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Abstract— The pairwise key distribution scheme of Chan
et al. was proposed as an alternative to the key distribution
scheme of Eschenauer and Gligor to enable network
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zero-one law for graph connectivity.

Keywords: Wireless sensor networks, Security, Key predis-
tribution, Random key graphs, Connectivity, Zero-one laws.

I. I NTRODUCTION

Wireless sensor networks (WSNs) are distributed collec-
tions of sensors with limited capabilities for computations
and wireless communications. Security is expected to be a
key challenge for WSNs deployed in hostile environments
where communications are monitored, and nodes are subject
to capture and surreptitious use by an adversary. However,
traditional key exchange and distribution protocols have been
found inadequate for large-scale WSNs, e.g., see [6], [11], [13]
for discussions of some of the challenges.

Recently random key predistribution schemes have been
proposed to address some of the difficulties. The idea of
randomly assigning secure keys to the sensor nodes prior to
network deployment was first introduced by Eschenauer and
Gligor [6]. Under full visibility, i.e., when nodes are all within
communication range of each other, the EG scheme induces a
random graph referred to as arandom key graph(also known
in the literature as auniform random intersection graph [1]).
The conditions on the graph parameters to ensure the absence
of isolated nodes have been obtained independently in [1],
[14], while the references [1], [4], [12], [15], [16] discuss zero-
one laws for connectivity in random key graphs. Needless to
say, the full visibility assumption does away with the wireless
nature of the communication infrastructure supporting WSNs.
In return, this simplification makes it possible to focus on
how randomizing the key selections affects the establishment
of a secure network, and the connectivity results for the
underlying random key graph then provide helpful guidelines
to dimension the EG scheme.

Following the original work of Eschenauer and Gligor, a
number of other key distribution schemes have been suggested.
The q-composite scheme [3] is a variation on the EG scheme

where two nodes need to share at leastq keys (withq > 1) in
order to establish a secure link between them. Theq-composite
scheme improves resiliency against small-scale attacks as the
network becomes more vulnerable to large attacks. Du et al.
[5] proposed a key predistribution scheme which also improves
resiliency but at the cost of increased overheads. Although
these schemes somewhat improve network resiliency, they all
fail to provideperfectresiliency against node capture attacks.
Moreover, none of them enables a node to authenticate the
identity of a neighbor with which it communicates. In terms
of network security this is a major drawback becausenode-
to-node authenticationcan help detect node misbehavior, and
provides resistance against node replication attacks [3].

With this in mind, Chan et al. also proposed in [3] a ran-
dom pairwise key predistribution scheme with the following
properties: (i) Even if some nodes are captured, the secrecy of
the remaining nodes isperfectlypreserved; (ii) Unlike earlier
schemes, this pairwise scheme enables both node-to-node
authentication and quorum-based revocation. The distribution
scheme can be implemented through the followingoffline
construction: Before deployment, each of then sensor nodes
is paired (offline) withK distinct nodes which are randomly
selected from amongst all other nodes. For each such pair of
sensors, a unique (pairwise) key is generated and stored in the
memory modules of each of the paired sensors along with the
id of the other node. A secure link can then be established
between two nodes if at least one of them is assigned to the
other, i.e., if they have at least one pairwise key in common.
Precise definitions and implementation details are given in
Section II.

Let H(n;K) denote the random graph on the vertex set
{1, . . . , n} where distinct nodesi and j are adjacent if they
have a pairwise key in common; this corresponds to modelling
the random pairwise distribution scheme under full visibility.
The main goal of this paper is to give conditions onn and
K under which H(n;K) is a connected graph with high
probability as n grows large. As in the case of the EG
scheme, such conditions might provide helpful guidelines for
dimensioning purposes. In the original paper of Chan et al.
[3] (as in the reference [8]), the connectivity ofH(n;K) is
analyzed byequatingit with the Erd̋os-Renyi graphG(n; p)
where p = 2K

n
; this constraint ensures that the link prob-



abilities in the two graphs are asymptotically matched. A
formal transfer of well-known connectivity results from Erdős-
Renyi graphs toH(n;K) suggests that the parameterK should
behave likec log n for somec > 1

2 in order for H(n;K) to
be connected with a probability approaching1 for n large.
With this conclusion as a point of departure, the maximum
supportable networks size is then evaluated [3], [8], and it
is then argued that the random pairwise key predistribution
scheme isnot scalable.

Here we revisit this issue, and show that transferring con-
nectivity results from Erd̋os-Renyi graphs toH(n;K) leads to
misleadingconclusions. Indeed by adirect analysis we show
the following zero-one law: WithK ≥ 2 (resp.K = 1), the
probability thatH(n;K) is a connected graph approaches1
(resp. 0) as n grows large, and the desired connectivity is
therefore achievable under very small values ofK.

In contrast with the EG scheme and its variations, the
pairwise distribution scheme produces key rings of variable
size betweenK and K + (n − 1). It is easy to see that on
average only2K keys will be stored in the memory module
of a sensor node. Also, it can shown that themaximumsize
of a key ring is on the orderlog n with very high probability
providedK = O(log n). Such a concentration result suggests
the possibility of practically turning the pairwise scheme into
a scalable one. Details will be worked out somewhere else.

The rest of the paper is organized as follows: In Section II
we give a formal model for the random pairwise distribution
scheme of Chan et al. The main results of the paper are given
in Section III while Sections IV-V are devoted to proving the
main results.

II. A PAIRWISE SCHEME

A possible offline implementation model for a random-
pairwise key distribution scheme is as follows: The model
is parametrized by two positive integersn and K such that
K < n. There aren nodes, labelledi = 1, . . . , n, and Kn
distinct (cryptographic) keys, labelledk = 1, . . . ,Kn. We
organize these keys inton distinct subsets ofK keys, namely
K1, . . . ,Kn, with

Ki := {(i − 1)K + 1, . . . , iK}, i = 1, . . . , n. (1)

In practice the pool sizeP is assumed to be very large with
nK ≪ P , and can be safely taken to be infinite for the purpose
of our discussion; it is not a model parameter (as was the case
for the EG scheme). Also the labelling in (1) is used only for
sake of concreteness, and can be replaced by any labelling
which ensures thatK1, . . . ,Kn is a partition of{1, . . . ,Kn}.

Write N := {1, . . . n} and setN−i := N − {i} for each
i = 1, . . . , n. With node i we associate a subsetΓi of K
distinct nodes selected at random fromN−i. Thus, for any
subsetA ⊆ N−i,

P [Γi = A] =







(

n−1
K

)−1
if |A| = K

0 otherwise.

This reflects the fact thatΓi is selected uniformly amongst all
subsets ofN−i which are of size exactlyK. Throughout we

assume the rvsΓ1, . . . ,Γn to be mutually independent so that

P [Γi = Ai, i = 1, . . . , n] =
n

∏

i=1

P [Γi = Ai]

for arbitrary A1, . . . , An subsets ofN−1, . . . ,N−n, respec-
tively.

We now construct offline the key rings
Σ1(n;K), . . . ,Σn(n;K) as follows: For eachi = 1, . . . , n,
node i shareseachof the K keys inKi with exactlyone of
the nodes inΓi under the constraint that no node inΓi can
receive more than one key from nodei – A simple way to
do so is to assign theK keys labelled(i − 1)K + 1, . . . , iK
to the K nodes inΓi according to increasing labels. Thus,
if the random setΓi is realized as{j1, . . . , jK} with
1 ≤ j1 < . . . < jK ≤ n, then for eachk = 1, . . . ,K,
key (i − 1)K + k is shared with nodejk. Inherent to such
an assignment is the fact that the key(i − 1)K + k is
assignedexclusivelyto the pair of nodesi and jk, hence the
terminology pairwise distribution scheme. Other assignments
are possible, e.g., according to decreasing labels or according
to a random permutation.

Here we only consider the case when the sensor nodes
1, . . . , n are all deployed at the same time. However, in
practice the initially deployed network may have fewer than
n nodes. In that case only a subset of{1, . . . n} will be
deployed initially and the remaining sensor labels will be used
at a later time if additional nodes are to be deployed. The
implementation details and results regarding the case where
the network is deployedgradually can be found in [17].

III. M AIN RESULTS AND DISCUSSION

The pairwise distribution scheme described in Section II
naturally gives rise to the following class of random graphs:
With n = 2, 3, . . . and positive integerK, we say that the
distinct nodesi andj are adjacent, writteni ∼ j, if and only
if they have at least one key in common in their key rings,
namely

i ∼ j iff Σi(n;K) ∩ Σj(n;K) 6= ∅. (2)

Let H(n;K) denote the undirected random graph on the
vertex set{1, . . . , n} induced by the adjacency notion (2).
Throughout letP (n;K) denote the probability thatH(n;K)
is connected, namely

P (n;K) := P [H(n;K) is connected] .

Theorem 3.1:With any positive integerK, it holds that

lim
n→∞

P (n;K) =







0 if K = 1

1 if K ≥ 2.
(3)

We discuss the one-law and zero-law of Theorem 3.1 in
Section IV and Section V, respectively. To establish the one-
law we follow a variation on the approach used for proving a
similar result in Erd̋os-Ŕenyi graphs – We start with a union
bound argument to obtain a bound on the probability that
H(n;K) is not connected, and then show that this bound



approaches zero asn gets large. The requisite bound, also
discussed in Section IV, can be given in the following simple
form.

Theorem 3.2:With any positive integerK ≥ 2, we have the
bound

P (n;K) ≥ 1 − 27

2n2
(4)

for all n = 2, 3, . . . sufficiently large.
The one-law in Theorem 3.1 is a clear consequence of the

bound (4) which provides a rate of convergence. Analogous
bounds, which are sharper than (4), are also available with an
explicit dependence onK; they are omitted in the interest of
brevity. These additional bounds show that the convergence in
the one-law of Theorem 3.1 becomes faster with largerK, in
fact as fast as1 − O(n−K), as would be expected.

Theorem 3.1 easily yields the behavior of graph connectivity
as the parameterK is scaled withn. First some terminology:
We refer to any mappingK : N0 → N0 as ascalingprovided
it satisfies the natural conditions

Kn < n, n = 1, 2, . . . . (5)

Corollary 3.3: For any scalingK : N0 → N0, we have

lim
n→∞

P (n;Kn) = 1 (6)

providedKn ≥ 2 for all n sufficiently large.
We stress thatH(n;K) cannot be equated with an Erdős-

Renyi graph, hence neither Theorem 3.2 nor Corollary 3.3 are
consequences of classical results for Erdős-Renyi graphs [2].
To drive the point further, note the following: In many known
classes of random graphs, the absence of isolated nodes and
graph connectivity are asymptotically equivalent properties,
e.g., Erd̋os-Ŕenyi graphs [2], geometric random graphs [10]
and random key graphs [12], [14]. This equivalence, when it
holds, is used to advantage by first establishing the zero-one
law for the absence of isolated nodes, a step which is usually
much simpler to complete with the help of the method of
first and second moments [9, p. 55]. However, there are no
isolated inH(n;K) since each node is of degree at leastK.
Thus, the class of random graphs studied here provides an
example where graph connectivity and the absence of isolated
nodes are not asymptotically equivalent properties; in fact this
is what makes the proof of the zero-law more intricate.

IV. A PROOF OF THE ONE-LAW

Fix n = 2, 3, . . . and consider a positive integerK. The
conditions

2 ≤ K and 2(K + 1) < n (7)

are assumed enforced throughout; the second condition is
made to avoid degenerate situations which have no bearing
on the final result. There is no loss of generality in doing so
as we eventually letn go to infinity.

For any non-empty subsetS of nodes, i.e.,S ⊆ {1, . . . , n},
we define the graphH(n;K)(S) (with vertex setS) as the
subgraph ofH(n;K) restricted to the nodes inS. We say that
S is isolated in H(n;K) if there are no edges (inH(n;K))
between the nodes inS and the nodes in the complementSc =

{1, . . . , n}− S. This is characterized by the eventBn(K;S),
i.e.,

Bn(K;S) := [i 6∈ Γj , j /∈ Γi, i ∈ S, j ∈ Sc] .

Since each node inH(n;K) is connected to at leastK other
nodes, a setS can be isolated inH(n;K) only if |S| ≥ K+1.

Also, we let Cn(K;S) denote the event that the induced
subgraphH(n;K)(S) is itself connected, and writeCn(K) to
denote the event thatH(n;K) is connected. Finally, we set

An(K;S) := Cn(K;S) ∩ Bn(K;S).

The discussion starts with the following basic observation:
If H(n;K) is not connected, then there must exist a subset
S of nodes with |S| ≥ K + 1 such thatH(n;K)(S) is
connected whileS is isolated inH(n;K). This is captured
by the inclusion

Cn(K)c ⊆ ∪S∈Pn: |S|≥K+1 An(K;S) (8)

with Pn denoting the collection of all non-empty subsets of
{1, . . . , n}. A moment of reflection should convince the reader
that this union need only be taken over all subsetsS of
{1, . . . , n} with K + 1 ≤ |S| ≤ ⌊n

2 ⌋. Then, a standard union
bound argument immediately gives

P [Cn(K)c] ≤
∑

S∈Pn:K+1≤|S|≤⌊n

2 ⌋

P [An(K;S)]

=

⌊n

2 ⌋
∑

r=K+1





∑

S∈Pn,r

P [An(K;S)]



 (9)

wherePn,r denotes the collection of all subsets of{1, . . . , n}
with exactlyr elements.

For each r = 1, . . . , n, we simplify the notation
by writing An,r(K) := An(K; {1, . . . , r}), Bn,r(K) :=
Bn(K; {1, . . . , r}) and Cn,r(K) := Cn(K; {1, . . . , r}). For
r = n, the notationCn,n(K) coincides withCn(K) as defined
earlier. Under the enforced assumptions, it is a simple matter
to check by exchangeability that

P [An(K;S)] = P [An,r(K)] , S ∈ Pn,r

and the expression

∑

S∈Pn,r

P [An(K;S)] =

(

n

r

)

P [An,r(K)] (10)

follows since|Pn,r| =
(

n
r

)

. Substituting into (9) we obtain the
bounds

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

(

n

r

)

P [Bn,r(K)] (11)

as we note the inclusionAn,r(K) ⊆ Bn,r(K).
For eachr = K + 1, . . . , n, it is easy to check that

P [Bn,r(K)] =

(

(

r−1
K

)

(

n−1
K

)

)r

·
(

(

n−r−1
K

)

(

n−1
K

)

)n−r

. (12)



Therefore, reporting (12) into (11) we get

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

(

n

r

)

(

(

r−1
K

)

(

n−1
K

)

)r (

(

n−r−1
K

)

(

n−1
K

)

)n−r

. (13)

For 0 ≤ K ≤ x ≤ y, we have
(

x
K

)

(

y
K

) =

K−1
∏

ℓ=0

(

x − ℓ

y − ℓ

)

≤
(

x

y

)K

since x−ℓ
y−ℓ

decreases asℓ increases fromℓ = 0 to ℓ = K − 1.
Reporting this fact into (13) and using the standard bound

(

n

r

)

≤
(ne

r

)r

, r = 1, . . . , n

we conclude that

P [Cn(K)c]

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r
(

r − 1

n − 1

)rK (

1 − r

n − 1

)K(n−r)

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r ( r

n

)rK (

1 − r

n

)K(n−r)

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r ( r

n

)rK

e−rK
(n−r)

n

=

⌊n

2 ⌋
∑

r=K+1

(

( r

n

)K−1

e1−K
(n−r)

n

)r

. (14)

On the ranger = K + 1, . . . , ⌊n
2 ⌋ with K ≥ 2, we have

K
n − r

n
≥ K

n − ⌊n
2 ⌋

n
≥ K

2
≥ 1,

whence
e1−K

(n−r)
n ≤ 1.

On the same range we also have
( r

n

)K−1

≤ r

n

sinceK ≥ 2. Reporting these facts into (14) we find

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

( r

n

)r

≤
⌊n

2 ⌋
∑

r=3

( r

n

)r

. (15)

With the help of (15) it is already possible to show that
limn→∞ P [Cn(K)c] = 0, hence (3), by an easy application
of the Bounded Convergence Theorem. Details are omitted in
the interest of brevity.

However, the bounds in (15) do pave the way for the more
compact bound of Theorem 3.2. This is a consequence of the
equality

max
(( r

n

)r

: r = 3, . . . ,
⌊n

2

⌋)

=

(

3

n

)3

(16)

valid for all n sufficiently large. This fact is easily validated
by standard calculus arguments. Now, putting (16) into (15)
yields

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=3

(

3

n

)3

for all n sufficiently large, and the bound (4) is established.

V. A PROOF OF THE ZERO-LAW

First some terminology: WhenK = 1, the random sets
Γ1, . . . ,Γn are now singletons, and can be interpreted as
{1, . . . , n}-valued rvs (as we do from now on) such thatΓi 6= i
for eachi = 1, . . . , n. Thus,Γi is the node selected at random
which becomes associated (paired) with nodei.

With this in mind, a formation is any sequenceγ =
(γ1, . . . , γn) such that for eachi = 1, . . . , n, the component
γi is an element of{1, . . . , n} such thatγi 6= i. In other
words,γ is one of the(n − 1)n possible realizations of the
rvs (Γ1, . . . ,Γn).

With any formationγ we associate adirectedgraph on the
vertex set{1, . . . , n} in an obvious manner: There is a directed
edge from nodei to nodej if γi = j. This directed graph is
denoted byHγ(n). As there are(n−1)n possible formations,
there are(n − 1)n distinct directed graphs so defined. Under
the pairwise distribution scheme considered here, each of these
graphs is equally likely, so that we have

P (n; 1) =

∑

γ 1
[

Hγ(n) is connected
]

(n − 1)n
(17)

where the summation
∑

γ is taken over all possible forma-
tions. Here, we have used the conventional notion of connec-
tivity for directed graphs: A directed graph is connected if and
only if the underlyingundirectedgraph is connected – This
is to be distinguished from the notion of strong connectivity
defined for directed graphs. The desired zero-law will be
established if we can show that

lim
n→∞

∑

γ 1
[

Hγ(n) is connected
]

(n − 1)n
= 0. (18)

From now on, letH⋆
γ(n) denote the underlying undirected

graph of Hγ(n). We note thatH⋆
γ(n) is a realization of

the random graphH(n; 1) when (Γ1, . . . ,Γn) = γ. For each
formationγ, we can easily validate the following observations:

1) By definition,Hγ(n) is connected if and only ifH⋆
γ(n)

is connected.
2) SinceHγ(n) hasn directed edges, the undirected graph

H⋆
γ(n) can haveat mostn edges.

3) If Hγ(n) is connected, thenH⋆
γ(n) should haveat least

n − 1 edges.
4) If Hγ(n) is connected andH⋆

γ(n) hasn−1 edges, then
Hγ(n) has exactly one bi-directional edge.

5) If Hγ(n) is connected and has (exactly) one bi-
directional edge, thenH⋆

γ(n) is a necessarily atreewith
n − 1 edges.

6) If Hγ(n) is connected andH⋆
γ(n) has n edges, then

Hγ(n) has exactly onecycle.



Case I –H(n; 1) is connected and hasn−1 edges:Thus,
H(n; 1) is a tree. WithTn denoting the collection of labelled
trees on the set of vertices{1, . . . , n}, we have|Tn| = nn−2.
by Cayley’s formula. Noting also that a given tree is the
underlying undirected graph forn − 1 different formations
(corresponding ton − 1 possible places for the single bi-
directional edge), we get

P [H(n; 1) is connected and hasn − 1 edges]

=
1

(n − 1)n
·
∑

γ
1

[

Hγ(n) is connected and
has one bi-directional edge

]

=
1

(n − 1)n
·
∑

γ

∑

T∈Tn

1

[

H⋆
γ(n) = T

]

=
1

(n − 1)n
· (n − 1) · nn−2

=
1

n
·
(

n

n − 1

)n−1

. (19)

It is now clear that

lim
n→∞

P

[

H(n; 1) is connected
and hasn − 1 edges

]

= 0. (20)

Case II – H(n; 1) is connected and hasn edges:This
corresponds to all formationsγ such thatH⋆

γ(n) is connected
and has exactly one cycle. It is not difficult to see that a
connected graph with only one cycle can be the underlying
undirected graph for two different formations (corresponding
to the two possible orientations of the cycle). For instance,
consider a connected graph onn nodes with exactly one
cycle. This graph necessarily hasn edges and therefore the
original directed graphHγ(n) cannot have a bi-directional
edge. Without loss of generality, assume that the cycle consists
of nodes1, 2, 3, 4 with edges1 ∼ 2, 2 ∼ 3, 3 ∼ 4, 4 ∼ 1. Then
the two possible formations are{2, 3, 4, 1, γ5, γ6, . . . γn} and
{4, 1, 2, 3, γ5, γ6, . . . γn}. Similar arguments can be made for
all possible cycles. Since there can be no other cycles or bi-
directional edges in the rest of the graph, these two formations
will be the only ones that give rise to that particular undirected
structure.

Now let T +
n denote the set of undirected graphs onn nodes

which are connected and have exactlyn edges. We find

P [H(n; 1) is connected and hasn edges]

=
1

(n − 1)n
·
∑

γ
1

[

Hγ(n) is connected and
has exactly one cycle

]

=
1

(n − 1)n
·
∑

γ

∑

G∈T +
n

1

[

H⋆
γ(n) = G

]

=
1

(n − 1)n
· 2 · |T +

n |. (21)

However, it is known [7, p. 133-134] that

|T +
n | ∼ 1

4

√
2πnn− 1

2 ,

and reporting this fact into (21) gives

P [H(n; 1) is connected and hasn edges]

∼
√

2π

2

(

n

n − 1

)n

n− 1
2

∼
√

2πe

2
n− 1

2 . (22)

It is now immediate that

lim
n→∞

P [H(n; 1) is connected and hasn edges] = 0.

Together with (20) and Facts 2-3, we now conclude that (18)
holds.
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[14] O. Yağan and A.M. Makowski, “On the random graph induced by a
random key predistribution scheme under full visibility,” In Proceedings
of the IEEE International Symposium on Information Theory (ISIT
2008), Toronto (ON), June 2008.
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