
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: TOP-DOWN ANALYSIS OF BACTERIAL 

PROTEINS BY HIGH-RESOLUTION MASS 
SPECTROMETRY 

  
 Colin Michael Wynne, Ph.D. 2010 
  
Directed By: Dr. Catherine Fenselau, Department of 

Chemistry and Biochemistry 
 
 
 

In the biodefense and medical diagnostic fields, MALDI mass spectrometry-

based systems are used for rapid characterization of microorganisms generally by 

detecting and discriminating the highly abundant protein mass-to-charge peaks.  It is 

important that these peaks eventually are identified, but few bacteria have publicly 

available, annotated genome or proteome from which this identification can be made.  

This dissertation proposes  a method of top-down proteomics using a high-resolution, 

high mass accuracy analyzer coupled with bioinformatics tools to identify proteins 

from bacteria with unavailable genome sequences by comparison to protein 

sequences from closely-related microorganisms.  Once these proteins are identified 

and a link between the unknown target bacteria and the annotated related bacteria is 

established, phylogenetic trees can be constructed to characterize where the target 

bacteria relates to other members of the same phylogenetic family. 



  

 First, the top-down proteomic approach using an Orbitrap mass analyzer is 

tested using a well known, well studied single protein.  After this is demonstrated to 

be successful, the approach is demonstrated on a bacterium without a sequenced 

genome, only matching proteins from other organisms which are thought to have 

100% homology with the proteins studied by the top-down approach.  Finally, the 

proposed method is changed slightly to be more inclusive and the proteins from two 

other bacteria without publicly available genomes or proteomes are matched to 

known proteins that differ in mass and may not be 100% homologous to the proteins 

of the studied bacteria.  This more inclusive method is shown to also be successful in 

phylogenetically characterizing the bacteria lacking sequence information.  

Furthermore, some of the mass differences are localized to a small window of amino 

acids and proposed changes are made that increase confidence in identification while 

lowering the mass difference between the studied protein and the matched, 

homologous, known protein.  
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Chapter 1: Introduction 

Protein Mass Spectrometry 

At its most basic concept, mass spectrometry is a technique that measures the 

mass and relative abundance of atoms and molecules1.  In order to accomplish this, 

each mass spectrometer is composed of an ion source, an analyzer and a detector.  

The ionizer generates gas phase ions from the sample.  The analyzer separates those 

ions by mass as well as allows for fragmentation of the precursor ion to create other, 

smaller ions.  The detector finally provides the signal to be interpreted by the 

instrument software.  The typical mass spectrum has two dimensions, the mass-to-

charge ratio (m/z) ratio and the relative abundance or intensity.  The most intense 

signal is generally set at 100% and the other signals having their height set in 

proportion to this “base” peak.  In the past twenty-five years, protein mass 

spectrometry has grown due to advances in “soft” ionization2.  “Soft” ionization 

provides charges to large molecules and biological materials without providing too 

much energy to cause fragmentation into smaller components.  With this newer, less 

energetic ionization, the range of molecules able to be analyzed by mass spectrometry 

was expanded to the tens of thousands and hundreds of thousands of Daltons.  This is 

the range necessary for whole protein and organism analysis and characterization.  

One of the two most popular “soft” ionization techniques, especially for 

biological molecules, is matrix assisted laser desorption ionization (MALDI).  

MALDI was developed in the late 1980’s by Koichi Tanaka3.  The matrix is an 
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organic acid, usually α-cyano-4-hydroxy-cinammic acid or sinapinic acid.  The 

analyte is mixed with the matrix and allowed to dry on a metal plate.  The plate is put 

under vacuum and the matrix-analyte spot is pulsed with a nitrogen laser at 337 nm.  

This excites the organic acid (and with it, the analyte) and the mixture desorbs into 

the gas phase as a plume of matrix-analyte clusters.  The result of this plume produces 

mostly singly-charged ions, though the exact manner of ionization is still unclear.  

The leading thought on the dominant occurence of singly charged ions is the “lucky-

survivor” theory proposed by Karas4.  This theory states that the laser pulse initially 

creates a large charge imbalance towards positive ions in the desorbed clusters of 

matrix, analyte, and counter ions.  However, as the plume is pulled towards the ion 

guides of the mass spectrometer, many of these charged clusters undergo charge 

reduction or neutralization through the capture of the electrons freed by the laser 

pulse.  The exception to this is the singly charged ions, which have an unfavorable 

electron capture cross section.  Therefore, these singly charged ions are the “lucky 

survivors” and move towards the analyzer within the mass spectrometer.   

Because MALDI uses a rapidly firing laser and produces singly charged ions, 

it is widely used as a rapid screening tool for biological materials5-7.  In a MALDI 

mass spectrum, most signals appear at their molecular weight, making for easy 

interpretation.  Furthermore, separation of a mixture is not performed as much as in 

other ionization techniques since each analyte produces one set of isotopic peaks.  

This lack of separation reduces the sample preparation time, again benefiting rapid 

screening.  However, because the charge is the denominator in the m/z ratio, MALDI 

mass spectrometers generally require an analyzer with a large range. 
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 Electrospray ionization (ESI) is the other “soft” ionization technique widely 

used for protein mass spectrometry.  Electrospray was developed in the mid-1980’s 

by John Fenn8.  Electrospray utilizes an electric field and streaming nitrogen to ionize 

a mixture of dissolved target, and ion pair agent, and organic solvent.  The ion pairing 

agent is generally acidic.  The two most popular ion pairing agents are formic acid 

and acetic acid.  The liquid mixture creates a Taylor cone of spray that spreads the 

solvated target ions.  A nitrogen stream is used to keep this cone consistent and 

targeted towards the opening in the front of the mass spectrometer.  Those solvated 

molecules become gaseous ions by a combination of two processes, field ionization 

and solvent evaporation.  In solvent evaporation, the ion pairing agent imparts 

multiple charges to a droplet.  As the solvent evaporates, the Coulombic repulsion 

becomes so great to break the surface tension of the droplet and place the target ion in 

the gaseous phase to enter the mass spectrometer.   

Because electrospray ionization imparts multiple charges on the target, it is an 

ideal ionization method for a mass spectrometer with a limited mass-to-charge ratio.  

Generally, there are many isotopic envelopes for the same target due to different 

amounts of charge on the molecule.  This causes a decrease in dynamic range, or the 

ability to detect distinct molecules at different concentrations.  Because the molecules 

with higher concentrations will have many peaks, and these peaks will have similar 

abundance, the molecule with lower concentration will be more difficult to detect.  

ESI is also easily compatible with liquid chromatography to separate and analyze 

complex mixtures, including cell lysates and tryptic digests of proteins.  This 

separation is necessary because of the lower dynamic range.   
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Recent advances in electrospray technology have given rise to lower flow 

rates through the electrospray needle into the nanoliter range.  With the 

miniaturization of the pumps, fittings, and capillary tubes, less organic solvent and 

less sample is necessary to detect and identify proteins and peptides.  Current 

technology allows for flow rates as little as 100 nL, bringing sensitivity of analyte to 

femtomole range 9.  This low flow rate also decreases the use of acetonitrile, which is 

increasingly expensive and dangerous to the environment, cutting the amount of 

waste production due to solvent injection.   

Due to the multiple charges imparted by electrospray ionization, the mass 

analyzer used can have a limited mass-to-charge ratio range.  The multiple charges 

also aid in any fragmentation that takes place.  Multiple charges on a protein are 

generally distributed based on the position of the basic residues, lysine, arginine, and 

histidine.  If the protein fragments at a different amino acid, then the basic residues 

will continue to carry one or more charges, leaving many fragments with a positive 

charge to be detected by the mass spectrometer in subsequent scans.  Electrospray is 

generally the soft ionization technique used in experiments that require 

characterization of the fragment ions based on this reasoning.                 
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Mass Analyzers 

The mass analyzer is the component of the mass spectrometer that separates 

the ions based on their mass-to-charge ratio.  As with the ioniziation techniques, 

different analyzers have benefits and deficiencies in protein mass spectrometry and 

should be chosen based on the particular experiment that the user performed and the 

information desired by that user.  Three types of analyzers widely used in protein 

mass spectrometry are the time-of-flight analyzer, the linear ion trap, and the 

Orbitrap. 

Time-of-flight (TOF) mass analyzers separate the ions based on the time spent 

in a field free tube 3.  Once the ions enter the mass spectrometer, they are guided by 

RF and DC voltages to the beginning of this field free tube theoretically with the 

same kinetic potential.  The other end of this field free tube is where the detector is 

usually placed.  Because kinetic energy is proportional to mass multiplied by velocity 

squared, the ions will spend different velocities based on their mass.  The ions with 

smaller mass will have a higher velocity and reach the detector first.  The ions with a 

larger mass will have lower velocities and reach the detector later.  Resolution of a 

time-of-flight mass analyzer is based on the length of this field free zone.  TOF 

analyzers have a wide range of mass-to-charge ratios that can be detected, with upper 

bounds of more than 100,000 m/z 10.  This makes the TOF analyzer widely associated 

with MALDI ionization, since the single charge imparted by MALDI creates large 

m/z ratios, and TOF having such a wide range.  Also, time-of-flight analyzers have a 

very fast scan rate, which accommodates pulsed ion production.  
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However, there are some applications that TOF analyzers are ill equipped for.  

Because of the need to allow ions to enter the field free zone at the same time, ions 

must be pulsed into the analyzer.  With a liquid chromatography system in-line with 

the mass spectrometer, the ions are constantly flowing into the mass spectrometer, 

which makes it difficult to pulse the ions into the analyzer.  Furthermore, because the 

TOF analyzer is a linear system dependant on one field free zone, fragmentation is a 

challenge within one analyzer.  Generally, to characterize fragments, TOF analyzer 

are paired with another type of analyzer, or two TOF analyzers are placed with the 

mass spectrometer, one to analyze the precursor ions and the other to analyze the 

fragments.  Fragmentation can also happen when the ions are initially injected into 

the mass spectrometer, either through high voltages near the inlet or increased laser 

power.   

Another development in TOF technology has allowed for a longer field free 

zone, allowing for better resolution and increased detection of fragmentation.  By 

placing a second detector on a different vertical path than the initial field free zone 

and curving the field using electric fields to guide the ions towards that 2nd detector, 

the field-free zone is lengthened.  In this curved field reflectron 11, the resolution is 

increased.  This CFR is also used for fragment detection since it allows for a longer 

activation time for fragmentation.   

Linear ion traps are also used as analyzers in protein mass spectrometry.  First 

described by Paul 12, linear ion traps use oscillating RF and DC voltages to contain 

ions of different m/z ratios in a small space.  In a linear trap, higher DC potentials are 

applied to the ends to create an energy well to trap the ions in the middle, while RF 
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potentials are oscillated to trap the ions inside in the x and y directions, with different 

m/z ratios oscillating at a different frequency.  By ramping the main RF frequencies, 

the oscillations will eventually become unstable, again with each particular mass-to-

charge ratio becoming unstable at a different RF frequency.  This instability can cause 

ejection out of the trap through slits in the side, with the detectors on either side of the 

trap 13.  Resolution of the trap is based on the speed of change of the RF frequency 

along with the increment of change.  This allows for higher resolution to be obtained 

by lowering the rate of scanning, but this method greatly increases the time needed to 

perform experiments.  However, ion traps have a narrow mass-to-charge ratio range 

that can be analyzed.  Large m/z ratios cannot be trapped by the high DC potentials at 

either end of the trap, and escape before being analyzed.  Most ion traps have an m/z 

range of 0 to 2000.  Because of this small range, ion traps are rarely coupled with 

MALDI ionization.  Instead, ion traps are coupled with Electrospray ionization, with 

its multiply charged ions to increase the effective mass range 14.  With a resolution of 

about 2000, these linear ion traps can detect and determine the charge of a molecule 

with a +4 charge of a 3000 molecular weight ion using its normal scan rate.       

One advantage that linear ion traps have is the ability to selectively trap or 

eject different m/z values.  Because the RF frequency to destabilize trapped ions is 

different for every m/z, an ion trap can skip certain frequencies to isolate and trap an 

m/z value.  This is beneficial to create fragment ions.  By isolating a particular m/z, 

there should typically be one type of molecule in the trap.  The trap then includes an 

excitation voltage and allows collisions between this type of molecule and an inert 

gas that the molecule fragments at its weakest point 15.  For peptides and proteins, this 
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collisionally induced dissociation usually breaks the protein’s weakest bond, the beta 

carbon to nitrogen amino bond linking one amino residue to another.  Once the 

protein is fragmented, if the charge remains on the C-terminal side of the break, then 

that fragment is denoted a y fragment.  If the charge remains on the N-terminal side 

of the break, then that fragment is a denoted b fragment.  This is the nomenclature 

first proposed by Roepstorff and Fohlman16 and later changed slightly by Biemann17.  

Once the fragments are formed, the trap then resumes full range scans of the RF 

frequencies to scan the complete m/z range.  This ability to isolate and fragment a 

particular m/z is why linear ion traps are the analyzer most often used for experiments 

that necessitate the characterization of fragments.   

 The Orbitrap analyzer is one of the newest analyzers used in protein mass 

spectrometry.  Invented by Makarov in 2000 18, 19, the Orbitrap is an alternative to 

traditional superconducting magnet based FTMS systems for high resolution analysis.  

The Orbitrap is an ion trap with an oblong (football like) shape of its outer and central 

electrode.  The ions are injected orthogonally to the central electrode and are attracted 

to an increasing voltage by this central electrode.  The outer electrodes oscillate 

polarity, causing the ions to “orbit” around the central electrode, while endcap 

electrodes cause the ion to move back and forth across the central electrode.  This is 

shown in Figure 1.1.  The frequency of that movement is detected and subjected to an 

FT and is inversely proportional to the square root of the mass-to-charge ratio.  All of 

the Orbitrap electrodes are controlled by electric potentials, not RF, so there is no 

need for a large superconducting magnet and the maintenance of that magnet.  

Because of the Fourier-transform, the resolving power of the Orbitrap mass analyzer 
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is very large.  While Makarov boasted 150,000 resolution in his initial experiments, 

the commercial version sold by Thermo Scientific has the capability to detect at 

60,000 resolution with the LTQ-Orbitrap XL.  Molecules with 20 or more positive 

charges can have their charge states determined, which would also determine their 

molecular mass.  This higher resolution, and the high mass accuracy that goes with it, 

increases the effective range of an ion trap from about 8000 with a linear ion trap to 

over 100,000 without causing the scans to be so slow that peaks are missed when 

interfaced with liquid chromatography.  However, the lack of RF means that a single 

m/z value cannot be isolated and fragmented, so any fragmentation must be done by 

another analyzer interfaced with the Orbitrap, such as a linear trap 20.    

 

Figure 1.1-Cartoon image of three sets of ions in an Orbitrap mass analyzer, the red 

ions having the smallest m/z and the gold ions having the largest m/z. 
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Proteomic Workflows 

 When trying to characterize proteins and organisms with mass spectrometry, 

there are some common practices and workflows that the community has developed 

and accepted.  The mass spectrometrist has to choose which workflow to use based 

on the type of sample, the type of instrument available, and previous knowledge of 

the sample.  Some of these workflows are better equipped to handle complex 

samples, some are better for rapid analysis, and some workflows allow for more 

information to be learned about a protein or organism.  The proteomics 21 based 

approaches characterize fragments of a protein and match those fragments against a 

database of fragments generated in-situ from a collection of proteins.  These proteins 

are entered into the database either through experimental discovery or translation 

from an annotated genome.  These approaches are not dependant on using the same 

growth conditions or same sample preparation each time.  The three proteomic 

approaches are bottom-up, top-down, and middle-down.analysis. 

 Bottom-up analysis uses enzymatic or chemical cleavage to hydrolyze the 

protein or group of proteins before injection into the mass spectrometer.  Typically, 

trypsin enzyme is used to cleave the proteins at the C-terminus of the lysine or 

arginine residues.  The products of that trypsin digest are separated by high pressure 

liquid chromatography, then they are ionized into the mass spectrometer.  The trypsin 

digestion products are then fragmented in the mass spectrometer and (partially) 

sequenced based on the separation of the m/z ratios of their fragment ions.  A search 

program is then used to match the digestion product to its original protein based on a 

theoretical digestion of a set of proteins.  Because trypsin cuts at two amino acid 
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residues, a protein digested by trypsin is usually cut into many pieces.  By digesting 

many proteins with trypsin at once, a bottom-up approach can cause a complex 

mixture as the sample.  The complex mixture places a strong emphasis on separation 

before ionization into the mass spectrometer and the ability for the mass spectrometer 

to isolate a particular m/z for fragmentation.  This emphasis, along with the fact that 

tryptic fragments generally have a mass of under 5000 Da, mean this type of analysis 

is generally performed with an ion-trap instrument with an inline high pressure liquid 

chromatography system 22.   

       The bottom-up approach is best used on systems that have been studied in 

the past and have the necessary sequence information in the publicly available 

proteome/genome databases .  Because of the complexity of the analyte and the fact 

that some digestion products ionize better than others, it is unlikely that the data from 

a bottom-up experiment will return 100% sequence coverage from every protein 

studied.  Database searching makes up for this lack of coverage by filling the gaps 

based on its theoretical digest.  However, if the protein hasn’t been studied or 

previously sequenced, then there is nothing in the database to match the digestion 

products that can be identified.  There would be no indication of where the fragments 

fit into the amino acid sequence of the protein (except for the terminus not beginning 

or ending with cleavage site residue).  Furthermore, if the protein is modified, then 

one or more fragments will have a shifted mass from what is expected, unless that 

modification is already known to exist in that protein.  Therefore, the bottom-up 

approach is made much more difficult without prior knowledge about the target 

protein. 
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   The top-down proteomic approach ionizes the whole protein into the mass 

spectrometer, fragments the protein, then matches the fragments generated by 

isolating and fragmenting the molecular ion of an intact protein against a database of 

in-situ fragment masses from a database of intact protein sequences.  By measuring 

the mass of the whole protein first, the top-down approach matches the protein mass 

first then confirms that identity through matching the masses of the fragments against 

the masses of the b and y fragments from that protein 23.  Furthermore, top down can 

better analyze previously unknown modifications or amino acid mutations through 

the molecular weight of the target.  For example, if the observed mass is 80 Da more 

than the theoretical mass of a protein, then there is a good chance that there is a 

previously unknown phosphorylation on the protein.   

 The top-down approach has to be done with a mass spectrometer with a large 

molecular weight range.  Most proteins weigh more than 6000 Da, meaning that the 

conventional linear ion trap would not be suitable for this type of analysis.  Top-down 

mass spectrometry is generally done with either MALDI 5, 24, or with the high 

resolution FT mass spectrometers 25, 26.  Using the high resolution hybrid FT mass 

spectrometers, the data will have many peaks for the same protein because of 

different charges on the isotope envelope.  Therefore this data will need to be 

decharged and deconvoluted before analysis by the mass spectrometrist.  This 

deconvolution can be done by software comparing the highly resolved isotope 

envelope to a theoretical envelope based on the average mass of an amino acid.  One 

such program, called THRASH 27, simplifies the spectra so that each protein or 

fragment only has one peak associated with it, as opposed to a cluster of isotope 
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peaks.  Once deconvoluted, the mixture is not as complex and top-down is a faster 

approach than bottom-up.  Even with advances in trypsin technology, digestion still 

takes minutes to hours.  Using the top-down approach, fragmentation takes less than a 

second.  A barrier to the analysis of top-down proteomics is that, since top-down has 

been a relatively new technology, most of the current database search programs were 

created for the bottom-up approach and do not support analysis of top-down data.   

 There has been a third proteomic approach that has been revived in 

popularity28, 29, middle-down analysis.  As the name implies, it takes the best aspects 

of the two previous approaches by using enzymatic or chemical cleavage to cleave 

the protein fewer times than bottom-up to create fewer, longer peptides for analysis.  

These longer peptides still carry many charges, so the high mass range is still 

necessary for complete analysis.  However, the data is better suited for the current 

search programs than the whole proteins in the top-down data.  By using a 

microwave-assisted chemical cleavage, the protein sample can be cleaved in 5 

minutes.  Generally, the protein is only cleaved at 1 amino acid, as opposed to 2 with 

trypsin, so the mixture is only half as complex as it would be using the bottom-up 

approach.  This is also true for the enzyme Lys-C.  As the name implies, the enzyme 

digests the protein at the C-terminal end of the lysine residues and provides longer 

polypeptides.    

Data Analysis 

 All three of the proteomic approaches that were described in the last section 

can generate thousands of mass spectra in a single experiment.  The handling of that 

data takes on an increased importance.  Furthermore, all three proteomic approaches 
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rely on matching the observed mass and observed fragments to theoretical in-situ 

cleavage or fragmentation of a protein database.  Search programs have been created 

to provide statistics to how well the observed data matches the theoretical data and 

how these matches compare to a random match or a false match.   

 MASCOT (www.matrixscience.com) is a widely used search engine used to 

match bottom-up data to the correct protein and provide statistics about how probable 

is the match 30.  The user inputs which enzyme was used, which database to use, what 

possible modifications can be present, what mass tolerance should be used, and which 

instrument was used.  The search program then performs the in-situ digest based on 

the inputs, and the program provides the matches in a results table.  This result gives a 

score for each matched peptide and a score for the probability of a protein being 

present based on how many peptides are matched from that protein.  Each peptide is 

also given an E-value, which measures how likely the match is opposed to a match to 

a random peptide.  The higher the score and lower the E-value, then higher 

confidence can be given to the match of observed data and theoretical data.  The 

observed data can also be searched against a “decoy” database (e.g. a database made 

of the reverse amino acid sequence of the constituent proteins), in order to calculate a 

false discovery rate.   

 ProSight PC is the search program that is widely used with the high mass 

accuracy FT top-down approach to match the protein and its fragment ions against a 

database of theoretical fragments 31.  First, the program uses the THRASH algorithm 

to deconvolute the multiply charged precursor and fragment data so that each protein 

and each fragment only have one mass to search.  Then, the program uses an inputted 
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mass tolerance (with lower tolerances for the fragment data due to the high mass 

accuracy of FT mass spectrometers) to allow analysis of top-down mass spectrometry 

done on a chromatographic time scale.  Like MASCOT, ProSight PC provides the 

match to the theoretical protein based on matching the fragment masses within the 

assigned tolerance.  Also like MASCOT, ProSight assigns a score and E-value to 

measure the confidence of the match versus a match to a random protein.  However, 

ProSight PC is different in that there are no mass restrictions on the precursor to 

allow for better handling of top-down data.  Furthermore, while MASCOT will only 

allow for defined modifications before a search, ProSight PC has a Sequence Gazer 

tool that allows the user to check for a previously unknown modification after the 

search has been completed.  This is useful in top-down when dealing with an 

organism that is lacking some of the information needed in a bottom-up experiment.   

  

 

Objectives 

 Using the top-down proteomic approach with high accuracy precursor and 

fragment ions from a hybrid LTQ-Orbitrap mass spectrometer, we ask to what extent 

can an organism without a sequenced genome or proteome be characterized.  As 

previously mentioned in this introduction, both the bottom-up and top-down 

approaches use theoretical masses based on a database of known amino acid sequence 

to identify the protein or organism observed in a protein mass spectrometry study.  

However, few microorganisms, only around 1200 archea and bacteria 32, have been 

sequenced and have had their sequences validated by the community.  Therefore, 
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there needs to be a method developed to be able to identify proteins from organisms 

without sequenced genomes in order to better study those bacteria and archea that 

have yet to be sequenced.  This thesis proposes using proteins from other species but 

believed to be homologous as the basis for database matching using a top-down 

approach with high mass accuracy.  In some cases, near homology will be shown to 

allow protein identification  The use of high mass accuracy will be used to localize 

and propose changes to those matches that have precursor mass differences within a 

reasonable tolerance.   
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Chapter 2: Preliminary Top-Down Study of Bovine Ubiquitin 
 

 

Introduction 

 Ubiquitin is a highly studied, highly conserved, small protein that is expressed 

in most, if not all, eukaryotic cells.  Most of the early structural and functional work 

was done by Irwin Rose and colleagues 33, and this work led to the Nobel Prize in 

Chemistry in 2004.  Since then, this protein and its pathway have been one of the 

most studied systems in scientific research.  The ubiquitin protein is relatively small, 

only having a mass of about 8,500 Daltons.  Because its structure and amino acid 

sequence have been studied so thoroughly, it becomes an ideal analyte when testing 

new structural analysis instruments and approaches, in order to determine if the 

structure seen by the new approach matches the well-known ubiquitin structure.  This 

has been the case with top-down mass spectrometry 34-36 using the MALDI-TOF 

analyzer and FT-ICR instruments.   

 As stated in the previous chapter, the Orbitrap mass analyzer was invented by 

Makarov in 2000 and later commercialized by Thermo in order to allow for high 

resolution, high mass accuracy analysis without having to buy and maintain a large 

electromagnet for use with an FT-ICR instrument.  Its place as a relatively new mass 

analyzer meant there weren’t many published procedures37 on how to elucidate the 

structure of whole proteins at the time the LTQ-Orbitrap XL mass analyzer was 

installed at the University of Maryland.  Therefore, I felt that using ubiquitin as a test 
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of the capabilities of top-down mass spectrometry on whole proteins would be 

insightful.  Furthermore, the Fenselau lab’s general knowledge of the software that 

was used to tune the features of the mass spectrometer and analyze the data was very 

little at that time.    

 The objectives of this experiment were to detect the molecular mass of 

ubiquitin at high charge states, fragment the ubiquitin into its b- and y- fragment ion, 

and use the Thermo Scientific software to be able to quickly analyze the data and be 

able to tell how much of the protein was covered by the fragment ions.      

Experimental 

Sample preparation 

 One milligram of lyophilized bovine ubiquitin powder (SigmaAldrich, St. 

Louis, MO), was dissolved in one milliliter of a 50% water, 40% acetonitrile, 10% 

acetic acid mixture.  This solution was then diluted by pipetting 300 microliters into 

2700 microliters of the same 50% water, 40% acetonitrile, 10% acetic acid mixture, 

creating three milliliters of a 0.1 milligram per milliliter ubiquitin solution.     

Direct injection mass spectrometry 

 Before injection of the ubiquitin solution, the mass spectrometer was first 

mass calibrated by injecting a calibration mixture of caffeine, the quad-peptide 

MRFA, and Ultramark polymer solution, sprayed with 60% acetonitrile and 10% acid 

using electrospray ionization.  The LTQ-Orbitrap XL was automatically calibrated on 

the m/z ratios of 195.1 (for caffeine) 524.3 (for MRFA), 1222.1, 1322.1, 1522.1, and 

1822.1 (for Ultramark polymer), for both the linear ion trap and the Orbitrap 
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analyzers until the masses differed by less than 3 ppm in the Orbitrap analyzer.  A 

500 microliter syringe was then filled with the ubiquitin solution and interfaced to the 

electrospray.  The syringe pump was set to spray 1 microliter per minute of the 

solution.  The lenses and voltages on the mass spectrometer leading from the inlet to 

the linear ion trap were automatically tuned at m/z 857.37 (the +10 charge state of 

ubiquitin).  The mass spectrometer was set to record a cycle of four spectra, one 

precursor ion acquired in the Orbitrap mass spectrometer and the fragmentation 

spectra of the three most abundant ions acquired in the linear ion trap.  Collisionally 

induced dissociation was set at a normalized collision energy of 35% (Thermo’s 

arbitrary units) with an isolation window of 3 m/z and the default activation time of 

30 milliseconds.  An exclusion list was used to make sure there was no carry over 

from the Ultramark polymer ions used in calibration.  Dynamic exclusion was 

enabled with a repeat count of 2 and a duration of 15 seconds to prevent 

oversampling of any one particular charge state of ubiquitin.  The LTQ-Orbitrap was 

set to collect spectra for 10 minutes.  

Data Analysis 

 The amino acid structure of ubiquitin was imported into the Bioworks 

software (ThermoFisher, San Jose, CA), and the theoretical b- and y- ion fragment 

m/z ratios were calculated with an upper limit the six most abundant charge states (+8 

to +13) with an m/z range of 0 to 2000.  For instance, for the +8 charge state, all 

fragments were calculated for +1 to +8.  For the +13 charge, all fragments were 

calculated from +1 to +13 charge.  The datafile was then imported and the 

fragmentation spectra with the most peaks were manually picked out.  Those 
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fragmentation spectra were then matched against the theoretical m/z ratios of all 

charge states up to the charge of the isolated precursor.  Because fragmentation 

spectra were acquired in the more sensitive but less accurate linear ion trap, the 

fragments were matched to the spectrum’s peaks with a tolerance of 0.6 Daltons.   

Results and Discussion 

Charge State Determination 

The LTQ-Orbitrap XL collected 721 spectra over the ten minute acquisition 

time, which meant that one spectrum was acquired about every 800 milliseconds.  As 

noted in the experimental, the ubiquitin precursor consistently was acquired with a 

charge state range of +8 to +13.  In some cases over the ten minute acquisition, the +7 

and +14 charge states were also visible, but in less than 10% of the most abundant 

charge state, which was usually +12.  With the high resolution and high mass 

accuracy of the Orbitrap, the acquisition software is able to calculate the charge on a 

particular set of peaks on the fly by measuring the distance between isotope clusters 

and matching known spacing.  This is shown in Figure 2.1, with the z below each 

mass-to-charge ratio being the charge.   
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Figure 2.1-Precursor spectrum of ubiquitin showing charge states +7 through +14. 

Fragmentation 

 Fragmentation spectra yielding many b- and y- ions were relegated to only the 

+8 and +9charge states, even though the +11, +12, and +13 were generally more 

abundant in the precursor spectra.  Isolation and fragmentation of the +8 charge state 

at m/z 1071.58 yielded 17 identified fragments (Figure 2.2) and the isolation and 

fragmentation of the +9 charge state at m/z 952.63 yielded 11 identified fragments 

(Figure 2.3).  The +10 through +13 charge states only yielded 14 combined, with the 

+12 charge state accounting for 5 of those identified fragments.  This is summarized 

in Table 2.1.    

ubquitin_331_postcourse #421 RT: 5.70 AV: 1 NL: 4.61E7
F: FTMS + c NSI Full ms [200.00-4000.00]

600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
tiv

e
 A

bu
n

d
a

nc
e

714.72
z=12

779.52
z=11

857.47
z=10

659.82
z=13

952.63
z=9

1071.58
z=8

1224.52
z=7

705.22
z=12

612.62
z=14 769.15

z=?

736.74
z=12

651.05
z=?

956.74
z=?

884.09
z=10

809.99
z=?

982.31
z=?

851.66
z=?

942.07
z=?

1083.69
z=?

1271.71
z=?

1023.33
z=?

1064.20
z=?

1168.04
z=?

783.05
z=?

699.21
z=?

1231.38
z=?1192.15

z=8

592.99
z=?



 

 22 
 

 These results mirror a study done in 2001 by Reid, McLucky, and colleagues 

where they used a quadropole ion trap interfaced with homebuilt ion/ion chemistry 

modifications to control charge states 34.  These were used to study the fragmentation 

of ubiquitin from the +1 charge state to the +12.  In their study, Reid and McLucky 

also found that the +8 and +9 charge states yielded the best fragmentation.  They 

postulated that it was due to the “mobile proton” theory 38, 39.  In short, the “mobile 

proton” theory states that at lower charge states, the protons tend to aggregate and 

stay at the most basic residues.  When the charge on these basic residues is filled, then 

the remaining protons can move from amino acid to amino acid, depending on the 

particular molecule, which leads to higher sequence coverage by the fragments.  

Eventually, however, the molecule reaches a limit of charges at which time the 

Coulombic repulsion of the protons leads to a more regimented fragmentation pattern 

again.   

 The largest fragment ion confidently matched to the possible ubiquitin b- and 

y-ions in Bioworks was a y60 ion of charge state +7 (m/z 1072.4) which was 

fragmented off of the +8 precursor ion of m/z 1071.58.  Figure 2.4 shows the 

ubiquitin amino acid sequence, the 3-D structure, and the highlighted fragment in 

yellow in both.     
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Figure 2.2-Fragmentation spectra of +8 charge state of ubiquitin with matched b- and 

y- ions highlighted in blue 
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Figure 2.3-Fragmentation of the +9 charge state of ubiquitin with the matched b and y 
ion fragments highlighted in blue. 
 

Observed m/z Calculated m/z 

Mass 
Difference 
(Accuracy) Charge 

# of 
Identified 
Fragments 

1071.58 1071.60   0.02 8 17 

952.63 952.64  0.01  9 11 

857.47  857.48 0.01  10 2 

779.52 779.62  0.10  11 4 

714.72 714.73  0.01  12 5 

659.92  659.83 0.10  13  3 
 
Table 2.1-Summary of Ubiquitin fragmentation showing precursor m/z ratio and the 
number of identified charge states. 
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Figure 2.4-the largest fragment highlighted in yellow in both the 3-D structure and the 
1 letter representation of the amino acid structure of ubiquitin.  
 
 
Summary 
 

 This chapter uses the LTQ-Orbitrap XL to study a well known analyte, bovine 

ubiquitin.  By studying the +8 through +13 charge state, I showed that much, if not 

all, of the protein’s amino acid sequence could be confirmed using CID and matching 

fragmentation spectra to already calculated b- and y- ion fragments.  Furthermore, 

this chapter showed that if an analyte’s amino acid sequence is already known and the 

charge of the precursor is already calculated, then the linear ion trap can be used to 
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detect the fragments.  However, if the analyte is not previously known or has no 

known amino acid sequence, then the high mass accuracy must be used to identify the 

fragments.  These results, along with the results found in Reid’s work, further confirm 

that there is a charge state range in every protein that yields the best fragmentation, 

and that more charges on the protein does not necessarily correlate to more 

fragmentation.  Therefore, it would be useful to sample many charge states of the 

same protein in order to determine which charge state yields the best fragmentation.  

This range of best fragmentation is most likely due to the “mobile proton” theory put 

forth by Harrison and Dongre.   
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Chapter 3: Top Down Analysis of Yersinia rohdei Lysates 

Taken from Wynne, C., Fenselau, C., Demirev, P.A., Edwards, N.  Top Down 

Identification of Unsequenced Genomes.  Analytical Chemistry 2009, 81, 9633-9642. 

Introduction 

Rapid characterization of microorganisms has been considerably studied in 

the past 15 years.  Many of these studies5, 40 have used proteomic techniques with 

MALDI ionization to be used in fieldable instruments.  These fieldable instruments 

are generally validated not by studying the possible pathogen, but studying another 

microorganism that is non-lethal yet shares many of the pathogen’s characteristics.  

However, these test organisms are sometimes not studied as thoroughly as the actual 

pathogen.  Only around 1200 bacteria and archea have their genomic or proteomic 

sequence in the publicly available database32, so most of the non-lethal simulants are 

not in the databases used to match the observed masses with the theoretical sequence.  

If not all of the genome or proteome of the test organism is known, then some of the 

proteomic mass spectrometry techniques, such as bottom-up or molecular mass 

matching, cannot be used to identify the proteins or the organism.  Therefore, new 

techniques must be used to provide the information needed to determine whether a 

test organism is close enough to validate these fieldable instruments. 

The technique used in this study to find the primary sequence information of 

the target proteins is top-down analysis and identification of proteins from “near 

neighbor” organisms.  Top-down analysis, which was described previously in the 

introduction, was used to obtain an accurate molecular mass of the protein along with 
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the fragment masses used for extracted sequence tag41 or for database matching.  By 

constructing a database of proteins from organisms we assume are similar to the 

target organisms, it can also be assumed that many of the proteins will be 

homologous.  These homologous proteins are what allow for the matching of the 

fragment masses to b and y ions of a particular protein.  Finally, the phylogenic 

analysis is performed on the target organism based on the number of proteins that 

match from a particular “related” organism or group of organisms.  This is one of the 

first studies to use top-down analysis on a chromatographic time scale using the LTQ-

Orbitrap. 

In this particular study, Bacillus anthracis Sterne was used in a feasibility test 

and Yersinia rohdei was used as the target organism.  Bacillus anthracis Sterne is a 

BioSafety Level (BSL) 1 non-pathogenic bacterium.  It is missing the plasmid that 

codes for the virulent proteins of anthrax.  The proteins from this bacterium have 

been previously studied by the Fenselau lab42. Yersinia rohdei is another BSL-1 

organism used as a simulant for Yersinia pestis, the bacterium that causes Bubonic 

plague43.  This study was performed before the Y. rohdei genome project at the Naval 

Medical Research Center released a number of whole genome shotgun contigs to 

Genbank (June 2009).            

For the Yersinia rohdei study, a MALDI mass spectrum was used to create a 

mass inclusion list for the high resolution high mass accuracy top-down analysis in 

order to better study and identify the same proteins that would be used to distinguish 

this particular bacteria from others using a MALDI-TOF based detection system that 

our collaborators constructed.  
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Experimental 

Cell Culture 

 Bacillus anthracis Sterne cells were cultured on Nutrient Broth medium plates 

(ThermoFisher, Fair Lawn, NJ), setting four different colonies per plate using a 

tungsten loop sterilize over a flame.  These four colonies were spread on the plate 

using a repeated S-turn motion.  The bacteria were then left to grow on shelves in a 

room temperature controlled to 37oC.  Once the bacteria were grown to cover most of 

the plate, those cells were scraped into 10 ml of broth in 15 ml tubes.  These tubes 

were then incubated overnight in the 37oC room.  Cell suspensions were centrifuged 

at 6000 rpm for 10 minutes, then washed with 3 ml of Milli-Q water, and centrifuged 

again for 5 minutes at 6000 rpm.  This wash step was repeated two additional times, 

with the supernatant discarded each time.  The pellet was then resuspended in 3 ml of 

10% formic acid and centrifuged at 10000 rpm for 5 minutes.  The supernatant was 

transferred to a vial for injection into the LC-MS/MS.  Eight milliliters of a solution 

of 4.6x108 cells per milliliters of Yersinia rohdei grown at the Johns Hopkins Applied 

Physics Lab under standard growth conditions44 was further washed and lysed 

following the same procedures.  

MALDI-TOF MS Analysis 

 A Bruker Microflex MALDI-TOF (Bruker Daltonics, Billerica, MA) mass 

spectrometer was used to create a signature spectrum for intact Yersinia rohdei.  This 

signature was created by creating an individual spectrum by shooting the laser 600 

times at a sample well, then averaging multiple spectra.  The Microflex had a 
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resolving power of about 1000 at full width half maximum using the positive ion 

linear mode following standard sample preparation and data acquisition procedures45.   

LC-MS/MS Analysis 

 An Accela HPLC unit (ThermoFisher) was used for the online separation of 

the intact proteins from the lysate prior to electrospray ionization into the mass 

spectrometer.  The HPLC unit consists of two solvents.  Solvent A was composed of 

95% water, 4.9% acetonitrile, and 0.1% formic acid.  Solvent B was composed of 

95% acetonitrile, 4.9% water, and 0.1% formic acid.  All solvents used were of HPLC 

grade (ThermoFisher).  The proteins from both the Bacillus anthracis Sterne and 

Yersinia rohdei were separated on the same 1 millimeter inner diameter, 15 

centimeter length BioBasic C-8 column (ThermoFisher).  The gradient started out at 

95% A for 5 minutes.  This was followed by a linear climb from 5% to 65% solvent B 

over 45 minutes.  The gradient was held at 65% B for 5 minutes, then the gradient 

quickly dropped back to the original 5% B for re-equilibration.  This HPLC system 

was inline to the LTQ-Orbitrap XL mass spectrometer (ThermoFisher, San Jose, CA) 

for MS/MS analysis.  Masses of both the precursor and fragment ions were collected 

at 30,000 resolving power at 400 m/z in the Orbitrap mass analyzer.  Four product ion 

scans were acquired for every precursor scan, two based on the most abundant ions 

on a mass inclusion list and two based on the most abundant ions in the precursor 

spectrum as a whole.  The inclusion mass list was based on the masses of the high 

abundance ions from the MALDI-TOF spectrum with charges of +5 to +10.  CID was 

carried out in the LTQ analyzer using helium gas at the 35% activation setting.  Each 

cycle of high resolution precursor and product ion scans took approximately 600 
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milliseconds.  Dynamic exclusion was implemented with a 10 second exclusion 

period during which precursor ions were not resampled even if they were the most 

abundant in the preceding precursor spectrum.  MS/MS was only performed on 

species with known charge states of +3 or higher.   

 Protein Identification     

 ProSight PC 2.031 (ThermoFisher) was used to decharge precursor and 

product ions via the THRASH27 algorithm and to search the MS/MS spectra against a 

custom protein sequence database.  Experimental measurements were compared to 

the average molecular weights of theoretical precursors and the monoisotopic 

molecular weights of theoretical fragments.  The precursor mass tolerance was set to 

150 Da to allow for N-terminal methionine cleavage.  Fragment ion mass tolerance 

was set to 15 ppm.  For the analysis of Bacillus anthracis Sterne spectra, a custom 

sequence database was constructed, containing all proteins from B. anthracis Sterne, 

Bacillus thuringiensis konkukian, Bacillus cereus AH167, and Bacillus subtillus 168 

available in the Swiss-Prot database (Version 57.2, 5/5/09).  For the analysis of Y. 

rohdei spectra, the custom database was composed of the protein sequences from 

Yersinia species, Salmonella typhimurium, Escherichia coli, Shigella sonnei, 

Klebsiella pneumoniae, Enterobacter sp. 638, and the partial proteome from 

Enterobacter aggloramerans (Erwinia herbicola).  Identified proteins were checked 

for membership in highly homologous protein families by collecting and aligning 

cross-species orthologues, suing BlastP46 and ClustalW47. 

Database matching using ProSight PC 2.0 is based on three values 

corresponding to the likelihood of providing a match of  MS/MS data to random or 
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generic amino acid sequences of the same quality as the match provided by the search 

program.  The first value, x, is the probability of matching a particular m/z value of a 

tandem mass spectrum to a generic amino acid given the user defined criteria that was 

used in the search48.  Equation 1 shows this calculation in three parts. 
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x     (Equation 1) 

The first part, 2m+1, describes the maximum amount of fragments that can occur per 

each fragmentation of the protein with m equaling the number of modifications 

included in the search.  This value includes both post-translational modifications, like 

oxidation of methionine, as well as sequence substitutions.  For this experiment, m 

equals two, since the only modifications that were included in the search were protein 

N-terminal formylation and protein N-terminal acetylation.  The first part is 

multiplied by the mass window available for the fragment matching, which is double 

the mass accuracy (Ma).  In this experiment, the Ma value would be 0.3 Daltons, or 

fifteen parts per million of a twenty thousand Dalton protein.  The multiplication of 

these two parts are divided by the mass of an “averigine” residue49.  The “averigine” 

residue mass is the weighted average mass of the twenty amino acids.  In both the 

Bacillus anthracis Sterne and Yersinia rohdei experiments, the x-value is 0.0432.   

 The x value becomes a factor in the Poisson based probability of acquiring as 

good of a match between observed and matched fragments by chance.  This p-score is 

calculated by Equation 2: 
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x is the value calculated from Equation 1, f is the number of observed fragments, and 

n is the number of fragments matched to the sequence from the protein database.  

Multiplying the x value by the number of observed fragments provides how many 

randomly matched fragments can be expected in the spectrum, and each iteration of 

the equation provides the distribution of successive random matches.  The Poisson 

distribution allows n to be ever increasing, so one minus the distribution is used to 

determine the probability of a result as good coming by chance.   

 The Expectation value (or e-value) incorporates the size of the database into 

its calculation.  This value determines how many sequences in the database used will 

provide matches to the fragment ions with p values of equal or better value.  The e-

value is calculated using a simple equation shown in Equation 3: 

)(npNE ×=   (Equation 3) 

where p(n) is the calculated p value while N is the number of sequences used to 

construct the database used for the search.  In the Yersinia rohdei experiment, this N 

value was 32901.  This expectation value is the reported metric to compare how well 

a particular set of calculated b- and y-ions will match the observed masses in a 

MS/MS spectrum because this value is built from the both the x-value and the p-

score.  The x-value measures the randomness of a particular m/z value from the 

fragment spectrum.  The p-score measures uses the x-value to determine how many 

random matches would occur from the same number of peaks, and the E-value 

determines how many sequences from the database would provide spectra generating 

p-values of equal or better value.  All three of these models were tested by Meng and 

associates against data from 10 randomly selected Methanococcus jannaschii proteins 
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from a database of 1,796.  Meng demonstrated that the predicted number of random 

matches from the calculations discussed above matched within 5% the number of 

spurious matches from his empirical MS/MS data.      

Phylogenetic Analysis 

 The Rapid Microorganism Identification Database (RMIDb)50, created by my 

bioinformatics collaborator Dr. Nathan Edwards, was used to construct a set of all 

Swiss-Prot, TrEMBL, RefSeq, Genbank, JCVI’s CMR51, and aggressive Glimmer352 

predicted protein sequences from the Enterobacteriaceae family with molecular 

weights between 4000 and 16000 Daltons, grouped by PFam53 protein family 

assignment.  Sequences corresponding to the families of the 10 identified Y. rohdei 

proteins were extracted, and Enterobacteriaceae species with extracted protein 

sequences in all 10 families were identified.  For each of these 27 species and each 

protein family, the protein sequence matching the identified Y. rohdei sequence best 

was selected using BlastP, and the selected sequences were concatenated in a 

predetermined order for phylogenetic analysis, using the web-server phylogeny.fr54.  

Similarly, identified Y. rohdei protein sequences were concatenated in the same order 

and added to the phylogeny analysis.  The resulting 28 meta-sequences ranged from 

759 to 770 amino-acids in length.   

 For the phylogenetic analysis using the traditional 16S-RNA sequences, the 

respective sequences were downloaded from the Ribosomal Database Project55 for as 

many of these 28 species described above as possible.  21 out of the 28 species’ 

sequences (including Y. rohdei) were assembled for phylogenetic analysis using the 

phylogeny.fr web-server, ranging in length from 1449 to 1540 nucleotides.    
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Results and Discussion 

Feasibility Study 

 The study of a mixed culture (vegetative cells and spores) of the Bacillus 

anthracis Sterne was used to ensure that the strategy of top-down proteomics and 

database searching against protein sequences in related bacteria could work before 

moving onto a more complicated and less studied bacteria.  Even though the B. 

anthracis protein sequences were available, they were not included in the database.  

This ensured that only those proteins from related bacteria were matched to the target.  

Four protein sequences were identified, each with an E-value of at least 1e-10.  Two 

of the matched proteins were small acid-soluble proteins from spores, one was a cold-

shock protein, and one of the proteins binds to the DNA.  All four were matched to 

the closely related species B. cereus and B. thuringiensis and further study showed 

these proteins are the same across the three cereus group species that were included in 

the database.  No MS/MS spectra matched to proteins from the species that was used 

as a negative control, Bacillus subtilis.  The absence of matches to this B. subtilis 

bacteria suggests that sequences from species that are very closely related to the 

target must be available for the discussed strategy to work.  A table summarizing the 

matching of proteins from the cereus group is shown in table 3.1.    
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m/z Charge 

Number 
of 
Matching 
Fragments 

Number 
of 
Observed 
Fragments 

Theoretical 
Mass 

Observed 
Mass 

Protein 
Description Organism 

Accession 
Number 

E 
Value 

643.75 15 7 18 9642.06 9641.24 

DNA-
binding 
protein HU  

Bacillus 
cereus strain 
AH187 YP_002337635 

5.2E-
22 

              

Bacillus 
thuringiensis 
konkukian YP_035726 

5.2E-
22 

954.95 7 25 57 6678.51 6678.43 

small, acid-
soluble 
spore 
protein B  

Bacillus 
cereus strain 
AH187 YP_002340704 

3.3E-
20 

       

Bacillus 
thuringiensis 
konkukian YP_038695 

3.3E-
20 

977.37 7 17 40 6834.63 6834.45 

unknown, 
small acid-
soluble 
spore 
protein  

Bacillus 
cereus strain 
AH187 YP_002337009 

2.5E-
10 

              

Bacillus 
thuringiensis 
konkukian YP_035107 

2.5E-
10 

1053.96 7 17 28 7366.13 7365.66 

cold shock 
protein 
CspB  

Bacillus 
cereus strain 
AH187 YP_002339500 

1.9E-
25 

              

Bacillus 
thuringiensis 
konkukian YP_037619 

1.9E-
25 

 

Table 3.1-Summary of Bacillus anthracis Sterne protein sequence matches
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Y. rohdei Analysis 

 Unlike the Bacillus anthracis Sterne study, there was no assembled, annotated 

genome available to access with Yersinia rohdei.  As described by the experimental section, 

ProSightPC 2.0 was used to deconvolute the precursor and fragment mass spectra from 26 to 

39 minutes of the HPLC separation run.  This translates to an acetonitrile content of about 

35% to 50% acetonitrile.  The sequence matches that provide high confident identifications 

by the ProSight metrics for 10 Y. rohdei proteins are summarized in Table 3.2.  Five of the 

ten high confident identifications are matched to proteins that are 100% homologous in more 

than one of the species that construct the custom database.  Table 3.2 also shows the other 

factors that contribute to the high confident identifications, including the deconvoluted 

molecular masses, the number of amino acid backbone fragments identified, and the charge 

that resided on the identified ion.  BlastP and ClustalW similarity searches confirmed the 

sequences across the species that composed the database that matched the target proteins, as 

were discussed earlier in this document.      

 Figure 3.1 indicates that 6 of the 10 proteins that were identified by the discussed 

method coincide with high abundance ions from the MALDI-TOF signature.  Most of these 

intense ions are observed to be ribosomal proteins.  Previous studies of vegetative bacteria7, 42, 

56 have shown these intense ions from a MALDI-TOF spectrum have been ribosomal 

proteins, which are highly abundant and highly basic in bacteria.  With the sample 

preparation of 10% formic acid, those basic proteins will have many positive charges 

associated with them, making their detection in positive mode mass spectrometry easier.   
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Table 3.2-Table of Yersinia rohdei protein identifications when searched against a 

custom database from all Yersinia in the Swiss-Prot Database and other 

Enterobacteriaceae 
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Figure 3.1-Bruker Microflex MALDI-TOF signature of intact proteins from 

Yersinia rohdei with arrows indicating those proteins that were also 

confidently identified through the LC-MS/MS strategy. 
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 As Table 1 also shows, 3 out of the 10 matches have more than 20 matching 

fragments to the protein included in the custom database that the target protein was 

searched against.  Many of these fragments are in the middle of the amino acid 

sequence, showing that the sample preparation allowed for access to the middle of the 

protein.  Figure 3.3 shows one of the example workflow for the database searching.  

The workflow starts with the CID spectrum.  Then, that spectrum is deconvoluted so 

it is easier to interpret, and then matched against the protein sequences in the 

database.  In this particular case, the deconvoluted MS/MS spectrum was matched to 

the sequence of ribosomal protein L29 in Yersinia enterocolitica, a closely related 

species.  As seen in the figure, there is a sequence tag of 8 consecutive amino acids 

that are characterized by a b or y ion, and that leads to an identification of high 

confidence with an E-value of 1e-28.  The typical threshold that is used in the method 

such as this and the threshold that is the default for ProSight PC 2.0 for a confident 

identification is 1e-4, so 1e-28 is a very high confidence match.   
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Figure 3.2-Top:  MS/MS spectrum of the precursor ion at m/z 807.80 with a 9+ 

charge state for an intact mass of 7260.92 Daltons.  Middle:  The same MS/MS 

spectrum deconvoluted so that all ions are converted to +1 charge state.  Bottom:  

Protein sequence assigned by ProSight PC 2.0, 50s ribosomal protein L29.  
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Figure 3.3-Top: MS/MS spectrum of the precursor ion at m/z 643.22 (14+ charge 

state, intact mass 8991.92 Da)). Middle: The same MS/MS spectrum with all 

fragment ions converted to zero charge state. Bottom: Protein sequence (ribosomal 

protein L27, Swiss-Prot A7FMT7) assigned by ProSightPC 2.0 showing observed 

fragmentation sites.  
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Figure 3.4-Top: MS/MS spectrum of the precursor ion at m/z 682.68 (13+ charge 

state, intact mass 8862.89 Da)). Middle: The same MS/MS spectrum with all 

fragment ions converted to zero charge state. Bottom: Protein sequence (ribosomal 

protein L28, Swiss-Prot A1JHR2) assigned by ProSightPC 2.0 showing observed 

fragmentation sites.  
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Figure 3.5-Top: MS/MS spectrum of the precursor ion at m/z 756.70 (8+ charge state, 

intact mass 6044.11 Da). Middle: The same MS/MS spectrum with all fragment ions 

converted to zero charge state. Bottom: Protein sequence (50s ribosomal protein L32, 

Swiss-prot A1JN60) assigned by ProSightPC 2.0 showing observed fragmentation 

sites.  

 

yr_inclusion #1937-2437 RT: 19.45-24.36 AV: 21 NL: 4.80E4
F: FTMS + p ESI d Full ms2 756.70@cid35.00 [195.00-2000.00]

200 400 600 800 1000 1200 1400 1600 1800 2000
m/z

0

10

20

30

40

50

60

70

80

90

100

R
e

la
tiv

e
 A

b
un

d
an

ce

576.83
z=2

840.16
z=7

720.39
z=2 903.81

z=3
785.41

z=4
694.62

z=4

584.57
z=4

928.49
z=4559.55

z=4
1804.48

z=?
992.53

z=3200.78
z=?

329.71
z=?

1253.14
z=?555.29

z=4
1610.27

z=?
1883.75

z=?
1491.23

z=?
1118.93

z=?
1666.89

z=?
1345.30

z=?

461.16
z=?

756.70 +8 MW 6044.11 

yr_inclusion_xtract_ms2 #75-240 RT: 19.79-24.36 AV: 11 NL: 8.34E4
F: FTMS + p ESI d Full ms2 756.70@cid35.00 

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

a
tiv

e 
A

b
un

da
n

ce

1152.66

1439.77 2708.40

5872.05
2774.46

3137.62

2974.582607.362334.26 4890.52
4490.333708.92

3250.70834.33 5854.052234.17
4872.521689.91 3334.78 4354.28

Decharged spectrum 

A-V-Q-Q-N-K-P-T-R-S-K-R-G-M-R-R-S-H-D-A-

L-T-T-A-T-L-S-V-D-K-T-S-G-E-T-H-L-R-H-H-I-

T-A-D-G-F-Y-R-G-R-K-V-I-G



 

 45 
 

 

Figure 3.6-Top: MS/MS spectrum of the precursor ion at m/z 763.10 (11+ charge 

state, intact mass 8368.61 Da)). Middle: The same MS/MS spectrum with all 

fragment ions converted to zero charge state. Bottom: Protein sequence (ribosomal 

protein S21, Swiss-Prot P68684) assigned by ProSightPC 2.0 showing observed 

fragmentation sites. 
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Figure 3.7-Top: MS/MS spectrum of the precursor ion at m/z 781.10 (8+ charge state, 

intact mass 6239.55 Da)). Middle: The same MS/MS spectrum with all fragment ions 

converted to zero charge state. Bottom: Protein sequence (ribosomal protein L33, 

Swiss-Prot A4W513) assigned by ProSightPC 2.0 showing observed fragmentation 

sites.  
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Figure 3.8-Top: MS/MS spectrum of the precursor ion at m/z 802.90 (8+ charge state, 

intact mass 6413.56 Da). Middle: The same MS/MS spectrum with all fragment ions 

converted to zero charge state. Bottom: Protein sequence (50s ribosomal protein L30, 

Swissprot Q1C2W5) assigned by ProSightPC 2.0 showing observed fragmentation 

sites.  
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Figure 3.9-Top: MS/MS spectrum of the precursor ion at m/z 857.72 (8+ charge state, 

intact mass 6852.67 Da)). Middle: The same MS/MS spectrum with all fragment ions 

converted to zero charge state. Bottom: Protein sequence (carbon storage regulator 

protein, Swiss-Prot Q1CL18) assigned by ProSightPC 2.0 showing observed 

fragmentation sites.  
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Figure 3.10-Top: MS/MS spectrum of the precursor ion at m/z 1105.83 (11+ charge 

state, intact mass 12155.73 Da)). Middle: The same MS/MS spectrum with all 

fragment ions converted to zero charge state. Bottom: Protein sequence (ribosomal 

protein L22, Swiss-Prot A1JS31) assigned by ProSightPC 2.0 showing observed 

fragmentation sites. 
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Figure 3.11-Top: MS/MS spectrum of the precursor ion at m/z 1155.74 (13+ charge 

state, intact mass 15007.33 Da)). Middle: The same MS/MS spectrum with all 

fragment ions converted to zero charge state. Bottom: Protein sequence (ribosomal 

protein S6, Swiss-Prot A7FMW5) assigned by ProSightPC 2.0 showing observed 

fragmentation sites.  
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Phylogenetic Analysis 
 

Incidence matrix 

 Figure 3.3 shows an incidence matrix57 that is based on the results from Table 

3.2 with the proteins whose sequence was matched to the target proteins from 

Yersinia rohdei in the columns.  The rows of the incidence matrix show which of the 

organisms whose sequences were searched against have the same homologous 

sequence for a protein.  The last row of the incidence matrix denotes the target 

organism, which will match all ten of the proteins.  Blue squares across a row show 

how many protein sequences a particular organism has in common with the target 

organism.  Blue squares down a column show how conserved a protein’s sequence is 

conserved across the organisms included in the custom database.  For example, 

ribosomal protein 30s-S21 is has the most highly conserved sequence since all but 

one organism in the incidence matrix has the blue square.  The least conserved 

according to this matrix would be the 50s-L29 ribosomal protein, since only two 

organisms other than Yersinia rohdei share the same protein sequence.  As expected, 

the Yersinia species that were used in the database had the most protein sequences in 

common with the target organism, Yersinia rohdei.  The organism sharing the most 

protein sequences with the ten matched protein sequences to Yersinia rohdei would 

be Yersinia enterocolitica with 8 sequences in common, followed by Yersinia 

frederiksenii and Yersinia intermedia with 7 sequences in common.  All of the other 

genera only had 2 or 3 proteins in common with the Yersinia rohdei, usually only 

matching the higher conserved sequences.   
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Figure 3.12-Incidence matrix for observed Y. rohdei proteins in Enterobacteriaceae 

species. 

Phylogenetic Trees 

 Based on the results of the incidence matrix, a phylogenetic tree was created.  

The FASTA sequences from the identified proteins in Yersinia rohdei were added to 

the protein sequences from the other Enterobacteriaceae family members used in the 

custom database.  These protein amino acid sequences were inputted into the 

webserver phylogeny.fr and then the one-touch application was used to create the 

phylogenetic trees, as described in the Experimental section.  Another phylogenetic 

tree was created using the traditional 16S-rRNA sequences.  These two phylogenetic 

trees are shown in Figure 3.4.  Both trees have Yersinia rohdei as a branch next to 

Yersinia enterocolitica.  The tree created based on the top-down results separates all 

the Yersinia species as well as the 16S-rRNA.   
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Figure 3.13-Phylogenetic trees based on top-down protein identifications (A) and 

16S-rRNA sequence (B) 

Comparison to WGS contigs submitted to Genbank 

 As noted in the introduction, whole genome shotgun contigs of Yersinia 

rohdei were submitted to Genbank in June 2009.  These genome contigs covered 

genes that coded for 4 out of the 10 proteins that the top-down results were able to 

identify.  Those DNA sequences supported the amino acid sequences of all four 

proteins after RNA replication and translation.  However, the translation start site was 

only consistent with one protein identified by the top-down results, and that sequence 

was labeled as a different protein by the Genbank additions.  The WGS contig labeled 

the matching sequence lactoylglutathione lyase while the top-down results credited 

this sequence to 30S S6 ribosomal protein.  The sequence for the top-down database 

match was taken from Yersinia pestis and Yersinia enterocolitica.  According to the 

Genbank additions, the other 3 proteins started at a different place in the translation 
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process.  For example, the protein that both the WGS contigs and the top-down 

results agree is the sequence 50S ribosomal protein L32 has a 1583 Dalton difference 

due to this discrepancy in translational start site.  Therefore, the submitted WGS 

contigs are not enough information for the method proposed, and mass-spectrometry 

based protein identifications can correct the bacterial genome annotation.   

 

Summary 

 This chapter identifies a strategy to identify proteins from an organism 

without a sequenced genome.  By using high mass accuracy and high resolution, the 

fragmentation produced by CID in a linear ion trap can provide enough fragmentation 

to confidently match the measured protein’s amino acid sequence to a database of 

proteins from closely related organisms with known sequences.  This strategy was 

demonstrated to identify proteins between 5000 Daltons to 15000 Daltons from two 

bacteria, Bacillus anthracis Sterne and Yersinia rohdei.  The proteins that were 

identified would be the same proteins that would have a high ion intensity in a 

MALDI mass spectrometry based, rapid bacterial characterization system.  The high 

abundance ribosomal proteins that were identified by the top-down strategy did 

provide some degree of differentiation and allowed for the determination of the 

closest neighboring organism and the position of the target organism in a 

phylogenetic tree.  This tree was similar to the traditional 16S-rRNA method of 

determining phylogeny, and the top-down mass spectrometric information proved 

favorable to the later whole genome shotgun contigs that were introduced into the 

Genbank database from the Naval Medical Research Center.   
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Chapter 4: Phyloproteomic characterization of unsequenced 

organisms by top-down identification of proteins using capillary 

LC-MS/MS on a LTQ-Orbitrap XL 

Adapted from Wynne C., Edwards, N.J., and Fenselau, C. Phyloproteomic 
classification of unsequenced organisms by top-down identification of bacterial 
proteins using capLC-MS/MS on an Orbitrap.  Proteomics, in press. 

 

Introduction 

 As with the last chapter, this chapter uses a top-down proteomic approach to 

tackle the problem of identification of microorganism biomarker proteins that would 

be found in a rapid MALDI-TOF detection system.  In the last chapter, identification 

of these biomarker proteins was demonstrated using 100% sequence homology and 

less than a 1 Dalton difference in precursor mass.  This chapter uses a similar top-

down proteomic approach, but the mass tolerance of the precursor mass was extended 

to 250 Daltons on another simulant of Yersinia pestis, Erwinia herbicola, and a third 

microorganism without a fully sequenced genome, Enterobacter cloacae.  By 

widening the precursor tolerance and allowing for changes through either post-

translational modifications or through changes in the amino acid structure, this 

extension of the previous method should allow for more protein identifications. 

 The top-down proteomic approach has been demonstrated multiple times to be 

a sensitive and robust technique for the identification of biomarker proteins 25, 41, but 

the target sequence’s genome must be available.  The previous chapter demonstrated 

that this is no longer a prerequisite as long as 100% homologous proteins are included 
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in any database used to search the spectra collected from a top-down experiment.  

The whole sequence from these homologous proteins, and the organisms they came 

from, were then used to create phylogenetic trees to classify the microorganism 

without a sequenced genome in context with other sequenced organisms.  This 

chapter takes this approach one step further by using only partial N- and C-terminal 

amino acid sequences that can be confidently identified by three or more fragment 

ions to be used in the construction of these phylogenetic trees.  Therefore, while the 

target proteins have to be somewhat homologous to the already annotated proteins, 

the target proteins can have some differences.  The identification and characterization 

of proteins that are not 100% homologous could lead to identifications that could 

possibly be unique to the target organism and set it apart in other detection systems 

used to screen for possible pathogen agents in defense and homeland security 

applications. 

 The high mass accuracy of the precursor ions and the amount of identified b- 

and y-ions in a particular target protein help localize any mass difference and narrow 

the list of available modifications that could cause the mass difference between the 

target protein and the protein that it was matched to through database searching.  By 

knowing the precursor mass and mass difference between target and matched proteins 

up to tenths of a Dalton, the number of modifications that could cause said difference 

greatly narrows.  By determining gaps in the b- and y-ions, the location of that mass 

difference can also be narrowed to that gap.  By limiting the possible amino acids 

changed, as well as knowing the exact mass of the possible difference, the number of 
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possible modifications can be small enough that a fast trial and error method of 

proposing changes could be undertaken. 

 Like Yersinia rohdei, Erwinia herbicola is a biosafety level 1 (BSL 1) 

bacterium commonly used as a non-lethal simulant for the lethal Yersinia pestis 58.  

The bacterium was isolated from plant leaves, and is also known as Pantoea 

agglomerans or Enterobacter agglomerans.  There is little annotated information 

about the proteome or genome, which gives rise to a lack of a commonly accepted 

name for the organism.  In agricultural studies, Erwinia herbicola was used to control 

other Erwinia species59.  Enterobacter cloacae is another BSL-1 bacterium.  It is also 

used in agricultural studies and has been known to cause infection in hospitals after a 

patient has had open surgery60.    

Experimental 

Preparation of Bacterial Lysates 

 Erwinia herbicola bacteria were grown at Johns Hopkins Applied Physics Lab 

under standard conditions and transferred in 50 ml tubes.  Once at the University of 

Maryland, the tubes were split into 15 ml tubes and frozen at -20oC.  A 15 ml tube 

was centrifuged at 8000 RPM for 5 minutes and the cell pellet was transferred to 1.5 

ml microcentrifuge tubes.  The cell pellet was washed with Milli-Q water and 

centrifuged at 10,000 RPM for 5 minutes and the supernatant was discarded.  This 

wash was repeated twice more.  The pellet was suspended in 100 microliters of a 10% 

formic acid solution.  The suspension was then centrifuged a final time at 10,000 

RPM for 5 minutes.  This time, the supernatant was transferred to a YM 3,000 Dalton 

molecular weight cutoff filter (Millipore, Billerica, MA) and centrifuged at 14,000 
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RPM for 60 minutes, as directed by the cutoff filter manual.  The liquid in the top 

portion of the filter (theoretically the portion over 3000 Daltons) was pipetted out of 

the filter and into a vial to be injected for LC-MS/MS analysis.    

 Enterobacter cloacae was obtained from the American Type Culture 

Collection (Manassas, VA) and grown using typical bacteria growth practices 10 on 

Nutrient broth plates (ThermoFisher, Fairlawn, NJ).  Cells were grown in 3 ml 

cultures overnight to saturation, then treated the same as the Erwinia herbicola 

preparation prior to LC-MS/MS analysis, with one exception.  Instead of the YM-

3000 molecular weight cutoff filter, an Amicon Ultra 3,000 Dalton molecular weight 

cutoff filter was used and centrifuged at 14,000 RPM for 30 minutes in accordance 

with the instructions from its manual.  

LC-MS/MS Analysis 

 Ten microliters of bacteria lysate solution was injected onto a 0.1millimeter 

by 15 centimeter Magic C-8 column with 5 micron particles (Michrom, Auburn, CA) 

using a 2-D Prominence Nanomate pump (Shimadzu, Columbia, MD) inline to a 

LTQ-Orbitrap XL mass spectrometer (ThermoFisher, San Jose, CA).  Solvent A was 

a 95% water, 4.9% acetonitrile, 0.1% formic acid mixture.  Solvent B was a 4.9% 

water, 95% acetonitrile, 0.1% formic acid mixture.  In both mixtures, the water, 

acetonitrile, and formic acid were all HPLC grade solvents (ThermoFisher).  The 

gradient program used a 15 minute sample load with a 1 milliliter flow rate onto a 

trapping cartridge at 10% B, followed by a 50 minute gradient from 10%B to 70%B 

with a 500 nanoliter flow rate using the nanopumps with an internal split.  Next, a 

column cleaning step at 80%B for 10 minutes and a reequilibration step back to 
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10%B.  The LTQ-Orbitrap XL was set to record the MS/MS spectra of the 5 most 

abundant signals for each precursor scan.  Each precursor scan was acquired at 

30,000 resolving power at 400 m/z, while the MS/MS scans were acquired at 15,000 

resolution at 400 m/z.  This decrease in resolution from the precursor scans to the 

MS/MS scans was to ensure the size of the data file remained less than 2 Gigabytes to 

avoid problems with the Bioworks software (ThermoFisher, San Jose, CA).  

Fragmentation occurred using collisionally induced dissociation in the linear ion trap 

with high purity helium gas.  The CID settings were set at 35% level with activation 

for 60 milliseconds.  Dynamic exclusion was set at 10 seconds, meaning that once a 

particular m/z was sampled, it could not be sampled again for the next 10 seconds.  

This reduced the oversampling of abundant precursor ions.  MS/MS analysis was 

restricted to precursor ions with known charge states of +3 or more.  Prior to analysis, 

the LTQ-Orbitrap XL was mass calibrated using the Thermo mix of caffeine, the 

quad-peptide MRFA, and an Ultramark polymer.   

Protein Sequence Database 

 A custom FASTA format sequence database of Enterobacteriaceae protein 

sequences was constructed from all protein sequences from Swiss-Prot, TrEMBL, 

RefSeq, Genbank, and the Venter Institute’s CMR annotated as from the 

Enterobacteriaceae family, which contains Erwinia herbicola.  In addition, 

Glimmer352 was used to predict primary and alternative translation start-site protein 

sequences on RefSeq Enterobacteriaceae genomes.  The set of sequences was further 

filtered for molecular weights between 1000 Daltons and 20000 Daltons.  In total, 

over 1 million sequences were merged  to 253,626 distinct protein sequences 
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representing 256 Enterobacteriaceae species.  The FASTA sequence database was 

built using infrastructure developed for the Rapid Microorganism Identification 

Database (RMIDb)50, and can be downloaded from the ProteomeCommons.org 

Tranche network.   

 Protein Identification 

 ProSight PC 2.031 was used to deconvolute precursor and fragment spectra, 

and to search the MS/MS spectra, in absolute mass mode, against the custom FASTA 

database described above.  The THRASH27 algorithm was used to deconvolute the 

spectra as part of ProSight PC 2.0.  After deconvolution, the MS/MS were filtered so 

that only those spectra with 3 or more fragment ions were searched against the 

custom databse.  A loosely constrained precursor mass tolerance was used, matching 

protein sequences within 250 Daltons of experimental precursor masses (both smaller 

and larger) with corresponding MS/MS spectra.  The loose precursor constraint was 

applied to allow for a small number of post-translational modifications and/or amino 

acid substitutions.  Experimental fragment mass measurements were matched against 

theoretical monoisotopic fragment masses of the protein sequences using a mass 

tolerance of 15 parts per million.  The “∆M” feature of ProSight PC was used to 

check for unexpected mass shifts at the protein N- or C-terminii.  Post-translational 

modifications and amino acid substitutions were manually investigated using the 

Sequence Gazer tool in ProSight PC. 

 Phylogenetic Analysis 

 ProSight PC protein identifications with expect values less than 1e-4 were 

analyzed, and N- and C- terminal amino-acid sequence supported by at least three 
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high accuracy b- or y-ions, respectively, were established.  For identifications in 

which the confident established N- and C-terminus meet or overlap, the entire protein 

sequence is established.   For identifications in which less than 3 b-ions or y-ions 

were observed, only the C-terminus or N-terminus was considered established.  

Confidently established sequences of at least ten amino-acids from each protein 

identification were searched against the custom Enterobacteriaceae FASTA sequence 

database using BlastP46.  Extracted sequences that did not align to any 

Enterobacteriaceace sequence with E-values less than 1e-4 were discarded, as were 

those with exact or near exact alignments with another extracted sequence.  Species 

with significant alignments (E-value less than 1e-4) to all remaining query sequences 

were noted, and the corresponding amino-acid sequence of these species’ best 

alignment were retained.  A random ordering of the identified sequences was fixed, 

and the corresponding amino-acid sequences from each of the retained species were 

concatenated in the same order, to form a FASTA file suitable for multiple sequence 

alignment and phylogeny analysis.  In all, the confidently established amino-acid 

sequences from the N- and C-terminus of identified proteins from Erwinia herbicola 

could be matched in 27 other species in which the bacteria was represented by a 

meta-sequence of length 795 (median) amino acids.  Phylogenetic analysis was 

carried out using the “one-click mode” at www.phylogeny.fr54. 

 Genome Annotation Analysis 

 The source of Enterobacteriaceae protein sequences matched to Erwinia 

herbicola and Enterobacter cloacae spectra using ProSight PC, and homologous 

Enterobacteriaceae sequences matched to confidently established Erwinia herbicola 
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and Enterobacter cloacae N- and C- terminal amino-acid sequences using BlastP 

were tabulated to find species and proteins observed only in the Glimmer3 protein 

sequence set. 

Results and Discussion 

Erwinia herbicola proteins 

Table 4.1 shows the proteins identified from Erwinia herbicola, which have 

molecular weights in the range 4 – 12 kDa.  72 intact molecular masses yielded 14 

identified proteins.  Ten of the 14 identified proteins are ribosomal, whose high 

abundance has been previously observed and discussed in the last chapter.  Some of 

the identified protein sequences, such as 50S ribosomal protein L29, are genus 

specific and are only matched in the closely related Erwinia tasmaniensis. Other 

ribosomal proteins, such as 30S ribosomal protein S18, are matched in a number of 

different organisms, including all of the available Yersinia species.  Six proteins 

matched with a protein molecular weight delta of 15 ppm or less, indicating that 

Erwinia herbicola has the same protein sequence as the related organisms supplying 

the identifying protein sequence.  The base peak chromatogram is shown in Figure 

4.1 and an example of a tandem mass spectrum are shown in Figures 4.2, with the 

annotated with its protein sequence and b- and y-ion fragments matched by 

ProSightPC 2.0. 
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m/z
# Matching 
Fragments

Observed 
Mass

Theoretical 
Mass

Mass Diff 
Best Hit                   

Protein Family
Best Hit Organism

Best Hit      
E-value

566.92 13 4530.128 4632.230 -102.102 Ribosomal protein L32 Erwinia tasmaniensis 8.44E-06

564.68 15 6199.083 6215.080 -15.997 Ribosomal protein L32 Erwinia tasmaniensis 1.72E-07

569.88 12 6240.392 6240.400 -0.008 Ribosomal protein L33 Escherichia coli, Salmonella enterica, Salmonella 
typhimurium, Erwinia tasmaniensis, Shigella 
flexneri, Citrobacter koseri, Shigella sonnei, 

Shigella dysenteriae, Shigella boydii, Salmonella 
choleraesuis

7.85E-05

712.74 9 6399.555 6442.570 -42.015 Ribosomal protein L30 Sodalis glossinidius 5.43E-05

1138.13 15 6820.008 6867.960 -47.952 Carbon storage regulator Serratia plymuthica 4.84E-11

1211.84 13 7262.980 7247.420 15.960 Ribosomal protein L29 Erwinia tasmaniensis 2.71E-08

1014.30 26 8105.355 8104.380 0.025 Translation initiation 
factor 1A

Sodalis glossinidius,Yersinia pseudotuberculosis, 
Yersinia pestis, Yersinia intermedia, Yersinia 

enterocolitica, Enterobacter sp. 638, 
Photorhabdus luminescens, Serratia 

proteamaculans, Yersinia bercovieri, Erwinia 
tasmaniensis, Pectobacterium atrosepticum, 

Yersinia frederiksenii

2.34E-28

761.98 14 8368.777 8368.770 0.007 Ribosomal protein S21 Sodalis glossinidius,Yersinia pseudotuberculosis, 
Yersinia pestis, Yersinia intermedia, Yersinia 

enterocolitica, Enterobacter sp. 638, 
Photorhabdus luminescens, Serratia 

proteamaculans, Yersinia bercovieri, Erwinia 
tasmaniensis, Pectobacterium atrosepticum, 

Yersinia frederiksenii, Escherichia coli, Salmonella 
enterica, Salmonella typhimurium, Erwinia 

tasmaniensis, Shigella flexneri, Citrobacter koseri, 
Shigella sonnei, Shigella dysenteriae, Shigella 

boydii, Salmonella choleraesuis, Klebsiella 
pneumoniae, Providencia stuartii, Enterobacter 

sakazakii

1.07E-08

742.91 11 8900.285 8900.350 -0.065 Ribosomal protein S18 Yersinia pseudotuberculosis, Yersinia pestis, 
Yersinia intermedia, Yersinia enterocolitica, 

Enterobacter sp. 638, Photorhabdus luminescens, 
Serratia proteamaculans, Yersinia bercovieri, 

Erwinia tasmaniensis, Pectobacterium 
atrosepticum, Yersinia frederiksenii

6.28E-06

1023.53 12 9200.258 9076.200 124.058 Cell division             
protein zapB

Erwinia tasmaniensis 2.55E-05

732.71 31 9507.190 9520.970 -14.128 DNA-binding protein     
HU-alpha

Salmonella enterica, Salmonella typhimurium, 
Citrobacter koseri, Salmonella choleraesuis

7.50E-26

683.67 10 9558.321 9559.220 -0.899 Ribosomal protein S17 Serratia proteamaculans 1.67E-07

686.39 21 10285.003 10285.100 0.007 Ribosomal protein S19 Salmonella enterica, Klebsiella pneumoniae, 
Salmonella typhimurium, Enterobacter sakazakii, 
Enterobacter sp. 638, Salmonella choleraesuis

1.96E-16

1018.01 20 11185.280 11185.294 -0.014 Ribosomal protein L24 Escherichia coli, Salmonella enterica, Salmonella 
typhimurium, Erwinia tasmaniensis, Shigella 
flexneri, Citrobacter koseri, Shigella sonnei, 

Shigella dysenteriae, Shigella boydii, Salmonella 
choleraesuis, Klebsiella pneumoniae, 

Enterobacter sakazakii

7.79E-16

 

Table 4.1-Database matches to Erwinia herbicola proteins 
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Figure 4.1-Base peak chromatogram of Erwinia herbicola lysate separated on the 
Prominence Nanomate HPLC system (Shimadzu) 
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ErwiniaHerb_july23_MWCOfilter_xtract #1281 RT: 25.33 AV: 1 NL: 6.54E5
T: FTMS + p ESI d Full ms2 1014.30@cid35.00 [665.33-7045.52]
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Figure 4.2-Top:  Deconvoluted tandem mass spectrum of precursor ion 

1014.30 in charge state +8 identified as Erwinia herbicola protein Translation 

initiation factor 1A.  Bottom:  Sequence of matched protein with 26 b- and y-ion 

fragment matches. 



 

 66 
 

 

 

 

Figure 4.3-Top: MS/MS of 1023.53 with charge +8 (molecular weight 9200.58).  

Bottom:  Sequence of Cell division protein zapB from Erwinia tasmaniensis with 

matched b- and y-ions. 

T:FTMS + p ESI d Full ms2 1023.53@cid35.00 [853.44-8966.55]
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Figure 4.4-Top:  MS/MS of 761.98 with +11 charge (molecular weight of 8368.78).  

Bottom:  Amino acid sequence of ribosomal protein S21 with matched b- and y- ion 

matches.  

F:FTMS + p ESI d Full ms2 761.98@cid35.00 
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Figure 4.5-Top:  MS/MS of 686.39 with +15 charge (molecular weight 10285.10).  

Bottom:  Amino acid sequence of ribosomal protein S19 with b- and y- ion matches.   

F:FTMS + p ESI d Full ms2 686.39@cid35.00 [618.85-9554.24]
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Figure 4.6-Top:  MS/MS of 683.67 with +14 charge (molecular weight (9558.32).  

Bottom:  Sequence of ribosomal protein S17 with matched b- and y- ions.  

F:FTMS + p ESI d Full ms2 683.67@cid35.00 [647.24-6134.33]
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Figure 4.7-Top:  MS/MS of 569.88 with +11 charge (molecular weight 6240.40).  

Bottom:  Sequence of ribosomal protein L33 with matched y-ions.  

F:FTMS + p ESI d Full ms2 569.88@cid35.00 [541.80-6170.54]
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Figure 4.8-Top:  MS/MS of m/z 712.74 with +9 charge (molecular weight 6399.56).  

Bottom:  Sequence of ribosomal protein L30 with matched b- and y- ions.  

F:FTMS + p ESI d Full ms2 712.74@cid35.00 [597.33-6254.46]
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Figure 4.10-Top:  MS/MS of m/z 1018.01 with +11 charge (molecular weight 

11185.28).   Bottom:  Sequence of ribosomal protein L24 with matched b- and y- 

ions. 

F:FTMS + p ESI d Full ms2 1018.01@cid35.00 [788.47-8095.43]
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Figure 4.10-Top:  MS/MS of 1138.13 with +6 charge  (molecular weight 6820.01)  

Bottom:  Sequence of carbon storage regulator protein with matched b-ions. 
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shown in Table 4.1, many of these are much more statistically significant, with five 

identifications having E-values less than 1.0e-10. These highly significant protein 

identifications are made primarily due to the number, and position, of the matched 

high-accuracy fragment ion measurements.  

The additional eight proteins which match due to the loose precursor mass 

search tolerance more than double the number of identified E. herbicola proteins. 

Four of these have mass deltas of 16 Da or less, with the remaining four having much 
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required mass-shift can be constrained by the positions of matching b- and y-ions, in 

each case suggesting a putative amino-acid substitution in the E. herbicola protein.  

An E. herbicola spectrum with precursor 564.68 in charge-state +11 matched 

50S ribosomal protein L32 from Erwinia tasmaniensis with E-value 1.72e-7 and mass 

delta of -15.997 Da. While this identification matches two b-ions and 13 y-ions, the 

N-terminus fragment ions stop at b19, while C-terminus fragment ions end at y34, a 

gap of just two amino-acids, suggesting a -15.997 mass shift on serine at position 20 

or leucine at position 21. Changing the twentieth amino acid from serine to alanine 

and checking the result using the Sequence Gazer tool in ProSightPC, the mass delta 

becomes -0.01 Da, and six additional b-ions and one additional y-ion is matched, 

improving the E-value to 5.85e-29. Figure 4.3 shows this tandem mass spectrum, plus 

the protein sequence and the matched b- and y- fragment ions. 

The top-down spectrum from the charge state +6 precursor ion at m/z 1211.84 

matched to Erwinia tasmaniensis 50S ribosomal protein L29 with E-value 2.71e-8 

and mass delta of +15.960. The 12 matching b-ions end at b61, establishing the amino-

acid sequence of all but the last two amino-acids. By changing the C-terminal residue 

from alanine to serine, the mass difference is becomes -0.024, two new y-ions are 

matched, and the resulting E-value improves to 8.32e-20. Oxidation of methionine or 

histidine residues cannot readily be placed at the C-terminus, and placement 

elsewhere in the sequence results in the loss of a significant number of b-ion fragment 

matches. (Figure 4.4) 

The spectrum of precursor m/z 732.71, in charge state +13, matches DNA 

binding protein HU-alpha with E-value 7.5e-26 and mass delta -14.128, matching 12 
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b-ions and 19 y-ions. The b-ion fragment matches run to residue 37 while the y-ion 

fragments start at residue 42, leaving a 5 residue gap. An aspartate for glutamate 

substitution results in an additional 7 b-ion and 3 y-ion matches, improving the E-

value to 1.91e-58, and changing the mass-delta to 0.110 Da. (Figure 4.5) 

The mass-shifts responsible for the remaining five protein identifications 

remain unexplained at this time, but we stress that the intact protein mass and the 

protein family identity is not in doubt. Due to the number (at least ten in each case) 

and position of the accurate mass fragment matches, these identifications are highly 

statistically significant, even if the entire amino acid sequence of the protein cannot 

be asserted.  
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ErwiniaHerb_july23_MWCOfilter_xtract #571 RT: 14.91 AV: 1 NL: 1.24E5
F: FTMS + p ESI d Full ms2 564.68@cid35.00 [511.27-6031.24]
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Figure 4.11-Top:  Deconvoluted tandem mass spectra of precursor 564.68 in charge 

state +11 identified as Erwinia herbicola protein 50s Ribosomal protein L32 with E-

value 1.72e-7.  Middle:  Sequence of matched protein with 15 b- and y-ion fragments. 

Bottom:  Highlighted substitution of serine to alanine at the 20th position, and 

rescored search with E-value now 5.85e-29 with 22 b- and y-ion fragment matches.  
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ErwiniaHerb_july23_MWCOfilter_xtract #1483 RT: 29.27 AV: 1 NL: 4.23E5
F: FTMS + p ESI d Full ms2 1211.84@cid35.00 [953.49-7167.92]
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Figure 4.12-Top:  Tandem mass spectrum of precursor 1211.84 in charge state +6 

identified as 50s Ribosomal protein L29 with E-value 2.71e-8.  Middle:  Original 

matching sequence with 13 b- and y- ion fragments.  Bottom:  Highlighted 

substitution of alanine to serine at C-terminus.  Rescored E-value now 8.32e-20 with 

14 b- and y- ion fragments. 
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ErwiniaHerb_july23_MWCOfilter_xtract #1452 RT: 28.86 AV: 1 NL: 6.82E6
F: FTMS + p ESI d Full ms2 732.71@cid35.00 [481.21-8076.35]
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Figure 4.13-Top:  tandem mass spectrum of precursor ion 732.71 in charge state +13 

identified as DNA binding protein HU-alpha with E-value 7.5e-26.  Middle:  matched 

protein sequence with 31 b- and y-ion fragments.  Bottom:  Substitution of glutamate 

to aspartate at 38th position.  Rescored E-value now 1.91e-58 with 41 b- and y- ions. 
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Enterobacter cloacae proteins  

Table 2 presents a summary of proteins identified with ProSightPC E-values 

less than 1.0e-4 from Enterobacter cloacae.  Fifteen proteins were identified from 

129 intact molecular masses. Five of the 15 identified proteins are ribosomal, with 

three cold shock protein spectra also observed. This may be due to the fact that the 

Enterobacter cells were lyophilized and stored for 4 years while the Erwinia cells 

were frozen in water and stored for 6 months. The best matches to three of the E. 

cloacae precursors, 50S ribosomal protein L30, 50S ribosomal protein L28, and 

DNA-binding protein HU-alpha (m/z 1189.65) were found only in Enterobacter sp. 

638. Other organisms with matching protein sequences include Klebsiella 

pneumoniae, Enterobacter sakazakii, and Escherichia coli. The relationship between 

Enterobacter cloacae and Escherichia coli has been shown in the similarity of their 

16S-rRNA previously by Clementino61, and this is confirmed with the top-down 

proteomics analysis here.  

Table 4.2 includes six identifications with E-values smaller than 1.0e-10, 

reinforcing the observation that accurate mass fragment ion matches can be sufficient 

for highly significant protein identifications. Eleven precursor masses are within 

15ppm of the matched proteins’ molecular weight. These matches indicate that the 

experimental proteins from Enterobacter cloacae have the same amino acid sequence 

as the matched proteins from near neighbor organisms. An additional identification to 

Escherichia coli 50S ribosomal protein L24 has mass delta 18.5ppm. Finally, three 

proteins have a mass difference of 100 Daltons or more. Again, while we cannot 

claim to have established the full amino-acid sequence of these proteins, the protein 
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family identity is not in doubt, and in each case, a significant proportion of the amino-

acid sequence of the protein can established by the number and position of the 

fragment ion matches. 
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m/z
# Matching 
Fragments

Theoretical 
Mass

Observed 
Mass 

Mass Diff 
Best Hit                  

Protein Family
Best Hit Organism

Best Hit     
E-value

798.45 8 4923.660 4781.589 -142.071 DNA-binding protein        
HU-alpha

Serratia proteamaculans 9.35E-07

814.63 10 5054.860 4881.825 -173.035 DNA-binding protein        
HU-alpha

Serratia proteamaculans 2.41E-10

1078.75 11 6458.660 6458.683 0.023 Ribosomal protein L30 Enterobacter sp. 638 3.00E-07

1144.99 13 6855.910 6855.920 0.010 Carbon storage regulator Escherichia coli, Shigella flexnari, 
Salmonella enterica, Shigella sonnei, 
Klebsiella pneumoniae, Citrobacter 
koseri, Salmonella typhermurium, 
Enterobacter sakazakii, Shigella 

boydii, Shigella dysenteriae

1.42E-12

907.25 15 7243.480 7243.480 0.000 Ribosomal protein L29 Klebsiella pneumoniae 1.14E-14

1455.96 13 7271.130 7271.096 -0.034 Cold shock DNA       
binding protein

Escherichia coli, Shigella flexnari, 
Salmonella enterica, Shigella sonnei, 
Klebsiella pneumoniae, Citrobacter 
koseri, Salmonella typhermurium, 
Enterobacter sakazakii, Shigella 

boydii, Shigella dysenteriae

1.87E-11

1221.64 13 7318.230 7318.213 -0.017 Cold shock DNA       
binding protein

Enterobacter sakazakii, Klebsiella 
pneumoniae

2.10E-11

1062.35 11 7287.180 7441.750 154.570 Cold shock DNA       
binding protein

Yersinia pestis, Yersinia 
pseudotuberculosis, Serratia 

proteamaculans, Yersinia bercovieri, 
Yersinia enterocolitica, Yersinia 

mollaretii

1.99E-11

1159.62 10 8104.380 8104.360 -0.020 Translation initiation factor 
1A

Sodalis glossinidius,Yersinia pestis, 
Yersinia pseudotuberculosis, 

Serratia proteamaculans, Yersinia 
bercovieri, Yersinia enterocolitica, 

Yersinia mollaretii, Enterobacter sp. 
638, Photorhabdus luminescens, 

Pectobacterium atrosepticum, 
Erwinia tasmaniensis

1.63E-08

809.36 9 8891.310 8891.355 0.045 Ribosomal protein L28 Enterobacter sp. 638 9.33E-06

1306.71 17 9137.480 9137.522 0.042 DNA-binding protein        
HU-beta

Klebsiella pneumoniae 5.42E-13

1189.65 14 9504.970 9505.004 0.034 DNA-binding protein        
HU-alpha

Enterobacter sp. 638 3.08E-10

937.16 8 10299.100 10299.157 0.057 Ribosomal protein S19 Escherichia coli, Shigella flexnari, 
Salmonella enterica, Shigella sonnei, 
Klebsiella pneumoniae, Citrobacter 
koseri, Salmonella typhermurium, 
Enterobacter sakazakii, Shigella 

boydii, Shigella dysenteriae

4.41E-05

1119.54 7 11185.000 11185.207 0.207 Ribosomal protein L24 Escherichia coli, Shigella flexnari, 
Salmonella enterica, Shigella sonnei, 
Klebsiella pneumoniae, Citrobacter 
koseri, Salmonella typhermurium, 
Enterobacter sakazakii, Shigella 

boydii, Shigella dysenteriae

1.60E-06

1464.22 8 11705.500 11705.447 -0.053 Thioredoxin protein Enterobacter sakazakii, Klebsiella 
pneumoniae

4.66E-05

 
Table 4.2-ProSight PC 2.0 matches to Enterobacter cloacae 
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Figure 4.14-Top:  MS/MS of m/z 1221.98 with +6 charge (molecular weight 

7318.23).  Bottom:  Sequence of cold shock protein with matched b- and y- ions. 

F:FTMS + p ESI d Full ms2 1221.79@cid35.00 [1145.58-7187.68]
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Figure 4.15-Top:  MS/MS of m/z 1144.99 with +6 charge (molecular weight 

6855.91).  Bottom:  Sequence of carbon storage regulator protein with matched b- 

and y- ions.   

F:FTMS + p ESI d Full ms2 1144.99@cid35.00 [821.38-6675.58]
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Figure 4.16-Top:  MS/MS of m/z 798.45 with +6 charge (molecular weight 4781.59).  

Bottom:  Sequence of DNA-binding protein HU-alpha with matched b- and y- ions. 

F:FTMS + p ESI d Full ms2 798.45@cid35.00 [1278.73-4637.54]
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Figure 4.17-Top:  MS/MS of m/z 814.63 with +6 charge (molecular weight 4881.82). 

Bottom:  Sequence of DNA-binding protein HU-alpha with matched b- and y- ions. 

F:FTMS + p ESI d Full ms2 814.29@cid35.00 [721.39-3452.86]
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Figure 4.18-Top:  MS/MS of m/z 1119.54 with +10 charge (molecular weight of 

11185.20).  Bottom:  Sequence of ribosomal protein L24 with matched b- and y- ions.  

F:FTMS + p ESI d Full ms2 1119.54@cid35.00 [920.51-9302.20]
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Figure 4.19-Top:  MS/MS of m/z 1306.71 with +8 charge (molecular weight 

9137.52).  Bottom:  Sequence of DNA-binding protein HU-beta with matched b- and 

y-ions. 

F:FTMS + p ESI d Full ms2 1306.70@cid35.00 [924.46-8207.47]
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Figure 4.20-Top:  MS/MS of m/z 1189.65 with +8 charge (molecular weight 

9505.00).  Bottom:  Sequence of DNA binding protein HU-alpha with matched b- and 

y- ions. 

F:FTMS + p ESI d Full ms2 1189.65@cid35.00 [738.45-10492.76]
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Figure 4.21-Top:  MS/MS of m/z 1078.75 with +6 charge (molecular weight 

6458.68).  Bottom:  Sequence of ribosomal protein L30 with matched b ions. 

F:FTMS + p ESI d Full ms2 1078.75@cid35.00 [498.26-6312.57]
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Figure 4.22-Top:  MS/MS of m/z of 809.36 with +11 charge (molecular weight 

8891.36).  Bottom:  Sequence of ribosomal protein L28 with matched b- and y-ions. 

F:FTMS + p ESI d Full ms2 809.36@cid35.00 
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Figure 4.23-Top:  MS/MS of m/z 907.25 with +8 charge (molecular weight 7243.48). 

Bottom:  Sequence of ribosomal protein L29 with matched b- and y- ions. 

F:FTMS + p ESI d Full ms2 907.25@cid35.00 [778.81-7112.93]
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Figure 4.24-Top:  MS/MS of m/z 937.16 with +11 charge (molecular weight 

10299.10).  Bottom:  Sequence of ribosomal protein S19 with matched b- and y-ions. 

F: FTMS + p ESI d Full ms2 937.53@cid35.00 [884.50-10023.44]
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Figure 4.25-Top:  MS/MS of m/z 1159.62 with +7 charge (molecular weight 8104.38) 

Bottom:  Sequence of translation initiation factor 1A with matched b- and y- ions.   

F: FTMS + p ESI d Full ms2 1159.62@cid35.00 [1053.46-7948.15]
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Figure 4.26-Top:  MS/MS of m/z 1464.22 of +9 charge (molecular weight 11705.50).   

Bottom:  Sequence of thioredoxin protein with matched b- and y- ions. 

F:FTMS + p ESI d Full ms2 1464.22@cid35.00 [801.46-10940.84]
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Figure 4.27-Top:  MS/MS of 1221.64 with +6 charge (molecular weight 7318.23). 

Bottom:  Sequence of cold shock protein Cold shock DNA protein-beta with matched 

b- and y- ions. 

Phylogenetic Analysis 

This phylogenetic analysis had to be done in a slightly different manner than the 

previous chapter due to the extended mass tolerance of the precursor.  Because the mass of 

the entire protein cannot be confidently matched to the proteins in the FASTA database, it 

can no longer be asserted that the whole protein sequence can be confidently identified for the 

construction of a phylogenetic tree.  To overcome this problem, partial N- and C- terminal 

amino-acid sequences that could be confidently matched were extracted.  The threshold used 

to verify that the partial sequence was correct was that an N-terminal sequence must have 

been supported by at least 3 b-ions, and the C-terminal sequences must have had at least 3 y-

ions to be considered confidently identified.  The whole protein sequence was considered to 

be confidently established only when these extracted N- or C-terminal sequences met or 
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overlapped, and only those N- or C-terminal sequences consisting of ten amino acids or 

longer were retained for the phylogenetic analysis.    

 For Erwinia herbicola, the entire sequence was confidently established from 

only five of the fourteen ProSight PC matches.  N- and C- terminal sequences with 32 

or more amino acids were established in three others.  Three more only had N-

terminal sequences extracted, while three other had C-terminal sequences extracted.  

These extracted sequences for Erwinia herbicola averaged 60 amino acids per 

ProSight PC top-down match.  Figure 4.6 provides an example of both N- and C- 

terminal extracted fragments, while Figure 4.7 shows where the extracted sequences 

resided on each of the Erwinia herbicola proteins.   
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Figure 4.28-Top:  Deconvoluted MS/MS of precursor ion 732.91 with  charge state 
+12, matching to Ribosomal protein S18 with an E-value of 6.28e-6.  Bottom:  
ProSight PC 2.0 match with 11 b- and y- ion fragments.  The highlighted portion 
indicates the N- and C-terminal  amino acid sequences extracted for phylogenetic 
analysis. 

ErwiniaHerb_july23_MWCOfilter_xtract #1296 RT: 25.65 AV: 1 NL: 7.32E5
F: FTMS + p ESI d Full ms2 742.91@cid35.00 
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Figure 4.29-histogram denoting in blue where the N- and C-terminal sequences were 
extracted for phylogenetic analysis for the Erwinia herbicola matches. 
 
 Similarly, there were five full length sequences extracted from the protein 

matches of Enterobacter cloacae.  Three other matches had N- and C-terminal 

sequence pairs extracted, while five matches only had their N-terminal sequences 

extracted.  Two other matches had only C-terminal sequences extracted for the 

phylogenetic analysis.  On average, fifty amino acids were extracted for each protein 

matched to Enterobacter cloacae to construct its phylogenetic tree. 

 The confidently extracted amino-acid sequences were aligned with proteins 

from the Enterobacteriaceae proteins to identify homologous regions in the related 

species.  Those N- and C- terminal sequences could not be aligned to any 

homologous sequences with E-values of 1e-4 or less and were discarded.  

Furthermore, any extracted sequence with an exact alignment with another extracted 
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sequence was also discarded.  Any species with a significant alignment to all 

remaining sequences was used for multiple-sequence alignment and phylogenetic tree 

construction.  The best alignment to each extracted sequence was concatenated in the 

same order for each species.  These alignments were combined with the extracted 

sequences for Erwinia herbicola and Enterobacter cloacae, just as in the previous 

chapter.  Erwinia herbicola could be compared with twenty-seven other species using 

about eight hundred amino acid positions, while Enterobacter cloacae could be 

compared to twenty-six other species at about half the amino acid positions as E. 

herbicola.  Figure 4.8 shows the phylogenetic trees for each species, as created in the 

same manner as in the previous chapter using the phylogeny.fr web-server.  

  

 

Figure 4.30-Phylogenetic trees constructed for Erwinia herbicola (A) and 

Enterobacter cloacae (B)  
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Summary 

 The previous chapter of this dissertation laid out the top-down strategy that 

could be used to identify microorganisms without sequenced genomes by using 

proteins from related organisms that have the same mass as the target proteins, with 

the presumption that those proteins will be 100% homologous.  This chapter expands 

this strategy to allow for a 250 Dalton mass difference between the target proteins 

characterized in the top-down experiment and the proteins from the same 

phylogenetic family using two different bacteria.  Fourteen proteins were identified 

from Erwinia herbicola and fifteen proteins were identified from Enterobacter 

cloacae using the proteins from the entire Enterobacteriaceae family.  While the 

whole protein sequence could not be characterized in most cases, precursor and 

fragment mass spectra acquired with high mass accuracy and high resolution allowed 

for confident characterization of long N- and C-terminal pieces of those proteins 

identified by their b- and y- ions.  These partial sequences were then used in 

phylogenetic analysis and discovered enough differentiation to construct complex 

phylogenetic trees for each of the target bacteria. 

 High mass accuracy of the precursor and fragment spectra also provided 

enough information in some cases to be able to localize the mass changes between the 

target and matched amino acid sequences, and, in some cases, allowed for the 

presumption of amino acid mutations.  These presumed mutations identified more b- 

and y- ions than the initial match and increased the confidence in those identifications 

by a significant margin.  Three examples of this were shown in Erwinia herbicola 

proteins.   
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 This expansion of the previous method should allow for the classification of 

more bacteria without sequenced genomes since it is not reliant on 100% homology 

between the target proteins and the proteins from the sequenced members of the same 

family.  However, it does still rely on some prior knowledge of the bacteria to create a 

database of adequate size.  By limiting the database to only those proteins derived 

from sequenced organisms within the same family, the author feels that the database 

will be inclusive enough to provide enough homology matches without the database 

file becoming so large that a regular PC does not take days to attempt to match the 

target proteins.   

 Furthermore, this expansion of the method still characterized many of the 

highly abundant proteins that would be found in a typical MALDI-TOF mass 

spectrum that resulted from some of the detection systems used in defense and 

homeland security.  By characterizing these proteins, the information could be 

incorporated into these systems and allow for better discrimination between a lethal 

pathogen and non-lethal simulant organism.     
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Chapter 5:  Conclusions 
 

Identification of Proteins 

Few bacteria and archea have publicly available genome or proteome sequences, so 

any mass spectrometry-based method studying those without publicly available sequences 

needs to accommodate mass differences stemming from amino acid differences and 

unexpected post-translational modifications.  The strategy proposed in this dissertation uses 

top-down mass spectrometry and the existing proteome/genome database to characterize 

proteins from these unsequenced bacteria and identify the organism’s place on a phylogenic 

tree.  The method was tested on three bacteria that are used as simulants for biohazards.  

First, the method was used on Yersinia rohdei to measure only those proteins that had the 

same exact masses as proteins from a custom database.  Extensive fragmentation of proteins 

with the same masses as known proteins in the database often allow the assignment of 100% 

homology.  Next, the method was expanded to accommodate a 250 Dalton difference 

between the masses known and unknown proteins from two other proteins without sequenced 

genomes, Erwinia herbicola and Enterobacter cloacae, and the database of proteins was 

extended to all sequenced bacteria from the Enterobacteria family.  Proteins from all three of 

our tests were identified and characterized very confidently using the metrics that were laid 

out in the dissertation.  From those protein identifications, phylogenic trees were constructed 

to determine which of the sequenced bacteria were closest to the unsequenced target. 

 Top-down mass spectrometry was the proteomic approach taken because of 

this approach provides complete coverage of the amino acid sequence of each protein 

detected.  The top-down approach first measures the mass of the whole protein, which 

would include any amino acid changes or post translational modifications to the 
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protein.  In the alternative approaches, bottom-up or middle-down, the protein is 

broken into peptides before mass spectrometric analysis.  Due to incomplete 

ionization, differences in relative abundance in co-eluting peptides, and incomplete 

separation, not every peptide is detected.  Chances are that the peptide will not be 

detected.  To make a similar bottom-up approach as successful to the method 

proposed in this dissertation, multiple enzymatic or chemical cleavage methods 

would have to be employed.  Use of multiple methods to digest the proteins will make 

the sample more complex, and analysis would take much longer than the times used 

in the top-down studies already discussed.  In the present study, seven out of the 

fourteen proteins identified from Erwinia herbicola and three of the fifteen proteins 

identified from Enterobacter cloacae had masses different from the masses of the 

protein sequences in the database.  Therefore, a top-down proteomic approach is 

favorable when matching proteins from an unsequenced bacteria to bacterial proteins 

in a database.   

Orbitrap Mass Spectrometry 

 High resolution and high mass accuracy provided by the Orbitrap analyzer 

was used in conjunction with collisionally induced dissociation to identify proteins 

ranging from 5000 Daltons to 15000 Daltons.  Molecular weights could be 

automatically determined in ions with fifteen charges in the timeframe allowed by 

online HPLC fractionation.  The Fourier transform used by the Orbitrap provides 

resolution that can detect a m/z difference in the isotopes of 0.067, which results from 

that high of a charge.  Many fragments generated by CID remain charged and also 

require high resolution for analysis.  Charge deconvolution software, like THRASH, 
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allows for automated analysis of these highly charged molecular and fragment ions by 

bringing all precursor and fragment ions to only one m/z peak per ion.  Simplifying 

the mass spectra in this manner simplifies the peak picking needed in the database 

searching, which makes those searches faster eases interpretation of those results. 

Sequence Homology 

 The method proposed in this dissertation allowed for some phylogenic 

differentiation even though it identified only those proteins that are highly abundant 

in the bacteria.  Most of the proteins identified in the three target bacteria were 

characterized as ribosomal proteins.  In the case of Yersinia rohdei, all but one of the 

proteins identified were ribosomal proteins.  These ribosomal proteins are generally 

have highly conserved amino acid sequences among members of the same family, 

and these experiments were able to differentiate the bacteria based on those 

identifications.  As shown by the two incidence matrices, ribosomal proteins L32 and 

L29 allowed for separation due to different sequences.  In the case of the Erwinia 

herbicola, this identification led to the determination that Erwinia tasmaniensis was 

the closest known relative to the target species.  Other ribosomal proteins, such as 

S21, were so conserved that no differentiation between the members of the family 

could be determined by itself.  

 In this top-down strategy, the whole sequence does not have to be 

characterized by fragment b and y ions for the protein to be confidently identified.  

The Erwinia herbicola and Enterobacter cloacae studies both showed that gaps in the 

fragment ions and mass differences between the target proteins and the proteins 

contained in the database do not prevent confident identifications.  Gaps between the 
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identified b and y ions in a protein occur in most of the proteins that have mass 

differences.  These gaps help localize where these mass differences can occur, either 

through post translational modifications or differences in the amino acid sequence.  

Future Directions 

 The next iteration of the method demonstrated in this dissertation would be to 

improve sensitivity of detection and separation of the proteins while also increasing 

the precursor mass tolerance.  These changes would probably allow for more protein 

identifications and identifications of less abundant proteins.  This would lead to more 

reliable phylogenic identification.  Implementing an alternative sample preparation is 

expected to allow for the identification of more acidic proteins, which could also lead 

to more unique identifications.  Rapid and effective methods that provide additional 

protein identifications and phylogenetic characterization of bacteria that lack 

sequence information will be of value in homeland security, epidemiologic and 

medical diagnostics, and food safety, as well as enhance basic research. 
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