
[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory

of NP-completeness, W. H. Freeman and co., New York, 1979.

[4] J. E. Hopcroft and R. M. Karp, An n

5

2

algorithm for maximum matching in bipartite

graphs, SIAM J. Comput., 2, pp. 225{231, (1973).

[5] H. T. Hsu, An algorithm for �nding a minimal equivalent graph of a digraph, Journal

of the ACM, 22 (1), pp. 11{16, (1975).

[6] S. Khuller, B. Raghavachari and N. Young, Approximating the minimum equivalent

digraph, to appear in SIAM J. Comput..

[7] D. E. Knuth, Fundamental Algorithms, Addison-Wesley, Menlo Park, CA, 1973.

[8] D. M. Moyles and G. L. Thompson, An algorithm for �nding the minimum equivalent

graph of a digraph, Journal of the ACM, 16 (3), pp. 455{460, (1969).

[9] R. Z. Norman and M. O. Rabin, An algorithm for a minimum cover of a graph, Proc.

Amer. Math. Soc., 10, pp. 315-319, (1959).

10



Clearly OPT (G) � n. For 4 � i � k, when n

i

vertices remain, no cycle has more than

i � 1 edges. By Lemmas 3.1 and 3.2, OPT (G) �

i�1

i�2

(n

i

� 1). Thus the number of edges

returned, divided by OPT (G), is at most

�

1 +

1

k�1

�

n

OPT (G)

+

k

X

i=5

n

i

�1

(i�1)(i�2)

OPT (G)

+

OPT (H)�

4

3

n

4

OPT (G)

=

1

k � 1

+ 1 +

k�1

X

i=4

1

i

2

+

OPT (H)

OPT (G)

�

4

3

n

4

OPT (G)

:

Since OPT (H) � OPT (G) and OPT (G) � 2n

4

, this is at most

c

k

=

1

k � 1

+ 1 +

k�1

X

i=4

1

i

2

+

1

3

=

1

k � 1

+

k�1

X

i=1

1

i

2

�

1

36

:

Using the identity (from [7, p.75])

P

1

i=1

1

i

2

=

�

2

6

, we get

c

k

=

�

2

6

�

1

36

+

1

k � 1

�

1

X

i=k

1

i

2

�

�

2

6

�

1

36

+

1

k � 1

�

1

X

i=k

1

i (i+ 1)

=

�

2

6

�

1

36

+

1

k � 1

�

1

k

=

�

2

6

�

1

36

+

1

(k � 1)k

:

Similarly to [6], standard techniques can yield more accurate estimates of c

k

, e.g., c

k

=

�

2

6

�

1

36

+

1

2k

2

+ O

�

1

k

3

�

: Also following [6], if the graph initially has no cycle longer than `

(` � k), then the analysis can be generalized to show a performance guarantee of

k

�1

�`

�1

1�k

�1

+

P

k�1

i=1

1

i

2

�

1

36

. For instance, in a graph with no cycle longer than 5, the analysis bounds the

performance guarantee (when k = 5) by 1:396.

Acknowledgments. We thank R. Ravi and Klaus Truemper for helpful discussions.

References

[1] A. V. Aho, M. R. Garey and J. D. Ullman, The transitive reduction of a directed graph,

SIAM J. Comput., 1 (2), pp. 131{137, (1972).

[2] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs,

J. Algorithms, 12 (2), pp. 308{340, (1991).

9



with the corresponding edge in the original graph or, in the case of multi-edges, the single

remaining edge is identi�ed with any one of the corresponding edges in the original graph.

To contract an edge (u; v) is to contract the pair of vertices u and v. To contract a set S of

pairs of vertices in a graph G is to contract the pairs in S in arbitrary order. The contracted

graph is denoted by G=S. Contracting an edge is also analogously extended to contracting

a set of edges.

De�nition 4 OPT (G) is the minimum cardinality of any subset of the edges that strongly

connects G.

We �rst review some simple lemmas proven in [6].

Lemma 3.1 (Cycle Lemma) For any directed graph G with n vertices, if a longest cycle

of G has length C, then

OPT (G) �

C

C � 1

(n � 1):

Lemma 3.2 (Contraction Lemma) For any directed graph G and set of edges S,

OPT (G) � OPT (G=S):

The algorithm and its analysis are modi�cations of the those presented in [6]. Fix k � 4

to be any positive integer.

Contract-Cycles

k

(G) |

1 for i = k; k � 1; k � 2; :::; 4

2 while the graph contains a cycle with at least i edges

3 Contract the edges on such a cycle.

4 Solve the SCSS

3

problem optimally.

5 return the edges in the optimal SCSS

3

together with the contracted edges.

It is easy to see that this algorithm returns an SCSS if G is a strongly connected graph.

Theorem 3.3 Contract-Cycles

k

(G) returns at most c

k

� OPT (G) edges, where

c

k

�

�

2

6

�

1

36

+

1

(k � 1)k

:

Proof. Initially, let the graph have n vertices. Let n

i

vertices remain in the contracted

graph after contracting cycles with i or more edges (i = k; k � 1; :::; 4). Finally, we get a

graph H (with n

4

vertices) that has no cycles of length four or more, and the algorithm

solves the SCSS problem for H optimally.

How many edges are returned? In contracting cycles with at least k edges, at most

k

k�1

(n� n

k

) edges are contributed to the solution. For 4 � i < k, in contracting cycles with

i edges,

i

i�1

(n

i+1

� n

i

) edges are contributed. The number of edges returned is thus at most

k

k � 1

(n� n

k

) +

k�1

X

i=4

i

i� 1

(n

i+1

� n

i

) +OPT (H)

�

�

1 +

1

k � 1

�

n +

k

X

i=5

n

i

� 1

(i� 1)(i� 2)

+OPT (H)�

4

3

n

4

+ 1:

8



union of the two branchings. Clearly there are at most 2n� 2 edges in B. It is easy to show

that B is an SCSS of G and therefore all the edges of G but not in B are redundant edges

(for any edge e = (u; v) there is a path from u to v using edges in B). This leaves only O(n)

edges that need to be classi�ed. We now show that each of these edges can be classi�ed in

O(n) time (the naive method takes O(m) time). Therefore the edges of G can be classi�ed

in O(n

2

) time.

Consider an edge (u; v). Since G is strongly connected and has no cycles of length greater

than three, there must be a path from v to u of length either one or two. Case 1 | there

is an edge (v; u): If there is a path from u to v that does not use the edge (u; v) then this

path has length exactly two. It is easy to check the existence of such a path in O(n) time by

enumeration. Case 2 | there is no edge (v; u): If there are two paths of length two from v

to u then the edge (u; v) is necessary (as in the proof of Lemma 2.1, the existence of an two

u-to-v paths would imply that the graph had a cycle of length more than three). Case 3 |

the graph has a unique path of length two from v to u: Let this path be (v;w; u). In this

case, if an alternate u to v path exists, then it must use w (else we get a cycle of length at

least four). Because of the edge (w; u), the path from u to w can have length at most two.

Similarly, the path from w to v can have length at most two. Thus, w can be determined

and the existence of the paths >from u to w and w to v can be checked by enumeration in

O(n) time.

2.3.2 Running time of the SCSS

3

algorithm

We now state the main theorem of our paper.

Theorem 2.4 Let G be a strongly connected graph with maximum cycle length bounded by

three. A strongly connected subgraph of G with minimum cardinality can be computed in

O(n

2

+m

p

n
) time.

Proof. Classifying edges as necessary and redundant as described above takes O(n

2

) time.

Using the standard techniques described in Lemma 2.1, the problem can be reduced to

subproblems satisfying the conditions of Corollary 2.2. As shown in Lemma 2.3, each sub-

problem reduces in linear time to bipartite matching. The total number of vertices in the

bipartite graphs is at most 2n since the total number of necessary edges is at most 2n. The

total number of edges in the bipartite graphs is at mostm since the total number of sets fN

e

g

is at most m. Thus, the total time required to solve all of the subproblems is O(m

p

n
) [4].

3 Applications to the General SCSS Problem

Using our SCSS

3

algorithm, we improve the best currently known poly-time approxima-

tion algorithm for the general SCSS problem. The performance guarantee of the improved

algorithm is arbitrarily close to �

2

=6 � 1=36 � 1:61.

De�nition of contraction. To contract a pair of vertices u; v of a digraph is to replace

u and v (and each occurrence of u or v in any edge) by a single new vertex, and to delete

any subsequent self-loops and multi-edges. Each edge in the resulting graph is identi�ed

7



reduces to �nding a smallest set of redundant edges R such that every edge in N is satis�ed

by an edge in R. This yields the set-cover problem described at the beginning of Section 2.2.

By the second part of the corollary, each redundant edge e satis�es at most two necessary

edges. Thus, each set in the set-cover problem has size at most two, and the problem reduces

to the edge-cover problem [9] in the following graph: the vertices are the elements of N and

the edges are the sets fN

e

: e redundantg, with sets of size one yielding self-loops. The

edge-cover problem is linear-time equivalant to maximum matching; if the graph (minus the

self-loops) is bipartite, it is equivalent to maximum bipartite matching.

To �nish the analysis, it remains only to show that the resulting matching problem is in

fact bipartite.

Lemma 2.3 The above maximum matching problem is bipartite.

Proof.

Recall that N is de�ned to contain those edges not having a return path of necessary

edges. Consider the directed graph D induced in G by the set of edges N . We will show

that even if the directions of the edges in D are ignored, D is acyclic. This su�ces | it

implies that the vertices of D can be layered so that every edge of D goes forward one layer;

consequently, for each redundant edge e such that jN

e

j = 2, the set N

e

has one edge in an

even layer and one edge in an odd layer.

Assume for contradiction that a subset C of the edges of D could be redirected to form

a cycle. Pick a directed edge (u; v) in C. We will show that there is a path from u to v that

doesn't use the edge (u; v). This implies that (u; v) is redundant, which is a contradition.

It su�ces to show that for every edge (a; b) on C, there is a path from b to a that does

not use (u; v). (These paths, together with the edge set C � f(u; v)g, strongly connect the

vertices of C.) Let (a; b) be any edge in C � f(u; v)g. If the return path does not contain

edge (u; v), we are done. Otherwise the return path must be of length two.

Suppose that (u; v) is the �rst edge on the return path. Then the return path is (u; v; a).

Since b = u, edge (a; b) is (a; u) and we wish to show the existence of a path from u to a not

using edge (u; v). The edge (v; a) is redundant, for otherwise edges (u; v) and (a; u) (which

are necessary) would have return paths without redundant edges and therefore would not

be in N . Since (v; a) is redundant, there is an alternate path P

va

from v to a. P

va

must

go through u, for otherwise P

va

and the edges (a; u) and (u; v) would form a cycle of length

more than three. Thus, P

va

contains a path from u to a that does not go through v. This

portion of P

va

is the desired path.

If (u; v) is not the �rst edge on the return path, it must be the second. This case is

similar.

2.3 Implementation of Algorithm

2.3.1 Classifying the edges

We �rst consider the problem of classifying the edges as redundant or necessary. Let G have

n vertices and m edges. Fix a root r, and �nd an incoming and an outgoing branching from

root r. This can be done in O(m) time using depth-�rst search. Let B be the edges in the

6



If there is only one path from v to u, then Case 1 holds, so assume otherwise. In this

case there is at least one path (v; x; u) of length two. (No longer path can exist, because of

the cycle it would form with (u; v).)

By assumption, there is a path P

uv

from u to v other than edge (u; v). P

uv

must contain

x, for otherwise P

uv

and the path (v; x; u) would form a cycle of more than three edges.

If edge (v; u) is present in G, then P

uv

is of length two (as it forms a cycle with (v; u))

and hence is the path (u; x; v). In this case, Case 2 holds.

Otherwise there is at least one more path (v; y; u) of length two. Path P

uv

contains y for

the same reason P

uv

contains x. Thus, there is a path Q either from x to y or from y to x

that does not contain u or v (see Figure 2.)

v

u

x y

P

uv

Figure 2: Any redundant edge has at most one return path of length two.

This is a contradiction, because the paths (v; x; u) and (v; y; u) and the edge (u; v) contain

the paths (x; u; v; y) and (y; u; v; x), one of which would form a cycle of length at least four

with the path Q.

Corollary 2.2 If the necessary and redundant edges are known, the SCSS

3

problem reduces

in linear time to a restricted version such that

1. each cycle has at most one redundant edge and

2. each redundant edge lies on exactly one cycle.

Each property follows from Lemma 2.1.

Reduction to bipartite matching. For the remainder of the section we assume that G

is a strongly connected graph with maximum cycle length at most three such that every

redundant edge has a unique return path. By the �rst part of the corollary, the set N

(de�ned to contain those edges not having a return path of necessary edges) contains only

necessary edges. Also, each return path has at most one redundant edge. Thus, the problem

5



De�nition 3 Let N denote those edges not having a return path of necessary edges. An

edge e satis�es an edge f in N if f has a return path consisting of e along with a set of

necessary edges. Let N

e

denote the set of edges in N that e satis�es.

Since G is strongly connected, an edge set is an SCSS i� every edge in G has a return

path in the set. Since all necessary edges must be in any SCSS, our problem is to �nd the

smallest subset R of redundant edges that provides every edge in N with a return path.

In a general graph it may be that no single edge alone can satisfy an edge in N because

the return paths may have many redundant edges. But in the case when G has no cycles

longer than three, we show that, without loss of generality, N contains only necessary edges

(although not necessarily all of them) and each return path has at most one redundant edge.

This insight into the structure of the problem gives an O(n

2

)-time reduction to maximum

bipartite matching, yielding a polynomial-time algorithm for the minimum SCSS

3

problem.

2.2 Structure of the SCSS

3

problem

We begin by showing that G decomposes into independent subproblems such that, in each

subproblem, (i) each cycle has at most one redundant edge and (ii) each redundant edge is

on only one cycle. By (i), the set N contains only necessary edges and each return path can

have at most one redundant edge. Thus, the problem reduces to �nding a smallest set of

redundant edges R such that N � [

e2R

N

e

| a set-cover problem. By (ii), each redundant

edge e satis�es at most two necessary edges, so that each N

e

has size at most two. Such

set-cover problems are easily reducible to maximum matching.

To �nish the analysis, we show that the matching instances that arise for our problem

are bipartite. We then give the full algorithm and summarize the results.

Lemma 2.1 If the necessary and redundant edges are known, the SCSS

3

problem reduces

in linear time to a restricted version such that for each redundant edge the return path is

unique.

Proof. We claim that for any redundant edge (u; v), either

1. the return path from v to u is unique, or

2. for some vertex w, G contains directed cycles (u; v; x; u) and (u; x; v; u).

To see that this su�ces, note that in Case 2, the vertices u, v, and x are cut vertices in

the underlying undirected graph. Let V

u

denote the set of vertices reachable from u without

going through v or x. Let V

v

and V

x

be de�ned analogously. Then these three subsets

of vertices partition the vertex set such that no edge in G crosses from one subset into

another. It is well-known how to identify all such cut vertices and the resulting biconnected

components of the underlying undirected graph in linear time. Each subgraph induced in G

by such a component can be solved independently. In each such subgraph, Case 1 holds for

every redundant edge.

To prove the claim, suppose (u; v) is redundant. We will show that one of the Cases 1 or

2 holds.

4



then this would further improve the approximation factor for the MEG problem. However,

we suspect that this problem is NP-hard. Proving this would establish the complexity of the

SCSS

k

problem for all values of k.

2 The SCSS

3

Problem

Let G be a strongly-connected directed graph with maximum cycle length at most three. Our

goal is to �nd a minimum-cardinality SCSS { a smallest subset of the edges that preserves

the strong connectivity of G.

As a starting point, note that maximum bipartite matching can easily be reduced to

this problem. It is well-known that maximum bipartite matching is linear-time equivalent

to the edge-cover problem in bipartite graphs, which is the problem of �nding a minimum-

cardinality subset of edges incident to all vertices in a bipartite graph [9]. This problem can

be easily transformed into our problem by directing all edges in the bipartite graph from the

�rst part to the second part and adding an arti�cial source vertex with edges to each vertex

in the �rst part and from each vertex in the second part. See Figure 1. Any SCSS in the

modi�ed graph yields consists of the edges adjacent to the source vertex, together with the

edges corresponding to some edge cover in the original graph. Conversely, any edge cover in

the original graph yields an SCSS in the modi�ed graph. Thus, bipartite matching reduces

to the SCSS

3

problem. In the remainder of the section, we show that the SCSS

3

problem

reduces to bipartite matching.

Figure 1: Maximum bipartite matching reduces to SCSS

3

.

2.1 De�nitions

The following de�nitions pertain to strongly connected digraphs.

De�nition 1 An edge e 2 E is redundant if the graph G

0

= (V;E�e) is strongly connected,

otherwise it is necessary.

De�nition 2 For an edge (u; v) 2 E, any path from v to u is called a return path for (u; v).

3



Moyles and Thompson [8] observe this decomposition and give exponential-time algo-

rithms for the restricted problems. Hsu [5] gives a polynomial-time algorithm for the acyclic

MEG problem. For acyclic graphs, the MEG problem is equivalent to the transitive reduction

problem, which is shown by Aho, Garey and Ullman to be equivalent to transitive closure [1].

Thus, the heart of the MEG problem is the minimum SCSS problem.

1.1 The bounded cycle length problem

A natural problem to consider is the SCSS problem when restricted to graphs which have

bounded cycle length. In this paper we study the complexity of computing a minimum SCSS

in the special case when the input graph is guaranteed to have no cycles greater than k (a

�xed constant). We call this the SCSS

k

problem. The SCSS

2

problem is trivial. Therefore

the problem is interesting only when k � 3.

It was recently shown by Khuller, Raghavachari and Young [6] that the SCSS

5

problem

is NP-hard and that the SCSS

17

problem is MAX-SNP-hard (precluding the possibility of

a polynomial-time approximation scheme, unless P=NP). The strong dependence of the

complexity on the cycle length is in marked contrast to the relation of complexity and cycle

length in undirected graphs. Undirected graphs with bounded cycle length have bounded

tree width, allowing polynomial-time algorithms for many problems that are NP-hard in

general, including the minimum 2-edge-connected subgraph problem (the natural analog

of the SCSS problem in undirected graphs) [2]. This contrast makes the SCSS

k

problem of

interest. The problem would be completely characterized if it can be shown that the problem

is polynomially solvable for k � 3 and NP-hard otherwise. We provide the next step towards

proving this by showing that the problem is polynomially solvable for k = 3. In the process,

we show that the SCSS

3

problem has a rich structure.

The study of the SCSS

3

problem is also interesting because it yields a better polynomial-

time approximation algorithm for the general SCSS problem and hence for the general MEG

problem. Obtaining a performance guarantee 2 for the general MEG problem is trivial |

any minimal solution achieves this bound. Khuller, Raghavachari and Young [6] gave the

�rst polynomial-time approximation algorithm that achieved a factor better than 2. Their

algorithm �nds a \large" cycle in G, contracts it, and recurses on the contracted graph. The

set of contracted edges forms an SCSS. The cycles are chosen so that any cycle contracted

either has length at least some �xed constant k or is a maximum-length cycle in the current

graph. The performance guarantee is �

2

=6 + O(1=k

2

) � 1:64. A natural improvement to

the algorithm is to solve the remaining problem optimally, rather than recursively, when

the maximum cycle length in the current graph is constant. It can be shown that bigger

the value of k for which the problem can be solved optimally, the better the performance

guarantee of the improved algorithm.

In this paper, we show that the SCSS

3

problem is equivalent to maximum bipartite

matching, so that it can be solved optimally in polynomial time. By modifying the previous

method to solve the problem optimally in graphs with maximum cycle length three, we

obtain a sequence of polynomial-time algorithms for the MEG problem with performance

guarantees arbitrarily close to �

2

=6 � 1=36 � 1:61.

The complexity of the SCSS

4

problem is still open. If it can be solved in polynomial time,

2



On Strongly Connected Digraphs with Bounded Cycle Length

Samir Khuller

�

Balaji Raghavachari

y

Neal Young

z

Abstract

The MEG (minimum equivalent graph) problem is \Given a directed graph, �nd a

smallest subset of the edges that maintains all reachability relations between nodes."

We consider the complexity of this problem as a function of the maximum cycle length

C in the graph. If C = 2, the problem is trivial. Recently it was shown that even with

the restriction C = 5, the problem is NP-hard. It was conjectured that the problem is

solvable in polynomial time if C = 3. In this paper we prove the conjecture, showing

that the problem is equivalent to maximum bipartite matching.

The strong dependence of the complexity on the cycle length is in marked con-

trast to the relation of complexity and cycle length in undirected graphs. Undirected

graphs with bounded cycle length have bounded tree width, allowing polynomial-time

algorithms for many problems that are NP-hard in general.

A consequence of our result is an improved approximation algorithm for the MEG

problem in general graphs. The improved algorithm has a performance guarantee of

about 1:61; the best previous algorithm has a performance guarantee of about 1:64.

1 Introduction

Let G = (V;E) be a directed graph. The MEG (minimum equivalent graph) problem on G

is the following: �nd a smallest subset S of the edges that maintains all reachability relations

between nodes, i.e., for all pairs of vertices (u; v), v is reachable from u in G i� v is reachable

from u using only edges in S. It is known that the problem is NP-hard [3].

Any solution to the MEG problem consists of a solution for each strongly connected com-

ponent together with a solution for the acyclic graph formed by contracting each strongly

connected component into a single vertex. Thus, the MEG problem reduces in linear time

(preserving approximation) to the acyclic MEG problem and the strongly connected MEG

problem. We call the latter problem the minimum SCSS (strongly connected spanning sub-

graph) problem.

�

Computer Science Department and Institute for Advanced Computer Studies, University of Maryland,

College Park, MD 20742. Research supported by NSF Research Initiation Award CCR-9307462. E-mail :

samir@@cs.umd.edu.

y

Department of Computer Science, The University of Texas at Dallas, Box 830688, Richardson, TX 75083.

E-mail : rbk@@utdallas.edu.

z

Department of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14850.

E-mail : ney@@orie.cornell.edu.

1


