 
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during that time, trends could be identified that suggested certain times of day as 

being able to produce more revenue, i.e. having a higher value to the airline.  Such an 

analysis implicitly assumes that the revenue derived from a flight is directly 

proportional to the value of the slot used to earn said revenue.  Myriad issues could 

confound such an analysis, such as data quality, data sampling, how far before travel 

a ticket was purchased, yield management on the part of the carrier, and random 

variations in demand for particular flights.  Despite these potential pitfalls, it seems 

reasonable that such an analysis could provide some useful information about the 

time-variance of the slot valuations. 

Another piece of information that one could attempt to infer from such ticket 

price sample data is the nature of the relationship between the quantity of slots 

offered and their values.   Such information could be inferred by examining the same 

market (city-pair) operated by a given airline on several days on which the number of 

flights operated in the market differed.  Given the assumptions that the flights were 

operated at similar cost to the airline, and that the revenue derived from a flight is 

directly proportional to the value of the slot used to earn said revenue, one could 

estimate a relationship between the number of slots used, and their values.  Obviously 

it would be necessary to normalize this data using the time-variance information 

estimated previously.  This analysis could be repeated for several markets to estimate 

an average parameter for the airport under consideration representing this tradeoff.  

Given this parameter and the value of each slot estimated previously, a decreasing 

function could be used to represent this price-quantity relationship.  The application 



 

 83 

 

of such a function (in particular, a negative exponential function) will be discussed in 

Section 5.1.2. 

An alternative to acquiring the expensive data discussed in this section would 

be to use data mining techniques to extract similar data from fares currently offered 

for sale for future flights.  The upside of such data is that they are readily available at 

no cost over the Internet.  The obvious downsides, however, are that it is confounded 

by so many different factors that the validity of any results obtained with it would 

automatically be suspect. 

4.4 Price Discovery Mechanism 

The final method addressed in this thesis by which slot valuations could be 

inferred is the one that holds the greatest promise for practical application, given the 

current state of the aviation industry.  The premise of this technique is to take 

advantage of information revealed as a result of a multi-year auction of a portion of 

the slots at a given airport.  Utilizing this information should provide the most reliable 

estimate of the slot values of the techniques described, as they come directly from the 

price-discovery results in the auction.  Given this information, slots can be identified 

for removal over a period of years, to ameliorate the impact of these changes. 

First, the background information that could permit and justify this 

methodology will be discussed.  Then, the specific procedures will be described, 

making a case study of the potential redistribution of slots at LaGuardia Airport.  This 

procedure is in no way specific to LGA, but makes use of it merely as a pedagogical 

tool. 
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4.4.1 Background and Justification 

As background, the FAA has undertaken efforts to move toward allowing 

market forces to regulate the ownership of airport slots, particularly at New York’s 

LaGuardia Airport.  According to the Federal Register (2006), the first step in this 

process is to assign expiration dates to the arrival slots between 2010 and 2019.  A 

similar number of slots, approximately 10% of the total, will expire in each of those 

years, and will then be redistributed, potentially via a market mechanism (e.g. 

auction).  It is planned that the 10% of slots that expire each year will be spread 

across the course of an entire day, rather than clustered in one particular time period.  

Once these slots are redistributed, they will have a lifetime of ten years.  After this 

initial allocation period (2010-2019), 10% of slots will continue to expire and be 

redistributed every ten years. 

For the numerical example presented in this section, it was assumed that at 

LGA there were currently 40 slots in circulation for each hour between 0600 and 

2359.  Thus, there are a total of 720 arrival slots for a given day.  Each of these slots 

must be assigned in one of the ten years of this initial allocation procedure.  Two 

objectives were to be met in allocating these slots to years: an approximately equal 

number of slots are auctioned each year for 10 years, and in each year, the slots that 

are auctioned are distributed approximately uniformly across time periods.  

Fortunately, the division is simple in this case: dividing these 720 slots by the ten 

years and 18 hours of the process yields an average number of slots to be distributed 

per year and hour of 4.  Thus, the initial plan for distribution of slots is four per hour 

per year. 
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4.4.2  Proposed Procedure 

The essential idea of this 

technique is to make use of the prices 

paid during the market mechanism 

distribution.  From this point on, it will 

be assumed that the market mechanism 

utilized is some type of auction.  Under 

this scheme, the value for each slot will 

necessarily be discovered as the price 

paid to purchase the ten-year lease on 

it.  These values will then be used to 

determine the number of slots that 

should be made available in each time 

period.  This process is continued year 

after year, until all slots have either 

been purchased, or removed.  The 

process by which these values are used 

is envisioned as outlined in Figure 11. 
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Figure 11 – Price discovery flow chart 

 

The most noticeable feature of the flow chart in Figure 11 is that the process 

begins simply by observing the prices paid for slots in the first year, denoted here as 

1

t
π .  The current running average of prices paid is denoted as A

t
π .  The superscript 

will increment for each year. 
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No action is taken in this first year based upon these prices for several 

reasons.  First and foremost, the process will be new to involved participants and as 

such, prices paid may not truly reflect a well-functioning market.  Additional time 

will be offered to allow the market to stabilize.  In addition, it is not strictly necessary 

at this point in the process to remove slots from circulation.  Although slots should be 

removed as expeditiously as possible to mitigate severe delays, if it is determined that 

too many are currently available, it is not yet strictly necessary.  At this point in the 

process 90% of the slots are still candidates for removal.  This lessens the pressure for 

immediate, and potentially hasty, action.  As time progresses, it becomes more 

difficult to remove a slot, given the fewer available for removal. 

At this point, plots of the style of Figure 12 will be introduced.  These will be 

used throughout the remainder of the discussion of the application of this technique at 

LGA.  The plot on the left shows the average prices paid for slots in this time period, 

and the overall average price including what was paid in the current time period.  The 

right plot shows the number of slots auctioned in the current and past years, as a 

portion of the total number of slots.  The slot valuation data is necessarily fictitious, 

as the distribution of slots and the resultant auction have not yet occurred in reality.  

In the right plot, the gray bars represent the initial allocation of slots offered in year 1.  

None of the bars are reduced in overall height, as no model has yet been applied to 

determine the reduced number of slots. 
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Figure 12 – Year 1 prices and allocation 

 

In later figures, the plot shown on the right will reflect the actual number of 

slots to be made available, as determined by using the Parametric model, with 

parameters as specified in Table 17.  These represent reasonable values in the 

spectrum of irregular operations at LaGuardia Airport. 

Parameter Name Symbol Value 

Delay level γ  15 minutes per flight 

Cancellation level ρ  3.0% 

Day length T 18 hours 

Number of capacity scenarios Q 4 scenarios 

Capacity scenario probabilities pq [0.03 0.49 0.40 0.07] 

Capacity scenario capacities Ct,q (see Chapter 2) 

Cancellation costs λ  (not needed) 

Maximum delay length U 3 hours 

Number of cancellation arcs N 3 arcs 

Cancellation arc capacity Pi 4 flights/arc 

Upper bound on slot offering Dmax 40 slots/hour 

Lower bound on slot offering Dmin 30 slots/hour 

Slot valuation Vt (selected arbitrarily) 

Table 17 – Parameter values 

 



 

 88 

 

The process continues in the second year with the second 10% of arrival slots 

being auctioned.  With two years of experience in the process, it is now more 

reasonable to assign some significance to the prices paid for each slot.  Thus, after the 

second year is complete, a new price vector B

t
π  is calculated as a weighted average of 

1

t
π  and 2

t
π .  The weights assigned to each of these price vectors are the number of 

slots auctioned during each year.  During the course of the second year, this new 

average valuation function is applied to one of the models discussed in Chapter 2.  

The resulting output is a vector dictating the total number of slots to be made 

available in each time period of the day, likely suggesting that some hours have fewer 

slots than they presently do.  Figure 13 shows the resulting prices and required slot 

removals after the second year of the auctions. 
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Figure 13 – Year 2 prices and allocation 

 



 

 89 

 

The black bars shown on the right side of Figure 13 represent the slots marked 

for removal after the second year auctions.  In order to facilitate an orderly transition 

to the new number of slots, several rules must be applied to distribute these deletions.  

The motivation for this was presented earlier: after the initial allocation, each of these 

slots will be leased on a 10 year basis, resulting in approximately 10% of the slot 

leases expiring each year. 

Each year of the initial allocation, beginning with year 2, the model will be 

solved using the averaged price vector.  The number of slots to be offered in each 

time period will likely be different, at least for the first several years, than what is 

currently forecast to be offered over the life of the initial allocation.  As a result, some 

slots must be deleted.  These deletions must be spread out to limit them to one, or if 

absolutely necessary two, per hour per year in order to help approximately maintain 

the 10% per year balance.  Limiting removals to one (or two) per hour per year helps 

to retain some stability and predictability in the marketplace for the carriers involved. 

In the third year, the auctions again take place.  This is, however, the first year 

in which some hours may have had slots deleted from the initial allocation of slots to 

be offered.  As can be seen in Figure 14, this was indeed the case in the LGA 

example.  In the 0600, 1100, and 1200-1600 hours, the slots marked in black in 

Figure 13 were removed from the total.  This can be seen as the shortened vertical 

height of the bars in those columns. 
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Figure 14 – Year 3 prices and allocation 

 

This process described will continue for each of the remaining years in the 

initial ten year round of auctions.  The results for the remaining years are shown in 

Figure 15 through Figure 21.  The number of slots to be offered in each hour may 

change slightly as the time progresses, resulting in corrections and slots being 

returned to the pool.  This is a natural result of the volatility in the prices paid to 

acquire the slots.  If it is determined that the model has been overly cautious and 

removed too many slots from the offerings, some may be added back to the pool of 

available slots.  As shown in Figure 15, an extra slot was added back to the 1100 hour 

that had been previously removed.  As time goes on, it would be reasonable to predict 

that the prices stabilize, so this was assumed for the case study, implying that neither 

removals nor additions were required between years 9 and 10. 
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Figure 15 – Year 4 prices and allocation 

 

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

Hour

R
e

la
tiv

e
 s

lo
t 
v
a

lu
e

Current round values π
t

5

Overall average π
t

E

6 8 10 12 14 16 18 20 22
0

4

8

12

16

20

24

28

32

36

40

Hour

N
u

m
b

e
r 

o
f 
s
lo

ts

Already auctioned

To be removed

Remaining pool

 
Figure 16 – Year 5 prices and allocation 
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Figure 17 – Year 6 prices and allocation 
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Figure 18 – Year 7 prices and allocation 
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Figure 19 – Year 8 prices and allocation 

 

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

Hour

R
e

la
tiv

e
 s

lo
t 
v
a

lu
e

Current round values π
t

9

Overall average π
t

I

6 8 10 12 14 16 18 20 22
0

4

8

12

16

20

24

28

32

36

40

Hour

N
u

m
b

e
r 

o
f 
s
lo

ts

Already auctioned

To be removed

Remaining pool

 
Figure 20 – Year 9 prices and allocation 
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Figure 21 – Year 10 prices and final allocation 

 

 

At the end of this proposed initial allocation process, all slots have been 

auctioned off, except those few that it was deemed expedient to remove from 

circulation.  The process performs as expected, as illustrated in the example, and hold 

promise for being useful in future slot allocation and distribution problems.   

The model could continue to be used incrementally after the initial 10 year 

period ended.  The model could be particularly useful to respond to drastic changes in 

slot valuations.  For example, if slots at 0900 became tremendously more valuable 

(higher prices paid at auction) at some point in the future, this information could be 

input to the model, and the number of slots offered in each period subsequently 

adjusted to reflect this change in valuation. 
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Chapter 5:  Incorporation of the Price-Quantity Dynamic 

Given information about slot values gleaned from one the sources previously 

discussed, it is possible to utilize various modeling techniques to examine the 

relationship between the number of slots offered and their respective values.  While 

this analysis is not strictly necessary for producing a feasible solution, it should 

provide interesting insight into the economic implications of the efforts undertaken. 

Two categories of techniques will be discussed.  The first class of techniques 

proposed is those that permit the model to be formulated as described, but embedded 

into an iterative loop which converges when the number of slots and their values are 

consistent with the valuation function assumed.  The second category of techniques 

includes those which add to or alter the formulation of the underlying network 

structure of the models used.  Each technique has its strengths and weaknesses, and 

could be incorporated into the larger framework of the models presented thus far.  

Both will be discussed in detail and compared, with computation results presented for 

the structural model modification. 

5.1 Modeling Assumptions 

Several considerations must be made regarding the incorporation of the price-

quantity relationship into the models presented in this paper.  First, the nature of the 

average values used in this analysis will be described.  Then, the functional 

relationship and a procedure by which it could be estimated will be shown.  Clearly, 

the functional form presented in this document is not the only one that could be used 

in applying these models, but was chosen for its robustness and ease of calibration. 
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5.1.1 Nature of Average Values 

An important observation regarding the price-quantity relationship discussed 

in this modeling effort must be addressed first.  Each additional slot in these models is 

not valued at an amount lower than the penultimate slot added, i.e. this is not an issue 

of decreasing marginal value.  Rather, each additional slot decreases the value of each 

and every other slot offered in that time period.  As an extreme example, at a 

congested airport, if fifty slots are offered in a given time period, each of those is 

clearly less valuable than if ten slots are offered in that time period.  Additionally, if 

one slot is added to that allocation of fifty, this 51
st
 slot is not less valuable than the 

other fifty: its value is the same reduced value as the remaining fifty. 

5.1.2 Functional Form of Price-Quantity Relationship 

Regardless of which technique is employed in modeling this effect, it is 

necessary to make some assumptions about the functional form of the relationship 

between slot quantities and valuation.  The primary requirement is that slot values be 

a strictly non-increasing function of the number of slots offered.  This is necessary, as 

the assumption is that additional slots do not enrich the total value of slots offered in 

one time period.   

A huge number of potential functional forms could be used for this analysis.  

While a form with many parameters could be used to incorporate the nuances of the 

individual airport being studied, it is important here that the parameters be calibrated 

with the information available.  In another application of these techniques, the 

resources would be available to define this function with greater detail. 
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The most natural functional form to use here is the negative exponential.  This 

will be strictly decreasing, and will have few parameters to calibrate.  Ideally, this 

would require calibration of two parameters, one for the “shape” and one for the 

magnitude.  The data for this process would come from one of the analysis techniques 

discussed in Chapter 2.  This is the form that will be used in this thesis.  The exponent 

used will be -0.03.  This value was selected heuristically, and should be selected with 

care after a careful economic study for another application of this model.  A plot of 

this function is shown in Figure 22 for the range under consideration. 
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Figure 22 – Proposed price-quantity tradeoff multiplier 

 

The function shown in Figure 22 is used as a coefficient for the slot values 

previously determined for each hour.  Thus, the relationship shown in (5.1) is derived. 

 
0.03 tD

t t
V V e

−∗ =  (5.1) 
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When this relationship is applied to each hour, sets of curves such as the ones 

shown in Figure 23 are generated.  The example shown here makes use of the final 

averaged values after the tenth year of the auction mechanism proposed in Chapter 4.  

An important trend to note in this figure is that, because of the nature of the function 

used, the higher value curves tend to decrease more quickly as the number of slots 

increase.  This relationship seems intuitive to represent reality. 
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Figure 23 – Sample price-quantity curves for many hours 

 

The curves shown in Figure 23 are applied in the two approaches described in 

this chapter by examining the relative values at integer-valued number of slots.  Each 

of these curves is discretized to generate a sequence of points consisting of a relative 
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slot value and a quantity of slots.  The minimum and maximum value curves are 

labeled.  The other hours obviously lie between these extremes. 

5.2 Iterative Equilibrium Model 

The first method described to examine the slot value-quantity relationship is 

discussed in this section.  The essence of this technique is that one of the previously 

discussed models (Base, Consolidated, or Parametric) is embedded in a loop, which is 

then iterated.  The slot valuation is updated based on the number of slots to be made 

available, as dictated by the chosen model.  This process is outlined in Figure 24.  

The new superscripts on the variables represent the iteration number in the process. 
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Figure 24 – Iterative model flow chart 
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As shown in Figure 24, the first step in this process is to define some initial 

slot valuation vector 0

t
V .  The most reasonable source of this starting point is the 

original source of the slot valuation information, whichever was used, as discussed in 

the previous section.   
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Figure 25 – Iterative model sample results 

 

Using the initial valuation vector, the chosen model is solved to optimality.  

This yields a vector defining the number of slots to make available in each time 

period, 1

t
Z .  The ordered pair ( )1 0,

t t
Z V  very likely does satisfy the function 

representing the quantity-value tradeoff previously defined for all t.  It is marked at 

location 1 in Figure 25.  Assuming that one or more of these ordered pairs do not lie 

on, or sufficiently near to, the curves previously defined, new valuations are found as 
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shown in general form (5.2).  The function ( )f ∗  refers to the quantity-value 

function, while the superscript k refers to the iteration number. 

 ( )1k k

t t
V f Z+ =  (5.2) 

 

This process of computing the number of slots to be offered, then computing 

the associated slot valuation to generate the ordered pair ( )1,k k

t t
Z V+  continues until 

convergence.  In the example shown in Figure 25, the process finds the correct value 

1

t
V   for 1

t
Z , then computes the new number of slots 2

t
Z  and the new valuations 2

t
V .  

This process continues until iteration five, at which time it cannot improve further, 

and the ordered pair ( )5 4,
t t

Z V  generated lies on the curve which properly defines this 

relationship. 

In general, the process will converge when the number of slots to be offered, 

as computed by the model, is equal for two iterations.  At this point, the process is 

unable to move to the next integer slot value.  The value and quantity for that time 

period have reached equilibrium.  Obviously, this process described in this example 

must take place for each time period simultaneously.  As a result of the interactions 

present between time periods in the model, it may take a large number of iterations 

for the model to converge completely, with fewer and fewer time periods changing as 

the number of iterations increases. 

This model illustrates the confluence of numerical techniques and 

optimization.  Obviously the results generated for a single airport are not extensible to 

any other airport – when this procedure is applied, it is decidedly an engineering 

solution.  The alternative method for incorporating the value-quantity dynamic, 
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presented next, is perhaps a more general method by which this phenomenon could be 

examined. 

5.3 Structural Modifications 

It is possible that this value-quantity relationship could be incorporated 

directly into the structure of the model.  The most natural way to accomplish this 

would be to replace the arcs connecting the source node to the cancellation decisions 

on which Zt flows with several arcs { }1, ,j J∈ … , each of varying value.  A flow 

diagram illustrating this technique is shown in Figure 26.   
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Figure 26 – Multiple slot value arc model flow diagram 

5.3.1 Model Structure 

While it would be tempting to assume that each of these many arcs has a very 

low capacity and a value marginally less than the previous, this assumption would be 

incorrect in the framework being used.  The total number of slots to be offered in a 

time period t would be calculated as shown in (5.3).  This scenario would provide 

control only over the value of a marginal slot, but not over the mean value of each 

slot in a time period.  As explained, a marginal slot does have a value lower than the 

others in its time period; rather, its addition lowers the value of itself and all others.   
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1

J
j

t t

j

Z Z
=

=∑  (5.3) 

The correct way to incorporate the price-quantity dynamic into the structure of 

the model could make use of the same flow diagram shown in Figure 26.  Each of the 

arcs j on which j

t
Z  flowed would have capacity equal to j

max
D .  The supply function 

j

max
D  would define the same for all t, but would be an increasing function with j. That 

is, each slot valuation arc would have higher capacity than the previous one.   

However, a side constraint would be needed to permit only one of each of 

these arcs to be used in each time period.  This could be accomplished using binary 

variables { }jtS  that would equal 1 if slot value arc j were used in time period t, 

otherwise 0.  These binary variables are constrained as shown in (5.4).     

 { } { } { }0,1 1, , , 1, ,j

tS t T j J∈ ∀ ∈ ∈… …  (5.4) 

 

Only a single { }jtS  may be 1 for each t, as constrained by (5.5).  The 

objective function will pressure the model to make as many of these one as possible. 

 { }
1

1 1, ,
J

j

t

j

S t T
=

= ∀ ∈∑ …  (5.5) 

 

Assuming that the capacity of each of the new parallel arcs is incremented by 

1 unit, each occurrence of Zt can be replaced by (5.6), where j

max
D  represents the 

number of flights using arc j. 

 
1

J
j j

t t max

j

Z S D
=

=∑  (5.6) 
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.  It is important to consider in what fashion each of the new slot valuation arc 

capacities j

max
D  and values { }j

t
V are be defined.  As discussed, some functional form 

must be defined to model the quantity-value dynamic.  From this function, unique 

ordered pairs (D,V) could be extracted that satisfied this function.  Each of these pairs 

will be used to set the value and capacity for an arc in each time period.  Necessarily, 

the exact parameters of the function defining these ordered pairs may be different in 

each time period, to account for differences in average slot value. 

Thus, the constraints on the program are pruned to reflect this change.  The 

previously defined bounds on Zt are removed.  Anywhere else that Zt appears, it must 

be replaced by (5.6).  This includes the flow balance equations for the gray nodes 

shown in Figure 26.  The new constraint is shown in (5.7). 

 , ,

1

0
J

j j i

t max t q t qi
j

S D X θ
=

− − =∑ ∑  (5.7) 

 

Additionally, for the Parametric model, the side constraints limiting the delay 

and cancellation levels must be augmented to the new expression for Zt shown in 

(5.6).  These updates are shown in (5.8) and (5.9). 

 ,

1

0
J

j j

q t q t max

q t t j

p Y S Dγ
=

− ≤∑ ∑ ∑∑  (5.8) 

 ,

1

0
J

i j j

q t q t max

q i t t j

p S Dθ ρ
=

− ≤∑ ∑∑ ∑∑  (5.9) 

 

While the objective functions in the Base and Consolidated models are 

different from in the Parametric model, the term 
t t

t

V Z∑  is common in each of them, 

and must be modified to accommodate this change.  The new term is shown in (5.10).   
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1

J
j j j

t max t

t j

V D S
=

∑∑  (5.10) 

 

The Parametric formulation with these modifications is shown in Table 18. 

1

max
J

j j j

t max t

t j

V D S
=

 
 
 
∑∑  (5.10) 

Subject to 

,

i

t q iPθ ≤  { } { } { }1, , ,  1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.2) 
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S D X θ
=
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1, , ,t q t q t q
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1, ,T U q T U q
Y C+ − +≤  { }1, ,q Q∀ ∈ …  (2.7) 

, ,t q t q
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t q t q t qX Y θ +∈�  { } { } { }1, , , 1, , , 1, ,t T q Q i N∀ ∈ ∈ ∈… … …  (2.10) 

{ }0,1j

tS ∈  { } { }1, , , 1, ,t T j J∀ ∈ ∈… …  (5.4) 

,

1

0
J

j j

q t q t max

q t t j

p Y S Dγ
=

− ≤∑ ∑ ∑∑   (5.8) 

,

1

0
J

i j j

q t q t max

q i t t j

p S Dθ ρ
=

− ≤∑ ∑∑ ∑∑   (5.9) 

 

Where 
  

{ }min ,

, ,

1

t U T U

t q i q

i t

W C

+ +

= +

= ∑  { } { }1, , 1 , 1, ,t T U q Q∀ ∈ + − ∈… …  (2.8) 

Table 18 – Parametric model formulation with structural modifications 

5.3.2 Mathematical Properties 

The new upper bound on the j

t
Z  term will introduce coefficients not in the set 

{-1,0,1} into the constraint matrix.  Using this fact, and the results presented for the 

Base model’s mathematical properties in Chapter 2, the constraint matrix for this 
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problem will not be totally unimodular.  Thus, by the results presented for the 

Consolidated and Parametric model, their constraint matrices will also not be TU.  As 

a result, integer-valued optimal solutions are not guaranteed by the linear 

programming relaxation.   

Because of the framework in which this model has been particular version of 

the model has been posed, obtaining integer-valued solutions using the linear 

programming relaxation is not of paramount concern.  Because a model that makes 

use of the structural modifications described in this section is not intended to be run 

in an equilibrium loop, requiring extra solution time is not of concern.  This issue is 

particularly nullified by the reasonably small problem size. 

5.4 Comparison of Value-Quantity Modeling Techniques 

Each of the two techniques described to incorporate the price-quantity 

dynamic has promise for producing useful and interesting results.  Either is certainly 

feasible to implement, given that sufficient analysis has been undertaken regarding 

estimating the price-quantity function common to both approaches. 

In terms of computational effort required for a solution, it seems likely that the 

structural model should be more effective.  It requires the solution of an integer 

program using but a few additional variables onto a program that already solves 

extremely rapidly, for reasons discussed previously.  The iterative method may take a 

large, and potentially infinite, number of iterations before it converges to a solution.   

If the iterative model is unable to converge to a solution in which all variables 

obtain integer values, then it would be necessary to define less stringent convergence 

criteria.  This adds an additional complication to this model.   
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However, this very iterative nature may make this model more attractive than 

the structural modifications.  In the structural model, the slots values are estimated 

using the tradeoffs in one fell swoop – during the solution of the integer program.  In 

the iterative model, they are permitted to move more, as the process iterates. 

Regardless of which method is applied, interesting results should be found to 

address the concern that the price-quantity tradeoff issue be included in such an 

analysis as is conducted in this thesis.  In the following section, the structural model 

will be tested, for the very reason first espoused – it is simpler to implement.   

5.5 Computational Results 

The structural modifications to the Parametric model described in Section 5.3 

were implemented and tested in a computational experiment.  The parameters used in 

this analysis are shown in Table 19. 

Parameter Name Symbol Value 

Delay level γ  15 minutes per flight 

Cancellation level ρ  3.0% 

Day length T 18 hours 

Number of capacity scenarios Q 4 scenarios 

Capacity scenario probabilities pq [0.03 0.49 0.40 0.07] 

Capacity scenario capacities Ct,q (see Chapter 2) 

Cancellation costs λ  (not needed) 

Maximum delay length U 3 hours 

Number of cancellation arcs N 3 arcs 

Cancellation arc capacity Pi 4 flights/arc 

Upper bound on slot offering Dmax 40 slots/hour 

Lower bound on slot offering Dmin 30 slots/hour 

Slot valuation Vt  

Table 19 – Parameters used in structural modification experiment 

 

The model solved to optimality rapidly.  The resultant number of slots to offer 

in each hour is shown in Figure 27.  They indicate that the optimal number of slots to 
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offer in each time period, when balancing the value-quantity tradeoff is nearly 

constant.  While these results stand in contrast to the results obtained without 

considering this assumption, they indicate the differing results that may be obtained 

by considering different objectives in solving this problem.  It seems that trying to 

find the optimal balance between price and quantity dampens the effect previously 

observed wherein the model results mimic the slot valuations.  

6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

Hour

N
u

m
b

e
r 

o
f 
s
lo

ts

33 33 33 33 33 33 33 33
34

33
34

33 33 33
34

33
34

33

 
Figure 27 – Structural model results 



 

 109 

 

Chapter 6:  Number of Slots Computational Results 

The aim of this section is to provide a summary of the results produced in this 

study.  Obviously a large number of possible combinations of parameters are 

possible, but those presented here are included to show: a) sensitivity of the model to 

various parameter changes, and b) a comparison to the current numbers of slots 

offered in each time period.  Discussions about problem size and solution time will 

also be included. 

6.1 Problem Size 

A reasonable practical problem might use either hourly or quarter-hourly time 

slices, from 0600 to 2359 local time.  This would imply that T = 18 or T = 72, 

respectively.  The number of distinct capacity scenarios at any airport that correspond 

to recognizable and repeatable runway and weather combinations should be on the 

order of Q = 4.  This is the number used in this study based on the work on Liu et al. 

(2005) but it is reasonable that at other airports this value could vary.  One might 

imagine a cancellation cost function with several steps, as shown in Figure 4.  For this 

brief analysis, N = 3 cancellation arcs will be used.  Finally, a reasonable policy 

decision would be to assume for the purposes of this model that flights will be 

cancelled rather than being delayed more than 3 hours.  This would imply that U = 3, 

or U = 12, depending on whether hourly or quarter-hourly data was being used.   

Table 20 and Table 21 illustrate the “size” of the problem in general, and for 

these illustrative numbers in particular.  Because the number presented is the count of 

inequality constraints, the equalities in (2.3) must be double-counted.  Also, note that 
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(2.8) is really a pre-processing step related to problem constants, and does not 

represent an independent constraint. 

Number of variables 

Variable 
General 

Hourly, 

T = 18, Q = 4, 

N = 3, U = 3 

Quarter-

hourly, 

T  = 72, Q = 4, 

N = 3, U = 12 

{ },t q
X  TQ 72 288 

{ },t q
Y  (T + U – 1)Q 80 296 

{ }tZ  T 18 72 

{ },

i

t q
θ  TQN 216 864 

Total TQN + 2TQ + UQ + T 386 1520 

Table 20 – Base problem size, number of variables 

 

Number of constraints 

Constraint 
General 

Hourly, 

T = 18, Q = 4, 

N = 3, U = 3 

Quarter-

hourly, 

T  = 72, Q = 4, 

N = 3, U = 12 

(2.1) 2T 36 144 

(2.2) TQN 216 864 

(2.3) 2TQ 144 576 

(2.4) Q 4 4 

(2.5) (T – 1)Q 68 284 

(2.6) (U – 1)Q 8 8 

(2.7) Q 4 4 

(2.9) (T – U – 1)Q 56 272 

Total 2T + TQN + 4TQ + 2UQ - Q 536 2156 

Table 21 – Base problem size, number of constraints 
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Results such as these could be derived for the consolidated model, but they 

would be of considerably less interest, given that the Consolidated model solves to 

optimality with integer solutions using the linear programming relaxation.   

The results for the Parametric model are not presented separately, but can be 

derived easily from the Base model results.  Recall that the differences between the 

two formulations are the objective function (not relevant in this discussion) and the 

addition of two constraints in the Parametric model.  Thus, the number of variables 

present in the Parametric model is equal to the Base model, while the number of 

constraints in the Parametric model is two greater.  That is not to say that the 

Parametric model necessarily requires a similar amount of time to solve to optimality: 

recall that the Base model constraint matrix can often be shown to be totally 

unimodular, or 2-regular, whereas the Parametric model constraint matrix cannot be. 

The structural modifications proposed in Section 5.3 would also change the 

problem size.  All of the T Zt variables would be removed, but TQ binary j

t
S  

variables would be added.  The number of constraints would decrease overall, as the 

T upper and T lower bounds on the Zt variables would be removed.  However, T 

constraints would be added to limit one j

t
S  to be one in each time period.  The results 

for these changes, relative to the Parametric model, are summarized in Table 22 and 

Table 23. 
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Number of Variables 

Model 

Formulation General 

Hourly, 

T = 18, Q = 4, 

N = 3, U = 3 

Quarter-hourly, 

T  = 72, Q = 4, 

N = 3, U = 12 

Base TQN + 2TQ + UQ + T 386 1520 

Parametric TQN + 2TQ + UQ + T 386 1520 

Structurally-

modified 

Parametric 

TQN + 3TQ + UQ 440 1736 

Table 22 – Summary of problem sizes, number of variables 

 

Number of Constraints 

Model 

Formulation General 

Hourly, 

T = 18, Q = 4, 

N = 3, U = 3 

Quarter-hourly, 

T  = 72, Q = 4, 

N = 3, U = 12 

Base 
2T + TQN + 4TQ + 

2UQ - Q 
536 2156 

Parametric 
2T + TQN + 4TQ + 

2UQ – Q + 2 
538 2158 

Structurally-

modified 

Parametric 

T + TQN + 4TQ + 2UQ 

– Q + 2 
520 2086 

Table 23 – Summary of problem sizes, number of constraints 

 

As explained in Chapter 2, the Parametric formulation does not guarantee 

integer-valued optimal solutions using the linear programming relaxation.  As a 

result, the branch-and-bound algorithm was implemented by the software package.  

Exact statistics are not shown for every case tested in this thesis, but solution times on 

a modern desktop computer were on the order of tenths of a second.  This model 

solves very fast, and would likely be well suited to be used in the iterative equilibrium 

model suggested in Chapter 5. 
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6.2 Parameter Sensitivity Analysis 

It is important to understand the sensitivity of this class of models to the 

various input parameters required.  In this section, an informal analysis will be 

undertaken to evaluate the performance of the model under various conditions.  The 

various delay and cancellation parameters will be varied, and the resulting model 

outputs examined.  Data for LaGuardia airport were used for this example, as before.  

This was only chosen to be representative of any congested airport. 

In this section, only the Parametric formulation of the model was tested.  The 

primary reason for doing so was to separate any effects that specifying the slot values 

and various costs relative to one another may have on the model performance.  That 

is, the Parametric model creates a disconnect between the various values in the 

model, so that the variations brought on by each of these parameter classes can be 

more carefully examined.  The parameters used in the tests in this section are shown 

in Table 25.  The slot values used in the test are the final ones derived after the end of 

the proposed ten-year auction period discussed in Chapter 4. 

Parameter Name Symbol Value 

Delay level γ  15 minutes per flight 

Cancellation level ρ  3.0% 

Day length T 18 hours 

Number of capacity scenarios Q 4 scenarios 

Capacity scenario probabilities pq [0.03 0.49 0.40 0.07] 

Capacity scenario capacities Ct,q (see Chapter 2) 

Maximum delay length U (varies) 

Number of cancellation arcs N 3 arcs 

Cancellation arc capacity Pi 3 flights/arc 

Upper bound on slot offering Dmax 40 slots/hour 

Lower bound on slot offering Dmin 30 slots/hour 

Slot valuation Vt (see Figure 21) 

Table 24 – Parameters used in slot valuation analysis 
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6.2.1 Delay Parameters 

The only parameter relating explicitly to delay in these models is the 

maximum permitted delay length.  In this analysis, this parameter U was varied 

between 1 and 5 hours to examine the effects that it will have on model performance.  

Table 25 shows several summary statistics about each of the cases tested in this 

analysis.  The results in this table seem reasonable, and suggest that the model is 

performing properly- namely, it is using the entire allowance for delay and 

cancellation that it is permitted.  Additionally, the number of slots offered under each 

scenario decreases with the maximum delay length permitted, as was expected. 

Scenario 

Total number 

of slots to offer 

each day 

Expected 

average delay 

length 

(minutes/flight) 

Expected 

number of 

daily 

cancellations 

Expected 

cancellation 

percentage 

U = 1 671 15.00 20.07 2.991% 

U = 2 686 14.99 20.57 2.999% 

U = 3 688 14.99 20.64 3.000% 

U = 4 688 14.99 20.64 3.000% 

U = 5 688 15.00 20.64 3.000% 

Table 25 – Delay parameter sensitivity analysis statistics for LGA 

 

Figure 28 shows the number of slots to make available in each of these cases, 

while Figure 29 and Figure 30 show the expected number of delayed flights and 

cancellations, respectively, in each of these cases.  Obviously the delay and 

cancellation numbers should be integer-valued, but their expectations across capacity 

scenarios may not be. 

 

 



 

 115 

 

The results in Figure 28 showing the number of slots to make available in 

each time period seems reasonable.  The primary difference to note is that the most 

restricted model, U = 1, allows more flights during the middle of the day, but is 

forced to curtail operations at the end of the day because of its inability to delay 

flights much beyond that period.  The other models are able to take greater advantage 

of this end-of-day effect. 
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Figure 28 – Number of slots to make available for various U values at LGA 
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The results in Figure 29 also seem reasonably intuitive.  The primary 

difference to note again involves the U = 1 case.  It is more apt to take advantage of 

the middle of the day to conduct operations where other models are more apt to use 

this as a recovery period.  This trend is evidenced by the higher number of delayed 

flights during the middle of the day by the U = 1 model.  It should be noted that that 

delays do build near the very end of the day under most scenarios, but these delays 

are likely not very long, as evidenced by the small number of flights delayed beyond 

the end of the operating day (i.e. past hour 24).  It is impossible to track the individual 

delay length of a given flight, however, given the network assumptions used. 
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Figure 29 – Expected number of delayed flights for various U values at LGA 
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As in the previous figures, the results shown in Figure 30 are as expected.  

The primary feature of note is that the models tend to cancel more flights at the 

beginning of the day.  This trend is also observable in the historical data for 

operations at LGA.  Additionally, it is, in some sense, easier to cancel a flight during 

those hours simply because there are more flights operating than in other hours.  

Another trend to note is that as the day nears its end, only the very test runs in which 

a low value of the maximum delay length is used are forced to use cancellations to 

control the model performance.  In these cases, the models with a higher maximum 

delay length are better able to take advantage of this delay. 
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Figure 30 – Expected number of cancellations for various U values at LGA 

 

The trivial case of U = 0 was not examined in this analysis, but the results of 

such a test are trivial: the model would function as if each time period were 

independent.  The highest value time periods would use the maximum number of 

slots and cancellations permitted under the Parametric conditions specified.  The 
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remainder of the time periods would only provide as many slots as permitted by the 

landing capacity in that time period alone.  None of the delay allocation would be 

utilized by the model, as those arcs representing delay in the network flow diagrams 

would essentially not exist. 

6.2.2 Cancellation Parameters 

A sensitivity analysis concerning the cancellation parameters used in these 

models only makes sense under certain conditions.  The first among these concerns is 

that the analysis be conducted using the Base or Consolidated formulations, but not 

the Parametric formulation.  The reasoning for this condition is that the actual 

cancellation level permitted is specified explicitly in the Parametric model.  In the 

Base and Consolidated formulations, the model finds the system optimal level, which 

is necessarily influenced by the parameters chosen.  This all assumes that sufficient 

capacity is provided to the Parametric model to allow it to make full use of the 

cancellation level allowed it.  Because the example analysis conducted in this paper 

was focused on applying the Parametric model, and did not involve properly 

specifying the parameters in a means appropriate for applying the other models, 

results for a cancellation parameter sensitivity analysis will not be presented.   

6.3 Slot Valuation Sensitivity Analysis 

Several different sets of fictitious slot valuation vectors were tested to 

evaluate the sensitivity of the model.  Each of these scenarios was chosen for specific 

reasons that will be explained.  The various scenarios are listed in Table 26.  The 

Parametric model was again used exclusively, in order to isolate the effects of the slot 
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value variation.  The magnitude of these values is not significant when used in the 

Parametric formulation- only the relative values are needed. 

 Scenarios 

Hour A B C D E F G H I J 

6:00 1 1 1 1 1 1 18 600 500 600 

7:00 1 1 2 2 1 2 17 800 800 900 

8:00 1 1 1 3 2 3 16 800 800 900 

9:00 1 1 2 2 2 4 15 800 800 900 

10:00 1 1 1 1 1 5 14 600 500 600 

11:00 1 1 2 2 1 6 13 600 500 600 

12:00 1 1 1 3 2 7 12 800 800 900 

13:00 1 1 2 2 2 8 11 800 800 900 

14:00 1 1 1 1 1 9 10 600 500 600 

15:00 1 1 2 2 1 10 9 600 500 600 

16:00 1 1 1 3 2 11 8 800 800 900 

17:00 1 1 2 2 2 12 7 800 800 900 

18:00 1 1 1 1 1 13 6 800 800 900 

19:00 1 1 2 2 1 14 5 800 800 900 

20:00 1 1 1 3 2 15 4 600 500 600 

21:00 1 1 2 2 2 16 3 600 500 600 

22:00 1 1 1 1 1 17 2 275 275 275 

23:00 1 1 2 2 1 18 1 275 275 275 

Table 26 – Slot valuation scenarios tested 

 

The parameters used in testing the model are shown in Table 27.  While the 

cancellation cost vector λ  is of a non-standard form, relative to the others used in this 

thesis, this is not a concern.  As was discussed earlier, the Parametric formulation of 

this model is not concerned with the total, or even relative cost, of decisions, as it is 

simply trying to maximize the total value of slots offered by using all the allowable 

resources. 
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Parameter Name Symbol Value 

Delay level γ  4-20 minutes per flight 

Cancellation level ρ  1.0% - 5.0% 

Day length T 18 hours 

Number of capacity scenarios Q 4 scenarios 

Capacity scenario probabilities pq [0.03 0.49 0.40 0.07] 

Capacity scenario capacities Ct,q (see Chapter 2) 

Maximum delay length U 3 hours 

Number of cancellation arcs N 3 arcs 

Cancellation arc capacity Pi 3 flights/arc 

Upper bound on slot offering Dmax 40 slots/hour 

Lower bound on slot offering Dmin 20 slots/hour 

Slot valuation Vt (see Table 26) 

Table 27 – Parameters used in slot valuation analysis 

 

As a summary, the results in this section suggest that the model performs as it 

is expected to with respect to various slot valuations.  In general, the profile of slots to 

be offered follows the profile of slot valuations used.  The exception to this trend 

takes place at the end of the day, at which time the model is able to permit more 

flights to be operated, with the implicit assumption that some are likely to be delayed 

beyond the end of the scheduled day. 

6.3.1 Scenarios A and B: Uniform Slot Values 

The first two scenarios (A and B) are presented together.  The slot valuation 

vector used for each was uniform for all hours.  Upon first examination, some of the 

results shown in Figure 31 and Figure 32 seem reasonable, while others may seem 

counterintuitive.   

At this point, plots of the style of Figure 31 will be introduced.  The subplots 

in these figures show the number of slots to make available, and the relative slot 

values, as a function of the time of day for various combinations of delay and 

cancellation levels.  The various rows in these plots correspond to delay levels 
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varying from 4 to 20 minutes per flight, while the columns correspond to cancellation 

percentages varying from 1% to 5%.  The black lines are the number of slots, while 

the dotted gray lines are the normalized relative slot values. 

First, the general trend in these plots is that the number of slots to offer 

increases with time.  Given that slot values are uniform, this strategy is reasonable, 

and should best control delays, i.e. prevent delays from propagating.   

However, upon further examination, these two plots do exhibit a large amount 

of spurious behavior.  The reason that two different plots are shown for the same slot 

valuation vector is that multiple optimal solutions exist for this case, each with the 

spurious disturbances in different places.  These different plots were obtained by 

tweaking the branching behavior of the branch-and-bound algorithm used to solve the 

integer program. 
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Figure 31 – Scenario A: Uniform slot values 
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Figure 32 – Scenario B: Uniform slot values 
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6.3.2 Scenarios C, D, and E: Periodic Slot Values 

Various sets of period slot values were tested to demonstrate the model’s 

performance.  The results of these tests are shown in Figure 33, Figure 34, and Figure 

35.  As was postulated previously, this model is highly sensitive to variations in slot 

valuation.  The number of slots to be made available generally follows the period 

trends in slot values that were tested.  The notable feature in these results, however, is 

that as the day progresses, the number of slots to be offered generally does not dip as 

far as it would earlier in the day for the same dip in slot valuation.  This effect occurs 

because the model is able to take advantage of the three hour period at the end of the 

day to which it can delay flights that cannot be accommodated by the end of the 

scheduled day. 
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Figure 33 – Scenario C: Short period slot values 
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Figure 34 – Scenario D: Long period slot values 
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Figure 35 – Scenario E: High-low slot values 
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6.3.3 Scenarios F and G: Strictly Increasing/Decreasing Values 

The cases of strictly increasing and decreasing slot values are shown in Figure 

36 and Figure 37.  As expected, the curve showing the number of slots to be offered 

generally increases as the time of day (i.e. slot value) increases.  These results are 

consistent with previous expectations, but are not overly strong, because near the end 

of the day, the model would tend to offer more slots anyways, as it can take 

advantage of the unscheduled portion of the day.  Spurious results are again observed 

in the spikes, particularly in Figure 37, likely indicating more alternate optimal 

solutions. 
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Figure 36 – Scenario F: Strictly increasing slot values 
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Figure 37 – Scenario G: Strictly decreasing slot values 
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6.3.4 Scenarios H, I, and J: Realistic Values and Perturbations 

The final three slot valuation scenarios tested were chosen to examine the 

performance of the model in regards to perturbations to a more reasonable and 

realistic profile of slot valuation.   

Figure 38 shows the results for the base case.  In general, the profile of the 

number of slots to be offered follows the profile of the slot valuations.  Again, the 

model takes advantage of the unscheduled period to allow more flights to arrive at the 

very end of the day. 
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Figure 38 – Scenario H: Realistic base slot values 
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The case tested in Figure 39 is that in which the lower slot values were 

decreased by a small amount.  The model responded as was expected, by lowering the 

number of slots to make available by a corresponding proportional amount.   
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Figure 39 – Scenario I: Realistic lower bound variation slot values 
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The case tested in Figure 40 is that in which the highest slot values were 

increased by a small amount.  The net effect of this change was similar to that shown 

in the previous case: the difference between the high and low values increased.  

Again, the profile of the slots to be offered follows fairly closely with the profile of 

the slot values.  
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Figure 40 – Scenario J: Realistic upper bound variation slot values 

6.4 Comparison of Results to Current Number of Slots 

A baseline schedule, as published in the OAG, is shown in Figure 41.  The 

reference period used is October 1, 2006 through October 6, 2006.  This is the same 

period used in the analysis conducted by the FAA and its partners to derive the 

proposed rule discussed in the Federal Register (2006).  The numbers shown above 

each bar represent the maximum number of flights scheduled in a given hour across 
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all days in this week.  In general, this maximum is the same for all weekdays in this 

period. 

6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

Hour

N
u

m
b

e
r 

o
f 
s
lo

ts
 a

v
a

ila
b

le

 4

32
34

38

34

37
38

36

39
37

39

36 36
38

32

41 41 41

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

 
Figure 41 – Baseline LGA Schedule 

 

Several trends are evident in this plot.  The first is that the number of flights 

currently scheduled to arrive in the 0600 hour is much smaller than that suggested by 

the model.  The basic reason for this is that few airports are located near enough to 

LGA to allow arrivals at such an early hour.  This is a trend that ought to be 

incorporated into future analysis using this model.  Another evident trend is that the 

number of slots at the very end of the day is fairly large, again for the reason that 

flights can be delayed and make use of the unscheduled overnight period of the 

airport for arrivals. 

The best estimate for the number of slots to offer in each period- the division 

after the tenth year of the auction scheme proposed in Chapter 4- is shown in Figure 

42.  Comparing each of these two figures suggest several conclusions- each of which 
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was postulated at the beginning of this thesis.  First, some recovery period needs to be 

provided to help mitigate delay propagation that is not present at the current time.  

The model suggests this, but the current schedule does not feature it.  In addition, 

these results suggest that, in those hours of the day that are obviously more valuable, 

more slots should be offered.  This conclusion is best illustrated by comparing the 

results for the 0800, 0900, and 1000 hours in each figure.  These are obviously, and 

necessarily, valuable hours for travelers, and as such, should be valuable for carriers.  

The number of slots currently offered do not permit more flights to be offered in these 

time periods, as do the results from the Parametric model. 
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Figure 42 – Best estimate for number of slots to make available 
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6.5 Conclusions 

In this thesis, several methods were suggested by which the number of airport 

arrivals slots to make available for distribution could be determined.  In addition to 

the base methods suggested to solve this problem, several enhancements to this 

procedure were suggested, including methods by which the true value of airport 

arrival slots could be revealed, and methods by which the relationship between the 

number of slots to offer and their value could be estimated.  The techniques suggested 

were illustrated using New York’s highly congested LaGuardia Airport as an 

example. 

The most important element of this thesis is not the LaGuardia Airport case 

study used illustratively throughout, but rather, is the methodology suggested for 

realistic applications. Because the problem of congested airports is one that is not 

likely to soon disappear, the ideas and techniques suggested in this thesis should 

warrant consideration at any airport which is so congested as to require formalized 

slot controls. 
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List of Abbreviations 

AAR Airport Arrival Rate 

FAA Federal Aviation Administration 

HDR High Density Rule 

IP Integer program 

LP  Linear program 

NAS National Airspace System 

TU Totally unimodular 

 

ATL Hartsfield-Jackson Atlanta International Airport 

LGA LaGuardia Airport 

ORD Chicago O’Hare International Airport 
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