
Interoperable Grammars

Michael Maxwell
Center for Advanced Study of Language/ Center for Advanced Study of Language/

University of Maryland
College Park, Maryland, USA
mmaxwell@casl.umd.edu

Anne David

University of Maryland
College Park, Maryland, USA
adavid@casl.umd.edu

Abstract

For languages with significant inflectional
morphology, development of a morpho-
logical parser is often a prerequisite to fur-
ther computational linguistic capabilities.
We focus on two difficulties for this devel-
opment: the short lifetime of software such
as parsing engines, and the difficulty of
porting grammars to new parsing engines.
We describe a methodology we have de-
veloped to promote portability, using a for-
mal declarative grammar written in XML,
which we supplement with a traditional de-
scriptive grammar. The two grammars are
combined into a single document using
Literate Programming. The formal gram-
mar is designed to be independent of a par-
ticular parsing engine’s programming lan-
guage, thus helping solve the software life-
time and portability problems.

1 Grammar Development

After decades of widespread effort in computa-
tional linguistics, it is clear that progress has been
made in areas ranging from the building computa-
tional lexical resources, to applications such as
machine translation. While all this is beneficial, it
is not without drawbacks: some resources which
were developed at great expense, and which
proved useful in the past, are no longer usable.
This is perhaps nowhere more true than with
grammars. Numerous computationally imple-
mented grammars have been written, often at great
expense; but nearly all of these grammars are tied
to particular parsing engines, and their usefulness
ends with the obsolescence of that parsing engine.

Recently, many computational linguists have
turned from hand-crafted, labor intensive gram-
mars to grammars automatically induced from an-
notated corpora, particularly in syntax. When the

grammar is learned from a corpus, the obsoles-
cence of a parsing engine may be a lesser issue,
because when someone invents a better parsing
tool, a grammar for that new tool can be induced
from the same annotated corpus. This changes the
issue from the obsolescence of grammars to the
obsolescence of annotated corpora, and progress
has been made in this area.

Automatic grammar induction has been more
popular for syntax than for morphology. This is not
to say that there has been no research into the
learning of morphology; see for example Creutz
and Lagus 2007, Goldsmith 2001, Goldsmith and
Hu 2004, and the papers in Maxwell 2002. But
research on morphology learning has not had the
same impact that syntax learning has had. Accord-
ingly, most wide coverage morphological parsers
for languages with significant amounts of inflec-
tional morphology are probably still built by hand;
and barring a breakthrough, this seems likely to
continue, at least for the near future.

Thus, for languages with significant inflectional
morphology, a morphological parser1 is a prerequi-
site to serious natural language processing. And to
the degree that a language has complex morphol-
ogy, the grammars for these parsers are difficult
and time-consuming to build. One would therefore
like to preserve this investment.

Unfortunately, the development of computer-
processable morphological grammars is often tied
to the programming language of a particular mor-
phological parser, or to a general purpose computer
programming language, such as Prolog or Haskel
(see e.g. the papers at http://www.cs.chalmers.se/
~markus/FM/index.html). If the particular morpho-
logical parser (or transducer) never became obso-
lescent, or if there were a standard descriptive lan-

1 One commonly builds a morphological transducer, that
is, a program which functions to both parse and generate
inflected words. However, because it is more familiar,
in this paper we will use the term ‘parser.’

guage that all parsers used, this might not be prob-
lematic. But neither of these conditions is true. In
the past 25 years, there have been at least half a
dozen mutually incompatible morphological pars-
ing languages, ranging from SIL’s AMPLE (We-
ber Black and McConnel 1988) and PC-KIMMO
(Antworth 1990) to Xerox PARC’s xfst (Beesley
and Karttunen 2003) Nor have developers of mor-
phological parsing engines agreed upon a common
language; two recent entries, the Stuttgart Finite
State Transducer (http://www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/SFST.html) and
the OpenFst Library (http://www.openfst.org) pro-
vide still different programming languages. Some
changes are motivated by enhanced capabilities,
but others seem to be more an issue of style.

Two problems arise out of the mutual incom-
patibility of programming languages for different
parsing programs: an Interoperability Problem, and
a Half-Life Problem. The Interoperability Problem
refers to the fact that a grammar written for one
parsing engine cannot be used in another parser
without re-writing; and for now, at least, that re-
writing must be done by hand, since there are no
automatic interpreters between parsing engine lan-
guages. A grammar written for the Xerox trans-
ducer, for example, will not run on the Stuttgart
transducer without considerable modification.

The Half-Life Problem arises from the fact that
software (in particular, parsers) becomes obsolete.
While we are not aware of formal investigations,
we estimate the average lifetime for language-
based computational tools at five or ten years. In
part, this is due to the (lack of) longevity of the
underlying software.2

Software obsolescence can be postponed by the
judicious choice of programming languages, avoid-
ing OS-specific commands, the use of Open
Source software, and the use of OS emulators.
However, this can only prolong the life of a pro-
gram, not extend it indefinitely. Few if any pro-
grams that were written in 1980 (twenty-seven
years ago) still run on today’s computers.

One might argue that software half-life is unim-
portant, since twenty years from now it may be

2 The first author, (Maxwell) was involved in a project
in which two of the programming languages became
defunct before the program was even complete; the cost
of porting to alternative dialects of the programming
languages was deemed prohibitive.

possible to generate a morphological parser auto-
matically from a corpus. Perhaps, but this remains
to be seen. Meanwhile, the time and effort that go
into writing grammars mandates that the grammars
be usable long after the project is completed.

Another motivation for building longevity into
parsing tools is that they constitute a description of
(part of) the grammar of a language, in two senses.
First, the grammar the parser uses constitutes a
formal description of the language’s morphology
or syntax. Second, it can be used to analyze lan-
guage texts, and—if it supports a generation
mode—to produce paradigms. That is, a parser is
an active description, not just a static one. But in
their seminal paper, Bird and Simons 2003 point
out that language data in computer-readable form
can become unusable much more quickly than
printed descriptions. In contrast, scholars of today
can understand grammars and corpora penned
thousands of years ago. Thus, while a parser con-
stitutes a description of a language, it is—at pre-
sent—an ephemeral description.

There is little doubt that future parsing engines
will be improvements upon today’s parsers. We are
not suggesting that we need to build parsing en-
gines which will continue to be used decades from
now. Rather, we are suggesting that the language-
specific information that goes into a parser—the
grammar—should be written in such a way that it
can be easily ported to future parsing engines.
From this perspective, the Half-life Problem is
really the Interoperability Problem in a different
guise: interoperability between grammars written
today, and tools which are yet to be built.

In summary, the problem is that while computa-
tional grammars have real worth, each parsing en-
gine uses a different programming language. One
might therefore conclude that there is no hope of
providing a generic programming language for
grammars. We claim that this conclusion is wrong;
it is time now to think how we can write such
grammars that will not only be interoperable with
today’s parsers, but with future parsing engines;
and we provide a first cut at what such a program-
ming language for morphology could look like.

One reason for optimism is the fact that morpho-
logical parsing tools now incorporate most of the
capabilities that linguists have found necessary for
morphology and phonology (albeit clumsily in
some cases, e.g. morphosyntactic features), and
that a morphological grammar written in a generic

http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html

way can therefore be compiled into the program-
ming language of current morphological parsers.
At first glance, it might seem that this claim is
simply wrong, because linguists have yet to come
to agreement on the correct theory; like software,
linguistic theories have a short half-life! Since the
mid-1950s, there have been several generations of
theories about what the phonological ‘atoms’ are,
how many levels of structure are important, and
how representations are translated between those
levels. Atomic phonemes of the 1950s were re-
placed by distinctive feature matrices, which were
in turn superseded by autosegmental representa-
tions. Nevertheless, these changes were primarily
postulated to explain generalizations—general-
izations which can be stated, if not explained so
elegantly, with atomic phonemes. For example, a
rule which spreads a feature of nasalization across
vowels can be expressed as a rule that converts /a/
to /ã/, /o/ to /õ/, /u/ to /ũ/, etc. Phonological rules,
and the natural classes used in those rules, can
therefore be written in terms of atomic phonemes.

Similarly, while Optimality Theory (the current
popular approach to phonology) holds that the pho-
netic form of words is determined by ranked con-
straints rather than rules, there is little if any em-
pirical data that cannot be accounted for by a more
traditional rule-based approach.3

In summary, while we may expect theories of
morphology and phonology to continue to evolve,
in practice it is quite feasible to do morphology
and phonology using today’s theories—or even
yesterday’s theories. Linguistics does not stand in
the way of developing a sufficiently strong de-
scription language for morphology and phonology,
and present-day finite state transducers are capable
of implementing these descriptions.

The remainder of this paper sketches a design of
a general language for writing morphological
grammars, and a method for compiling grammars
written in that generic language into the program-
ming language of particular morphological parsers.
We also describe how we supplement this formal
grammar with a reference grammar of the mor-
phology and phonology of a language. This may be
seen as a way of commenting our code, but in fact
we argue that it is much more, and that it consti-
tutes a valuable effort in its own right.

3 The under- and over-application of phonological rules
in reduplication is a potential, if rare, counter-example.

2 Interoperability and Half-Life: Solution

We have embarked on a project to build morpho-
logical grammars and parsers of languages in a
way that overcomes the Interoperability and Half-
Life problems described in the previous section.
The first grammar we have written is for the Ben-
gali, or Bangla, language.

Our approach is to write a formal grammar in
XML, using an XML schema to define the various
grammatical structures needed to create—in con-
junction with a suitable lexicon—a high coverage
morphological parser. At present, this parser is be-
ing implemented in the Stuttgart Finite State
Transducer (SFST). Since XML is not the native
language of this parsing engine, we have written a
‘compiler’ to convert the XML-based grammar
into code which SFST can use.

The following subsections describe our method-
ology in more detail.

2.1 Descriptive Grammar

During our investigation of Bangla, we were sur-
prised to discover that no thorough and reliable
descriptive grammar of modern colloquial Bangla
exists, despite its having over 200 million native
speakers. Instead, we relied on descriptions of
Bangla morphology from half a dozen grammars,
several journal articles, and a couple of disserta-
tions. These sources were not always clear, nor did
they always agree, and a few fine points of Bangla
morphology were simply unexplained.

The difficulty we encountered in understanding
grammatical descriptions, reconciling different
grammatical accounts, and filling in gaps in cover-
age underline the fact that we could not have sim-
ply picked up an existing grammar and written our
formal grammar from that. For languages which
have any degree of inflectional complexity—and
Bengali does, although there are languages with
still more complicated morphologies—the com-
plexities prevent such a simple approach. Instead,
we began by writing a descriptive grammar, simi-
lar to reference grammars for other languages. It
contains a chapter on the phonology and writing
system of Bangla, plus chapters for the various
parts of speech, describing the inflectional (and
some derivational) affixes, and how the resulting
inflected forms define the paradigms. The usage of
these forms is also described with examples; it is
not, however, a pedagogical grammar.

While the formal grammar described below was
designed for interoperability, the reference gram-
mar is much more than an add-on; rather, it is the
means by which the formal grammar was written.

The following sections describe the formal
grammar, and how we combined the descriptive
and formal grammars into a unified whole.

2.2 Formal Grammar

In order to produce a morphological parser, one
needs an unambiguous description of a language’s
morphology. Ambiguity is a fact about natural lan-
guage, and one which plagues software specifica-
tions (Berry and Kamsties 2003). Building a parser
from a descriptive grammar would be analogous to
building traditional software from a specification.
The danger is that our reference grammar, like the
grammars we consulted, may be unclear or am-
biguous, which would prevent its being used ten or
a hundred years from now to build a new parser.
We therefore need to supplement it with a gram-
mar written in a formal language.

One approach would be to use the programming
language of an existing parsing tool as that formal
language. Amith and Maxwell (2005) propose us-
ing the xfst language (the language of one of the
Xerox finite state tools, see Beesley and Karttunen
2003) for archival purposes. While this would meet
our need for an unambiguous representation, it
would fail to meet our goal of longevity: the Xerox
tools will likely not be used in ten years, and there
is no reason to think that the morphological parsing
engines available then will use the same program-
ming language, or that future grammar engineers
will understand the xfst language.

Our formal grammar must therefore be not only
unambiguous, but also—as far as possible—iconic
and self-documenting. We decided to write our
formal grammar in XML, and have developed an
XML schema for this purpose.

The XML schema is based on a UML model de-
veloped by SIL (downloadable from
http://fieldworks.sil.org/). This model allows for a
rich set of morphological constructs:

• Item-and-arrangement affixes
• Item-and-process affixation
• Compounding and incorporation
• Paradigm classes, stem allomorphy classes

• A slot-and-template representation for in-
flectional affixation

• Morphosyntactic features structures
• Exception features
• Allomorphy constraints

Our schema allows for most of these constructs,
with the exception for now of item-and-process
morphology. We have supplemented the model
with ordered phonological rules, which gives us a
second mechanism for describing allomorphy.

Our XML schema is intended to “plug and play”
with proposed standards for lexical databases, in-
cluding the ISO draft Lexical Markup Framework
(http://lirics.loria.fr/doc_pub/
LMF_revision_14.pdf).

While we have built small test cases to exercise
specific parts of the model and its schema, building
a full-scale grammar allows us to test the schema
in other ways. For example, our schema originally
called for all regular expressions to be defined in
one place, and called by reference (using XML
refids) in the various allomorph constraints and
phonological rules where they are used. This
worked well in small test cases, and it is computa-
tionally straightforward; it nevertheless turned out
in our Bengali grammar to be too complex for lin-
guists to maintain. As a result, we altered our
schema to allow for regular expressions to be ei-
ther called by reference, or defined where they are
used. The former is used for regular expressions
which are used often (such as the definition of con-
sonants), while the latter is used for regular expres-
sions that appear only once or twice.

2.3 Combining Descriptive and Formal
Grammars

We have, then, both a descriptive and a formal
grammar. We have argued elsewhere (Amith and
Maxwell 2005a, 2005b) that neither is adequate by
itself for long-term language description. We here
summarize these claims.

First, we cannot presume that a linguist who was
unfamiliar with our XML language could look at
our formal grammar and easily deduce what it
means. We therefore view our reference grammar
as a supplement to the formal grammar. This is like
commenting code, except that comments in tradi-
tional programs are intended for someone who is
already conversant in the programming language,

http://fieldworks.sil.org/
http://lirics.loria.fr/%E2%80%8Cdoc_pub/%E2%80%8CLMF_revision_14.pdf
http://lirics.loria.fr/%E2%80%8Cdoc_pub/%E2%80%8CLMF_revision_14.pdf

whereas our reference grammar is intended to ex-
plain the meaning of the constructs to someone
who does not already understand our XML gram-
mar description language—a more ambitious goal.

On the other hand, since descriptive grammars
are written in natural language, they are inherently
ambiguous (as discussed above), and even vague.
If a formal grammar could be combined with the
descriptive grammar, we would have an antidote to
this problem; assuming an appropriate syntax, a
formal grammar is neither ambiguous nor vague.

The question then is whether the descriptive and
formal grammars can be combined, allowing each
to make up for the other’s deficits. Such a combi-
nation would need the following components:
(1) A way to develop the grammars in parallel.
(2) A way to combine the grammars so that the

description of each grammar topic is presented
to the human reader along with the corre-
sponding rules of the formal grammar.

(3) A way to extract the formal grammar for use
by the parsing engine.

In fact, there already is a method that accomplishes
(2) and (3); Literate Programming (henceforth LP),
developed by Donald Knuth (Knuth 1984, 1992)
for documenting computer programs. We have
chosen the XML/ DocBook implementation of LP
(Walsh and Muellner 1999; Walsh 2002), since
XML provides advantages for long-term archiving
(cf. the recommendations for the use of XML in
Bird and Simons 2002). To this existing frame-
work, we add a development methodology (de-
scribed in David and Maxwell forthcoming), ac-
complishing point (1) above.

The result, we hope, is a mechanism that will al-
low another computational linguist—now or in the
future—to pick up our grammar, understand what
it means, and convert the formal grammar into the
programming language of some other morphologi-
cal parsing engine, either by writing an automatic
converter, or by converting the grammar by hand.

As a reviewer pointed out, Literate Program-
ming has not had a large impact on traditional
software engineering. There are however two sig-
nificant differences which give us reason to believe
that LP can be more successful in computational
linguistics. First, programmers are engineers, and
they are notoriously resistant to writing documen-
tation; and LP puts documentation first, so it is not
surprising that software engineers are resistant.
Linguistics, on the contrary, has a history of mil-

lennia of grammar documentation. Indeed, the
problem for many linguists is exactly the opposite:
describing grammars is natural, while writing for-
mal language rules is unnatural. So if there is a
problem in persuading linguists to do LP, it will be
finding linguists who are willing to write the for-
mal grammars (an issue addressed in the above-
mentioned methodology paper).

We suspect that another reason why software
engineers are reluctant to spend the time doing LP
is the burgeoning size of many computer programs.
Programs which have been documented using LP
are typically (if not always) small; but even utility
programs, like the familiar command-line utilities
of Unix, have become increasingly large and so-
phisticated. Grammars, on the other hand—at least
morphological grammars—are comparatively sim-
ple, even for languages with complex morpholo-
gies. (Indeed, a grammar which seems too complex
is often taken to be incorrect, or at the very least
“missing a generalization.”) Grammars, it seems to
us, are just the right size for LP: not so small that
they don’t need documenting, and not so large that
they cannot be documented. We are thus optimistic
about the future of LP grammar writing.

2.4 Conversion to publishable grammar

We view our Bengali grammar, including both the
descriptive and formal components, as a publish-
able work. Style sheets for DocBook of course ex-
ist already, giving us publication quality displays
for our reference grammar. But while the formal
grammar is understandable in its XML form, it is
not “pretty” (as evident from the excerpt of our
grammar in the appendix), nor does it bear an ob-
vious resemblance to linguistic formalisms.

Fortunately, the flexibility of XML makes it
possible to display a formal grammar using lin-
guistic formalisms—for example, using style
sheets to convert the XML structures for phono-
logical rules into rules formatted in the way that
linguists expect. The creation of the style sheets
necessary to display and typeset our formal gram-
mar is planned for next year, giving us the remain-
ing piece needed for the Literate Programming.
which Knuth referred to as ‘weaving.’

2.5 Conversion to parser

The grammar is also intended to be used by a mor-
phological parser. To build the parser, we first ex-
tract the formal grammar as an XML document

from the combined descriptive and formal gram-
mar. This process, known in LP as ‘tangling’, is
done by an XSLT program developed by Norman
Walsh (available at http://docbook.sourceforge.net/
release/litprog/current/fo/ldocbook.xsl).

The extracted XML formal grammar is then read
by a Python program into an internal representa-
tion as objects, and output as the programming lan-
guage of the target morphological parsing engine.
A computer-readable lexicon must also be con-
verted into the programming language of the pars-
ing engine—a comparatively simple task.

Finally, the converted grammar and lexicon are
read by the parsing engine, currently the Stuttgart
Finite State Transducer, to produce the parser.

We expect any choice of parsing engine today to
be superseded by more capable parsers. Targeting
a different parsing engine will require rewriting
only that part of the converter program that trans-
lates the program-internal representation into the
target programming language (plus a separate con-
verter for the lexicon). Alternatively, for relatively
simple grammars it should be possible to translate
an XML grammar into the target language by
hand, a process aided by the side-by-side exposi-
tion of reference and formal grammars provided by
the Literate Programming framework.

The analogy to the compilation of high-level
programming languages is clear: while we compile
our XML language into the high-level program-
ming language of a morphological parsing engine,
rather than into the machine language of a CPU,
the goal is to make a program usable on a variety
of platforms, both now and in the future.

Verifying that the conversion process works cor-
rectly with a parsing engine requires test data.
Much of this test data can be automatically ex-
tracted from the descriptive grammar’s paradigm
tables and example sentences—another advantage
of having both descriptive and formal grammars.

3 Previous work

We are not aware of previous work intended to
produce grammars written in a formalism designed
to be ported to different parsing engines. The clos-
est work along these lines is perhaps DATR (Evans
and Gazdar 1996), a formalism intended for lexical
representation, incorporating a general mechanism
for non-monotonic inheritance. It is possible to
translate a DATR grammar into a morphological

parser (see e.g. Colburn 1999). However, DATR is
not an XML-based system. Perhaps more impor-
tantly, it uses a general purpose inheritance lan-
guage, whereas our XML schema is a specialized
language for morphology, allowing linguists to
express linguistic constructs in linguistic terms.

SIL’s recent FLEx program (http://www.sil.org/
computing/fieldworks/flex/) is a database designed
for linguistic field work. It incorporates a parser-
independent representation of the morphological
grammar; in fact, this is the source of the UML
model that we used as the basis of our own XML
schema. The SIL design anticipates that different
parsers will be used in the future (FLEx currently
uses SIL’s XAMPLE parser), but the program is
designed to support field linguists by providing a
particular parser; FLEx was not designed with the
goal of making it easy for computational linguists
using other parsers to re-use grammars (Black and
Simons 2006, Andrew Black, p.c.).

XLingPaper is an XML-based language devel-
oped by Andrew Black of SIL to write grammati-
cal descriptions (see http://www.sil.org/~blacka/
xlingpap/index.htm). XLingPaper allows for em-
bedding interlinear text into documents, but it does
not incorporate a formal grammar.

Some work on models and schemas for lexicons
includes partial models of morphology, in particu-
lar the previously mentioned ISO draft Lexical
Markup Framework (LMF). We are exploring
adapting those parts of the ‘intensional’ and ‘ex-
tensional’ morphology specifications in LMF
which overlap with our model. To some extent,
LMF has been a moving target, and merging the
two models will require further effort. Also, the
ISO standard for feature structures (ISO 24610-
1:2006) is used in our morphology model to repre-
sent morphosyntactic features.

There is also considerable work by computa-
tional linguists on defining models and schemas
for lexicons and annotated text. We see our work
as extending this to grammar development.

4 Conclusion

What is new about the project we describe is the
development of an XML schema based on a model
of morphology and phonology, and intended as a
way of developing and documenting grammars so
that they are easily ported to morphological pars-
ing engines, both present and future.

http://docbook.sourceforge.net/release/litprog/current/fo/ldocbook.xsl
http://docbook.sourceforge.net/release/litprog/current/fo/ldocbook.xsl
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37324
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37324

While it is not a necessary part of modeling
grammars for parser building, we believe that
combining the formal XML-based grammar with a
reference grammar intended to be read by humans
provides increased portability. The combination
serves as a better form of archival language docu-
mentation and description than either the reference
grammar or the formal grammar by itself would.

Finally, we note that while our focus has been
on morphological grammars, similar techniques—
the development of a generic model, and the use of
Literate Programming—could be applied to syntax.
There is however perhaps less agreement on ap-
propriate models among syntacticians than there is
among morphologists, making this more of a hope
than an immediately achievable goal.

References
Amith, Jonathan D., and Maxwell, Michael. 2005. Lan-

guage Documentation: The Nahuatl Grammar. In
Alexander Gelbuck (ed.) Computational Linguistics
and Intelligent Text Processing. Lecture Notes in
Computer Science. 474-485. Berlin: Springer.

Antworth, Evan L. 1990. PC-KIMMO: a two-level
processor for morphological analysis. Occasional
Publications in Academic Computing No. 16. Dallas,
TX: Summer Institute of Linguistics.

Beesley, Kenneth R., and Karttunen, Lauri. 2003. Finite
State Morphology: CSLI Studies in Computational
Linguistics. Chicago: University of Chicago Press.

Berry, Daniel M., and Kamsties, Erik. 2003. “Ambigu-
ity in Requirements Specification.” In Julio Cesar
Sampaio do Prado Leite and Jorge Horacio Doorn
(eds.) Perspectives on Software Requirements. The
Springer International Series in Engineering and
Computer Science. Vol. 753. Berlin: Springer.

Bird, Steven, and Simons, Gary. 2002. Seven Dimen-
sions of Portability for Language Documentation and
Description. In Proceedings of the Workshop on
Portability Issues in Human Language Technologies,
Third International Conference on Language Re-
sources and Evaluation. Paris: European Language
Resources Association.

Bird, Steven, and Simons, Gary. 2003. Seven dimen-
sions of portability for language documentation and
description. Language 79:557-582.

Black, H. Andrew, and Gary F. Simons. 2006. “The SIL
FieldWorks Language Explorer Approach to Mor-
phological Parsing.” Computational Linguistics for
Less-studied Languages: Proceedings of Texas Lin-

guistics Society, Austin, TX.
http://www.sil.org/~simonsg/preprint/FLExParser%2
0Preprint.pdf

Butt, Myriam, King, Tracy Holloway, Niño, María-
Eugenia, and Segond, Frédérique. 1999. A Grammar
Writer's Cookbook: CSLI Lecture Notes, 95. Stanford,
CA: CSLI Publications.

Colburn, Michael. 1999. “Enabling a Legacy Morpho-
logical Parser to use DATR-based Lexicons.” Ph.D.
dissertation, Colorado Technical University.
http://ogea.org/Linguistics/Colburn2000.pdf.

Copestake, Ann, and Flickinger, Dan. 2000. An open
source grammar development environment and
broad-coverage English grammar using HPSG. In
Proceedings of the Second conference on Language
Resources and Evaluation (LREC-2000). Athens,
Greece.

Creutz, Mathias, and Lagus, Krista. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Lan-
guage Processing 4.

Cunningham, H., Tablan, V., Bontcheva, K., and Dimi-
trov, M. 2002. Language engineering tools for col-
laborative corpus annotation. http://
citeseer.ist.psu.edu/734322.html.

David, Anne, and Michael Maxwell. Forthcoming.
“Joint Grammar Development by Linguists and
Computer Scientists.” Workshop on NLP for Less
Privileged Languages, IJCNLP 2008. Hyderabad.

Evans, R. and Gazdar, G. 1996. DATR: a language for
lexical knowledge representation. Computational
Linguistics 22: 167-216.

Goldsmith, John. 2001. Unsupervised Learning of the
Morphology of a Natural Language. Computational
Linguistics 27:153-198.

Goldsmith, John , and Hu, Yu. 2004. From Signatures to
Finite State Automata. Midwest Computational Lin-
guistics Colloquium, Bloomington IN.

Knuth, Donald E. 1984. Literate programming. The
Computer Journal 27:97-111.

Knuth, Donald E. 1992. Literate Programming: CSLI
Lecture Notes. Stanford: Center for the Study of
Language and Information.

Ma, Xiaoyi, Lee, Haejoong, Bird, Steven, and Maeda,
Kazuaki. 2002. Models and Tools for Collaborative
Annotation. In Proceedings of the Third Interna-
tional Conference on Language Resources and
Evaluation. Paris: European Language Resources
Association.

http://www.sil.org/%7Esimonsg/preprint/FLExParser%20Preprint.pdf
http://www.sil.org/%7Esimonsg/preprint/FLExParser%20Preprint.pdf
http://%E2%80%8Cciteseer.ist.psu.edu/%E2%80%8C734322.html
http://%E2%80%8Cciteseer.ist.psu.edu/%E2%80%8C734322.html

Maxwell, Michael B. 2002. Proceedings of the Work-
shop on Morphological and Phonological Learning.
New Brunswick, NJ: ACL.

Nirenburg, Sergei, Biatov, Konstantin, Farwell, David,
Helmreich, Stephen, McShane, Marjorie, Ponsford,
Dan, Raskin, Victor, and Sheremetyeva, Svetlana.
1999. Toward Descriptive Computational Linguistics.
http://crl.nmsu.edu/expedition/publications/boas-
acl99.pdf.

Oepen, Stephan, Flickinger, Dan, Tsujii, Jun-ichi, and
Uszkoreit, Hans. 2001. Collaborative Language En-
gineering: A Case Study in Efficient Grammar-Based
Processing: CSLI Lecture Notes, 118. Chicago: Uni-
versity of Chicago Press.

Oflazer, Kemal, Nirenburg, Sergei, and McShane,
Marjorie. 2001. Bootstrapping Morphological Ana-
lyzers by Combining Human Elicitation and Machine
Learning. Computational Linguistics 27:59-85.

Walsh, Norman, and Muellner, Leonard. 1999.
DocBook: The Definitive Guide. Sebastopol, Califor-
nia: O'Reilly & Associates, Inc.

Walsh, Norman. 2002. Literate Programming in XML.
XML 2002, Baltimore, MD.

Weber, David; Andrew Black; and Stephen R. McCon-
nel. 1988. AMPLE: A tool for exploring morphology.
Occasional Publications in Academic Computing no.
12. Dallas: Summer Institute of Linguistics.

Appendix: Sample Grammar Excerpt

3.2. Future Tense
The future tense is used to express:

 a future state or action
 propriety or ability [etc.]

…
Table 6.2. FutureTense Verb Forms
Person Suffix (C)VC- (C)aC- (C)V- (C)a- (C)V(i)- Causative 3-akr

 েশানা
/ʃon-a/
to hear

থাকা
/thak-a/
to stay

হoয়া
/hɔ-oya/
to become

খাoয়া
/kha-oya/
to eat

চাoয়া
/ca-oya/
to want

েশখােনা

/ʃekha-no/
to teach

কাmড়ােনা
/kamṛa-no/
to bite

1st -েবা
/-bo/

শnুেবা
/ʃun-bo/

থাkেবা
/thak-bo/

হব
/hɔ-bo/

খাব
/kha-bo/

চাiব
/cai-bo/

েশখাব
/ʃekha-bo/

কাmড়াব
/kamṛa-bo/

[Additional rows omitted to save space]
The formal grammar's listing of future tense suffixes appears below.

<Mo:InflectionalAffix gloss="-1Fut" id="af1Fut">
 <!--The two "allomorphs" are really allographs-->
 <Mo:Allomorph form="েবা">
 <!--Spelled 'bo'; usually (not always) after a C-stem -->
 </Mo:Allomorph>
 <Mo:Allomorph form="ব">
 <!--Spelled 'b'; usually (not always) after a vowel stem -->
 </Mo:Allomorph>
 <Mo:inflectionFeatures>
 <Fs:f name="Tense"><Fs:symbol value="Future"/></Fs:f>
 <Fs:f name="Mood"><Fs:symbol value="Indicative"/></Fs:f>
 <Fs:f name="Person"><Fs:symbol value="1"/></Fs:f>
 </Mo:inflectionFeatures>
/Mo:InflectionalAffix>

<!-- Etc. for the remaining future tense suffixes -->

