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     In proteomic research, experimental and computational approaches are combined 

to provide global analysis of the entire proteomes of cells and tissues. The 

identification and quantification of multiple proteins, which constitute a specific 

biological system, are important for understanding complex problems in biology. The 

coupling of highly efficient separations and mass spectrometry instrumentation is 

evolving rapidly and is being widely applied to problems ranging from biological 

function to drug development. Development of rapid and high-resolution separation 

technology is an important field in proteomics. In this study, a solution isoelectric 

focusing apparatus was modified and built into a two-dimensional separation method 

for peptides. Newly commercialized isoelectric membranes, which carry immobilized 

ampholytes, were integrated to establish the pH boundaries in this apparatus. High-

performance liquid chromatography was employed as the second dimension, 

integrated with mass spectrometry. An insoluble nuclear protein fraction was used for 

  



optimization and evaluation of this method. The insoluble nuclear proteins were 

recovered from the nuclei of human MCF-7 human cancer cells and cleaved 

enzymatically. The resulting peptides were analyzed by the two-dimensional 

separation method, which coupled solution isoelectric focusing with reversed-phase 

liquid chromatography interfaced with mass spectrometry. A total of 281 peptides 

corresponding to 167 proteins were identified by this experiment. The high sample 

capacity and concentration effect of isoelectric focusing make it possible to detect 

relatively low abundance proteins in a complex mixture. This two-dimensional 

separation method dramatically improves peptide detection and identification 

compared with a single dimension LC-MS analysis. This method has been 

demonstrated to provide efficient and reproducible separation of both protein and 

peptides.  

     The two-dimensional separation method was combined with proteolytic isotopic 

labeling for comparative analysis of protein expression in different cells. Abundances 

of nuclear proteins from three different drug resistant MCF-7 cancer cell lines were 

compared to those from the drug susceptible parent cell line using this combined 

strategy. The abundances of 19 proteins were found to be significantly changed. Their 

functions are considered in relation to potential mechanisms of in drug resistance. 
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Chapter 1: Overview 

 

     Proteins are the working molecules in most biological processes and directly 

displaying and studying proteins, so called proteomics, provides an attractive way to 

understand complex problems in biology. Unlike the genome, the proteome is not a 

fixed feature of an organism. Protein technologies required to separate proteins, 

identify them and study their modifications are not straightforward. A huge amount of 

effort has been invested in developing robust techniques for proteome analysis. 

     The present project aims to develop and validate a two-dimensional 

protein/peptide separation strategy based on free solution isoelectric focusing and 

reversed-phase liquid chromatography. Our specific goals include: (1) develop and 

optimize free solution isoelectric focusing method for peptide separation; (2) apply 

this technique to nuclear proteins from MCF-7 human cancer cells; (3) integrate the 

two-dimensional separation method with 18O labeling for comparative studies of 

differences in protein abundances between drug resistant and drug susceptible cells 

(4) based on the functions of proteins whose abundances are changed, consider 

possible mechanisms of drug resistance. 

     Isoelectric focusing (IEF) is widely used in gel based protein separation and also 

in capillary electrophoresis (CE). Because of the media involved in gel and CE, the 

loading capacity is limited and proteins with relatively low abundances are hard to 

detect. Moreover, they both require complex and expensive instruments to perform. 

The pH range of these two methods is usually 3-10, which limits the separation of 

proteins/and peptides with extreme acidic or basic isoelectric points. 
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      The device used in our lab for solution isoelectric focusing is simple, easy to 

assemble and the experimental details will be discussed later. It can separate samples 

ranging from 0.5mg to 3mg without significant loss. Our experiments show that this 

fractionation step is compatible with down-stream analyses such as two-dimensional 

gel electrophoresis, reversed-phase liquid chromatography and mass spectrometry. 

This separation strategy is an off-line procedure, so we don’t have to employ any 

instrumental modification to integrate the two steps together. Each fraction is 

collected and processed individually when the isoelectric focusing is completed. Thus 

it is convenient to analyze several fractions with mass spectrometry without repeating 

the whole process. However, the separation may take a relatively longer time and it 

needs monitoring. 

      In addition, isotope labeling is implemented to analyze the variation of protein 

abundances in drug resistance. 18O labeling is an in vitro post-digestion labeling 

procedure. Previous work in our laboratory and elsewhere has proven that these labels 

are stable and suitable to a wide range of sample types, including cultured cells, 

microorganisms and tissues1-3. 

     Chapter 2 introduces the protein technologies which are widely used now, 

including mass spectrometry, separation methods and quantitative strategies. 

Chemotherapy and drug resistance are briefly introduced followed with a description 

of the model organisms. 

     Chapter 3 presents the initial study in our laboratory on the performance of the 

solution isoelectric focusing device for protein separation. The resolution, sample 

recovery and compatibility were investigated for several devices. 
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     Chapter 4 presents the results of nuclear peptide separation by the two-

dimensional strategy and comparative proteome analysis of four cell lines. Some 

interesting results in separation and quantification are discussed in detail. 

     Chapter 5 presents conclusion for all of the work, and a future perspective.  
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Chapter 2: Introduction 

 

2.1  Proteome and proteomics 

The proteome encompasses the entire complement of proteins expressed in a 

certain type of cell or tissue at a single time. The term proteome has been widely used 

since it first appeared in late 1994 at the Siena 2-D electrophoresis meeting4. 

Proteomics is defined as the systematic analysis of proteins expressed in a cell or 

tissue at a given time or under certain environmental conditions.  The success of 

sequencing the entire human genome along with the genomes of many other species, 

has led to an understanding of the complexity of organism at the level of information 

content. However, DNA stores the biological information of an organism rather than 

building a living unit. An eventual understanding from gene to biological function 

still relies on the study of proteins, the gene products. The identification and 

quantification of the multiple proteins that constitute and control a particular process 

are important for understanding the regulation of biological systems.  

While the genome may be considered to be static, the proteome is highly 

dynamic. The protein complement may change with the stage of development, health 

or the environmental conditions. The same protein can be post-translational modified 

in many ways, such as phosphorylation, glycosylation and ubiquititation, which are 

not accessible from gene sequences5-7. In addition, mRNA levels do not necessarily 

correspond to the abundance of proteins expressed in biological tissues8-10.  

Considering the great complexity and the huge dynamic range of protein expression 

(at least 5 orders of magnitude), proteome research requires robust protein 
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fractionation and separation techniques. Moreover, with the appearance of soft 

ionization methods, mass spectrometry plays an important role in protein analysis. 

2.2  Mass spectrometry 

A mass spectrometer is an instrument that measures rapidly moving ions on the 

basis of their mass-to-charge ratio, m/z. There are several types of mass spectrometers 

available from instrument manufacturers. All types of mass spectrometers consist of 

the components shown in Figure 2-1. The inlet is an interface through which sample 

is introduce into the ion source. The sample molecules are evaporated and converted 

to ions at the ion source with any of several ionization techniques. The gaseous ions 

are separated in the mass analyzer according to their mass to charge ratios. The 

detector senses the arrival of ion streams and produces an electrical signal, which is 

processed, recorded and displayed by a computer. In addition, mass spectrometers 

require a vacuum system to maintain a low pressure through the ion pathway.  

Mass spectrometry is widely used as an analytical tool with the ability to provide 

information about (1) elemental composition of molecules; (2) chemical structure of 

organic, inorganic and biological compounds; (3) qualitative and quantitative 

compositions of components in complex mixtures; and (4) isotopic ratios of atoms in 

sample. However, its application to biological molecules, such as proteins and DNA, 

was limited historically by the ionization technology. Since the inventions of two 

ionization techniques, named electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI), mass spectrometry is experiencing a rapid growth in 

biological applications. The major advantages of mass spectrometry include high 
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sensitivity, speed of analysis and the large amount of information generated in 

experiments.       

      Electrospray ionization (ESI) was first described by Fenn and co-workers in 

198511. In ESI, an acidic solution containing peptides is sprayed through a small-

diameter needle. A high positive voltage is applied on the needle, forming an electric 

field between the needle and the mass spectrometer. Droplets of the solution are 

positively charged at the acidic condition and move towards the detector. During the 

movement, droplets evaporate and split into a population of small droplets with the 

help of gas flow and heat. This process is repeated until it yields desolvated positively 

charged analyte ions. One characteristic of ESI is the production of multiply charged 

ions. Under acidic condition, the basic sites in the analyte molecules tend to be 

protonated, including the N-terminal amino acid, and the basic side chains of lysine, 

arginine and histidine residues. As a result, analytes with a mass in excess of the mass 

range of the instrument are still detectable, since the measurement is based on the 

mass to charge ratio of the ions. A significant feature of ESI is its compatibility with 

high-performance liquid chromatography (HPLC). Working as a detector, mass 

spectrometry can not only provide the elution profile but also characterize the 

effluents, which conventional optical detectors cannot do. Because the standard 

HPLC column (1mm i.d.) has a relatively high flow rate (50µm/min), a small-scale 

capillary column (75µm i.d.) was employed using a lower flow rate (2µL/min).  

Nanospray is an additional ionization technique, which is based on the same principle 

as ESI, operating on a significantly smaller needle diameter and flow rate 

(0.02µL/min). Nanospray is more sensitive than ESI and it is more suitable for 
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limited sample volumes. In a word, electrospray (and nanospray) is a “soft” ionization 

technique, which has been successfully used on a variety of mass spectrometers.   

      Matrix-assisted laser desorption/ionization (MALDI) was introduced by Karas 

and Hillenkamp12 the same year as a related publication by Tanaka13. For this 

method, the sample is combined with a solution of an organic “matrix” compound, 

which has strong UV absorbance. As the solvent dries, the sample molecules are co-

crystalized into the matrix. As the sample target is exposed to a pulsed UV-laser light, 

the matrix is vaporized and carries sample ions into gas phase. As with ESI, the 

ionization proceeds by protonation under the acidic conditions. In MALDI ionization, 

singly charged ions are predominant. One character of MALDI is the tolerance of a 

variety of contaminating species, including some buffers, which usually disrupt ESI. 

In practice, MALDI is mostly combined with time-of-flight (TOF) mass analyzer 

providing high sensitivity and resolution in proteome experiments. 

      Mass analyzers in mass spectrometers separate and determine the m/z ratio of 

analyte ions. There are two classes of ions seen in mass spectrometry experiments: 

molecular ions, providing molecular weight information for an analyte, and fragment 

ions, from which structure information can be derived.  

     Two types of mass analyzers that are commonly used in mass spectrometers are 

the ion trap (IT) and the time-of-flight (TOF). In an ion trap mass analyzer, rf-

voltages are applied to produce a trapping region, where ions of all m/z oscillate. 

Subsequently, an m/z dependent rf-voltage is applied to eject ions of increasing mass 

to the detector. Ion trap has extremely good sensitivity because all of the ions from 

the ion source can be effectively trapped and transported to the detector. For mass 
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analysis in time-of-flight, an ion is given a certain amount of kinetic energy by 

acceleration in an electric field. Then the ion flies into a field-free region with a 

velocity inversely proportional to its m/z value. The time it consumes to travel 

through the length of the region is used to calculate the m/z value. A significant 

character of time-of-flight is the high mass (or m/z) range. 
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Figure 2-1 Scheme of a mass spectrometer 
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Tandem mass spectrometry (MS/MS) refers to two stages of mass analysis carried 

out in series in one experiment. After the first mass analysis, ions with a specific m/z 

value are isolated for collision-induced dissociation (CID). The activation is usually 

carried out in a collision cell, where each selected ion undergoes a number of 

collisions with gas molecules contained in the region which induce breakage of 

covalent bonds to produce ionic and neutral species. The resulting ionic products are 

referred to as “product ions” and analyzed in the second mass analyzer. The doubly 

(or triply) protonated peptide ions produced in ESI are predominantly fragmented by 

low energy collisions in ion trap and quadrupole time-of-flight mass spectrometers. 

The product ions are defined in two sets of ions: a-, b- and c- ions all contain the N-

terminus of the peptide, and b- ions are dominant; x-, y- and z- ions contain the C-

terminus of the peptide, and y- ions are major series (see Figure 2-2). The mass 

difference between two conjunct b-series or y-series ions reflects the mass of an 

amino acid residue. Complete interpretation of product ion spectra deduces the entire 

or partial amino acid sequence of a peptide.  Figure 2-2 shows the fragmentation 

reactions of the peptide induced by low energy collisions.  
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Figure 2-2 Scheme of peptide fragmentation by collision induced dissociation (CID) 
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2.3  Protein identification 

    Protein identification is based on the concept that different proteins could be 

distinguished not only by different functions but also by differences in amino acid 

sequences. Initially, proteins have been sequenced and identified by de novo 

sequencing, most frequently by Edman degradation of the proteins or their peptide 

fragments14. These partial sequences are used to assemble the complete protein 

sequence. But this technique suffers from low sensitivity, slowness and the 

complexity of cellular proteins. Following the accomplishment of the human genome 

and the genomes of other species, the expanded sequence databases made it possible 

to identify proteins by using short peptide sequence information. This is done by 

correlating information extracted from mass spectrometric data of a protein or peptide 

with sequences in databases. Correlation of experiment data with databases also 

depends on the development of novel search algorithms. Protein identification has 

been dramatically enhanced by convergence of the complete sequence databases, 

mass spectrometry techniques and various search algorithms. 

    Two mass spectrometry based protein identification methods are widely used: 

peptide mass mapping and microsequencing. The principle behind peptide mass 

mapping is that, after proteolysis with a specific protease, proteins of different amino 

acid sequences will generate different groups of peptides, whose masses make up 

unique mass fingerprints. Therefore, if a specific protein is contained in a sequence 

database, it can be identified by matching experimental masses with peptide mass 

predicted within the database. Typically, the method includes the following sequence 

of steps:(i) the protein sample is digested into peptides using sequence-specific 
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cleavage reagents such as trypsin so that the termini of peptides can be fixed for the 

search; (ii) peptide masses are measured in a mass spectrometer; (iii) proteins in the 

database are digested following the same proteolytic rules applied in the experiments 

to generate a theoretical peptide mass list; (iv) an algorithm is used to compare the 

experimental masses with the theoretical masses for each protein in the database and 

to assign a score for each hit which ranks the quality of the match. Peptide mass 

mapping is most popular for identification of proteins purified by 2D-PAGE, where 

proteins are usually purified and where approximate mass and isoelectric point 

information can also be obtained to aid identification. This method is not suitable for 

identification of protein in mixture. 

    The second strategy, microsequencing is widely used for large-scale protein 

identification. The amino acid sequence of a peptide combined with its mass is more 

constraining than its mass alone for protein identification. Peptide sequence 

information is commonly obtained by tandem mass spectrometry. Because of the 

complicacy of CID spectra, algorithms have been developed to use uninterpreted 

fragment ion pattern and the mass of the parent ion as input for sequence database 

searching. The algorithm first creates a list of peptides whose masses are equal to the 

observed parent ion mass by searching the database. Then it calculates the masses of 

the band y- fragment ions and generates a theoretical CID spectrum for each 

candidate peptide. The algorithm compares the experimental spectrum with the 

theoretical spectra and generates a score for each peptide which reflects the 

confidence of the match. Each protein is identified by finding as many derived 

peptides as possible.      
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2.4  Separation of protein and peptide mixtures 

    Although mass spectrometry is a powerful tool for proteomics analysis, it is 

impossible to get rapid and accurate identification and quantification of proteins 

without also involving various separation techniques. A key aspect of proteomics is 

the development of multiple separation methods to resolve the individual components 

of complex protein and peptide mixtures before mass spectrometry analysis. Figure 2-

3 shows the separation methods most commonly employed in proteomics studies. Gel 

electrophoresis has been well established, is easy to carry out, compatible with mass 

spectrometry and has high resolution power. Several in-solution methods are listed, 

which are often combined together to provide rapid and high-throughput analyses for 

proteomics. 
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Figure 2-3 Classification of fractionation methods used in proteomics 
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2.4.1  Two-dimensional gel electrophoresis 

    Electrophoresis is based on the migration of charged proteins in an electric field. 

Two-dimensional gel electrophoresis is the most widely used method for protein 

separation, which combines two types of electrophoresis: isoelectric focusing (IEF) 

and polyacrylamide gel electrophoresis (PAGE). IEF is a procedure used to separate 

proteins according to their isoelectric points (pI). This is the characteristic pH value at 

which the net charge of a protein is zero. A pH gradient is established by the 

distribution of ampholytes, low molecular weight organic acids and bases, across the 

gel. After the protein mixture is applied, each molecule migrates in the electric field 

until it reaches the pH matching its pI. The introduction of immobilized pH gradient 

(IPG) gels eliminated the poor reproducibility associated with ampholytes15-19. In an 

IPG gel, the pH gradient is covalently bonded to the acrylamide gel matrix, resulting 

in a stable gradient at all the pH values. The precast IPG gels are commercially 

available in a variety of narrow and broad pH ranges with the resolution as high as 

0.01 pH unit.  

      The second dimension is called SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis). In this step, the proteins are separated based on 

their molecular weight (MW). SDS-PAGE is carried out in gels made of cross-linked 

polyacrylamide. SDS is a detergent that bonds to proteins, so that the proteins are 

denatured and the intrinsic charges of proteins eliminated. The number of SDS 

molecules, and thus the number of negative charges associated with the protein, will 

depend on the length of the denatured protein. When the electrical field is applied, 
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smaller proteins migrate more rapidly in the gel matrix and larger molecules move 

slowly. 

    To perform 2D-PAGE, a protein mixture is dissolved in rehydration buffer, which 

contains nonionic detergent, denaturing and reducing reagents to increase the sample 

solubility during IEF. An IPG gel strip is soaked in the sample solution for several 

hours to suck the proteins into gel matrix, which is called rehydration. Then a high 

voltage is applied across the gel strip and proteins are focused at their pI. The IPG gel 

strip containing focused proteins is equilibrated in SDS buffer and sealed with a SDS-

PAGE gel piece. In the second dimension, the proteins migrate perpendicularly to the 

IPG gel strip under the electric field. To visualize the spots, the gel can be stained by 

various methods, including silver staining, Coomassie brilliant blue staining and 

fluorescent staining. Protein spots can be excised for in-gel digestion. The resulting 

peptides are extracted and subjected to mass spectrometry for protein identification. 

    Two-dimensional PAGE which combines IEF and SDS-PAGE was introduced in 

1975 by O’Farrell20 and Klose21 independently. Two-dimensional PAGE transited 

from a descriptive to an analytical technique in the 1990s. With the improvement of 

techniques, including IPG strips and mass spectrometry, 2-D PAGE has been widely 

used in proteomic studies22-27. However, it is not sufficient for proteome analysis 

because of some fundamental limitations. Usually, 2D-PAGE is able to separate 

proteins with the pI range of 3.0-10.0 and MW range of 20-200 kDa. Those proteins 

with pI and MW values exceeding these ranges are hard to detect. This problem could 

be partly resolved by extending the available pH gradients19, 28.  In addition, it has 

been demonstrated that the limited dynamic range (max. 104) of 2D-PAGE has 
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hampered the ability to identify low-abundance proteins, which are usually 5 to 6 

orders of magnitude lower than the most abundant proteins in complex biological 

samples29. This means that enrichment or prefractionation methods should be used to 

access the less abundant proteins. Moreover, more hydrophobic proteins, such as 

membrane proteins, tend to precipitate during IEF due to the zero net charge. 

Membrane proteins should be solublized in lipid bilayers and not in water. Detergents 

are used to mimic a lipid-like environment in aqueous solutions. This problem also 

links to the initial extraction and solubilization of membrane proteins and seems not 

to be resolved by a single solution.  

2.4.2  Liquid-phase separation 

Because of the limitations of 2D-PAGE method outlined above, several strategies 

have been proposed for more comprehensive proteome analysis based on liquid phase 

separation. Generally, protein/peptide mixtures extracted from cells or tissues are 

separated with high performance liquid chromatography (HPLC) or capillary 

electrophoresis (CE) at first, then the resulted fractions are subjected to mass 

spectrometry on-line or off-line.  

2.4.2.1  High Performance Liquid Chromatography (HPLC) 

    Chromatography is a powerful separation technique applied in all branches of 

science. Because of its high resolving power, reproducibility and compatibility with 

electrospray mass spectrometry, the applications of high performance liquid 

chromatography have grown extensively in the past decade to meet the increasing 

needs of scientists for characterize complex mixtures.  
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      In a chromatographic separation the sample is carried by a mobile phase, which 

could be a gas or a liquid. Then the mobile phase is driven through a stationary phase, 

which is fixed in a column or on a solid surface. The two phases are selected so that 

the components in the sample can distribute between the two phases to different 

degrees. The components, which stick strongly to the stationary phase, move slowly 

with the flow, while those components interacting weakly with the stationary phase 

travel rapidly. The difference of mobility results in separation of the sample 

components, which can be detected and analyzed qualitatively and quantitatively.  

2.4.2.1.1  Reverse-Phase Liquid Chromatography (RPLC) 

      Reverse-phase liquid chromatography has become the most widely used of all the 

types of chromatographic procedures. In RPLC, the stationary phase is nonpolar, 

often a hydrocarbon (such as C4 or C18 chains), covalently bonded to the support 

particles of the packing. The mobile phase is relatively polar, usually a mixture of 

water and organic solvent. A reverse-phase separation is started from an aqueous 

solution containing low concentration of such solvents as methanol, acetonitrile, or 

tetrahydrofuran and the most polar component is eluted out first. As the organic 

component of the mobile phase is increased, the polarity is decreased and the less 

polar molecules are flushed out subsequently. The performance of the column is 

affected by the length of hydrocarbon chains: longer chains are more retentive. In 

practice, C4 columns are used for protein separation while peptides are fractionated 

with C18 columns. Currently, most of the LC separations in proteomics are 

performed in RPLC mode because of its compatibility with mass spectrometry.  
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2.4.2.1.2  Ion-exchange chromatography 

     Ion-exchange chromatography was first developed in the mid-1970s30 and includes 

cation-exchange and anion-exchange chromatography, according to the stationary 

phase of the column. The active sites for cation-exchange resins are usually the 

sulfonic acid group-SO3
-H+ and the carboxylic acid group-COO-H+. The former is a 

strong acid and the later is a weak acid. Anion-exchangers contain tertiary amino 

groups R-N(CH3)3
+OH-, a strong base, or primary amine groups R-NH3

+OH-, a weak 

base. The mobile phase in ion-exchange chromatography consists of an aqueous 

buffer of various concentrations of ionic compounds such as Na+Cl-. Ion-exchange 

processes are based on the exchange equilibrium between the ions on the resin 

surface and ions of the same sign in solution. In most applications of ion-exchange 

chromatography, elution is carried out by a salt solution with concentration increasing 

in steps. The analyte ions with the weakest static electric interaction with the resin are 

elution at lower salt concentration and ions strongly interacting with the resin are 

eluted at higher salt concentrations.  

     Ion-exchange chromatography has been used for protein and peptide separations 

for a long time and is often used as the first dimension in a 2-D LC separation. For 

example, Opiteck et al. described a 2-D orthogonal LC-MS analysis system for the 

separation of protein mixtures31. This system used cation-exchange chromatography 

and reversed-phase chromatography coupled by an eight-port valve. The RPLC 

effluent was detected by a UV detector and an electrospray mass spectrometer. 

     An innovative approach termed “multidimensional protein identification 

technology” (MudPIT) was introduced by Yates et. al. 32-33. In this approach, a 
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protein mixture was digested and peptides were separated by a biphasic 

microcapillary column which is shown in Figure 2-4. The biphasic column was 

packed with strong cation-exchange and reversed-phase packing materials and 

connected to a microcross. The effluent from the column was sprayed into the mass 

spectrometer directly. Since introduced, MudPIT has been used for profiling a wide 

range of proteomes with little modification35 and extended for quantitative  

analysis 36-38. 
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Figure 2-4.  Multidimensional protein identification technology (MudPIT) 
electrospray interface including a biphasic microcapillary column packed with strong 
cation-exchange and reversed-phase packing material connected to a microcross34. 
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2.4.2.1.3  Size-exclusion chromatography 

      Size-exclusion chromatography (SEC), which is also called gel filtration 

chromatography, is a powerful technique particularly useful for high-molecular-

weight species. The particles packed in a size-exclusion column contain a network of 

uniform pores in which molecules are trapped and removed from the flow of mobile 

phase. The retention time of analytes depends on the size and shape of molecules. 

Molecules which are larger than the pore size of the stationary phase are excluded and 

eluted first, while molecules with significantly smaller size than the pore size (such as 

solvent and salt molecules) will penetrate throughout the pore maze and travel for the 

longest time. The intermediate-size molecules between the two extremes are eluted 

according to their diameters. Size-exclusion chromatography differs from other 

procedures in that no chemical or physical interaction between the analytes and the 

stationary phase is involved.  

    Size-exclusion chromatography is usually used as the first dimension in 2-D LC 

separation with high reproducibility and relatively short analysis time39. SEC is not 

that popular in proteome analysis because of its limited loading capacity and 

resolving power. 

2.4.2.2  Capillary electrophoresis (CE) 

     Electrophoresis is a method to separate charged species based on their differential 

migration rates in a buffer across which has been applied a dc electric field. 

Electrophoresis separations are performed in two formats: one is called gel 

electrophoresis (mentioned above), and the other is capillary electrophoresis (CE). 

Capillary electrophoresis has become an important separation tool used by chemists 
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and life scientists since it was developed in 1970s40. CE has demonstrated the 

potential yielding high-speed, high-resolution separations of bio-polymers as well as 

small pharmaceutical reagents analyzed in the miniscule amounts. Sample size for CE 

is in the nanoliter range. Thus the sensitivity of this method is much higher than other 

separation methods on a mass basis. Additionally, the separated species are eluted 

from one end of the capillary, so quantitative detectors, such as UV absorption, mass 

spectrometry, can be used instead of the staining techniques of gel electrophoresis. 

Capillary electrophoresis is performed in several modes: capillary zone 

electrophoresis (CZE), capillary isoelectric focusing (CIEF) and capillary 

isotachophoresis (CITP). 

2.4.2.2.1  Capillary zone electrophoresis (CZE) 

    CZE is the simplest and most universal of the techniques for the separation of 

analytes varying in size and character. To perform a CZE separation, the capillary is 

filled with a separation buffer with appropriate pH and the sample is introduced at the 

inlet. Both ends of the capillary and the electrodes from a high voltage power supply 

are placed into running buffer reservoirs. The applied potential causes the ionic 

species in the sample plug to migrate with mobility determined by their charges and 

masses, and eventually to separate into zones. The resolved zones with buffer regions 

between them pass a detector where information is collected and stored by a data 

processing system. Capillary zone electrophoresis provides a rapid separation 

technique for small ions, small molecule species and biopolymers, which usually 

takes several minutes to complete.  
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     Capillary zone electrophoresis has been widely used for separation of peptides 

with high separation efficiency41-43. However, the limited sample injection volume 

makes it difficult to detect minor components in a complex mixture. So 

preconcentration-methods, such as transient isotachophoresis44, are often used to 

satisfy the detection limits.  

2.4.2.2.2  Capillary isoelectric focusing (CIEF) 

      Capillary isoelectric focusing is used to separate amphiprotic species, such as 

amino acids and proteins that contain a weak acidic and a weak basic group. An 

amphiprotic compound is capable of accepting and donating a proton in solution. As 

zwitterions the amphiprotic molecules bear both positive and negative charges in 

solution. The pH, at which the net charge of the zwitterions is zero, is called the 

isoelectric point (pI) and is an important physical character of amino acids. A CIEF 

separation is performed in a buffer mixture varied in pH continuously along the 

capillary length. This pH gradient is established from a mixture of different 

ampholytes in aqueous solution. Ampholytes are small compounds containing 

carboxylic and amino groups. Ampholytes mixtures with different pH ranges are 

available commercially. To perform a CIEF separation, the sample is dissolved in a 

buffer containing ampholytes of the desired pH range and transferred into a capillary 

tube. One end of the capillary is inserted into a basic solution such as ammonium 

hydroxide, and that also holds the cathode. The other end is in an acidic solution, such 

as acetic acid, that also holds the anode. When the voltage is applied, the ampholytes 

negatively charged would migrate towards the anode while the positively charged 

species would move to the cathode. In migration each species is continuously titrated 
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and eventually reaches the pH where its net charge is zero and stops moving. This 

process goes on for all ampholyte species and ultimately a continuous pH gradient is 

formed throughout the tube. Analyte ions migrate until they reach their pI and are 

sorted into several narrow bands located at certain pH value. In order to detect the 

sample bands, the focused zones are mobilized towards the detection point at one end. 

The mobilization can be accomplished by applying a pressure or vacuum at one end 

of the capillary, which is called hydraulic mobilization.  

      Shen et al. studied capillary isoelectric focusing of peptides and about 500-fold 

concentration factor was gained through focusing process45. And CIEF was proven to 

rapidly measure the isoelectric points and provide high resolution of up to 0.01 pI 

difference45. CIEF has been combined with mass spectrometry through an ESI 

interface to provide high efficiency, speed separation of protein and peptides46. 

2.4.2.2.3  Capillary isotachophoresis (CITP) 

    Capillary isotachophoresis, unlike other modes in capillary electrophoresis, 

employs a discontinuous electrolyte system. In a separation, the sample is injected 

between two buffers, the leading buffer containing ions of a higher mobility than any 

analyte ions and a terminating one containing ions with lower mobility than any of 

the sample ions. For the cation separation the leading buffer is connected to the 

cathode and the terminating buffer is to the anode. When the potential is applied, 

analyte ions migrate as in CZE and resolve into several adjacent bands sandwiched 

between the leading and terminating zones. After the equilibrium is formed, the bands 

move at the same velocity. The difference between CITP and CZE is that in CITP the 
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analytes bands are immediately adjacent to one another without a buffer band in 

between (See Figure 2-5).  

      Capillary isotachophoresis is used as an online preconcentration method prior to 

CZE, because both of them are performed under the same conditions. Gysler et al. 

employed a single CITP to concentrate recombinant cytokine fragments before 

separation and detection with CZE-MS47. 

  

      Moreover, some of these techniques were combined together for 

multidimensional separation of proteins and peptides. Mohan et al. coupled CIEF 

with CITP/CZE through a microdialysis junction and demonstrated that this 2-D 

system provided a peak capacity of up to 160048. Chen et al. integrated CIEF with 

RPLC by a series of short trap columns to separate yeast cell lysate49.  
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Figure 2-5 Procedures of capillary electrophoresis separations 
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2.4.2.3  Two-dimensional separations involving gels 

      Each dimension of 2-D gel electrophoresis has been combined with LC-MS/MS 

to characterize protein mixtures. 

      SDS PAGE coupled with LC-MS/MS has been used by many groups to 

characterize more hydrophobic proteins, such as membrane proteins and 

mitochondrial proteins. Taylor and colleagues analyzed mitochondrial proteins 

isolated from human heart cells by SDS PAGE as the first dimension and each band 

was excised and subjected to gel digestion. The result peptides were extracted from 

gel piece and further analyzed by RPLC-MS/MS50. By using the same method, 

Rezaul et al. identified 680 proteins which were mitochondrial or mitochondrial 

associated proteins51. 

      Cargile et al. demonstrated the potential use of IPG as the first dimension in 

shotgun proteomics followed with LC-MS/MS52-54. The cytosolic fraction from E coli 

was digested and loaded on an IPG strip for isoelectric focusing. Then the strip was 

cut into several pieces and the peptides were extracted from the gel and separated by 

LC-MS/MS. More 6000 peptides and 1200 proteins were identified from 10 µg 

starting material52.  

2.4.3  Prefractionation techniques 

      The success of proteomic research relies on the rapid development of several 

areas: mass spectrometry, bioinformatics and separation technology. Large-scale 

analysis of complex mixture has been realized by coupling HPLC separation and MS. 

Thousands of proteins can be characterized by shotgun proteome technologies. 

However, cells are extremely complex and may contain hundreds of thousands of 
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proteins with various physical and chemical properties. And their expression levels 

may differ by 5-7 orders of magnitude within a cell. The relatively low abundance 

proteins are usually obscured by more abundant proteins when analyzed by gel or gel-

free techniques. Therefore, most of the proteins identified in the experiments are 

highly abundance proteins. Thus, initial fractionation methods must be employed to 

get a better understanding of a cell. 

2.4.3.1  Subcellular fractionation 

      Subcellular fractionation is the first step to reduce the sample complexity and can 

be efficiently combined with various strategies for downstream proteomic analysis. 

Progress in biological techniques has made it possible to isolate and purify organelles, 

such as nucleus, mitochondria, ribosome, Golgi apparatus, exosomes, lysosomes and 

peroxisomes. Subcellular fractionation separates organelles based on their physical or 

biological properties and usually consists of two major steps: (i) breaking the cellular 

organization (homogenization), and (ii) isolateing the different population of 

organelles from the homogenate. The collected cells are homogenized, and 

centrifuged at a low speed to spin down the pellet, which contains nuclei, cell debris 

and unbroken cells. Nuclei can be purified by further analysis and the other organelles 

can be separated from the supernatant by gradient centrifugation where sucrose is 

commonly used as a medium. Further purification of the isolated organelles is 

necessary for comprehensive analysis of total organelle proteomes.  

      As an example, Wu et al. characterized a stacked Golgi fraction using 

multidimensional protein identification technology55. The Golgi fraction was enriched 

from rat liver using two different sucrose step gradient centrifugations. In this study, 
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110 proteins identified were known Golgi residents and proteins localized in other 

organelles were reported functionally interfacing between Golgi, endoplasmic 

reticulum and cytoskeleton. Jiang and colleagues have constructed a protein database 

for rat liver by combining subcellular fractionation and 2-D LC-MS/MS56.  

2.4.3.2  Affinity chromatography 

Affinity chromatography is a powerful protein fractionation method, which is 

based upon the specific interaction between the immobilized ligand and the target 

proteins. Affinity chromatography can be employed to reduce sample complexity 

before 2D gel or gel-free separation.  

Affinity chromatography can be used to remove a specific protein or group of 

proteins which have high abundance to help detect proteins present at low 

concentration. A typical example is the removal of albumin and immunoglobulin G 

(IgG) from serum samples by affinity resins. The antibodies for these proteins are 

immobilized and cross-linked to the stationary phase of a column. When the sample 

flows through the column, the target proteins will bind to their antibodies and be 

retained on the column. Other proteins will come out. The column can be regenerated 

by changing buffer conditions35, 57.  

On the other hand, affinity chromatography can also help enrich low 

concentration proteins. In the study of phosphorylated proteins, immobilized metal 

ion affinity chromatography (IMAC) is often used to selectively enrich 

phosphoproteins and phosphopeptides. In this technique, metal ions including Fe 

(III), Al (III) or Ga (III) are chelated to a support. Because of the affinity of the metal 

ions for the phosphate moiety, phosphopeptides can be bound. The phosphopeptides 
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can be eluted from the column with high pH or phosphate buffers, the latter usually 

requiring a further desalting step before MS analysis58. As another example, Kaji and 

colleagues developed a strategy for large-scale identification of N-glycosylated 

proteins from a complex biological sample by using a lectin column to affinity 

capture glycopeptides59. 

2.4.3.3  Prefractionation of proteins and peptides based on their electrochemical 

properties 

      At present, two major approaches have been developed to fractionate proteins and 

peptides according to their isoelectric points: chromatofocusing and preparative IEF.  

      Chromatofocusing is an ion-exchange chromatography technique where the 

elution is realized by dropping the pH of the elution buffer so that proteins come out 

in the order of decreasing isoelectric point. Usually, the ion exchanger is equilibrated 

at a relatively alkaline pH and then the resin is titrated by amphoteric buffers to the 

lower pH in a linear manner. Components with a particular pI will focus and elute as 

a single peak during the pH gradient. Lubman and colleagues fractionated proteins 

using chromatofocusing followed by RPLC60. However, like conventional ion-

exchange chromatography, this procedure introduces a huge amount of salt which can 

be a problem for down stream analysis. 

      There are two types of preparative IEF apparatus available now. The Rotofor has 

the longest history. The instrument setup is shown in Figure 2-6. It consists of 20 

chambers separated by liquid-permeable nylon screens61. It uses the same principle as 

conventional isoelectric focusing utilizing ampholytes to establish the pH gradient 

throughout the chambers. During the separation, the whole cell rotates to avoid 
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overheating and gravity effect. After the separation, the fractions are collected 

simultaneously by 20 needles connected to a vacuum source. Recently, the Rotofor 

has been used as the first dimension in a 2-D methodology. Lubman et al. combined 

Rotofor with RPLC to analyze intact proteins from cancer cells62.  Xiao and 

colleagues employed Rotofor and RPLC-MS/MS to separation peptides from human 

serum and resulted in 437 proteins identification63. 

The second system employs isoelectric membranes to realize separation. 

Isoelectric membranes are fabricated with immobilized ampholytes adjusted to a 

desired pH. Figure 2-7 shows the scheme for this kind of apparatus. The membranes 

work as pH boundaries, through which charged protein or peptide molecules are 

titrated. The analyte keeps moving driven by the electric field until it reaches its pI. 

Then it stays in the corresponding chamber. This technique was introduced by 

Righetti et al. 64, and has resulted in the large-scale apparatus-multicompartment 

electrolyzer (MCE) (sold by ProteomeSystems). Pedersen et al. used an MCE to 

fractionate a membrane fraction of yeast and identified 780 proteins, including 28% 

low abundance proteins and 49% membrane or membrane associated proteins65. 

Based on the same principle, Speicher et al. developed a smaller device and applied it 

in global analysis of human cancer cell proteomes 67-70(IEF Fractionator, Invitrogen 

Inc).   
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                                  Figure 2-6 Scheme of Rotofor instrument61 
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Figure 2-7 Scheme of protein prefractionation using isoelectric membranes66 
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2.5  Quantitative proteomics 

      Much effort in proteomics is focused on methods to effectively identify proteins. 

When cells are exposed to certain environments, protein expression levels can be 

changed by mechanisms involving cell survival. Protein degradation can also be 

modified. Thus, quantitative protein profiling is important to study protein dynamics 

involved in cellular responses. A variety of chemical, metabolic and enzymatic stable 

isotope labeling techniques have been developed to analyze relative protein 

expression in two or more cell lines. In these methods, one sample is labeled with a 

light reagent and the other one is labeled with a heavy reagent. The two samples are 

combined and analyzed by mass spectrometry. The ratio of the two isotopic peaks 

determined from the mass spectra can be used to calculate the relative protein 

abundance. 

2.5.1  In vivo labeling 

      In this procedure, cells are grown in two separate media, one of which contains 

amino acids carrying heavy stable isotopes. Thus the protein components in one 

culture are labeled with heavy isotopes while the other culture is labeled with light 

isotopes. The two cell harvests are combined, the proteins extracted, and peptides are 

analyzed by MS based techniques. This method was introduced by Oda et al.71: two 

pools of proteins, one of which was extracted from bacteria grown in 15N media, were 

combined and separated by gel electrophoresis. Then the proteins of interest were 

digested and analyzed by MS and the relative quantities were determined by the 

isotope distribution ratio. More recently, this method was combined with LC-MS/MS 

for analyzing the whole cell lysate36, 72-75. Media containing isotopically labeled 
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lysine and arginine has been used to study mammalian cells37-38, 76. In vivo isotopic 

labeling has been proven to be an effective method for quantitave proteomics. 

However, this approach cannot be used to label clinical and animal samples. 

2.5.2 In vitro labeling 

2.5.2.1  Isotope-codes affinity tag (ICAT) labeling 

    The isotope-coded affinity tag (ICAT) approach was introduced by Aebersold and 

coworkers77. As shown in Figure 2-8, the ICAT reagent consists of a biotin moiety 

(affinity tag), an isotopically labeled linker (1H/2H) and a thiol-reactive group (which 

alkylates cysteinyl residues). The proteins extracted from two separate cell cultures 

are labeled with ICAT reagents on the cysteine residues before they are combined and 

digested. Then the peptide mixture is eluted through an avidin affinity column, 

interacts with the biotin tag to isolate the labeled peptides. Qualitative and 

quantitative information can be obtained from mass spectra. This approach is limited 

to quantify proteins containing cysteines.  
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Figure 2-8 Structure of the ICAT reagent and the ICAT strategy for quantitative 
proteomic analysis77 
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2.5.2.2 Enzyme catalyzed 18O labeling 

   Enzyme-catalyzed 18O-labeling is a simple and convenient stable isotopic coding 

strategy, in which proteins are enzymatically digested in normal or 18O water1-3, 78-80. 

The reaction mechanism is shown in Figure 2-9. The enzyme covalently bonds the 

target residue, e.g. arginine and lysine in the case of trypsin, and that intermediate is 

then decomposed by H2
18O or H2

16O. The enzyme recognizes and re-bonds the C-

terminal residues of the peptide and decomposition introduces the second 18O atom. 

Members of the family of serine proteases (including trypsin, Glu-C endoprotease, 

Lys-C endoprotease, chymotrypsin) incorporate two atoms of 18O into the C-termini 

of peptides, resulting in a mass shift of +4 Da for each peptide fragment. It was 

reported that the covalent bond between oxygen atoms and the carbonyl carbon are 

resistant to chemical back exchange and stable through liquid chromatography and 

ionization process81-82. Enzymatic back exchange is controlled by removing 

immobilized trypsin, or chemically inactivating it. The comparative proteomic studies 

are carried out by mixing two pools of peptides, one of which is labeled with 18O and 

the other is labeled with 16O, and analyzed by mass spectrometry.   
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Figure 2-9 Mechanism of enzymatic 18O labeling reaction2 
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The ratios of 18O/16O peptides are calculated using equation 12 

 

 

Ratio I =                                                                                                       equation 1 
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 I2 -+I0 
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This equation takes into account not only the ratio of labeled and unlabeled peak 

areas, but also contributions from incomplete labeling, and it corrects for 

contributions from the natural isotopic distribution of the peptide. In this equation, I0, 

I2 and I4 are the observed peak areas for the monoisotopic peak for the peptides 

without 18O label, the peak 2 Da higher, and the peak 4 Da higher, respectively. M0, 

M2 and M4 are the theoretical peak areas for the monoisotopic peak of a peptide with 

known composition, the peak 2 Da higher and the peak 4Da higher, respectively. The 

theoretical distribution of the unlabeled and labeled peptides is assumed to be 

identical. 

2.6  Cancer chemotherapy 

      Chemotherapy is the treatment of cancers with drugs that kill cancer cells. It is the 

most effective treatment for metastatic tumors. Chemotherapy is used to treat patients 

whose cancer does not respond to local excision or radiation (about 50% of total 

cancer cases), and patients with haematological malignancies. The anticancer drugs 

are often administered as a pill or injected into vein, so they can travel throughout the 

body in the bloodstream. This makes chemotherapy different from surgery and 

radiation which are confined or localized to one area or organ. Traveling throughout 
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the whole body, the drugs can access cancer cells which may have spread to other 

organs and treat cancers systemically83. 

      There are more than 50 chemotherapeutic drugs available now and more are being 

developed and tested in clinical trials. Many anticancer drugs target DNA in the 

nuclei of the cancer cells to interfere with the ability of cells to grow or multiply. 

Based on their actions, the drugs can be classified into the following types: covalent 

DNA binding drugs, non-covalent DNA binding drugs, antimetabolites, inhibitors of 

chromatin function, and drugs affecting endocrine function83. 

2.7  Drug resistance 

      Tumor cells are able to become simultaneously resistant to anticancer drugs, 

which is called drug resistance. Drug resistance is a major problem in cancer 

treatment. There are two general classes of resistance to anticancer drugs: intrinsic 

and acquired resistance. Intrinsic resistance impairs delivery of anticancer drugs to 

tumor cells resulting from poor absorption of orally administered drugs or increased 

drug metabolism that lowers the diffusion of drugs from blood to the tumor mass84, 85. 

Acquired resistance arises in the cancer cell itself due to genetic and epigenetic 

alterations that affect drug sensitivity. When tumor cells develop resistance, they 

usually become resistant to several drugs, especially to those structurally and 

functionally related. This phenomenon is called multidrug resistance (MDR) 86. 

      Drug resistance is a significant obstacle to successful chemotherapy. It is 

important to understand the mechanisms of drug resistance in order to predict and 

overcome it by improving chemotherapy. Cellular mechanisms of drug resistance 

have been studied for three decades. Figure 2-10 illustrates different mechanisms of 

 41 
 



 

cellular drug resistance described during these years. Increased drug efflux generally 

results from the expression of ATP-dependent efflux pumps, which belong to the 

family of ATP-binding cassettes (ABC) transporters86-88. Reduced drug uptake refers 

to the failure of water-soluble drugs to accumulate in cells without evidence of 

increased efflux89. MDR can also result from activation of detoxifying systems90, and 

from defective apoptotic pathways91-92. The analysis of drug resistance is still a work 

in progress. 

2.8  Model organisms used in this study 

Drug susceptible MCF-7 cancer cells (control cells), have been widely used in 

laboratory studies since the line was established from the pleural effusion of a patient 

with metastatic mammary carcinoma in 197393. The three drug resistant MCF-7 cell 

sublines studied here are stable lines derived from this parental cell line. 

The VP-16 or etoposide resistant MCF-7 cancer cell line (MCF-7/VP) was 

developed in Dr. Ken Cowan’s lab at NIH by selection during culture in increasing 

concentrations etoposide. It is reported to be 28-fold resistant to etoposide94. VP-16 is 

clinically used in the treatment of small cell lung cancer and testicular cancer. It can 

induce DNA strand breaks in the tumor cells95-96. 

MCF-7 cells resistant to mitoxantrone (MCF-7/MX) were also provided by Dr. 

Ken Cowan98. The line was isolated by serial passage of the parental control MCF-7 

cells in stepwise increasing concentration of the anthracenedione mitoxantrone. These 

cells are about 4000-fold resistant to mitoxantrone97. 

The MCF-7 cell line selected for resistance to adriamycin in the present of 

verapamil (MCF-7/AdrVp) was provided by Dr. Douglas Ross from University of 

 42 
 



 

Maryland Medical School98. It was isolated by selecting the control MCF-7 cells with 

incremental increases of adriamycin in the presence of 10 microverapamil. It is 900-

fold resistant to Adr99. 

 

 

    

Figure 2-10 Mechanisms of drug resistance in cancer chemotherapy86 
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Chapter 3. Evaluation of Solution Phase Isoelectric Focusing as part of 

Proteomics Strategies 

3.1 Introduction 

Solution phase isoelectric focusing (solution IEF) has been introduced by several 

laboratories64-70as a protein prefractionation strategy before 2-D gel electrophoresis. 

In this technique, a protein mixture can be fractionated into a series of chambers 

under an electric field. These chambers are bounded by membranes with immobilized 

ampholytes. In this study, we have optimized the solution isoelectric focusing method 

for peptide separation and built it into a two-dimensional separation strategy. This 

chapter describes the evaluation of the performance of this solution IEF device. 

Chapter 4 presents the integration and application of the two-dimensional method for 

proteomic analysis. 

3.2  Experimental 

Materials 

      The protein isoelectric focusing cell, a Protean II Cell, model 1000/500 power 

supply, immobilized pH gradient (IPG) strips (17cm, pH 3-10), Protean II ready gels 

(8-16% Tris-HCl precast gel 110x80x1.0mm, IPG well), microbiospin P6 columns in 

Tris-HCl buffer and Biosafe Coomassie Stain were purchased from Bio-Rad 

(Hercules, CA). Nuclei Pure Prep Nuclei Isolation Kit, trypan blue, urea, thiourea, 

chaps, dithiothreitol (DTT), NH4HCO3, NaCl, iodoacetamide, TrismaBase, sodium 

dodecylsulfate (SDS), glycerol, L-lysine, L-arginine, phosphoric acid were from 

Sigma Co. (St. Louis, MO). Modified porcine trypsin (sequence grade) was 
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purchased from Promega (Madison, WI). ZipTip C18 was from Millipore (Billerca, 

MA). The MCE kit is from Proteome Systems (Woburn, MA).  

Cell culture and isolation of nuclei and preparation of nuclear proteins 

      Nuclei pellets were provided by Dr. Zongming Fu in the Fenselau laboratory. 

Briefly, MCF-7 cancer cells were cultured in MEM (Sigma, St. Louis, MO) with 10% 

of FBS and 1% penicillin streptomycin. Every 6 months, the drug resistant cell lines 

were subjected to a reselection cycle of three passages with culture medium 

containing increased concentration of the appropriate drugs. Cultured MCF-7 cells 

were harvested at 95% confluence, released with trypsin, centrifuged at 500g, and 

washed twice with PBS. A nuclei isolation kit (Sigma) was used to isolate and purify 

MCF-7 nuclei, with slight modifications from the user instructions 98. The nuclei were 

suspended in a NaCl buffer (20mM Hepes pH 7.9, 1.5mM MgCl2, 0.5M NaCl, 

0.2mM EDTA and 25% glycerol) with a ratio of 4ml solution every 1 gram of nuclei, 

vortexed thoroughly for 15 seconds every 10 minutes for a total of 40 minutes on ice 

and centrifuged at 16000g for 10 minutes. The supernatant was immediately 

transferred to new pre-chilled tubes and snap-frozen in aliquots with liquid nitrogen 

and stored at -80°C. The pellets were frozen in -80°C for further analysis. 

Protein assay 

      Bio-Rad Protein Assay kit was used to determine protein concentration of the 

nuclear protein extracts. The Bio-Rad protein Assay is based on the method of 

Bradford, which is compatible with the chemicals used in protein extraction. This 

method is a dye-binding assay, in which the color of the dye changes differentially in 

response to various concentration of protein. The Coomassie Brilliant Blue G-250 dye 
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binds to primary basic and aromatic amino acid residues, especially arginine, and the 

absorbance maximum of the dye shift from 465nm to 595nm. The extinction 

coefficient of a dye-albumin complex solution was found to be constant over a 10-

fold concentration range. Thus, Beer’s law could be used to accurately measure 

protein quantity by selecting an appropriate ratio of dye volume to sample 

concentration. A series of 0, 1.5, 2.5, 5.0, 7.5 and 10µg/ml of bovine serum albumin 

(BSA) standard solutions were used to make a standard curve. The unknown sample 

was diluted properly. The standard and unknown solutions were mixed thoroughly 

with dye solution at a volume ratio of 4: 1. The absorbance was read at 595nm using a 

Beckman DU 530 life science UV/Vis spectrometer. The protein concentrations of 

unknown were calculated based on their absorbance and dilution factor100. 

Protein fractionation by solution isoelectric focusing using Amika device 

      A five-chamber separation device and an electrophoresis tank (Amika Corp. 

Columbia, MD) were used in the experiments. The device includes five Teflon 

dialysis chambers (500µl-volume each) connected in tandem plus two terminal Teflon 

caps (Amika Corp.). The adjacent separation chambers were divided by membranes 

with the desired pH values (ProteomeSystems, Woburn, MA), and two 3.5-kDa 

dialysis membranes (MFPI, Seguin, TX) were put at each end of the terminal 

chambers. Two O-rings (12 mm i.d., Scientific Instrument Services, Ringoes NJ) 

were used to seal each membrane between two chambers. A sample of MCF-7 

nuclear protein (1.6mg) was solubilized in 1.5 ml of IPG rehydration buffer and 

loaded into the three separation chambers. The two terminal chambers were filled 

with electrode buffers, 7mM phosphoric acid (anode) and 20 mM lysine/20 mM 
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arginine (cathode). The assembled device was put into the electrophoresis tank and 

the two parts of the tank were filled with anode and cathode electrode buffers, 

respectively. A model 1000/500 power supply (BioRad, Hercules, CA) was used for 

isoelectrofocusing. Typically, 150 V was used for 1 h (initial ~2.5 mA, final 

~0.4mA), 250 V for 1 h (initial ~ 0.7mA, final ~ 0.5 mA), followed by 600 V (initial 

~ 1.4mA, final ~ 0.2 mA), and then 1000 V for overnight (final 0.17mA). After 

fractionation, solutions (~500µl each) were removed from the three chambers and the 

surfaces of the membranes and the inside walls of the chambers were washed with 

200µl of rehydration buffer. The rinses were combined with the sample fractions. The 

membranes were removed and soaked in 250µl rehydration buffer for 1 h to extract 

proteins and combined with the appropriate sample fractions. In order to evaluate the 

separation efficiency, 25% of each fraction was separated on pH 3-10 2D-PAGE 102. 

Sample fractionation by multi-compartment electrolyzer (MCE).  

ProteomeSystems IsoelectrIQTM MCE was used in these experiments and all the 

materials were from Proteome systems (Woburn, MA). Five chambers (5ml each) 

were assembled according to the instructions and an MCP-7 nuclear extract (8mg) 

was dissolved in the MCE Sample Solubilizing Solution and loaded into the central 

chamber. Two chambers at each end were filled with MCE Electrode Solution and 

other chambers were filled with MCE Chamber Solution. A two-step 

isoelectrofocusing program was used, 100-1500 V slow ramp for 8 h, and then 1500 

V for 8 h. After separation, each fraction was removed and the membranes and inside 

walls of the chambers were rinsed with chamber buffer. The membranes were 

extracted with 500µl rehydration buffer for 1 h. The rinses and extracts were 
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combined with the corresponding chamber fractions. Each fraction was concentrated 

with a centrifugal filter (5kDa, Millipore, MA) and separated on pH 3-10 2D-

PAGE102. 

2-D gel electrophoresis 

     The protein sample was desalted with a Biospin-6 spin column (Bio-Rad, 

Hercules, CA), dried by Speed Vac, resuspended in rehydration buffer, which 

contained 7M urea, 2M thiourea, 2% chaps, 50mM DTT and 1% IPG buffer 

(Pharmacia, Piscataway, NJ), and incubated at room temperature for 1 hour. For the 

isoelectric focusing step, linear 11cm IPG strips pH 3-10 (Bio-Rad, CA) were 

rehydrated in sample solution for 12 hours, and IEF was performed in a Protean IEF 

Cell (Bio-Rad). When the focusing was completed, the IPG strips were equilibrated in 

buffers containing SDS for 14 minutes each buffer. The second-dimensional gels 

were Tris-HCl 8-16% IPG well gels (Bio-Rad). The strip was pushed into the gel well 

and sealed with agarose solution (5% agarose, 25mM Tris, 192mM glycine and 0.1% 

SDS). The gel was mounted in the Protean cell II and the reservoirs were filled with 

SDS running buffer. The electrophoresis was performed at 200 V for 60 minutes. 

Then the gels were removed and soaked in a fixed solution, which contains acetic 

acid/methanol/water (5:45:50, v/v/v) for 2 hours, followed by three washes with 

water. The gels were stained with Bio-Safe colloidal Coomassie Blue G-250 (Bio-

Rad) for 2 hours and rinsed with water. The gel image was recorded with a GS-800 

calibrated densitometer (Bio-Rad). 
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In-gel tryptic digestion 

      Spots of interest were excised from the gels. The excised gel particles were 

washed with water/acetonitrile 1:1(v/v) twice. After all liquid was removed, 

acetonitrile was added to cover the gel. Then the gel pieces were rehydrated in 0.1 M 

NH4HCO3 for 5 min, and an equal volume of acetonitrile was added and incubated 

for 15 min. All the liquid was removed and the gel pieces were dried in a vacuum 

centrifuge. The gel pieces were incubated with 10 mM dithiotreitol/0.1 M NH4HCO3 

45min at 56°C and 55 mM iodoacetamide/ 0.1 M NH4HCO3 for 30min in the dark, 

respectively. After the iodoacetamide solution was removed, the gel particles were 

washed with 0.1 M NH4HCO3/acetonitrile and dried in a vacuum centrifuge. The gel 

particles were rehydrated in a 50 mM NH4HCO3 solution of 12.5ng/µl sequencing 

grade modified trypsin (Promega, Madison, WI) for 45min at 4°C. Then the enzyme 

supernatant solution was replaced by 50 mM NH4HCO3 buffer and the gel pieces 

were incubated at 37°C overnight. Peptides were extracted from the gel with 25mM 

NH4HCO3 and acetonitrile, followed by 5% formic acid and acetonitrile (1:1, v/v). 

All the extracts from same gel spot were pooled and dried in a Speed Vac.  

The peptides were redissolved with 10 µl 0.1% aqueous TFA and desalted with 

ZipTip C18 pipette tips (Millipore, Bellerica, MA), according to the user instructions. 

The tip was prewet by aspirating a wetting solution (50% acetonitrile in water) and 

dispensing the waste, and then the tip was equilibrated with the equilibration solution 

(0.1% TFA in water). The peptides were bond to the tip by aspirating and dispensing 

the sample solution for 10 cycles. Next, the tip was washed with wash solution (0.1% 

TFA in water). Finally, 5µl elution buffer (0.1%TFA, 70% acetonitrile in water) was 
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aspirated to elute peptides from the tip. The eluted samples could be used directly for 

MALDI-TOF mass spectrometer analysis. 

Mass spectrometry analysis and protein identification 

An AXIMA-CFR MALDI-TOF (Kratos, Chestnut Ridge, NY) was used to 

acquire peptide mass spectra and Mascot search programs were used for protein 

identification. The instrument was operated in reflectron mode, analyzing positive 

ions. The laser power was set at 45-50 arbitrary units. The instrument was calibrated 

with melletin and angiotensin II. One microliter of sample solution was loaded on the 

plate, covered with 1µl matrix solution (50mM α-cyano-4-hydroxycinnamic acid in 

0.1% TFA, 70% acetonitrile) and dried before it was put into the instrument. The 

spectrum was recorded by accumulating 100 laser shots and used to identify proteins, 

using the Mascot search program103 against the SwissProt database 

(www.expasy.org).  

3.3  Results and Discussion 

    The separation efficiency of isoelectric focusing was investigated by subjecting 

nuclear protein fractions recovered from each chamber to 2-D gel electrophoresis 

with Coomassie blue staining. Figure 3-3 is the gel array for the nuclear protein 

mixture before fractionation separated on a gel with a pH range of 3-10 for the first 

dimension separation. Figure 3-4 presents the 2-D gel arrays of the material recovered 

from the three chambers in the Amika isoelectric focusing device. When the set of 

gels from the fractionation experiment is compared with Figure 3-3, it is apparent that 

the nuclear extracts were separated into three pools. It should be noted that there are 

some overlapping spots found in fraction 3-5 and 5-8. Most of these spots represent 
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high abundance proteins in the nuclear fraction, such as actin, prohibitin. Because of 

the high abundance, these proteins tend to precipitate easily during isoelectric 

focusing and stick to the membrane and chamber inner surface. The sample was 

loaded into both fraction 3-5 and 5-8 chambers before separation. This could cause 

the overlap. It also appears that protein is most poorly recovered from the most basic 

chamber (Table 3-1). This is not yet understood. However, the total number of spots 

in the 2-D gel without prefractionation was 157, compared with 197 spots in the 

combined set of fractionation gels. The successful fractionation by the device 

qualifies isoelectric focusing as a potential method for analysis of complex eukaryotic 

proteomes.  

      A preparative isoelectric focusing instrument, the multi-compartment electrolyzer 

(MCE) (Proteome Systems), was also used to separate the nuclear protein and Figure 

3-5 shows the 2-D array of each fraction recovered from this instrument. It can be 

seen that this instrument provides highly effective fractionation for protein mixtures. 

However, MCE requires large sample volumes (5-50mg proteins) and results in large 

dilute fractions that need to be concentrated. Only 12% recovery was obtained from 

the MCE experiment. The large sample loss was caused by sample processing before 

and after separation. Considering the huge sample requirement and substantial loss, 

MCE is not suitable for our experiment. 

In initial tests of solution isoelectric focusing, gel membranes cast in our lab were 

used and separation was obtained (data not shown). However, the membranes were 

fragile and could not survive higher voltage and longer running times. These resulted 

in protein overlap and poor reproducibility. The robust membranes used in the MCE 
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apparatus have high mechanical strength and perform better in separation 

experiments. 

  The total protein recovery of the smaller device was also explored. Table 3-1 

summarizes protein yield from each of the chambers and the overall recovery. It 

appears that a significant amount of protein dissolved into the membranes or 

precipitated out and was not recovered. 

    It was also demonstrated that isoelectric focusing can be part of a proteomics 

strategy. In these experiments, several spots were excised from the gels shown in 

Figure 3-4 and analyzed by peptide mass mapping. Protein identifications are 

summarized in Table 3-2 and peptide MALDI mass spectra for the first and last 

entries are shown in Figure 3-6, 3-7. In these spectra, the masses labeled on the peaks 

were used in the database search. The peak at m/z 842 is a trypsin autolysis peptide, 

which was used as an internal calibration for each spectrum. 

3.4  Conclusions 

      After evaluating isoelectric focusing fractionation of human nuclear proteins, we 

propose that solution isoelectric focusing can make valuable contributions to the 

fractionation of protein mixtures and can be involved in strategies designed to 

identify proteins by mass spectrometry. The new membranes from ProteomeSystems 

have been proven to be sturdy, durable and provide satisfactory fractionation. 
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Figure 3-1 Photographs of the solution isoelectric focusing device used in our lab. 
Left: the electrophoresis tank (Amika Corp.), Teflon chambers and caps 
(multichamber Teflon dialyzer system, Amika Corp.) and 12-mm-i.d. O-rings 
(Scientific Instrument Services, Inc., Ringoes, NJ); Right: pH membranes 3-5-6.5-8-
11 (ProteomeSystems, Inc., Woburn, MA) 
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Figure 3-2 Schematic illustration of the experiment procedure. 
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Figure 3-3 2-D gel array of the nuclear protein mixture without solution IEF 
fractionation. 
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Figure 3-4 2-D gel arrays of nuclear protein mixture from three 
fractionation. (A) fraction pH 3-5, (B) fraction pH 5-8, (C) fract
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Table 3-1 Protein recoveries of the solution IEF device in the lab 

Device Initial 

loading 

Fraction 

pH3-5 

Fraction 

pH5-8 

Fraction 

pH8-11 

Sample 

recovery 

Amika 1.6mg/1.5ml 

2.0mg/1.5ml 

2.0mg/1.5ml 

304 µg 

540 ug 

197µg 

302 µg 

620 ug 

635µg 

254 µg 

 14 ug 

362µg 

54% 

59% 

60% 

 

 

 

Table 3-2 Proteins identified from spots excited from the gels in Figure 3-4 

Spot NO Protein ID pI MW Accession 
NO 

Sequence 
coverage 

1 Calreticulin 4.29 48141 Da P27797 24% 

2  Prohibitin 5.57 29804 Da P35232 37% 

3 Actin Beta 5.15 42408 Da P60709 22% 

4  Stress-70 
protein 

5.87 73625Da P38646 27% 

5 HSP 60 5.70 61016Da P10809 34% 

6 Cytokeratin 
19 

5.04 44079Da P08727 62% 

7 hnRNP A1 9.27 38715Da Po9651 41% 

8 hnRNP A2/B1 8.97 37430Da P22626 35% 
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Figure 3-6 Peptide mass map of the material in spot 1 in Figure 3-4 (A) 
 
 
 
 
 

 
Figure 3-7 Peptide mass map of the material in spot 8 in figure 3-4 (C). 
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Chapter 4 Introduction of solution isoelectric focusing in high throughput 

strategies to quantitate nuclear proteins from MCF-7 cancer cells 

A two-step labeling protocol developed in our lab introduces 18 O isotope labels 

into peptides, One reason to develop electric focusing as a fractionation method for 

peptides is to optimize the implementation of 18 O labeling in proteomic strategies. It 

is important to minimize protein manipulation before the introduction of labels so as 

to minimize differential loss. Fractionation of peptides after they are labeled will 

increase the accuracy of the quantitative measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 60 
 



 

 

 

Drug susceptible MCF-7 cells Drug resistant MCF-7 cells 

Nuclear proteins Nuclear proteins 

O-18 Labeled peptides O-16 Labeled peptides 

Solution IEF separation 

LC—MS/MS 

 

Figure 4-1 Scheme of the comparative proteomic strategy  
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4.1  Experimental: 

Materials: 

     L-lysine, L-arginine, and phosphoric acid were obtained from Sigma Co. (St. 

Louise, MO). Modified porcine trypsin (sequence grade) was purchased from 

Promega (Madison, WI). Dialysis membrane (500 Da cut-off) came from Millipore 

(Billerca, MA). MCE kit is from Proteome Systems (Woburn, MA). Isotopically 

enriched H2
18O, > 95% 18O was purchased from Isotech, Inc. (Miamisburg, OH). 

Trypsin immobilized on Poros beads was purchased from Applied Biosystems (Foster 

City, CA). PepCleanTM C-18 spin columns came from Pierce (Rockford, IL). Water 

was purified by a MilliQ system and filtered with 0.22 µm membrane (Millipore, 

MA). 

Nuclear protein extraction and in-solution digestion 

The nuclei pellets were obtained from Dr. Zongming Fu in the Fenselau lab. The 

nuclei isolation procedure was described in Chapter 3. Briefly, the MCF-7 cancer 

cells were cultured and harvested in the lab. The nuclei were isolated and purified 

with a nuclei isolation kit (Sigma). The soluble nuclear protein fraction was extracted 

with a NaCl buffer and analyzed by Dr. Zongming Fu98. The insoluble nuclear protein 

fraction was analyzed in this experiment. The pellets recovered after NaCl buffer 

extraction were resuspended in the Sample Solubilizing Buffer (ProteomeSystems, 

Woburn, MA) with the detergent excluded, and held for 30 minutes on ice. This 

suspension was vortexed vigorously for 60 seconds every 10 minutes. Then the 

suspension was centrifuged at 16000 g for 10 minutes. The supernatant fraction was 

immediately transferred to new tubes and stored at -80°C.  Protein concentration was 
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determined with the Bradford protein assay mentioned before. The proteins were 

reduced with tributylphosphine (TBP) (1:40, v/v) and alkylated with Acrylamide 

Alkylation Reagent (1:100, v/v) (ProteomeSystems) for 90 minutes at room 

temperature. Then the solution was diluted 10 times with 50mM NH4HCO3 pH 8.0. 

Proteins were digested with trypsin (Promega) (1:50, w/w) at 37°C overnight. 

Proteolytic H2
18O labeling 

     In the comparative proteomic experiment, only one of the peptide pools is labeled 

with 18O, but the procedure is applied to both pools in order to ensure experimental 

homology. Immobilized trypsin was washed with water and added into peptide 

solutions in a ratio of 1:5 (v:v) . The peptide and immobilized trypsin mixtures were 

completely dried in a vacuum concentrator. Then one residue was redissolved in 80% 

H2
18O and 20% acetonitrile, and the other was redissolved in 80% H2

16O and 20% 

acetonitrile. The solutions were rotated at room temperature for approximately 5 

hours on a bench-top rotator. Then the labeled and unlabeled peptide pools were 

mixed and analyzed.  

Peptide separation with solution isoelectric focusing 

     The same Amika device was used for peptide separation with some changes in its 

configuration. An additional membrane (pH 6.5) was inserted so that the peptides 

were divided into 6 fractions (4 separation chambers plus the two terminal chambers). 

Two 500 Da dialysis membranes were put at each end of the terminal chambers to 

protect the system from the running buffer outside. The sample was loaded in the 

chamber with pH 5-6.5. The two terminal chambers were filled with Electrode Buffer 

and the chambers without sample were filled with Chamber Buffer both of which 
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were purchased from ProteomeSystem. A shorter program was used than for protein 

separation: 100 V for 10 min, 200 V for 10 min, and 500 V for 20 min and 1000 V for 

100 min. After fractionation, solutions were collected and the inner wall and 

membranes were rinsed with 200µl chamber buffer. The rinses were combined with 

the sample fractions.  

Peptide separation with conventional reversed-phase liquid chromatography 

     A Shimazu LC system (Columbia, MD) was used to separate peptides after 

fractionation by isoelectric focusing. The column was purchased from Phenomenex 

(Torrance, CA) and packed with C18 particles. An 80 min elution gradient was used: 

95% solvent A (0.1% TFA in water) for 5 min, then solvent B (0.1% TFA in 

acetonitrile) from 5% to 60% in 55min, 60% to 90% for 10 min, hold for 5 min, and 

90% A for 10 min. The effluent was monitored by a UV detector and recorded in a 

computer. 

Peptide desalting 

      Each of the six IEF peptide fractions was desalted with a PepClean C-18 spin 

column (Pierce) according to the user guide. Each column was wetted with 200 µl 

activation solution (50% acetonitrile) twice and equilibrated with 200 µl equilibration 

solution (0.5% TFA in 5% acetonitrile) twice. The peptide fractions were mixed with 

sample buffer (3:1 v/v, 2%TFA in 20%acetonitrile) and loaded onto the columns. The 

columns were washed with 200 µl wash solution (0.5%TFA in 5%acetonitrile) three 

times. The peptides were eluted with 60µl elution buffer (70% acetonitrile). The 

effluent was dried by vacuum centrifugation and stored at -80°C before LC-MS/MS 

analysis. 
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MALDI-TOF and ESI-QqTOF analysis of 18O labeling 

      Lysozyme was used as a standard protein to exam the 18O labeling efficiency. The 

resultant peptides were desalted and loaded on a MALDI sample plate. An AXIMA-

CFR MALDI-TOF (Kratos Analytical, Chestnut Ridge, NY) was used to acquire 

peptide mass spectra using the same condition described in the last chapter. 

    Next a standard protein mixture (bovine serum albumin, chicken egg albumin, 

myoglubin, lysozyme, ribonuclease A and cytochrome c) was digested and split into 

two portions. One was labeled with regular water and the other was labeled with 

H2
18O and they were mixed at a ratio of 2:1. The mixture was fractionated by solution 

IEF and the fraction from the pH 5-6.5 chamber was analyzed LC-MS/MS. An API 

QSTAR Pulsar Qq-TOF (Applied Biosystems, Foster City, CA) instrument was used 

to acquire data. The mass spectrometer was operated in a data-dependent mode in 

which a full MS scan was followed by three MS/MS scans of the most intensive ions 

automatically selected for collision-induced dissociation (CID). 

LC-MS/MS analysis 

      Capillary reverse-phase liquid chromatography was performed using an LCQ 

DecaXP (ThermoFinnigan, San Jose, CA) instrument. The reverse-phase column was 

a 75µm I.D. x 10 cm fused capillary with a 15 µm nanoelectrospray tip and packed 

with 5µm, 300 Å BioBasic C18 particles (New Objective Inc., Woburn, MA). After 

injecting 10µl of sample, the peptides were eluted using a linear gradient of 5% 

solution B (0.1% formic acid in acetonitrile, v/v) to 60% solution B in 55 min. The 

column was then washed with 98% solution B for 5 min and 100% solution A (0.1% 

formic acid in water, v/v) for 26 min at a constant flow rate of 275 nl/min. The ion-
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trap mass spectrometer was operated in a data-dependent mode in which a full MS 

scan was followed by three MS/MS scans of the most intensive ions automatically 

selected for collision-induced dissociation (CID).  

Bioinformatics analyses 

      The MS/MS spectra obtained from LC-MS/MS were searched against the NCBI 

human database (www.pubmed.org) using SEQUEST104 (ThermoFinnigan, CA). The 

peptides concerned to be identified must achieve the criteria: cross-correlation 

(Xcorr) were higher than 1.9 for singly charged ions, 2.2 for doubly charged ions, 2.5 

for triply charged ions, and the delta correlation (∆Cn) were higher than 0.1. 
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Figure 4-2 Scheme of the two-dimensional solution IEF-LC-MS/MS proteomic 
strategy 
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4.2  Results and discussion 

4.2.1  Peptide fractionation by solution isoelectric focusing using Amika device 

    Shotgun proteomics strategies, based on peptide separation, are increasingly used 

today. Two-dimensional liquid chromatography (for example with SCX and RPLC as 

the first and second dimension respectively) provides high-throughput analysis of 

complex peptide samples. Reversed-phase liquid chromatography is always used as 

the second dimension because of its high resolution capability and compatibility with 

mass spectrometry. But ion-exchange chromatography as the first dimension has 

limited separation capacity which results in a lot of overlapping between fractions. 

Solution isoelectric focusing has been proven to successfully fractionate proteins by 

several groups including us. In this experiment solution IEF was applied to peptide 

separation using the small volume device (Amika) with a little modification. 

    Because each protein is digested into several peptides, the peptide mixture is much 

more complex than the initial protein mixture. Consequently, in the peptide 

separation, a total of 6 fractions were collected.  

Detergents in solutions can improve protein solubilization, but most of them 

impede mass spectrometry and stick on RPLC column. To optimize the subsequent 

HPLC separation and mass spectrometry analysis, a chamber buffer without any 

detergent was used. No sample precipitation during IEF was observed. IPG buffer 

was added to chamber buffer to increase the conductivity and to help maintain the pH 

gradient across the device. Because the initial concentration of the IPG buffer (0.5%, 
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v/v) was very low and dilution occurred during the experiment, the ampholytes in the 

IPG buffer were eluted earlier and did not show any interference with peptides. 

    A shorter running program, which took about 140 min, was used for peptide 

separation. Initially, the program used for protein separation was used. It resulted in 

no significant separation of the peptide mixture (data not shown). This is because of 

the difference in diffusion behavior between proteins and peptides. The separation in 

IEF is driven by the electric field and neutralized by molecular diffusion. The velocity 

of diffusion and electrical mobility are both inversely proportional to the molecular 

weight. Because the proteins are much heavier than the peptides (more than 20 times 

higher on average), the movement of protein during separation is much slower than 

that of peptides and it takes much longer for proteins to focus and diffuse than 

peptides. A long running time helps proteins to separate but hurts peptide separation. 

Before focusing is completed, the electric force is dominant. But after the isoelectric 

focusing finished, molecules are driven by diffusion. So after peptides were focused 

rapidly, diffusion occurs during the rest of the time. Peptide fractionation improved 

greatly when a short running time was used. Figure 4-3 shows the chromatogram of 

each fraction. Each fraction was eluted through the same column with the same 

solvent profile. The variation in the chromatograms indicates the varying composition 

of each fraction and indicates that peptides were successfully fractionated during 

solution isoelectric focusing. 

Peptide identification using tandem mass spectrometry 

    The mass spectrometer was programmed to select the three most intensive peptides 

from the full MS scan for tandem MS analysis. The MS/MS spectra were searched 
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against a human protein database. The peptides, which passed the criteria mentioned 

in the Experimental Section, were considered to be identified. Figure 4-4 shows a 

sample MS/MS spectrum of a doubly charged peptide. The peptide was eluted at 

35.50 min in fraction 2 and the database search proposed the sequence 

MIAGQVLDINLAAEP.  

All peptide pI values were calculated using the pI/MW calculator in 

www.expasy.org and Table 4-1 lists the sequence, pI, Xcorr evaluation, and fraction 

number for all identified peptides.  

Figure 4-5 shows the total number of unique peptides identified in each fraction. 

Fraction 3, ranging from pH 5 to pH 6.5, has the highest number of peptides 

identified followed by fraction 2 pH 3-5. The sum of the numbers in the Figure 4-5 is 

higher than the total number of peptides identified, which means there are peptides re-

identified between fractions. Figure 4-6 shows the number of chambers in which a 

peptide was observed. About 80% of the total peptides appeared in only one fraction. 

The other 20% appeared in adjacent chambers with close pH ranges. This indicates 

that most of the peptides were separated according to their pI values.  

Figure 4-7 shows the pI range of peptides in each fraction. The discontinue lines 

indicate the pH range of each fraction defined by the membranes, fraction 2 and 5 fit 

exactly in the range, most of the peptides in fraction 3 were also within the range. The 

pI values of peptides in fractions 4 and 6 were lower than the defined ranges, while 

the peptides in fraction 1 were more basic. The pI overlaps between each fraction 

were minimal except for the last two fractions, which mean the peptides were 

fractionated according to their pI. The overlap between fraction 5 and 6 was probably 
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caused by intrinsic properties of peptides. The proteins were digested into peptides by 

trypsin which cut at the C-termini of lysine or arginine. Lysine and arginine are two 

basic amino acids with pI of 9.74 and 10.76, respectively. A peptide with pI higher 

than pH 11 should have multiple lysines and arginines. Most of the peptides are fully 

tryptic peptides with one lysine or arginine at the C-termini. The peptides with 

extreme basic pI are rare. The pH of the cathode buffer was close to 11. The pH 

difference between fraction 5 and 6 is small. Several peptides occupied both fractions. 

The IPG buffer added is another factor that affects the pH gradient in the device. The 

components in the IPG buffer are ampholytes from pH 3 to 10. These ampholytes 

may affect the pH range of each chamber. Finally, the pI distribution of the peptides 

themselves may also play a role in the separation. It is obvious that there is few 

peptides appeared in the range of pH 7 to 8. Bundy and colleagues also observed this 

phenomenon as well, when they studied yeast peptide pI distribution using IPG 

strip53.  

    The reproducibility of solution isoelectric focusing was also investigated. Three 

nuclear peptide mixtures were fractionated with solution IEF separately and the same 

fractions from different runs were characterized by HPLC separation. Figure 4-8 

shows three chromatograms of fraction 2 obtained using a UV detector. Most of the 

peaks appeared in all of the three runs. The similarity of the elution profiles indicates 

the components of the same fractions from the three different solution IEF separations 

were same. 

    After isoelectric focusing, each fraction was desalted, and analyzed by LC-MS/MS. 

Each fraction was analyzed three times. It is interesting that the peptides identified in 
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the first trial didn’t necessary appear in the following repeat runs. Meanwhile, new 

peptides, which were not identified in the first run, were observed in the second or 

third trial. Figure 4-8 summarized this result. The blue bars indicate the number of 

peptides identified in each fraction during the first LC-MS/MS analysis; the purple 

bars are the sum of the peptides in the first and second LC-MS/MS analyses; and the 

yellow bars are the total peptides identified in each fraction after three LC-MS/MS 

analyses. More peptides could be identified when the same sample was analyzed 

several times by LC-MS/MS. This observation agrees with a recent report of Yates105. 

The mass spectrometer was set to select the three most abundant ions in each full 

mass scan for analysis. Unlike a UV detector, the mass spectrometer can not monitor 

the LC effluent continuously although the scan time is very short. So each MS scan 

only catches the components eluted at a certain time. As for the LC separation, each 

analysis would not be exactly the same. The MS scan may catch new ions which are 

lost in previous trial and lose another part of ions. Table 4-2 shows that the number of 

peptides identified increased with increasing injection times105.  
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Table 4-1 List of nuclear peptides identified by the two-dimensional strategy 

sequence charge pI Xcorr fraction
MESEGGADDSAEEGDLLDDDNEDRGD 3 3.42 3.34 1
GDAEKPEEELEEDDDEELDETLSER 3 3.59 3.81 1
LLDPEDVDVPQPDEK 2 3.66 3.51 1
LLEDGEDFNLGDALDSSNSMQTIQK 2,3 3.66 6.07 1,2
EEDGSLSLDGADSTGVVAK 2 3.77 3.3 1
LPPNTNDEVDEDPTGNK 2 3.77 3.59 1
LEDLLQDAQDEK 2 3.77 2.38 1
FMQDPMEVFVDDETK 2 3.77 3.43 1
ELDALDANDELTPLGR 2 3.77 2.84 1
GSSEQAESDNMDVPPEDDSKEGAGEQK 3 3.8 2.51 1
SANAEDAQEFSDVER 2 3.83 3.58 1
QSGEAFVELGSEDDVK 2 3.83 2.93 1
VDIEGPDVNIEGPEGK 2 3.83 2.86 1
GVEEEEEDGEMRE 2 3.88 3.73 1
EDLPAENGETKTEESPASDEAGEK 3 3.89 3.54 1
PMEELSEEDR 2 3.91 2.2 1,2
GDEELDSLIK 2 3.92 3.22 1,6
GFGFDFNSEEDAK 2 3.92 3.32 2
LDLDLTADSQPPVFK 2 3.93 3 1
TVLDPVTGDLSDTR 2 3.93 2.71 1
DDGTGQLLLPLSDAR 2 3.93 2.77 1,6
S@EFLLTDYFEEDPNSAMDKER 3 3.95 2.7 2
ELEQIFCQFDS@KLEAADEGSGDVKY 3 3.95 2.84 3
LEAELGNMQGLVEDFK 2 4 5.1 1,2,3
AALEDTLAETEAR 1,2 4 4.09 1,2,6
DSALETLQGQLEEK 2 4 3.2 1
GLSEDTTEETLK 2 4 2.86 2
IDTIEIITDR 2 4.03 2.35 1
SLDMDSIIAEVK 2 4.03 4.08 1,2,3
TVQSLEIDLDSMR 2,3 4.03 4.79 1,2,3
GQVGGQVSVEVDSAPGTDLAK 2 4.03 2.35 2
EGQGEGETQEAAAATAAAR 2 4.09 2.92 2
RLLEDGEDFNLGDALGSSNSMQTIQK 3 4.11 3.23 1
DIQVGAQDGVLESGVMLGDREAVR 3 4.11 2.62 3
VDSLLENLEK 2 4.14 2.93 2
CPALEELDLTACR 2 4.14 2.32 1
ASLEAAIADAEQR 2,3 4.14 4.79 1,2,3
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LEGLTDEINFLR 2 4.14 4.12 1,2,3,6
TGAIDVPVGEELLGR 2 4.15 3.99 2
IEVIEIMTDR 2 4.14 3.15 2
ILSISADIETIGEILK 2 4.14 3.42 2
NTSEQDQPMGGWEMIR 2 4.14 2.61 2
EILSARLT@QALDNYEGFSLA 3 4.14 2.94 4
LSAAVEVGDAAEVK 2 4.14 2.55 4
VLVLEMFSGGDAAALER 3 4.14 2.9 5
LQEKEDLQELNDR 2 4.18 4.24 2
VVDALGNAIDGK 2 4.21 3.27 2
VIDDTNITR 2 4.21 2.66 1,2
IVDDCGGAFTMGVIGGGVFQAIKGF 3 4.21 2.5 2
LLDAQLATGGIVDPR 2 4.21 2.8 2
PVGGLS@SSDTMDYR 2 4.21 2.32 6
WKDSDEADLVLAK 2 4.23 3.74 2
TEMENEFVLIK 2 4.25 4.1 1,2
ALEAANGELEVK 2 4.25 4.41 1,2,3
SENGLEFTSSGSANTETTK 2 4.25 4.3 1,2
MEEESGAPGVPSGNGAPGPK 2 4.25 3.21 1,2
ITESEEVVSR 2 4.25 3.12 2
LFIGGLSFETTEESLR 2 4.25 3.62 2,3
TGTAEMSSILEER 2 4.25 3.8 2
STGEAFVQFASQEIAEK 2 4.25 3.74 2
IFVGGLNPEATEEK 2 4.25 2.97 2
VELAEICAKS@ERYIGTEGGGMDQS 3 4.25 2.83 2
KLNFNGEGEPEELMVDNWR 3 4.25 3.22 3
VDNDENEHQLSLR 2 4.31 2.69 2
FDIEMSMRGDIFER 2 4.32 2.53 2
AAVAGEDGRMIAGQVLDINLAAEPK 3 4.32 2.63 3
MSGWADERGGEGDGR 3 4.32 2.61 6
ADGAAKEGAGAAAAAAGPDGAPEAR 3 4.32 2.71 4
LQLETEIEALKEELLFMK 2,3 4.33 5.57 2,3
TEGYAAFQEDSS@GDEAESPSKMKR 3 4.36 2.6 2
AMGIMNSFVNDIFER 2 4.37 4.71 1,2,3,4
DAEAWFTSR 2 4.37 3.17 1,2,3
LVSESSDVLPK 2 4.37 3.34 2,3
GLQAQIASSGLTVEVDAPK 2 4.37 4.94 2,3
ETMQSLNDR 2 4.37 2.26 2
MIAGQVLDINLAAEPK 2,3 4.37 5.03 2,3
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IIGATDSSGELMFLMK 2 4.37 3.83 2
VLQDMGLPTGAEGR 2 4.37 2.2 2
NTTNDLVTAEAQVTPK 3 4.37 3.54 6
LKLEAELGNMQGLVEDFK 3 4.41 3.26 2,3
DFVAEPMGEKPVGSLAGIGEVLGK 3 4.41 4.11 2
GMDKAQGSRPPDQACTGDPELPER 2 4.44 2.56 4
GEQVTNGREAGAELLTEVNR 3 4.49 2.5 3
LQAEIEGLK 2 4.53 2.76 1,2,3
LSELEAALQR 2 4.53 4.24 1,2,3,4
TLQGLEIELQSQLSMK 2 4.53 4.82 2,3
TALINSTGEEVAMR 2 4.53 3.41 2,3
SLETENAGLR 2 4.53 2.36 2
AGTLTVEELGATLTSLLAQAQAQAR 3 4.53 5.03 2
LFIGGLSFETTNESLR 2 4.53 4.07 2
RTVQSLEIDLDSMR 2 4.56 2.79 3
LETSVQGGGGLAMNDRAAAAGSLDR 3 4.56 2.59 4
NHEEEVKGLQAQIASSGLTVEVDAPK 3 4.57 5.59 2,3
EAAVSASDILQESAIHSPGTVEKEAK 3 4.57 3.68 2,3,4
LKSFPEDPQHLGEWGHLDPAEENLK 3 4.63 2.69 3
TLEGELHDLR 2 4.65 2.25 3
T@VFPLADVSRIEEYLK 3 4.68 3.1 2,3
QKVDSLLENLEK 2 4.68 2.35 3
LQTMKEELDFQK 2 4.68 2.88 3
DGLVISCGPDSCGPDSCSEWKPGSLQRFQNK 3 4.68 2.95 6
AALQEATFDPQEVRK 2 4.68 2.33 6
NHEEEISTLR 2 4.75 2.64 3
VAPEEHPVLLTEAPLNPK 3 4.75 2.97 3
TEMENEFVLIKK 2,3 4.78 2.82 3
LAADDFRTKFETEQALR 3 4.78 3.46 3
QS@LMLMATSNEGCKATYEQGVEK 3 4.79 2.53 3
ELNETFKEAQR 2 4.79 2.38 4
LTKEDEQQQALQDIASRCTANDLKCIIR 3 4.86 3.43 3
LKLEAELGNMQGLVEDFKNK 3 4.87 4.26 3
RFDTEEEFKK 2 4.87 2.4 4
RPAGECPITMSDLEAKPSTEHLGDKI 3 4.9 2.75 2
TEELNREVAGHTEQLQMSR 3 4.9 2.8 3,4
FGKGY@FLEIKLKDWIENLEVDR 3 4.94 3.33 2
HSGPNSADSANDGFVR 3 5.21 3.25 3
MGPLGLDHMASSIER 2.3 5.3 3.32 3
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FGAQLAHIQALISGIEAQLGDVR 2,3 5.32 4.65 3,4
VHIEIGPDGR 2 5.32 2.49 3
EVAGHTEQLQMSR 2 5.4 3.47 3,4
NSNLVGAAHEELQQSR 2 5.4 3.72 3
LVLEVAQHLGESTVR 2 5.4 3.73 3
TGIVDISILTTGMSATSR 2 5.5 2.27 3
TIAQGNLSNTDVQAAK 2 5.5 3.75 3
TIDQGNILTLFY@LIIR 3 5.5 2.66 5
HRDFVAEPMGEKPVGSLAGIGEVLGK 2 5.53 3.62 3
DASRRTGDEKGVEAIPEGSHIK 3 5.56 2.75 3
MGLAMGGGGGASFDR 2 5.59 2.61 3
MGPAMGPALGAGIER 2 5.75 2.8 3,4
MGAGMGFGLER 2 5.75 2.33 3
SCMLQADSEKLR 2 5.79 2.68 1
TKFETEQALR 3 5.81 3.41 4
DSGGQTSAGCPSGWLGTR 2 5.83 2.59 3
DFLAGGVAAISK 2 5.84 4.07 3
LTMQNLNDR 2 5.84 2.61 3,4
IVLQIDNAR 2 5.84 2.5 3,4
IDSLSAQLSQLQK 2 5.84 2.74 3
NFILDQTNVSAAAQR 2 5.84 4.38 3
NQVALNPQNTVFDAK 2 5.84 3.11 3
LNDFASTVR 2 5.84 2.38 3
LTFDSSFSPNTGK 2 5.84 2.81 3,4
DTNGSQFFITTVK 2 5.84 2.2 3
LTLSALIDGK 2 5.84 2.83 3
NDGAAILAAVSSIAQK 2 5.84 2.3 3
LLFNDVQTLK 2 5.84 2.22 4
AQIFANTVDNAR 2 5.88 2.81 3,4
AFITNIPFDVK 2 5.88 2.83 4
APILIATDVASR 2 5.88 2.2 4
MVSEAETLKSPTQR 3 5.9 2.51 6
KVIDDTNITR 2 5.96 2.43 4
VLALPEPSPAAPTLR 2 5.97 2.28 4
VFLENVIR 2 5.97 2.95 4
VQAQVIQETIVPK 2 5.97 3.58 4
CVALESQLMK 2 5.99 2.76 1,2,3
LLEAQIATGGVIDPVHSHR 3 5.99 3.84 4
GGMGSGGLATGIAGGLAGMGGIQNEK 3 6 3.06 3,4,5
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LSSEMNTSTVNSAR 2 6 3.35 3,4
ILGATIENSR 2 6 2.59 4
IESLSSQLSNLQK 2 6 3.44 4
ITPENLPQILLQLK 2 6 2.51 4
LLLPGELAK 2 6 2.37 4
LFIGGLNVQTSESGLR 2 6 4.35 4
APVPASELLASGVLSR 2 6.05 3.35 4
AGVNFSEFTGVWK 2 6.05 2.55 4
QMY@CVFNRNEDACR 2 6.06 2.36 2
RILQPMLDSSCSETPK 3 6.06 2.79 3
RVLDELTLAR 2 6.07 2.83 4
KSDVEAIFSK 2 6.07 2.57 4
LKDLEALLNSK 2 6.07 2.71 4
VDIKRTVAAPSVFIFPPSDAAELSR 3 6.09 3.02 2
EITALAPSTMK 2 6.1 2.56 3,4
EQGVLSFWR 2 6.1 2.5 3
VETGVLKPGMVVTFAPVNVTTEVK 3 6.11 2.63 4
KDILCDVTLIVERK 3 6.11 3.05 5
RQLETLGQEK 2 6.14 2.48 4
RY@RFEGEGDIQR 2 6.18 2.23 1
VLDAS@WYSPGTREARKEY@LER 3 6.23 2.64 2
EKEKAQLAAEALK 2 6.33 2.42 3
SQIHDIVLVGGSTR 2 6.46 3.09 4
SKWQMENSNLDLSHFK 3 6.47 2.52 3,4
SLESLHSFVAAATK 2 6.47 3.29 4
VEQKLHLSGVQAVTCDR 3 6.71 2.62 5
DSKLCSVLTQDFCMLFNNKHEK 3 6.74 2.8 3
HMIDGRWCDCKLPNSKQSQDEPLR 3 6.74 2.68 3
CMALAQLLVEQNFPAIAIHR 3 6.74 3.2 4
LESGMQNMSIHTK 2 6.75 3.8 4,5
LAQALHEMR 2 6.75 2.39 4
Y@LEHLVIDKR 2 6.75 2.61 4
QQALT@EFEAYKHR 2 6.76 2.56 4
AGQVVTIWAAGATHSPPTDLVWK 3 6.79 4.7 4
AQIHDLVLVGGSTR 2 6.79 3.18 4
ESTLHLVLR 2 6.85 2.36 4
DCHLAQVPSHTVVAR 2 6.91 2.43 4
MEGQRCSLQAGPGQTTK 2 6.98 2.74 4
TVMIDVCTTCRCMVQVGVISGFK 3 7.54 3.05 2
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TCVSNCTASQFVCK 2 7.64 2.31 5
T@KLRGLYTTAKADAEAECNILR 3 7.85 2.67 4
TPLMKALQCER 2 7.89 2.2 5
S@GGGYGS@GCGGGGGSYGGSGR 2 7.92 2.36 5
STCAINNTLIAFFILTTIK 3 7.94 2.78 2
FLRSMSSACLQCKVLICDSSDHQSR 3 7.97 2.5 6
KQSEMQMKAGVTCEVCMNVVQK 3 8.03 3.06 3
VLAAACLGAALLLLCAAPR 3 8.04 2.55 2
RCELCPHK 2 8.07 2.67 1
EEKSGAIMCENCMTTNQKKALK 3 8.11 2.88 3
Y@GVFCSGNEAVSHY@KLLLQQNK 3 8.16 2.91 5
Y@GVFCSGHNEAVSHY@KLLLQQNK 3 8.17 2.95 6
SKPTTLKPIILNEIVDAHKEK 3 8.18 2.6 6
Y@VTITNCSPLVVK 2 8.2 3.27 1
LYACEVTHQGLISPVTKS@FNR 3 8.21 2.51 3
SEKLWSMEKMK 3 8.22 2.59 4
RCLQVSETMETLRTSR 3 8.25 3.04 3
LARQAEMLTCR 2 8.25 2.43 4
TSFFQALGITTK 2 8.41 2.72 5
TPSIQPSLLPHAAPFAK 3 8.44 2.5 5
KLILAQKLSELAVEK 2 8.5 2.47 2
IKAEPDKIEAFRASLSK 2 8.5 2.68 3
QTARLWAHVY@AGAPVSS@PEYTK 3 8.5 2.67 3
LKGDDLQAIKK 3 8.5 2.58 5
KVASMMESKDVHK 2 8.51 2.25 4
EKNPDMVAGEKRK 2 8.59 2.34 3
FQAKAEANSLKLEVR 2 8.59 2.55 5,6

3 8.59 2.59 5
KDFQHLISSPLK 2 8.6 2.66 4
VCICAGPVMSKSCLLELARSGK 3 8.68 2.58 4
EQNPY@VVQSIISLIMGMKFFR 3 8.69 2.63 2
VTIAQGGVLPNIQAVLLPK 2 8.72 3.97 5,6
VFIGNLNTLVVK 2 8.72 3.79 5,6
VAVFFGGLSIK 2 8.72 2.49 5
VSVFFGGLSIK 2 8.72 2.52 5
VFIGNLNTAIVK 2 8.72 3.56 5
WSLLQQQK 2 8.75 3.13 5,6
LGGIGQFLAK 2 8.75 2.39 6
IRIDSLSAQLSQLQK 3 8.75 2.73 5

NRIIYLRPMQQVDT@LTLEQK 
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HWPFMVVNDAGRPK 3 8.75 5.01 5
LISLFQAMK 2 8.75 2.44 5
LLSPVVPQISAPQSNK 2 8.75 2.43 5
LAMLTPNSPK 2 8.75 2.41 5
LLIHQSLAGGIIGVK 3 8.76 3.62 6
HQGVMVGMGQK 2 8.76 3.05 5
QTASVTLQAIAAQNAAVQAVNAHSNILK 3 8.76 3.48 5
TITKMCEQALGKGCGADSKK 3 8.8 2.53 1
AGQMVTVWAAGAGVAHSPPSTLVWK 3 8.8 3.46 4
APGSGLALLPLK 2 8.8 2.92 5
ATIAGGGVIPHIHK 2,3 8.81 2.94 5,6
IMAYSRGQTDMCRCSK 3 8.9 3.37 2
QKTACGAPSGICLQVK 2 8.9 2.99 6
QANSIKVSVSSGGDCIRT@YKPEIK 3 9.11 3.08 6
ICFKYYHGISGALRAT@T@PCITVK 3 9.31 2.57 2
MEAVWHVWRGMASTVR 3 9.37 2.69 5
TTNFAGILSQGLR 2 9.41 2.77 5
SGAQASSTPLSPTR 2 9.47 3.35 5,6
GFGFVLFK 2 9.47 2.46 5
IQNAPNSHSAQHVKMGY@GAWY@LK 3 9.53 2.75 2
KFCS@SSCITAYKQKSAK 3 9.6 2.89 2
IVAERPGTNSTGPAPMAPPR 2 9.6 3.22 5
KPGAS@VKVSCRASGY@TFTSYDINWVR 3 9.63 2.78 5
MEKEVGKKINVR 2 9.7 2.56 3
SEMVKGSGIVWKVVMK 2 9.7 2.49 3
FPKGDVISVEKTVKR 3 9.7 3.48 5,6
VAVVTGSTSGIGFAIAR 2 9.72 2.74 5
VMVQPINLIFR 2 9.72 2.32 5
QSSATSSFGGLGGGSVR 2,3 9.75 3.8 5,6
FGPGVAFR 2 9.75 2.89 5,6
ILVATNLFGR 2 9.75 2.56 5
GNFGGSFAGSFGGAGGHAPGVAR 2,3 9.76 4.83 5
HLQLAIR 2 9.76 2.46 5,6
AGLQFPVGR 2 9.79 2.67 5,6
ASASGSGAQVGGPISSGSSASSVTVTR 3 9.79 3.64 5,6
AGGPTTPLSPTR 2 9.79 2.67 5
KDNMRLGLSLATNPK 3 9.99 3.13 3
DPPGRKGDSWLGGTTLRGVTAGPSK 3 9.99 3.02 5
PSAAGINLMIGSTR 2 10.18 3.46 5
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RINFLSNNQCENIRR 2 10.26 3.02 2
Y@LPGRGDPKRAQAAHGR 2 10.29 2.37 5
GAVGGGGWAGGCRLR 3 10.35 2.53 3
RLVPRYRLQLLGIACMVICT@R 3 10.72 2.63 3
SSGPTSLFAVTVAPPGAR 2 10.9 2.41 5
LCFLLGRLSIRKVK 2 11.01 2.51 5
MKKSGVLFLLGIILLVLIGVQGTPVVR 3 11.17 2.78 1
AAGFLRSNKIAALFMK 2 11.17 2.51 3
NQGSGAGRGKAAILK 2 11.17 2.6 4
KLAKNKR 2 11.26 2.37 2
QIAQITRELRR 2 11.7 2.42 2
QVGVQIRGLASLQGLPHR 2 12 2.79 5,6
IFAVSRKHAHAINNLR 2,3 12.01 3.08 2
SGKVAAIVVKRPR 2 12.02 2.25 4
LFRLVAASRHLILKK 2 12.02 2.24 4
RVSGSRSNVFMR 3 12.3 2.6 4

 

@: phosphorylation added by the algorithm  
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Figure 4-5 Number of peptides identified in each fraction 
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Figure 4-6 Peptide distributions 
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Figure 4-7 Range and average pI of peptides eluted in each fraction 
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Figure 4-8 Chromatograms of fraction 2 resulted from three repeat solution IEF separations 
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Figure 4-9 Number of peptides identified from 1, 2, and 3 LC-MS/MS analysis. Blue Bars: 
numbers of peptides identified in each fraction from single LC-MS/MS analyses; purple bars: 
numbers of peptides identified in each fraction from double LC-MS/MS analysis; white bars:  
numbers of peptides identified in each fraction from triple LC-MS/MS analysis. 

 86 
 



 

 

 
 
 
Table 4-2 Percentage of proteins experimentally identified from 1, 3, 6, and 
9 combined MudPIT runs105 
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4.2.2  Protein identification and classification 

    Proteins are identified according to the peptide sequences. Figure 4-10 shows the 

tandem mass spectra of two peptides with the SEQUEST results list. These two 

peptides come from the same protein Lamin A/C. Because of their different pIs, one 

was observed in fraction 2 (pH 3-5) and the other was in fraction 3 (pH 5-6.5). The 

characterization of several peptides from one protein provides more reliable 

identification of the protein. Sample loss can’t be avoided during separation and 

detection. If one peptide is lost, the connection with the parent protein is not 

necessarily lost. But in the top-down strategy, which analyzes intact proteins instead 

of peptides, loss of a protein is permanent. The proteins identified are listed in Table 

4-3 with the Swiss-port access number, name, available sub-cellular location and 

molecular weight. 

     The proteins are assigned to a sub-cellular group according to the references, listed 

in Swiss-port, or using the bioinformatics tool PSORT II (psort.nibb.ac.jp). As shown 

in Figure 4-11, almost half of the proteins come from nuclei. Mitochondrial proteins 

and membrane proteins are known to be hard to study because of their poor solubility. 

Because about one quarter of the identified proteins are classified as mitochondrial or 

membrane, it seems that the strategy used is effective for insoluble proteins. 

     These results were also compared with the work of Dr. Fu, another member of the 

Fenselau group. He isolated nuclei and studied the soluble proteins obtained NaCl 

buffer, while the present study addresses the centrifugal pellet. Figure 4-12 shows that 

there is little overlap between proteins identified in the two studies. Actually the 

sequential extraction used here is used as a prefractionation method in some labs 106. 
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Our results show that the first extraction was complete and that sequential extraction 

is effective with the proper buffer system. 

Comparison the new two-dimensional solution separation with a one-

dimensional LC-MS/MS strategy 

    The same nuclear peptide mixture was analyzed by LC-MS/MS without 

fractionation by solution isoelectric focusing. The conditions of LC-MS/MS and 

SEQUEST identification were identical as described above and used the lower 

criteria for protein identification. In summary, 54 peptides corresponding to 24 

proteins were identified with the single dimensional LC-MS/MS separation, while in 

the two dimensional solution IEF-LC-MS/MS strategy, 281 peptides corresponding to 

167 proteins were identified. There are 26 peptides and 4 proteins identified for the 

first time with single LC-MS/MS. Most of the proteins identified in the one 

dimension separation are high abundance proteins, which were identified by multiple 

peptides. The solution IEF separates the high abundance peptides into several 

chambers and makes the low abundance peptides, which are covered by high 

abundant species, more detectable. In the single dimension strategy, about 74 µg of 

peptides was consumed; while in the two dimensional method only a total of 0.43 µg 

was used for all eighteen LC-MS/MS analyses. Although the single LC-MS/MS 

requires more sample, the ion intensity was about 100 times lower than that of the 

two dimensional strategy. Table 4-4 summarizes the different results of these two 

methods. This difference in sample consumption resulted from the concentration 

effect of solution isoelectric focusing. Considering a certain peptide sequence, the 

molecules are distributed in the whole range of pH 3-10 before isoelectric focusing; 
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after focusing, all of the molecules are concentrated at the same pH point. The local 

concentration of a peptide is increased by the focusing process and the peptide is 

more detectable. So solution isoelectric focusing not only simplifies the complex 

mixture but also concentrates the diluted sample. The two-dimensional separation 

method greatly improves the mass spectrometry based protein identification 

compared with single dimensional separation. 

Peptide and protein identification through SEQUEST 

     Peptides were identified by automatically searching tandem mass spectra against a 

sequence database. This was realized by the software SEQUEST in this experiment. 

This software compares an experimental spectrum against the theoretical spectra of 

all possible peptides that have the precursor ion mass in a sequence database. Each 

spectrum is assigned to the peptide whose theoretical spectrum has the best match. 

Two scores are usually used to determine the quality of the assignment: cross 

correlation (Xcorr) and delta correlation (∆Cn). Xcorr indicates the quality of the 

match between the spectrum and the peptide; and ∆Cn is the difference between the 

the primary and secondary matches. In this experiment, we used the criteria that ∆Cn 

≥ 0.1, and Xcorr ≥ 1.9 for singly charged peptides, Xcorr ≥ 2.2 for doubly charged 

peptides, Xcorr ≥ 2.5 for triply charged peptides. By using these criteria, 281 peptides 

and 167 corresponding proteins were identified. Twenty-two percent of the proteins 

were identified based on more than two peptides, which means high confidence. But 

most of the proteins were identified by single peptide. The “one peptide hit” is 

commonly observed and argued in high-throughput protein identification107. In this 

experiment, each peptide sequence was manually confirmed to be present in its 
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corresponding protein. But there are still two things to be concerned about: (1) 

possible false positive identifications of peptides; (2) possible correspondence of one 

peptide sequence to multiple proteins. The simplest way to get rid of false 

identifications of peptides is to increase the filtering criteria. If another criteria (∆Cn 

≥ 0.1 and Xcorr ≥ 1.9 for +1 ions, Xcorr ≥ 2.5 for +2 ions, Xcorr ≥ 3.75 for +3 ions) 

were applied to the dataset in this experiment, 212 peptides were considered to be 

identified corresponding to 110 proteins and 36% of the proteins were identified by 

multiple peptides. Processing data in this way just simply deletes the peptides which 

may be wrong, but doesn’t increase of confidence of the identifications. Keller and 

colleagues developed a statistical model to validate the peptide identification made by 

database searching through SEQUEST108, and this model was converted to software 

named PeptideProphetTM. This software computes the probabilities that peptide 

assignments are correct based on the search scores and other information, and assigns 

a number, which indicates the probability, to each peptide. Processing SEQUEST 

data in this way can improve the confidence level for identifications. Table 4-5 lists 

the results processed in different ways. Moreover, the data obtained in this 

experiment can be processed through another search engine, such as Mascot. Mascot 

is a probability-based search algorithm103. The score obtained from Mascot searching 

provides the probability of the observation of a match between the experimental data 

set with each database entry. If the probability of the observed match happening by 

chance is less than 5%, the match is considered to be significant. The probability is 

converted to a score by the algorithm for convenience. The best match usually has the 

highest score and the significant match is typically with a score of the order of 70. 
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The SEQUEST results can be compared with Mascot results and the overlap 

identifications are more reliable.    
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SEQUEST Result 
gi|27436946 
Peptide:NSNLVGAAHEELQ
SR 
Xcorr=3.72 
∆Cn=0.30 
pI=5.4 
0

3 .

4

SEQUEST Result 
gi|27436946 
Peptide:LQEKEDLQEL
DR 
Xcorr=4.24 
∆Cn=0.17 
pI=4.18 
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METPSQRRAT RSGAQASSTP LSPTRITRLQ EKEDLQELND RLAVYIDRVR 
SLETENAGLR LRITESEEVV SREVSGIKAA YEAELGDARK TLDSVAKERA 
RLQLELSKVR EEFKELKARN TKKEGDLIAA QARLKDLEAL LNSKEAALST 
ALSEKRTLEG ELHDLRGQVA KLEAALGEAK KQLQDEMLRR 
VDAENRLQTM KEELDFQKNI YSEELRETKR RHETRLVEID NGKQREFESR 
LADALQELRA QHEDQVEQYK KELEKTYSAK LDNARQSAER 
NSNLVGAAHE ELQQSRIRID SLSAQLSQLQ KQLAAKEAKL RDLEDSLARE 
RDTSRRLLAE KEREMAEMRA RMQQQLDEYQ ELLDIKLALD 
MEIHAYRKLL EGEEERLRLS PSPTSQRSRG RASSHSSQTQ GGGSVTKKRK 
LESTESRSSF SQHARTSGRV AVEEVDEEGK FVRLRNKSNE DQSMGNWQIK 
RQNGDDPLLT YRFPPKFTLK AGQVVTIWAA GAGATHSPPT 
DLVWKAQNTW GCGNSLRTAL INSTGEEVAM RKLVRSVTVV 
EDDEDEDGDD LLHHHHGSHC SSSGDPAEYN LRSRTVLCGT CGQPADKASA 
SGSGAQVGGP ISSGSSASSV TVTRSYRSVG GSGGGSFGDN LVTRSYLLGN 
SSPRTQSPQN CSIM 
 
Figure 4-10 Tandem mass spectra of two peptides coming from one protein: Lamin 
A/C.  (A)  Peptide LQEKEDLQELNDR with pI of 4.18 eluted at 22.87min in 
fraction 2 (pH 3-5). (B) Peptide NSNLVGAAHEELQQSR with pI of 5.4 eluted at 
24.86min in fraction 3 (pH 5-6.5). 
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Table 4-3 List of proteins identified from peptides listed in Table 4-1 

access No protein name location MW 
Q96HG5 actin, beta  C 41005
Q5T9N7 actin, alpha , smooth muscle, aorta C 16759
Q6MT14 arginine-tRNA ligase C 63407
P05387 60S acidic ribosomal protein P2 N 11665
P05388 60S acidic ribosomal protein P0 N 34274
P05141 ADP, ATP carrier protein MM 32764
Q8WWZ7 ATP-binding cassette A5  186561
Q86TL0 APG4-D protein N 52922
P25705 ATP synthase alpha chain, mitochondrial M 59751
P06576 ATP synthase beta chain, mitochondrial  M 56560
O75531 Barrier-to-autointegration factor N 10059
Q71V76 BAT1 C 33142
Q9BX63 BRCA1 interacting protein  N 140878
P35626 beta-adrenergic receptor kinase 2 N 79678
Q9BXX2 breast cancer antigen NY-BR-1.1 M 114250
O75339 Cartilage intermediate layer protein  132538
Q6P1Q4 C9orf76 protein M 53166
Q15057 centaurin beta 2 C 88029
P00918 carbonic anhydrase II C 29115
Q13185 chromobox protein homolog 3 N 20823
P45973 chromobox protein homolog 5 N 22225
Q8TB65 cytochrome c oxidase subunit Va M 16762

Q7Z789 
dehydrogenase/reductase(SDR family)member 2, 
isoform 1 MM 31595

Q9UCE9 D(TTAGGG)N-binding protein B39  2232
Q8N5M0 DDX39 protein N 36577
Q8WYQ5 DGCR8 protein N 86045
P49916 DNA ligase III N 102691
Q5VY62 DEAH (Asp-Glu-Ala-His) box polypeptide 9 C 140957
P33991 DNA replication licensing factor MCM4 N 96576
Q9UHC1 DNA mismatch repair protein Mlh3 N 163712
Q9UNI6 Dual specificity protein phosphatase 12 N 37687
P58107 Epiplakin C 553094
Q6IPT9 eukaryotic translation elongation factor 1 alpha 1 N 50185
Q96I16 EIF2S2 protein N 24575
Q6RJW2 Env C 5514
Q8N671 FMNL 1 protein N 52433
Q9H469 F-box only protein 37 C 32544

Q86TR5 
Full-length cDNA 5-PRIME end of clone 
CS0DA002YL09 of Neuroblastoma  C 8963

Q6PIJ6 F-box only protein 38 C,N 133954
Q7M4L1 familial Alzheimer's disease protein 1 MM 47043
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P41002 G2/mitotic-specific cyclin F N 87640
Q7Z4Q4 galactokinase 2 variant  49235
Q9H490 GPI transamidase component PIG-U MM 49921
P52272 hnRNP M N 77384
P07910 hnRNP C1 / hnRNP C2 N 33688
P22626 hnRNPA2/B1 N 37430
P09651 hnRNP A1 N 38715
P55795 hnRNP H' N 49264
P61978 hnRNP K C,N 50976
Q99729 hnRNP A/B N 36613
P52597 hnRNP F N 45541
Q00839 hnRNP U N 90479
Q13151 hnRNP A0 N 30841
Q71UI9 Histone H2A.F/Z variant, isoform 1 N 13509
Q96KK5 H2A histone family, member I N 13906
P62807 Histone H2B N 13775
P62805 histone H4 N 11236
P08107 heat shock 70kDa protein 1  70052
P55347 homeobox protein PKNOX1 N 47475
Q96IS6 HSPA8 protein N 64602
Q15034 HECT domain and RCC1-like domain protein 3 C 117188
Q12906 interleukin enhancer-binding factor 3 N 95384
Q9UKX5 integrin alpha-11 MM 133610
P23229 integrin alpha-6 MM 126619
P06213 Insulin receptor [Precursor] MM 165307
Q6GMY0 Keratin 8 C,N 53750
P05783 Keratin 18 C,N 47927
P08727 Keratin 19 C,N 44106
Q7Z4S6 kinesin family member 21A N 187179
Q8N1C2 LOC138046 protein N 32330
P02545 lamin A/C N 74139
P20700 lamin B1 N 66277
P24043 laminin alpha-2 chain MM 342771
Q16891 mitochondrial inner membrane protein M 83678
Q8NHZ7 methyl-CpG binding domain protein 3-like 2 N 22695
P43243 matrin 3 N 94623

Q9NS69 
Mitochondrial import receptor subunit TOM22 
homolog M 15522

Q86YP2 MLL/AF10 fusion protein UPN9610l C 22425
Q8N108 mesoderm induction early response 1 N1-beta N 60653
Q96CM7 MGC4562 protein C 73194
P05114 nonhistone chromosomal protein HMG-14 N 10528
Q9BQD0 NLN protein M 70304
Q8IVI9 NOSTRIN protein N 57731
P06748 Nucleophosmin N 32575
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P28331 NADH-ubiquinone oxidoreductase 75 kDa subunit M 79516
O00148 nuclear RNA helicase N 49077
P46531 neurogenic locus notch homolog protein 1 MM 272554
Q8N1F7 nuclear pore complex protein Nup93 N 93557
Q9BS12 NUP188 protein M 94944

Q9UDX0 
Oxoglutarate (Alpha-ketoglutarate) dehydrogenase 
(Lipoamide), isoform 1 M 115934

Q14980 nuclear mitotic apparatus protein 1 N 238274
Q92841 probable RNA-dependent helicase p72 N 72371
O94823 Potential phospholipid-transporting ATPase VB MM 165391
Q9P1P5 probable G protein-coupled receptor GPR58 MM 34924
Q6P4Q1 PLEKHH2 protein MM 89122
Q15149 Plectin 1 N 531737
P07205 phosphoglycerate kinase, testis specific MM 44665
Q9UI79 PRO0195  MM 8193
P23284 peptidyl-prolyl cis-trans isomerase B C 22742
Q86VH9 polymerase(DNA directed), epsilon N 259331
Q8IVA1 purkinje cell protein 2 homolog C 10538
O75340 programmed cell death protein 6  21868
P09874 poly[ADP-ribose] polymerase-1 N 112953
Q15311 RalA binding protein1 MM 75932
O43374 Ras GTPase-activating protein 4 C 90458
Q8WYN9 ribosomal protein S27A R 14077
P62306 small nuclear ribonucleoprotein F N 9725
Q9HCY8 S100 calcium-binding protein A14 MM 11662
Q9NR46 SH3 domain GRB2-like protein B2 C 43974
Q07325 small inducible cytokine B9 S 14016
O04376 synaptogyrin-2 MM 24810
Q86TN5 similar to origin recognition complex subunit 3 MM 78275
Q15393 splicing factor 3B subunit 3 N 135592
O75044 SLIT-ROBO Rho GTPase activating protein 2 C 120881

Q96IE3 
similar to plectin 1, intermediate filament binding 
protein N 113766

Q13242 splicing factor, arginine/serine-rich 9 N 25542
Q9BZZ2 sialoadhesin MM 182624
Q15459 splicing factor 3 subunit 1 N 88886
P62318 small nuclear ribonucleoprotein Sm D3 N 13916

Q8TF17 
SH3 domain and tetratricopeptide repeats containing 
protein 2 N 144777

Q86XD3 similar to nucleoporin 214kDa MM 216993
Q5VYJ4 small nuclear ribonucleoprotein polypeptide E-like 1 N 10678
Q9BYV9 transcription regulator protein BACH2 N 92537
Q16762 thiosulfate sulfurtransferase M 33298
Q13263 transcription intermediary factor 1-beta N 88550
Q86YP4 transcriptional repressor p66 alpha N  68063
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Q13148 TAR DNA-binding protein-43 N 44740
Q9UDY2 tight junction protein ZO-2 C, N 133972
O60466 TGF beta receptor associated protein-1 M 97176
Q9UL49 transcription factor-like 5 protein N 48263
P63165 Ubiquitin-like protein SMT3C N 11557
P22695 ubiquinol-cytochrome-c reductase complex core protein M 48443
P61086 ubiquitin-conjugating enzyme E2-25 MM 22275

Q9HAR7 
uterus-ovary specific putative transmembrane protein 
UO MM 40173

O95973 
VH4 heavy chain variable region [Precursor] 
[Fragment]  16315

P21796 Voltage-dependent anion-selective channel protein 1 M 30641
Q9Y277 Voltage-dependent anion-selective channel protein 3 MM 30659
O75717 WD repeat and HMG-box DNA binding protein 1 N 125967
Q9P2P5 KIAA1301 protein C 176649
Q9P2D5 KIAA1412 MM 154717
O43308 KIAA0425 protein MM 141147
Q8TF60 KIAA1941 protein C 139646
Q96PV7 KIAA1931 protein C 56007
Q9P212 KIAA 1516 protein C 258947
Q96C57 hypothetical protein FLJ12448 N 28257
Q6ZU46 hypothetical protein FLJ44004  100876
Q96SS4 hypothetical protein FLJ14665 C 46008
Q8N7M6 hypothetical protein FLJ40844 N 42632
Q8N274 hypothetical protein FLJ33834 C 86052
Q8N7T4 hypothetical protein FLJ40379 C 26719
Q8TBC5 hypothetical protein FLJ12895 C 54875
Q6ZSZ5 hypothetical protein FLJ45102 M 130787
Q6ZR28 hypothetical protein FLJ46703 M 18354
Q8NB25 hypothetical protein C6orf60 C 119327
Q6P5T5 hypothetical protein N 26538
Q86YV1 hypothetical protein FLJ00411 C 46571
Q9H5W0 hypothetical protein FLJ22961 N 53014
Q8N2J3 hypothetical protein FLJ90556 C 30633
Q6P3V1 hypothetical protein FLJ39155  110373
Q8NDM7 hypothetical protein DKFZp434L086 N 116769
Q96MF5 hypothetical protein FLJ32446 M 33239
Q8NB06 Hypothetical protein FLJ34423 N 74342
Q96L26 hypothetical protein C 6740

N: nuclear; M: Mitochondrial; C: cytoplasmic; MM: membrane;  
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Figure 4-11 Subcellular distributions of proteins identified 
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Figure 4-12 Comparison of the proteins identified in this study with Dr. Fu’s results98 
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Table 4-4 Comparison of two-dimensional IEF-LC-MS/MS with one-dimensional 

LC-MS/MS 

 

 Solution IEF-LC-MS/MS Single LC-MS/MS  

Number of peptides identified 281 54/26 

Number of proteins identified 167 24/4 

Sample consumption 0.47 µg 74 µg 

MS spectrum intensity ~108 units ~ 106 units 

 

                       Table 4-5 Results of different data processing ways* 

Criteria No. of 

peptides 

No. of 

proteins 

Percentage of proteins identified by 

multiple peptides 

1 281 167 22% 

2 212 110 36% 

3 192 75 41% 

1: Xcorr≥ 1.9 for +1peptides; Xcorr ≥ 2.2 for +2 peptides; Xcorr≥ 2.5; and ∆Cn ≥ 0.1 

2: Xcorr≥ 1.9 for +1peptides; Xcorr ≥ 2.5 for +2 peptides; Xcorr≥ 3.75; and ∆Cn ≥ 

0.1 

3: PeptideProphetTM processing: higher than 90% confidence 

* Same data sets 
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4.2.3  Integration of 18O labeling with solution isoelectric focusing 

 

The labeling method introduced in this laboratory 2-3, which decouples digestion 

and labeling, was employed in this experiment. Lysozyme was digested and labeled 

with 18O or 16O and the resultant peptides were analyzed with a MALDI-TOF mass 

spectrometer. Figure 4-13 presents spectra of the singly charged lysozome peptide 

WWCNDGR with a molecular weight of 993 Da. There is a +4 Da shift between 

Spectrum A and Spectrum B, which means the peptide was labeled with 2 atoms of 

18O. Moreover, in Spectrum B the peak at m/z 994.7, which represents the partially 

labeled peptide, has abundance less than 5% of highest peak. This means the isotope 

incorporation is 90%. 

 

 

 

 101 
 



 

 
Figure 4-13 MALDI mass spectra of peptide WWCNDGR alkylated with 
iodoacrolymide at the cystine residue. Panel A shows the isotopic distribution of 
unlabeled peptide; panel B presents peptides incorporated two 18O atoms at the C-
terminal arginine. 
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Lysozyme was digested and split into two portions. One was incubated in H2
16O 

and the other in H2
18O, both catalyzed with immobilized trypsin for several hours. 

The two pools were mixed at the ratio of 1:1 and analyzed by mass spectrometry. 

Figure 4-14 shows the spectra of two peptides pairs: WWCNDGR and 

GTDVQAWIR. The area of each isotopic peak is listed. The ratios calculated 

according to equation 1 are 0.97 and 1.01, respectively, in agreement with the mixing 

ratio. The theoretical isotopic distributions were calculated using the MS-Isotope 

program in http://prospector.ucsf.edu. The consistency among these peptides suggests 

that this labeling method is reliable for tryptic peptides. Decoupling the digestion and 

labeling steps eliminates the need to dry proteins before digestion in H2
18O. The 

nuclear proteins under study here come from the insoluble part of nuclei; some of 

them tend to precipitate during drying and are difficult to re-dissolve in water. The 

two-step procedure reduces random sample loss and makes the quantitative analysis 

more accurate and reliable.   
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Figure 4-14 MALDI spectra of two 16O/18O labeled peptide p
WWCNDGR with monoisotopic peak at 993.22; B: peptide 
monoisotopic peak at 1045.37 
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  The compatibility of 18O labeling with the two-dimensional separation strategy 

was also investigated using the standard protein mixture described above. The 

proteins were digested and aliquots were labeled with 16O or 18O. The two pools of 

peptides were mixed at a ratio of 2:1 and fractionated using solution isoelectric 

focusing. Then fraction 5-6.5 was desalted and analyzed further with LC-MS/MS. 

Figure 4-15 presents the partial scan of the doubly charged peptide 

TGQAPGFTYTDANK from BSA. The labeled and unlabeled peptide pairs co-eluted 

from the LC column and appeared as isotopic doublets 2 Da apart in the mass 

spectrum. The introduction of two heavy oxygen atoms does not affect the retention 

time of the peptide, although a more significant change was observed in ICAT 

experiments using deuterium107. The ratio of 16O/18O was calculated according to 

equation 1 as 1.96, which agrees with the expected value.  The ratio calculated only 

from the monoisotopic peaks of the unlabeled and labeled peptide is 2.14, in good 

agreement with the ratio calculated from equation 1. 

    The peptides are labeled at their C-termini. The labeling helps to identify y-ions in 

tandem mass spectra, because all y-ions (see Figure 2-2) will carry the double label 

and be present as doublets in the spectra. Figure 4-16 illustrates this phenomenon. 

Panel A shows the full mass range of the tandem mass spectrum of the peptide. The 

spectrum at y11 and y7 are enlarged and presented in panels B and C. Because the y-

ions are singly charged, the monoisotopic peaks of labeled and unlabeled peptides are 

4 Da apart. The y-ions are much easier to identify because of the doublets and the 

sequence of the peptides can be assembled by following the y-ions. 
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Figure 4-15 ESI mass spectrum of peptide TGQAPGFTYTDANK, 18O labeled and 
unlabeled peptides were mixed at a ratio of 1:2. 
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Figure 4-16 Tandem mass spectra of peptide TGQAPGFTYTDANK. A: full mass 
range; B: enlarged spectrum at m/z 1184; C: enlarged spectrum at m/z 812 

C 
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4.2.4  Comparative analysis of nuclear proteins of drug susceptible and drug 

resistant MCF-7 cancer cells 

      Nuclear proteins extracted from drug susceptible or drug resistant MCF-7 cancer 

cells were studied using the strategy shown in Figure 4-1. Briefly, the proteins were 

extracted from nuclei pellets with sample solubilizing buffer (ProteomeSystems, MA) 

and digested into peptides. The peptides from drug susceptible cells were labeled with 

H2
16O, while the peptides from drug resistant cells were labeled with H2

18O. The 

labeled and unlabeled peptides were mixed, fractionated by solution isoelectric 

focusing and analyzed by LC-MS/MS. The relative abundances of some proteins 

were calculated using the peak intensities extracted from mass spectra and are listed 

in Table 4-4. The protein ratios in the table were calculated based on the spectra from 

more than two unique peptides. Three drug resistant cancer cell lines described in 

Chapter 2 were compared with the drug susceptible cell line. We usually consider that 

the ratio of 16O/18O lower than 0.5 or higher than 2.0 is significant. The numbers with 

red color mean the proteins are of higher abundance in drug resistant cell lines and 

the blue numbers indicate that the proteins are of lower abundance in drug resistant 

cell lines.  
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Table 4-5 Abundance changes of proteins between drug resistant and drug susceptible 

MCF-7 cancer cell lines 

Protein name MCF-7/MX MCF-7/VP MCF-7/AdrVp
hnRNP A0 ND ND 9.09±0.03 
nonhistone chromosomal protein HMG-14 ND ND 4.00±0.02 
ubiquinol-cytochrome-c reductase complex core 
protein ND 5.26±0.22 3.70±0.23 

hnRNP F 3.70±0.59 0.82±0.55 ND 
hnRNP H2 3.23±0.30 2.27±0.19 2.04±0.30 
hypothetical protein 34423 3.03±0.10 ND 2.78±0.06 
hsp70 3.03±0.20 2.50±0.15 ND 
nucleophosmin 2.70±0.15 1.89±0.31 4.76±0.14 
ATP synthase beta 2.70±0.21 2.13±0.18 3.23±0.10 
ATP synthase alpha 2.33±0.06 3.33±0.22 ND 
Voltage-dependent anion-selective channel protein 1 ND 2.17±0.04 2.22±0.27 
hnRNPA2/B1 2.08±0.05 ND ND 
hnRNP K ND ND 2.63±0.10 
ADT/ATP carrier protein 1.52±0.29 1.92±0.30 2.33±0.10 
hnRNP C1 / hnRNP C2 1.43±0.15 2.13±0.09 2.13±0.14 
Histone H2A.F/Z variant, isoform 1 1.43±0.19 1.54±0.07 2.27±0.01 
Keratin 8, type I cytoskeletal 0.33±0.16 0.41±0.26 0.27±0.10 
Keratin 18, type I cytoskeletal 0.26±0.10 0.21±0.06 0.42±0.24 
Keratin 19, type I cytoskeletal 0.24±0.09 0.24±0.12 0.33±0.13 

ND: not determined 

MX: mitoxantrone; VP: etoposide (VP-16); AdrVp: adriamycin 
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Lower abundance of cytoskeletal keratins 

    Three cytoskeletal proteins were found to be less abundant in the three drug 

resistant cells than in drug susceptible cells, including cytokeratin 8, cytokeratin 18 

and cytokeratin 19. Cytokeratins function to provide mechanical strength to cells and 

play a possible role in cell apoptosis110-113. Cytokeratins were linked with drug 

resistance in several cell lines114-115.It is suggested that keratins may resist to 

apoptosis by modulating the transportation of apoptotic signaling proteins, however, 

the role of keratins in resistance to apoptosis remains to be completely investigated. 

Cytokeratins are common contaminants from human skin, but the in vivo isotopic 

labeling experiments in our lab showed that the cytokeratins were not artifactual98. 

And the observations of lower abundance of cytokeratins in drug resistant cells are 

similar to Dr. Fu’s results98.   

Higher abundance of ATP synthase 

    ATP synthase was found more abundant in drug resistant cell lines, MCF-7/MX 

and MCF-7/VP, than in the drug susceptible cell line. ATP snythase is localized in the 

mitochondrial inner membrane. It catalyzes the production of ATP from ADP with 

the presence of proton. The ATP synthase complex has two components: the catalytic 

core including alpha, beta, gamma, delta and epsilon subunits and the membrane 

proton channel containing a, b and c subunits. The alpha and beta subunits were 

identified in this experiment. ATP synthase is a high abundance protein and its 

distribution is not limited in mitochondria. It was also observed by Andersen et. al 

when they analyze the human nucleolus116. The higher abundance of ATP synthase 

may relate to an energy-dependent enhanced drug efflux process. It has been reported 
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that the intracellular accumulation of mitoxantrone was significantly decreased in 

MCF-7/MX cells comparing with drug susceptible MCF-7 cells117. A multidrug 

resistant transporter, breast cancer resistant protein (BCRP), was found to be 

overexpressed in MCF-7/MX cells87. It belongs to the family of ATP-binding cassette 

transporters which extrude cytotoxic drugs at the expense of ATP hydrolysis86. 

Fanciulli et. al. reported the phenomenon that efflux pump activity is enhanced by the 

greater ATP availability118.  

Higher abundance of voltage-dependent anion-selective channel protein 1 

(VDAC1) 

    The experiment showed that voltage-dependent anion-selective channel protein 1 

had a higher abundance in the etoposide and adriamycin/verapamil drug resistant 

cells, than in the drug susceptible cells. Voltage-dependent anion-selective channel 

protein 1 is an outer membrane protein present in the mitochondria and the plasma 

membrane119. It forms a channel through the membrane and allows the diffusion of 

small hydrophilic molecules. It has been proposed to be involved in the apoptosis120. 

During apoptosis, the apoptogenic protein, cytochrome c, is released from 

mitochondria into the cytoplasm and actives the death-driving proteolytic proteins 

known as caspases. The Bcl-2 family of proteins regulates apoptosis by controlling 

the permeability of mitochondrial membranes120. One hypotheses of the regulation 

mechanism is that the pro-apoptotic proteins in this family interact with VDAC1 and 

form a large enough pore to release cytochrome c, and that the anti-apoptotic proteins 

in the family prevent the opening of the pore to inhibit cytochrome c release121-122. It 

is interesting to observe the mitochondrial outer membrane protein in the nuclear 
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fraction. The mis-location may be resulted from protein translocation in drug 

resistance or contamination in nuclei isolation. The present findings that VDAC1 has 

increased abundance in drug resistance may encourage further studies of the 

regulation process. 

Higher abundance of nonhistone chromosomal protein HMG-14 

    HMG-14 was found to be more abundant in the drug resistant cell line, MCF-

7/AdrVp, than in the parental drug susceptible cell line. Chromosomal protein HMG-

14 is a non-histone nuclear protein present in higher eukaryotic cells. HMG-14 binds 

to the inner side of nucleosomal DNA and alters the interaction between the DNA and 

the histone octamer123. It may be involved in the process that maintains transcribable 

genes in a unique chromotin conformation. The cellular role of this protein is still not 

clear124. The mechanisms postulated to explain the anticancer activity of adriamycin 

(Adr) include intercalation into DNA bases, inhibiting topoisomerase II-medicated 

DNA strand breaks, and free radical formation125. Increased abundance of HMG-14 

may help to maintain the gene chromatin structure and prevent DNA damage 

introduced by the drug. More work need to be done to clarify the function of HMG-

14 and understand its activity in drug resistance. 

Higher abundance of heterogeneous nuclear ribonucleoproteins (hnRNPs) 

    Several heterogeneous nuclear ribonucleoproteins were found to be higher 

abundance in the drug resistant cell lines than in the drug susceptible cell line. The 

heterogeneous nuclear ribonucleoprotiens are a large family of nucleic acid binding 

proteins, which associate with mRNA precursors to form ribonucleoprotein 

paticles126. HnRNPs participate in various processes, such as regulation of 
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transcription127, splicing128, and telomere-length maintenance129. HnRNPs have been 

reported overexpressing in several types of cancers130-132. The reason for the 

overexpressions of hnRNPs in cancers is not clear, but it has been associated to the 

molecular machinery that regulates telomere formation and stabilization129 and to the 

control of apoptosis133-134. It has been reported that the hnRNPs were 

dephosphorylated at the early stage of apoptosis. The dephosphorylation may change 

their activities in statilizing and splicing mRNA and result in the upregulations of 

mRNA and proteins of the caspase family. The higher abundance of hnRNPs in drug 

resistant cells may not be sensitive to the dephosphorylation and resistant to 

apoptosis133.  

Comparison of three drug resistant cell lines 

    Insoluble proteins from three drug resistant cancer cell lines were studied and 

several proteins were identified to be significantly changed in abundances compared 

to the drug susceptible parent line. If we compare the three cell lines, the alterations 

are not the same. The AdrVp resistant cell line has the most proteins changing 

significantly (> two folds). This may be related to its high level of drug resistance. 

More altered proteins provide more clues about mechanism. The proteins, such as 

hnRNP A0 and HMG-14, were found to change significantly only in the AdrVp 

resistant cell line and may related to the DNA damage functions of Adr123, 126. The 

changes in abundances of hnRNP F and hnRNP A2/B1 in the MX resistant cell line 

were not found in the other two lines. HnRNP is reported to be involved in mRNA 

transportation between the nucleus and cytoplasm132. Further studies on these proteins 

may reveal mechanisms associated with RNA processing in drug resistance.  
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Chapter 5:  Conclusion 

 

    The progress of high-throughput proteomic analysis has enabled comprehensive 

studies of many biological functions. Combinations of high-resolution separations 

techniques with mass spectrometry are widely used in qualitative and quantitative 

protein analysis and are continuously being improved. In this study, a free solution 

isoelectric focusing apparatus was modified and evaluated for protein and peptide 

separation. Newly commercialized isoelectric membranes, which carry immobilized 

ampholytes, were used to establish the pH boundaries in the apparatus. The solution 

isoelectric focusing was coupled with reversed phase liquid chromatography and 

mass spectrometry for proteomic analysis. A nuclear protein fraction was used to 

evaluate the performance of the two-dimensional strategy. A total of 281 unique 

peptides corresponding to 169 proteins were identified by this method. This strategy 

has been characterized to have high resolution, reproducibility and high sample 

capacity. The concentration effect in the focusing process dramatically increases the 

local concentrations of low abundance species and the dynamic range of detection. 

This two-dimensional method greatly improved protein identification compared with 

a single-dimensional separation. Because peptides are separated, it can be used to 

analyze proteins with a wide range of physiochemical properties, such as hydrophobic 

proteins, and extremely basic proteins.  

This two-dimensional separation method is compatible with other proteomic 

strategies. In the present study, it was combined with a proteolytic isotope labeling 
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strategy for comparative proteomics. This combination enables analysis of changes of 

protein abundances in cells or clinical samples under different environments or 

conditions. The abundances of insoluble nuclear proteins from three drug resistant 

cancer cell lines were compared with those from a drug susceptible cell line using this 

method. Nineteen proteins were identified as significantly changed in abundance 

among the drug resistant cell lines. These proteins require functional confirmation; 

however, they may be biomarkers for diagnosis of the development of drug 

resistance, or targets for new anticancer drugs. 
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