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Wetlands are known for the ecosystem services they provide, including 

hydrologic storage, sediment retention, nutrient processing, habitat provision, and carbon 

sequestration. Since European settlement, however, it is estimated that > 50% of wetlands 

within the conterminous United States have been lost, with a majority of loss attributed to 

drainage of freshwater wetlands for agriculture. In efforts to offset loss and restore 

ecosystem services, agricultural wetland restoration has become common. How wetland 

restoration impacts adjacent stream ecosystem structure and function, however, is poorly 

understood. Additionally, many freshwater wetlands have historically been considered 

geographically isolated and disconnected from adjacent surface waters. Recent U.S. 

Supreme Court rulings have called into question the jurisdictional status of so-called 



isolated wetlands and non-perennial streams, making investigation of wetland–stream 

connectivity particularly critical. 

Comparing native forested, historical (i.e., prior-converted cropland), and 

hydrologically restored freshwater wetlands within the headwaters of the Choptank River 

watershed (Delmarva Peninsula, Maryland, USA), I examined the impact of agricultural 

wetland restoration on within-wetland structure and function and influences on adjacent 

temporary and perennial streams. In Chapter 1, I present evidence that recently restored 

wetland soils, although similar to historical wetland soils in physicochemical properties 

and denitrification potential, may be sediment and nutrient sinks. Chapter 2 shows that 

so-called isolated Delmarva bay wetlands may in fact be intimately linked to perennial 

stream networks via temporary stream flow and that land use influences connectivity. In 

Chapter 3, I investigate the role of temporary stream sediment drying and wetting on 

denitrification potential in restored and forested wetland–stream pairs and find that 

alterations in flow regime, a likely outcome of both land use change and climate change, 

may alter the capacity of temporary streams to denitrify. Chapter 4 considers the impact 

of cultivation on perennial stream dissolved organic matter (DOM) quantity and quality, 

and suggests agricultural wetland restoration may be a tool to recover more natural 

fluvial DOM.  

Results from this research suggest geographically isolated wetlands may be both 

hydrologically and ecologically linked to adjacent temporary and perennial streams and 

that cultivation and subsequent restoration of historical wetlands exerts strong influence 

on these connections. 
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Preface 

This dissertation consists of an introduction, four research chapters, and a summary 

section. All research chapters are presented in manuscript form with introduction, 

methods, results, discussion, and conclusion. Tables, figures, and captions occur in line 

with the text. A single literature cited section occurs at the end for references made 

throughout the dissertation.  
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Introduction 

 It is estimated that more than half of wetlands within the conterminous United 

States have been lost since European settlement (Dahl 1990). A majority of this loss has 

been ascribed to drainage of freshwater depressional wetlands for agriculture (Dahl 1990, 

Zedler and Kercher 2005). In efforts to mitigate losses and enhance valuable ecosystem 

services provided by wetlands (e.g., nutrient and sediment retention, carbon 

sequestration, habitat provision, water storage), agricultural wetland restoration has 

become common (Mitsch and Gosselink 2000).  

 In an undisturbed state, depressional wetlands are characterized by hydric soils 

and a bowl-like structure often surrounded by an upland rim that reduces surface outflow 

(Tiner 2003, McCauley and Jenkins 2005). North American examples include prairie 

potholes, playas, vernal pools, sinkhole wetlands, interdunal and intradunal wetlands, 

desert springs, bogs, fens, and Carolina and Delmarva bays. These wetlands may be 

continuously connected to nearby streams by surface flow or geographically isolated, 

that is, lacking perennial surface hydrologic connectivity to adjacent waters (Tiner 2003).  

 Referring to depressional wetlands as isolated, however, may be inappropriate as 

they can be connected to nearby waters via groundwater flowpaths, episodic basin 

spillage and overland flow, or temporary stream flow (Tiner 2003, Winter and LaBaugh 

2003, Wilcox et al. 2011). Furthermore, there may be ecologically significant exchanges 

of material and energy through these flowpaths (Gibbons 2003, Leibowitz et al. 2008). 

While understanding of geographically isolated wetland–stream connectivity is generally 

limited, interest in the hydrological and ecological links between isolated wetlands and 
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adjacent stream networks is growing (Leibowitz and Nadeau 2003, Leibowitz et al. 2008, 

Wilcox et al. 2011), in part sparked by recent U.S. Supreme Court cases (e.g., Solid 

Waste Agency of Northern Cook County v US Army Corps of Engineers 2001, Rapanos v 

United States 2006) creating new legal standards for determining the regulatory status of 

wetlands and non-perennial streams under Section 404 of the Clean Water Act (CWA). 

Briefly, the decisions suggest that surface hydrological permanence between wetlands 

and non-perennial streams and adjacent navigable waters and the influence of wetlands 

and non-perennial streams on the chemical, physical, and biological integrity of 

navigable waters (i.e., “significant nexus”) may be used to determine CWA jurisdiction. 

 My research is part of the wetland component of the U.S. Department of 

Agriculture Natural Resources Conservation Service (USDA-NRCS) Conservation 

Effects Assessment Project (CEAP) that seeks to quantify the effects of conservation 

practices and resource management on the ecosystem services provided by wetlands in 

agricultural landscapes. I specifically sought to address the degree to which ecosystem 

benefits generally attributed to wetlands extend beyond the wetland and to adjacent 

streams. 

 My goals for this dissertation were to assess the impact of agricultural wetland 

restoration on 1) within-wetland structure and function and 2) adjacent temporary and 

perennial stream structure and function. To accomplish these objectives, I used a 

combination of field observational studies, laboratory assays and experiments, and 

modeling exercises to study freshwater depressional wetlands and adjacent streams along 

an alteration gradient (forested, hydrologically restored, and historical [i.e., wetlands now 
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in cropland, aka prior-converted cropland
1
]) at the headwaters of the Choptank River 

Watershed (Delmarva Peninsula, Maryland, USA). The Choptank catchment provided an 

ideal location for this research, as both cropland and freshwater depressional wetlands 

known as Delmarva bays are plentiful. A brief description of each chapter follows. 

 

Chapter 1: The impact of agricultural wetland restoration on Delmarva bay soils 

 To assess the impact of agricultural wetland restoration on a suite of soil 

physicochemical properties, I compared soils in forested, historical, and hydrologically 

restored Delmarva bay wetlands. Additionally, I compared net vertical accretion, 

sediment, and nutrient accumulation rates in forested and restored wetlands using 

feldspar pads. I found forested wetland soils had significantly greater moisture content, 

soil organic matter (SOM), and C:N, and significantly lower bulk density relative to 

historical and restored wetland soils. Historical and restored wetland soils did not differ 

with respect to any of the aforementioned metrics. Using a denitrification enzyme activity 

(DEA) assay, I found that denitrification potential was positively correlated with moisture 

content and SOM and negatively correlated with bulk density. Denitrification potential 

rates were significantly greater in forested relative to both historical and restored wetland 

soils which did not differ from one another. Feldspar pads revealed greater annual net 

                                                        
1
 Prior-converted cropland is a converted wetland where the conversion occurred prior to December 23, 

1985, an agricultural commodity had been produced at least once before December 23, 1985, and as of 

December 23, 1985, the converted wetland did not support woody vegetation and met the following 

hydrologic criteria: (i) Inundation was less than 15 consecutive days during the growing season or 10 

percent of the growing season, whichever is less, in most years; and (ii) If a pothole, playa or pocosin, 

ponding was less than 7 consecutive days during the growing season in most years and saturation was less 

than 14 consecutive days during the growing season most years. Code of Federal Regulations - Title 7: 

Agriculture; 12.2. 
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carbon, nitrogen, and phosphorus accumulation rates in restored relative to forested 

wetlands, the result of substantial sediment accumulation within restored basins. Results 

from this study suggest little differences in soil physicochemical characteristics or 

denitrifying enzyme pools exist between historical and recently restored Delmarva bays, 

and that recovery of wetland soils from an agriculturally-impacted state to a more natural 

condition has not occurred since restoration. Results also suggest that restored Delmarva 

bays may serve as sediment and nutrient sinks. 

 

Chapter 2: The impact of agricultural wetland restoration on surface hydrologic 

connectivity between depressional wetlands and adjacent streams 

 Although recent U.S. Supreme Court rulings indicate surface hydrologic 

connectivity (SHC) between wetlands and adjacent streams may be used, in part, to 

determine wetland jurisdictional status, wetland–stream SHC has rarely been quantified. 

Furthermore, the impact of cultivation and restoration on wetland–stream SHC is 

particularly unknown. To help fill these knowledge gaps, I recorded surface hydrologic 

connectivity (SHC) patterns between Delmarva bay wetlands and adjacent perennial 

streams and asked how hydrologic wetland restoration impacts SHC relative to historical 

and native forested wetlands. For the 2010 water year I quantified cumulative connection 

duration, total number of connections, mean connection duration, and maximum 

individual connection duration (Dmax-c). I found that forested wetlands were connected to 

perennial streams for a greater cumulative duration but fewer times relative to both 

historical and restored wetlands. Surface hydrologic connectivity between historical and 
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restored wetlands and adjacent perennial streams did not differ with respect to any of the 

calculated metrics. Forested SHC was seasonally continuous from mid-autumn to late-

spring, while historical and restored SHC was largely ephemeral. Differences in wetland–

stream SHC have potential ecological implications, including provision of dispersal 

corridors for biota, biogeochemical processing of nutrients, and downstream delivery of 

energy, matter, and organisms. Understanding how cultivation and restoration impact 

wetland–stream SHC is critical toward recovering freshwater ecosystems in agricultural 

landscapes. 

 

Chapter 3: The impact of repeated drying and wetting on denitrification in a 

restored temporary stream 

 After quantifying surface hydrologic connectivity patterns between Delmarva bay 

wetlands and adjacent streams (Chapter 2), I investigated the influence of repeated drying 

and wetting on denitrification potential in temporary streams linking restored and 

forested bays to nearby perennial streams. The hydrologic process of repeated drying and 

wetting has been shown to enhance denitrification rates in a variety of ecosystems, 

including wetlands, lakes, and more recently temporary streams. Typically positioned at 

the headwaters, temporary streams may be effective nutrient processors, yet particularly 

sensitive to anthropogenic disturbance. Increasing denitrification may be a desired goal 

when restoring temporary streams in nutrient-rich landscapes (e.g., agricultural, 

urbanized).  



6 
 

In response to drying and wetting, I asked if the pattern of denitrification potential 

in recently restored temporary stream sediments is similar to the pattern in undisturbed 

forested temporary stream sediments. In a laboratory experiment, temporary stream 

sediments were subjected to three different flow treatments for 28 days: continuously dry 

(dry), continuously wet (wet), and repeatedly dry / wet at 7-day recurrence intervals 

(cycled). Cores were processed for a suite of physicochemical metrics and denitrification 

potential throughout the experiment. Denitrification potential, which correlated strongly 

with sediment reduction potential and moisture content, increased in wet forested and wet 

restored sediments, and decreased in dry forested and dry restored sediments. Hysteresis 

in denitrification potential occurred in response to cycled drying and wetting in restored 

temporary stream sediments whereby rates increased more rapidly upon rewetting vs. 

drying. Alternatively, forested temporary stream sediments exhibited greater resistance to 

changes in hydrology. Over the 28-day duration of the experiment, estimated cumulative 

denitrification potential in both forested and restored temporary streams was lowest 

among dry sediments, intermediate among cycled sediments, and greatest among wet 

sediments. These results demonstrate that alterations in temporary stream hydrology, a 

likely outcome of land use change, restoration, and climate change, has potential to 

significantly impact sediment nitrogen processing. To my knowledge, this is the first 

study addressing outcomes of temporary stream restoration.  
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Chapter 4: Looking toward wetlands to restore stream dissolved organic matter 

 Dissolved organic matter (DOM) plays a key role in fluvial ecosystems, 

influencing metabolism, nutrient processing, and light and temperature regulation. 

Wetlands may be critical sources of DOM to fluvial networks. In response to land use 

change (e.g., agriculture, urbanization) natural stream DOM may be fundamentally 

altered. Despite its significance with regard to stream function, however, restoration 

efforts are rarely taken to manage DOM. The objectives of this study were to quantify the 

impact of cultivation in a once wetland-dominated region on stream DOM quantity and 

quality and to test the hypothesis that agricultural wetland restoration contributes to 

restoration of stream DOM. Across twenty perennial headwater catchments on the 

Delmarva Peninsula with a range of cropland coverage (1 - 89% of total watershed area), 

I found that cropland coverage was negatively correlated with stream DOM 

concentration, molecular weight, aromaticity, humic-like fluorescence, and allochthonous 

origin. Conversely, cropland coverage was positively correlated with stream DOM 

protein-like fluorescence and DOC bioavailability. Along a wetland alteration gradient 

within the study region, DOM concentration was significantly greater in forested relative 

to historical and restored wetland outflows. However, the composition and lability of 

DOM exported from restored wetlands show signs of recovery. A comparison of wetland 

outflow and perennial stream DOM suggests there may be potential to restore stream 

DOM in cultivated landscapes via wetland restoration. 
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Chapter 1: The impact of agricultural wetland  

restoration on Delmarva bay soils 

 

INTRODUCTION  

 It is estimated that more than 50% of wetlands within the continental United 

States have been lost since 1780 (Dahl 1990) with the majority of loss attributed to 

agriculture (Dahl 1990, Zedler and Kercher 2005). Although historically viewed as 

wastelands or areas prime for drainage and cropping (Mitsch and Gosselink 2000), 

wetlands are now recognized for their support of ecosystem services including flood 

mitigation, nutrient and sediment storage, nutrient processing, habitat provision, and 

carbon sequestration (Zedler and Kercher 2005). Restoration of wetlands in cultivated 

landscapes has become common in attempts to mitigate loss and promote valuable 

wetland functions (Mitsch and Gosselink 2000).  

 Many agriculturally-impacted wetlands are pool-like depressions, and restoration 

efforts generally focus on reestablishing a more natural hydroperiod — a factor 

considered a master variable with respect to a wetland’s ecological condition (Mitsch and 

Gosselink 2000) that exerts strong control over redox, pH, nutrient cycling, biodiversity, 

and succession (Bridgham and Richardson 1993). While hydrologic restoration is 

necessary, it may not be sufficient for full ecosystem recovery, and it is important to 

determine whether other wetland structures and functions — such as those associated 

with soils — have been restored.  
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Soils are considered the physical foundation of wetland ecosystems  

(Stolt et al. 2003) and play a significant role in many wetland functions. Soils provide a 

medium for plant rooting and seed germination, supply water and nutrients for flora and 

fauna, provide suitable habitat for a diverse microbial community, support 

biogeochemical transformation of nutrients, trap contaminants and sediments, and 

maintain or enhance water quality (Zedler 2004). Unlike hydrology, however, soil 

properties may be more challenging to restore, are considered less frequently in 

restoration plans, and are rarely monitored post-restoration (Shaffer and Ernst 1999, 

Bruland et al. 2003). Whether wetland restoration promotes accumulation and storage of 

sediment and nutrients — an important function of wetlands with respect to the health of 

downstream ecosystems — is also not yet well known.  

 I investigated the impact of agricultural wetland restoration on wetland soils and 

sediment and nutrient accumulation on the Delmarva Peninsula. Comparing restored 

wetlands to native forested and historical end-members (i.e., wetlands now in cropland, 

aka prior-converted cropland), I sought to quantify the impact of restoration on:  

1) wetland soil physicochemical properties and denitrification potential, and 2) annual 

rates of vertical accretion and sediment and nutrient accumulation. Additionally, I 

investigated possible controls on denitrification by analyzing correlations between 

denitrification potential and soil physicochemical properties. I predicted decreased soil 

organic matter (SOM), decreased denitrification potential, and increased bulk density in 

historical compared to forested wetlands as previous work has shown that cultivation 

within wetlands decreases SOM (Richter et al. 1999, Compton and Boone 2000), alters 

native microbial communities (Young and Ritz 2000), and increases soil compaction and 
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erosion (Martin and Hartman 1987, Braekke 1999). Due to a history of cultivation, I 

predicted restored wetlands would have greater sediment and nutrient accumulation rates 

compared to forested wetlands, and that soils in restored wetlands would be in a 

transition between forested and cultivated end-members. 

 

METHODS 

Site Description 

 This study was conducted in Delmarva bay freshwater depressional wetlands in 

the headwaters of the Tuckahoe Creek watershed (Maryland, USA), a sub-basin of the 

Choptank River watershed (Fig. 1.1). Located on the Delmarva Peninsula, the Choptank 

watershed is entirely situated in the Coastal Plain physiographic province. Topographic 

relief is low, and elliptical depressional wetlands known as Delmarva bays are plentiful 

(Tiner and Burke 1995). Fenstermacher (2012) estimated there to be some 17,000 

Delmarva bays on the Peninsula, of which 65% have been impacted by agriculture. 

Nearly 65% of the Choptank watershed is in agricultural use, and nutrient and sediment 

loading to the river network and Chesapeake Bay are high (Fisher et al. 2006).  
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Figure 1.1: Choptank River and Tuckahoe Creek watersheds and stream 

networks. Modified from Lang et al. (2012).  

 

 Four forested, 3 historical, and 3 hydrologically restored Delmarva bay wetlands 

were selected for this study. Each wetland was considered a representative ecosystem 

within its type. Forested wetlands are characterized by an alternating hydrology, acting as 

discharge wetlands in winter and spring and recharge basins in summer and fall (Phillips 

and Shedlock 1993). Surface water is typically present within forested Delmarva bays 

from late fall through late spring. Forested sites are characterized by closed canopy 

palustrine forest (Cowardin et al. 1979). Dominant tree species include Acer rubrum, 

Liquidambar styraciflua, Ilex opaca, Quercus rubra, and Prunus serotina, and the 

understory is dominated by Smilax rotundifolia, Lindera benzoin, and Leucothoe 

racemosa.  
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 Historical wetlands have been drained via ditches to enhance crop production and 

are characterized by brief periods of standing water following rainfall events. Vegetation 

within historical wetlands rotates annually between corn (Zea mays) and soybean 

(Glycine max). Prior to drainage and cultivation, historical wetlands were forested bays 

(Whigham et al. 2002).  

 Restored wetlands were removed from agricultural use 7-8 years prior to this 

study, and restoration efforts involved plugging drainage ditches with earthen mounds to 

reestablish a more natural hydroperiod. Restored Delmarva bays typically exhibit 

standing water from late fall to late spring. Dominant restored wetland vegetation 

consists primarily of emergent and floating plants including Typha latifolia, Phragmites 

australis, Schoenoplectus americanus, Carex sp., Scirpus cyperinus, and Lemna minor. 

Mature forested upland canopy has not yet developed at any of the restorations.  

Restored wetlands were once forested Delmarva bays located in topographic lows 

(Whigham et al. 2002). 

Soil Sampling 

 Soils were collected in June 2010 using a 2.85 cm ID soil probe in triplicate cores 

at 0-10 cm depth within each wetland. Triplicate cores were collected randomly within 

each wetland. Soils were placed in re-sealable plastic bags, kept on ice in the dark, and 

returned to the laboratory where they were refrigerated at 4°C until analyzed.  
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Soil Analysis  

 Soils were analyzed for moisture content, bulk density, soil organic matter (SOM) 

content, total carbon, total nitrogen, and soil nitrate. Prior to analyses, soil samples were 

homogenized and any rocks and roots were removed. A subsample from each core was 

weighed and oven-dried at 70°C to determine moisture content and establish a constant 

dry weight basis. Bulk density was calculated as dry mass per unit volume of soil 

collected (g cm
-3

). A subsample of the oven-dried soil was ground using mortar and 

pestle and analyzed for total carbon, total nitrogen, and SOM. Soil total carbon and total 

nitrogen (presented as C:N) were analyzed by dry combustion using a CHNSO elemental 

analyzer (ECS 4010 CHNSO Analyzer, Costech Analytical Technologies, Valencia, CA). 

SOM was determined as mass loss-on-ignition at 450°C for 16 h. Soil nitrate was 

determined on subsamples of field moist soil using 2M KCl extraction followed by 

filtration through 0.7 m glass fiber filter paper (Whatman International Ltd, Maidstone, 

England). Extracts were analyzed via automated cadmium reduction on a QuikChem 

8500 Series 2 flow injection analyzer (method # 12-107-04-1-B, Lachat Instruments / 

Hach Company, Loveland, CO).  

 Soils were analyzed for denitrification potential using the denitrification enzyme 

activity (DEA) assay method described by Groffman et al. (1999). DEA is a short-term 

assay to determine denitrification potential and extant denitrifying enzymes given 

unlimited organic carbon and nitrate substrate. While DEA does not directly measure 

actual denitrification, it is useful for site comparisons as it offers a method by which 
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nitrate reduction potential can be compared across different soil types (Hunter and 

Faulkner 2001).  

 For the DEA assay, 10 g of well-mixed, field-moist soil was measured into  

125 mL Erlenmeyer flasks with tapered ground-glass necks. Flasks were fitted with 

rubber septa stoppers to allow for gas-tight seals and headspace gas sample collection via 

syringe. Soils used for the DEA assay were amended with a solution of glucose and 

KNO3 to ensure non-limiting substrate conditions and chloramphenicol to inhibit 

microbial reproduction (final slurry concentrations: 100 mg kg
-1

 N, 200 mg kg
-1

 glucose, 

125 mg kg
-1

 chloramphenicol). Soil slurries were made anaerobic via repeated evacuation 

and N2 gas flushing. Flasks were injected with 5 mL acetylene gas (C2H2) to inhibit 

reduction of N2O to N2 and shaken at 100 rpm for 90 min on an orbital shaker. At 90 min, 

9 mL headspace gas samples were taken from each flask via syringe and transferred to 

pre-evacuated 9 mL septa sealed glass vials. N2O concentrations were determined using a 

Shimadzu GC-14B gas chromatograph outfitted with an electron capture detector and 

Porapak Q column (Shimadzu Scientific Instruments, Columbia, MD). Soil N2O flux was 

calculated as the rate of N2O increase in the headspace of the incubation flask during the 

incubation period. Headspace measurement of total N2O production was corrected for 

N2O dissolved in slurry water using the Bunsen equation (Groffman et al. 1999) at the 

incubation temperature. Denitrification potential was calculated as the hourly rate of 

N2O-N production per dry mass of soil and is indicative of the biomass of the denitrifying 

enzyme pool present in each soil sample.  
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Sediment and Nutrient Accumulation 

 Feldspar clay pads were deployed in the forested and restored Delmarva bays to 

measure rates of net vertical accretion and net sediment, carbon, nitrogen, and 

phosphorus accumulation. Pads were not deployed in the historical wetlands as they 

would have been destroyed by tilling. Feldspar creates a bright white marker horizon 

easily distinguished from material deposited on top of it and may be used to 

inexpensively measure accumulation rates of matter in a variety of settings (Cahoon and 

Turner 1989). In June 2010 (time-zero), 10 circular feldspar pads measuring 25 cm in 

diameter and 0.5 cm thick were randomly positioned in each wetland. Net vertical 

accretion atop each pad was measured in June 2011. The accumulated material on each 

pad was collected using thin-walled aluminum cylinders as coring devices (65 mm ID) 

and returned to the laboratory to be processed for total dry mass, SOM, mineral fraction, 

total C, and total N as described above. Total phosphorus content of dried soils was 

measured via hot nitric acid digestion (EPA Method 3050B) followed by colorimetric 

determination using a molybdate reagent in the presence of ascorbic acid (Kuo 1996).  

Net vertical accretion rates are presented as mm y
-1

. Net accumulation rates for total 

sediment, mineral sediment, C, N, and P are reported on a g m
-2

 y
-1

 basis.  

Statistical Analysis 

 Differences in wetland soil metrics among the three wetland types were assessed 

using one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant 

difference (HSD) multiple mean comparisons tests. Feldspar pad accumulation results 

were compared between forested and restored wetlands using two-tailed Student’s t-tests. 
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Pearson’s product-moment correlation analyses were performed to determine 

relationships between soil properties and denitrification potential. When necessary, data 

were log-transformed to meet the assumption of normality. All univariate statistical 

analyses were conducted using R version 2.12.2 (R Development Core Team, Vienna, 

Austria) with differences deemed significant at α = 0.05. 

 To gain an understanding of the variability in soil properties across wetland types, 

I ran principal component analysis (PCA). A PCA ordination diagram was plotted to 

visualize how wetland types cluster with axes generated using the suite of soil metrics. 

PCA analyses were conducted using the Vegan package in R version 2.12.2  

(R Development Core Team, Vienna, Austria).  

 

RESULTS 

Wetland Soil Physicochemical Properties and Denitrification Potential 

 Significant differences existed among wetland types with respect to all soil 

physicochemical properties (Fig. 1.2). Forested Delmarva bay soils were characterized by 

high moisture content, high SOM, high C:N, low bulk density, and low soil nitrate 

relative to historical and restored wetland soils, which had low moisture content, SOM, 

and C:N, and high bulk density and soil nitrate (Fig. 1.2). Multiple mean comparisons 

revealed significantly greater moisture content, SOM, and C:N, and significantly lower 

bulk density in forested compared to historical and restored wetland soils (Fig. 1.2). SOM 

content was 10-fold greater in forested compared to historical wetland soils and 8-fold 
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greater compared to restored soils (Fig. 1.2B). Conversely, bulk density was 

approximately 5 times lower in forested relative to both historical and restored wetland 

soils (Fig. 1.2D). Soil nitrate was significantly greater in historical relative to forested 

wetlands (Fig. 1.2E). Soil properties did not differ significantly between restored and 

historical wetlands with respect to any analyzed metrics (Fig. 1.2A-E). 

 Highest denitrification potential rates were measured in forested wetland soils 

with a mean (± SE) of 0.93 ± 0.32 µg N2O-N g
-1

 h
-1

. This rate was 150% greater than 

rates measured in historical wetlands and nearly 125% greater than those in restored 

wetlands (Fig. 1.2F). Denitrification potential did not differ significantly between 

historical and restored wetlands (Fig. 1.2F). 

 Together, the first two components of the PCA incorporating soil 

physicochemical properties and denitrification potential explained 95% of the variance 

between wetlands (Fig. 1.3). Forested wetlands had positive scores on component 1 and 

grouped together closely, while historical and restored wetlands had negative scores and 

exhibited greater variability (Fig. 1.3). 

Correlations between Soil Physicochemical Properties and Denitrification Potential 

 Across all wetland types, moisture content and SOM were positively correlated 

with denitrification potential (r = 0.67, p < 0.001; r = 0.70, p < 0.001, respectively). Bulk 

density and denitrification potential were negatively correlated (r = -0.65, p < 0.001).  

No relationships existed between C:N or soil nitrate and denitrification potential.   

 



18 
 

 

 

 

Figure 1.2: Wetland soil properties by wetland type (forested, n = 4; historical, n = 3; restored, n = 3).  

A) Moisture content, B) soil organic matter (SOM) content, C) C:N, D) bulk density, E) soil nitrate, and  

F) denitrification potential. Error bars represent standard errors of the means. Means with different letters 

are significantly different from one another (Tukey’s HSD, p < 0.05).  
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Figure 1.3: Principal component analysis (PCA) ordination diagram grouping 

forested, historical, and restored wetland soils with respect to physicochemical 

properties and denitrification potential. Percent values on each axis represent percent 

of explained variance. 
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Sediment and Nutrient Accumulation  

 I recorded significant net vertical accretion and net sediment, mineral, C, N, and 

total P accumulation in both forested and restored Delmarva bays over the course of one 

year (Fig. 1.4). Net vertical accretion, sediment accumulation, mineral accumulation,  

N accumulation, and total P accumulation rates were all significantly greater in restored 

Delmarva bays compared to forested reference wetlands (Fig. 1.4). Nitrogen content 

within accumulated sediment tended to be lower (Fig. 1.4E) while C accumulation tended 

to be higher (Fig. 1.4G) in restored compared to forested Delmarva bays. Annual net 

vertical accretion measured 4.7 ± 0.2 mm (mean, ± SE) in restored wetlands — nearly  

4 times the value in forested bays (1.3 ± 0.1 mm [mean, ± SE]; Fig. 1.4A). Net sediment 

accumulation was more than 5 times greater in restored relative to forested Delmarva 

bays, averaging > 3,100 g m
-2

 y
-1

 (Fig. 1.4B). Although C and N content in the 

accumulated sediment were lower in restored compared to forested wetlands  

(Fig. 1.4D,E), the substantial amount of net sediment accumulated in restored sites 

resulted in 53% greater C accumulation and 212% greater N accumulation relative to 

forested basins (Fig. 1.4G,H). While total P content in accumulated sediment did not 

differ between forested and restored sites (Fig. 1.4F), total P accumulation was > 500% 

more in restored compared to forested wetlands due to greater sediment accumulation in 

restored sites (Fig. 1.4I).   
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Figure 1.4: Feldspar pad results for a 1-year deployment (June 2010 – June 2011) in forested (n = 4) and 

restored (n = 3) Delmarva bay wetlands. A) Net vertical accretion, B) net sediment accumulation,  

C) net mineral accumulation, D) C content in accumulated sediment, E) N content in accumulated 

sediment, F) total P content in accumulated sediment, G) net C accumulation, H) net N accumulation, and  

I) net total P accumulation. Error bars represent standard errors of the means.  
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DISCUSSION  

 This research demonstrates that soil physicochemical properties and 

denitrification potential in hydrologically restored Delmarva bay wetlands are 

significantly different from forested wetland soils shortly following restoration (i.e., 7 to 

8 years post restoration). Additionally, recently restored wetland soils remain structurally 

and functionally similar to historical wetland soils. While reestablishing wetland 

hydrology is critical to ecosystem restoration (Mitsch and Gosselink 2000), it may not be 

sufficient for rapid recovery of key wetland soil properties and processes (Bruland et al. 

2003). This may be particularly true in once-farmed wetlands due to physical and 

chemical soil alteration caused by cultivation (Zedler 2003a).  

Soil Restoration Effectiveness in Once-Cultivated Wetlands 

 Results from this study corroborate previous work examining the impacts of 

agricultural wetland restoration on soil properties in morphologically similar settings 

(e.g., coastal plain bays), which have generally found comparable soil properties in 

historical and restored wetlands as unique from reference wetland soils (Bruland et al. 

2003, Fenstermacher 2012). In particular, restored agricultural wetland soils often have 

lower SOM and higher bulk density relative to reference soils (Galatowitsch and van der 

Valk 1996, Bruland et al. 2003, Fenstermacher 2012). This has been shown even when 

restoration of wetland hydrology was deemed successful (Bruland et al. 2003), and has 

been attributed to intense alteration of the restored wetland soil while it had been actively 

drained and cultivated (Galatowitsch and van der Valk 1996, Bruland et al. 2003). 

Drainage and cultivation result in decreased SOM due to increased oxidation and 
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decomposition rates (Richter et al. 1999, Compton and Boone 2000) and increased bulk 

density due to tillage and soil compaction (Braekke 1999, Fenstermacher 2012). 

Moreover, it has been suggested that SOM remaining after wetland drainage and 

cultivation may largely be bound to clay and have limited bioavailability (Richardson and 

Bigler 1982). Zedler (2003a) stresses that restoring agricultural wetland soils to some 

historical or reference condition is particularly difficult where decades of cultivation may 

have fundamentally altered soil physicochemical properties. A history of cultivation 

combined with a relatively short period of time since restoration are likely the reason I 

found little difference between historical and restored wetland soils in this study. 

 It is important to note that SOM accumulation in restored and created wetlands is 

often slow (Hossler and Bouchard 2010) and may not increase as rapidly as expected 

(Bishel-Machung et al. 1996, Shaffer and Ernst 1999, Bruland et al. 2009). I found SOM 

content in historical and restored wetland to be only 10% and 12%, respectively, of that 

in forested wetlands. Although I did not measure SOM change over time, the fact that I 

observed no significant differences in SOM between historical wetlands and sites 

restored 7 to 8 years previously suggests restoration of natural SOM levels will take 

substantial time. Corroborating this, Fenstermacher (2012) estimated it would take 

restored Delmarva bay wetlands approximately 70 years to achieve the level of carbon in 

natural wetland soils. Others have estimated that restoring soil carbon to natural levels 

takes 30-500 years or longer, depending on the ecosystem (Jastrow 1996, Zedler and 

Callaway 1999, Wigginton et al. 2000, Craft et al. 2002, Edwards and Proffitt 2003, 

Hossler and Bouchard 2010). However, wetland soils may not be on a trajectory toward a 
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reference condition post-restoration (Zedler and Callaway 1999), but may instead be 

approaching alternative stable states (Moreno-Mateos et al. 2012).  

 Denitrification in nitrate-rich agricultural landscapes is of particular interest as a 

means to mitigate excess nutrient loading (Howarth et al. 1996). While restored and 

created wetlands may be effective nitrogen sinks (Lowrance et al. 1995), results from this 

study suggest wetland cultivation decreases soil denitrification potential relative to 

reference conditions and that the capacity to denitrify has not fully recovered in recently 

restored Delmarva bays. This finding corroborates those of others among a variety of 

restored wetland types (Hunter and Faulkner 2001, Bruland et al. 2006, Peralta et al. 

2010). Across many ecosystems, research has shown that denitrification is limited 

primarily by organic carbon availability (Ingersoll and Baker 1998, Dolda et al. 2008, 

Sutton-Grier et al. 2010). Organic matter fuels heterotrophic respiration and oxygen 

consumption, both of which promote denitrification (Reddy and Patrick 1984). This 

suggests the low SOM content I measured in recently restored Delmarva bays  

(6.3 ± 1.4%; mean, ± SE) may in part be responsible for limited denitrifying enzyme 

activity therein. 

 Denitrification potential may also be lower in restored relative to reference 

wetland soils due in part to differences in the microbial communities themselves (Ronn et 

al. 1996, Cavigelli and Robertson 2000). Denitrification rates have been shown to 

correlate positively with soil microbial diversity (Griffiths et al. 2000). Agricultural 

disturbance can decrease microbial heterogeneity and, in turn, the ability of microbial 

communities to process nitrogen (Young and Ritz 2000). Peralta et al. (2010) found 
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significantly different bacterial community structure between restored and reference 

wetlands and higher denitrification potential in reference relative to restored sites, 

suggesting differences in denitrification potential may be due to differences in microbial 

assemblage. Poor microbial community development in newly restored or created soils is 

thought to be due in part to low SOM pools (Duncan and Groffman 1994).  

 I note that denitrification potential rates reported here were only measured once 

due to both the intensive nature of soil sampling and laboratory processing. The DEA 

assay provides a moment-in-time snapshot of soils at the time of sampling, and the 

patterns observed in Summer 2010 may not be consistent seasonally or inter-annually. 

Yet, DEA assay results have been shown to be highly correlated with annual soil 

denitrification rates (Groffman and Tiedje 1989). Moreover, the soil properties that 

correlated with denitrification potential, particularly SOM and bulk density, are unlikely 

to undergo rapid changes (Hossler and Bouchard 2010), and these patterns are expected 

to hold for some time.  

 Additionally, it is important to note that the DEA assay used in this study 

provided unlimited fuel (i.e., glucose) and substrate (i.e., KNO3) to denitrifers, and thus 

relects potential denitrification. Actual denitrification may be greater in nitrate-rich 

historical and restored wetland soils relative to nitrate-poor forested wetland soils  

(see Fig. 1.2E). Moreover, forested Delmarva bays are often positioned along the 

watershed divide and thus likely to experience lower fluxes of water and nutrients 

relative to wetlands more distant from the watershed boundary. To better prioritize 
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restoration efforts to mitigate downstream eutrophication, future research should address 

in situ denitrification and the role of wetland landscape position on nitrate reduction. 

Sediment and Nutrient Accumulation 

 The high net vertical accretion and sediment accumulation rates observed in 

restored Delmarva bays compared to reference forested wetlands and various 

depressional wetland types (Table 1.1) are likely the result of continued upland erosion 

post-cultivation. Cropland tillage has been shown to accelerate sedimentation in 

depressional wetlands (Martin and Hartman 1987). Additionally, depressional wetlands 

are the terminus of closed basins and thereby subject to potentially large accumulation of 

runoff-transported sediments (Skagen et al. 2008).  

 Sediment accumulation from upland erosion may decrease wetland volume and 

hydrologic storage capacity and negatively impact plant community structure by burying 

seed banks and hindering germination (Luo et al. 1997). I observed a mean net vertical 

accretion rate of 4.7 mm y
-1

 in restored Delmarva bays, and note that sediment burial 

depths of 5 mm have been shown to cause marked reductions in seedling and invertebrate 

emergence within wetlands (Gleason et al. 2003). Alternatively, high accumulation rates 

in restored wetlands may be mitigating downstream sediment and nutrient delivery. 

Whether restored Delmarva bays are acting as sediment and nutrient sources or sinks, 

however, would require an investigation incorporating mass balances and represents a 

potential focus for future study. 



 
 

 

 

Table 1.1: Comparison of net vertical accretion (mm y
-1

) and net sediment and nutrient (C, N, P) accumulation (g m
-2

 y
-1

) in freshwater 

depressional wetland soils. 

Location Wetland Type 
Vertical 

Accretion 
Sediment Organic C N P 

Florida
1
 Cypress Dome — — — 0.8 - 2.8 0.01 

Georgia
2
 Cypress Depressions 0 - 0.9 120 - 950 21 - 70 1.5 - 5.3 0.08 - 0.25 

Maryland Delmarva Bays (forested) 1.1 - 1.4 436 - 788 143 - 186 4.8 - 7.5 0.19 – 0.29 

(this study) Delmarva Bays (restored) 4.4 - 5.0 2525 - 3545 177 - 306 14.2 - 26.2 0.94 – 2.02 

North Dakota
3
 Prairie Potholes — 500 - 3600 — — 0.01 

Texas
4
 Playas (prior-converted cropland) 4.8 - 9.7 — — — — 

1 
Dierberg and Brezonik (1983) (*accumulation in soil plus roots)     

2 
Craft and Casey (2000)     

3 
Freeland et al. (1999)     

4 
Luo et al. (1997)     
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 Although the mineral fraction of accumulated material within restored wetlands 

was nearly double that in forested wetlands (82.1% and 45.2%, respectively), net mean 

annual C accumulation was greater in restored compared to forested sites due to the 

substantial total mass of accumulated material in the restored basins (Fig. 1.4). These 

results suggest rapid C accumulation in restored sites is due to the erosion and 

redistribution of low organic upland soils to the wetland basins. The redistribution of low 

organic C soils into wetlands may dilute soil C content and stimulate C sequestration as 

soil C levels re-equilibrate (McCarty and Ritchie 2002). Additionally, upland erosion 

followed by wetland sedimentation may promote C sequestration by providing physical 

substrate (e.g., mineral surface area) for organic C stabilization (McCarty et al. 2009). 

These findings suggest the possibility of increased C sequestration within restored 

Delmarva bays over time as low organic C upland soils are delivered to wetland basins 

and transition to more C-rich hydric soils. 

 

CONCLUSION 

 Wetland restoration has become a common practice in agricultural landscapes 

throughout the U.S. both in response to a Federal “no net loss” policy aiming to prevent 

and offset the destruction or degradation of wetlands and to enhance desirable ecosystem 

services (Mitsch and Gosselink 2000). A more natural hydrology may be quickly 

reestablished in wetlands removed from cultivation via ditch-plugging or subsurface 

drain removal (Bruland et al. 2003), yet this research adds to the growing body of 

evidence that restoration of wetland soils is often more difficult (Bruland et al. 2003, 
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Zedler 2003a, Hossler and Bouchard 2010). While I acknowledge that the restorations 

investigated here are still relatively young (7 to 8 years post-restoration at the time of 

study), soil properties conducive to denitrification (e.g., high SOM content, low bulk 

density) may have been so significantly altered via previous cultivation practices that it 

may take decades to centuries until they compare favorably to reference wetland soils 

(Hossler and Bouchard 2010). To promote natural wetland soil development, I suggest 

efforts be made to enhance SOM accumulation, decrease bulk density, and increase water 

filled pore space. Supplemental addition of organic C and avoiding additional compaction 

during the restoration process may help to jump-start soil development and nitrogen 

processing (Bruland et al. 2009, Sutton-Grier et al. 2009).  

 Rapid sediment and nutrient accumulation is occurring in restored Delmarva bays, 

likely the result of continued upland erosion into the basins post-cultivation. 

Sedimentation may be detrimental to both wetland hydrology and biota (Luo et al. 1997, 

Gleason et al. 2003). Increased efforts could be employed to minimize upland runoff and 

subsequent basin sedimentation in restored wetlands (e.g., increased vegetative ground-

cover, topsoil replacement). Alternatively, accumulation of sediments and nutrients 

within restored Delmarva bays may indicate reduced loading to downstream waters and 

ultimately Chesapeake Bay. 
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Chapter 2: The impact of agricultural wetland restoration on 

surface hydrologic connectivity between depressional  

wetlands and adjacent streams 

 

INTRODUCTION 

 It is estimated that more than 50% of wetlands in the United States have been lost 

since European settlement (Dahl 1990), with substantial loss attributed to depressional 

wetland drainage for agriculture (Mitsch and Gosselink 2000). To promote wetland 

ecosystem services and mitigate loss, wetland restoration has become common in 

cultivated landscapes and typically aims to reestablish reference wetland hydrology, a 

master variable with respect to wetland ecological structure and function (Mitsch and 

Gosselink 2000).  

 In an undisturbed state, depressional wetlands are characterized by hydric soils 

and a bowl-like structure often surrounded by an upland rim that reduces surface outflow 

(Mitsch and Gosselink 2000, Tiner 2003, McCauley and Jenkins 2005). North American 

examples include prairie potholes, playas, vernal pools, sinkhole wetlands, interdunal and 

intradunal wetlands, desert springs, bogs, fens, and Carolina and Delmarva bays. These 

wetlands may be continuously connected to nearby streams by surface flow or 

geographically isolated, that is, lacking perennial surface hydrologic connectivity 

(hereafter, SHC) to other water bodies (Tiner 2003).  

 Referring to depressional wetlands as isolated, however, may be inappropriate as 

they can be connected to other surface waters via groundwater flowpaths, episodic basin 
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spillage and overland flow, or temporary stream flow (Tiner 2003, Winter and LaBaugh 

2003, Wilcox et al. 2011). Furthermore, there may be ecologically significant exchanges 

of material and energy through these flowpaths (Gibbons 2003, Leibowitz et al. 2008). 

Geographically isolated wetlands may export carbon and nutrients to adjacent waters 

(Nessel and Bayley 1984, Wise et al. 2000) and may enable dispersal of aquatic flora 

(Galatowitsch and van der Valk 1996) and fauna (Babbitt and Tanner 2000). So-called 

isolated wetlands may at times sustain baseflow in nearby perennial headwater streams 

(Richardson 2003, Sharitz 2003, Zedler 2003b) and provide valuable water quality 

benefits to receiving waters (Whigham and Jordan 2003).  

 While subsurface connections between geographically isolated wetlands and other 

waters have been reported elsewhere (Winter and LaBaugh 2003, Rains et al. 2006, Min 

et al. 2010), surface connections have rarely been quantified (but see Martin 2011, 

Wilcox et al. 2011). Although understanding of geographically isolated wetland–stream 

connectivity is generally limited, interest in the hydrological and ecological links between 

isolated wetlands and adjacent stream networks is growing (Leibowitz and Nadeau 2003, 

Leibowitz et al. 2008, Wilcox et al. 2011), in part sparked by recent U.S. Supreme Court 

cases creating new legal standards for determining the regulatory status of wetlands and 

non-perennial streams under Section 404 of the Clean Water Act (Leibowitz et al. 2008). 

Currently, SHC between wetlands and non-perennial streams and adjacent navigable 

waters represents a key criterion for determining jurisdictional waters (Leibowitz et al. 

2008). Moreover, without knowledge of the natural hydrologic connections between 

geographically isolated wetlands and nearby waters, we cannot assess changes likely to 
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result from anthropogenic perturbations (e.g., land use change, climate change) or 

subsequent attempts at restoration.  

 I quantified SHC patterns between wetlands historically considered to be 

geographically isolated and adjacent perennial streams on the Delmarva Peninsula 

(Maryland, USA). From a restoration perspective, I asked how hydrologic wetland 

restoration impacts SHC relative to historical wetlands (i.e., wetlands now in cropland, 

aka prior-converted cropland) and native forested wetlands. This is the first study I am 

aware of quantifying SHC between multiple so-called isolated wetlands and nearby 

streams as well as the role of restoration with respect to connectivity.  

 

METHODS 

Site Descriptions 

 This study was conducted in Coastal Plain temporary streams connecting 

depressional wetlands (i.e., Delmarva bays) and wetland flats to adjacent perennial 

streams in the headwaters of the Tuckahoe Creek watershed, a sub-basin within the 

Choptank River watershed (Fig. 2.1). Nearly 65% of the Choptank catchment is in 

agricultural use, with smaller amounts of forest (26%) and urban (6%) land cover (Fisher 

et al. 2006). The region is characterized by a humid, temperate climate with average 

annual precipitation of 120 cm (Ator et al. 2005).  
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Figure 2.1: Choptank River and Tuckahoe Creek watersheds and stream 

networks. Adapted from Lang et al. (2012)  

 

 Delmarva bay wetlands are generally elliptical and characterized by a sandy 

upland rim (Tiner and Burke 1995). They have historically been considered 

geographically isolated (Tiner 2003). In their native forested state, Delmarva bays 

typically serve as discharge areas from late autumn through late spring when 

evapotranspiration is low and recharge basins during summer months when 

evapotranspiration is high (Phillips and Shedlock 1993). Although often small in size  

(< 1 ha; Phillips and Shedlock 1993), they are ubiquitous on the Delmarva Peninsula, 

numbering some 17,000 basins (Fenstermacher 2012). It is estimated that the bays 

originated between 16,000 and 21,000 years ago as saturated spots in interdunal areas or 

wind blowouts in sand barrens (Stolt and Rabenhorst 1987).  
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 Due in part to agricultural ditching, Delmarva bays are among the most threatened 

ecosystems on the Peninsula (McAvoy and Bowman 2002) where it is estimated that 

65% of all bays have been impacted by agriculture (Fenstermacher 2012). Historical 

wetlands are drained via ditches, cultivated, and exhibit brief periods of standing water 

following rainfall events. In response to agricultural losses, hydrological restoration of 

Delmarva bays has become common in recent decades. Restored wetlands are removed 

from active agricultural use and drainage ditches are plugged with earthen mounds in 

efforts to reestablish a natural Delmarva bay hydroperiod.  

 Four forested wetland complexes consisting of Delmarva bays and wetland flats 

(F1-F4), 4 historical wetlands (H1-H4), and 3 hydrologically restored wetlands (R1-R3) 

were selected for this study. Wetlands R1, R2, and R3 were restored in 2002, 2002, and 

2003, respectively. Each site is considered a representative ecosystem within its wetland 

type. A temporary stream channel is adjacent to each study wetland through which the 

wetland episodically outflows to a nearby perennial stream (Fig. 2.2). 

 

Figure 2.2: Examples of temporary streams connecting forested (A), historical [i.e., prior-converted 

cropland] (B), and restored (C) Delmarva bay wetlands to adjacent perennial streams via surface flow.  
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Monitoring Surface Hydrologic Connectivity and Climate 

 During the 2010 water year (1 Oct 2009 – 30 Sept 2010) a state data logging 

method was used to monitor patterns of SHC at the 11 study sites. A binary 

polypropylene float switch (SMD Fluid Switch, Wallingford, CT) was positioned on the 

bed of the temporary stream connecting the wetland and adjacent perennial stream. The 

float switch closed a circuit when surface water was present and opened the circuit when 

surface water was absent (Fig. 2.3). A state data logger (HOBO model U9-001; Onset 

Computer Corp., Bourne, MA) connected to the float switch recorded the timing and 

duration of SHC as state changes in the circuit (i.e., surface water presence or absence as 

binary events).  

 

 

Figure 2.3: Schematic of buoyant polypropylene float switch. The float switch 

state is open when water is absent (A) and closed when water is present (B). An 

associated state data logger records the timing of state changes.   
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 Float switches were placed in the thalweg (i.e., center of flow) of the temporary 

streams and within 5 m of the temporary-perennial stream confluence. I avoided placing 

float switches in local pools where standing water could falsely indicate the presence of 

surface flow. State data loggers and float switches were visited monthly to offload data 

and ensure proper functionality. SHC results were compared to and plotted with local 

rainfall data collected using a HOBO weather station (Onset Computer Corp., Bourne, 

MA) located within 10 km of all study sites.  

Watershed and Wetland Physical Attributes  

 For each of the study wetland–stream pairs, I calculated watershed drainage area 

and wetland area using 1 m resolution light detection and ranging (LiDAR) derived 

digital elevation models (Lang et al. 2012) and ArcGIS software (Environmental Systems 

Research Institute, Redlands, CA) (Table 2.1). Wetland area was calculated using the 

threshold of a relief-enhanced topographic wetness index with areas in the wettest  

4 classes considered wetlands (Lang et al., in press).  

Statistical Analyses 

 Using data logger records (Fig. 2.4), I quantified the cumulative duration, total 

number, mean duration, and maximum individual event duration of surface flow events in 

each temporary stream. Maximum individual event duration was defined as the longest 

duration in days of continuous surface connectivity (Dmax-c; Leibowitz et al. 2008). 

Correlations between wetland area and SHC metrics were tested using Pearson’s product 

moment correlation coefficient, r, with wetland area log-transformed to meet assumptions 
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of normality. I tested the null hypothesis that the four metrics did not differ between the 

three wetland types using one-way analysis of covariance (ANCOVA) with wetland area 

as a covariate followed by Tukey’s honestly significant difference (HSD) multiple mean 

comparisons test. For each wetland, I used Student’s t-tests to assess differences in mean 

daily rainfall between days when a temporary stream connection did and did not occur 

between the wetland and adjacent perennial stream. All statistical analyses were 

conducted using R version 2.12.2 (R Development Core Team, Vienna, Austria) with a 

significance level set at α = 0.05. 

 

 

Table 2.1: Watershed and wetland physical attributes. 

Site 

Wetland Type 

(year of 

restoration) 

Location 
Wetland 

Area (m
2
) 

Watershed 

Drainage 

Area (m
2
) 

F1 Forested 39° 3'24.52"N, 75°49'30.93"W 335052 567304 

F2 Forested 39° 3'28.34"N, 75°49'53.05"W 25166 36291 

F3 Forested 39° 3'16.50"N, 75°50'4.77"W 17208 43400 

F4 Forested 39° 3'25.09"N, 75°49'57.97"W 127853 324890 

R1 Restored (2002) 39° 4'8.31"N, 75°45'31.99"W 9334 42080 

R2 Restored (2002) 38°57'55.68"N, 75°57'55.74"W 67145 245387 

R3 Restored (2003) 39° 2'54.14"N, 75°45'19.24"W 1433 13317 

H1 Historical 39° 3'31.96"N, 75°49'44.61"W 8060 18652 

H2 Historical 39° 3'35.88"N, 75°49'47.63"W 2571 14620 

H3 Historical 39° 3'34.89"N, 75°51'4.21"W 3955 11348 

H4 Historical 39° 3'39.73"N, 75°50'56.85"W 10276 18101 
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RESULTS 

 Precipitation during the 2010 water year totaled 102.2 cm, slightly below the 

regional average of 120 cm y
-1

 (Ator et al. 2005). Data loggers revealed significantly 

different surface hydrologic connectivity (SHC) patterns among the three wetland types 

(Fig. 2.4, Table 2.2). Forested wetlands tended to have relatively continuous seasonal 

connectivity to perennial streams between mid-autumn and late-spring (Fig. 2.4a-d) when 

temperatures and evapotranspiration were low. Historical and restored wetland–stream 

SHC was typically marked by multiple ephemeral connections that occurred during and 

immediately following significant rain events during periods of low evapotranspiration 

(Fig. 2.4h-k). However, connections lasting ~ 50 days were observed at larger restored 

wetlands R1 (Fig. 2.4e) and R2 (Fig. 2.4f) that occurred when temperature and 

evapotranspiration were low. 

All SHC metrics were significantly correlated with log-wetland area (total time 

connected: r = 0.83, p < 0.01; # of connections: r = -0.75, p < 0.01; mean connection 

duration: r = 0.72, p < 0.05; Dmax-c: r = 0.82, p < 0.01). ANCOVA (covariate: log-wetland 

area) revealed a significant effect of wetland area with respect to all SHC metrics  

(total connection duration: F1,5 = 46.80, p < 0.01; # of connections: F1,5 = 20.92, p < 0.01; 

mean connection duration: F1,5 = 11.69, p < 0.05; Dmax,c: F1,5 = 25.25, p < 0.01), and the 

slopes of the relationships did not differ among the three wetland types. The effect of 

wetland type was only significant with respect to total connection duration and number of 

connections (Fig 2.5A,B). Total duration of connectivity between forested wetlands and 

adjacent perennial streams was approximately 12 and 2.5 times greater compared to 
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historical and restored wetlands, respectively (Fig. 2.5A). Forested wetlands were 

connected to perennial streams a significantly fewer number of times relative to both 

historical and restored wetlands. No significant differences were found with respect to 

SHC metrics between historical and restored wetlands (Fig. 2.5A-D). 

 At both historical and restored wetlands, mean daily rainfall totals were 

significantly greater on days when a temporary stream connection occurred between the 

wetland and perennial stream compared to rainfall totals on those days lacking a 

connection (Table 2.3). No significant differences in mean daily rainfall were observed 

on days with and without temporary stream connections at any of the forested wetlands 

(Table 2.3).  

 

Table 2.2: Surface hydrologic connectivity (SHC) metrics for each study site. Values in 

parentheses are standard errors of the means. 

Site Wetland Type 
Total Time 

Connected (d) 

# Individual 

Connections 

Mean 

Connection 

Duration (d) 

Dmax-c (d) 

F1 Forested 227.2 2 113.6 (113.6) 222.5 

F2 Forested 133.2 6 22.2 (9.3) 53.3 

F3 Forested 182.9 2 91.5 (70.0) 175.2 

F4 Forested 183.1 1 183.1 183.1 

R1 Restored 115.3 13 8.9 (4.2) 46.0 

R2 Restored 86.4 18 4.8 (3.0) 58.6 

R3 Restored 19.7 28 0.7 (0.2) 4.3 

H1 Historical 32.5 24 1.4 (0.3) 5.4 

H2 Historical 8.7 22 0.4 (0.1) 1.2 

H3 Historical 3.8 15 0.3 (0.1) 0.8 

H4 Historical 14.8 19 0.8 (0.2) 3.9 



 
 

 
Figure 2.4: Top Panel) State data logger surface hydrologic connectivity (SHC) records during the 2010 water year between forested (a-d), restored (e-g), 

and historical (h-k) Delmarva bays and adjacent perennial streams. The ‘up’ and ‘down’ positions indicate presence and absence of SHC, respectively. 

Bottom Panel) Rainfall and temperature records for the 2010 water year. Top and bottom panels share the same x-axis.  
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Figure 2.5: Summary of surface hydrologic connectivity (SHC) metrics between forested (n = 4), 

historical (n = 4), and restored (n = 3) Delmarva bay wetlands and adjacent perennial streams 

during the 2010 water year. A) Wetland–stream total surface hydrologic connection duration,  

B) number of individual connections, C) individual connection duration, and D) maximum 

individual connection duration. Error bars represent standard errors of the means. Means with 

different letters are significantly different after accounting for wetland area via ANCOVA (Tukey’s 

HSD, p < 0.05).  
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Table 2.3: Student’s t-tests between mean daily rainfall totals on days during which a temporary 

stream connection did and did not occur between wetlands and adjacent perennial streams. Values 

in parentheses are standard errors of the means. 

Site Wetland Type 

Mean Daily 

Rainfall When 

Connected  

(mm d
-1

) 

Mean Daily 

Rainfall When 

Not Connected 

(mm d
-1

) 

t-Test Statistics 

F1 Forested 2.5 (0.5) 3.3 (1.1) t (363)  =   0.78, p = 0.43 

F2 Forested 3.1 (0.7) 2.6 (0.7) t (363)  =   0.47, p = 0.64 

F3 Forested 2.9 (0.6) 2.7 (0.8) t (363)  =   0.15, p = 0.88 

F4 Forested 2.9 (0.6) 2.7 (0.8) t (363)  =   0.17, p = 0.86 

R1 Restored 4.3 (1.0) 2.1 (0.6) t (363)  =   2.00, p < 0.05 

R2 Restored 6.2 (1.5) 1.5 (0.3) t (363)  =   4.47, p < 0.01 

R3 Restored 5.8 (1.7) 2.5 (0.5) t (363)  =   1.98, p < 0.05 

H1 Historical 7.4 (1.9) 2.0 (0.5) t (363)  =   4.08, p < 0.01 

H2 Historical 21.2 (5.3) 1.5 (0.3) t (363)  = 11.57, p < 0.01 

H3 Historical 16.7 (4.3) 2.1 (0.4) t (363)  =   6.59, p < 0.01 

H4 Historical 14.4 (3.1) 1.7 (0.4) t (363)  =   7.92, p < 0.01 

 

 

DISCUSSION 

 State data loggers provided evidence of surface hydrologic connectivity (SHC) 

between Delmarva bay wetlands, which are commonly considered geographically 

isolated (Tiner 2003), and adjacent streams. Moreover, fundamentally different patterns 

of SHC occurred between forested wetlands and adjacent perennial streams relative to 

patterns at historical and hydrologically restored wetlands. This study suggests that 

restoring historical Delmarva bays has not resulted in recovery of reference wetland–

stream SHC patterns in the 7 to 8 years since restoration. 
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Ecological and Regulatory Implications of Wetland–Stream Surface Hydrologic 

Connectivity  

Differences in SHC observed at forested, historical, and restored wetlands may 

have potential ecological implications. Surface hydrology, including patterns in duration 

and timing of flows, is considered a master variable controlling stream geomorphology, 

habitat suitability, thermal regulation, metabolism, biogeochemical cycling, and 

downstream fluxes of energy, matter, and biota (Poff et al. 1997). The differences in flow 

regime I observed in temporary streams linking wetlands and perennial reaches could, 

therefore, significantly influence ecosystem properties both within and among the waters 

they connect. For example, when surface water is present, temporary streams may serve 

as connectivity corridors influencing the dispersal of animals and plants (Galatowitsch 

and van der Valk 1996, Babbitt and Tanner 2000). Wetlands temporarily connected to 

perennial stream networks may provide refugia for stream amphibians or habitat for fish 

spawning and rearing (sensu Dodds et al. 2004, Cunningham et al. 2007). Dispersal 

throughout temporarily connected networks may also promote genetic exchange and 

opportunities for recolonization of periodically disconnected waters. Although some 

aquatic taxa or individuals may disperse via flight or passive attachment to migrating 

animals, most animal and plant dispersal throughout freshwater networks occurs via 

flowing water-mediated transport (Bohonak and Jenkins 2003). Dispersal of most aquatic 

taxa, therefore, requires surface connections between water bodies, even if those 

connections are temporary (Nadeau and Rains 2007).  
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 The timing and duration of wetland–stream SHC may be ecologically critical 

(Leibowitz et al. 2008) and are likely to determine the suitability of migratory pathways. 

Seasonally continuous SHC like that observed at forested Delmarva bays may provide 

reliable dispersal corridors for migrating biota, while more unpredictable and ephemeral 

connections typical of historical and restored bays are less likely to be utilized. Similarly, 

more continuous SHC may supply steady subsidies of carbon, nutrients, and water to 

downstream communities whereas short-lived connections provide a pulsed delivery of 

resources (see Appendix for 2010 water year wetland  stream dissolved organic carbon 

flux estimates). Additionally, the more ephemeral and unpredictable a stream’s flow 

regime, the less likely it is to provide viable habitat for aquatic organisms (Arscott et al. 

2010).  

 In addition to potential ecological ramifications of wetland–stream SHC, 

connectivity patterns may be used, in part, to determine the regulatory status of an 

individual wetland, wetland mosaic, or a group of similarly situated wetlands. In the 

United States, interest in wetland–stream connectivity has been fueled largely by recent 

Supreme Court rulings regarding the jurisdictional scope of the Clean Water Act (CWA) 

and the legal protected status of geographically isolated wetlands and non-navigable 

streams (Leibowitz et al. 2008). These new requirements for determining wetland and 

non-navigable stream jurisdictional status have greatly increased the need for scientific 

information in support of isolated wetland and temporary stream regulatory decisions as 

well as future policies and legislation (Nadeau and Rains 2007, Leibowitz et al. 2008). To 

that end, Leibowitz et al. (2008) stress the need for inexpensive and simple approaches 

for evaluating SHC between wetlands and other waters and a need for case studies 
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quantifying SHC in a variety of regional settings. I believe this study and those by 

Wilcox et al. (2011) and Lang et al. (2012) provide the type of data needed to 

scientifically inform critical regulatory decisions and policies.  

 The historical wetlands I studied are considered prior-converted cropland  

(i.e., wetlands converted from a non-agricultural use to production of a commodity crop 

prior to December 23, 1985) and the hydrologically restored wetlands are enrolled in one 

of two Federal agricultural land retirement programs (e.g., Conservation Reserve 

Program and Wetland Reserve Program). As such, both the historical and restored 

wetlands are exempt from CWA jurisdiction. However, native forested Delmarva bays 

are not exempt, and SHC between them and perennial stream networks may be used, in 

part, to determine their jurisdictional status. Lang et al. (2012) estimated there to be 2,050 

semi-natural wetlands within the Tuckahoe Creek watershed, many of which were 

Delmarva bays. Of the semi-natural wetlands, only 53% were physically connected to 

streams, and only 75% were within 80 m of the nearest stream (Lang et al. 2012). 

Without knowledge of the SHC patterns between forested wetlands and perennial 

streams, static imagery not only indicates significant geographic isolation of wetlands 

(Lang et al. 2012), but likely hydrologic, and in turn, ecologic isolation. 

Impact of Cultivation and Restoration on Wetland–Stream Surface Hydrologic 

Connectivity  

 Since European settlement there has been extensive modification within the 

Chesapeake Bay watershed for agriculture (Hilgartner and Brush 2006). Across the 

Delmarva Peninsula, Fenstermacher (2012) found 65% of Delmarva bays have been 
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directly impacted by agriculture, compared to an estimated 45% loss of all wetlands 

Maryland-wide (Tiner and Burke 1995), suggesting Delmarva bays have been 

disproportionately altered relative to other wetlands. Wetland drainage has significant 

impacts on the surface and ground water hydrology of a wetland and its hydrologic 

connectivity to nearby waters. Creation or modification of a channel to enhance wetland 

drainage decreases basin storage capacity and results in decreased ground water recharge. 

Additionally, active wetland infilling or infilling due to soil erosion may decrease water 

storage capacity in historical wetlands. Small drainage basin areas of historical and 

restored wetlands (Table 2.1) may indicate that cultivation and drainage have 

disconnected complexes of once native forested wetlands and in turn altered natural 

wetland–stream SHC patterns (Fig. 2.4 and Fig. 2.5). Alternatively, smaller, more 

disconnected Delmarva bays may have been easier to convert to agriculture and therefore 

preferentially selected.  

 Cultivation may also result in increased soil compaction and bulk density within 

wetlands (see Chapter 1). Soil compaction results in decreased ground water recharge and 

increased infiltration excess overland flow (Dunne and Leopold 1978). Together, 

decreased basin storage capacity and increased soil compaction lead to more frequent yet 

ephemeral SHC to adjacent waters. Fenstermacher (2012) found that soils within 

historical and recently restored depressional wetlands in Delaware, Maryland, Virginia, 

and North Carolina had significantly higher bulk density compared to reference wetland 

soils. Comparable soil compaction between historical and restored wetlands (see  

Chapter 1) may contribute to similarities in wetland SHC patterns marked by ephemeral, 

rainfall-driven connectivity events.  
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Within heavily agriculturally modified catchments, local ground water tables may 

be lowered due to artificially deep drainage ditches, ground water abstraction for 

irrigation, and decreased ground water recharge. Under these conditions, wetlands that 

once acted as discharge wetlands and maintained standing surface water at least 

seasonally may no longer do so. As a result, seasonal wetland–stream SHC may no 

longer be maintained by groundwater discharge and connections only occur during and 

immediately following rainfall events. Corroborating this, Sharitz and Gresham (1998) 

found decreased flow duration in streams fed by pocosins drained for agriculture 

compared to undisturbed pocosin ecosystems. I report a similar finding in cultivated 

Delmarva bays.  

 

CONCLUSION 

 Surface hydrologic connectivity (SHC) between so-called isolated wetlands and 

perennial streams represents an understudied but potentially significant ecological link 

between the two systems. Moreover, patterns of wetland–stream surface flow may be 

used to determine wetland jurisdictional status within the U.S. (Leibowitz et al. 2008). 

Patterns of SHC observed in this study reveal that Delmarva bay wetlands may not be 

hydrologically isolated from nearby streams. Results indicate that agricultural alteration 

of Delmarva bays may significantly change patterns of wetland–stream SHC, and SHC 

may be slow to recover post-restoration. Correlations between wetland size and wetland 

SHC metrics imply that restoring reference SHC patterns between Delmarva bays and 

adjacent streams will require restoration of larger wetland complexes rather than 
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individual, small basins. I propose that, when possible, multiple wetlands be restored in 

concert to promote reference hydrological conditions between Delmarva bays and stream 

networks. Understanding patterns and controls of wetland–stream SHC is but one means 

of assessing the link between ecosystems often studied and regulated independently.  
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Chapter 3: The impact of repeated drying and wetting on  

denitrification in a restored temporary stream 

 

INTRODUCTION 

 Although often individually small, temporary streams collectively comprise a 

majority of river network length (Nadeau and Rains 2007). In mesic temperate regions, 

temporary streams are typically located at the headwaters of river networks (Gomi et al. 

2002). Due in part to their size and landscape position, ephemeral and intermittent 

streams are likely to have long hydraulic retention times, high water-sediment interaction, 

and substantial nutrient processing capacity (Peterson et al. 2001). Yet because of their 

small size, large edge-to-width ratio, and intimate connection to the landscapes they 

drain, temporary streams are likely to be more sensitive to disturbance than larger 

perennial streams (Bull 1997). While there has been extensive study of the hydrology and 

macrofauna of temporary streams, their biogeochemistry has received little attention and 

their relationship to nearby wetlands even less. Recent efforts to restore wetlands that are 

periodically connected to temporary streams by surface flow (see Chapter 2) may have 

important implications for temporary streams, including their biogeochemistry.  

Temporary streams are characterized by a surface hydrology alternating between 

dry and wet conditions. This flow regime can generate cyclical aerobic (oxidizing) and 

anaerobic (reducing) conditions within temporary stream sediments. Coupled oxidation 

and reduction has been shown to enhance biogeochemical processes such as nitrification 

and denitrification (Kern et al. 1996, Mitchell and Baldwin 1999). Nitrification, the 
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chemoautotrophic oxidation of ammonium-N (NH4
+
) to nitrate-N (NO3

-
), occurs under 

aerobic conditions, while denitrification, the largely heterotrophic reduction of nitrate-N 

to gaseous N (NO, N2O, and N2), is an anaerobic process. In soils and sediments 

undergoing cycled drying and wetting, increased ammonification (i.e., the conversion of 

organic N to NH4
+
 by bacteria and in some cases fungi; aka mineralization) and 

nitrification may occur during dry conditions and immediately following rewetting 

(Groffman and Tiejde 1988, Qiu and McComb 1996, Fierer and Schimel 2002), 

providing a nitrate substrate for denitrifying bacteria under subsequent wet conditions 

(Kern et al. 1996, Mitchell and Baldwin 1999).  

Given their cyclic dry – wet nature, temporary stream sediments may be 

biogeochemical hotspots (sensu McClain et al. 2003). Yet only recently have researchers 

investigated the influence of flow intermittency on sediment biogeochemistry, in 

particular nitrification and denitrification (Austin and Strauss 2011). Moreover, I am 

aware of no studies addressing temporary stream sediment biogeochemistry in the 

context of restoration. To help fill these knowledge gaps, I compared patterns of 

denitrification potential in restored and undisturbed forested temporary stream sediments 

in response to repeated drying and wetting. I hypothesized denitrification potential would 

increase in response to wetting and decrease upon drying. Additionally, I predicted 

cyclically dried - wetted sediments would show enhanced denitrification potential 

compared to continuously wet and continuously dry sediments as a result of coupled 

nitrification – denitrification. I hypothesized forested sediment denitrification potential 

rates would be more resistant to changes in hydrology compared to restored sediments 
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due to greater organic matter content and resistance to drought in forested sediments 

(sensu Hueso et al. 2011).  

 

METHODS 

Site Descriptions 

 This research was conducted using sediment cores collected from temporary 

streams connecting depressional wetlands to adjacent perennial streams at the headwaters 

of the Choptank River watershed (Delmarva Peninsula, Maryland, USA). Within the 

Choptank catchment and across the Delmarva Peninsula depressional wetlands known as 

Delmarva bays are ubiquitous (Tiner and Burke 1995). These elliptical wetlands are 

characterized by a sandy upland rim and have historically been considered geographically 

isolated from nearby surface waters (Tiner and Burke 1995, Tiner 2003). However, 

Delmarva bays have recently been found to be surficially connected to adjacent streams 

and wetlands via temporary stream flow (see Chapter 2).  

For this study, one undisturbed forested and one hydrologically restored wetland–

temporary stream pair were investigated (Fig. 3.1). The forested wetland–temporary 

stream pair exhibit a natural hydroperiod, characterized by inundation and seasonal 

stream outflow in winter and spring and drawdown and stream drying in summer and fall  

(see Chapter 2). The restored wetland–temporary stream pair was actively farmed until 

2003 when it was removed from cultivation and hydrologically restored by plugging an 

agricultural drainage ditch with earthen fill. Since restoration, a new temporary stream  
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Figure 3.1: Forested (left) and restored (right) temporary streams connecting an 

undisturbed and a restored (formerly-farmed) Delmarva bay wetland to adjacent 

perennial reaches. 

 

has naturally formed and episodically connects the restored wetland to an adjacent 

perennial stream. Table 3.1 summarizes physical attributes of each wetland–stream pair 

used in this study and wetland–stream surface hydrologic connectivity metrics reported in 

Chapter 2. 

Sediment Sampling 

 Using poly-vinyl chloride (PVC) pipe, seventy-eight cylindrical cores (7 cm deep 

× 5 cm internal diameter) were collected from the forested and restored temporary 

streams in October 2011. Cores were extracted from the middle third of each temporary 

stream reach as measured from the intersection of the channel and the wetland rim to the 
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confluence with the perennial stream. Care was taken to maintain core vertical structure. 

Geotextile mesh (200 m) was secured on the bottom of each core to allow for better air-

drying. Sediment cores were returned to the laboratory following collection. Three cores 

from each stream were immediately processed for physicochemical metrics and 

denitrification potential (see Methods) to assess field conditions. Remaining cores were 

air dried for 10 days at room temperature under a light / dark regime mimicking field 

conditions. 

Experimental Set-Up 

 Following the initial drying period, cores from each stream were randomly 

assigned to one of three hydrologic treatments: continuously dry (dry), continuously wet 

(wet), repeatedly dry / wet at a 7-day recurrence interval (cycled). A 7-day dry / wet 

recurrence interval was selected as it closely matched the observed average length of 

hydrologically restored wetland–perennial stream surface hydrologic connectivity  

(see Chapter 2; Table 1). For the dry treatment, cores were placed on a drying table for 

the 28-day duration of the experiment. Wet cores were placed in aerated, flow-through 

baths. Cycled cores were also placed in the flow-through baths following the initial 

drying period. After 7 days, cycled cores were removed from the flow-through baths and 

placed on the drying table for 7 days after which time they were returned to the baths. 

This cycle was repeated twice (i.e., wet  dry  wet  dry).  

 



 
 

 

 

Table 3.1: Wetland and temporary stream physical attributes (*sites investigated in this study) and wetland–stream surface 

hydrologic connectivity data for forested wetlands (n = 4) and restored wetlands (n = 3) for the 2010 water year (**sites 

investigated in Chapter 2). Values in parentheses are standard errors of the means. 

Wetland–
Stream 

Type 

Location* 
Wetland 

Area (m
2
)* 

Temporary 

Stream 

Length (m)* 

Cumulative 

Wetland–Stream 

Surface 

Connection 

Duration (d)** 

# of Wetland–
Stream Surface 

Connections** 

Avg. Wetland–
Stream 

Connection 

Duration (d)** 

Forested 
39° 3'16.45"N 

75°50'4.73"W 
545 59 

mean:  181.6 (19.2) 

range:  133 - 227 

mean: 2.8 (1.1) 

range: 1 - 6 

mean: 102.6 (33.2) 

range: 22 - 183 

       

Restored 
39° 2'59.29"N 

75°45'14.68"W 
1,513 40 

mean: 73.8 (28.3) 

range: 20 - 115 

mean: 19.7 (4.4) 

range: 13 - 28 

mean: 4.8 (2.4) 

range: 1 - 9 
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Forested and restored cores were kept in separate flow-through baths to prevent 

microbial mixing between sites. Both baths were supplied with dissolved organic carbon 

(DOC) leachate-amended deionized water supplied by constant gravimetric head at a 

flow rate of approximately 15 L d
-1

. DOC leachate was made by amending deionized 

(DI) water with leaf litter from the forested site from canopy and understory species in 

proportion to their field abundance. The leachate consisted of litter from red maple  

(Acer rubrum), American holly (Ilex opaca), spicebush (Lindera benzoin), American 

sweetgum (Liquidambar styraciflua), sweetbay magnolia (Magnolia virginiana), white 

oak (Quercus alba), red oak (Quercus rubra), and sassafras (Sassafras albidum) and was 

maintained at a DOC concentration of 35 ± 5 mg L
-1

 (mean, ± SE) throughout the 

experiment in efforts to mimic average autumn forested wetland DOC concentrations 

(McDonough, unpublished). DOC leachate concentration was measured daily by filtering 

leachate-amended DI water through pre-combusted 0.7 µm glass fiber filters (Whatman 

International Ltd, Maidstone, England) and processing on a Shimadzu TOC-VCPH total 

organic carbon analyzer (Shimadzu Scientific Instruments, Columbia, MD). Following 

the initial drying period, triplicate cores were randomly and destructively sampled from 

each treatment on days 0, 1, 7, 8, 14, 15, 21, 22, and 28. The experiment was conducted 

at room temperature under a light / dark regime mimicking field conditions. 

Sediment Physicochemical Metrics 

 All sediments were analyzed for pH, reduction potential (Eh), total carbon, total 

nitrogen, percent moisture, bulk density, and soil organic matter (SOM). Prior to analysis, 

sediment samples were homogenized and any rocks and roots were removed. pH was 
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measured by combining sediment and deionized water in a 1:1 slurry by volume (Thomas 

1996) and measuring with an Accumet XL15 pH meter (Fisher Scientific, Pittsburgh, 

PA). Eh was measured daily in triplicate sediment cores from each treatment using a 

platinum electrode coupled with a calomel reference electrode calibrated with ZoBell’s 

reference solution (Nordstrom and Wilde 2005). Sediment total carbon and total nitrogen 

(represented as C:N) were analyzed by dry combustion using a CHNSO elemental 

analyzer (ECS 4010 CHNSO Analyzer, Costech Analytical Technologies, Valencia, CA). 

A subsample from each core was weighed and oven-dried at 70°C to a constant mass to 

determine percent moisture. Bulk density was calculated as dry mass per unit volume of 

sediment collected (g cm
-3

). SOM was determined as mass loss on ignition (% LOI) at 

450°C for 16 h.  

Denitrification Potential 

Sediment denitrification potential was determined using a denitrification enzyme 

activity (DEA) assay (Groffman et al. 1999). DEA provides a means of quantifying the 

potential for denitrifying bacteria to reduce NO3
- 
and is useful for measuring differences 

in denitrification potential for sediment subjected to different treatments (Groffman et al. 

1999). The DEA assay provides denitrifying bacteria with ideal conditions for 

denitrification: a nitrate substrate (KNO3), an energy source (glucose), and anaerobic 

conditions. Chloramphenicol is added to sediment slurries to inhibit bacterial production 

without killing existing bacteria or destroying existing enzymes.  

For the DEA assay, I combined 10 g (wet mass) of the sediment with 10 mL DEA 

media in 125 mL Erlenmeyer flasks (final slurry concentrations: 100 mg kg
-1

 N,  
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200 mg kg
-1

 glucose, 125 mg kg
-1

 chloramphenicol). Rubber septa seals were used to cap 

flasks, which were made anaerobic by repeated evacuation and subsequent flushing with 

N2 gas. Flasks were equilibrated with atmospheric pressure after the final N2 flush. 

Acetylene (C2H2; 5 cm
3
) was then added to the headspace of each flask via syringe to 

inhibit the reduction of nitrous oxide (N2O) to dinitrogen gas (N2). DEA assay slurries 

were incubated at room temperature on a shaker table (175 rpm) for 90 min. At 30 and 90 

min after C2H2 addition, headspace gas samples (9 mL) were taken via syringe from each 

vial and transferred to pre-evacuated glass serum vials. N2O concentrations within the 

serum vials were measured using a Shimadzu GC-14B gas chromatograph equipped with 

an electron capture detector and Porapak Q column (Shimadzu Scientific Instruments, 

Columbia, MD). Denitrification potential rates were calculated from the increase in N2O 

concentration between the 30 and 90 min headspace samplings. N2O dissolved in slurry 

water was corrected using the Bunsen equation (Groffman et al. 1999) at the incubation 

temperature. Denitrification potential was calculated as the hourly rate of N2O-N 

production per dry mass of soil within the incubation flask and is indicative of the 

biomass of the denitrifying enzyme pool present in each soil sample.   

Statistical Analyses 

Two-tailed Student’s t-tests were used to compare field conditions between 

forested and restored temporary stream sediments. Linear regression was used to assess 

changes in physicochemical metrics and denitrification potential independently for each 

stream and flow treatment over the 28-day course of the experiment. One-way analysis of 

variance (ANOVA) followed by Tukey’s honestly significant difference (HSD) multiple 
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mean comparisons tests were used to assess differences in denitrification potential among 

treatments at each sampling day. To analyze sediment metric and denitrification potential 

rates of change in response to drying and wetting within cycled sediments, one-way 

ANOVA and pre-planned mean comparisons were employed. Pearson’s product-moment 

correlation coefficients (r-values) were calculated to quantify relationships between 

sediment metrics and denitrification potential. A bootstrapping procedure (1,000 

resamples) was used to estimate cumulative denitrification potential for each forested and 

restored temporary stream flow treatments over the duration of the experiment. When 

necessary, data were log-transformed to meet assumptions of normality. All statistical 

analyses were conducted using R version 2.12.2 (R Development Core Team, Vienna, 

Austria) with differences deemed significant at α = 0.05. 

 

RESULTS 

 Significant differences in the field conditions of forested and restored temporary 

stream sediments were observed with respect to all analyzed metrics (Table 3.2). 

Sediment from temporary streams adjacent to forested and restored wetlands showed 

clear physicochemical and biogeochemical changes in response to experimentally altered 

hydrology. Throughout the experiment, percent moisture decreased in dry forested and 

dry restored temporary stream sediments (Fig. 3.2A,D). Moisture content did not change 

in wet forested sediments (Fig. 3.2A), but increased in wet restored sediments  

(Fig. 3.2D). In response to continuous wetting, I observed significant decreases in 
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Table 3.2: Comparisons of forested and restored temporary stream sediment field conditions. Values 

in parentheses are standard errors of the means. 

Metric 
Forested 

n = 3 

Restored 
n = 3 

t-Test Results 

Bulk density (g g
-1

) 0.50 (0.04) 1.31 (0.09) t (4) = 8.38,    p < 0.01 

Moisture (%) 51.1 (2.8) 24.4 (1.4) t (4) = 8.52,    p < 0.01 

SOM (%) 39.5 (2.4) 5.7 (0.5) t (4) = 13.92,  p < 0.001 

C:N 19.6 (0.3) 16.7 (0.2) t (4) = 8.73,    p < 0.001 

pH 4.13 (0.02) 5.81 (0.03) t (4) = 43.87,  p < 0.001 

Eh (mV) 644 (6.1) 537 (8.3) t (4) = 10.47,  p < 0.001 

Denit pot. (µg N2O-N g
-1

 h
-1

) 0.24 (0.03) 0.50 (0.02) t (4) = 7.66,    p < 0.01 

 

reduction potential (Eh) within both forested and restored sediments (Fig. 3.2B,E), 

indicating greater reducing conditions with increased wetting duration. A similar redox 

pattern occurred in dry forested and dry restored sediments (Fig. 3.2B,E), suggesting 

reducing conditions within remaining interstitial water-filled pore space as sediments 

dried. Denitrification potential decreased significantly in dry forested and dry restored 

sediments and increased in those kept continuously wet (Fig. 3.2C,F).  

In cycled forested and cycled restored temporary stream sediments, no continuous 

change in moisture content or Eh occurred over the length of the experiment. Rather, 

sediments responded cyclically to changing hydrologic conditions, becoming more 

saturated and reducing in response to wetting and more desiccated and oxidizing in 

response to drying (Fig. 3.2A,B,D,E). Denitrification potential followed a similar 

oscillating pattern in restored sediments subjected to the cycled treatment, with increased 

potential for nitrate reduction in response to wetting and decreased potential when drying. 

Denitrification potential increased over the course of the experiment in cycled forested 
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sediments (Fig. 3.2C). With the exception of an increase in pH in forested wet and cycled 

sediments (wet: r
2
 = 0.55, p < 0.001; cycled: r

2
 = 0.26, p < 0.01), no significant changes 

in bulk density, SOM, pH, or C:N occurred in any of the forested or restored sediments 

over the course of the experiment.  

Barring an increase upon initial wetting, denitrification potential among dry and 

wet forested sediments did not differ until day 15 of the experiment (Fig. 3.3A), 

suggesting aerobic respiration may continue for a significant time post-wetting and a 

delay in nitrate reducing conditions. A 7-day delay in increased denitrifying potential was 

observed in wet vs. dry restored sediments (Fig. 3.3B). However, this delay may have 

been shorter than the sampling frequency was able to reveal. 

 Among cycled sediments, ANOVA F-tests followed by least-squares mean 

comparisons pre- and post- drying and wetting events (e.g., day 0 vs. 1 – wetting, day 7 

vs. 8 – drying, day 14 vs. 15 – wetting, and day 21 vs. 22 – drying) revealed hysteresis in 

restored sediment moisture content, Eh, and denitrification potential whereby 

physicochemical metrics and denitrification potential responded rapidly to wetting but 

not drying (Fig. 3.4D,E,F). Within one day of initial wetting (e.g., day 0 vs. 1), moisture 

content nearly doubled, Eh decreased by 36%, and denitrification potential increased 

three-fold among restored sediments subjected to the cycle treatment. These hysteretic 

effects persisted upon the second rewetting and drying cycle (e.g., day 14 vs. 15 and day 

21 vs. 22), albeit dampened. Hysteresis in response to wetting and drying was not 

observed within forested temporary stream sediments (Fig. 3.4A,B,C).  

 



  

 
 

Figure 3.2: Changes in percent moisture, reduction potential (Eh), and denitrification potential among dry (red squares), wet (blue 

diamonds), and cycled (black triangles) forested (A, B, C) and restored (D, E, F) temporary stream sediments over the 28-day incubation. 

Error bars represent standard errors of the means. d = dry for cycled sediments, w = wet for cycled sediments. * = p < 0.05, ** = p < 0.01,  

*** = p < 0.001.  
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Figure 3.3: Mean comparisons between dry (red bars), wet (blue bars), and cycled (green bars) sediment 

denitrification potential rates by day for forested (A) and restored (B) temporary stream sediments. Error 

bars represent standard errors of the means. d = dry for cycled sediments. w = wet for cycled sediments. 

For a given day, means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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 Sediment physicochemical metrics were strongly related to denitrification 

potential (Table 3.3). Among forested sediments, I observed positive correlations 

between denitrification potential and percent moisture and pH and a negative relationship 

between denitrification potential and bulk density and reduction potential (Eh). Similar 

relationships existed among restored sediments, with the addition of a positive correlation 

between denitrification potential and soil organic matter (SOM) content.  

 Bootstrapping results revealed greater cumulative denitrification potential 

estimates in wet and cycled forested temporary stream sediments compared to those kept 

continuously dry (Fig. 3.5A). 95% confidence intervals overlapped for wet and cycled 

forested sediment cumulative denitrification potential. Similar potentials were estimated 

for restored temporary stream sediments, albeit with less overlap between wet and cycled 

distributions (Fig. 3.5B).   

 

Table 3.3: Pearson's product moment correlations (r-values) among physicochemical metrics 

and denitrification potential within forested and restored temporary stream sediments. Bold 

correlation coefficients indicate statistical significance (p < 0.05) 

Forested Sediments 

(n = 78) 
Bulk 

Density 

% 

Moisture 
Eh pH C:N SOM 

Denit. Potential -0.34 0.66 -0.47 0.49 0.17 0.23 

Restored Sediments 

(n = 78) 
      

Denit. Potential -0.43 0.75 -0.67 0.27 -0.02 0.33 

 



  

 
Figure 3.4: Mean comparisons between cycled sediment percent moisture, reduction potential (Eh), and denitrification potential during 

wetting phases (dry  wet: day 0-1, day 14-15) and drying phases (wet  dry: day 7-8, day 21-22). A, B, C: forested percent moisture, 

Eh, and denitrification potential. D, E, F: restored percent moisture, Eh, and denitrification potential. Error bars represent standard errors 

of the means. d = dry, w = wet.  F-test statistics are overall one-way ANOVA results. * = p < 0.05, *** = p < 0.001.  
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Figure 3.5: Distributions of estimated cumulative denitrification potential using bootstrapping  

(1,000 resamples) for dry, wet, and cycled forested (A) and restored (B) temporary stream sediments 

over the 28-day incubation. Dotted lines represent distribution means and 95% confidence intervals.  
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DISCUSSION 

 By comparing the impact of drying and wetting on denitrification potential in 

recently restored and undisturbed forested temporary stream sediments, I found that both 

hydrology and land use may influence sediment denitrification potential in non-perennial 

reaches. Although temporary streams are ubiquitous (Nadeau and Rains 2007) and 

sensitive to anthropogenic disturbance (Bull 1997), non-perennial stream restoration is 

uncommon. Yet recent research has shown temporary stream sediments may be active 

zones of nitrogen processing as a result of cycled drying and wetting (Austin and Strauss 

2011). Restoring biogeochemical processes in temporary streams may be an effective 

means to mitigate downstream nutrient loading.  

Hysteresis in denitrification potential occurred among restored temporary stream 

sediments whereby rates changed more rapidly upon wetting than drying. This 

denitrification pattern corroborates changes recorded in sediment moisture and reduction 

potential (Fig. 3.4). Groffman and Tiedje (1988) reported similar hysteresis in upland 

forest soil denitrification potential under wetting and drying phases and attributed the 

difference to greater soil respiration and N-mineralization under wetting conditions  

(dry  wet) compared to drying conditions (wet  dry).  

A hysteretic response, however, did not occur in sediments from the forested 

temporary stream. While restored sediments responded rapidly after rewetting, changes in 

forested sediment moisture, reduction potential, and denitrification potential were 

negligible. This suggests forested temporary stream sediment biogeochemistry may be 

more resistant to changes in hydrology and saturation relative to recently restored 
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sediments. The greater biogeochemical resistance observed among forested sediments is 

likely due in part to the high porosity, SOM content, and resistance to desiccation that 

characterized forested sediments but not those that had only recently been restored  

(e.g., Table 3.2, Fig 3.2). Corroborating this, in a study of microbial resistance to drought, 

Hueso et al. (2011) found soils amended with organic matter retained more moisture and 

supported greater microbial activity relative to unamended soils.  

Ideally, ecologically successful stream restorations should be resilient to external 

disturbance (Palmer et al. 2005). While my experimental design did not allow me to 

statistically test resilience in denitrification potential in response to temporary stream 

sediment drying and wetting, I note that following 1 week of drying and a nearly 50% 

decrease in denitrification potential (day 8 – 14), restored sediment denitrification 

potential rates increased to pre-drying levels within 1 day of rewetting (day 14 – 15). 

Similarly, Austin and Strauss (2011) found denitrification potential in temporary stream 

sediments dried for 1 week or less recovered within 1 week of rewetting. However, they 

found that denitrification potential in sediments dried for > 1 week largely failed to 

recover even after 4 weeks of rewetting (Austin and Strauss 2011). Future work should 

be conducted to better assess biogeochemical resilience in response to hydrologic 

alterations in both natural and restored temporary streams.  

The decrease in denitrification potential observed in dry sediments corroborates 

results reported in intermittent stream sediments in Kansas (Austin and Strauss 2011) and 

may have been due in part to decreased microbial abundance and activity with increasing 

desiccation (Kieft et al. 1987, Qiu and McComb 1996, Mitchell and Baldwin 1998). 
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While I expected to see increased oxidation with drying, Eh decreased continuously 

within dry sediments, suggesting microsites of significant reduction potential existed 

within the sediment matrix even after a substantial period of desiccation. Given 

denitrifiers are facultatively anaerobic, the increase in denitrification potential among 

continuously wet forested and wet restored sediments was likely largely the result of 

increasingly anoxic conditions. Additionally, wet soils have been shown to exhibit 

increased organic carbon — an energy source for heterotrophic denitrifying bacteria — 

relative to dry soils (Kieft et al. 1987, Groffman and Tiedje 1988). Soil wetting may also 

result in increased mineralization of organic N and nitrification of ammonium (Kieft et al. 

1987, Groffman and Tiedje 1988, Mitchell and Baldwin 1998, Heffernan and Sponseller 

2004), providing increased nitrate substrate for denitrification (Qiu and McComb 1996). 

The delay in increased denitrification potential rates among continuously wet sediments 

(forested: 15 days; restored: 7 days), however, suggests aerobic respiration may persist 

for a significant time post-wetting in temporary streams.  

I hypothesized that denitrification would be greater in sediments subjected to 

repeated drying and wetting compared to continuously wet sediments as a result of 

coupled nitrification-denitrification. Increased denitrification has been observed as a 

result of cyclical drying and wetting in a variety of ecosystems (wetlands - Reddy et al. 

1989; forest and grassland soils - Groffman and Tiedje 1988, Fierer and Schimel 2002; 

rice paddies - Reddy and Patrick 1975; lakes - Qiu and McComb 1996; river floodplains - 

Kern et al. 1996, Baldwin and Mitchell 2000). However, estimates of cumulative 

denitrification potential were greater for continuously wet vs. cycled sediments within 

both forested and restored temporary streams. It is possible that the 7-day drying interval 



  69 

among the cycled sediments did not provide adequate time and conditions for nitrification 

to supply significant nitrate substrate for enhanced denitrification during subsequent 

periods of wetting. Alternatively, the delay observed in the onset of denitrification in wet 

sediments from both forested (15 days) and restored (7 days) temporary streams indicates 

a longer period of wetting may be necessary to generate anaerobic conditions necessary 

for nitrate reduction.   

 

CONCLUSION 

 Non-perennial stream hydrology is tightly linked to temperature and precipitation 

patterns, making temporary streams particularly sensitive to climatic changes 

(McDonough et al. 2011). With greater variability in temperature and precipitation 

patterns predicted under current climate change models (IPCC 2007), the frequency and 

intensity of drought and, in turn, stream drying are expected to increase (Lake 2000, 

Palmer et al. 2008, Brooks 2009). Global climate change is expected to cause increased 

evapotranspiration in much of North America (Schindler 1997, 2001), resulting in 

increased temporary stream occurrence, particularly among headwaters. Results from this 

study suggest that changes in temporary stream land use and flow regime may alter 

patterns of sediment denitrification, a primary means of mitigating downstream 

eutrophication (Howarth et al. 1996). Considering the ubiquity of temporary streams 

(Nadeau and Rains 2007) and their potential to serve as efficient nutrient processors 

(Peterson et al. 2001), further investigation of the role land use, restoration, and climate 

change play in controlling temporary stream biogeochemistry is warranted.  
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Chapter 4: Looking toward wetlands to restore  

stream dissolved organic matter 

 

INTRODUCTION 

 Dissolved organic matter (DOM) typically comprises the largest fraction of 

organic carbon in freshwaters (Wetzel 2001) and serves as an important source of energy 

and nutrients for heterotrophic bacteria and associated food webs (Hall and Meyer 1998). 

DOM affects the complexation, solubility, and transport of metals (Aitkenhead and 

McDowell 2000), attenuates harmful UV-B radiation in aquatic systems (Schindler and 

Curtis 1997), and alters stream nutrient dynamics (Bernhardt and Likens 2002). Surface 

water DOM is largely derived from the surrounding catchment (Aitkenhead-Peterson et 

al. 2003), and human land use, particularly agriculture, may alter the quantity and quality 

of stream DOM (Stanley et al. 2012). This may be especially common in watersheds 

where wetlands have been lost at the expense of cropland (Wilson and Xenopoulos 2009) 

(Fig. 4.1).  

 There is a large body of evidence showing wetland coverage within a watershed 

may be a strong predictor of stream DOM concentration and flux (Mulholland and 

Keunzler 1979, Eckhardt and Moore 1990, Dosskey and Bertsch 1994, Dillon and Molot 

1997, Mulholland 1997, Gorham et al. 1998, Creed et al. 2003, Mulholland 2003, Agren 

et al. 2007, Andersson and Nyberg 2008, Johnston et al. 2008, Andersson and Nyberg 

2009, Mattesson et al. 2009). More recently, investigators have found that wetland 

coverage may also influence stream DOM composition (Wilson and Xenopoulos 2009, 
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Williams et al. 2010). Within wetlands, anaerobic conditions reduce the rate of organic 

matter decomposition, which promotes accumulation of soil organic matter (Mitsch and 

Gosselink 2000). Water passing through organic-rich wetland soils may leach soil 

organic matter and transport carbon downstream as humic-rich DOM (Echardt and 

Moore 1990, Dosskey and Bertsch 1994). Within the continental United States, however, 

more than half of wetlands have been lost since European settlement (Dahl 1990), with 

the majority of loss ascribed to drainage for agriculture (Mitsch and Gosselink 2000). 

Moreover, agriculture is considered the primary cause of water quality impairment in the 

United States (EPA 2004). While wetland restoration has become increasingly common 

in agricultural landscapes (Mitsch and Gosselink 2000), information on the impact of 

restoration on DOM is scarce (Stanley et al. 2012).  

 Considering the importance of DOM in freshwater systems, it is critical that we 

understand controls on fluvial DOM quantity and quality and explore possible means to 

manage DOM in anthropogenically-modified landscapes. One such management activity 

worth investigating is wetland restoration (Stanley et al. 2012; Fig. 4.1). My objectives in 

this study were to (i) quantify the influence of cropland coverage on downstream DOM 

concentration, composition, and bioavailability in a once wetland-dominated landscape 

and (ii) test the hypothesis that agricultural wetland restoration contributes to the 

restoration of stream DOM. To accomplish this, two separate studies were completed: 

Study 1) an investigation of DOM changes in perennial streams draining watersheds 

along a gradient of cropland cover, and Study 2) a comparison of DOM exported from 

forested, historical (i.e., wetlands now in cropland, aka prior-converted cropland), and 

recently restored wetlands.  
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Figure 4.1: Wetlands have historically been lost to agriculture, fundamentally altering 

within-wetland controls on dissolved organic matter (DOM) export. Wetland restoration 

may be a viable management option to recover more natural stream DOM quantity and 

quality.  
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METHODS 

Site Description 

 This research was conducted in 20 non-nested perennial headwater streams and 

12 depressional wetland outflows within the Tuckahoe Creek watershed (Maryland, 

USA), a subbasin of the Choptank River catchment (Fig. 4.2A). The Choptank watershed 

is entirely situated on the Delmarva Peninsula and in the Coastal Plain physiographic 

province. Topographic relief is low and freshwater wetlands are ubiquitous, totaling  

> 20,000 ha throughout the watershed (Tiner and Burke 1995). However, much of the 

Delmarva Peninsula has been drained or hydrologically altered to accommodate 

agriculture (Fenstermacher 2012; Fig. 4.2B), and the area of natural wetlands was likely 

two- to three-fold greater prior to settlement (Tiner and Burke 1995). Nearly 65% of the 

Choptank catchment is in agricultural use, with smaller amounts of forested (26%) and 

urban (6%) land cover (Fisher et al. 2006).  

 The 20 perennial streams selected for Study 1 drain catchments spanning a 

cropland cover gradient from 1 – 89% of total watershed area (Table 4.1). Watersheds 

were delineated within ArcHydro (Environmental Systems Research Institute, Redlands, 

CA) using 1-meter light detection and ranging (LiDAR) derived digital elevation models. 

Cropland coverage was determined using the 2006 Multi-Resolution Land Characteristics 

Consortium (MRLC) National Land Cover Database (NLCD).  

 



   

 

 

Figure 4.2: A) The Tuckahoe Creek watershed and stream network, a sub-basin of the Choptank River watershed in Maryland, USA. B) Depressional wetlands 

are common throughout the Tuckahoe watershed (near Goldsboro, MD); left side of photo shows native forested wetlands, right shows historical wetlands that 

have been drained for agriculture (i.e., prior-converted cropland). 
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Table 4.1: Headwater catchments in the Tuckahoe Creek watershed vary in size, cropland coverage 

(% of watershed area), and baseflow discharge (March 2011).  

Watershed # Watershed Outlet Location 
Drainage 

Area (km
2
) 

% Cropland 

Coverage 

Discharge 

(L s
-1

) 

1 39°7'36.50"N, 75°54'27.38"W 1.0 1.0 0.5 

2 39°7'4.13"N, 75°53'5.11"W 1.1 6.1 26.6 

3 39°3'29.05"N, 75°49'44.35"W 0.6 6.9 7.4 

4 39°3'3.13"N, 75°51'33.53"W 1.9 11.8 12.1 

5 39°5'2.96"N, 75°49'8.16"W 2.8 22.0 24.3 

6 39°4'46.45"N, 75°49'58.54"W 1.5 28.9 38.0 

7 39°6'30.44"N, 75°50'5.70"W 12.6 36.5 317.7 

8 38°57'41.17"N, 76° 0'19.99"W 4.1 39.2 78.3 

9 38°59'7.68"N, 75°59'5.42"W 3.7 45.0 56.6 

10 38°58'32.76"N, 75°58'20.65"W 3.5 45.0 47.6 

11 39°2'1.77"N, 75°52'28.28"W 4.4 45.8 90.9 

12 39°1'24.42"N, 75°56'57.42"W 5.5 50.3 76.4 

13 38°58'35.77"N, 75°55'46.70"W 1.7 52.8 27.5 

14 39°3'43.65"N, 75°53'0.20"W 3.9 53.6 48.4 

15 39°4'23.26"N, 75°55'56.24"W 9.5 58.2 171.8 

16 39°1'49.79"N, 75°53'45.76"W 6.5 60.1 127.1 

17 39°5'17.99"N, 75°53'2.77"W 2.5 63.2 45.2 

18 38°59'53.83"N, 75°55'0.54"W 10.4 75.6 204.2 

19 39°6'57.10"N, 75°48'25.93"W 0.7 79.9 13.7 

20 39°6'58.20"N, 75°52'35.00"W 1.0 88.7 3.0 
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 The 12 wetlands chosen for Study 2 are classified as forested (n = 4), historical  

(i.e., wetlands now in cropland; n = 4), and hydrologically restored (n = 4) (Table 4.2). 

Each wetland is considered a representative ecosystem within its type and episodically 

outflows via temporary stream flow to the perennial stream network (see Chapter 2;  

Fig. 4.3).  

 Forested wetlands are characterized by closed canopy palustrine forest (Cowardin 

et al. 1979) and exhibit an alternating hydrology, acting as discharge wetlands in winter 

and spring and recharge basins in summer and fall (Phillips and Shedlock 1993). Surface 

water is typically present within forested wetlands from late fall through late spring. 

Dominant tree species include Acer rubrum, Liquidambar styraciflua, Ilex opaca,  

 

 

 

Figure 4.3: Examples of wetland outflows connecting forested (A), historical [i.e., prior-converted 

cropland] (B), and restored (C) wetlands to adjacent perennial streams within the Tuckahoe Creek 

watershed (photos: March 2011).  
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Quercus rubra, and Prunus serotina, and the understory is dominated by Smilax 

rotundifolia, Lindera benzoin, and Leucothoe racemosa.  

 Historical wetlands have been drained via ditches to enhance crop production and 

are characterized by brief periods of standing water following rainfall events. Crop within 

historical wetlands rotates annually between corn (Zea mays) and soybean (Glycine max). 

Prior to drainage and cultivation, historical wetlands were forested wetlands  

(Whigham et al. 2002).  

 Restored wetlands were removed from cultivation 8-9 years prior to this study, 

and restoration efforts involved plugging drainage ditches with earthen mounds to 

reestablish a more natural hydroperiod. Restored wetlands in the region typically exhibit 

standing water from late fall to late spring. Dominant vegetation consists primarily of 

emergent and floating plants including Typha latifolia, Phragmites australis, 

Schoenoplectus americanus, Carex sp., Scirpus cyperinus, and Lemna minor. While 

saplings, particularly Acer rubrum and Liquidambar styraciflua, are present at two of the 

four restored sites, mature forested upland canopy has not developed at any of the 

wetlands. Prior to conversion to agriculture, restored wetlands were once forested 

wetlands (Whigham et al. 2002). 
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Table 4.2: Wetland classifications, physical attributes, and baseflow discharge (March 2011).  

* = discharge could not be measured. 

Site 
Wetland Type 

(year restored) 
Location Area (m

2
) 

Discharge 

(L s-1) 

F1  Forested 39° 3'24.52"N, 75°49'30.93"W 335052 46.9 

F2 Forested 39° 3'28.34"N, 75°49'53.05"W 25166 3.8 

F3  Forested 39° 3'16.50"N, 75°50'4.77"W 17208 3.3 

F4  Forested 39° 3'25.09"N, 75°49'57.97"W 127853 12.0 

R1  Restored (2002) 39° 4'8.31"N, 75°45'31.99"W 9334 * 

R2 Restored (2002) 38°57'55.68"N, 75°57'55.74"W 67145 5.9 

R3  Restored (2003) 39° 2'54.14"N, 75°45'19.24"W 1433 0.3 

R4  Restored (2003) 39° 2'59.38"N, 75°45'14.61"W 1970 2.4 

H1 Historical 39° 3'31.96"N, 75°49'44.61"W 8060 0.3 

H2 Historical 39° 3'35.88"N, 75°49'47.63"W 2571 0.3 

H3 Historical 39° 3'34.89"N, 75°51'4.21"W 3955 0.2 

H4 Historical 39° 3'39.73"N, 75°50'56.85"W 10276 0.1 

 

 

Perennial Stream and Wetland Outflow Sampling 

 A stream baseflow grab sample was collected from the outlet of each perennial 

headwater catchment in March 2011. Within one week of perennial stream sampling, 

forested, historical, and restored wetland outflow grab samples were taken from the 

temporary streams connecting the wetlands to the perennial stream network (Fig. 4.4). 

All samples were collected in acid-washed high-density polyethylene bottles, kept on ice 

in the dark, and immediately returned to the laboratory for processing.  
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Figure 4.4: Schematic indicating dissolved organic matter sampling locations. 

 

Dissolved Organic Matter Analysis 

 Perennial stream and wetland outflow samples were filtered within 24 hours of 

collection using pre-combusted 0.7 µm glass fiber filters (Whatman International Ltd, 

Maidstone, England). Total dissolved organic carbon (DOC) concentrations were 

measured using a Shimadzu TOC-VCPH total organic carbon analyzer (Shimadzu 

Scientific Instruments, Columbia, MD). Ultraviolet (UV) visible absorbance spectra were 

measured on filtered samples from 200-800 nm using a spectrophotometer with a 1 cm 
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path-length quartz cuvette. Specific UV-absorbance at 254 nm (SUVA254), which has 

been shown to correlate positively with DOM aromatic content (Weishaar et al. 2003), 

was calculated by standardizing UV-absorbance at 254 nm by DOC concentration. 

Spectral slope, defined as the ratio of UV-absorbance at 254:365 nm, was determined 

from the spectrophotometric scans and decreases with DOM molecular weight (De Haan 

1993, Dahlen et al. 1996).  

 DOM fluorescence excitation-emission matrices (EEMs) were constructed for all 

samples using a Fluoromax-4 spectrofluorometer with a xenon lamp (Horiba Jobin Yvon, 

Edison, NJ). EEMs were created by measuring DOM fluorescence intensity across 

excitation wavelengths 240-450 nm at 5 nm increments and emission wavelengths  

230-600 nm at 2 nm increments. When necessary, samples were diluted with Nanopure 

water (Barnstead Nanopure, Thermo Scientific, Waltham, MA) to an absorbance of  

< 0.30 at 254 nm to avoid inner filter effects (Mobed 1996). EEMs were corrected for 

instrument bias and Raman-normalized by the area under a Nanopure water Raman peak 

measured at excitation wavelength 350 nm (Cory et al. 2010). 

 EEMs were used to calculate environmentally relevant fluorescence indices: 

humification index (HIX) and β:α ratio. HIX was calculated from excitation at 255 nm as 

the ratio of the area under the curve at emissions 434-480 nm to the area under the curve 

at emissions 300-346 nm (Zsolnay et al. 1999). HIX is directly proportional to DOM 

humic content, with values < 3 associated with non-humified plant matter, and values  

> 10 associated with fulvic acids (Zsolnay et al. 1999). β:α ratio was calculated from 

excitation at 310 nm as the ratio of emission intensity at 380 nm (β) to the maximum 
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emission intensity between 420 and 434 nm (α; Parlanti et al. 2000) and is indicative of 

the contribution of recently produced DOM to older, degraded DOM (Wilson and 

Xenopoulos 2009). β:α ratio values > 1.0 are indicative of autochthonous DOM while 

values < 0.6 indicate DOM of allochthonous origin (Huguet et al. 2009).  

 Parallel factor analysis (PARAFAC) modeling of complete fluorescence EEMs 

was conducted using MATLAB v. R2011a (MathWorks, Inc., Natick, MA) and the 

DOMfluor toolbox following the procedures described by Stedmon and Bro (2008). The 

PARAFAC model identified four unique DOM fluorescence components from the EEMs 

(Fig. 4.5 left column), and was validated via split-half analysis (Fig. 4.5 right column; 

Stedmon and Bro 2008). All components identified by the PARAFAC model in this study 

have previously been documented as part of another PARAFAC model or visual 

identification (Table 4.3). Components C1, C2, C3, and C4 can be described as old UVC 

humic-like, UVA humic-like / fulvic acid-type, protein- and tryptophan-like, and new 

UVC humic-like, respectively. To reduce the influence of DOC concentration on model 

scores, the percent relative contribution of each of the validated components within a 

water sample was calculated by dividing the fluorescence maximum (Fmax in Raman 

units) of each individual component by the summed fluorescence maxima of all 

components (Williams et al. 2010): 

 

            
      

         
           Equation 4.1 
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Figure 4.5: Excitation-emission plots (left column) of the four fluorescent 

components (C1, C2, C3, C4) identified by the PARAFAC model in this study. Red 

and blue hues indicate higher and lower fluorescence intensities, respectively. 

Scatter-plots (right column) represent split-half validations of the components.  
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Table 4.3. Characteristics of the fluorescent components identified by the PARAFAC model in this study. 

Wavelength values in parentheses indicate secondary maxima. 

Comp. 

Excitation 

maxima    

(nm) 

Emission 

maxima   

(nm) 

Comparable components identified 

from previous studies 
Description 

     

C1 < 250 (330) 492 Coble (1996) - Comp. A Widespread UVC 

humic-like 

fluorophore, most 

common in 

wetlands and 

forested streams; 

older origin 

 

   Fellman et al. (2010) - Comp. 1 

   Gueguen et al. (2011) – Comp. 1 

   Lutz et al. (2011) - Comp. 1 

   Murphy et al. (2006) - Comp. 3 

   Stedmon and Markager (2005b) - Comp. 1 

    

C2 < 250 (325) 426 Cory and McKnight (2005) - Comp. 3 UVA humic-like 

fluorophore, 

fulvic acid-type, 

low molecular 

weight 

 

   Lutz et al. (2011) - Comp. 2 

   Murphy et al. (2006) – Comp. 2 

   Stedmon and Markager (2005a) - Comp. C 

   Stedmon and Markager (2005b) - Comp. 5 

    

C3 440 (285) 370 Coble (1996) - Comp. T Protein- and 

tryptophan-like, 

amino acids free 

or bound in 

proteins 

 

   Cory and McKnight (2005) - Comp. 8 

   Parlanti et al. (2000) - Comp. δ 

   Stedmon and Markager (2005a) - Comp. G 

   Stedmon et al. (2003) - Comp. 5 

   Yamashita et al. (2008) - Comp. 5 

    

C4 < 250 424 Cory and McKnight (2005) - Comp. 2 Widespread UVC 

humic-like 

fluorophore; 

newer origin 

   Ishii and Boyer (2012) - Comp. 1 

   Kowalczuk et al. (2009) - Comp. 2 

   Murphy et al. (2006) - Comp. 9 

   Stedmon and Markager (2005a) - Comp. A 

   Stedmon et al. (2003) - Comp. 1 
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Dissolved Organic Carbon Bioavailability Assay 

 A dissolved organic carbon (DOC) bioavailability assay was conducted on all 

perennial stream and wetland outflow samples. Briefly, 125 mL aliquots from each 

sample were filtered (0.2 µm), inoculated with 1 mL of a filtered (1 µm) sediment slurry 

(bacterial inoculate) collected from a downstream reach common to all study watersheds 

and wetlands, and incubated in Erlenmeyer flasks. To ensure non-limiting nutrient 

conditions, nitrate (NO3
-
-N) and soluble reactive phosphorus (SRP) were added to all 

flasks to raise ambient NO3
-
-N and SRP concentrations by 100 µg L

-1
 and 20 µg L

-1
, 

respectively. Immediately following inoculation and nutrient addition, an initial 20 mL 

sample from each flask was filtered (0.2 µm), and DOC concentration was determined as 

described above. Flasks were stored in the dark at 20°C for 28 days and shaken weekly. 

Following the incubation period, a final 20 mL sample was filtered (0.2 µm) and DOC 

concentration was measured. Percent bioavailable dissolved organic carbon (BDOC) was 

calculated as the % decrease in initial DOC concentration during the 28-day incubation.  

Statistical Analysis 

 Correlations between cropland coverage and perennial stream DOM were tested 

using Pearson’s product moment correlation coefficient, r. Differences in wetland 

outflow DOM among wetland types (e.g., forested, historical, restored) were analyzed 

using one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant 

difference (HSD) multiple mean comparison tests. When necessary, data were log-

transformed to meet the assumption of normality. Correlation analyses and ANOVA were 
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conducted using R version 2.12.2 (R Development Core Team, Vienna, Austria).  

All statistical analyses were conducted with a significance level set at α = 0.10. 

 To gain an understanding of the variability in perennial stream and wetland 

outflow DOM, I conducted principal component analysis (PCA). A PCA ordination 

diagram was plotted to visualize how samples cluster with axes generated using DOM 

concentration, fluorescence composition, and bioavailability. PCA was performed using 

the Vegan package in R version 2.12.2. 

 

RESULTS 

Study 1: Perennial Stream DOM along a Cropland Cover Gradient 

 Perennial stream dissolved organic carbon (DOC) concentration ranged from  

2.8 - 52.0 mg L
-1

 and decreased with increasing cropland coverage (Fig. 4.6A). I 

observed a negative correlation between cropland coverage and SUVA254 and a positive 

correlation between cropland coverage and spectral slope (Fig. 4.6B,C), indicating 

decreased stream DOM aromaticity (Weishaar et al. 2003) and molecular weight  

(De Haan 1993, Dahlen et al. 1996), respectively, with increased cropland coverage. 

SUVA254 ranged from 2.70 – 5.64 L mg C
-1

 m
-1

, corresponding to a range in aromatic  

C content of 21 – 40% according to the linear model created by Weishaar et al. (2003). 

Fluorescence spectroscopic indices revealed decreased humification index (HIX) values 

and increased β:α ratios with increasing cropland coverage (Fig. 4.6D,E), suggesting 

decreased stream DOM humic content (Zsolnay et al. 1999) and allochthonous origin 
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(Huguet et al. 2009), respectively, with increased cropland coverage within the 

watershed.  

 The relative contributions of PARAFAC model components C1 and C2, a UVC 

humic-like fluorophore of older origin and a fulvic acid-type fluorophore, respectively, 

were both negatively correlated with cropland coverage (Fig. 4.6F,G). Conversely, the 

relative contributions of components C3 and C4, a tryptophan-like fluorophore and a 

humic-like fluorophore of newer origin, respectively, increased with cropland coverage 

(Fig. 4.6H,I). The cumulative relative contribution of humic-like and fulvic acid-type 

fluorophores of terrestrial origin (i.e., C1 + C2 + C4), ranged from 71% – 86% and 

averaged 80% ± 1% (mean, ± SE), corroborating the high HIX values and low β:α ratios 

observed across perennial stream DOM.  

 Percent bioavailable DOC (BDOC) ranged from 0 – 30.4% across the 20 

perennial streams, and was significantly positively correlated with cropland coverage  

(r = 0.48, p < 0.05; Fig. 4.6J). Additionally, stream DOC bioavailability decreased with 

increasing DOM humic-like fluorescence (e.g., relative contribution of C1; r = -0.68,  

p < 0.01; Fig. 4.9A) and increased with increasing DOM protein-like fluorescence  

(e.g., relative contribution of C3; r = 0.68, p < 0.001; Fig. 4.9B).  

Study 2: Wetland Outflow DOM along an Agricultural Alteration Gradient  

 DOC concentration was significantly greater in forested compared to historical 

and restored wetland outflows, averaging (mean, ± SE) 48.1 ± 5.0, 14.2 ± 2.4, and  

21.4 ± 3.0 mg L
-1

, respectively (Fig. 4.7A). DOM exported from forested wetlands was 
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characterized by higher aromaticity, humic content, and old humic- and fulvic acid-like 

fluorescence relative to DOM draining historical wetlands (Fig. 4.7B,E,F,G). Conversely, 

DOM exported from historical wetlands had higher protein- and new humic-like 

fluorescence compared to forested wetlands (Fig. 4.7H,I). Historical wetland-derived 

DOM was also more labile (Fig. 4.7J). DOM quality was not significantly different 

between forested and restored wetland outflows for eight of nine calculated metrics  

(Fig. 4.7). 

Study 1 + Study 2: Comparison of Perennial Stream and Wetland Outflow DOM 

 Together, the first two components of the PCA incorporating perennial stream and 

wetland outflow DOM concentration, composition, and bioavailability accounted for 

81% of the variability in the data (Fig. 4.8). The PCA biplot indicates increased DOM 

concentration (DOC) and humic-like fluorescence (C1) in forested wetland outflows and 

perennial streams draining catchments with minimal cropland coverage. Alternatively, 

protein-like fluorescence (C3) and bioavailability (BDOC) appear to increase in historical 

wetland outflows and streams draining abundant cropland. DOM exported from restored 

wetlands, while variable, clusters between DOM delivered from forested and historical 

wetlands and compares favorably to perennial stream DOM in catchments with 

intermediate amounts of cropland coverage.  
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Figure 4.6: Correlations between cropland coverage in a watershed and perennial stream 

dissolved organic matter metrics. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. A) Dissolved 

organic carbon concentration, B) specific UV-absorbance at 254nm, C) UV-absorbance slope 

at 254:365nm, D) β:α fluorescence ratio, E) humification index, F-I) percent relative 

contributions of PARAFAC fluorescence components C1-4, respectively, and J) percent 

bioavailable dissolved organic carbon.  
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Figure 4.7: Comparison of dissolved organic matter exported from forested (n = 4), 

historical (n = 4), and restored (n = 4) wetlands. A) Dissolved organic carbon 

concentration, B) specific UV-absorbance at 254nm, C) UV-absorbance slope at 

254:365nm, D) β:α fluorescence ratio, E) humification index, F-I) percent relative 

contributions of PARAFAC fluorescence components C1-4, respectively, and J) percent 

bioavailable dissolved organic carbon. Error bars represent standard errors of the means. 

Means with different letters are significantly different from one another (Tukey’s HSD,  

p < 0.10).  
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Figure 4.8: Principal component analysis (PCA) ordination diagram grouping 

perennial stream and wetland outflow samples with respect to a suite of dissolved 

organic matter metrics. Numbers associated with perennial stream data points indicate 

the percentage of cropland coverage within the watershed. (DOC = log-dissolved 

organic carbon concentration, C1 - C4 = percent relative contribution of PARAFAC 

fluorescence components C1 - C4, respectively, BDOC = percent bioavailable 

dissolved organic carbon). Percent values on each axis represent percent of explained 

variance. 
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DISCUSSION 

 This research suggests that agricultural wetland restoration may be an effective 

means to restore dissolved organic matter (DOM) composition and bioavailability and, in 

turn, downstream DOM quality in cultivated watersheds. Additionally, I demonstrate — 

to my knowledge for the first time — a relationship between human land use and stream 

DOC bioavailability, whereby lability increases with cropland coverage. A suite of 

perennial stream DOM metrics correlated strongly with cropland coverage (Study 1), 

suggesting a shift has occurred from high concentration, largely humic, recalcitrant DOM 

under wetland-dominated conditions to a pool of lower concentration, protein-rich, more 

labile DOM as wetlands are lost at the expense of agriculture. These changes corroborate 

the findings of others (Wilson and Xenopoulos 2009, Williams et al. 2010, Petrone et al. 

2011) and add to a growing recognition of DOM alteration in human-modified 

landscapes (Stanley et al. 2012).  

 The comparison of DOM exported from forested, historical, and restored wetlands 

to the perennial stream network (Study 2) provides insights of the role of wetland 

alteration on downstream DOM. Significantly lower DOC concentration observed in 

historical relative to forested wetland outflows implies wetland loss to cropland 

contributes to decreases in perennial stream DOC. Wetland coverage has long been 

shown to correlate positively with fluvial DOC quantity (Mulholland 2003), while 

croplands tend to result in low stream DOC concentration and flux (Aitkenhead and 

McDowell 2000, Mattsson et al. 2009). Prior to European settlement and the clearing and 

drainage of wetlands for cultivation, the Coastal Plain was dominated by anastomosing 
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streams and extensive vegetated wetlands that stored significant organic carbon (Walter 

and Merritts 2008). Many Coastal Plain wetlands experienced significant aggradation due 

to deforestation and poor agricultural practices (Jacobson and Coleman 1986). With 

increased forest conservation and improved farming techniques came reduced 

sedimentation, leading to channel incision and disconnected floodplains (Hupp 2000). 

Cultivated uplands may have historically delivered high DOC loads to Coastal Plain 

streams as a result of long flowpaths through organic-rich floodplain-dominated 

landscapes. 

Cultivation is also associated with decreased terrestrial organic matter pools (Ogle 

et al. 2005, McLauchlan 2006), and wetland conversion to cropland results in particularly 

large losses of soil organic matter (Fenstermacher 2012). In an investigation of soils 

among the same wetlands in this study, I found significantly lower soil organic matter 

values among historical and restored wetlands compared to forested wetlands  

(see Chapter 1). Low restored wetland outflow DOC concentrations may be due in part to 

a lack of recovery of soil organic matter pools in the brief time since restoration (e.g., 8 – 

9 years at the time of this study). Considering restoration of natural soil organic matter 

levels is generally slow, often requiring decades to centuries depending on the ecosystem 

(Hossler and Bouchard 2010), recovery of more natural DOC levels in restored wetlands 

and downstream waters may likewise take a significant amount of time.  

 DOM exported from restored wetlands was largely similar in composition to 

forested wetland-derived DOM, characterized by high aromaticity and humic content and 

low protein-like fluorescence. SUVA254 and spectral slope values indicated perennial 
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stream DOM with low aromaticity (Weishaar et al. 2003) and molecular weight (De Haan 

1993, Dahlen et al. 1996) in cropland-dominated catchments. I found similarly low 

aromaticity in DOM exported from historical wetlands, corroborating observations of low 

DOM molecular weight and humic content in cultivated soil pore-water (Delprat et al. 

1997, Kalbitz et al. 2003). The high aromaticity and molecular weight of forested 

wetland-derived DOM is consistent with previous observations of increased DOM humic 

content and structural complexity in natural wetlands (Mladenov et al. 2007, Inamdar et 

al. 2012). DOM aromaticity and molecular weight are known to negatively correlate with 

DOC bioavailability (Kalbitz et al. 2003, Roehm et al. 2009). This suggests the increase 

in DOC bioavailability in perennial streams and wetland outflows along a gradient of 

agricultural alteration may in part be governed by low DOM aromatic content and 

conjugation. 

 Fluorescence spectroscopy highlighted a shift from allochthonous, humic-like 

DOM to more autochthonous, protein-like DOM composition in perennial streams and 

wetland outflows with increased cultivation. Corroborating this, Inamdar et al. (2012) 

reported low protein-like fluorescence in wetland soil water samples while Wilson and 

Xenopoulos (2009) found stream protein-like fluorescence increased as wetlands were 

lost to agriculture. DOM protein-like fluorescence may increase as a result of 

anthropogenic runoff (Baker and Spencer 2004, Petrone et al. 2011), increased primary 

production (Lu et al. 2003), and decreased soil organic matter-water interaction (Hood et 

al. 2006), all three of which may be responsible for DOM changes among wetlands and 

streams in cultivated landscapes.  
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 DOM composition was strongly related to DOC bioavailability. Similar to my 

findings, decreased DOC bioavailability with increased humic-like fluorescence and 

increased lability with increased protein-like fluorescence has been reported in a variety 

of aquatic ecosystems (soil water - Fellman et al. 2008; streams draining permafrost -  

Balcarczyk et al. 2009; glaciated rivers - Hood et al. 2009; streams in agricultural and 

urbanized catchments - Petrone et al. 2011; Fig. 4.9), indicating DOM fluorescence may 

be useful in predicting DOC lability.  

 

 

Figure 4.9: Comparative regressions of percent bioavailable dissolved organic carbon and initial percent 

humic-like fluorescence (A) and initial percent protein-like fluorescence (B).  

 

 It has been hypothesized that anthropogenic alteration within watersheds  

(e.g., agriculture, urbanization) may increase downstream DOC bioavailability (Williams 

et al. 2010). Results from this study support this, but also present wetland restoration as a 

potential means to restore more natural stream DOC bioavailability. Increased stream 
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DOC bioavailability due to wetland conversion to cropland could lead to shorter DOC 

uptake lengths along fluvial networks. This, in turn, could reduce DOM delivery to 

downstream ecosystems, decreasing rates of microbial respiration and biogeochemical 

processing (Royer and David 2005). I observed signs of humic- and protein-like 

fluorescence recovery in DOM exported from restored wetlands, resulting in more natural 

bioavailability of DOC delivered downstream.  

 

CONCLUSION 

 Past work suggests that fluvial DOM is governed by large, watershed-scale 

processes including terrestrial accumulation of soil organic matter, catchment 

topography, and hydrologic flow paths (Aitkenhead-Peterson et al. 2003, Andersson and 

Nyberg 2009). However, the finding that DOM quality is showing signs of recovery in 

recently restored agricultural wetlands suggests wetland restoration may be beneficial. In 

their recent review, Stanley et al. (2012) state that land use change and human 

modification of the landscape, particularly cultivation, are “clearly altering native DOC 

regimes” and suggest restoration efforts are needed to better manage fluvial DOM. 

Results from this study underscore the alteration of freshwater DOM quantity and quality 

in response to cultivation and offer evidence that agricultural wetland restoration may 

provide a means to restore more natural downstream DOM, particularly with respect to 

composition and lability. Further study of wetland and riparian restoration effects on 

DOM quantity and quality across a range of temporal and spatial scales should be 

conducted in order to better manage contemporary changes in DOM. 
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Summary 

 In this dissertation, I investigate the impact of agricultural wetland restoration on 

1) within-wetland ecosystem structure and function (e.g., soil physicochemical 

properties, denitrification potential, sediment and nutrient accumulation [Chapter 1]) and 

2) adjacent temporary and perennial stream ecosystems (e.g., patterns of surface 

hydrologic connectivity [Chapter 2]; temporary stream denitrification potential in 

response to sediment drying and wetting [Chapter 3]; changes in wetland and perennial 

stream dissolved organic matter quantity and quality along an agricultural alteration 

gradient [Chapter 4]).  

 While wetlands and streams have largely been studied independently, I quantify 

hydrological and ecological links between wetlands and adjacent streams. This work is 

motivated by recent U.S. Supreme Court rulings (e.g., Solid Waste Agency of Northern 

Cook County v U.S. Army Corps of Engineers 2001, Rapanos v United States 2006) that 

call into question the jurisdictional status of geographically isolated wetlands and non-

perennial streams under the Clean Water Act and generate a need for basic research on 

wetland–stream connectivity to inform future policy and legislation (Leibowitz et al. 

2008). Additionally, I seek to understand the degree to which restoration of ecosystem 

benefits generally attributed to wetlands in agriculturally-modified landscapes extend 

beyond wetlands themselves to nearby streams. 

 With respect to the impact of agricultural wetland restoration on wetland soils and 

sediments (Chapter 1), I show that recently restored Delmarva bay wetland soils are 

similar to historical wetland soils in terms of physicochemical properties and capacity to 
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denitrify. Organic-rich forested wetland soils, however, are fundamentally different from 

both historical and restored wetland soils. In a recent study of Delmarva bay carbon 

sequestration, Fenstermacher (2012) estimated it would require nearly 70 years for 

restored bays to achieve the level of carbon present in natural soils. While soil recovery 

may be slow in restored wetlands (Hossler and Bouchard 2010), I report significant net 

sediment and nutrient accumulation in restored Delmarva bays suggesting formerly-

farmed depressional wetlands may act as sinks for carbon, nitrogen, and phosphorus. 

Future studies incorporating mass-balances could help determine if in fact restored 

Delmarva bays are mitigating downstream sediment and nutrient loads.  

 In Chapters 2 and 3, I move beyond wetlands to study the impact of agricultural 

wetland restoration on adjacent temporary stream processes. Using state data loggers, I 

present evidence that forested Delmarva bay wetlands, although historically considered 

geographically isolated from nearby surface waters (Tiner and Burke 1995, Tiner 2003), 

may exhibit seasonal surface hydrologic connectivity (SHC) to adjacent perennial 

streams via temporary stream flow when temperatures and evapotranspiration are low. 

Agricultural drainage appears to have altered wetland–stream SHC patterns, generating 

more ephemeral connections. Changes in wetland–stream SHC due to cultivation may 

persist post-restoration, particularly if the restoration is small in size. Alterations in 

wetland–stream SHC from seasonally continuous and predictable to ephemeral and 

sporadic are likely to limit the ability of wetlands and temporary stream channels to 

provide habitat, dispersal corridors, and downstream subsidies. The state data logging 

method I use to record wetland–stream SHC patterns could be a valuable tool to support 
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regulatory determinations of so-called isolated wetlands and temporary streams in a 

variety of settings.  

With knowledge of wetland–stream SHC patterns (Chapter 2), I then explore the 

role of sediment drying and wetting on denitrification potential in temporary streams 

adjacent to a restored and a forested Delmarva bay (Chapter 3). I find that alterations in 

surface hydrology, a likely result of both land use change and climate change (Poff et al. 

1997, Palmer et al. 2008), may alter the capacity of temporary streams to denitrify. I 

present evidence of hysteresis in restored temporary stream sediment denitrification 

potential in response to wetting vs. drying, whereas organic-rich forested temporary 

stream sediments appear more biogeochemically resistant to altered hydrology. Typically 

located at the headwaters of river networks, temporary streams may be effective nutrient 

processors (Peterson et al. 2001), yet particularly sensitive to anthropogenic disturbance 

(Bull 1997). As such, they may be ecosystems ripe for restoration in nutrient-rich 

landscapes (e.g., agricultural, urbanized). Yet, to my knowledge, this is the first study of 

a restored temporary stream in the literature. As ephemeral and intermittent streams 

comprise a majority of river length in most fluvial networks (Nadeau and Rains 2007) 

and the prevalence of non-perennial flow is predicted to increase with global climate 

change (Schindler 1997, 2001), understanding the physical, chemical, and biological 

impacts of drought and inundation on temporary streams is increasingly critical.  

Finally, I investigate the role agricultural wetland restoration may play in 

restoring downstream dissolved organic matter (DOM) quantity and quality in an 

agriculturally-modified landscape (Chapter 4). Although it is now recognized that human 
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land use, particularly agriculture, may alter the concentration and composition of stream 

DOM (Wilson and Xenopoulos 2009), investigation of management options to restore 

fluvial DOM is rare (Stanley et al. 2012). In a two-part study, I find that 1) cropland 

cover within a watershed significantly alters perennial stream DOM concentration, 

composition, and bioavailability, and 2) agricultural wetland restoration may be a tool to 

recover more natural stream DOM quality. 

Collectively, this research provides evidence of hydrological and ecological 

connectivity between so-called isolated wetlands and adjacent streams. As questions 

surround the definition of “waters of the United States” and the jurisdictional scope of the 

Clean Water Act (Leibowitz et al. 2008), this type of information is increasingly needed 

and provides a means for science to inform regulatory determinations and future policy. 

Additionally, this research suggests agricultural wetland restoration has the potential to 

recover the physical (e.g., surface hydrologic connectivity [Chapter 2]), chemical  

(e.g., DOM composition [Chapter 4]), biological (e.g., DOM bioavailability [Chapter 4]), 

and biogeochemical (e.g., denitrification potential [Chapter 3]) integrity of nearby 

running waters.  
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Appendix 

 I estimated dissolved organic carbon (DOC) export via surface flow from the 

wetland–stream pairs studied in Chapter 2 for the 2010 water year (1 Oct 2009 – 30 Sept 

2010).  

 Wetland–stream pairs were visited monthly from Oct 2009 to Sept 2010. If 

present, baseflow discharge (L s
-1

) in temporary streams connecting the study wetlands to 

adjacent perennial streams was measured using either a 1L graduated cylinder and 

stopwatch or the cross-sectional area method (Gordon et al. 2004; Table A.1). A grab 

sample was collected when surface water was present within each wetland. A baseflow 

grab sample was collected when temporary streams were flowing (see Fig. 4.4). All 

samples were collected in acid-washed high-density polyethylene bottles, kept on ice in 

the dark, and immediately returned to the laboratory for processing. Wetland and 

temporary stream samples were filtered within 24 hours of collection using pre-

combusted 0.7 µm glass fiber filters (Whatman International Ltd, Maidstone, England). 

Total dissolved organic carbon (DOC) concentrations were measured using a Shimadzu 

TOC-VCPH total organic carbon analyzer (Shimadzu Scientific Instruments, Columbia, 

MD; Table A.2). 

 Lower and upper bounds of DOC exported from each wetland were estimated 

(Table A.3) by multiplying the lowest and highest observed discharge by the lowest and 

highest measured DOC concentration, respectively. These values were multiplied by the 

total duration of wetland–stream surface hydrologic connectivity (SHC; see Table 2.2) 

and standardized by wetland area (see Table 2.1). 
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Table A.1: 2010 water year Monthly baseflow discharge measurements at each study site. F = forested,  

R = restored, H = historical, * = no measurement taken, — = dry / no discharge.  

 Monthly Baseflow Discharge (L s
-1

) 

Site 
Oct 

'09 

Nov 

'09 

Dec 

'09  

Jan 

'10 

Feb 

'10 * 

Mar 

'10 

Apr 

'10 

May 

'10 

Jun 

'10 

Jul 

'10 

Aug 

'10 

Sep 

'10 

F1 11.68 9.06 * 54.19 * 33.9 15.25 — — — — — 

F2 — 0.45 * 2.68 * 1.03 0.8 — — — — — 

F3 — 0.19 * 1.16 * 1.1 0.55 — — — — — 

F4 1.84 0.6 * 1.74 * 1.81 1.42 — — — — — 

R1 — * * * * * — — — — — — 

R2 — 22.54 * 6.04 * 18.21 — — — — — — 

R3 — 1.1 * 0.12 * 0.03 0.1 — — — — — 

H1 0.1 0.03 * 0.16 * 0.13 0.09 — — — — — 

H2 — 0.75 * — * 0.24 — — — — — — 

H3 — 0.27 * 0.05 * — — — — — — — 

H4 — 0.44 * — * 0.38 — — — — — — 

 

 

 



 

Table A.2: 2010 water year monthly dissolved organic matter concentrations at each wetland and adjacent temporary stream. F = Forested, 

R = Restored, H = Historical, * = no measurement taken, — = dry 

Site Sample Location 
Oct 

'09 

Nov 

'09 

Dec 

'09 

Jan 

'10 

Feb 

'10 

Mar 

'10 

Apr 

'10 

May 

'10 

Jun 

'10 

Jul 

'10 

Aug 

'10 

Sep 

'10 

F1 
wetland 67.2 61.2 * 13.6 * 18.5 34.1 37.4 50.6 — — — 

temp stream 64.6 62.1 * 15.1 * 18.0 33.7 — — — — — 

F2 
wetland 77.4 62.9 * 18.6 * 23.2 37.4 39.2 — — — — 

temp stream — 60.2 * 23.7 * 18.7 35.5 — — — — — 

F3 
wetland 57.3 63.0 * 21.8 * 18.7 30.9 32.4 53.3 — — — 

temp stream — 62.9 * 23.7 * 18.7 31.5 — — — — — 

F4 
wetland 62.1 54.7 * 17.5 * 18.2 33.3 27.4 — — — — 

temp stream 60.1 58.2 * 18.9 * 22.3 33.9 — — — — — 

R1 
wetland 13.4 12.3 * 7.7 * 7.6 12.2 16.6 — — 15.7 17.6 

temp stream — 13.4 * 7.8 * 9.4 — — — — — — 

R2 
wetland 21.5 21.7 * 24.5 * 13.9 20.5 28.5 61.3 — 18.9 26.7 

temp stream — 27.2 * 23.6 * 20.6 — — — — — — 

R3 
wetland 22.2 22.0 * 12.3 * 18.4 21.9 29.2 — — — — 

temp stream — 24.9 * 14.7 * 21.0 25.8 — — — — — 

H1 
wetland 17.4 21.4 * 10.1 * 12.7 22.4 — — — — — 

temp stream 20.3 19.8 * 11.2 * 15.8 26.0 — — — — — 

H2 
wetland — 20.3 * 10.9 * 9.7 23.3 — — — — — 

temp stream — 17.1 * — * 9.5 — — — — — — 

H3 
wetland 48.6 15.2 * 15.7 * 18.5 17.5 — — — — — 

temp stream — 15.2 * 15.6 * — — — — — — — 

H4 
wetland — 16.3 * 13.7 * 25.6 — — — — — — 

temp stream — 17.5 * — * 23.4 — — — — — — 
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Table A.3: Estimated dissolved 

organic carbon (DOC) export 

from wetlands to adjacent 

streams via temporary stream 

flow during the 2010 water 

year. F = forested, R = restored,  

H = historical.  

Site 
Estimated DOC 

Export (kg ha
-1

) 

F1 76 – 2092 

F2 43 – 754 

F3 33 – 671 

F4 13 – 139 

R1 (unable to estimate) 

R2 116 – 612 

R3 5 – 312 

H1 1 – 13 

H2 7 – 51 

H3 1 – 4 

H4 6 – 13 
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