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Abstract— The pairwise key distribution scheme of Chan where two nodes need to share at lepkeys (withg > 1) in
et al. was proposed as an alternative to the key distribution order to establish a secure link between them. gFhkemposite
scheme of Eschenauer and Gligor to enable network scheme improves resiliency against small-scale attacks as the
security in wireless sensor networks. We consider the network becomes more vulnerable to large attacks. Du et al.
random graph induced by this pairwise scheme under the [5] proposed a key predistribution scheme which also improves
assumption of full visibility, and show the existence of a resiliency but at the cost of increased overheads. Although
zero-one law for graph connectivity. these schemes somewhat improve network resiliency, they all
Keywords: Wireless sensor networks, Security, Key predidail to provide perfectresiliency against node capture attacks.
tribution, Random key graphs, Connectivity, Zero-one laws.Moreover, none of them enables a node to authenticate the
identity of a neighbor with which it communicates. In terms
of network security this is a major drawback becausee-
Wireless sensor networks (WSNs) are distributed collets-node authenticatiocan help detect node misbehavior, and
tions of sensors with limited capabilities for computationprovides resistance against node replication attacks [3].
and wireless communications. Security is expected to be awith this in mind, Chan et al. also proposed in [3] a ran-
key challenge for WSNs deployed in hostile environmenttom pairwise key predistribution scheme with the following
where communications are monitored, and nodes are subjedperties: (i) Even if some nodes are captured, the secrecy of
to capture and surreptitious use by an adversary. Howewie remaining nodes igerfectlypreserved; (ii) Unlike earlier
traditional key exchange and distribution protocols have beschemes, this pairwise scheme enables both node-to-node
found inadequate for large-scale WSNs, e.g., see [6], [11], [1&]thentication and quorum-based revocation. The distribution
for discussions of some of the challenges. scheme can be implemented through the followimffine
Recently random key predistribution schemes have beenonstruction: Before deployment, each of thesensor nodes
proposed to address some of the difficulties. The idea isfpaired (offline) withK distinct nodes which are randomly
randomly assigning secure keys to the sensor nodes priorsédected from amongst all other nodes. For each such pair of
network deployment was first introduced by Eschenauer asensors, a unique (pairwise) key is generated and stored in the
Gligor [6]. Under full visibility, i.e., when nodes are all within memory modules of each of the paired sensors along with the
communication range of each other, the EG scheme induceisl @f the other node. A secure link can then be established
random graph referred to asandom key graptfalso known between two nodes if at least one of them is assigned to the
in the literature as aniform random intersection graph [1]). other, i.e., if they have at least one pairwise key in common.
The conditions on the graph parameters to ensure the absdPiaeise definitions and implementation details are given in
of isolated nodes have been obtained independently in [Bection II.
[14], while the references [1], [4], [12], [15], [16] discuss zero- Let H(n; K) denote the random graph on the vertex set
one laws for connectivity in random key graphs. Needless {a,...,n} where distinct nodeg and j are adjacent if they
say, the full visibility assumption does away with the wirelessave a pairwise key in common; this corresponds to modelling
nature of the communication infrastructure supporting WSNghe random pairwise distribution scheme under full visibility.
In return, this simplification makes it possible to focus oifhe main goal of this paper is to give conditions erand
how randomizing the key selections affects the establishmdiit under whichH(n; K) is a connected graph with high
of a secure network, and the connectivity results for th@obability asn grows large. As in the case of the EG
underlying random key graph then provide helpful guidelinessheme, such conditions might provide helpful guidelines for
to dimension the EG scheme. dimensioning purposes. In the original paper of Chan et al.
Following the original work of Eschenauer and Gligor, 3] (as in the reference [8]), the connectivity Bif(n; K) is
number of other key distribution schemes have been suggestethlyzed byequatingit with the Erdis-Renyi graphG(n;p)
The g-composite scheme [3] is a variation on the EG scheméhere p = %; this constraint ensures that the link prob-
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abilities in the two graphs are asymptotically matched. Assume the rvEy, ..., I, to be mutually independent so that
formal transfer of well-known connectivity results from Bsd n

Renyi graphs tdl(n; K) suggests that the parameférshould P[l;=A;, i=1,...,n] = Hp [[; = Ay

behave likeclogn for somec > 1 in order forH(n; K) to =1

be connected with a probability approachingfor n large. ¢, arbitrary A, ..., A, subsets of\" ,,..., N, respec-
With this conclusion as a point of departure, the maximum,ew_
supportable networks size is then evaluated [3], [8], and ityy,

is then argued that the random pairwise key predistributi%l(n,K) ..., S (n; K) as follows: For each = 1,...,n

scheme iot scalable. nodei shareseachof the K keys in K; with exactlyone of

Here we revisit this issue, and show that transferring COlKe nodes il under the constraint that no node Iin can
« . p . K3 v
nectivity results from Erés-Renyi graphs tél(n; K) leads to receive more than one key from node- A simple way to

misleadingconclusions. Indeed by direct analysis we show 4, <5 is to assign th& keys labelled(i — 1)K + 1,...,iK
the following zero-one law: Withi® > 2 (resp. K = 1), the y, yhe i nodes inT; according to increasing labels. Thus,
probability thatH(n; K') is a connected graph approaches if the random setl; is realized as{ji,...,jx} with
(resp.0) asn grows large, and the desired connectivity i§ ji < ... < jr < n, then for eachk = 1,..., K

therefore achievable under very small valuesiof key (i — 1)K + k is shared with nodgj,. Inherent to such
In contrast with the EG scheme and its variations, t assignment is the fact that the kéy— 1)K + k is
pairwise distribution scheme produces key rings of variab, signecexclusivelyto the pair of nodes and j;, hence the

size betweerk’ and K - (n —1). It IS easy to see that onterminology pairwise distribution scheme. Other assignments
average only2k keys will be stored in the memory module, o hosgible, e.g., according to decreasing labels or according
of a sensor node. Also, it can shown that theximumsize to a random permutation

of a key ring is on the orddig n with very high probability '

: ) Here we only consider the case when the sensor nodes
provided K = O(logn). Such a concentration result suggests ....n are all deployed at the same time. However, in

the possibility of practically turning the pairwise scheme intB’ractice the initially deployed network may have fewer than

a scalable one. Details will be worked out somewhere else, | J4as In that case only a subset ©f,...n} will be
Thg rest of the paper is organized as fol!ows: In'Se.ct|0.n (jjleployed initially and the remaining sensor labels will be used

we give a formal model for the random pairwise distributio, " |5ter time if additional nodes are to be deployed. The

§chem§ of Chan_ etal. The main results of the paper are gi\{ﬁ{blementation details and results regarding the case where
in Section Il while Sections IV-V are devoted to proving th‘?he network is deployedradually can be found in [17]
main results. '

now  construct offine the key  rings

IIl. M AIN RESULTS AND DISCUSSION

The pairwise distribution scheme described in Section Il
aturally gives rise to the following class of random graphs:
ith n = 2,3,... and positive integer’’, we say that the
distinct nodes andj are adjacent, writtein ~ 7, if and only
if they have at least one key in common in their key rings,

II. A PAIRWISE SCHEME

A possible offline implementation model for a random-
pairwise key distribution scheme is as follows: The mod
is parametrized by two positive integersand K such that
K < n. There aren nodes, labelled = 1,...,n, and Kn
distinct (cryptographic) keys, labelledd = 1,..., Kn. We

organize these keys into distinct subsets of( keys, namely namely
K1,...,K,, with i~ iff 3 K)NY,(n; K) # 0. 2
Ki={G-1)K+1,...,iK}, i=1,...,n. (1) Let H(n;K) denote the undirected random graph on the

vertex set{1,...,n} induced by the adjacency notion (2).

In practice the pool sizé” is assumed to be very large with _ o _
nK < P, and can be safely taken to be infinite for the purposgrougnout letP(n; K) denote the probability thalll(n; K)
é:onnected, namely

of our discussion; it is not a model parameter (as was the cdd
for the EG scheme). Also the labelling in (1) is used only for P(n; K) :=P[H(n; K) is connected] .
sake of concreteness, and can be replaced by any labellin

which ensures that,, ..., K, is a partition of{1,..., Kn}. gf’heorem 3.1:With any positive integeK , it holds that

Write N := {1,...n} and setN_; := N — {i} for each 0 ifK=1
i = 1,...,n. With node: we associate a subsé&t of K lim P(n; K) = ()
distinct nodes selected at random frokh_;. Thus, for any n—oee 1 ifK >2.
subsetd C NV_;,

We discuss the one-law and zero-law of Theorem 3.1 in
Section IV and Section V, respectively. To establish the one-
law we follow a variation on the approach used for proving a
similar result in Erés-Renyi graphs — We start with a union
This reflects the fact thdt; is selected uniformly amongst allbound argument to obtain a bound on the probability that
subsets ofV_; which are of size exactlys. Throughout we H(n; K) is not connected, and then show that this bound

n—1y—1 H
if |[Al=K
oA ("x")

0 otherwise.



approaches zero as gets large. The requisite bound, alsd1,...,n} — S. This is characterized by the eveBt, (K; 5),
discussed in Section 1V, can be given in the following simpliee.,

form. . . . . c
Theorem 3.2:With any positive integeK > 2, we have the Bu(K;S):=[i ¢l j¢ T i€S, jeST.
bound 97 Since each node ifil(n; K) is connected to at leagt other
P K) 21— o5 (4) nodes, a se§ can be isolated ifil(n; K) only if |S] > K +1.

foralln = 2,3, ... sufficiently large Also, we letC,(K;S) denote the event that the induced
R, T ubgrapht(n; K)(S) is itself connected, and writ€', (K) to
The one-law in Theorem 3.1 is a clear consequence of the ; .
. : enote the event th&f(n; K) is connected. Finally, we set
bound (4) which provides a rate of convergence. Analogous
bounds, which are sharper than (4), are also available with an An(K;S) = C,(K;S)N B,(K;S).
explicit dependence oK’; they are omitted in the interest of
brevity. These additional bounds show that the convergence infhe discussion starts with the following basic observation:
the one-law of Theorem 3.1 becomes faster with ladgein If H(n; K) is not connected, then there must exist a subset
fact as fast ag — O(n—X), as would be expected. S of nodes with[S| > K + 1 such thatH(n; K)(S) is
Theorem 3.1 easily yields the behavior of graph connectivigpnnected whileS is isolated inH(n; K'). This is captured
as the parametek is scaled withn. First some terminology: by the inclusion
We refer to any mappinds : Ny — Ny as ascaling provided ¢ )
it satisfies the natural conditions Cn(K)" C Usep,: 15z x01 An(K55) (8)

K,<n n=12. ... ) with P, denoting the collection of all non-empty subsets of

{1,...,n}. Amoment of reflection should convince the reader
Corollary 3.3: For any scalings : Ny — Ny, we have that this union need only be taken over all subs&tof
. _ B {1,...,n} with K +1 <|[S] < [§]. Then, a standard union
Jim P(n; Kn) =1 ®)  bound argument immediately gives
providedK,, > 2 for all n sufficiently large. P[C,(K)] < Z P[A,(K;S)]

We stress thatl(n; K) cannot be equated with an Bst

Renyi graph, hence neither Theorem 3.2 nor Corollary 3.3 are SEPn:KH1<ISI=3]

consequences of classical results for @&&Renyi graphs [2]. 5]
To drive the point further, note the following: In many known = > > PlAL(K;S)] 9)
classes of random graphs, the absence of isolated nodes and r=K+1 \S€Pn.r

graph connectivity are asymptotically equivalent propertiegnerep,  denotes the collection of all subsets{df . . ., n}
e.g., Erds-Renyi graphs [2], geometric random graphs [10), exaétlyr elements.
and random key graphs [12], [14]. This equivalence, when itpor aachr = 1.1 we simplify the notation

holds, is used to advantage by first establishing the zero- writing A, (K) = Ap(K;{1,...,r}), By, (K) =
law for the absence of isolated nodes, a step which is usu%g/e(K, It m";f}) and C (”K) '~ (’K- {'1 _.""TT})_ For
much simpler to complete with the help of the method qf _ n, the notatiorCnn(KS coincides withC,, (k) as defined

first and second moments [9, p. 55]. However, there are pQyjier Under the enforced assumptions, it is a simple matter
isolated inH(n; K') since each node is of degree at leaSt (5 -heck by exchangeability that

Thus, the class of random graphs studied here provides an

example where graph connectivity and the absence of isolated P[A,(K;S)] =P[A,(K)], S€ Py,
nodes are not asymptotically equivalent properties; in fact this )

is what makes the proof of the zero-law more intricate. ~ and the expression

IV. A PROOF OF THE ONELAW S P[AL(K:S)] = (n) BA, L (K)] (10)
Fix n = 2,3,... and consider a positive integétf. The SEPy,, - "
conditions follows since|P,, .| = (™). Substituting into (9) we obtain the
2<K and 2(K+1)<n @) Prrl = (7)- 9
bounds
are assumed enforced throughout; the second condition is Lz)
made tq avoid degenerat_e situations which h_ave_ no _beanng P[C,(K)9] < Z < ) P (B, (K)] (11)
on the final result. There is no loss of generality in doing so

e e . r=K+1
as we eventually let go to infinity.

For any non-empty subsétof nodes, i.e.S C {1,...,n}, @S Wwe note the inclusiod,, ,(K) C B ,(K).
we define the grapfil(n; K)(S) (with vertex setS) as the ~ For eachr = K +1,....n, itis easy to check that
subgraph oftl(n; K) restricted to the nodes ifi. We say that NN 1y \ T
S is isolatedin H(n; K) if there are no edges (ifil(n; K)) PIB. (K) = ( K ) ) ( K ) 12
) . [Bn, (K] o - : (12)
between the nodes ifi and the nodes in the complemesft = (") (")




Therefore, reporting (12) into (11) we get valid for all n sufficiently large. This fact is easily validated
5 by standard calculus arguments. Now, putting (16) into (15)
2

. n\ [ (&) ) < "% ) o yields
P[CW(K)] < - e (13 ) ,
i) yrz;l <7°) <("K) (") = ]P’[C,L(K)C]§§<%)

For0 < K <z <y, we have

for all n sufficiently large, and the bound (4) is established.

(%) (et 2\
(}’():ZEIO y—1 = y V. A PROOF OF THE ZERGLAW

First some terminology: Whetk = 1, the random sets
since =} decreases agincreases fronf =0to /=K —1. T, ...,T, are now singletons, and can be interpreted as
Reportlng this fact into (13) and using the standard bound {1,... n}-valued rvs (as we do from now on) such tiat# i

n nesr for eachz’ =1,...,n. Thus,I'; is the node selected at random
< ) < (—) , r=1,...,n which becomes associated (paired) with naede
" " With this in mind, aformation is any sequencey =
we conclude that (71,--.,7n) such that for eacti = 1,...,n, the component
v; is an element of{1,...,n} such thaty; # 4. In other
P[Cn(K)°] words, v is one of the(n — 1)" possible realizations of the
J

rK K(n—r) rvs (Fl, ,Fn)
ne\" (r—1 r i . . .
(—)) ( — 1) (1 - — 1) With any formationy we associate directedgraph on the
! " " vertex set{1,...,n} in an obvious manner: There is a directed
(”ey (T>TK ( o K(n—r) edge from node to nodej if v = j. IhIS d|_rected graph is
- 1-— _) denoted byH~(n). As there argn —1)" possible formations,
n

IN

there are(n — 1)" distinct directed graphs so defined. Under
X« the pairwise distribution scheme considered here, each of these
”e>r (f)T oKD graphs is equally likely, so that we have

IN

jrl 1) = Z»y 1 [H~(n) is connected

_ Z ((%)K_lelK("nr))r. 1 P(n;1) = (n—1)m

where the summationy ., is taken over all possible forma-
tions. Here, we have used the conventional notion of connec-
tivity for directed graphs: A directed graph is connected if and

17

Ontherange = K +1,...,[ 5] with K > 2, we have

n—r n—|% K only if the underlyingundirectedgraph is connected — This
K - > K o > 0l > 1, is to be distinguished from the notion of strong connectivity
defined for directed graphs. The desired zero-law will be
whence I established if we can show that
¢ moslb X~ 1[Hy(n) is connected
On the same range we also have nlglgo (n—1)" =0 (18)
(i)K* <T From now on, letH% (n) denote the underlying undirected
n ~n graph of H~(n). We note thatH4(n) is a realization of
since K > 2. Reporting these facts into (14) we find the random graplfl(n; 1) when (T';, ..., I',) = ~. For each
formation~, we can easily validate the following observations:
L5) L5) 1) By definition, H~ (n) i d if and only iff%
. AT -~ y definition, H~ (n) is connected if and only if/% (n)
PIC(K)T < > (5) <> (E) - (15) is connected.
r=K+1 r=3 2) SinceH~ (n) hasn directed edges, the undirected graph

With the help of (15) it is already possible to show that  H4(n) can haveat mostn edges.
lim, o0 P[C,,(K)°] = 0, hence (3), by an easy application 3) If H7( n) is connected, the4 (n) should haveat least
of the Bounded Convergence Theorem. Details are omitted in 7 — 1 edges.
the interest of brevity. 4) If H~(n) is connected an;_ﬂii;_(n) _haSn—l edges, then
However, the bounds in (15) do pave the way for the more  H1v(n) has exactly one bi-directional edge.

compact bound of Theorem 3.2. This is a consequence of thé) If Hy(n) is connected and has (exactly) one bi-
equality directional edge, thef{% (n) is a necessarily aeewith

n — 1 edges.

T\T n 3\* 6) If H~(n) is connected andi4(n) hasn edges, then
fax ((ﬁ) Fr=3 { J) - ( ) (16) H~(n) has exactly oneycle.



Case | —H(n; 1) is connected and has:— 1 edges:Thus,
H(n; 1) is a tree. With7,, denoting the collection of labelled
trees on the set of verticdd, ..., n}, we have|Z,| = n" 2.
by Cayley's formula. Noting also that a given tree is the
underlying undirected graph faor — 1 different formations
(corresponding ton — 1 possible places for the single bi-
directional edge), we get

and reporting this fact into (21) gives

P[H(n;1) is connected and has edge$

%?;<ni1>n"_

[N

~

2me
2

n

=

~

(22)

It is now immediate that

P[H(n;1) is connected and has— 1 edge$

1 Z 1 H~(n) is connected and
(n—1)" ~~ | has one bi-directional edg

lim P[H(n;1) is connected and has edge$= 0.

Together with (20) and Facts 2-3, we now conclude that (18)

1 *
= oo -27 S [H7(n) _T} holds.
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