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The study of the dynamics of interacting self-propelled entities is a growing 

area of physics research.  This dissertation investigates individual and collective 

motion of the eukaryote Dictyostelium discoideum, a system amenable to signal 

manipulation, mathematical modeling, and quantitative analysis.  In the wild, 

Dictyostelium survive adverse conditions through collective behaviors caused by 

secreting and responding to chemical signals.  We explore this collective behavior on 

size scales ranging from subcellular biochemistry up to dynamics of thousands of 

communicating cells.  

To study how individual cells respond to multiple signals, we perform 

stability analysis on a previously-developed computational model of signal sensing.  

Polarized cells are linearly stable to perturbations, with a least stable region at about 

60 degrees off the polarization axis.  This finding is confirmed through simulations of 

the model response to additional chemical signals.  The off-axis sensitivity suggests a 



  

mechanism for previously observed zig-zag motion of real cells randomly migrating 

or chemotaxing in a linear gradient.    

 Moving up in scale, we experimentally investigate the rules of cell motion and 

interaction in the context of thousands of cells.  Migrating Dictyostelium discoideum 

cells communicate by sensing and secreting directional signals, and we find that this 

process leads to an initial signal having an increased spatial range of an order of 

magnitude.   While this process steers cells, measurements indicate that intrinsic cell 

motility remains unaffected.  Additionally, migration of individual cells is unaffected 

by changing cell-surface adhesion energy by nine orders of magnitude, showing that 

individual motility is a robust process.  In contrast, we find that collective dynamics 

depend on cell-surface adhesion, with greater adhesion causing cells to form smaller 

collective structures.   

 Overall, this work suggests that the underlying migration ability of individual 

Dictyostelium cells operates largely independent of environmental conditions.  Our 

gradient-sensing model shows that polarized cells are stable to small perturbations, 

and our experiments demonstrate that the motility apparatus is robust to considerable 

changes in cell-surface adhesion or complex signaling fields.  However, we find that 

environmental factors can dramatically affect the collective behavior of cells, 

emphasizing that the laws governing cell-cell interaction can change migration 

patterns without altering intrinsic cell motility.   
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1. Introduction and Background 

In this thesis we examine the dynamics of individual and collective motion in 

the eukaryote Dictyostelium discoideum.  This introductory chapter presents the 

current state of research in the fields of collective cell motion, the cell chemical 

sensing system, and cell-surface adhesion interactions.  In Chapter 2 we investigate 

the rules of collective motion by performing stability analysis on a model of single-

cell chemical sensing. Chapter 3 expands the spatial scale of the research by an order 

of magnitude and explores the effects of cell-to-cell chemical communication and 

physical interactions.  Chapter 4 investigates how individual and collective behaviors 

are influenced by the ability of cells to adhere to a surface.  Chapter 5 presents an 

outlook on the implications of these findings and suggests future research directions. 

Appendix A details the experimental methods and provides an introduction to the 

software used in this thesis.  

 

1.1. Overview 

The interaction of individual organisms to produce collective motion is of 

fundamental importance in nature.  In animals, the process of collective motion is 

often called ‘flocking’ and applies to a variety of systems, such as birds, insects, fish, 

cattle, and even humans [1] (see Figure 1.1).  Understanding the emergent collective 

motion that arises from the interactions of individual agents is an area of active 

research in physics, mathematics, and biology [2].  Studies of the dynamics of 

collective motion have been able to elucidate interaction laws from in-depth analysis.  
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This research has led to remarkable discoveries, such as the fact that many locust 

swarms are driven by cannibalism [3], fish in a school only match others’ motion if a 

threshold number of co-moving neighbors is surpassed [4], and cow herd motion is 

influenced by a hierarchy, although there is no leader [5].  Furthermore, knowledge of 

how local interaction laws govern collective motion has many potential applications.  

For instance, a study on humans showed that a small number of knowledgeable 

individuals can successfully lead a large group [6], which has implications for 

emergency management preparation.  Also, there is great interest in developing rules 

for swarms of robots to complete a given task autonomously, such as optimally 

foraging for objects over a given area [7].  Truly understanding the impact of 

individual interactions on collective motion requires quantitative mathematical 

modeling.  For example, modeling revealed that swarms can transition between 

periodic circular motion and straight-line motion depending upon the angle at which 

individuals respond to one another [8], and the only interactions required for flocks to 

follow a leader successfully is short-range repulsion and slightly longer-range 

attraction [9].  In short, the study of collective motion is leading to an understanding 

of natural systems and the rules that governed them, which will in turn drive future 

applications.   

In addition to animals, groups of cells also interact and display collective 

motion.  For instance, some bacteria transition between individual and collective 

motion based on their density and external conditions [10].  In mammalian systems, 

tissues and other cells display collective motion, which is critical in embryogenesis, 

wound healing, and vascular (blood vessel) growth [11, 12] (see Figure 1.2 A).  There 
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is also increasing evidence that collective migration may be important in the response 

of immune cells to infection [13].  Finally, group migration plays a role in the 

metastasis of a wide range of cancer types [14] (see Figure 1.2 B), such as cancer 

cells that move collectively out of a tumor along blood vessels [15] or follow in the 

path of a non-cancerous cell [16].   Observations of these processes can lead to 

successful inferences regarding the interaction rules that individual cells follow [17].  

Cell-cell adhesion, cell-surface adhesion, crawling or swimming speed, cell division 

ability, cell internal states, and cell-cell communication via chemical or other signals 

all potentially play a role in collective cell motion [15].  Knowledge gained from 

these studies has potential applications for therapeutic treatments.  For instance, some 

bacterial species initiate the infection process through communicating a collective 

   
 

Figure 1.1 – Examples of Collective Animal Motion 

 
Many animal systems perform collective motion, for a variety of reasons.  (Left) 
Geese fly in a ‘V’ formation to provide energy savings to the flock.  (Middle) 
Ants form bridges with their bodies to allow access to otherwise unreachable 
locations. (Right) Fish form schools to visually confound predators.   
Left image copyright Robyn Waayer (2009) and found at  

http://www.sdrp.org/resources/Ecology/Robyn%20Waayer/SnowGeese.jpg. 

Middle image copyright Alexander Wild (2004) and found at 

http://www.myrmecos.net/ants/EciBur11.JPG.  Right image copyright R. Kent 

Wenger (2000) and found at 

http://pages.cs.wisc.edu/~wenger/images/bonaire2k/school.jpg. 

All images reprinted with permission. 
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motion signal [18], and cancer metastasis may be hindered by disruption of cell 

adhesion molecules [19].   Collective cell motion is therefore an interesting and 

important problem that is worthy of extensive study. 

Sensing and responding to chemical signals with directed motion (chemotaxis) 

is a driving factor in many collectively migrating cell systems.  While in some 

instances (e.g. densely-packed bacteria) cell-generated motion through a fluid and 

cell-cell repulsion are enough to generate collective behavior [21], in other instances 

(e.g. embryogenesis), the ability of cells to communicate with one another via 

secreted signals is considered vital [22].  As an example, the collectively migrating 

            (A)  

 
         (B)  

 
Figure 1.2 – Examples of Collective Cell Motion 

(A) A sheet of endothelial cells (gray) collectively migrates to close a gap (black).  
Scale bar = 150 µm (image from [17])  (B) A group of oral squamous cell carcinoma 
(cancer) cells migrating collectively.  Indicated time is in hours.  Scale bar = 80 µm 
Reproduced from Fig. 1D of [20], copyright 2004 International Journal of 

Developmental Biology (Int. J. Dev. Biol.).  Used with permission. 
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cells of the eukaryote Dictyostelium discoideum sense a chemical signal in the 

environment and respond by moving in the direction of the source [23].  These cells 

begin at too great a distance from one another to communicate effectively using any 

other method, and they therefore must be able to properly interpret and respond to the 

cues that their neighbors are secreting into the environment.  As another example, 

cancer cells migrating as an adhered group can act as a single unit to follow chemical 

signals [15].  Consequently, studying chemotaxis will lead to greater knowledge 

about collective motion in natural biological systems and cancer.   

For a cell to successfully perform chemotaxis, it must be able to transduce an 

often noisy and shallow external chemical gradient into a strong intracellular 

biochemical response, which in turn mobilizes its internal structure to cause directed 

migration.  The migration process itself must be spatio-temporally regulated in order 

to produce the right forces in the correct places and at the proper times to propel the 

cell in a given direction.  The method whereby a cell is able to accomplish this task 

has been under active investigation for several decades, and the identities and 

interactions of many of the molecules have been discovered [24].  However, 

quantitative data on the dynamics of these molecules are still actively being collected, 

and theoretical models are still not fully consistent with experiments [25].  To better 

understand these systems, we now provide an overview of the current knowledge of 

cells, chemotaxis, and group dynamics. 
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1.2. An Introduction to Cells and Collective Behavior 

1.2.1. The Cell as a Physical System 

A comprehensive treatise on cell biology can be found in Alberts et al [26]. 

The cell is the fundamental unit of life.  Generally, a cell consists of a 

phospholipid membrane bilayer that separates ‘inside’ from ‘outside’.  The cell 

contains genetic material in the form of DNA, which it uses as a template to create 

proteins to perform a variety of functions.  Cells use various processes to intake and 

process energy, which they then utilize for various tasks, such as motion, 

maintenance, intake and excretion of particles, etc.  In general, a cell is a vastly 

complex and regulated system with a variety of functions, and as research progresses 

the picture of cellular structure and function becomes more and more complex.  

Entire scientific careers can be spent elucidating a single cellular process in a given 

cell type.   

Ultimately, a cell is also a physical system subject to physical constrains, and it 

can be understood in physical and chemical terms, e.g. proteins are often enzymes 

catalyzing reactions with particular rates, structural elements of cells have bending 

rigidities and elastic properties, cells exert forces on their environment in order to 

move, and the laws of thermodynamics must be obeyed.  Biophysical/biochemical 

theories and measurements have provided valuable tools to quantify and explain 

processes of the cell (see Table 1-1).  In this vein, this thesis aims to bring 

quantitative measurements to bear on the physical processes of individual and 

collective motion.   
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1.2.2. Chemotaxis and Collective Behavior 

To understand the collective motion of cells, we must first understand cell-cell 

communication as well as the rules of cell motion.  The primary method of collective 

behavior in Dictyostelium discoideum, as well as in many other cell systems, is a 

chemotactic response to secreted signals.  There are many potential molecular 

methods of communication, which can vary across cell types or even within an 

individual cell for different signals [29].  

Bacterial cells generally swim up (or down) a chemical gradient via a ‘run-and-

tumble’ mechanism: the cells spin their flagella to move in a straight line when they 

sense a temporally increasing (or decreasing) concentration of ligand [30].  When the 

concentration does not increase, they spin their flagella in a way that randomizes their 

direction, and then they once again switch to moving straight, continuing in that 

direction longer if the external concentration increases (or decreases).  This method 

leads to overall directed motion, such as towards a source of food or away from 

harmful conditions [31].   

Table 1-1 – Typical Physical Properties of Cells 

 
Size 0.5 µm (bacteria) – 10 µm (eukaryote) 
Young’s Modulus 0.01 – 1 GPa 
Speed (Crawling) 10 µm/min (eukaryote) 
Speed (Swimming) 25 µm/sec (bacteria) 
Mass 1 – 500 *10-15 kg 
Density 1100 kg / m3 
Internal pH [27] 7.3 (cytosol) 
Transmembrane Potential 60 mV 
Forces Exerted 1 nN 

 
Values (except for pH) are adapted from [28]. 
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Eukaryotic cells, in contrast, use a different method to sense concentration 

gradients.  Eukaryotic cells in general are larger than prokaryotes such as bacteria 

(~10 µm versus ~2 µm typical diameter) and are better able to detect spatial 

concentration differences between their front and back.  The sensitivity of some 

gradient-sensing eukaryotes is high enough to detect front-to-back differences in 

concentration of ~1% [32].  The cells then are able to amplify this signal to produce a 

steep concentration gradient of internal molecules, which leads to filamentous actin 

(F-actin) polymerization in the direction of the signal.  This F-actin network generates 

force to bend the membrane and form protrusions at the cell front, pushing the cell in 

that direction.  In addition, the cell back contracts through the action of molecular 

motors, resulting in net forward motion [33].  The process of chemotaxis can lead to 

directed motion in chemical gradients that vary in strength and absolute concentration 

over many orders of magnitude [34]. 

Although the identities and interactions of many molecules involved in 

chemotaxis have been discovered, quantitative data on the dynamics of these 

molecules are still actively being collected, and theoretical models that accurately 

reproduce the entire chemotactic process, from gradient sensing to motion, are non-

existent [24].  Instead, chemotaxis is often separated into two modules that are more 

easily tractable: the chemical-sensing module, and the motility module [35].  

Generally, the output of the chemical-sensing module feeds into the motility module 

(and not vice versa).  The molecules involved in the chemotactic pathways have been 

under active investigation for years at the scale of the single cell.  However, 

additional complications arise when cells use a system of chemical release and 
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sensing as a form of communication to drive a population of cells toward a particular 

goal.  To understand the complexity of the resultant process, we study the soil-

dwelling amoeba Dictyostelium discoideum, which provides an ideal system to study 

the individual and group dynamics of collective chemotaxis. In this organism, 

chemotactic-mediated group migration allows cells to move towards neighbors during 

starvation conditions to aid in survival.  We now provide an introduction to 

Dictyostelium discoideum and highlight the current state of research. 

 

1.2.3. Dictyostelium discoideum as a Model System 

Studying chemotaxis in mammalian cells is a difficult proposition for many 

reasons.  Experimental conditions must attempt to reproduce the complex 

environment found in the body, and so extreme care must be taken with factors such 

as temperature, pH, proteins and nutrients found in the surrounding fluid, specialized 

materials to place cells upon, etc [36].  For this reason, from a basic science  point of 

view, a system that is well-characterized, hardy, and provides knowledge directly 

relevant to mammalian cells, without the drawbacks, is desirable.   

The soil-dwelling amoeba Dictyostelium discoideum is one such system for 

studying chemotaxis.  Officially recognized by the NIH as a “Model Organism for 

Biomedical Research”, Dictyostelium chemotaxis uses similar molecular mechanisms 

as mammalian amoeboid cells, such as neutrophils (a subset of white blood cells) [37, 

38].  Research findings in Dictyostelium have been shown to be generally applicable 

to other systems, and experimental work is much easier [39].  Thus, Dictyostelium 

provides a good balance of experimental ease and translatable results.  Its genome has 



 10 
 

been sequenced, many stable genetic mutants have been engineered, and it has been 

actively studied for over 30 years [40].   

The physical properties of Dictyostelium are similar to those of amoeboid 

mammalian cells [41]. An individual Dictyostelium cell is around 10 µm in diameter 

and feeds on bacteria.  As part of their natural life cycle, Dictyostelium cells are able 

to perform chemotaxis toward a number of chemical signals, such as bacterial 

byproducts, or the small signaling molecule cyclic adenosine monophosphate (cAMP) 

[42]. Figure 1.3 shows a microscope image of representative cells, and Table 1-2 lists 

some properties of this remarkable organism.  All work in this thesis was carried out 

with Dictyostelium discoideum cells. 

In this thesis, we focus on group migration during the aggregation of 

Dictyostelium.  During this process, cells sense, migrate towards, and secrete the 

small molecule cAMP as a method of communicating the location of the aggregation 

center.  In order to understand how aggregation works, we first investigate how an 

individual cell is able to sense a cAMP signal, and then we move on to cell motion 

and collective behavior. 

 
Figure 1.3 – Microscope Image of Individual Dictyostelium discoideum Cells 

Individual cells as seen under bright-field microscopy.  Scale bar = 20 µm. 



 11 
 

 

1.3. Model of Gradient Sensing 

1.3.1. Decoupling Gradient Sensing from Chemotaxis 

To understand the rules governing collective motion in Dictyostelium, we first 

seek to understand how cells take an external communication signal and transduce it 

into an appropriate internal response.  This process is termed ‘gradient sensing’ and 

has been actively studied for over a decade.   

A critical tool used in studying gradient-sensing molecules is Green Fluorescent 

Protein (GFP) technology (and its variants), which revolutionized the use of optical 

microscopy in biology [46] (and led to a Nobel Prize [47]).  Many intracellular 

proteins of interest can be linked to GFP, allowing for time-resolved visualization of 

the spatial concentration of protein in cells [48].  Scientists were able to apply this 

technology to the gradient-sensing components of Dictyostelium, allowing them to 

visualize the fusion proteins involved in gradient sensing in cells that had been treated 

with a drug inhibiting their motion [49].  These studies showed that the ability of cells 

to sense an external signal was still active even though the ability to move was 

eliminated, effectively showing that to some extent gradient sensing could be 

 
Table 1-2 – Properties of Individual Dictyostelium discoideum Cells 

Genome Size [43] 34 Mbp 
Predicted Protein-Encoding Genes [43] 12,500 

Division Time [44] 10 hr 
Elongated Length [45] 20 µm 
Gradient Sensitivity [34] 10-3 – 10 nM/µm 

Speed [45] 10 µm / min 
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decoupled from motion [50].  With this knowledge, a number of experiments 

investigated the ability of cells to sense gradients in various conditions: time-varying 

gradients [51], strong and weak sources [52], etc.  In addition, this knowledge 

allowed the generation of simplified computational models of the dynamics of the 

molecules involved, as it was no longer necessary to account for cell motion [53].  

These models in turn led to the design of experiments to test these models.  We now 

take a closer look at the molecular signaling pathways that allow a cell to transduce 

an external chemical gradient into a strong internal signal.    

 

1.3.2. The Biochemistry of Gradient Sensing in Dictyostelium 

Many molecules involved in gradient sensing have been discovered over the 

past two decades.  Below we highlight current knowledge about the most-studied 

gradient-sensing pathway in Dictyostelium, that of phosphoinositide 3-kinase (PI3K) 

(shown in Figure 1.4).  The model studied in this thesis focuses solely on this 

pathway. 

Dictyostelium cells are able to sense the concentration of cAMP in their 

surroundings by the binding of cAMP to receptors on the external face of their 

membranes.  These receptors, called G-protein coupled receptors (GPCRs), span the 

membrane seven times and are bound on the intracellular side to heterotrimeric G-

proteins containing α, β, and γ subunits.  Upon cAMP binding, the GPCRs change 

their conformation [54], resulting in the dissociation of the coupled G-proteins into 

Gα and Gβγ subunits.  These subunits in turn activate a wide array of other signaling 

molecules.   
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Chemoattractant stimulation of GPCRs leads to the rapid activation of Ras, 

which, in turn, activates PI3K.  Once activated, PI3K converts membrane-bound 

phosphatidylinositol-4,5-biphosphate (PIP2) into phosphatidylinositol-3,4,5-

triphosphate (PIP3) [15]. PIP3 acts as a membrane docking site for molecules 

containing pleckstrin homology (PH) domains, such as Akt/Protein Kinase B (PKB), 

as well as nucleotide exchange factors for Rac and other small GTP binding proteins.  

These molecules in turn recruit actin polymerization and stabilization proteins to the 

fronts of cells [13].   

At the back and side of gradient-sensing cells, the phosphoinositide 3’ 

phosphate phosphatase (PTEN), which de-phosphorylates PIP3 into PIP2, is recruited 

[55]. This recruitment effectively eliminates the binding and activation of PH 

domain-containing proteins at the back and sides of cells, further ensuring that PIP3 is 

localized exclusively at the cell front.  The phosphorylation state of PIP2/PIP3 can 

therefore be viewed as an effective means to determine the gradient-sensing state of a 

cell [56, 57], and the local concentrations of these intracellular molecules will be a 

main readout for the model explained in Chapter 2.  Proteins with PH domains will 

localize to the cell membrane when PIP3 is present, and when these proteins are 

coupled to GFP they provide a readout of PIP3 levels (and hence PI3K/PTEN 

activity).   

While the PI3K pathway has been viewed for many years as the key gradient 

sensing pathway, recent work in Dictyostelium has indicated that other pathways may 

be acting in parallel [58, 59].  These pathways include phospholipase A2 (PLA2) 

[60], guanylyl cyclase (GC) [61], and target of rapamycin complex 2 (TORC2) [62]. 
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Interestingly, these pathways may not have identical roles.  For example, the PI3K 

pathway has been proposed to confer specific sensitivity to shallow extracellular 

gradients as PI3K inhibited cells can still perform chemotaxis toward steep gradients 

[63].   Finally, it remains to be seen if lessons learned from the PI3K pathway are 

generally applicable to other parallel pathways.   

 

1.3.3. Classes of Gradient-Sensing Models 

Although many of the key players regulating chemotaxis have been identified, a 

thorough understanding of the system requires knowledge of the timescales, binding 

rates, binding locations, and regulation of each of the molecules. To clarify this 

process, mathematical modeling has been used to determine if experimentally 

observed cell behavior can be understood entirely using known molecules and their 

spatiotemporal dynamics [64].  This approach has many advantages, including 

suggesting quantitative experiments, classes of new molecules to look for, and 

measurements that should be made.  

Current mathematical models of gradient sensing generally follow the PI3K 

pathway and model the cell as a 2D circular object [65], although shape itself can 

play a role in sensing ability [66] (e.g. in a gradient, elongated cells will have a larger 

concentration difference between front and back than a rounded cell).  There are 

several characteristic responses of cells to chemical signals that models must account 

for, as shown in Figure 1.5.  When exposed to a uniform dose of chemoattractant, 

PI3K is activated at the entire cell membrane within seconds, but it then returns to 

basal levels in tens of seconds.  This process is termed ‘adaptation’.  In a gradient, 
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PI3K is activated strongly at the up-gradient end of the cell, for gradient strengths 

differing by many orders of magnitude.  This process is termed ‘amplification’.  As 

adaptation and amplification have been observed in cells lacking an actin 

cytoskeleton, gradient-sensing models must, at a minimum, explain these two 

processes without resorting to actin-based processes.  

A variety of proposed mechanisms of gradient sensing have been 

mathematically modeled, and some of these models are illustrated in Figure 1.6.  One 

of the earliest proposed models is the ”Pilot Pseudopod” model, in which a cell 

continuously extends small pseudopods in many directions, only keeping and 

enlarging those that experience an overall positive temporal change in 

chemoattractant-bound receptor [67].  While this model can account for motion in 

response to a gradient, it does not explain the observed enrichment of PH domain-

containing proteins at the front of cells treated with agents that inhibit pseudopod 

formation. 

Another gradient-sensing model is the Local Excitation, Global Inhibition 

(LEGI) model [68].  In this model there are three chemical species: one is a stationary 

membrane-bound excitation molecule that is quickly activated by the binding of 

chemoattractants to GPCRs; another is a diffusible slowly-activating global inhibitor 

whose concentration is set by the average cell exposure to chemoattractants; the final 

molecule is the read-out of the sensing system.   
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Figure 1.5 – Characteristic Responses of Cells to Chemoattractants 

Dictyostelium cells treated with Latrunculin A cannot polymerize actin and so 
remain round, but they are still able to respond to the chemoattractant cAMP.  
Membranes of cells expressing the PHCRAC-GFP protein glow green to indicate 
their response to the chemoattractant.  Chemoattractant is shown in red.  (A) 
Time-lapse images show that about 10 seconds after stimulation with a uniform 
cAMP dose, the cells uniformly respond on their membrane.  The response dies 
down after 20 seconds.  This process is called ‘adaptation’.  Numbers are time in 
seconds. (B) Quantification of the cell response.  “C” = cell center, “M” = cell 
membrane.  The response to the uniform dose, where labeled protein leaves the 
cytosol and moves to the membrane, peaks around 10 seconds.  (C) Steady-state 
response of cell to a stable cAMP gradient.  The gradient is strongest at the 
bottom-right and declines moving to the top-left.  Note the strong crescent shape 
of the membrane response on the bottom right of the cell, which is steeper than 
the gradient itself.  This process is termed ‘amplification’.  The arrow indicates 
the line of pixels used for quantification in (D).  (D) Pixel intensity values, 
showing a marked increase toward the gradient source.  The bump in the middle 
is most likely due to autofluorescence of the nucleus (noticeable also in (A)).  
Figure reproduced from Figs 1A, 1E, 7A of [51], copyright 2005 American 

Society for Cell Biology.  Used with permission.      
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2
e e M M

E
k E k S D E

t
−

∂
= − + + ∇

∂          (1.1) 

 
 
Figure 1.6 - Schematic Representation of Mathematical Models for Gradient Sensing.   

 

Cells (round) are exposed to either a uniform stimulus (left column) or a gradient 
(right column).  The resulting spatial intracellular stimulation level of the cell is 
shown in red.  In the Pilot Pseudopod model, cells detect a gradient by extending 
small pseudopods that sense a temporal change in chemoattractant receptor 
occupancy.  In the Local Excitation, Global Inhibition (LEGI) model, the response of 
the cell to a uniform stimulus is initially along the periphery but diminishes with time.  
In a gradient, the response matches the strength of the external gradient.  In the 
positive feedback model, the cell has a region of strong excitation. When uniformly 
stimulated, this region is randomly located, whereas in a gradient it follows the 
direction of, but is much stronger than, the external gradient. 
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where E, R, I are the excitation, read-out, and inhibition molecules, respectively.  S is 

the chemical signal.  The rate constants k are decay and production constants for their 

respective molecules.  DM is the membrane diffusion constant for E and R, which are 

membrane-bound.  Dc is the cytosolic diffusion constant of I, and is generally at least 

2 orders of magnitude greater than Dm [69].  A uniform stimulus of chemoattractant 

causes a rapid activation of the excitation molecule all around the cell periphery, 

quickly causing an increase in the read-out response.  However, this response is 

dampened by the slow activation of the inhibitor molecule, which eventually lowers 

the read-out molecule concentration back to baseline (see Figure 1.7). A steady 

gradient of chemoattractant, however, causes the excitation molecule to be more 

active at the front, while the inhibitor is present equally everywhere.  This situation 

leads to net read-out increase at the front of the cell. While Ras or PI3K can play the 

role of the local exciter, a candidate molecule for the global inhibitor has yet to be 

identified.  While this model therefore explains adaptation and gradient-sensing, it is 

not able to address amplification, as the internal molecule gradients do not reach 

levels observed in experiments. 
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Another model is that of activation driven by positive feedback loops, so that a 

small external gradient is amplified into a large internal response [70].  This model, 

however, is very sensitive to spontaneous activation, and it displays a switch-like 

response that is not observed in cells.  Therefore, while addressing amplification, this 

model does not properly address adaptation. 

(A)       (B) 

 
Figure 1.7 – Illustration of Local Excitation, Global Inhibition (LEGI) Model of Gradient 

Sensing 

(A) When exposed to a uniform dose of chemoattractant, the cell initially produces 
the excitation molecule everywhere (gray line).  The inhibitor molecule 
concentration, which is dependent on the average chemoattractant concentration and 
acts globally, grows more slowly (blue line).  Eventually, the activities of the two 
molecules equalize, canceling each other out.  The overall response (red) essentially 
equals the excitation minus the inhibition, and therefore initially the cell responds 
everywhere, but the response eventually subsides.  (B) When exposed to a chemical 
gradient, the dynamics are similar to exposure to a uniform signal, with one major 
difference: the local excitation molecule is produced more at the up-gradient side than 
at the down-gradient side.  Since the inhibitor molecule is based on the average 
chemoattractant concentration and acts everywhere, it eventually cancels out the 
excitation at the back but not the front.  When steady-state is reached, the cell remains 
responsive at the front, as shown by the arrows.  Figure reproduced from [24] with 

permission. 
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Some recent models, such as ‘balanced inactivation’ [71] or LEGI coupled to a 

feedback loop [72], have been proposed to address shortcomings in previous 

mathematical models.  Similarly, in Chapter 2 we describe a mathematical model that 

combines both LEGI-type mechanisms as well as positive feedback loops.  In 

addition, our model contains tunable parameters allowing it to emphasize or de-

emphasize either of these mechanisms, leading to qualitatively different behavior for 

different parameter choices [69, 73]. 

 

1.3.4. Model with an Intermediate Level of Detail 

Chapter 2 explains a gradient-sensing model developed fully in previous work 

[35] that contains two positive feedback loops and one negative feedback loop.  The 

term ‘intermediate’ level of detail is used to designate that the model explicitly treats 

the time dynamics of six intracellular signaling molecules.  However, this model is 

not as simple as those presented previously, which generally explicitly model two or 

three molecules.  The model also does not track the dynamics of all possible players 

in the system.  Instead, it balances modeling the dynamics of six molecular species 

with the ability to adjust parameters to change the output enough to explain observed 

experimental behaviors. 

Previous models of cell behavior generally make predictions about a cell’s 

response to a gradient, but are themselves are not well-characterized in terms of 

responses to perturbations or sensitivity to additional signals.  In Chapter 2 we 

address these concerns through a linear stability analysis to determine the robustness 

to noise that may arise from a number of biological or physical sources, such as 
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stochasticity in receptor activity.  In addition, simulations are performed to test the 

response of the model to temporally and spatially localized sources of 

chemoattractant.  Both analytically and in numeric simulations, the model is most 

responsive to signals located off-axis to its initial polarization, which is suggestive of 

the zigzag type motion that real chemotaxing cells display.  We envision that similar 

treatments of other gradient-sensing models should help to elucidate the 

characteristics of those models, aiding in determining their validity. 

 

1.4. Dynamics of Individual Cell Motion 

Together with the rules underlying how a cell senses a chemical signal, 

understanding collective motion depends upon also knowing how a cell generates 

motion due to a sensed signal.  Tying together gradient-sensing with cell motility is 

not a trivial problem; in the following subsection we briefly explain what is known 

about motility in Dictyostelium and how gradient sensing fits into the overall picture. 

 

1.4.1. Biochemistry of Cell Motion in Dictyostelium discoideum 

The gradient-sensing signaling pathway leads to actin polymerization at the up-

gradient side of the cell and myosin contraction at the down-gradient side, as shown 

in Figure 1.4.  This process is involved in localizing actin network cross-linking in a 

proper spatio-temporal fashion to drive the membrane forward.  Biochemical 

experiments have revealed many of the proteins involved in this process in 
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Dictyostelium, although many of these proteins also exist in other motile cell systems.  

Now we briefly touch on the biochemistry of cell motion. 

The output molecules of gradient sensing recruit WASP (Wikott-Aldrich 

syndrome protein) and members of the SCAR (suppressor of cAMP receptor) 

complex, such as SCAR, Nap1, PIR121, Abl2, and HSPC300, to the cell front.  These 

molecules, in turn, bind Rac proteins, which then lead to pseudopod extension via F-

actin assembly.  In addition to binding Rac, these molecules cause the Arp2/3 (actin 

related proteins 2 and 3) complex to bind locally to actin polymers.  This complex 

causes new actin polymers to branch off of existing polymers at a 70 degree angle 

with respect to the previous polymer.  The repeated action of these complexes causes 

the up-gradient side of the cell to contain a meshwork of actin polymers able to 

support pseudopod protrusion. At the cell back, PAKa and the nucleotide cyclic GMP 

cause myosin II assembly and phosphorylation.  This process eventually leads to 

acto-myosin based cell contraction [13].   

It should be noted, however, that the molecules acting as a result of the 

gradient-sensing pathways can themselves feed back into the activity of the gradient-

sensing pathways.  For example, polymerized actin at a cell front can locally 

reinforce the action of PI3K, even when a gradient disappears [56].  Evidence for 

these signaling networks often arises from examining phenotypes and protein 

expression levels in genetic knockouts or knockdowns, and therefore usually does not 

lead to insights regarding the temporal aspect of motility regulation.  Additionally, 

cells can display the ability to move without an external gradient [74]. In order to 

understand motion, models of cell motion are required that integrate the biochemistry 
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with these known phenotypes, in order to elucidate how motility emerges from these 

signals and to make quantitative predictions. 

 

1.4.2. Models of Cell Motion 

There are several putative ways in which gradient sensing can feed into directed 

cell motion.  One of the simplest ways is the local accumulation of PIP3, which drives 

local recruitment of actin, and therefore motion in that direction.  This model cannot 

account for the motion of cells exposed to a uniform chemoattractant gradient unless 

positive feedback leads to polarization due to noise.  Even then, local PIP3 levels still 

drive actin polymerization.  There is recent evidence that such positive feedback 

loops may exist, which could support this type of excitation and motion model [75]. 

An alternative model that has recently been gaining recognition is that of a 

biased excitable actin network [76, 77].  In this model, the actin in a cell is an 

excitable system that can be driven quickly to polymerization by a signal, which is 

self-driving until a large fraction of the cell’s actin is polymerized.  In this case, there 

must also be a depolymerization step, either self-driven or regulated by another 

molecule, in order to reset the system.  PIP3 levels in this model would be used as the 

initiating signal and its levels would then be relatively irrelevant (as long as the 

initiation threshold was crossed).  If the polymerization signal takes a finite time to 

travel through the cell, subsequent polymerization events would be biased toward 

starting at locations of previous initiation events (as depolymerization would occur at 

the initiation sites first).  Thus, a cell receiving a signal to polymerize from all 

directions would pick a direction randomly at first, but the excitable actin network 
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would then self-enforce persistence in that direction even though the gradient-sensing 

ability of the cell is quiescent.  This is termed the ‘Pseudopod Centric’ model of cell 

motility [77].   

   Compelling evidence for this type of model is emerging.  Spreading 

Dictyostelium cells display actin ‘waves’ in which polymerization of actin begins at a 

particular point of cell-surface contact and propagates throughout the cell on the 

timescale of 5 minutes [76, 78].  In addition, experiments have shown that two stable 

pools of actin exist in cells: non-polymerized and polymerized.  Both types of actin 

are stable, and some of the gradient-sensing molecules are able to drive the transition 

from one stable type to another [79].  Finally, quantification of time-lapse images of 

cell motion [74] indicate that cells display ‘curvature waves,’ which could be actin 

waves pushing against the cell membrane.   

 

1.4.3. Quantification of Cell Motion  

The vast majority of previous studies on cell motility restricted their analysis to 

center-of-mass motion, mostly due to the difficulty in quantifying large numbers of 

cell boundaries from image data sets.  Only recently has work been undertaken that 

attempts to dissect sub-cell scale behavior (e.g., localized protrusions) using 

parameterized cell boundaries [80].   

A semi-automated cell boundary tracking method developed in the Losert Lab is 

described in [74].  By applying this method to datasets of cells moving in a uniform 

chemoattractant field, Driscoll and others find that cells form successive protrusions 

at their fronts in a zigzag type manner.  Cells cause motion through the simultaneous 
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translation of these protrusions along the side of the cell and coupling them to the 

substrate.  Finally, cells not in contact with the substrate still display these protrusions 

and subsequent translation, suggesting that the biasing of naturally occurring 

protrusive activity is the main function of gradient sensing.  This work expands our 

understanding of the mechanisms regulating cell motion, which is consistent with the 

results of Chapter 3, described below. 

 

1.5. Collective Motion of Cell Systems 

1.5.1. Collective Motion during Dictyostelium Aggregation 

Having investigated some of the physical rules followed by cells in sensing and 

responding to chemical signals, we turn our attention to understanding how these 

cells act in a complicated, collective environment.  We now explain aggregation in 

Dictyostelium discoideum to understand in more detail how the collective regulation 

of behavior can lead to remarkable results.   

In the wild, Dictyostelium discoideum cells chemotax toward bacteria by 

sensing byproducts of bacterial metabolism, such as folic acid, and then engulf the 

bacteria upon contact.  After enough material has been metabolized, the cell is able to 

divide into two identical cells and then continue the feeding process.  During this 

process, the quorum-sensing molecule Pre-Starvation Factor (PSF) is secreted, and 

cells sense its concentration in order to ‘estimate’ the cell density in the environment.  

Eventually, however, the food supply runs out, and the cells are unable to find enough 

nutrients in their environment.  In this case, Dictyostelium cells enter a developmental 
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program that will eventually result in the formation of a fruiting body composed of a 

stalk and spore [81], as shown in Figure 1.8.   

Starving cells estimate the number of nearby starving cells through secretion 

and sensing of Conditioned Media Factor (CMF), a quorum-sensing molecule that, at 

high enough concentrations, indicates that there are enough starving cells to begin the 

aggregation process [82].  Individual Dictyostelium cells change their protein 

expression levels and enter a genetic program specific to the aggregation phase.  As 

part of this process they eliminate the bacteria-sensing receptors from their surface 

and create the cAMP surface receptor cAR1 (cyclic-AMP receptor 1), as well as the 

 
Figure 1.8 – Life Cycle of Dictyostelium discoideum 

Scanning electron micrograph of the different stages of Dictyostelium discoideum 
from the initiation of starvation to 24 hours later.   
Adapted from image by M.J. Grimson & R.L. Blanton, Biological Sciences 

Electron Microscopy Laboratory, Texas Tech University at www.dictybase.org. 
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membrane-bound protein adenylyl cyclase A (ACA), which gives them the ability to 

create large amounts of cAMP.  After 4-5 hours of starvation, the cells are ready to 

aggregate.  To initiate the process, a few cells spontaneously emit a small amount of 

cAMP [83], which nearby cells sense.  These cells then, over the course of 2-3 

minutes, desensitize their cAMP receptor, move toward the source of the signal, and 

release their own cAMP in a process called ‘signal relay’.  Afterwards the cell 

receptors are resensitized, and they are ready to perform the process once again [84].    

This remarkable system results in waves of cAMP that can be transmitted over 

millimeter distances, resulting in striking patterns of migration [85].  After 

aggregation is complete, the cells continue to change their set of expressed proteins, 

and undergo morphogenesis into a series of characteristic structures.  The end result is 

a spore containing ~80% of cells atop a vacuolated stalk of the remaining ~20% of 

cells, which essentially sacrifice themselves to lift the spore up to a height of over 3 

mm.  There are between 10,000 and 100,000 cells in the final structure, and this 

number is regulated throughout the morphogenesis process via secreted quorum-

sensing factors [86, 87]. 

The portion of the life-cycle that is addressed in this thesis is the single-to-

collective transition (from 0 – 10 hours in Figure 1.8).  It is during this process that 

cells communicate and move as individuals, and so the motion of all cells can be 

tracked. 
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1.5.2. Models of Collective Motion 

The cell-to-spore life cycle of Dictyostelium has been a consistent source of 

experimental questions and computational models for two decades.  The first 

quantitative experiments focused on the initial signaling pattern in a field of 

aggregation-competent Dictyostelium cells [85], in which large-scale traveling waves 

of cAMP move through the population, eventually leading to aggregation at signaling 

centers (see Figure 1.9 A).  

During aggregation, cells move in response to the cAMP waves, causing the 

formation of patterns of head-to-tail chains of cells, called ‘streams’, that move 

toward the aggregation centers (see Figure 1.9 B).  This process has provided the 

basis for a number of mathematical models.  Initial models were continuum models of 

aggregation, in which the cell distribution was treated as a concentration field [88-

(A)     (B) 

    
 
Figure 1.9 – Aggregation patterns in Dictyostelium discoideum 

(A) Image reproduced from [85] with permission. Early aggregation signals in 
Dictyostelium discoideum produce traveling waves of cAMP, here seen through 
isotope-dilution fluorography.  Scale bar = 1 cm.  (B) Dark-field image of 
aggregating cells.  cAMP waves lead to the formation of aggregation territories, as 
well as head-to-tail chains of migrating cells (‘streams’).  Scale bar = 200 µm.  Note 
the vastly different scale on the two images.  
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90].  Next came cellular automata (CA) and cellular Potts models, which are discrete 

but do not model cells as physical objects per se [91-93], and then discrete models in 

which the cells were individual entities with collision repulsion [94-98] (see Figure 

1.10 for illustrations of the models).  As an example of a mathematical model of 

aggregation, we present below a model formulated by Palsson [96] where cells are 

physical objects, subject to physical forces .   

Every cell is subject to physical forces, and as cells exist in viscous fluid, 

acceleration is neglected.  Cell i is subject to viscous drag forces from the substrate 

and other cells as follows: 

( )
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i s i c i j
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As there is no acceleration, there must be a balance of forces on the cell.  
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The sums are over all neighbors.  pass
ijF
v

 are the elastic forces between cells i and j, 

which in this model are attractive for distances slightly greater than one cell diameter 

and repulsive for distances smaller than one cell diameter.  This force is on the order 

of tens of nN.  act
( / )i j sF
v

 is the active force of cell i on either neighboring cells j or the 

surface s.  These active forces are on the order of 50 nN, pointed in the direction up 

the cAMP gradient.  A small random noise force, of order 10 nN, is added in a 

random direction to the active force to add some stochasticity. 

The cAMP field is modeled as  

2 δ( - )i i
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c c c
D c x x

t c c

α λ
γ

β κ
∂  = ∇ − + − ∂ + + 

∑ v v
,         (1.6) 

where c is the cAMP concentration and D is the diffusion constant of cAMP (D=400 

µm2/sec).  The second term on the right hand side is degradation due to extracellular 

phosphodiesterase (which catalytically degrades cAMP).  Phosphodiesterase is 

assumed to be at constant concentration and acts with Michaelis-Menten reaction 

kinetics with constants α and β.   Finally, the last term on the right hand side 

represents the actions of cells: there is a cell-specific secretion rate iγ  as well as cell-

bound phosphodiesterase degradation, again acting with an activity depending on 

parameters λ and κ.  The sum is over all cells i.  The secretion rate iγ  itself follows 

very complex dynamics; the equations are not reproduced here but can be found in 

[102], as can values for the phosphodiesterase parameters.  The direction of the 

gradient of this cAMP field directs the active motion of the cells.  Sample output of 

the model is shown in Figure 1.10 C. 
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A 

 
 
B      C 

   
Figure 1.10- Examples of Models of Dictyostelium Aggregation     

 
Several classes of models have successfully captured the qualitatively individual 
to group dynamics of Dictyostelium aggregation. (A) Aggregating cells are 
modeled by continuum treatment of cell density.  Whiter pixels indicate greater 
cell density. Image reproduced from [99] with permission. (B) Aggregating cells 
are modeled by a Potts model.  Image reprinted from Fig. 2 from [100].  

Copyright (1999) by the American Physical Society.  Used with permission. (C) 
Cells are modeled as deformable 3-D objects.  Image reproduced from [101] with 

permission. 
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While this model captures the aggregation dynamics with more fidelity than 

earlier models, those models were still able to capture the most striking qualitative 

feature of aggregating cells: the streams.  The consensus is that streams form due to 

an inherent streaming instability that arises due to cell-cell attraction from signal relay 

[103].  Although a qualitative understanding of aggregation has been provided by the 

previously mentioned models, models attempting to predict the transition from single 

cell to slug are still being researched and have had some success [102].  In addition, 

recent experimental work has revealed that cells within streams may have additional 

coupling through F-actin polymerization waves and cAMP signaling unaccounted for 

in models [104].  Finally, it has been shown that the signal relay release may be 

localized [105, 106], a fact that no model has taken into account.  We hypothesize 

that careful selection of the metrics used to characterize the aggregation process may 

further the basic understanding of how a chemotactic signal couples to motion.  These 

measurements may show that additional considerations may be required when 

attempting to model collective Dictyostelium motion. 

 

1.5.3. Studies of Individual Behavior 

To our knowledge, no experimental work has been undertaken that performs in-

depth analysis of individual Dictyostelium motion during the transition from 

individual cell to collective aggregate [107].  Research continues on individual cell 

motion in well-defined gradients (such as those from microfluidics) [34, 108-110], 

and the characterization of cell sensitivity, as well as cell shape and the forces 

generated during motion.  These studies generally present cells with a well-defined  
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signal that is constant in time, or no signal at all.  In nature, however, the cAMP field 

is fluctuating in time [111], and the spatial dependence is heavily influenced by the 

secretion of the cells themselves.  Therefore, a study of individual cell motion during 

aggregation would be able to address several questions:  How does cell motion 

depend on the stability of the surrounding field?  What is the effect of signal relay, 

and what advantages does it bring to a cell population?  Other species of 

Dictyostelium, such as Dictyostelium minutum, thrive in nature by aggregating with 

no relay [112].  How do cells move inside of streams (computational models make 

predictions, but systematic studies have not been carried out), and does motion in 

streams enhance aggregation in some fashion?  Another question of interest is, what 

is a good metric for differentiating when relay is present or not?  Indeed, streams 

present an obvious marker in Dictyostelium, but other amoeboid cells may similarly 

enhance motion through signal relay and yet not display streams. 

In Chapter 4 experimental work is presented that addresses these questions.  We 

find that the chemotactic index (CI), a measure of direction, provides a good metric to 

determine the presence of signal relay.  We also show that cell speed and persistence 

of motion are unaffected by signal relay, suggesting that cells use gradient sensing to 

steer their inherent ability to protrude pseudopods.  Finally, we quantitatively 

establish that signal relay dramatically broadens the range of an aggregation signal, 

with the added effect of making the directional component of a signal weaker in areas 

that would be reached in the absence of relay.   
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1.6. Cell-Surface Adhesion and Migration 

1.6.1. Cell Motion Cycle Depends on Adhesion 

The collective motion of cells depends on a variety of environmental conditions.  

For example, if there is a large fluid flow during Dictyostelium aggregation, the 

chemical signal is not properly relayed and aggregation does not occur.  Additionally, 

increasing the temperature initially causes cells to stop responding to cAMP signals, 

and then die.  However, changing conditions in a controlled fashion and assessing the 

effects can lead to a greater understanding of the system.  One such condition that can 

be changed is the cell-to-surface adhesion, and we explore the implications of such a 

change below. 

The question of the effects of environmental change is salient to understanding 

cell behavior, particularly as it has been shown that many mechanical properties, such 

as topography and stiffness, can have drastic effects on cell behavior.  For instance, 

stem cells, which can differentiate into any type of cell in the body, will differentiate 

in a fashion that is dependent on the substrate elasticity: they become neurons on soft 

substrates, arterial walls on moderately stiff substrates, and bone cells on stiff 

substrates [113].  As another example, neutrophils have a biphasic dependence of 

migration speed with substrate stiffness [114].  Adhesiveness is another parameter 

that can be adjusted on surfaces, and has been shown to have implications in many 

health-related fields, such as diagnostics (so that cells do not stick to the walls of 

testing devices) and implant effectiveness (cells must be able to properly adhere to 

implants to begin a proper healing process).  In addition, adhesiveness has been 

shown to affect neuron outgrowth [115].  Therefore, a more general understanding of 
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cell-surface adhesion and the resultant behaviors can be found through a study of 

individual and collective amoeboid migration. 

The ability of cells to move on top of a two-dimensional surface is of 

fundamental importance to cell migration.  Previous studies have established that the 

characteristic cycle of amoeboid cells (such as Dictyostelium) moving on a surface 

moves the cell ~15 µm in ~1-2 min [116], and is as follows (see Figure 1.11):  1) The 

cell extends a pseudopod via the polymerization of actin and places this pseudopod 

on the substrate.  2)  The pseudopod is anchored to the substrate through the 

formation of linkages between transmembrane adhesion receptors and the surface.  3) 

The cell removes adhesions from the cell rear by some mechanism, such as 

endocytosis of the receptors.  4) The cell contracts its actin cortex through the action 

of actomyosin, causing a net forward motion of the cell body (as the front is anchored 

to the surface but the rear is not).  In this view of cell motion, it is clear that cell-

substrate adhesion plays a critical role in two steps.  Cell-substrate adhesions that are 

too strong will allow the cell to properly extend pseudopods and to anchor to the 

surface, but will not allow de-adhesion, causing the cell to remain firmly stuck in 

place.  Adhesions that are too weak will not allow proper anchors to form, so that the 

overall contractions break anchors, causing the cell to be stalled in place, unable to 

generate the traction required to move.  It is hypothesized that a surface adhesiveness 

somewhere between these two extremes allows cells to move with maximal 

efficiency [65, 66], a view that has been borne out through experiments on several 

cell types [117].  This biphasic dependence of cell speed on cell-surface adhesion is 

illustrated in Figure 1.12 A. 
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Recent work, however, has shown that for some cells, specifically those that do 

not form strong cell-surface contacts and that display amoeboid motion (such as 

Dictyostelium), this hypothesis of adhesion-dependent motion may not hold true (see 

Figure 1.12 B).  Studies have shown that dendritic cells (a type of mammalian 

immune cell) are able to compensate for low or high cell-surface adhesion through 

modulating their actin polymerization, and therefore are able to move at a constant 

speed [118].   Previous work indicated that Dictyostelium can move on surfaces of 

varying adhesiveness, although how exactly this feat is accomplished is not known 

[119].  In addition, how adhesion affects collective Dictyostelium motion is an open 

question. 

 

(A)               (B) 

     
 

(C)               (D) 

    
Figure 1.11 – Characteristic Motion Cycle of Amoeboid Cells 

Cartoon of a cell undergoing one cycle of motion, moving to the right.  The actin 
cortex is red, the nucleus is dark green, and the cell-substrate adhesions are black.  
(A) The cell pushes the front of its membrane forward using actin-based protrusion.  
(B) The new protrusion forms adhesions with the surface.  (C) The cell de-adheres its 
back from the surface. (D) The cell contracts the actin cortex, moving its body 
forward as the back is no longer adhered. 
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1.6.2. Molecular Mechanisms of Cell-Surface Adhesion 

Once again, to understand the effects of adhesion on collective motion, we must 

understand how the rules of individual cell behavior change due to changes in 

adhesion.  To this end, we review cell-to-surface adhesion mechanisms and 

molecules.  A list of adhesion molecules is given in Table 1-3.  

Many migratory mammalian cells, such as fibroblasts and epithelial cells, have 

transmembrane adhesion receptors termed integrins, that bind to specific extracellular 

surfaces, such as the extracellular matrix (ECM).  The bond can have adhesive 

strength of order 100 N/m2 [120] and often triggers a particular response in a cell, 

causing it to follow a set pattern of behavior depending on the cell type and the 

surface that has been bound.  The majority of adhesion studies focus on integrin-

based adhesion and its associated molecular complexes. 

In contrast, Dictyostelium does not use integrins to bind to surfaces [121].  The 

methods used by Dictyostelium to bind to substrates have not been entirely 

characterized, although some regulators of cell-surface adhesion are known.  Only 

one adhesion receptor (sadA) has been identified.  This receptor is active solely 

during the vegetative (non-starving) part of the life cycle [122].  Cells lacking this 

receptor do not bind well to plastic and have difficulty phagocytosing latex beads.   

The binding of Dictyostelium is termed ‘non-specific’, meaning that these cells are 

able to adhere to a variety of surfaces.  However, there is evidence that this ‘non-

specific’ binding is accomplished through several different receptors, as a genetic 

mutant was developed that retained the ability to bind to hydrophilic surfaces 



 39 
 

but not hydrophobic ones [123].   These ‘non-specific’ receptors are able to form cell-

surface adhesions with strength greater than 10 N/m2 [124].  Even among hydrophilic 

surfaces, Dictyostelium spreads differently on surfaces with different electrostatic 

charge [125], with cells generally spreading more on surfaces with a greater positive 

charge.  In addition, the mechanisms of adhesion depend on the stage of the life cycle, 

as was found for a secreted protein that inhibited cell-substrate adhesion in feeding 

cells but not starved cells [126].  Finally, sites of close cell-surface contact correlate 

with the location of clustered actin, leading to the idea that the cells form ‘actin foci’ 

at the receptors in order to adhere properly [127].  Still, the vast majority of surface 

adhesion receptors have yet to be found in Dictyostelium, leaving the mechanisms 

regulating adhesion unknown. 

 (A)         (B) 

 
Figure 1.12 – Cell speed dependence on surface adhesiveness 

(A) In the standard view, cell speed has a biphasic dependence on cell-surface 
adhesiveness: surfaces that are non-adhesive do not allow cells to gain the traction 
necessary to move, while surfaces that are too adhesive do not allow cells to 
remove themselves from the surface.  Adapted from [117]. (B) Recent work in 
amoeboid cells has shown that the view in (A) may not always hold true: for a 
large range of adhesiveness, cells are able to move with similar speed.  For other 
cell types (A) may still be the correct picture.  
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During collective motion, cells not only experience cell-surface contacts, but 

also cell-cell contacts.  As opposed to cell-surface receptors, a variety of 

Dictyostelium cell-cell adhesion receptors have been identified and characterized 

[129].  Some of these adhesions are calcium-dependent, while others are not [130].  

The proteins are differentially expressed through the life cycle [131] and can localize 

to specific parts of the cell, such as the pseudopod [132].  The regulation of these 

receptors is also dynamic and can be affected by the number of nearby cells, as 

measured by quorum-sensing factors [86].  Some receptors bind specifically to the 

same type of receptor on another cell, while others bind to a different type of 

receptor.  In addition, the purpose of some of these receptors is not always obvious: in 

one case, the only phenotype for a mutant lacking the membrane glycoprotein csA 

was that it fails to properly form spores on soil, but is able to do so on glass, plastic, 

agar, and other common experimental surfaces [133]. 

Table 1-3 – Known Dictyostelium discoideum Adhesion Molecules 

Name When Expressed 

Cell-Substrate  

sadA Vegetative (non-starving) 

sibA Entire life cycle 

  

Cell-Cell  

Dd-CAD1 Early Starvation to Slug 

gp80 Starvation to Fruiting Body 
(Spore/Stalk) 

gp150 Late Starvation to Fruiting Body 

psA Loose Aggregate to Slug 

 
This table is adapted from a recent review [128]. 
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1.6.3. Surface Adhesiveness and Dictyostelium Behavior  

Previous work on the effect of cell-surface adhesion on the behavior of 

Dictyostelium discoideum focused on the phenotypes of cytoskeletal mutations on 

individual migration and found that certain components were important in particular 

circumstances.  Wild-type cells proved capable of maintaining a consistent speed over 

a variety of surface adhesivities.  Myosin-II null mutants, which have a decreased 

ability to generate contractile forces, move much more slowly over a very adhesive 

surface than on less adhesive ones [119], suggesting that wild-type cells require 

myosin II to generate enough force to overcome large adhesions [116] and tightly 

regulate their motility cycle [134, 135].  Cells in which talin, a regulator of adhesion 

in mammalian cells, was knocked out show decreased surface adhesion but no 

motility defects [136].   Cells in which several actin cross-linking proteins were 

knocked out have lower speeds on less adhesive surfaces but no problems on more 

adhesive ones [137, 138].  Other mutants have shown various phenotypes on a variety 

of surfaces [139, 140], but the picture of how the cells regulate their adhesion is a 

murky one.  In addition, no studies have investigated the collective response of cells 

to surfaces of varying adhesivities. 

Previous studies have generated models of how speed depends on cell-substrate 

adhesion.  One essential component is how the cell-surface bonds behave under 

applied forces.  Often the bonds are modeled as elastic springs that have some 

chemical off-rate.  This type of model allows the bonds to transmit forces between the 

cell and surface, while maintaining the ability to detach if the forces get too large.  
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For instance, in one adhesion model [116], the off-rate dependence on displacement is 

modeled as  

00( ) exp s
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where ( )k x−

v
 is the off-rate for a cell-surface bond, 0k−  is the off-rate without 

stretching, sk  is the spring constant of the bond, ∆  is the characteristic potential well 

width keeping the bond from breaking (of order nm), Bk  is Boltzmann’s constant, and 

T is the absolute temperature.  These bond dynamics inform the mechanics of the cell 

body itself, the modeling of which can be quite complicated (see Figure 1.13).  Other 

models predict the biphasic dependence of speed on surface adhesiveness [141], 

which does not seem to hold true for Dictyostelium.  A recent model addressing this 

issue suggested that the forces exerted by Dictyostelium cells are far in excess of what 

is required to pull off of the surface, and a limiting factor in motion is the disassembly 

time of adhesion bridges [116].  An overall model of cell adhesion and motility for 

Dictyostelium cells has not been produced.      

The lack of basic answers to the question of how Dictyostelium discoideum 

collective behavior changes on surfaces of extreme adhesivities led to the work 

presented in Chapter 4, where individual and collective cell motion was quantified on 

different surfaces.  Initial experiments performed with an actin-depolymerizing drug 

confirmed that our surfaces had very different cell-substrate adhesion properties.  

However, individual wild-type cells showed remarkable robustness in motility, 
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migrating equally well on all surfaces tested.  We noted that cells presented with an 

interface between surfaces of different adhesivity tended to migrate on the surface 

with less adhesivity.  Finally, we allowed cells to aggregate on the surfaces and found 

a surprising result: although individual cells migrate equally on all surfaces, collective 

migration changes based on the surface adhesiveness: cells on very adhesive surfaces 

tend to prefer cell-cell contact over cell-surface contact.  This system therefore 

displayed a remarkable emergent behavior that could not be inferred from 

investigating individual cells in isolation. 

 

 
Figure 1.13 – Example Model of the Mechanics of Cell Motion and Cell-Surface Adhesion 

Example model of cell body mechanics and adhesion.  In this model, the cell body is 
treated as a one-dimensional structure composed of four compartments.  The middle 
four compartments represent the cell body and contain a spring, dashpot, and 
contractile element in parallel.  The lamellipod (cell front) and uropod (cell back) 
have springs and dashpots in parallel.  In addition, the cell-surface receptor dynamics 
are only explicitly modeled in the lamellipod and uropod regions.  This model 
predicts a biphasic dependence of cell speed on cell-substrate adhesiveness.  Figure 

reproduced from [141] with permission.   
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2. Bias in a Model of Eukaryotic Gradient Sensing 

This chapter is adapted from a publication by Skupsky, McCann, Nossal, and 

Losert [73].  Section 2.3 summarizes and explains the mathematical model that is the 

subject of our stability analysis.  This model, not part of the Dissertation research, 

was constructed by Ron Skupsky and others [35, 69] and will be referred to as ‘our 

model’.  It is placed here as understanding its development is critical to 

understanding the subsequent analyses.  The research completed as part of this 

dissertation resumes with Section 2.4.  Sections 2.4.1 – 2.4.3 are based on work 

presented in the dissertation of R. Skupsky [35]. 

 

2.1. Summary 

We apply linear-stability theory and perform perturbation studies for the 

characterization of, and for the generation of new experimental predictions from, a 

model of chemotactic gradient sensing in eukaryotic cells.  The model uses reaction-

diffusion equations to describe 3' phosphoinositide signaling and its regulation at the 

plasma membrane.  It demonstrates a range of possible gradient-sensing mechanisms 

and captures such characteristic behaviors as strong polarization in response to static 

gradients, adaptation to differing mean levels of stimulus, and plasticity in response to 

changing gradients.  An analysis of the stability of polarized steady-state solutions 

indicates that the model is most sensitive to off-axis perturbations.  This biased 

sensitivity is reflected in responses to localized external stimuli as well, and leads to a 

clear experimental prediction: a cell that is polarized in a background gradient will be 
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most sensitive to transient point-source stimuli lying within a range of angles that are 

oblique with respect to the polarization axis.  Stimuli at angles below this range will 

elicit responses whose directions overshoot the stimulus angle, while responses to 

stimuli applied at larger angles will undershoot the stimulus angle.  We argue that 

such a bias is likely to be a general feature of gradient sensing in highly motile cells, 

particularly if they are optimized to respond to small gradients.  Finally, an angular 

bias in gradient sensing might lead to preferred turn angles and zigzag motions of 

cells moving up chemotactic gradients, as has been noted under certain experimental 

conditions [142]. 

 

2.2. Introduction 

Chemotaxis, the process by which a cell moves in response to a chemical 

gradient, is essential for many biological functions, including the immune response of 

neutrophils, the growth of blood vessels, embryonic development, and the 

aggregation of the amoeboid cell Dictyostelium discoideum [143-147].   A proper 

response requires that the spatio-temporal information in a chemotactic stimulus be 

transduced into a redistribution of the cellular constituents that mediate the 

mechanical and morphological changes underlying cell movement [49, 56].  In highly 

motile cells, such gradient sensing involves adaptation to the spatial average of the 

experienced stimulus, highly polarized responses to small spatial gradients, and 

sufficient response plasticity for the cell to follow the direction of a changing gradient 

[148-151]. 
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Recent experiments in both Dictyostelium and neutrophils have indicated that 

the spatial distributions of the molecules involved in signaling by 3' phosphoinositide 

(3'PI) lipids at the plasma membrane are correlated with both leading edge protrusion 

and the development of polarity in chemotaxing cells [38, 65, 152].  Similar patterns 

of molecular localization are seen in chemotactically stimulated cells that are round 

and immobile due to pharmacological poisoning of the actin cytoskeleton [50, 52], 

suggesting that aspects of gradient sensing can be decoupled from motility.  These 

observations have motivated several mathematical models [70, 153-159], including a 

recent study in which Skupsky et al. developed a model of 3'PI-mediated gradient 

sensing that explicitly includes biochemical mechanisms at an intermediate level of 

detail [35, 69].  This model demonstrates a range of behaviors consistent with 

observations of characteristic gradient-sensing responses.    

 The complexity of chemotactic signaling poses many challenges to refined 

mathematical modeling.  Currently, the number of testable model predictions remains 

small and the available experimental data are insufficient to characterize the pathway 

fully in any given cell type and to distinguish among possible mechanisms.  

Traditional experiments might measure the steady-state responses to a static gradient 

of chemoattractant and the response in time to uniform application of the same 

chemoattractant.  Only recently are dynamic and more complex stimuli, such as 

rotating or alternating gradients, being used to probe gradient-sensing responses and 

their regulation [51, 52, 150, 156, 157].   

 Here we demonstrate the use of stability analysis and perturbation studies to 

identify types of dynamic stimuli to which a cell might be most responsive and that 
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might be best suited to probe cellular behaviors.  In particular, our results indicate that 

a polarized cell should be most sensitive to off-axis perturbations.  Such a biased 

sensitivity might be observed by measuring responses to localized stimuli applied on 

top of a background gradient, and is potentially a general feature of gradient sensing 

in highly motile cells.   

 We begin by introducing the model of eukaryotic gradient sensing by Skupsky 

et al. and linearizing its equations [35].  An analysis of responses to perturbations in 

the spatial distributions of internal variables about uniform steady-state solutions 

highlights different qualitative behaviors demonstrated by the model in different 

parameter regimes.  Our results suggest that the decay rates of normal-mode 

perturbations about uniform solutions might be measured to characterize cellular 

gradient-sensing mechanisms, and we comment on the relationship of our results to 

those found in more general Turing-like systems.  An analysis of responses to 

internal perturbations about polarized solutions indicates that the least stable modes 

are localized at an angle with respect to the polarization axis.  Motivated by this 

result, we explore the angular dependence of the responses of the model to localized 

perturbations in the external stimulus.  Our simulations of cellular responses to point 

source stimuli, applied at different angles with respect to a background linear 

gradient, demonstrate a maximal response to stimuli applied at an oblique angle with 

respect to the pre-established cellular polarization axis.  We argue that such a biased 

sensitivity is in fact a general feature of gradient sensing in highly motile cells, and 

might result naturally if the cells are optimized to detect small chemotactic gradients.  



 48 
 

Finally, we discuss how our results might relate to experimentally observed zigzag 

motions of immune cells moving up a chemotactic gradient [160].   

 

2.3. Summary of Prior Work 

2.3.1. Mathematical Model 

Efficient gradient sensing depends on a complex network of regulatory 

interactions that couple dynamics on multiple length and time scales.  In particular, 

the amplified response to a gradient involves localization of components to the up-

gradient side of the cell, while response adaptation requires components that 

effectively integrate the external stimulus over the cell surface [49, 148].  In our 

model, because of differences in characteristic diffusion times, membrane-bound 

proteins (with minute-scale diffusion times) are treated as fixed, and effectively act 

locally, while cytosolic proteins (with sub-second-scale diffusion times) are treated as 

uniformly distributed, introducing a global coupling.  However, lipid diffusion along 

the membrane (second-scale diffusion times) is explicitly calculated.  The spatial 

patterns generated by lipids in our model thus depend on their regulated production 

and degradation. 

 The geometry of our model is a 2-D circle (Figure 2.1 A), which qualitatively 

captures gradient-sensing responses observed in pharmacologically immobilized 

Dictyostelium cells.   Below we briefly describe the particular components of our 

model and their regulation.  Readers interested in a more detailed discussion are 

referred to [35, 69]. 
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(A)           

Chemotactic stimulus (external)

Plasma 

membrane

Cytosol

Diffusion
XXXX

Receptors(membrane proteins)3'PIs(membrane lipids) Regulatory molecules(cytosolic/membrane proteins)
 

(B) 

PPPPnnnn = = = = 3'PIs (signaling lipids)KKKK = PI3' Kinase (makes PPPPnnnn)TTTT = PTEN = PI 3'Phosphatatse(degrades PPPPnnnn)
KKKKmmmm
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PPPPnnnnII
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TTTTmmmm R

III

substrate
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R = = = = Stimulus (external)subscript m/c = membrane/cytosol* = phosphorylated/inactive
 

Figure 2.1 – Idealized Model of the Cell 

Adapted from [69].  A) Geometry and components of the model. The cell is treated as a 2-D 
circle.  The perimeter, marked by the normalized coordinate, X, represents the plasma membrane, 
along which 3'PI signaling lipids diffuse.  Their spatial distribution is a primary output of our 
model.  Regulatory proteins can exchange between the membrane and the cytosol, where they are 
considered to be uniformly distributed.  A pattern of activated receptors on the cell surface, 
representing the outside stimulus, is taken as the input for our simulations.  B) Variables and 
network topology.  The single variable, R, represents the outside stimulus, which drives PI3K to 
the membrane.  Positive feedback Loops I and II enhance generation of Pn (the 3’PI signaling 
lipids) through substrate delivery and enzyme regulation, respectively.  Negative Feedback Loop 
III represents PI3K phosphorylation and removal from the membrane, leading to adaptation. 
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2.3.2. System Variables 

The scaled variables of our model are indicated in Figure 2.1 B.  They 

represent molecules that are thought to be important for gradient sensing and that 

have been visualized in live cells using fluorescent labeling techniques.  Other 

significant regulatory molecules are implicitly included in feedback terms in our 

equations (see below).   

The included lipids are the 3' phosphoinositides, PI(3,4)P2 and PI(3,4,5)P3, 

which are represented by the scaled model variables P2 and P3 (scaling factors are 

given at the end of this Chapter and discussed in [69]).  These 3' phosphoinositides 

(3’PIs) are thought to act as binding sites for regulators of actin-based structures that 

generate force at the leading edge of chemotaxing cells [54, 65, 152, 161].  Their 

sum, denoted Pn, is a primary output of our model.   

Proteins included in our model are 1) the enzyme that generates 3'PIs (a PI 3' 

kinase, abbreviated as PI3K and denoted by the scaled variable K) and 2) an enzyme 

that removes them (the PTEN phosphatase, denoted by the scaled variable T).  In 

mammalian cells, phosphorylation is thought to be an important form of regulation 

for these enzymes [162, 163].  Thus, we will consider three pools of PI3K/PTEN.  

One pool, which is unphosphorylated and localized on the membrane, acts to 

generate/remove 3'PIs.  A second unphosphorylated pool, which is cytosolic and thus 

assumed to be uniformly distributed in our model, can bind to the membrane.  The 

third pool is also cytosolic and uniformly distributed, but is phosphorylated.  

Molecules in this pool require dephosphorylation in the cytosol to return to the 

membrane.  
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 A single scaled variable, R, is used to represent ligand-activated receptors and 

hetero-trimeric G-proteins at the cell surface, which together act to recruit PI3K from 

the cytosol to the membrane [54, 164, 165].  The 3'PIs, and PI3K and PTEN in 

different states, are the internal variables of our model, for which we will write 

dynamical equations.  The distribution of R along the membrane, on the other hand, is 

set externally; it acts as the input for our simulations and is varied to represent 

different patterns of chemotactic stimuli. 

 

2.3.3. Network Topology 

The topological features of the regulatory network of our model (Figure 2.1 

B) were inferred primarily from biochemical and microscopy data in Dictyostelium 

and/or neutrophils.  Where biochemical details necessary to account for noted 

observations in gradient-sensing cells are unclear, mechanisms were proposed based 

on data for related cell types.      

Loop I in Figure 2.1 B represents a positive feedback from 3'PI production to 

delivery of the substrate upon which PI3K acts to generate more 3'PIs.  This feedback 

is thought to depend on the activities of small G-proteins, whose regulators bind to 

the membrane in a 3'PI-dependent manner [161, 166, 167].  Loop II is a proposed 

feedback from 3’PIs to localization of both the molecules that generate them and 

those that degrade them.  This feedback accounts for the observation that during 

chemotactic response in Dictyostelium, PI3K translocation to the membrane parallels 

3'PI accumulation, while PTEN translocation demonstrates an inverse dynamic [152, 
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168, 169].  PI3K recruitment to the membrane in response to external stimuli (R) 

drives Loops I and II, which together act to amplify cellular responses in our model.  

Response adaptation is necessary for cells to sense chemotactic gradients over 

many orders of magnitude in the absolute concentration.  The mechanisms that 

account for this adaptation currently are unknown, but are thought to act downstream 

from receptor and G-protein activation [51, 54, 150, 170].  For our model, we have 

proposed that in response to chemotactic stimuli, PI3K that is recruited from the 

cytosol to the membrane is subsequently phosphorylated such that it no longer binds 

to the membrane (negative feedback Loop III in Figure 2.1 B).  The cytosolic pool of 

unphosphorylated PI3K that can be recruited to the membrane is thus depleted.  This 

adaptation mechanism contains a global element because it involves regulation of a 

cytosolic variable. 

 

2.3.4. Model Equations and Modular Interpretation 

Our model consists of a set of reaction-diffusion equations describing the 

dynamics of its scaled model variables.  Linear mass-action kinetics have generally 

been assumed, with more complex terms included to account for feedback regulation 

by molecules whose dynamics are not well characterized.  Integrals in our equations 

arise because we have treated the cytosol as uniform, exchanging material with the 

entire membrane simultaneously.  The spatial variable, X, is normalized to the range 

[0,1] and is periodic (Figure 2.1 A).  Here, we briefly discuss the major terms and 

parameters representing regulatory interaction in our model equations.  A more 

detailed discussion, as well as derivations, can be found in [69].   
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In what follows, the subscripts m/c denote membrane-bound/cytosolic, and '*' 

indicates phosphorylated species, which are inactive.  The parameters χ generally 

represent scaled forward rate constants, λ represent backwards rate constants, and κ 

provide saturation concentrations and/or concentrations at which a particular term 

becomes effective.  The parameters ζ designate additional constitutive processes 

beyond the scope of our model (see also the end of this Chapter).  

The following equations describe the dynamics of the lipids included in our 

model: 

( )
2

3 3 3 3 3 2
31 / /

/
PITP T

D
t X

 ∂ ∂
= χ + ζ + ζ −λ + ζ + 

∂ + κ ∂ 

3 3

m 3 m

m

P P
K P T

K

ΞΞΞΞ
,         (2.1) 

where 

1

0

 

1/ /
PITP

m c
dX

≡ + ζ
κ + κ +∫1 4 4 44 2 4 4 4 43

n

n n

Loop I

P

P P
ΞΞΞΞ              (2.1a) 

with 

3 2≡ +
n
P P P ,                (2.1b) 

and 

( )2 3 3 2 2 2/ /T T
D

t X

∂ ∂
= ζ + λ ζ −λ + ζ +

∂ ∂

2

2 2
3 2 m

P P
P P T .            (2.2) 

Equation 2.1 states that P3 is generated by the action of membrane-bound PI3K (Km ) 

on its substrate.  The factor Ξ (defined in Eq. 2.1a and derived in [35]) represents 

3’PI-mediated enhancement of substrate delivery (Loop I).  In the denominators, the 

term 3/ κ
m

K  represents a Michaelis-Menten-like saturation of P3 production at high 
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values of Km , while the terms 
1

0
/

c
dX κ∫ n

P  and /
m

κ
n
P  represent saturation at high 

values of Pn due to depletion of cytosolic and membrane-bound regulatory molecules.  

Equation 2.1 also includes degradation of P3 by PTEN on the membrane (Tm), as well 

as lateral diffusion of P3 along the membrane.  Equation 2.2 describes P2 production 

from P3 and its removal by Tm, such that P2 dynamics generally follow P3 with a 

slight lag.   

 The following equations describe the dynamics of proteins on the membrane: 

1 /
K

n K
t

∂
= λ ( − )

∂ + κ
1 4 2 43

m m

Loop II

K K
γ

P
,                (2.3) 

where 

( ) ( )1K K
≡ χ λ +/

c
γ R K ;               (2.3a) 

 

( )
T T T

t

∂
= χ −λ + ζ

∂ 14 2 43
m

c m m

Loop II

T
T T K  .             (2.4) 

In Eq. 2.3, the rate of PI3K recruitment from the cytosol to the membrane (first term) 

is proportional to the product of cytosolic PI3K (Kc) and the outside stimulus (the 

factor (R+1) includes both the effect of the outside stimulus and a constitutive 

activation term).  This product, which we label γ (see Eq. 2.3a), defines a driving 

parameter for our model (discussed further below), coupling its responses to outside 

stimuli and driving its positive feedbacks (Loops I and II, see Figure 2.1 B).  The rate 

of Km removal from the membrane by phosphorylation (second term) is decreased 

with increasing Pn, resulting in a PI3K translocation that parallels 3’PI production 

(we have postulated a regulatory molecule that binds 3'PIs, as discussed in [69]).  
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This feedback is represented by Loop II in Figure 2.1 B, and becomes effective when 

Pn is of order K
κ .  The first term in Eq. 2.4 describes PTEN translocation from the 

cytosol to the membrane (i.e., the production of Tm from Tc).  PTEN removal from 

the membrane is enhanced by a postulated Km-induced phosphorylation (second 

term), which further enhances 3’PI production and results in a Tm dynamics inverse to 

that of Km (also represented by Loop II in Figure 2.1 B and discussed further in [69]). 

The following equations describe the dynamics of cytosolic proteins in our 

model:  

1

0T T cell
dX A

t

∂
= λ −χ

∂ ∫*
/c

c c

T
T * T ,              (2.5) 

1

0

*

*

/K
K cell

K

dX A
t

∂ λ
= −λ

∂ κ + ∫c c

c

K K *
γ

K *
             (2.6) 

 ( )( )1

0 0
~ /

K cell
A dXλ γ − ∫ γ ,              (2.6a) 

with 

0
*cell K

K

A λ
γ ≡

λ
,                (2.6b) 

where 
cell

A  is the area of our two-dimensional cell, equal to 1/4π in units where the 

circumference of the cell is 1.  Equation 2.5 describes production of Tc from Tc* (i.e. 

dephosphorylation of PTEN in the cytosol, first term) and subsequent recruitment to 

the membrane (second term).  Equation 2.6 describes production of Kc from Kc* 

(PI3K dephosphorylation in the cytosol, first term) and PI3K recruitment to the entire 

membrane (second term).  In what follows, parameters are set such that the reaction 
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that dephosphorylates PI3K in the cytosol is saturated and the approximation in Eq. 

2.6a is valid.  

 Our system is closed by the following two equations, which fix the total 

amount of PI3K and PTEN in the cell (scaled to 1). 

1

0
1

cell cell
A A dX= + + ∫*

c c m
K K K                (2.7) 

1

0
1

cell cell
A A dX= + ∫c c m

T T * + T                (2.8) 

Equations 2.1 – 2.5 effectively describe an amplification module in our model, 

coupled to outside stimuli and driven by the product, γ (see Eq. 2.3a).  Equation 2.6 

describes response adaptation and yields an equation for the dynamics of γ at constant 

R via multiplication by ( )( )1/
K K

χ λ +R .  The approximation of Eq. 2.6a thus implies 

that the average value of the driving parameter over the membrane (
1

0
dX∫ γ ) always 

returns to a baseline value defined by γ0 (see Eq. 2.6b). 

 

2.3.5. Response to Uniform Stimuli and Stationary Gradients 

Characteristic responses of our model are shown in Figure 2.2.  A uniform 

stimulus applied suddenly (Figure 2.2 A) is represented by a uniform increase in R, 

and hence an increase in the driving parameter, γ.  The components of the 

amplification module respond approximately in phase: PI3K is recruited to the 

membrane (Km), PTEN (Tm) is removed, and 3'PIs (Pn) are generated.  Eventually, 

Loop III-mediated phosphorylation of PI3K (see Figure 2.2 B and discussion below) 

begins to deplete the cytosolic pool of unphosphorylated PI3K (Kc) that can be 
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recruited to the membrane, such that the driving parameter is returned to its baseline, 

resting, value and the response subsides (see Eq. 2.6a).  If, however, the stimulus is 

applied in a gradient (Figure 2.2 B), the pool of cytosolic PI3K is depleted such that 

only the average value of the driving parameter returns to its resting value.  In the 

front of the cell, however, receptor activity is elevated and the value of γ remains 

above baseline.  The amplification module continues to be driven, generating a 

localized 3’PI signal.  The reverse is true at the back of the cell.  These model 

responses are in qualitative agreement with experimental observations of 

fluorescently labeled Dictyostelium cells responding to chemotactic stimuli. 

 

2.3.6. Choice of Parameters: Representative Case 

Many details of the mechanisms involved in gradient sensing remain to be 

elucidated and, even where molecular pathways are known, most of the relevant 

biochemical parameters have not been directly quantified in cellular contexts.  Thus, 

we have set the parameters of our model empirically to reproduce observations of 

characteristic gradient-sensing responses such as those that were illustrated in Figure 

2.2.  We study in particular four sets of parameters (given at the end of the Chapter), 

for which our model demonstrates qualitatively different gradient behaviors (see [35] 

for further discussion).  The results for these representative parameter sets provide an 

indication of the generality of our results. 
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(A)       

 
(B) 

 
 

Figure 2.2 - Characteristic Gradient-Sensing Responses 

A) Transient response to a uniform stimulus.  At time t = 0, the external variable, R, is 
uniformly increased, representing a uniform step stimulus.  The figure shows the 
transient, in-phase responses of the model variables, normalized by their values prior to 
the stimulus.  B) Steady-state polarized response to a gradient.  The steady-state profile 
of the model variables (again normalized by their values in the resting cell) arising in 
response to a small gradient in R that represents a spatially linear gradient in the outside 
stimulus, where the gradient lies along the X = 0/X = 1 direction (the spatial variable, 
X, is normalized and periodic).  
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2.4. Stability Analysis 

We now attempt to address the following questions: How does our model 

respond to perturbations about its steady-state solutions?  Will it relax back to the 

previous state or move to a new one?  Will some perturbation shapes dominate 

responses?  To what patterns of stimuli is a gradient-sensing cell likely to be most 

sensitive?  To answer these questions, we now perform a linear-stability and 

perturbation analysis.   

 

2.4.1. Linearized Equations 

We begin by considering internal perturbations in our six model variables, 

whose dynamics are described by Eqs. 2.1 – 2.6.  For our analysis here, we collect 

these variables in a vector, ( )
v
U X,t , which is the sum of a steady-state solution 

( ( )
v
0

U X ) and a perturbation about that solution ( ( )δ
v
U X,t ), i.e., 

( ) ( ) ( )= + δ
v v v

0
U X,t U X U X,t .             (2.9) 

Note that for cytosolic variables, which are assumed to be spatially uniform, the 

spatial dependence is trivial.  In order to collect same-order terms in our 

perturbations, and in anticipation of a ‘normal-mode’ analysis to follow, we write our 

perturbations in the form  

( ) ( ) ( )exp jtδ = ε σ
vv
j

U X,t A X              (2.10) 

where ε  is small and the index, j, specifies a normal-mode solution with growth rate, 

j
σ , and spatially dependent amplitude, ( )

v
jA X .  Solutions of this form are inserted 

into Eqs. 2.1 – 2.6, which are expanded in orders of ε , and only lowest order terms in 
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ε  are retained.  The resulting system of linearized equations represents an eigenvalue 

problem, and can be written in the form 

j
s Á

tv v
j j

A = A .              (2.11) 

Here, Á
t
 is a linear operator, and we must solve for the growth rates, 

j
σ , and the 

normal-mode perturbations, ( )
v
jA X .  In terms of our model variables, we find the 

following system of equations: 

( ) ( )

( ) ( )( )

3
3 32

3 3

3 2 3 3 2 2

1 1

     

/

/

ˆ ˆˆ
/ /

ˆ
ˆ ˆ ˆ

j PITP

T
D

χ  σ = + χ + ζ  + κ + κ 

∂
− λ + λ −λ + λ −λ + ζ +

∂

m
n, j m, j

m m

2

n, j

3 2 m, j m n, j m m 2, j 2

K
P K

K K

P
P P T T P T T P

X

ΞΞΞΞ
ΞΞΞΞ

   (2.12)   
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and Ξ was defined in Eq. 2.1a; 
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Equations 2.12 – 2.17 are the linearized counterparts of our six model equation 

(Eqs. 2.1 – 2.6).  Here, we have eliminated the variable P3 in favor of Pn via Eq. 2.1b 

(see Eq. 2.12), and we have written Kc in terms of the driving parameter, γ, via Eq. 

2.6a (see Eq. 2.17).  In the above, model variables with a '^' represent the components 

of our normal-mode perturbations, while variables without a '^' represent the steady-

state profiles about which we perturb.  Both can be spatially dependent; we will find 

in the next subsection that the system is greatly simplified if we consider 

perturbations about uniform solutions.  It must be emphasized that the stability 

analyses here are performed with respect to the internal distribution of the model 

variables, and the external signal, represented by R, is assumed to be fixed. 

 

2.4.2. Stability of Uniform Solutions 

Studying the linearized response of our system to internal perturbations about 

uniform steady-state solutions highlights some of qualitative gradient-sensing 

possibilities demonstrated by our model.  At the end of this subsection, we will 

discuss how the linear stability properties of our equation set might be related to more 

general models of Turing-type systems, and how they might be studied 

experimentally. 

 Consider the case in which the unperturbed profile is a uniform steady-state 

solution, for which a harmonic spatial dependence of the perturbations can be 

assumed:  

( ) ( )2exp i jX= π
j j

A X a
v v

.            (2.18) 
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Here, 
j
a
v
 is a constant vector of perturbation components, ‘i’ is the imaginary unit, 

and the “wave number” ‘j’ must be an integer so that ( ) ( )=j jA 0 A 1
v v

.  Under these 

conditions, Eqs. 2.12 – 2.17 become greatly simplified, such that the linear operator 

Á
t
 in Eq. 2.11 can now be written as a 6 6×  matrix for each j, and its action on 

( )
jA X
v

 in Eq. 2.11 amounts to matrix multiplication.  The matrix, which we now 

denote as
j

ℑ
t
,is initialized using uniform steady-state solutions to Eqs. 2.1- 2.6.   

Normal modes are calculated using SciPy [171], an open-source scientific toolkit for 

the Python programming language (www.python.org). 

 For each j, we expect to find 6 eigenvalues and eigenvectors, corresponding to 

6 growth rates and normal modes.  The mode with the largest growth rate determines 

the stability of our solutions, and this mode is likely to dominate responses to the 

most general perturbations.  In what follows we only discuss this mode for each j 

(i.e., we do not include an extra index to enumerate the six solutions at each j), and 

we will refer to it as the ‘least stable’ mode for that j.  If the growth rate for this mode 

is negative, then we can conclude that the system is stable to all perturbations of that 

wavelength.  On the other hand, if the calculated growth rate is found to be positive, 

then perturbations of that form will grow and the system is unstable to those 

perturbations.   

 In Figure 2.3 we plot growth rates of the least-stable normal-mode 

perturbations over a range of j.  Results are shown for the four representative sets of 

model parameters (labeled as Cases 1 – 4) that were discussed above and 

characterized in previous work [69].  We note here several general features of our 
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results, as well as several features that highlight the characteristic differences among 

the analyzed Cases.  

Amplification and adaptation become decoupled in our normal-mode analysis 

(as can be seen from the form of Eq. 17).  In particular, the calculated least-stable 

modes are composed primarily of perturbations in the components of the 

amplification module, with ~0γ̂  (data not shown).  Further, for these least-stable 

normal modes, the membrane-bound components of the amplification module are 

always found to be approximately in phase, reinforcing each other as they do in 

response to external stimuli (see Figure 2.2).  That is, , , and ˆ ˆ ˆ
n, j 2, j m, j
P P K  all have the 

same sign, while ˆ
m, j
T  has the opposite sign.  If any of these variables are held fixed, 

such that the corresponding perturbation component is set to 0, the calculated growth 

rates are always reduced (not shown).   

We see in Figure 2.3 that 0σ  is always negative.  Thus, the uniform system is 

always stable to uniform perturbations.  More specifically, this is a requirement for 

the system to demonstrate a transient response followed by adaptation to all uniform 

stimuli (parameter values were always chosen such that this condition holds).  On the 

other hand, 1 0σ > σ  is possible because in our linearized equations integrals of 

perturbation components, which generally account for cytosolic depletion, vanish for 

0j ≠ .  Conceptually, cytosolic depletion saturates the activity of positive feedback 

loops in response to uniform perturbations ( )0j = , while in response to non-uniform 

perturbations ( )0j ≠  this depletion is avoided by a redistribution of molecules on the 

membrane.  Thus, we see in Figure 2.3 that 1 0σ > σ  only for Cases 2 and 4.  These 
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Cases were designed to illustrate conditions under which depletion of translocating 

molecules from the cytosol saturates uniform responses, but redistribution of these 

molecules on the membrane effectively amplifies non-uniform responses.  

Further, 1 0σ >  is possible, as is demonstrated by Case 4 in Figure 2.3.  This means 

that the uniform state is unstable to small perturbations that induce polarization (i.e., 

those with j = 1).  Case 4 includes both strong, coupled, positive feedbacks and 

amplification of non-uniform responses by redistribution of translocating molecules; 

in previous work we had characterized this Case as demonstrating a finite polarization 

in response to infinitesimal applied gradients in the external stimulus [69].  A model 

in this regime might relate to the spontaneous polarization in response to uniform 

stimuli that is demonstrated by some motile cells (this is referred to as chemokinesis, 

and requires cytoskeletal dynamics for full explanation).  Finally, 
i j

σ < σ  for  

1i j> ≥ , as is demonstrated by all four Cases in Figure 2.3.  These relations means 

that higher spatial modes, which are subject to greater dissipation from diffusion, 

decay more quickly.  Thus, 1 0σ <  means 0
j

σ <  for all j, and we can infer from 

Figure 2.3 that the uniform state is stable to all perturbations for Cases 1 – 3.   

 We place our analysis in the more general context of pattern forming systems 

by noting that Case 4 demonstrates a Turing-type instability [172-174].  Indeed, 

gradient sensing responses in our model depend on a competition between activator 

molecules that drive the response at the leading edge of the cell (i.e. P3, P2, Km, and 

Tm, which are the membrane-bound components of our model), and those whose 

depletion inhibits that response (i.e. Kc and Tc, as well as other cytosolic components 

that are implicitly included in feedback terms, see [35]).  Differences among the 
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diffusion coefficients of these components make instability possible.  While Cases 1-

3 are stable, they are nevertheless defined near bifurcations where instability begins 

to occur; we generally found gradient sensing to be most efficient in regions of 

parameter space near such bifurcations (the dependence of model response on 

variations of key model parameters is analyzed in [35], though stability is not directly 

addressed there).  For combinations of parameters that do lead to instability in our 

model, single peaked patterns are always favored (i.e. j = 1, see Figure 2.3). 

If finite diffusion coefficients were to be considered for cytosolic components 

in our model (recall that we had considered cytosolic diffusion to occur 

instantaneously), a Turing instability could generate multi-peaked patterns on a 

 
Figure 2.3 - Stability of Uniform Steady-State Solutions  

 

Growth rates, σj, are plotted for least-stable perturbations with spatial wave numbers 
indicated by the index, j, about uniform steady-state solutions.  The system is stable 
towards perturbations with negative growth rate, but unstable when σj is positive.  
The grey scale cartoons indicate the shape of the first few spatial modes around the 
membrane.  The four Cases analyzed represent the qualitatively different response-
amplification mechanisms that had been analyzed with the model.   
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length-scale determined by the decay length of the inhibitory effects of the cytosolic 

depletion near regions of membrane activation.  However, robust multi-peaked 

patterns in our model also require either a decrease in the membrane lipid diffusion 

coefficient or consideration of a larger cell (see [175] for a discussion of Turing 

patterns in cellular geometries).  While simpler Turing-type systems (e.g. those 

involving only two components) have been well characterized mathematically and 

find application in diverse areas of study [172, 175, 176], our model does not map 

directly onto these. 

 In real cells, the values of 0σ  and 1σ  perhaps could be directly measured in 

response to internal perturbations generated by experimental techniques such as 

photo-uncaging.  Alternately, thermal fluctuations, or fluctuations due to interactions 

with other cellular components not included in the model, can act as internal 

perturbations; experimental observations of fluctuations in the concentrations of 

model components could thus be used to calculate perturbation decay rates.  Finally, 

cellular responses to small perturbations in the external stimulus could act to generate 

observable perturbations in the distributions of internal cellular components.  In what 

follows, we will continue to see that our model's responses to internal and external 

perturbations mirror one another. 

 

2.4.3. Stability of Polarized Solutions 

How does our model respond to small internal perturbations when the initial 

profile of signaling molecules is polarized, rather than uniform?  To investigate this 

question, we initialize our model in its uniform steady state in the absence of stimuli 
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and then externally apply a small, static, spatially linear gradient, whose effect on 

receptor activity is described by:  

( ) ( ){ }0, 0 ; 1 2 , 0( ) cos ( )t S G S X t= < = + + π >R R .        (2.19) 

Here, S measures the average receptor activity that results from the applied stimulus 

and G measures the relative difference in receptor activity between the front and 

midline of the cell.  In what follows, we consider G = 0.05 and S = 2, conditions that 

are sufficient to elicit a highly polarized response in our model (a range of gradients 

gave the same qualitative results and the steady state is independent of S).  The 

system is evolved to steady-state via Eqs. 1-6 using FiPy, a finite volume partial 

differential equation solver (developed at the National Institute of Standards and 

Technology, Gaithersburg MD).  The resulting polarized solutions then become the 

unperturbed profiles in Eqs. 12 – 17, which must now be solved assuming a general 

spatial dependence for the calculated normal-mode perturbations.  The spatial 

variable, X, is represented by discrete values, a finite difference approximation is used 

to approximate diffusion terms, and quadrature is used to approximate integrals.  In 

this way, we once again arrive at a matrix representation for our linearized system 

and solve it by the same methods as laid out above.  Again, we focus on the features 

of the least-stable normal-mode perturbations.  

 Figure 2.4 A shows the Pn distribution for the two least-stable normal-mode 

perturbations in a representative computation.  The calculated growth rates are 

negative, indicating that the system is stable towards all perturbations about this 

polarized solution.  Further, the second normal-mode perturbation decays 
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significantly faster than the first, indicating that the least-stable mode is likely to 

dominate responses to general perturbations.  

A profile of the model components for the least-stable mode is illustrated in 

more detail in Figure 2.4 B.  We see here that the system is most sensitive to internal 

perturbations in which the model components again reinforce each other in 

approximately the same relationship that is demonstrated in response to the initially 

applied external gradient (illustrated in Figure 2.2 B), and as was found in our 

analysis of internal perturbations about uniform solutions (see discussion above).  In 

addition, we note that the peaks in the perturbation profile occur at an angle of ~60 

degrees to the direction of the initial applied gradient.   

 The above-noted features of the response to internal perturbations about 

polarized solutions were found for all Cases over a range of initial gradients (data not 

shown), suggesting that they reflect general features of gradient sensing as described 

by our model.  In particular, the off-axis peaks in the spatial profile of the least-stable 

normal-mode perturbations indicate that the gradient-sensing response of a polarized 

cell should be most sensitive to perturbations localized at approximately 60 degrees 

with respect the polarization axis.  Such a biased sensitivity, when coupled to cell 

motility, might cause a cell to turn at prescribed angles when moving up a shallow 

gradient, as has been observed for polymorphonuclear (PMN) leukocytes undergoing 

chemotaxis [142].  This bias will be discussed further below. 
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(A)      

 
(B) 

 
Figure 2.4 - Stability of Polarized Solutions   

A) Representative Pn profiles and growth rates (σ) are indicated for the two least stable internal 
perturbation shapes about the polarized steady-state solution that results from application of a 
small background gradient in receptor activity.  The least stable mode (1st mode) is peaked at 
approximately 60 degrees with respect to the background gradient and the peak in the steady-state 
profile (identical to that shown in Figure 2.2 B), indicating an enhanced sensitivity to off-axis 
perturbations.  The 2nd mode decays much more quickly than the 1st, indicating that the least 
stable mode is likely to dominate responses to internal perturbations.  Background (steady-state) 
and perturbation profiles are normalized so that their peak value is 1.  B) Pn, for the least stable 
perturbation (1st mode), shown with the other model variables.  Each variable is scaled by its 
value in the resting cell and then the entire mode profile is scaled so that the peak Pn value is 1.  
Plotted results pertain to Case 4, but qualitatively similar results were found for all four Cases, 
over a range of background gradients.  
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2.4.4. Responses to Point Source Stimuli 

How does our analysis of cellular responses to internal perturbations about steady-

state solutions inform us about responses to external stimuli, which might be more 

easily measured experimentally?  Does the enhanced sensitivity to off-axis internal 

perturbations that was demonstrated for the linearized behavior of our model in the 

previous subsection imply an enhanced sensitivity to off-axis external stimuli when 

the full non-linear response is considered?  We might expect this to be the case 

because an external stimulus acts to perturb the internal variables for our model, and 

responses to internal perturbations mirror responses to external stimuli, as was noted 

in the previous two subsections. 

 To investigate the responsiveness of polarized cells to localized external 

perturbations, that is, to perturbations in the external stimulus, we simulate responses 

to a 'spike' of chemoattractant, as illustrated in Figure 2.5 A.  A shallow background 

gradient is applied to initialize the system in a polarized steady-state solution, as 

above.  A point-source stimulus, assumed to be a delta function in both space and 

time, is then released at a point outside of the cell and allowed to diffuse freely.  

Assuming a linear relationship between chemoattractant concentration at the cell 

surface and receptor activation in our model, the resulting 'perturbation' in R can be 

written as: 

( ) ( )2
4A t r r Dt′∆ = − −/ exp /

v v
R             (2.20) 

where r
v
 specifies a point on the cell surface (in 2 dimensions) and A specifies the 

'strength' of the point source, released at 0t = , at position r′v (assumed to be in the 

plane of the cell and measured from its center).  The diffusion coefficient, D, was 
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fixed at 300 µm2/sec, a value appropriate to a small-molecule chemoattractant such as 

cAMP (to which Dictyostelium responds).  A point source stimulus of this type might 

approximate a bursting vesicle releasing its contents, which has been proposed as a 

method for cell-cell signaling in Dictyostelium [106].     

We considered a range of A, sufficient to cause a peak increase in Pn by 1% to 

150% of the background profile maximum.  The position of the point source was 

varied from the cell surface to 15 cell lengths from its center (our model cell can be 

considered to have a diameter of order 8 µm), and its direction, labeled ϕ  (see Figure 

2.5 A), was varied from 0 to 180 degrees with respect to the direction of the 

background gradient.  For each location, the full response of our model was simulated 

via Eqs. 2.1 – 2.6, again using FiPy, and a time-course was recorded. 

 In our simulations, the maximum stimulus from the 'spike' reaches the cell and 

is significantly dissipated within a few seconds.  The cellular response is generally 

maximal after approximately 5 – 10 s and decays after approximately 20 -30 s until 

the initial steady state is reestablished.  A sample profile is shown in Figure 2.5 B for 

the time point at which the response is maximal.  The point source here is described 

by 5r′ =
v

 cell lengths, ϕ  = 36 degrees, and A eliciting approximately a 25% maximal 

increase in Pn over the background profile.  The variable representing the cellular 

response in the plot, ∆Pn, is the change in Pn from the background profile that is 

caused by adding the point source over the background gradient.  In this instance, the 

peak in ∆Pn occurs at an angle, θmax ~ 58°, which is greater than the source angle, ϕ ; 

i.e., the cell response overshoots the angle of the external stimulus.  The complete 

time-course of ∆Pn at angle θmax, at ϕ , and at two representative off-peak angles, is 
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shown in Figure 2.6 for this simulation; the magnitude of the peak response increases 

with increasing strength of the point source, as shown in the inset.  We see that large 

perturbation responses are possible (a model including cytoskeletal dynamics would 

be necessary to identify that magnitude of perturbation that would have a significant 

effect on the path of a moving cell).  Other qualitative features of the response, such 

as its shape and the position of the maximum in ∆Pn, were found to be similar over a 

range of point-source distances ( r′
v
) and strengths (A) for all four Cases (results not 

shown).  

To investigate any possible angular bias in our model's responses to the above 

'spike' stimuli, we systematically varied the point-source angle, ϕ , keeping the point-

source distance and strength fixed as in Figure 2.5 B.  Figure 2.7 records the 

magnitude and direction of the maximal response from the time-courses for each 

simulation as a function of the point-source angle.  We see in Figure 2.7 A that all 

four Cases respond maximally to stimuli released at angles between approximately 40 

and 80 degrees with respect to the background gradient.  Figure 2.7 B indicates that 

when the source angle, ϕ , is below this range, the maximum response of the cell 

occurs at an angle θ  that is greater than ϕ , i.e. the response overshoots the direction 

of the stimulus perturbation.  On the other hand, for largerϕ  the angle of the 

maximum response is less than ϕ , i.e. the response now undershoots the angle of the 

applied stimulus.  Again, the qualitative features of these results were not found to 

depend on the distance or strength of the point source.  As shown in Figure 2.8 and 
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(A)       

 
(B) 

 
 
Figure 2.5 – Point Source Simulations 

A) Simulation geometry.  The cell is first allowed to equilibrate to a small external linear 
gradient, as in Figure 2.4.  A point source in space and time is then released at an angle, 
φ, with respect to the background gradient, and the response in time is recorded.  θmax 
measures the direction of the peak response on the membrane.  B) Time response.  The 
spatial profile at the time of maximal response to a point source released at φ = 36 
degrees, is plotted.  ∆∆∆∆Pn indicates the difference between the instantaneous Pn 
distribution ('Total Pn') and the steady-state profile ('Background Pn').  Notice that the 
peak in ∆∆∆∆Pn, θmax, is at an angle greater than 36 degrees, i.e. the response overshoots.  
Qualitatively similar results were found for all four Cases, over a wide range of 
background gradients and point source parameters (results for Case 4 are plotted).    
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Figure 2.9, these features are accentuated when the response is integrated over time; 

quantifying responses in this way is likely to yield clearer results in experimental 

investigations of the biased-sensitivity in gradient-sensing response that we are 

suggesting.  

The analysis here indicates that our model is most sensitive to external 

perturbations that are localized at an oblique angle, in the range typically between 40 

and 80 degrees, relative to a pre-established polarization axis.  The overshooting and 

undershooting of the response to the stimulus source angle that was observed in our 

 
Figure 2.6 – Time Course of Point Source Response 
Time progression of four membrane points for the conditions shown in Figure 2.5 B.  
Here, ∆ ∆ ∆ ∆Pn is normalized by the peak value of the 'Background Pn' curve in B.  Inset:  
Logarithmic plot of maximum relative ∆∆∆∆Pn vs point source strength.  The response 
levels off as the source strength increases.  The dashed line indicates the strength used 
in all simulations.  Qualitatively similar results were found for all four Cases, over a 
wide range of background gradients and point source parameters (results for Case 4 are 
plotted). 
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simulations reflects the fact that responses are most easily generated in this angular 

range even when the stimulus is localized outside of this range.   These results are 

consistent with our finding in the previous subsection that the polarized state of the 

cell is most sensitive to internal perturbations that are peaked at approximately 60 

degrees with respect to the polarization axis.  Notably, both analyses demonstrate a 

similar biased sensitivity for all four representative Cases, suggesting that this bias 

should be a general feature of eukaryotic gradient sensing.   

Why should a biased sensitivity be a general feature of gradient sensing in 

highly motile cells?  For the parameters investigated in our model, the parameters that 

determine the baseline state in the unstimulated cell were always chosen to maximize 

the polarized response to a small static gradient.  Thus, even a very small external 

gradient applied to a resting cell activates the positive feedback loops regulating 

responses at the front of the cell and suppresses them at the back.  In a polarized cell, 

these feedbacks are already activated at the front of the cell and might be functioning 

near saturation, while at the back of the cell their activity is already suppressed and 

requires a larger stimulus for reactivation.  At the sides of the cell, however, the state 

of the regulatory loops most resembles that in the resting, unstimulated cell, where 

responses are easily activated or suppressed in response to even very small 

perturbations.  Thus, a biased sensitivity might be the result of cellular optimization 

for responses to shallow gradients. 
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(A)       

 
(B) 

 
Figure 2.7 - Angular Bias in Responses to External Stimuli.   

 
Responses of polarized cells to point sources were simulated, as in Figure 2.5, and the 
results plotted as a function of the source angle, φ.  A) Peak value of the response 
(∆∆∆∆Pn), normalized by the peak value of Pn in the steady-state background profile.  
The strongest responses occur for point sources at angles of approximately 40 – 80 
degrees with respect to the background gradient.  B) Direction of the maximal 
response, θmax (see Figure 2.4).  The cartoon illustrates the response overshooting that 
is observed for source angles less than approximately 40 degrees (A), and 
undershooting that is generally seen for large source angles (C).  Similar results were 
found over a range of point-source parameters.    
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2.5. Meandering of Chemotactic Cells 

Our analysis addresses only the gradient sensing component of chemotactic response, 

considering the localization of 3'PIs in response to chemotactic stimuli in a circular 

geometry.  Moreover, it does not include coupling to cellular deformations and/or 

movements.  Nevertheless, if a biased sensitivity is a general feature of gradient 

sensing in highly motile cells, this bias should affect the paths cells take when they 

are free to deform and move.  Indeed, several key features of our results are 

consistent with observations of immune cells moving in responses to a chemotactic 

gradient.   

 Neutrophils and other amoeboid cells rarely move directly towards a 

chemotactic source.  Rather, their trajectories frequently resemble biased random 

walks (see, e.g., [177-179]), although stochastic elements of their movement may be 

small compared with intrinsic, internally driven, oscillatory components of  their 

motility [180]. This behavior was demonstrated quite dramatically, e.g., in a study of 

PMN leukocytes moving towards a stripe of aggregated protein (nominally γ-

globulin) that acted as a source of chemotactic molecules [160].  In this instance, the 

trajectories of the cells appeared as essentially straight-line segments, linked by 

relatively abrupt changes in orientation, as illustrated in Figure 2.10 A [142, 160].  

The cells seemed to zigzag as they moved up the gradient, having a tendency to 

overcompensate when they turned, and favoring turn angles of order 40 degrees with 

respect to the previous morphological polarization axis.  In Figure 2.10 B we show a 

scatter diagram of the magnitudes of the turn angles demonstrated experimentally by 

the PMN cells as a function of their previous direction of movement with respect to 
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the gradient.  We see that cells oriented at angles of less than approximately 40 

degrees tend to overshoot the direction of the gradient when they turn, while those 

oriented at larger angles are likely to undershoot.  These data are reminiscent of the 

angular features of the simulated 3'PI responses to point sources that were analyzed in 

Figure 2.7 B. 

To match experiment and simulation results one needs to assume that in the 

experiment the morphological polarization of the cell is aligned with the direction of 

the internal gradients in our model variables and the external chemical signal acts as a 

perturbation.  These assumptions are not unreasonable:  morphological polarization 

likely feeds back on, and acts to stabilize, the distribution of signaling molecules at 

the front of a chemotaxing cell, possibly by affecting intracellular trafficking patterns 

that deliver important regulatory molecules [181-183].  Thus, if a cell is oriented at an 

angle with respect to the external gradient, the distribution of signaling molecules will 

be stabilized on that same axis.  The extracellular applied gradient will then generate 

a perturbation in the profile of signaling molecules, whose shape will reflect the 

biased sensitivity that we have analyzed in our simulations.  To connect bias in the 

sensitivity to bias in the direction of motion, we need to speculate.  For example, if 

nucleation of new cellular protrusions depends on the change in signaling molecule 

concentration rather than its absolute value, then a protrusion directed with the same 

angular bias will be favored.  Such a protrusion might then become stabilized via the 

suggested feedback between signaling molecule localization and cytoskeletal 

rearrangements.  If the old cellular polarization axis eventually becomes destabilized, 

the new protrusion will define the polarization axis, and its direction will overshoot or 
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(A)           

  

 
(B) 

 
 

Figure 2.8 - Angular Bias in Time-Integrated Responses to External Stimuli.  

 
 Integrating the response of polarized cells to point sources over time accentuates biased 
sensitivity in responses. A) The profile of ∆∆∆∆Pn in response to a point-source stimulus 
released at ϕ  = 36°, integrated over 50 seconds.  θmax is the direction of maximal time-
integrated response in this case.  B) Peak value of the time-integrated response for each 
point source angle, φ, analogous to Figure 2.7 A.  Time integration makes the enhanced 
responses to off-axis stimuli most evident.   
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undershoot the direction of the gradient in the predicted manner.  The cell will then 

continue to move along this axis until the external gradient succeeds in nucleating 

another new extension, whose direction again will reflect a biased sensitivity, 

overshooting or undershooting appropriately and repeating the process. 

 We should note that such zigzag motion has only been observed under 

specific sets of experimental conditions.  The tie between our analysis and such 

movement is quite speculative, and other explanations are possible.  For example, the 

geometry of the dendritic actin cytoskeleton at the leading edge of a cell [184, 185] 

might lead to preferred angles for the generation of a new lamellipodium.  In addition, 

longer time-scale local inhibition of the cellular signaling apparatus might result in a 

 
Figure 2.9 – Direction of Time-Integrated Maximal Response 

Direction of the maximal response, θmax.  Notice that the response 
overshooting/undershooting sources at small/large is seen more clearly here that it 
was in Figure 2.7 B, where the response was not integrated.  Similar results were 
found over a range of point-source parameters. 
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desensitization of the transduction apparatus at the leading edge of the cell after a 

characteristic time.  Such change in sensitivity may generate a new leading edge in 

regions adjacent to the old one [178, 186]. 

 

2.6. Summary and Discussion 

Eukaryotic gradient sensing is a complex cellular process.  Although the general 

features of the signaling pathways that are involved are known and many of the 

relevant signaling molecules have been identified, there is still much left for 

discovery.  Thus, a range of qualitative mechanisms that account for characteristic 

behaviors have been proposed.  Novel approaches from multiple disciplines are 

needed to identify those features of gradient sensing that are general, and to design 

experiments that might distinguish between possible mechanisms.  

 Here we have analyzed a model that describes the dynamics of 3' 

phosphoinositide signaling in eukaryotic gradient sensing.  This model is derived 

from proposed biochemical mechanisms and illustrates a range of possible signal 

amplification mechanisms.  Linear-stability analysis and perturbation studies allow us 

to characterize responses in a very general way, and to identify patterns of stimulus to 

which a gradient-sensing cell is likely to be most sensitive.  Studying model 

behaviors for several representative combinations of parameters allows us to start to 

investigate the generality of our results. 

 An analysis of the stability of uniform steady-state solutions indicates that the 

least stable internal perturbations are those for which the components linked to signal 
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amplification reinforce each other.  We found that we could characterize model 

responses to such perturbations based on the signs and relative values of rate 

constants for uniform and first-mode polarizing perturbations (which we labeled as j 

= 0 and j = 1, respectively).  We have shown qualitative possibilities that reflect 

differences in the signal-amplification mechanisms that result from considering the 

model in different parameter regimes, and we have discussed how the stability 

properties of our model relate to more general Turing-type systems.  Differences in 

signal-amplification mechanisms lead to differences in responses to complex stimuli, 

A     B 

 

Figure 2.10 - PMN Leukocytes Moving in a Chemoattractant Gradient.   

 
A) Idealized representation of cell tracks, showing the angle through which a cell turns 
after moving on a track directed at an oblique angle with respect the gradient prior to the 
turn.  B)  Absolute values of the turn angles, ψ, vs. directions of movement prior to a 
turn, ω  (see [142]).  The solid line indicates the turn angle that would have reoriented the 
cells exactly towards the source.  Note that a curve of the average value of ψ if plotted as 
a function of ω, would have the qualitative features of the curves shown in Figure 2.7 B 
and Figure 2.8 C. 
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such as rotating gradients, and may affect patterns of cellular movement in natural 

settings in which stimuli vary in space and time (this topic is discussed further in our 

earlier work [69]).  While it may be possible to characterize real cells by directly 

measuring growth or decay rates of internal perturbations, we have noted that it might 

be more productive to analyze cellular responses to external stimuli, which are more 

easily controlled. 

 Application of our stability analysis to polarized steady-state solutions 

indicates that these solutions are most sensitive to internal perturbations localized at 

an oblique angle of order 60 degrees with respect to the polarization axis.  Here too 

the relationships among model constituents mirror those found when cells respond to 

external gradients.  These results led us to investigate whether an angular bias exists 

in cellular responses to external stimuli as well.  Indeed, a similar biased sensitivity 

was found in our simulations of polarized cell responses to 'spike' stimuli released at 

different angles with respect to a steady background gradient.  [69] 

 Our analysis thus leads to the clear experimental prediction that the gradient-

sensing response of a polarized cell should be most responsive to point source stimuli 

released at an angle of order 40 – 80 degrees with respect to a background polarizing 

gradient.  For source angles below this range the direction of the response maximum 

overshoots the source angle, while for larger source angles it undershoots; in our 

simulations, we have found this effect to be accentuated if the response on the 

membrane is integrated over time.  Further, we have argued that this biased 

sensitivity may be a general feature of gradient sensing in highly-motile cells, if 

developmental conditions exist that optimize their responses to small gradients. 
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 Recently, Samadani et al. published experimental results using a configuration 

similar to one that might be used to investigate our model predictions, in which 

photo-uncaging is used to stimulate rounded Dictyostelium cells with localized point-

source stimuli [187].  The results of this study indicate a different kind of biased 

sensitivity than the one that we have investigated.  That is, the data suggest that 

rounded unstimulated cells retain an intrinsic polarization axis along which their 

angular response to weak stimuli is biased.  The analysis suggests that this internal 

polarization can be included in an ‘effective’ stimulus that is a combination of the 

externally imposed chemotactic gradient and the intrinsic internally generated 

polarity of the cell.  Because our perturbation analysis considers a steady-state 

polarization, without direct reference to whether that steady state is internally or 

externally generated, the possible presence of an internal polarization does not 

necessarily affect our predictions. 

 The analysis presented here only considered the gradient sensing component 

of chemotactic response under isolated conditions – it does not include any coupling 

to cellular deformation, cytoskeletal dynamics, and cell-cell or cell-self signaling.  

However, if a biased sensitivity is a general feature of the gradient-sensing apparatus, 

we expect it to be observable in the full chemotactic response, including motility, 

under more natural conditions.  We have discussed how our results might account for 

the observed zigzag movements of immune cells moving up a chemotactic gradient, 

but have also noted several other factors that might account for such movements.  

These effects should also be observable in other cell types and under other 

experimental conditions.  Further experiments and computational modeling will be 
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necessary to better understand how the various features of gradient sensing 

mechanisms are expressed in the full chemotactic responses of motile cells. 

 

2.7. Appendix – Model Parameters 

Our scaled model parameters were generally set to reproduce characteristic 

gradient sensing responses.  Experimental observations that were considered are 

discussed in [35].  Table 2-1 summarizes the meaning of each model parameter and 

its value.  Those parameters for which a range is indicated differ among the model 

variants.  Table 2-2  lists the combinations of parameters that were adjusted to define 

the model variants.  These combinations, together with the conditions Kc = Tc = 0.5 in 

the unstimulated cell, are sufficient to specify the parameters in Table 2-1 in which a 

range is given.  Table 2-3 gives the uniform steady-state for an unstimulated cell, 

which is always unique. 
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Table 2-1 – Model Parameters Table A.1.  Model parameters 
Parameter Equation Interpretation Value 

3χ  Rate constant for Loop I regulated P3 production  120.0 

mκ  Pn which begins to saturate Loop I by depleting membrane 
molecules. 

1.18 – 5.0 

cκ  Pn which begins to saturate Loop I by depleting cytosolic 
molecules. 

1.25 – 6.7 

PITPζ  Rate of g-P independent P3 production/rate constant for gP 
dependent production. 

0.025 

3κ  Km at which PI3K binding to PITP·PI(4,5)P2 becomes 
saturated.        

0.05 

3 PITPζ /  Rate of PITP independent P3 production/rate constant for 
PITP dependent production.  

0.025 

3ζ  Rate of unregulated P3 production.  0.3 

3λ  Rate constant for P3 removal by Tm. 15.0 

3 Tζ /  

1 

Rate of P3 conversion to P2/rate constant for Tm-mediated 
removal.

   
 

0.13 

2ζ  Rate of unregulated production of P2.  
 0.02 

2λ  Rate constant for Tm-mediated removal of P2. 8.0 

2 Tζ /  

2 

Rate of unregulated removal of P2/rate constant for Tm-
mediated removal.

   
 

0.05 

Kχ  Rate constant for unregulated Kc translocation to the 
membrane. 

0.0049 –  
0.0076 

R      Ligand-induced, receptor-mediated activation, which drives 
translocation of Kc. 

external 

Kλ  Rate constant for Km phosphorylation and removal from the 
membrane. 

0.73 – 4.2 

Kκ  

3 

Pn at which 3'PI inhibition of Km return to the cytosol (Loop 
II) becomes effective. 

0.95 – 5.5 

Tχ  Rate constant for Tc translocation to the membrane. 0.019 

Tλ  Rate constant for Tm phosphorylation by Km. 30.0 

Tζ  

4 

Rate of unregulated Tm return to cytosol/rate constant for Tm 
phosphorylation by Km. 

0.002 

Tλ *  5 Rate constant for Tc* dephosphorylation in the cytosol. 0.15 – 0.21 

Kλ *  Rate constant for Kc* dephosphorylation in the cytosol. 0.34 – 0.58 

Kκ *  

6 

Kc* for which the reaction that dephosphorylates PI3K begins 
to saturate. 

0.013 

D 1,2 Coefficient of lipid diffusion in units where the circumference 0.003  
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Table 2-2 – Parameters which Define the Model Variants 

 
 
Table 2-3 – Steady-State, Uniform Profile for Each Variant at Zero Stimulus 

 
 

 

Parameter Case 1 Case 2 Case 3 Case 4 
κK 1.3 5.5 0.95 4.0 

κc 6.7 1.38 5.0 1.25 
γ0 0.014 0.037 0.011 0.028 

Variable Case 1 Case 2 Case 3 Case 4 
P3 0.38 1.16 0.19 0.85 
P2 0.60 2.82 0.25 1.78 
Pn (=P3+P2) 0.98 4.0 0.44 2.63 
Km 0.025 0.064 0.016 0.046 
Tm 0.1 0.054 0.15 0.071 
AcellKc* 0.50 0.50 0.50 0.50 
AcellTc* 0.50 0.50 0.50 0.50 
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3. Cell Speed, Persistence, and Information Transmission 

During Collective Migration 

This chapter is adapted from McCann, Kriebel, Parent, and Losert [188]. 

3.1. Summary 

Collective migration is a key feature of the social amoeba Dictyostelium 

discoideum, which uses secreted chemicals to communicate directional signals within 

a population.  Understanding the collective dynamics of these cells requires 

knowledge of the rules of individual cell behavior as well as the interaction laws 

between cells.  A key to such understanding is determining appropriate metrics with 

which to quantify experimentally observed behavior.  In this chapter, we describe 

experimental work and subsequent analysis performed on two types of motile cells: 

one type is able to communicate via chemical signals, and the other cannot.  We find 

that active chemical communication does not alter a cell’s basic motion: cells move 

with the same speed and directional persistence with or without neighbor-to-neighbor 

communication.  We find, however, that measurements of the chemotactic index (CI), 

a metric of directionality, indicate that population signaling directs cells to an 

aggregation center over large ranges independent of the original directional signal 

strength.      

Collective motion in Dictyostelium results in structures called ‘streams’, which 

are head-to-tail chains of cells migrating in a common direction.  To determine the 

motion of cells inside these dynamic structures, we experimentally label a fraction of 

cells with a fluorescent label and watch their motion inside and outside streams.  We 



 89 
 

find that being part of a stream does not alter the speed or persistence of a cell.  These 

observations suggest a model of cell motion where the cell is intrinsically motile, with 

a predetermined speed and persistence, and outside factors guide cells but otherwise 

leave their basic motion unchanged.  Signal relay via chemical signals therefore 

provides guidance cues necessary for gathering a large number of cells together. 

 

3.2. Introduction 

The ability of cells to migrate directionally in the presence of gradients of 

chemoattractants, referred to as chemotaxis, is a fundamental physiological response 

regulating a wide variety of biological processes [33]. In fast-moving cells such as 

neutrophils and Dictyostelium discoideum, chemotaxis is mediated by the binding of 

chemoattractants to specific G protein-coupled receptors (GPCRs), which transduce 

the chemotactic information to multiple effectors. This transduction eventually leads 

to the anterior enrichment of F-actin for pseudopod extension and the posterior/side 

accumulation of myosin II for back retraction [60, 64, 189]. Interestingly, many types 

of cells amplify chemotactic signals by synthesizing and secreting additional 

attractants upon stimulation, a process called signal relay [190, 191]. By relaying 

signals to neighboring cells, large numbers of cells can communicate and collectively 

migrate – a process that is emerging as a potentially important mode of transport in 

morphogenesis and cancer [15]. 

Dictyostelium provides an ideal model system for studying signal relay and 

collective cell migration [39, 191, 192]. When starved, up to 105 Dictyostelium cells 

migrate directionally toward one another to form tight aggregates that eventually 
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differentiate into a resistant structure made of a spore head atop a stalk of vacuolated 

cells, referred to as the fruiting body. During the aggregation process individual cells 

exquisitely sense and migrate toward cyclic adenosine monophosphate (cAMP; a 

chemoattractant). The binding of cAMP to its specific GPCR cAR1 (cAMP receptor 

1) leads to the activation of a variety of intracellular signaling pathways that regulate 

chemotaxis, gene expression, and the synthesis and secretion of additional cAMP for 

signal relay [193]. Cyclic AMP emitted by individual cells drives groups of cells to 

self-aggregate if cells are sufficiently close to each other. Indeed, using mathematical 

modeling Cohen and Robertson provided evidence that there is a critical density for 

aggregation [194], and experimental work performed by several researchers 

established that a minimal cell-cell distance of 60-80 µm is required to sustain 

aggregation and fruiting body formation [195-197]. Interestingly, as cells sense and 

migrate towards cAMP signals they transition from single cell to group migration by 

aligning in a head-to-tail fashion to form characteristic lines of cells called ‘streams’ 

[198]. This transition from single to collective cell migration is dependent on the 

enzyme that generates cAMP, adenylyl cyclase A (ACA; an adenylyl cyclase 

expressed during aggregation), and in particular on its enrichment at the back of 

chemotaxing cells [105, 106]. Cells lacking ACA, or mutant cells that show a loss of 

ACA enrichment at their back, do not stream during chemotaxis. Kriebel et al. 

proposed that the cAMP signal is released from the back of cells, and as a result 

specifically leads cells to follow each other in a head-to-tail fashion [105]. In 

Dictyostelium, streaming therefore provides a direct measure of signal relay during 

chemotaxis.   
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Recent studies have revisited the question of how chemotactic signals are 

translated into migration. Steep chemotactic gradients can effectively trigger actin 

polymerization and dominant pseudopod formation in the direction of the chemical 

gradient [52, 143]. However, pseudopods also form when cells are exposed to a 

uniform concentration of chemoattractants during chemokinesis or under shallow 

chemotactic gradients [105, 199, 200]. Under these conditions, pseudopods emerge 

near each other in a coordinated fashion, allowing cells to maintain persistent motion 

in a given direction for several minutes [201-203]. Chemotactic signals of the 

strength used for cell-cell communication may simply override this natural ability of 

cells to maintain direction and generate new pseudopods, or take advantage of it and 

steer cells by biasing the location of naturally occurring pseudopods, as suggested by 

King and Insall [41].  

While previous studies quantified the ability of single cells to migrate towards 

well-defined chemoattractant gradients [34, 149, 203], the role of signal relay on 

other chemotactic measurements has not been assessed. We therefore used cells 

lacking ACA (aca
-), which are specifically defective in signal relay.  We assessed 

their ability to migrate and compared with that of wild type (WT) cells. By tracing the 

motion of ensembles of thousands of Dictyostelium cells we were able to study how 

large populations of cells respond in groups during chemotaxis and to elucidate what 

aspects of cell migration are affected by signal relay and collective behavior. A 

second, equally important goal was to develop a simple metric for the assessment of 

the presence of signal relay that could be applied when no tell-tale signs of signal 

relay are present. Indeed, a variety of chemotaxing mammalian cells secrete 
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chemoattractants to amplify signals. While these cells may not show head-to-tail 

alignment, signal relay could still play a key role in the recruitment and migration of 

neighboring cells, and a direct measurement would help to decipher the role of signal 

relay in health and disease states.  

 

3.3. Results 

3.3.1. Short Cell-Cell Distances and Small Fluid Heights Are Necessary for Cells to 

Relay Signals During Chemotaxis 

To provide baseline data for our studies, we first determined the cell-to-cell 

distance and fluid height for which Dictyostelium cells relay signals and migrate 

collectively. For these experiments, WT cells were allowed to reach the chemotaxis-

competent stage (see Appendix A.1.1), plated on glass chamber coverslips at cell-cell 

distances varying between 35 and 150 µm, and covered with 0.5 mm to 11 mm of 

buffer (corresponding to 5 to 600 µL of buffer in a square eight well plate; see 

Appendix A.1.4). Thousands of cells were observed by time-lapse microscopy, and 

their ability to collectively migrate was assessed based on visual inspection for the 

presence of streams one or a few cells wide (Figure 3.1 A). We found that the ability 

of cells to migrate spontaneously and form streams requires that cells are close to one 

another, up to a critical cell-cell distance of less than 100 µm (Figure 3.1 B) – as the 

cell plating density is lowered, the cell population transitions from forming streams to 

not forming streams. These findings are very similar to cell-cell distances found to be 

required for aggregation and fruiting body formation by other investigators [195-
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197]. To determine if the absence of streams at large cell-cell distances is due to the 

inability of cells to sense their neighbors, or to their inability to release cAMP under 

diluted conditions, we used a micropipette to establish a stable chemoattractant 

gradient, essentially creating an artificial aggregation center to induce the release of 

cAMP by cells near the micropipette and trigger signal relay. The cell density was 

varied and the capacity of cells to stream was determined at a constant fluid height. 

As depicted in Figure 3.1 C, even when migrating toward an external point source of 

cAMP, cells stopped forming visible streams at the same cell-cell distance as 

observed during self-aggregation (the fluid height highlighted by the box in Figure 

3.1 B is comparable to the fluid height used in Figure 3.1 C). This finding establishes 

that the inability of cells to stream is not due to a failure to initiate the production and 

emission of cAMP. Rather, as previously described by others [195-197], increasing 

the distance between cells hinders their capability to sense one another and thereby 

relay signals.  

Figure 3.1 B shows that the ability of cells to stream also depends on the 

quantity of fluid present. We observed that as the amount of fluid is increased without 

changing the cell-cell distance, the cells lose their ability to stream. Remarkably, the 

addition of media isolated from high-density WT cells or cells lacking Conditioned 

Media Factor (CMF) [204] (instead of buffer) recovered streaming (data not shown), 

suggesting that a secreted factor other than CMF maybe involved. We envision that 

the dependence of streaming ability on fluid height, where the extra fluid is present 

several mm away from the cells, is not due to dilution of the cAMP signals 
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(A) 

 
                   (B)           (C) 

 
Figure 3.1 - Short Cell-Cell Distances and Small Fluid Heights are Necessary for Cells to Relay 

Signals During Chemotaxis 

(A) Developed WT Dictyostelium cells plated on chambered glass slides at a mean center-to-
center distance of ~40 µm (700 cells/mm2; top images) or a mean distance of ~70 µm between 
cell centers (225 cells/mm2; bottom images) under 3.9 mm of buffer.  Images were taken with a 
5x objective using phase-contrast microscopy 15 and 60 min after plating.  Scale bar = 500 µm. 
(B) Graph depicting the ability of cells to stream as a function of cell plating densities and fluid 
heights.  The cartoons on left illustrate increasing distance between cells in the vertical direction. 
Each data point displays the majority result of at least 3 independent experiments.  The grey box 
indicates region investigated in panel C below.   
(C) Identical experiment as in B, but with the addition of a micropipette containing 10 µM 
cAMP.  
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for the following reasons: (1) cAMP diffuses too slowly (DcAMP = 400 µm
2/sec [205]) 

to distribute over mm distances into the additional fluid volume on our experimental 

timescales. This consideration holds true for other signaling molecules larger than 

cAMP, such as Counting Factor (CF) [206]. (2) cAMP is not only emitted by cells, 

but is also degraded via a secreted phosphodiesterase [207], which decreases the 

distance over which cAMP molecules can travel. We conclude that particles smaller 

than cAMP, such as ions, are more likely the source of the fluid volume dependence, 

since ions diffuse an order of magnitude faster than cAMP [208]. The above 

argument assumes diffusive transport of cAMP, yet, strong enough fluid flows could 

cause dilution of signaling molecules of any size over mm distances on the 

experimental timescales. Thus, fluid flow was minimized during the experiments by 

imaging samples only at the start and end of each experiment (as flows can be 

triggered by heat and movements involved in imaging multiple wells). Furthermore, 

results were obtained similar findings when cells were plated on agar of varying 

thickness, in which the dense agar gel effectively prevents convective flows (Figure 

3.2). However, cAMP dynamics are complex, so we cannot exclude the possibility 

that cAMP plays a role in regulating the dependence of streaming on fluid height. A 

cell-cell distance of ~40 µm was therefore used for all further experiments, as this 

cell-cell distance allowed signal relay and stream formation under all fluid heights 

tested. 
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3.3.2. Signal Relay Does Not Regulate Individual Cell Speed and Short Time 

Persistence 

To determine if the presence of signal relay affects the ability of cells to migrate 

individually (outside streams), we used aca
- cells, which retain the ability to 

chemotax but do not produce cAMP upon chemoattractant stimulation, and therefore 

lack the ability to relay signals [105, 209]. Both WT and aca
- cells were allowed to 

(A)        (B) 

 
     (C) 

 
Figure 3.2 - Streaming Dependence on Fluid Height Not Due to Convective Flows. 

(A) WT cells developed for 5 hrs were plated on a thin layer of agar (1 mm thick), 
covered with either a thin (2 mm height) (A) or a thick (8 mm height) layer of buffer 
(B), and assessed for stream formation after 2 hrs.  
(C) WT cells developed for 5 hrs were plated on a thick layer of agar (8 mm), covered 
with a thin layer of buffer (2 mm), and assessed for stream formation after 2 hrs. 
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reach the chemotaxis-competent stage and exposed to a micropipette filled with 

cAMP as a constant exogenous point source of chemoattractant for chemotaxis 

measurements. In addition, the behavior of both cells types was studied in the absence 

of exogenous point sources: aca
- cells were exposed to a uniform increase of 

chemoattractant for chemokinesis measurements and WT cells were observed as they 

spontaneously migrate and aggregate. Indeed, chemokinesis is a key feature of 

chemotactic migration and is readily observed in aca
- cells. WT cells, because of their 

endogenous ACA activity, do not require further chemoattractant stimulation and 

spontaneously exhibit random migration [105]. We experimentally acquired several 

time-lapse movies for each condition and automatically extracted the position and 

motion of all single cells, i.e. before they merged into streams, using custom image 

processing routines (see Appendix A.2.2). In order to reduce noise and eliminate the 

contribution of stationary cells, cell speeds were only included from cells that showed 

a net displacement of at least 20 µm over a 5 min time interval. Surprisingly, we 

found that the speeds of individual cells were comparable for aca
-
 and WT cells (p > 

0.05) under either chemokinesis, chemotaxis, or self-aggregation conditions (Figure 

3.3 A depicts average data of hundreds of cells from one representative movie for 

each condition; Table 3-1 shows average speeds of thousands of cells from at least 

three independent movies once the speed plateau had been reached; see below). We 

also found that for cells chemotaxing to a point source of chemoattractant, the speed 

of moving cells does not depend on the cAMP concentration or gradient, as cell speed 

does not change as a function of the distance from the micropipette tip (Figure 3.3 B). 

Remarkably however, we observed for both WT and aca
- cells in all conditions tested 
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that cell speeds almost double during the first 60 min of migration (Figure 3.3 A). It is 

important to note that this gradual speedup is distinct from the routinely observed 

rapid speedup measured just after cells are plated. To determine if the slow increase 

in cell speed with time is due to development, we starved aca
- cells for 5 and 6.5 hrs, 

exposed them to a micropipette, and measured their velocity as a function of time 

thereafter. We found that neither the absolute speed nor the speedup depend on these 

developmental times, as all conditions displayed similar speeds and behavior (Figure 

3.4). Similarly, cells plated in media isolated from starving cells showed the same 

speedup (data not shown), suggesting that the lack of a secreted factor is not 

responsible for the speed up. Together, these findings establish that signal relay does 

not regulate individual cell speed during chemotaxis or chemokinesis and that the 

speed of cells doubles during the first 1 hr of migration. 

 We next measured metrics that indicate how persistently a cell maintains its 

motion in a given direction.  This measure can be readily determined using mean 

squared displacement (MSD) measurements, which indicate the total displacement 

over which a cell migrates during a given time interval (see Appendix A.2.3).  We 

choose the MSD as it is a commonly-used measure of particle motion, and 

importantly, its slope on a log-log plot provides intuitive information about track 

persistence (see below).  How fast the MSD increases with time can be seen from the 

slope of the MSD in the double logarithmic plot of Figure 3.5 A.  A slope of 2 

indicates ballistic (straight-line) motion, whereas a slope of 1 indicates purely 

diffusive motion [210].  We note, however, that the slope of the line is not constant 
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(A) 

 
(B) 

 
 
Figure 3.3 - Signal Relay Does Not Regulate Cell Speed 

(A) Graph depicting average cell speed versus time for WT and aca
- cells. Cells were 

either subjected to a chemoattractant gradient provided by a 10 µM cAMP-containing 
micropipette (Micropipette) (WT and aca

-), to a uniform 50 nM cAMP stimulus 
(Uniform) (aca

- cells only), or to endogenous stimulus (Self) (WT cells only). These data 
are representative of at least 3 experiments. Error bars indicate standard error of the 
mean. Table 3-1 shows average data from 3 experiments.  
(B) Graph indicating average speed as a function of distance from a 10-µM cAMP-
containing micropipette. These data are representative of at least 3 experiments. Error 
bars indicate standard error of the mean. 
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for all time intervals; it can change as a function of time interval.  For example, the 

slope of aca
- motion is higher around ∆T =1 than at ∆T=10, indicating that over short 

time intervals motion is more persistent than over longer time intervals.  This measure 

has been used by several research groups as a tool in differentiating among different 

types of cell motion in Dictyostelium cells [210, 211]. Other measures of motion, 

such as direction auto-correlation or turning rate, can be used as measures of 

persistent motion [212], although these measures do not account for the net 

displacement of a cell.      

To find the persistence as a function of time interval, we calculate the local 

slope, α, from Figure 3.5 A, and graphed it as a function of time interval, as 

previously described [210, 213] (Figure 3.5 B). Since α is a derivative, it has higher 

 
Figure 3.4 - Cells Speedup Independently of Development Time. 

Graph depicting average cell speed versus time for aca
- cells developed for either 5 

or 6.5 hrs. Cells were subjected to a chemoattractant gradient provided by a 10 µM 
cAMP-containing micropipette. Graph is an average of three independent 
experiments. Error bars indicate standard error. 
 



 101 
 

uncertainty than the MSD (hence the jagged lines vs Figure 3.5 A). Nevertheless α 

provides more intuitive insight than the MSD: cells that move ballistically (straight) 

have a slope α of 2 and cover twice the distance when given twice the time, while 

randomly migrating cells have a slope of 1 and need four times longer (on average) to 

cover twice the distance. We found that on timescales up to 3 min timescales (“Short” 

on Figure 3.5 B), chemotaxing WT and aca
- cells have a similar α. This observation 

is consistent with the similar slope of Figure 3.5 A, which highlights short times. The 

slope of ~1.5 indicates that the overall direction of motion is persistent but that the 

cell tracks are not completely straight (Figure 3.5 B). During chemokinesis of aca
- 

cells, the slope α decreases after 3 min, leveling off at α~1 at time intervals above 10 

min (“Long” on Figure 3.5 B). This difference in α indicates that cells without a 

directional signal maintain a preferred direction over several min, but over longer 

times change direction randomly. In contrast, cells that migrate toward an aggregation 

center – during spontaneous aggregation or migration to a micropipette – maintain a 

slope of α ∼ 1.6 for all timescales, indicating persistence in their direction of motion. 

Note that persistence data for WT cells have more variation than the data for aca
- 

cells (see Table 3-1). This variation is due to the fact that many WT cells quickly join 

streams, and thus fewer cells can be tracked for the long time intervals needed for 

MSD measurements.  

Together, our findings establish that signal relay does not significantly regulate 

individual cell speed during chemotaxis and chemokinesis. We also show that while 

the presence of signal relay or exogenous directional cues does not impact the 
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(A) 

 
(B) 

 
Figure 3.5 – Signal Relay Does Not Regulate Directional Persistence 

 
(A) Graph depicting mean squared displacement (MSD) measurements as a function 
of time interval for the experiments presented in panel A. Error bars indicating 
standard error are smaller than the traces and are thus not shown.  
(B) Graph depicting the slope α of the MSD graph in panel B as a function of time 
interval for the experiments presented in panel A. See text for details. Table 3-1 
shows average data from 3 experiments.  Error bars indicate standard error of the 
mean in the average α for every cell.  “Short”, “Transition”, and “Long” designate the 
∆T values where similar, changing, and different behaviors are observed between the 
different experimental conditions (see text). 
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persistence of individual cells on short timescales, directional cues, regardless of their 

nature, allow cells to maintain their preferred direction over long times. 

 

3.3.3. Cell Speeds and Directional Persistence Are Similar Inside and Outside 

Streams 

We next compared the migration behavior of individual cells (outside streams), 

to the migration ability of cells that are inside streams. Phase contrast images do not 

provide clear boundaries between cells in a stream, and thus did not allow us to 

elucidate the migration of cells within streams. To identify individual cells within a 

stream, we therefore analyzed WT cell populations in which 10% of the cells were 

treated with Celltracker, a cytosolic-staining dye. We captured both fluorescent 

images (to track the position and motion of the fluorescently labeled cells) and phase 

contrast images (to track the location and motion of all cells that are not part of a 

stream, and to elucidate the location of the streams) (Figure 3.6 A). Cell speeds were 

monitored for cells inside and outside streams in the presence or absence of a 

micropipette containing 10 µM cAMP, as described above. Figure 3.6 B and Table 

3-1 show that the speed of cells as a function of time was comparable for all cell 

populations and under all conditions tested (Figure 3.6 B depicts average data of 

hundreds of cells from one representative movie; Table 3-1 shows average speeds of 

thousands of cells from at least three independent movies once the speed plateau had 

been reached). The data are here again dominated by a significant increase in cell 

speed over the first hr of migration. Furthermore, the local slope of the MSD (Figure 

3.7) shows the same degree of directional persistence both inside and outside streams, 
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and this directional persistence is maintained both in spontaneous aggregation and 

directed migration of WT cells as noted above. We conclude that directional 

persistence and cell velocity are not altered when cells transition from single to group 

migration, even though cell-cell adhesions are present. 

 

3.3.4. Signal Relay Increases Recruitment Range and Dramatically Affects 

Chemotactic Index 

In our quest to determine the role of signal relay during chemotaxis, we next 

assessed the recruitment range of WT or aca
- cells to a point source of 

chemoattractant. We reasoned that the propagation of chemotactic signals from cell to 

cell would greatly extend the distance over which a chemotactic signal can travel. We 

also sought to determine to what degree signal relay between cells can transmit the 

original information, i.e. whether cells that directly sense an exogenous signal move 

toward it better than do cells 1 mm away that receive a signal that has been relayed by 

other cells. To address these questions, chemotactic-competent WT or aca
- cells were 

exposed to a micropipette containing various concentrations of cAMP, and their 

response range (in µm) from the tip of the micropipette was measured (see Appendix 

A.2.3). Figure 3.8 A shows representative images of WT and aca
- cells 60 min after 

the activation of the micropipette containing 100 nM or 10 µM cAMP and Figure 3.8 

B shows the quantification of the response range to various cAMP concentrations. As 

expected, aca
- cells showed a clear dependence of response range on the strength of 

the cAMP source. With every ten-fold increase in cAMP concentration, we measured 

a ~200 µm (~10 cell length) increase in the response range. On the other hand, the 
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response range of WT cells involved the entire visible cell population up to a distance 

of 1500 µm from the micropipette tip, independent of the cAMP concentration in the 

micropipette. 

The chemotaxis index (CI) of cells provides an instantaneous measure of how 

well cell motion is directed toward an exogenous source, and is thus a measure of 

how well the cells sense the “information” provided by the micropipette.  The CI is 

defined as ˆCI( , ) = [ ( ) ( )] ( ) cos[ ( )]i i i it i u t r t u t tθ=
r r

o , where ˆ ( )ir t is the unit 

direction vector from cell i to the pipette at time t and ( )i tθ  is the angle between cell 

i’s motion vector at time t and the vector pointing to the pipette (see Appendix A.2.3).  

Therefore, a CI of 1 indicates that a cell is moving directly toward the source and thus 

fully responds to the information, whereas a CI of 0 indicates motion perpendicular to 

the direction of the source and thus a lack of information about the micropipette 

position. This analysis was performed on populations of WT or aca
- cells responding 

to a micropipette containing 0.1, 1, or 10 µM cAMP. As depicted in Figure 3.9 A, 

cells lacking ACA show a high CI close to the source followed by a decrease in CI 

with increasing distance from the micropipette, indicating that sensing of the 

information provided by the micropipette decreases with distance from the source. 

Similarly, we find that the CI decreases with decreasing exogenous signal strength for 

these signal relay-deficient cells. Conversely, as indicated in Figure 3.9 B, WT cells 

display a constant low CI that is independent of the distance to the micropipette or the 

amount of chemoattractant signal emitted from the micropipette.  
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To verify that the CI provides a reliable metric of signal relay rather than just 

emphasizing the difference between WT and aca
- cells, we went back to our initial 

results showing that a minimum cell-cell distance is required for cells to relay signals 

effectively during migration. In Figure 3.1 B we showed that increasing the cell-cell 

distance to 70 µm prevents streaming even in the presence of an exogenous point 

source of cAMP from a micropipette. We now measured the CI for WT cells plated at 

two cell-cell distances, 40 µm and 70 µm, and subjected to a micropipette containing 

10 µM cAMP (Figure 3.10). We find that in the presence of streaming (40 µm cell-

cell plating distance) the CI is independent of the distance to the micropipette. In 

contrast, in the absence of streaming (70 µm cell-cell distance) the CI declines with 

increasing distance from the micropipette tip. Furthermore, we also observe that non-

Table 3-1 – Quantitative Migration Data of WT and aca
-
 Cells 

Cell Type na Speed (µm/min)b αc 
WT, self-streaming 30±14 10.8±2.2 1.3±0.5 
WT, micropipetted 78±87 11.7±1.4 1.5±0.1 
aca

-, chemokinesise 50±23 10.7±1.0 1.1±0.2 
aca

-, micropipetted 42±44 9.4±0.8 1.5±0.1 
Fluorescent WT, self-streaming, 

outside streams 
8±3 11.1±2.9 1.5±0.1 

Fluorescent WT, self-streaming, 
inside streams 

31±1 8.9±1.8 1.6±0.1 

Fluorescent WT, micropipette, 
outside streamsd 

13±6 10.0±2.5 1.4±0.1 

Fluorescent WT, micropipette, 
inside streamsd 

22±19 9.6±1.1 1.5±0.1 

aAverage number ± s.d. of individual cells tracked at each time point for each 
experiment. Taken from at least three independent experiments. 
bSpeeds (mean ± s.d.) are not statistically different for all conditions tested 
(P>0.05). 
cNote that all α (mean ± s.d.) are ~1.6 on short (< 1 minute) time intervals. 
dThe micropipette contained 10 µM cAMP. 
eith the addition of a uniform concentration 50 nM cAMP. 



 107 
 

streaming cells show a higher CI near the micropipette, much like we measured for 

aca
- cells. Together, our findings show that the CI provides meaningful insight into 

signal relay.  In our system, signal relay preserves the information on the location of 

the micropipette even at distances where none of the exogenous signal is left, and 

signals are solely relayed from cell to cell along tens of cells. 

 

3.4. Discussion 

The ability of cells to propagate chemotactic signals is essential in a wide 

variety of biological processes and is often associated with the transition from single 

to collective cell migration. Our study provides novel insight into the behavior of 

cells exposed to secreted signals during chemotaxis and collective cell migration. We 

first confirmed that short cell-cell distances are necessary for cells to aggregate and 

showed that a maximum cell-cell distance of 50-100 µm is necessary for cells to form 

streams. We reason that for such close neighbors, the specific location on a cell from 

which the chemotactic signal is emitted during signal relay should matter. Indeed, in 

Dictyostelium the cellular distribution of signal relay components is spatially 

restricted: ACA is enriched at the back of chemotaxing cells, presumably giving rise 

to localized cAMP secretion and head-to-tail cell alignment [105]. Our current 

findings that signal relay occurs over very short distances indicate that such local 

secretion could impact signal relay.  For 20 µm long polarized cells at center-to-

center distances of 100 µm, if signal relay were not from tail to head, an emitted 

signal would need to cover a 25% longer distance and take roughly 50% longer 
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(A)       

 
 

(B) 

 
 
Figure 3.6 - Cell Speeds Are Similar Inside and Outside Streams 

 (A) (Left) Phase-contrast image of a stream that is several cells wide. (Right) 
Fluorescent image of the same field overlaid on a darkened phase contrast image. Two 
fluorescently-dyed cells can be distinguished, and their behavior can be analyzed. Scale 
bar = 40 µm. 
(B) Graph depicting average cell speed versus time for WT cells inside or outside 
streams. Cells were either subjected to a chemoattractant gradient provided by a 10 µM 
cAMP-containing micropipette or to an endogenous chemoattractant stimulus. These data 
are representative of at least 3 experiments. Error bars indicate standard error of the 
mean. Table 3-1 shows average data from 3 experiments.  
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to cover that distance. Furthermore, additional factors are required to generate 

directional information via signal relay - if all cells continuously emit cAMP, even a 

localized release would not generate population wide directional information in 

groups of randomly oriented cells.  Indeed, in-depth studies of self-aggregation have 

shown that waves of cAMP are crucial and require three factors:  the release of cAMP 

in bursts, the degradation of cAMP by external phosphodiesterases, and the brief 

adaptation of the signal transduction cascade following cAMP sensing and relay [214, 

215]. Although no clear cAMP waves are visible during chemotaxis to a micropipette, 

the similarity in migration metrics between self-aggregation and chemotaxis to a 

micropipette suggests that these factors also contribute to the relay of information to 

an exogenous signal.    

We measured the effect of signal relay on a variety of cell migration 

parameters and found that the speeds of individual moving cells as well as their 

directional persistence are not affected by signal relay. We also discovered that 

individual cell speed, in all conditions tested, significantly increased during the first 

hour after the start of migration, leveling out in the second hour to about twice its 

initial value. This finding is consistent with other qualitative observations [216] as 

well as with quantitative analyses of cell speeds during self-aggregation [217]. We 

found that the gradual increase in speed was not due to continued development during 

the two-hour long experiments and appeared to be unrelated to better coordination of 

where pseudopods form, as directional persistence did not change significantly with 
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(A) 

 
(B) 

 
Figure 3.7 – Directional Persistence is Similar Inside and Outside Streams 

(A) Graph depicting MSD measurements as a function of time interval for the 
experiments presented in Figure 3.6. The standard error is smaller than the traces, and 
thus error bars are not shown.  
(B) Graph depicting the slope α of the MSD graph in panel C as a function of time 
interval for the experiments presented in panel B. See text for details. Table 3-1 shows 
average data from 3 experiments.  Error bars indicate standard error of the mean in the 
average α for every cell.  
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time. Speedup also appeared unrelated to more effective sensing, as the CI did not 

change with time. Although the mechanism underlying the speedup of cells with time 

remains to be determined, it likely involves an increase in the size or growth rate of 

pseudopods.   

Interestingly, under our experimental conditions, cell speed did not depend on 

the distance from the micropipette. Studies using microfluidic devices have shown 

that Dictyostelium sharply transitions from a low basal speed in weak gradients to a 

higher speed in strong gradients [34]. This apparent discrepancy can be explained by 

the fact that the microfluidic and micropipette devices generate different cAMP 

concentration gradients. Indeed, based on experiments in which the micropipette was 

filled with rhodamine (a fluorescent dye; data not shown), we determined that the 

cAMP concentration gradients used in our studies were in the high range of cAMP 

gradients used by Song and colleagues [34], in whose studies the cells moved at 

constant maximum speed. Our observation that the CI is constant for WT cells 

indicates that signal relay dominates over the exogenous signal from the micropipette, 

suggesting that our exogenous gradients are comparable to the concentration 

gradients generated by cells at the cell-cell distances needed for signal relay and 

spontaneous aggregation.   

We determined how well a cell maintains its direction of migration from how 

fast the mean squared displacement (MSD) changes as a function of a time interval 

∆T. The slope of this graph, α, provides important insights, since it highlights the 

dominant motility behavior on different timescales.  We found that both individual 
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(A) 

           

 
 

(B) 

 
 

Figure 3.8 - Signal relay Increases Recruitment Range  

(A) Phase-contrast images of WT or aca
- cells 60 min after the cells started to migrate to a 

micropipette containing 10 µM (top) or 0.1 µM (bottom) cAMP.  Scale bar = 200 µm. 
(B) Quantification of the response range of WT and aca

- cells over 90 min. The numbers on 
the x-axis represent the concentration of cAMP in the micropipette. The method used for 
determining the response range is presented in Figure 3.9. WT cells responded equally to all 
concentrations tested. Error bars indicate standard error of the mean and were derived from 3 
independent experiments. 
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WT and aca
- cells maintain a preferred direction of motion over ~3 min intervals 

under both chemokinetic and chemotactic conditions, consistent with other reports on 

individual cell migration [149, 178, 201, 210, 218-220]. This result indicates that the 

tendency of pseudopods to develop close to one another, as suggested by Bosgraaf 

and van Haastert [203], may dominate the dynamics on short times even during 

chemotaxis and signal relay.  The timescale over which α decreases during 

chemokinesis (between 3-10 min in Figure 3.5 B) can be interpreted as the time over 

which the preferred location of pseudopods changes and cells turn. When directional 

chemotactic cues are present, either from exogenous sources or due to signal relay, 

cells maintain a preferred direction over long times, and the slope α thus remains near 

1.6. This result indicates that chemotactic signals bias the location of naturally 

occurring pseudopods, as suggested by King and Insall, thus allowing cells to 

maintain a preferred direction over long times [41].   

Remarkably, we found that both cell speed and persistence in the direction of 

motion are identical in individual cells and in cells inside streams that are one or a 

few cells wide. This finding was surprising - we expected cells moving in groups to 

have distinct behaviors, as observed in simulations that explore the role of cell 

adhesions during early and late stages of morphogenesis [96, 101]. Indeed, cell-cell 

adhesion sites may induce both biochemical and mechanical perturbations [191, 221]. 

Our findings therefore establish that the intrinsic motility machinery, as well as the 

ability to migrate directionally, are innate properties of single cells that are 

remarkably maintained regardless of additional external signals or cell-cell 

interactions.  
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In [74] work is presented that suggests migrating Dictyostelium cells move 

themselves via formation and propagation of ‘curvature waves’ (see Figure 3.11).  

These curvature waves are small (~3 µm) membrane bumps that originate near the 

 
 

 
 

 

 

 
 

Figure 3.9 – Signal Relay Regulates the Chemotactic Index 

(A) Graph depicting the time-averaged CI as a function of the distance from the tip of 
the micropipette for aca

- cells migrating to a micropipette containing various 
concentrations of cAMP.  Error bars indicate standard error of the mean. 
(B) Graph depicting the time-averaged CI as a function of the distance from the tip of 
the micropipette for WT cells migrating to a micropipette containing various 
concentrations of cAMP.  Error bars indicate standard error of the mean. Each line 
indicates a single representative experiment of at least 3 experiments.  The dotted line 
indicates the threshold CI (0.1) used to assess response range in Figure 3.8 
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leading edge of the cell and translocate along one side or the other.  When these 

waves come into contact with the surface, they still translocate with respect to the 

cell, but they no longer move with respect to the surface.  The authors postulate that 

these waves couple to the surface and are part of the protrusion machinery that drives 

the cells forward.  Furthermore, the generation of these waves often follows a left-

right pattern, leading to zig-zag motion of the cell. Although the components of these 

waves are unknown, one candidate is actin, which has been shown to organize into 

separate filamentous and non-filamentous pools inside the cell.  Supporting this idea, 

studies of cell spreading on a surface have shown that some membrane protrusion is 

due to waves of polymerized actin reaching and then extending the cell membrane 

[76]. 

 

 
 

Figure 3.10 – Chemotactic Index as a Metric for Assessing Signal Relay 

Graph depicting the time-averaged CI as a function of the distance from the tip of 
the micropipette for WT cells plated at various densities and migrating to a 
micropipette containing 10 µM cAMP. The dotted line indicates the threshold CI 
(0.1) used to assess response range in Figure 3.8.  Error bars indicate standard 
error of the mean. Each line indicates a single representative experiment of at 
least 3 experiments. 
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We found that on short time scales (< 3 min) cells moved essentially 

persistently in a given direction, but an overall directional cue was required to 

maintain persistence for longer time scales.  This type of persistence is compatible 

with the ‘zig-zag’ protrusive activity shown in [74].  Successive protrusions of 

randomly migrating cells are correlated in space, leading to persistent motion on 

timescales on the order of a few protrusions (~30 seconds/protrusion).  However, over 

longer times, protrusions are no longer correlated in random migration, leading to a 

drop in directional persistence.  In addition, we found that the speed of cells did not 

depend on the strength of the external gradient, which is again compatible with the 

constant protrusive activity demonstrated in [74].  Our findings are therefore 

suggestive of a model of chemotaxis in which the chemical signal biases the direction 

of motion but does not drive motion; in other words, the chemical signal steers but 

does not propel. 

 
Figure 3.11 – Boundary Curvature of a Migrating Dictyostelium Cell 

Image adapted from [74].  The calculated cell boundary (in color) is overlaid on the 
original fluorescence images (in gray).  Curvature is designated by color; high 
positive curvature (outward bumps) is shown in red, flat curvature is green, and high 
negative curvature (inward bumps) are in blue. (Left) Two curvature peaks, indicated 
by teal arrows, propagate down the sides of the cell (right) but remain at the same 
substrate location. (Scale bar, 5 µm).   
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These data provide suggestions for improving upon existing models of 

Dictyostelium motion.  Models in which the gradient-sensing ability feeds directly 

into pseudopod polymerization are clearly incorrect, as cell speed is independent of 

chemical gradient.  Instead, models featuring an intrinsic motile activity that is biased 

by a chemical gradient match well with our data, such as that found by Driscoll et al. 

[74] or proposed by Insall’s ‘pseudopod-centric’ view of migration [77].   

Our findings show that signal relay dramatically affects the recruitment range of 

cells to an exogenous source of chemoattractant. In the absence of signal relay, the 

range over which cells migrate to the chemotactic source exhibits a strong 

dependence on the strength of the chemotactic signal. In contrast, in the presence of 

signal relay, the response range is independent of the cAMP signal strength. CI 

measurements as a function of distance from the chemoattractant source provide 

interesting insight into this phenomenon. As expected, when signal relay is absent (in 

aca
-
 cells or in diluted WT cells), we find that the CI decreases with distance from an 

exogenous source, and increases with increasing source strength. When signal relay is 

present, the CI becomes independent of both the distance from the exogenous source 

and of the source strength. However, under these conditions, the CI is significantly 

smaller than without signal relay close to the chemotactic source. Thus our findings 

show that signal relay can transmit directional information over long distances 

without significant information loss. Interestingly, van Haastert and Postma recently 

reported that WT cells show a decrease in CI with increasing distance from the 

chemotactic source or with decreasing source strength [110]. Based on our extensive 
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analyses, we envision that their experiments were likely performed under dilute 

conditions in which the chemotactic signal is not relayed.   

Taken together, our data shows that signal relay enhances recruitment range 

without affecting cell speed or directionality. While streaming represents a clear 

indicator of signal relay in Dictyostelium, signal relay does not necessarily give rise to 

streams. We propose that the independence of the CI on the distance from an 

exogenous chemoattractant source represents a robust metric for determining whether 

signal relay takes place in various chemotactic systems. Signal relay during 

chemotaxis needs to encode directional information, which is achieved through 

restricted cellular distribution, signal degradation, and refractory periods. We propose 

that some, if not all, of these features are needed to generate an effective relay of 

information between neighboring cells. We conclude that a combination of speed, 

persistence, and CI measurements represents a powerful way to dissect signal relay in 

motile cells. 
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4. Cell-Surface Adhesion: Effects on Individual and Collective 

Motion 

This chapter is adapted from McCann, Rericha, Losert, and Parent [222]. The 

F-actin-staining data presented Section 4.3.5 and Figure 4.10 were taken by E. 

Rericha.  These data are included to highlight that cells adapt to cell-surface 

adhesion by regulating F-actin polymerization.   

  

4.1. Summary 

Understanding the dynamics of cell motility requires knowledge of how cells 

attach to a surface, generate protrusive forces at their front, and contract their body at 

the back.  In this process, the amount of cell-surface adhesion is critical, as cells need 

sufficient traction in order to move forward, yet they also require adhesion to be low 

enough to allow de-adhesion and retraction of their backs [223, 224].  In this chapter 

we experimentally investigate how motility depends on cell-surface adhesion.  We 

produce four different surfaces that are commonly used in the biology literature and 

measure the cell-surface adhesion energy of Dictyostelium cells on each.  Next, we 

acquire time-lapse images of cells moving on each surface and find that motion is 

quantitatively the same on all surfaces despite the different surface properties.  

Finally, we probe the mechanical regulation of adhesion by placing cells lacking a 

key contractile protein on each surface, and we find that protrusion is required to 

compensate for small cell-surface adhesiveness, and contractility is required to 

compensate for large cell-surface adhesiveness.  In individual cells, therefore, we find 
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that the mechanisms of motility are robust for cells moving on surfaces where the 

cell-surface adhesion energy varies by as much as nine orders of magnitude.  This 

finding reinforces the conclusion of Chapter 3, in which cells have intrinsic motility 

that operates largely unaffected by environmental conditions. 

The rules governing individual motility are therefore largely robust to the cell 

environment; however, we experimentally investigate whether the interaction laws of 

collective dynamics of cell populations are surface-adhesion dependent.  We place 

populations of thousands of cells upon each of the four surfaces and find that there is 

a striking difference between the dynamic patterns of aggregations: cells tend to form 

more spatially extended streams on less adhesive surfaces.  To understand this 

phenomenon, we allow individual cells to migrate on a surface containing an 

interface between surfaces of two different adhesivities.  When cells encounter an 

interface, they tend to move toward the less adhesive surface.  This ‘preference’ 

explains the collective dynamics of cells: less adhesive surfaces lead to more surface 

contact than neighbor contact, and hence larger streams, while more adhesive 

surfaces lead to more neighbor contact than surface contact, leading to smaller 

structures.  Thus, the interaction rules of collectively migrating cells are affected by 

surface adhesion, even though individual motility is not.   

 

4.2. Introduction 

The ability of cells to migrate across surfaces of differing composition is 

crucial in many biological systems.  During the immune response or cancer 

metastasis, cells must travel through a variety of tissues en route to their destination 
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[225-227].   Similarly, to survive in the wild, the social amoeba Dictyostelium 

discoideum must be able to traverse a variety of surfaces, presumably with vastly 

different properties, using a variety of mechanisms [84, 228].  It is thought that cell-

surface adhesion strength is an important determinant of how cells move on a specific 

surface.  If a surface is too adherent, cells are able to adhere to but not de-adhere from 

the surface, fixing them in place.  Conversely, a surface with insufficient adhesion 

does not permit a cell to gain sufficient traction, leading again to no overall motion.  

Surfaces with adhesivities between these two extremes allow cells to properly move 

in a directed manner [117, 229].   

The survival of Dictyostelium cells requires that individual and collective 

migration be robust on many different surfaces.  Few cell-cell adhesion receptors 

have been identified in this organism [128], and only one cell-surface receptor has 

been found [122].  However, other regulators (but not receptors) of cell-surface 

adhesion have been discovered [123], strongly suggesting that other unknown 

receptors exist.  Adhesion receptors must be properly regulated, through control of 

their number on the surface (via transport to and from the membrane) and their 

binding properties, in order to allow proper adhesion to a surface.     

Previous studies have investigated the migration of individual Dictyostelium 

cells to surfaces of varying adhesiveness, such as glass (adhesive), mica (non-

adhesive), and lysine chains (adhesive) [119, 136, 137].  These studies focused on the 

difference between wild-type cells and various mutants in an attempt to discover the 

function of particular proteins in individual cell motion.  For instance, cells lacking 

talin, an important membrane-cytoskeleton cross-linker, show decreased adhesion to 



 122 
 

less adhesive surfaces but are still able to migrate effectively [136].  Cells lacking the 

motor protein myosin II have difficulty moving on very adhesive surfaces [119].  The 

majority of research in this area has not attempted to quantify the strength of cell-

surface adhesion; the only study to do so investigated the cell-surface adhesion 

strength on glass for three mutants [230].  Crucially, no studies have looked at how 

surface adhesivity ties in to collective cell motion.  Therefore, there are still several 

basic unanswered questions about the role of cell-surface adhesion strength in 

migration. 

In this chapter, we answer several questions about the role of surface 

adhesiveness in individual and collective Dictyostelium motion.  To provide a 

baseline of surface adhesiveness, we quantify the adhesion energy between cells and 

four different surfaces.  Next we address the role of protrusion in adhesion and show 

that actin polymerization leads to increased adhesion on less adherent surfaces.  

Through time-lapse imaging of wild-type cell motion, we find that actomyosin-based 

protrusion and retraction lead to motion that is largely independent of surface 

adhesiveness, for adhesivities varying over several orders of magnitude.  Finally, we 

investigate collective cell motion and discover that the dynamics of collective motion 

depend on surface adhesiveness.   

 

4.3. Results 

4.3.1. Experimental Surfaces 

In order to study the effects of cell-surface adhesion, we used four surfaces 

with differing properties, the characteristics of which are shown in Table 4-1.  The 
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four surfaces were chosen for their previously noted adhesion properties (see below) 

as well as the commonality of their use in biology laboratories.  We also note that we 

chose the acid-wash and coating steps to match methods commonly used in adhesion 

and migration studies (see below).  In all cases, acid-washed glass coverslips were 

coated with the functionalization of interest.  We note that our contact angle 

measurements for glass, in particular (45°; see Section A.1.3) is higher than expected 

(about 15°; e.g. from plasma cleaning [231]); however, our treatment is consistent 

with what is used in cell migration studies [119, 232, 233].  We also note that water 

contact angle is a macroscopic measurement of a surface, and we cannot rule out 

inhomogeneities on a microscopic scale.  Our migration and adhesion assays, 

therefore, use a large number of cells (at least 100) to average out any microscale 

differences that may occur.  

The first surface chosen is Bovine Serum Albumin (BSA; B in figures).  

This is a globular protein of 66 kDa commonly used in cell migration and adhesion 

studies to inhibit cell-surface adhesion [137].  BSA is a protein containing domains of 

various charges, and it has a negatively charged surface. As both BSA and glass have 

net negative surface charge, the adsorption of BSA to glass is thought to occur 

through BSA diffusing near the glass-liquid interface and changing conformation to 

display positive charges.  This effect leads to BSA electrostatic adsorption to the 

surface, and the protein continues to change conformation until it reaches an 

equilibrium state [234].  This layer is thought to then weakly bind non-specifically to 

cell surfaces, preventing adhesion receptor access to strong binding sites [235].   
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Acid-washed glass (glass; G in figures) is the next surface.  Glass has a 

negative charge and is known to allow cell-surface adhesion, though many 

mammalian cell types have difficulty migrating on it [236].  Dictyostelium cells are 

able to migrate effectively on glass, making it a commonly used surface for 

Dictyostelium studies [188, 220, 237]. 

Poly-L-Lysine (PLL; P in figures) is the third surface used.  This is a 

polymer of L-lysine, a positively charged amino acid thought to bind electrostatically 

to glass.  It is commonly used in laboratories as a surface that is highly adherent to 

cells.  It is thought that the positively charged lysine molecules adhere to the cell 

surface electrostatically, as cell membranes are negatively charged [238].   

The last surface used was a perfluorinated carbon chain (FCC; F in 

figures) chemically bonded to glass.  This surface coating is neutrally charged and 

strongly hydrophobic, and it is similar to TeflonTM [239] brand coatings.  While not 

commonly used in laboratory cell adhesion studies, it provided a contrast to the 

negative and positively charged surfaces of glass and PLL.   

In addition, coverslips coated with poly(ethylene glycol) (PEG) were tested, 

which is thought to inhibit cell-surface adhesion through preventing protein 

absorption by steric repulsion [115, 240].  We found that cells were not able to adhere 

or migrate on this surface, in agreement with other researchers’ findings [78].  

Therefore, no PEG data are included in this study. 
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4.3.2. Measurements of Cell-Surface Adhesion 

As the mechanisms of cell-surface adhesion in Dictyostelium are not well-

known, we sought to measure the ability of cells to adhere to the prepared surfaces.  

To that end, the cells were treated with Latrunculin A, a drug that is able to enter cells 

and bind to monomeric G-actin, preventing its polymerization.  The net result of 

thistreatment is that cells cannot form actin-based protrusions and their cortex is 

disrupted (as turnover rates for F-actin are in general less than one minute [241, 

242]), causing them to remain in a spherical shape.  They also cannot generate 

Table 4-1 – Surface Properties 

Surface Acid-Washed 
Glass  

(glass; G) 

Bovine Serum 
Albumin  
(BSA; B) 

Poly-L-Lysine 
(PLL; P) 

Fluorinated 
Carbon Chain 
(FCC; F)   

Weight - 66 kDa  
(607 amino 
acids) 

30-70 kDa  
(144-335 amino 

acids) 

441 Da 

Charge Negative  
(Si-O- 
exposed) 

Outside is 
negative (but 
domains have 
different 
charges) 

Positive Non-polar 

Hydro 

(philic/ 

phobic) 

Hydrophilic Hydrophilic Hydrophilic Hydrophobic  

How 

adsorbs  

- Electrostatic. 
Can unfold 
when attached 
to glass  

Electrostatic Covalent  
Si-O-Si bond 

Structure SiO2 Folded amino 
acid polymer 

Polymer of Lys C10H10ClF13Si 
[Tridecafluoro-
1,1,2,2-tetra 
hydrooctyl 
dimethyl 

chlorosilane] 
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actomyosin-based forces to push or pull against surfaces.  These cells, therefore, 

should settle passively on each of the surfaces and form contacts based solely on a 

balance of adhesion forces with membrane resistance to flattening and stretching, 

similar to vesicles settling on a surface [243].   

We measured the ability of Dictyostelium to adhere to surfaces using two 

methods.  The first method, a shaking assay (commonly used as a gross estimate of 

cell-surface adhesion [244-246]), consists of placing populations of cells into an 

orbital shaker, shaking for 15 minutes, and counting the number of adhered cells (see 

Appendix A.1.4).  We found that the cells adhered to PLL and FCC, less to glass, and 

not at all to BSA (see Figure 4.1 A).  We take this result as a rough estimate of 

relative cell-surface adhesion ability. 

A second method of measuring cell-surface adhesion is placing the cells on a 

surface and viewing them with simultaneous bright-field and interference reflection 

microscopy (IRM) using an inverted confocal microscope.  IRM allows visualization 

of areas of close cell-surface contact, which appear dark in an otherwise bright image 

(see Figure 4.1 B; more details of IRM are described in Appendix A.1.2).  Although 

this method does not measuring adhesion per se, the amount of area that a cell has in 

contact with a surface is likely to be related to the cell-surface adhesion, with more 

contact area corresponding to greater adhesion.  Using this method we are able to 

measure the bright-field projected area of cells and the area of close cell-surface 

contact simultaneously.  As can be seen in Figure 4.1 C, cells on BSA have little to no 

close contact area, cells on glass have somewhat more contact area, and cells on PLL  
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(A) 

 
(B) 

 
 

(C) 

 
Figure 4.1 – Adhesion and Contact Area of Latrunculin A-treated Cells  

Cells treated with Latrunculin A cannot polymerize actin, and as a result, can only settle passively 
and adhere to surfaces.  (A)  Shaking assay results indicate that cells are most adherent to FCC, 
then PLL, then glass, and barely to BSA (N=3).  (B) Representative bright-field (left half of 
image) and IRM images (right half) of cells on different surfaces.  Scale bar = 35 µm.  (C) 
Quantification of relative contact: the bright-field area of the cell divided by the IRM area.  Cells 
on BSA have little area in contact with the surface.  Cells on glass have more area in contact, 
while cells on PLL and FCC have more than half their area in contact with the surface (N=3).  
Error bars indicate standard deviations. 
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or FCC have more than half their bright-field area in close contact with the surface.  

This trend is qualitatively similar to that found in the shaking assay. 

 

4.3.3. Calculation of Cell-Surface Adhesion Energy 

For better estimate of cell-surface adhesion, we now calculate the cell-surface 

adhesion energy using the bright-field and IRM images. Recent work by Murrell et al. 

derived analytical expressions for the adhesion energy of vesicles in contact with a 

surface as a function of their contact angle [247], and we follow their derivations 

below.  Cells treated with Latrunculin should be able to be approximated as vesicles, 

as actin polymerization cannot occur, and the cells settle passively onto the surface, 

spreading until membrane tension forces balance spreading forces (similar to a liquid 

drop model).  We note that the surface tension in this case is due to a cell membrane, 

which can be quite heterogeneous and contain membrane-stiffening and other 

membrane-affecting compounds [248] or have distinct domains of different 

composition [249].  However, some of these contributions should be able to be 

incorporated into model parameters, and so this model (explained below) should 

provide a rough estimate of the cell-surface adhesion energy. 

For the model of [247] to be valid for our data, we must make the following 

assumptions: 

• The shape of the adhered cell is a truncated sphere.  Settled vesicles were 

shown to be this shape using confocal 3-D microscopy [230].  Similarly, 

Latrunculin A-treated cells in solution assume a spherical shape, as they 

cannot polymerize actin and therefore cannot easily deform their membrane.  
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On a surface, cells on glass and BSA roughly appear by eye to be truncated 

spheres.  On PLL and FCC, however, cells appear more extended due to 

adhesion, and so may be flatter than truncated spheres.  The 3-D shape of the 

cells cannot be reconstructed from our data, so we cannot verify the cell 

shape; however, this assumption should allow us to get an order-of-magnitude 

estimate even if the shape is not strictly a truncated sphere. 

• The cell maintains the same volume before and after settling and does not 

change the amount of membrane on its surface.  The equilibrium shape is 

generally reached within one minute of settling (see Figure 4.2), which is 

short enough that significant volume change or membrane trafficking should 

not occur, especially as there is some interplay between the actin cytoskeleton 

(absent here) and membrane regulation [250].    

 

Figure 4.3 shows a diagram of the relevant measures of a spread cell at 

equilibrium.  The contact angle is given by 

1sin /c IRM BFA Aθ −= ,              (4.1) 

where IRMA  is the dark region under the cell found through IRM, and BFA  is the area 

of the cell in bright-field microscopy.  This calculation assumes that the areas are 

circular, as they would be for a truncated sphere.   

Figure 4.4 shows a distribution of contact angles for cells on different surfaces. 

The surface area of a truncated sphere is larger than that of a sphere of equal 

volume.  Therefore, the surface area of the cell must increase after settling.  The 
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(A) 
 

 
 

  (B) 

 
Figure 4.2 – Representative Contact Area Versus Time for Settling Latrunculin-Treated Cells 

Time traces for seven representative cells for each surface, treated with Latrunculin 
A.  (A) Cells settling on glass.  By ~60 seconds, most cells have reached their 
equilibrium contact area.  (B) Cells settling on PLL.  Most cells reach their 
equilibrium contact between frames, with a frame rate of 4 seconds. 
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increase is given by 

2

1/3 3 2/3
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θ θ
θ θ

+ +∆
= −

+ − ,           (4.2) 

where 0S  is the initial surface area and S∆  is the change in surface area.  Increasing 

the surface area of the cell means that the membrane must be stretched, and doing so 

takes energy.  A calculation from Murrell et al. [247] gives the change in surface area 

as a function of surface tension change, bending rigidity, and temperature: 
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 
,           (4.3) 

where κ  is the bending rigidity, aK  is the area expansion modulus, fσ  is the surface 

tension after adhesion, 0σ  is the surface tension before adhesion, Bk  is Boltzmann’s 

 

 
Figure 4.3 – Schematic of a Settled Cell 

Cartoon of a cell settled on a surface in the shape of a truncated sphere.  On the left 
are surface tensions, and on the right are the contact angle and the radii calculated 
from the bright-field and IRM areas.  Adapted from [247]. 
 



 132 
 

constant, and T is the absolute temperature.   The first term on the right hand side is 

the contribution of membrane flattening, and the second term is the contribution from 

membrane stretching.  Strictly speaking, the membrane does not physically stretch, 

but rather small entropically-preferred ruffles are smoothed out [243].   Here we take 

values from [230] calculated for Dictyostelium on glass under shear flow, 

specifically, κ  = 100 Bk T and 0σ  = 3*10-6 N/m.  These values are for cortexillin-null 

(A)               (B) 

 (C)

               (D) 

  
 

Figure 4.4 – Distribution of Contact Angles for Latrunculin-Treated Cells 

Cells treated with Latrunculin A were allowed to settle on each surface, and the bright-
field and IRM areas of each cell were recorded.  The contact angle of each cell was 
calculated, assuming that the cells were truncated spheres.  The mean contact angle is 
also shown.  (A) BSA  (B) Glass  (C) PLL  (D) FCC. 
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Dictyostelium mutants, which lack some F-actin crosslinkers and therefore should 

have a weaker cortex than wild-type cells [230].  These cells should be more similar 

to our Latrunculin-treated cells than wild-type cells would be; however, these values 

may be an overestimate, as cortexillin-null cells can still have actin-dependent 

stiffness.  As a lower bound, floppy vesicles have 0σ  of order 10-6 N/m and κ  of 

order 10 Bk T [247, 249], so our estimates for each of these parameters should be at 

most an order of magnitude overestimation of the actual values.  We let aK  = 0.5 

N/m, which is mid-range for cells and bilayer vesicles [251], as the value specific to 

Dictyostelium is unknown.  These three parameters can vary depending on membrane 

composition (e.g. cholesterol or protein concentration). Equating the two equations 

for 
0

S

S

∆
 therefore gives a relation between fσ  and cθ . 

Finally, the value of the adhesion energy density J can be found from fσ  as 

(from [247]) 

f SW SCJ σ γ γ= + − ,           (4.4) 

where  SWγ  is the surface tension at the surface-buffer interface and SC
γ  is the 

surface tension at the surface-cell interface.  Using Young’s law of balance of surface 

tensions at the three-interface point (see Figure 4.3), we can also get 

cosf c SC SWσ θ γ γ= − ,               (4.5) 

and combining these last two equations gives 

(1 cos )f cJ σ θ= − .               (4.6) 
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With our experimental contact angles we can therefore find J for each surface 

and thereby the total adhesion energy, given by J*AIRM.  Figure 4.5 shows the 

adhesion energy density and adhesion energy for each surface.  A calculation of the 

adhesion energy using the floppy vesicle values as a lower bound (κ  = 10 Bk T and 

0σ  = 1*10-6 N/m) gives energy values about one order of magnitude lower for each 

data point but keeps the graph otherwise unchanged.   

We note the large spread in contact angles (and hence adhesion energies), 

which could be due either to inhomogeneities of the surfaces or differences between 

individual cells.  The fabrication methods presented here, while in line with 

commonly used methods, cannot distinguish between these two possibilities.  A 

surface fabrication method that can create homogeneous surfaces (as well as a method 

to verify surface homogeneity) will be required to elucidate the cause of the contact 

angle spread in the current experiments.  

There is a significant spread in both contact angles (Figure 4.4) and adhesion 

energies (Figure 4.5).  We note that the vesicles of Murrell et al. also showed 

significant contact angle spread (mean was ~50° with a standard deviation of ~15°), 

leading to energies spanning several orders of magnitude [247].  This spread could be 

due to inhomogeneities in their surface, the amount of binding receptors on the 

membrane, the amount of polymerized actin inside, or some other effect due to 

vesicle size or composition.  The fact that this relatively simple system showed a 

large spread in values, as did our work, points to the inherent difficulty in measuring 

adhesion energy in this manner, and it emphasizes that the values obtained are 

estimates.  Other methods, such as radial shear flow assays [252] or direct pulling 
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with AFM [253], may provide truly quantitative measurements of cell-surface 

adhesion.       

Ideally, we would like to relate the total cell-surface adhesion energy on each 

surface to the results of shaking assay; i.e. we would like to find what adhesion 

energy the shaking assay is probing.  One way of relating these two assays is to state 

that the shaking assay leaves cells with adhesion energies greater than a certain value.  

We plot this measure in Figure 4.6.  This gives an estimate of about 10-16 – 10-14 J for 

      (A)         (B) 

 
Figure 4.5 – Adhesion Energy Density and Adhesion Energy for Latrunculin Treated Cells 

For each of these graphs, the marker value is the value corresponding to the mean 
contact angle, and the bars reach up and down one standard deviation in the contact 
angle.  (A) Adhesion energy density for each surface.  The values span seven orders 
of magnitude.  (B) Adhesion energy on each surface.  The values span nine orders of 
magnitude. 
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the adhesion energy cutoff in the shaking assay, although this is a rough estimate at 

best (see Discussion).   

 

4.3.4. Actin-Based Protrusion Changes Adhesion Properties 

Cell motion depends on the proper time regulation of localized force 

generation within a cell, which is heavily mediated through actin dynamics [226, 

254].  To understand the role that protrusion and contraction each play in relation to 

cell-surface adhesion, we take the experimental step of adding the ability to 

polymerize actin to the cells.  For these experiments we use myosin II knockout 

(myoII
-
) cells.  These cells do not have myosin II and therefore are lacking a key 

motor protein in the generation of contractile forces (there are other myosins that can 

 

 
Figure 4.6 – Fraction of Cells with Greater Adhesion Energy 

The adhesion energies were calculated for all the contact angles in Figure 4.4, and 
a cumulative distribution was obtained for the number of cells with a given 
contact energy.  Assuming that the shaking adhesion assay pulls off cells below a 
given adhesion energy, this Figure, combined with Figure 4.1 A, suggests that the 
shaking assay pulls off cells with adhesion energies smaller than 10-16 – 10-14 J. 
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still generate lesser contractile forces, however [255]).  They remain fully capable of 

forming actin-based protrusions as well as an actin cortex, giving them the ability to 

spread on a surface, maintain a stable morphology, and move to a limited extent 

[119].    

We hypothesize that these cells will be able to regulate their contact area and 

adhesion to some degree, with the ability to compensate for low cell-surface adhesion 

(through protrusion), though with less ability to compensate for high cell-surface 

adhesion (as they cannot create large contractile forces).  Similar to the Latrunculin-

treated cells, we subject these cells to a shaking assay as well as bright-field 

microscopy/IRM to measure their cell-surface adhesion and contact area.  Unlike the 

Latrunculin-treated cells, we can make no assumptions about their shape and 

therefore cannot form an expression for their adhesion energy from IRM images; 

however, we can get qualitative information from the IRM contact area.   

Figure 4.7 shows the results of the shaking adhesion assay and contact area imaging.  

In the shaking assay, the myoII
- cells showed less adhesion difference between 

surfaces, and almost half of the cells remained adhered.  In looking at the IRM 

contact area measurements, however, there is a more significant difference between 

the contact areas on the surfaces.  Notably, the cells are in contact most with the PLL 

surface, and less with glass and FCC, and then less with BSA.  The results of these 

two assays therefore seem to be at odds (for the FCC results in particular), and we 

will address this issue in the Discussion. 
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(A) 

 
(B) 

 
 

  (C) 

 
Figure 4.7 – Shaking Assay and Relative Contact Area for myoII

-
 Cells 

MyoII
- cells cannot generate large amounts of contractile force, although they can 

polymerize actin to form protrusions and an actin cortex.  (A) In a shaking adhesion 
assay, myoII

- cells adhere similarly to all surfaces (N=3). (B)  Representative bright-
field images of myoII

- cells.  Scale bar = 35 µm.  (C) MyoII
- cells have less contact 

with BSA than glass and FCC, and PLL has the most contact area.  (N=3).  Error bars 
indicate standard deviation.    
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4.3.5. Wild-Type Cells Actively Regulate Adhesion and Motion 

Collectively migrating wild-type cells are able both to polymerize actin and 

generate contractile forces through the action of myosin II motor proteins.  Therefore, 

we next allowed wild-type cells to migrate on each of the four surfaces.  In this case 

the cells were fully motile and signaling to one another, and we took time-lapse 

bright-field and IRM images to measure various metrics of motion.  The metrics that 

we measured were instantaneous speed, polarization (a measure of elongation), IRM 

contact area, and percentage of bright-field area that shows IRM contact (“relative 

contact area”) (these definitions are detailed in Appendix A.2.3).  Representative 

bright-field and IRM images are shown in Figure 4.8 A.  Representative speed and 

relative contact area are shown as a function of time for two cells in Figure 4.8 B.  

Note the large fluctuations in both speed and relative contact area as a function of 

time.  It is possible that surfaces of different adhesivities could show identical 

averages in the metrics but show different fluctuations, and therefore for each metric 

an average of the metric and an average of the metric fluctuations were calculated. 

Remarkably, among the different surfaces no metric shows any significant 

difference; speed, relative contact area, IRM contact area, and polarization all are 

similar (see Figure 4.9).  The fluctuation of speed of cells on FCC is the only measure 

that shows an increase.  The similarity of all metrics suggests that wild-type cells 

have robust regulatory mechanisms in place that allow them to move effectively on 

all surfaces.  

We then performed the shaking adhesion assay on wild-type cells, as shown in 

Figure 4.10.  A large number of wild-type cells came off of the surfaces, and 
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investigation showed that the cells had begun the aggregation process previous to 

shaking.  Cells in streams or aggregates will less surface adhesion per cell than 

individual cells, and in addition, they have a profile extending higher in the z-

direction, which has stronger flows and therefore more force dislodging the cells.  

Therefore, we performed the same shaking assay with aca
- cells, which are not able to 

aggregate and remain as single cells.  These cells have identical characteristics to 

wild-type cells except for their inability to aggregate (see Chapter 3 for a more 

thorough characterization).  In the shaking assay, aca
- cells adhered equally to all four 

surfaces, as did WT cells (see Figure 4.10). 

 

4.3.6. Mechanisms of Adhesion 

The shaking adhesion assay and IRM contact angle measurements, two 

different measurements of cell-surface adhesion ability, reveal that wild-type cells 

maintain consistent shape and adhesion to the surface over a wide range of surface 

adhesivities.  Previous work with traction-force microscopy on gel surfaces 

demonstrated that the forces generated by wild-type cells during migration are much 

higher than is required to overcome adhesion [135].  A recent mathematical model 

addressing the role of adhesion suggests that such large forces are a possible 

mechanism allowing cell speed to be largely independent of adhesive strength [116].  

Regardless, this remarkable ability of cells to control their adhesion is actomyosin 

dependent, and we investigated this dependence through shaking adhesion assays and 

contact-angle measurements on three cell types: Latrunculin A- treated (no actin 
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polymerization), myoII
- cells (can polymerize actin but only have weak contraction 

ability), and wild-type cells (can polymerize actin and contract).  To assist in this 

(A) 

 
 
 (B) 

 
Figure 4.8 – Representative Data from Wild-Type Cells 

Wild-type cells were imaged in bright-field and using IRM, and speed, 
polarization, contact area, and relative contact area were measured.  (A) 
Representative images of wild-type cells on each of the surfaces.  (B) 
Representative time traces of speed and relative contact for cells on two 
different surfaces.  Each quantity shows large fluctuations about the mean, and 
they do not appear to be significantly different. 
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comparison, Figure 4.11 overlays the previously-shown shaking adhesion assay and 

contact area measurements.     

The shaking assay subjects cells to shear flows for 15 minutes.  Presumably, 

wild-type cells and myoII
- are moving on the surface during this time period.  During 

the motion cycle, the contact area (and presumably adhesion) fluctuates, so this assay 

measures whether or not the minimum adhesion strength of the cell is sufficient to 

keep it on the surface.  It is plausible that myoII
- cells, with weakened contraction, 

will not be able to contract their body as much as wild-type cells during the motion 

cycle, causing a larger minimum contact area.  Indeed, myoII
- cells are known to have 

reduced speed on more adherent surfaces [119].  This view is consistent with the 

results of the shaking assay, in which myoII
- cells were more adherent than wild-type 

cells on all surfaces.  Time-lapse imaging of myoII
- cells would reveal if these cells 

have a larger minimum contact area.    

In contrast, the shaking assay shows that Latrunculin-treated cells have 

weakened adhesion on BSA, glass, and PLL in comparison to wild-type cells.  This 

weakened adhesion is likely due to three main factors.  First, the adhesion ability of 

Latrunculin-treated cells is less than that of wild-type cells (as suggested for glass and 

BSA contact-area measurements).  Second, Latrunculin-treated cells do not spread 

out as much on the surface leading to increased cell height and therefore more force 

felt from fluid flows.  Third, cells generally are able to respond to forces, so wild-type 

and myoII
- cells can potentially resist pulling forces by increasing contact area 

through protrusions or other active strengthening of adhesion, whereas Latrunculin-

treated cells cannot.  These three factors could explain the apparent discrepancy 
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between IRM contact angle measurements and shaking assay results.  However, it 

should be noted that the forces felt by cells in the shaking assay are not homogeneous 

on the surface and potentially oscillate as a function of time.  Therefore, to understand 

adhesion energy and truly quantitatively relate an adhesion assay to contact area 

requires another adhesion assay, potentially one that allows simultaneous well-

 (A)          (B) 

    
 
(C)         (D) 

 
Figure 4.9 - Metrics of Motion for Wild-Type Cells 

Time-lapse images of wild-type cells were taken and speed, contact area, relative 
contact area, and polarization were measured.  The mean of each quantity was 
calculated, as was the average of the fluctuation of the metric.  (A) Instantaneous 
speed  (B) Polarization (a measure of elongation)  (C) IRM contact area  (D) 
Relative contact (IRM contact area divided by bright-field contact area).  (N=3)  
The error bars indicate standard error of the mean. 
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characterized adhesion measurements and contact area measurements.  One such 

potential setup, coupling microfluidics to IRM microscopy, is shown in [230]. 

Measurements of contact area through IRM also revealed differences among 

Latrunculin-treated, myoII
-, and wild-type cells. While we did not measure the speed 

of myoII
- cells, the larger contact area on PLL agrees with their decreased inability to 

pull off of this adhesive surface.  On the other surfaces, myoII
- cells have similar 

contact areas (suggesting that the bond with FCC is not as strong as that with PLL), 

as well as similar contact areas to wild-type cells.  For Latrunculin-treated cells, the 

contact area for BSA and glass is smaller by a significant amount than for wild-type 

cells.  This result shows that protrusion is required to adhere on these surfaces.  In 

contrast, Latrunculin-treated cells spread much more on PLL and FCC than do wild-

 
Figure 4.10 – Shaking Adhesion Assay for Wild-Type Cells 

The shaking adhesion assay was performed on wild-type cells (left).  A large 
majority of cells de-adhered, potentially due to cells being collectively migrating 
(see text).  Therefore, we used aca

- cells, which do not collectively migrate, to 
measure the adhesion ability of individual cells.  There is little difference between 
the percentage adhered for each surface (N=3).  The error bars indicate standard 
error of the mean. 
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type cells (and than do myoII
- on FCC), suggesting that for these strongly-adherent 

surfaces cell contractility and mechanical stability are important. 

 

     (A) 

   
 

      (B) 

 
Figure 4.11 – Comparison of Shaking Assay and Contact Area Measurements 

Graphs depicting overlays of the previously shown data for (A) Shaking adhesion 
assay and (B) IRM contact area. 
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4.3.7. Cells Are Able to Adapt to and Distinguish Among Different Surfaces 

To probe the mechanics of how cells are able to move equally on all surfaces, 

the cells were chemically fixed (immobilized) (see Appendix A.1.2).  Fluorescently-

dyed phalloidin, which binds to F-actin, was added, and the cells were imaged (see 

Figure 4.12).  Although the metrics of motion are essentially the same on all surfaces, 

the F-actin distribution varies dramatically.  On BSA, the F-actin network is diffuse.  

In contrast, even when the excitation power was decreased by almost 50%, the F-

actin network showed up more brightly on glass.  Decreasing the excitation power 

again by over 50% still produced strong fluorescence in cells on PLL.  Therefore, the 

qualitative level of F-actin in cells increases with increasing surface adhesion.  This 

finding suggests that cells are able to actively compensate for surface adhesiveness by 

strengthening their actin cortex, providing mechanical stability and also allowing for 

the generation of more contractile forces. 

Cells show the ability to modify their actin levels based on surface 

adhesiveness.  A method of probing the regulatory mechanisms of adaptation is to 

present a cell with an interface between two surfaces, and find out if a cell will cross 

surfaces; and if so, how fast a cell can adapt to a new surface. 

We created surfaces containing a glass-PLL interface (see Appendix A.1.3) 

and acquired time-lapse images of cells migrating (see Figure 4.13 A).  We then 

measured the metrics of the previous section for cells on either side of the interface, 

as well as for cells that made the transition from one surface to another.  Cells that 

never crossed an interface showed dynamics identical to the previous section, i.e. no 

significant difference (data not shown).  Cells that crossed the interface also showed 
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no change in the metrics.  In addition, cells did not show a significant ‘lag time’ to 

adapt to the new surfaces; they moved as if the interface was not even there (see 

Figure 4.13 B).  This result shows that cells have the ability to adapt to new surfaces 

on times of order one minute.  Figure 4.14 shows average measures for each surface 

for cells that crossed the interface, and there are no statistically significant 

differences. 

Curiously, cell behavior suggests a propensity to ‘prefer’ one surface over the 

other, though cells ably cross from glass to PLL and PLL to glass.  When cells on 

PLL contacted a PLL-glass interface, 7 of 9 cells crossed over to glass, while 2 turned 

back.  Conversely, of 5 cells approaching the interface from glass, only one crossed to 

the PLL surface.  In light of motion metrics being unchanged on the surfaces, this is 

suggestive of an interesting finding: cells are able to quickly adapt to new surfaces, 

but they also can show a preference, in this case for the less-adhesive surface.   

 

    
Figure 4.12 – Representative Images of Phalloidin-Stained Cells 

Images acquired by E. Rericha.  Cells on three of the surfaces (BSA, Glass, PLL) 
were fixed and stained with fluorescently-labeled phalloidin, which binds to F-actin.  
Note that the apparent brightness (a qualitative measure of amount of actin) increases 
from BSA to glass, as well as from glass to PLL.  In addition, the laser power (which 
excites the fluorescent dye) was lowered from BSA to glass to PLL, showing that the 
increase is significantly more than is apparent from these images.  Blue indicates 
saturated pixels. 
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(A) 

 
 
  (B) 

 

 
 

Figure 4.13  - Representative Cells at an Interface 

Interfaces between PLL and glass were created to see how cells adapted to new surfaces.  (A) 
(Top) Fluorescence image of PLL (fluorescently labeled) and glass showing an interface.  
(Bottom) Three bright-field and IRM images of a representative cell crossing from PLL to glass 
over a four minute period.  (B) Speed and relative contact for representative cells crossing from 
PLL to glass or glass to PLL.  The gray bar denotes period in contact with the interface.  Note that 
the metrics are similar before and after touching the interface, indicating that cells adapt to the 
new surfaces in around a minute. 
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4.3.8. Surface Properties Alter Collective Cell Migration 

Although WT cells maintain robust motion on a variety of surfaces, their 

ability to ‘distinguish’ among different surfaces leads to an interesting question: when 

cells start to encounter other cells (and therefore form contacts with cells as well as 

with the surface), will the cells behave differently on different surfaces?  During 

aggregation, cell-to-cell cAMP signaling results in cells forming head-to-tail chains 

termed 'streams' that move to the aggregation center [98, 105].  Each cell in a stream 

is simultaneously in contact with other cells in the stream as well as with the surface, 

and therefore altering the relative strengths of cell-cell and cell-surface adhesion may 

affect collective motion. 

We imaged initially uniform densities of cells aggregating on the four surfaces 

for several hours, until stable aggregation centers were formed (see Figure 4.15).  The 

cells displayed surface-dependent aggregation: on BSA, stable aggregation centers 

form quickly, and spatially extended streams of cells move towards those aggregation 

 

        
Figure 4.14 – Average Metrics for Cells Crossing an Interface 

The same metrics as Figure 4.9 show no statistically significant change for cells 
crossing a glass-PLL interface (N=12 cells). 
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centers.  On glass, there are initially more aggregation centers, some of which 

coalesce into others, and the streams are not as spatially extended and often break up 

and reform.  On PLL and FCC, almost no streams are observed.  Instead, cells form 

small clumps with their immediate neighbors, and these clumps coalesce together into 

larger clumps, eventually forming aggregation centers.  At the end of the 

experiments, all surfaces have similar number of aggregation centers.  Therefore, the 

aggregation dynamics change based on the surface adhesiveness, although the end 

result is the same. 

In order to quantify this aggregation difference, we used the following metric.  

At each time point, the images were binarized, with cells, streams, and aggregation 

centers as the foreground.  Next the morphological ‘skeleton’ operation was applied, 

which pared down objects into a pixel-wide backbone that keeps the same essential 

shape as the object (see Figure 4.16).  For instance, large circles will become single 

pixels (which have the same essential round shape), but spatially extended branching 

objects will become single-pixel wide spatially extended branching objects.  After 

this operation, the total number of pixels in each object is counted.  This procedure 

allows for quantification of the spatial extent of objects that would otherwise have the 

same number of pixels.  A representative set of skeleton sizes versus time is shown in 

Figure 4.17 A, and the average peak skeleton size of three aggregation data sets is 

shown in Figure 4.17 B.  This metric points out the difference between the data sets: 

the skeletons, and hence spatial extent, of groups of cells on BSA is larger than on 

glass, which in turn is larger than on PLL or FCC. 
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4.4. Discussion 

In this Chapter, we investigated how individual and collective migration of 

cells depends on surface adhesiveness.  Using cells in which actin polymerization is 

inhibited, we established the adhesion energy density and adhesion energy of the cell-

surface bond on each surface.  To our knowledge, the adhesion energies of 

Dictyostelium cells on substrates of varying adhesivities have not been measured 

previously.  The only previous measurement was on glass for wild-type cells and 

mutants lacking cortexillins and talin [230].  Our adhesion energy for glass (~10-6 

J/m2, Figure 4.5 A) is similar to that measured on glass for cells lacking talin (6*10-6 

J/m2) [230], an important protein that links the actin cortex to the membrane.  

Therefore, our measurements of cell-surface adhesion energies agree with other 

results to within an order of magnitude. 

Our results indicate that the adhesion energies of PLL and FCC are orders of 

magnitude higher than glass, while BSA-covered glass has adhesion energies orders 

of magnitude lower than glass.  BSA, used as a non-specific block of adhesion in 

Figure 4.15 – Montage of Aggregating Cells on Each Surface 

(From previous page) Low-magnification dark-field images of cells aggregating on 
BSA, glass, PLL, and FCC.  The initial conditions (0 min) and final conditions (6 hr) 
are similar in all images; however, the intervening dynamics are different.  Cells on 
BSA show large streams (visible at 30 min), and cells on glass show slightly smaller 
ones (30 min).  Cells on PLL and FCC at 30 min show few streams at all.  At 60 min 
and 2 hr, cells on BSA have noticeably fewer aggregation centers than cells on glass, 
which in turn has far fewer aggregation centers than cells on PLL or FCC.  Scale bar 
= 400 µm. 
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laboratory contexts, does cause the cells to adhere weakly to the surface as expected.  

Cells are able to bind to glass, but glass is negatively charged, as is the cell membrane 

(A) 

 
(B) 

 
Figure 4.16 – Illustration of Skeletonization 

To establish a metric highlighting the different aggregation dynamics on each surface, 
we chose the morphological skeletonization operation (see main text).  (A)  Dark-field 
image of a field of aggregating cells.  (B) Skeletonization (white) is shown on a 
binarized image in which all cells are gray and background is black. 
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[125].  This electrostatic repulsion will only be felt at close range, as it is screened for 

distances greater than the Debye length, which is given by [256]: 

0

0.304 nm

L

mol

D

c

λ =
 
 
 

.              (4.7) 

In our buffer (10 mM phosphate buffer, see Appendix A.1.1) the Debye length is ~3 

nm.  In fact, other studies show that for larger Debye lengths (c0 = 0.17 mM, λD ~ 25 

nm), Dictyostelium cells simply hover above a glass surface due to electrostatic 

repulsion [125].  While the close-range repulsion in our buffer may hinder spreading 

on glass, the fact that cells can closely contact glass indicate that they have adhesion 

receptors that are able to bind to negatively-charged surfaces.  PLL, a positively-

charged chain, is strongly adhesive to cells, likely due to its positive charge 

electrostatically attracting the cell membrane at close range, in addition to the 

possible action of adhesion receptors.  FCC is strongly adherent to cells as well, 

which is likely due to cell surface adhesion receptors able to bind strongly to 

hydrophobic surfaces.  There also is no electrostatic repulsion or attraction between 

the surface and the cell membrane. 

Further investigations showed that wild-type cells display a remarkable ability 

to adapt to new surfaces quickly, as they are able to cross interfaces with no change in 

speed or contact area.  The ability to adapt to new surfaces quickly has been shown in 

another amoeboid cell type [118], which increases its actin treadmilling rate to 

compensate for reduced traction on less adhesive surfaces, even in different parts of 

the same cell straddling an interface.  Our data do not discount actin treadmilling as 
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one method of adapting to a new surface, but we find that Dictyostelium cells increase 

the amount of actin in the cortex on more adhesive surfaces.  This observation 

suggests that strengthening the cortex can occur on timescales of tens of seconds, 

though further experiments could quantitatively verify this possibility.  In addition, 
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Figure 4.17 – Metric of Aggregation Dynamics 
(A) Representative time trace of mean skeleton size (see Figure 4.16) for the top 1% of 
objects in an image as a function of time.  Note the large peak in BSA, the smaller peak 
in glass, and small to no peaks in PLL and FCC.  (B) Average peak skeleton size for 3 
experiments.  The error bars indicate the standard error of the mean. 
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cells display a seeming ‘preference’ for glass surfaces over PLL surfaces when 

presented with a choice, showing that cells can ‘differentiate’ among surfaces of 

varying adhesivities while maintaining the ability to move on either.  Intuitively one 

would expect cells to ‘prefer’ the more adhesive surface, as contractile forces applied 

over the cell body would pull the cell off of the less adherent surface first.   

We conjecture that a possible mechanism explaining our unintuitive results is 

that contacting a more adhesive surface may cause a local increase in cortex tension 

due to greater spreading and the cell increasing its resistance to spreading.  Work by 

Fischer et al recently showed that endothelial cells show increased protrusion rates in 

cell locations lacking myosin II [257], suggesting that decreased local cortical tension 

may promote local protrusion.  If a cell experienced local tension differences due to 

surface adhesion, this effect could lead to protrusion in the direction of the less 

adhesive surface and hence drive a ‘preference’ for moving toward the less adhesive 

surface.  Further experiments would have to be performed to evaluate if this 

conjectured mechanism is possible in Dictyostelium.   Other work shows that 

Dictyostelium cells showed ‘preference’ when presented with changes in surface 

roughness [258] (though the mechanism is unknown), but to our knowledge such 

work has never been performed for surface adhesiveness.  

The dynamics of aggregation change based on cell-surface adhesion, with 

cells on more adhesive surfaces aggregating through a process of clumping, as 

opposed to the streaming normally seen.  We speculate that this process could be due 

to the ‘preference’ found in the interface experiment: when faced with an adhesive 

and a non-adhesive surface, cells tend to move on the less adhesive surface.  In 



 157 
 

collective migration, the strongly adhesive surfaces of PLL or FCC cause the cells to 

move on top of their neighbors instead of the surface, forming clumps that are 

attracted to other clumps through cAMP signaling.  In contrast, on BSA cells prefer to 

move on the surface instead of one another, forming long streams that have large 

amounts of cell-surface contact.  Cells moving on glass fall in between these two 

extremes.  The endpoint of aggregation, however, is governed by quorum-sensing 

factors [87], and therefore whatever collective motion the cells undergo must have the 

same endpoint.  Therefore, our findings highlight that the behavior resulting from the 

interaction of thousands of individual cells can change based on alterations in local 

rules (in our case, altering the relative strengths of cell-cell and cell-surface adhesion) 

due to environmental factors.  

In summary, Dictyostelium discoideum cells are able to regulate their cell-

surface adhesion so as to robustly migrate across various surfaces with the same 

speed, shape, and contact area, and this regulation is actomyosin-dependent.  

However, the dynamics of collective cell motion depend dramatically on cell-surface 

adhesion.  The fact that this interplay exists suggests that surfaces may have roles in 

regulating population behavior that are not readily apparent, and that understanding 

and predicting collective cell motion is not as simple as observing the motion of cells 

acting as individuals. 
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5. Discussion 

5.1. Summary 

Understanding the rules that govern collective cell behavior is a task involving 

multiple size scales: sub-cellular biochemistry and signaling pathways; cell-scale 

protrusions, adhesion, and retraction; and multicellular aggregation patterns caused 

by cells releasing a chemotactic signal.  At the scale of sub-cellular biochemistry and 

signaling pathways, stability analysis of a model of gradient sensing found that 

polarized cells are most sensitive to signals at angles of about 60 degrees relative to 

their polarization axis (Chapter 2).  This off-axis sensitivity is suggestive of the zig-

zag motion that cells during motion up a chemical gradient.  Our analysis of center-

of-mass motion showed that cells move persistently, but not ballistically, over minute 

timescales (Chapter 3).  These observations are again consistent with a zig-zag 

motion pattern.  We found that a directional signal is required to maintain this 

persistence for longer times, although it does not straighten the tracks significantly.  

Individual cells maintained this migratory ability for a range of signal strengths, as 

well as across a variety of surface adhesivities (Chapter 4).  At the multicellular scale, 

the persistent motion observed in individual cells was also found in cells moving 

collectively inside streams, indicating that streams do not speed cells up or provide 

more straightness to cell tracks.  In addition, collective cell motion depends on 

surface adhesiveness, showing that the compensation methods used by individual 

cells to move on adhesive surfaces alter collective dynamics.  Below we expand upon 



 159 
 

these findings, and we propose future directions based on the research presented in 

this thesis. 

 

5.2. Conclusions and Future Work 

5.2.1. Stability Analysis of a Model of Gradient Sensing 

In Chapter 2 we explored a theoretical model of gradient sensing applicable to 

Dictyostelium discoideum cells.   

Linear stability analysis on an initially unpolarized (quiescent) state 

demonstrated that the model was linearly stable to spatially uniform concentrations, 

but its stability to a gradient perturbation depended on the model parameters.  This 

result highlights one strength of perturbation analysis: qualitative changes in stability 

are apparent in different regions of parameter space.  In a real cell, parameters could 

potentially vary due to protein expression levels, drugs, or other factors, and thus the 

cell could respond differently to perturbations, such as signals from nearby cells.  

Therefore, adjusting the biochemical parameters of gradient-sensing may potentially 

cause a transition, for example, between states in which receptor noise is or is not 

sufficient to cause a sustained polarizing response.  In fact, recent experimental work 

by Arai et al. demonstrated that the gradient-sensing pathway of Dictyostelium can 

weakly self-organize (i.e. polarize) transiently, lasting only seconds [75].  However, 

when caffeine treated, the gradient-sensing pathway can self-organize for minutes or 

longer, even without an external gradient.  As caffeine is known to alter the activity 

of the PI3K pathway, it potentially alters the cell’s sensing parameters into a regime 

sensitive to polarization due to noise.   
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Experimental means to test predictions about responses of the signaling 

pathway are now becoming viable.  Spinning-disk confocal microscopes are able to 

image three-dimensional cells with sub-micron accuracy in seconds [259], which 

would allow for imaging of fluorescently-labeled proteins in quiescent (rounded) 

Dictyostelium cells.  Simply imaging cells at high resolution, without any external 

stimulus, would allow for testing of instability to perturbations in gradient-sensing as 

well as discovery of timescales of perturbation die-off.  If either of these methods 

were applied to cell populations, it would indicate the parameter space spanned by 

real cells.     

In Chapter 2 we also performed linear stability analysis on an initially polarized 

cell and found that the least stable mode corresponded to perturbations that were ~60 

degrees off of the axis of polarization.  This result suggested sensitivity to stimuli in 

that direction.  Therefore, we subjected our model to an external point-source 

stimulus at various distances and angles (with respect to the initial polarization) and 

found that the model responded most strongly in the 40-80 degree region.  That is, the 

angle of strongest response ‘overshot’ small-angle perturbations and ‘undershot’ 

large-angle perturbations.  This result demonstrated that for our model, linear stability 

analysis provided a good intuition about the response of the complete model.   

Testing the stability of real cells in a gradient could be performed with 

microfluidic devices able to create finely tunable gradients.  These devices allow for 

the creation of well-defined temporal and spatial chemical environments.  Combining 

these devices with confocal microscopy would allow for the testing of response to 

changing gradients, and indeed this work is currently in progress in Dictyostelium 
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[109].  Combining these two devices with photo-uncaging technology [187] could test 

the exact setup simulated with the model: an initially polarized cell exposed to pulses 

of cAMP at defined angles and distances.  Furthermore, different angles could be 

tested with a single cell, not only testing undershoot and overshoot of response but 

also probing timescale and parameter variation among different individuals.  Thus the 

technology exists to test most of the stability predictions made by this model. 

An interesting extension of the model itself would be to investigate how cell 

shape affects sensing.  Testing the model on a different geometry, e.g. one that 

mimics the shape of an elongated Dictyostelium cell, could facilitate predictions about 

the response of the model to various external stimuli as a function of aspect ratio.  

Although gradient-sensing experiments on immobilized elongated cells have not yet 

been carried out, they present an interesting test of the model’s (and any gradient-

sensing model’s) predictive power.  

An important question is how gradient sensing is coupled to cell motion.  We 

showed how the off-polarization axis sensitivity of the gradient sensing pathway is 

suggestive of actual zig-zag motion of cells in a linear gradient.  However, fully 

understanding how gradient sensing feeds into motion first requires some idea of how 

cells propel themselves.  A possible next step in studying the coupling of gradient 

sensing and motion is to track the boundaries of cells in which the gradient-sensing 

machinery has been fluorescently labeled.  This approach could illuminate the cause-

effect relationship between gradient-sensing and motion and reveal the time required 

to go from signal to protrusion.  Recent studies have indicated that signaling 

molecules localize to the membrane before protrusion and remain at the protrusion 
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site until the protrusion stops growing [109], although not all signaling molecule 

localization resulted in protrusions and not all protrusions showed signaling molecule 

localization.  In addition to purely observational experiments, researchers have 

recently created photo-activatable variants of molecules downstream of gradient-

sensing and shown that their artificial activation is able to drive localized protrusion 

in HeLa cells [260]. 

Modeling motion caused by localized generation of curvature waves in silico 

and coupling it to a steering system such as that of Chapter 2 could potentially 

produce a model that generates realistic chemotactic motion.  Such a model in turn 

would drive experiments to test predictions of the model, leading to a much greater 

understanding of the rules governing chemotaxis and cell motion in general. 

 

5.2.2. Cell-Cell Signaling and Collective Motion 

In Chapter 3 we presented quantitative analyses on cells performing collective 

migration.   

We found that cells displayed persistent, but not straight-line, motion over short 

time scales (< 3 min).  A ‘zig-zag’ type of protrusive activity (where cells extend 

pseudopods in an alternating left-right pattern [74]), is consistent with this center-of-

mass motion.  Over longer time scales the cell is unable to maintain a consistent 

direction during random migration, leading to lowered directional persistence.  

Additionally, the speed of cells did not depend on the external gradient, indicating 

that gradient-sensing does not directly drive protrusion.  These data provide guidance 

for modeling Dictyostelium motion.  Models containing intrinsic motile activity 
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which is biased by a chemical gradient match well with our data, such as that found 

by Driscoll et al. [74] or proposed by Insall’s ‘pseudopod-centric’ view of migration 

[77].   

In Chapter 3 we showed that the ability to properly steer cells to an aggregation 

center is an important effect of collective signal relay.  We found that cells are 

directed towards aggregation centers via signal relay on length scales on the order of 

millimeters (or even longer), while individual cells have size on order of 10 µm.  

Without signal relay, even a sustained source that is two orders of magnitude larger 

than what individual cells can periodically secrete (10 µM versus 100 nM [261]) only 

caused cells to aggregate over 800 µm.  Therefore, signal relay provides amplification 

to a signal source, and allows a robust response to a large range of initial signal 

strengths.  Not only is the signal relayed, but the direction of the source is also 

relayed, allowing cells to move toward an aggregation center from great distances.   

Signal relay leads to the formation of ‘streams’, which are head-to-tail chains of 

migrating cells.  Our results indicate that that the mechanical cell-cell interactions due 

to streaming did not speed them up or increase their directional persistence.  Cell 

motion was essentially the same inside and outside of streams, a finding that can 

inform streaming models.  The rules followed by agent-based models, in which cells 

are individual deformable objects obeying physical rules, are directly comparable to 

our findings for cells inside of and outside of streams.  Notably, a recent model of 

Dictyostelium aggregation indicated that cell-cell mechanical interactions in the 

streams should lead to a speeding up of cells inside [96].  Our findings show that this 

effect does not occur, and that cells inside the stream behave much like cells outside 
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the stream.  One possible change to the model is lowering the cell-cell adhesion force, 

so that cells behave more like individuals even inside a stream.   

Previous work has suggested that cells release cAMP from their posteriors 

[105], and it is possible that such a localized release would make a difference in the 

aggregation process.  In Chapter 3, we argued based on diffusion that it is plausible 

that localized release could make a difference on length scales of order 50 µm, which 

would become apparent when cells are near one another.  Combining boundary-

tracking methods, such as those of [74], with high-magnification experiments on 

aggregating cells could show that new protrusions tend to be biased in the direction of 

the backs of other cells, or toward cell-cell junctions in a stream.  If localized signal 

secretion is found to exist, models of collective motion would again have to be 

updated to reflect this reality. 

 

5.2.3. Cell-Surface Adhesion 

Chapter 4 described experiments in which cell-surface adhesion was varied 

through changes in surface properties.   

We used cells in which actin polymerization was pharmacologically disabled to 

calculate the adhesion energy of the cell-surface bond for each surface, and we found 

that the adhesion energies spanned nine orders of magnitude.  We investigated the 

response of individual cells to these surfaces, first by using cells that were genetically 

modified so as to exert little contractile force.  In comparison to cells lacking actin 

polymerization, these cells showed increased contact area on less adhesive surfaces 

and equal or less contact area on more adhesive surfaces.  This result highlights the 
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role that actin-based protrusion and cortex stability have in regulating contact with 

surfaces of very different adhesivities.   

Future work could improve on quantifying cell-surface adhesion on various 

surfaces.  Setups currently exist that could conduct these experiments, the simplest 

being a combination of a microfluidic flow chamber with an inverted microscope 

[230].  This setup allows for imaging of contact area for a given shear flow, and could 

test adhesion energies for wild-type cells and other mutants.  The adhesion energies 

for other commonly used surfaces for migration could also be tested, such as plastic 

or collagen, in order to better understand cell-surface interactions.   

Surprisingly, wild-type cells were able to adapt to the different surfaces so as to 

maintain consistent contact area, speed, and elongation.  F-actin staining indicated 

that this capability was established through adhesion-dependent strengthening of actin 

polymerization on more adhesive surfaces.  This effect should impart mechanical 

stability to resist spreading as well as an increase in actomyosin-based contractile 

ability to allow proper regulation of detachment.  Combined with findings from 

Chapter 3, we found that Dictyostelium cells have remarkable motile machinery that 

is able to move under many different conditions, such as high/low adhesive surfaces, 

weak/strong chemical signals, and inside/outside streams.  In fact, recent work by 

Barry and Bretscher has shown that Dictyostelium can even swim [262], indicating 

that the ability to ‘go’ remains robust in a wide variety of situations.   

We found that cells were able to adjust to a new surface in times on the order of 

1 minute.  When presented with two different surfaces, they were able to move from 

less adhesive surfaces to more adhesive ones, and vice versa; however, they displayed 
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a tendency to move toward the less adhesive surface.  In effect, the cells showed a 

‘preference’ for the less adhesive surface.  To further elucidate how cells adapt to 

new surfaces, fluorescently-tagged actin would allow for live-cell imaging, and the 

kinetics of actin regulation for cells crossing an interface could be found.  Another 

possibility would be to create interfaces between other surfaces, such as BSA and 

PLL, so that cells would cross between extreme surface adhesivities.  This experiment 

would accentuate the necessary adaptation needed by a cell when crossing to a new 

surface. 

Intriguingly, although individual wild-type cells showed no phenotype on any of 

the surfaces, populations of aggregating cells did show phenotypic change based on 

the adhesive properties of the surface.  On less adhesive substrates, cells tended to 

form elongated streams that led to stable aggregation centers; in contrast, cells on 

more adherent surfaces formed small clumps, and these clumps gradually coalesced 

into larger and larger aggregates.  The final aggregates formed in either case were of 

similar sizes, indicating the robustness of the process.  The fact that the emergent 

collective behavior depended on an environmental property, but individual behavior 

did not, is an interesting outcome of how cells regulate their motility.   

Results of the cell-surface adhesion studies suggest tests of models of cell 

motion.  In Dictyostelium, the characteristic biphasic dependence of speed on 

adhesion (see Introduction) does not seem to hold, at least for a wide range of 

adhesion energies.  Future models of motion should reproduce the relative 

independence of the motion cycle on adhesion ability. Similarly, mathematical 

models of collective Dictyostelium motion may need alteration, as they are generally 
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tuned to produce streaming behavior.  It remains to be seen whether the cell-cell to 

cell-surface adhesion ratio can be changed to influence the transition between 

streaming or clumping aggregation dynamics.   
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A. Appendix: Experimental and Computational Methods  

Portions of this chapter are adapted from [73, 74, 188]. 

A.1. Experimental Methods 

A.1.1. Cell Culture 

Wild-type (WT) Dictyostelium discoideum (strain AX3), adenylyl cyclase A 

null (aca
-) mutant cells (in an AX3 background), and myosin-II null cells (myoII

-) (in 

an Ax3 background) were grown in HL-5 medium in exponential phase to 4-5*106 

cells/ml [263]. For experiments, cells were developed for 4.5 (WT) or 5 hrs (aca
-) in 

development buffer [pH 6.2] (DB; 5 mM NaH2PO4, 2 mM MgSO4, and 0.2 mM 

CaCl2) at 2*10
7 cells/ml, with exogenous pulses of 75 nM cAMP every 6 min as 

previously described [264]. Where specifically mentioned, either a fraction of the 

cells or all cells were fluorescently labeled by adding 25 µM CellTracker Green 

CDMFA (Invitrogen) to cells and shaking for 30 min as previously described [265].  

Experiments requiring Latrunculin A (Invitrogen) treatment involved resuspending 

cells in 5 µM Latrunculin A for five minutes before placing them in a chamber, in 

which the buffer also contained the same concentration of Latrunculin A. 

 

A.1.2. Microscopy 

Low-magnification (2.5-10X) cell imaging was performed on a Zeiss Axiovert 

S100 microscope (Carl Zeiss AG, Oberkochen, Germany) equipped with a CoolSnap 
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HQ CCD camera (Roper Scientific) and an automated moveable stage, using a 2.5X 

(NA 0.075), 5X (NA 0.16), or 10X (NA 0.3) objective.  For 4X images a 1.6X optivar 

was used with the 2.5X objective.  IPLab (Scanalytics, Fairfax, VA) or Axiovision 

(Zeiss) software was used to operate the microscope and camera.  Fluorescent light 

was provided by a FluoArt mercury lamp with appropriate optical filters.  Phase-

contrast microscopy was used in all non-fluorescent imaging.  Phase-contrast imaging 

was adjusted so that objects (cells and streams) appeared bright on a black 

background (dark-field microscopy), providing sufficient contrast for automated 

tracking routines to easily identify objects.  Individual dark-field frames were taken 

every 10 seconds for recording individual cell motion metrics, or every 3 minutes for 

recording population behaviors, for at least 90 minutes.  If fluorescent imaging was 

used, an interleaved fluorescent image was captured every 30 seconds. 

 Interference reflection microscopy (IRM; also known as Reflection 

Interference Contrast Microscopy, RICM) is a microscopy technique that indicates 

the distance of an object from the surface.  As shown in Figure A.1, when a cell is in 

close contact with the coverslip, the reflecting light rays interfere destructively, 

showing up as a darkened area (see Chapter 4 for sample IRM images).  The 

grayscale values of the reflections can be used to quantify the distance of the cell 

from the coverslip, though that was not done in this thesis.  IRM was performed on a 

Zeiss Meta 510 microscope with a 40X (NA 1.3) objective.  A HeNe laser provided 

the excitation line of 488 nm, which was then imaged in three channels: transmitted 

light, > 510 nm (for CellTracker or FITC-labeled surface signature) and < 510 nm 

(for IRM signature).  Images were acquired every 2 or 4 seconds. 
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For contact area and cell polarity experiments, fluorescence, bright-field, and 

internal reflection microscopy (IRM) images were captured with the same 

illumination, using the 40× objective, every 2 or 4 seconds. For the remaining 

experiments, fluorescence images were obtained every 4 seconds. 

F-actin labeling experiments were carried out with the following protocol.  Cells 

were fixed by adding 200 µL of 2X fixation stock (4% formaldehyde, 0.4% 

glutaradehyde, Triton) and 100 µL of 20 µM TRITC phalloidin stock to each well, 

incubating for 30 minutes under aluminum foil, and rinsing 5 times in PBS buffer (pH 

7.2) with Tween 20.   

 

 

 
Figure A.1 – Schematic of Interference Reflection Microscopy (IRM) 

 
A light ray enters the sample area from below, where there is a reflection at the glass-
buffer interface (r1).  If a cell is present, the incoming light is further reflected at the 
buffer-cell interface (r2), and the phase is shifted by 180 degrees.  Therefore, when 
the two reflections interfere, a small glass-cell distance results in nearly perfectly 
destructive interference, thus darkening areas of close cell-glass contact.  The 
reflected light is collected via a CCD camera.  Image adapted from [266].  Note that 
ray refractions are not to scale. 
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A.1.3. Surface Preparation 

For most experiments Lab-Tek eight-chamber slides (Lab-Tek, Nunc, NY) were 

used.  Each chamber had 400 µL of 1 M HCl placed inside for 15 minutes and were 

then rinsed three times with deionized water.  For Bovine Serum Albumin (BSA) 

(Sigma) or poly-L-lysine (PLL) (Sigma), 1% w/v solutions were placed inside for 

four hours.  For perfluorinated carbon chain coating (FCC), tridecafluoro-1,1,2,2-tetra 

hydrooctyl dimethyl chlorosilane (Gelest SIT8170.0) was allowed to vapor deposit on 

a dry chamber for four hours in an evacuated vacuum chamber.  After coating, 

surfaces were washed three times with deionized water to prepare for use.  Static 

contact angles were measured with 5 µL drops of water with a goniometer.  The 

angles for BSA, glass, Poly-L-Lysine, and FCC were ~10°, 45°, 30°, and 120°, 

respectively. 

 For experiments with a glass-poly-L-lysine interface, Lab-Tek two-chamber 

slides were used.  Slides were acid-washed as described above.  Ibidi 2-chamber 

insert with an adhesive bottom (Ibidi, Munchen, Germany) were then placed into dry 

chambers.  One chamber in the insert was filled with 1% w/v FITC-Poly-L-Lysine 

(Invitrogen) for four hours, aspirated, and then rinsed three times with deionized 

water.  Any surface not immediately used was placed in a 4° Celsius refrigerator for 

less than three days before use. 

 
 

A.1.4. Other Assays 

In all experiments, cells were taken from development and centrifuged at 9000 

rpm for 4 min using an Eppendorf microfuge.  The supernatant was aspirated and the 
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pellet was washed twice with phosphate buffer (PB; 5 mM Na2HPO4, 5 mM 

NaH2PO4 [pH 6.2]). For density and fluid height self-aggregation studies, cells at the 

stated concentration were plated onto Lab-Tek eight-chamber slides (dimensions: 7.5 

mm width, 7.5 mm length, 11 mm height) and allowed to adhere for 5 min. A precise 

volume of PB was added to achieve the final fluid height. The presence or absence of 

streams was scored by identifying head-to-tail chains of several cells (~10) in length. 

For micropipette migration assays, cells at a density of ~40 µm between cells (700 

cells/mm2) were plated onto Lab-Tek two-chamber slides, allowed to settle for 5 min, 

and 1.5 ml PB was added to reach the final volume. An Eppendorf Femtojet system 

(Eppendorf, Hamburg, Germany) was used to continuously release cAMP from a 

Femtojet I micropipette at a pressure of 80 hPa as previously described [105]. At the 

onset of experiments, a short pulse of high pressure was applied to ensure proper 

working of the pipette during the course of the experiment.  CellTracker 

concentration and light exposure were minimized and the speeds of fluorescent and 

non-fluorescent cells in the same experiment were identical (data not shown).  

The shaking adhesion assay was performed as follows.  300 µL with 5e5 cells 

were allowed to settle in an 8-well Lab-Tek chamber (1 cm2 surface area) treated with 

a given surface coating for 15 minutes.  The buffer was replaced to eliminate non-

adherent cells.  The cells were then placed on an orbital shaker with a 1 cm radius of 

gyration at 200 rpm.  After 15 minutes, the buffer was aspirated, and the number of 

cells in the supernatant was counted with a hemocytometer.  Finally, buffer was 

added to the chamber and repeatedly aspirated, and the number of cells in this buffer 
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was counted with a hemocytometer.  The surfaces were visually inspected on a 

microscopy to ensure that few cells remained after this aspiration.   

 

A.2. Computational Methods 

A.2.1. Gradient-Sensing Model Simulation 

 The original implementation of the model was programmed using C, but the 

version presented here was developed using Python.  Specifically, FiPy [267], a finite 

volume partial differential equation solver developed at the National Institute of 

Standards and Technology (NIST, Gaithersburg, MD), was used for simulations of 

the system, finding steady-state values, and solving the equations in the presence of 

the point source stimulus.  SciPy [171], an open-source scientific toolkit for Python, 

was used to find all of the eigenvalues and their corresponding eigenvectors. 

 
 

A.2.2. Center-of-Mass Image Processing and Tracking Algorithm 

Images were binarized using ImageJ software [268].  For phase contrast images, 

the background was subtracted using a rolling ball algorithm and the remaining image 

thresholded.  For fluorescent images, bandpassing and thresholding were performed. 

To identify the position of cells in each frame and track the motion of fluorescent 

cells from frame to frame, a publicly available algorithm was used [269]. 

Identification of cells in phase-contrast images as well as tracking was carried out 

using custom Matlab code (explained below). This procedure allowed for fully 

automated cell tracking, as the software kept track of individual cells and only 
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counted those cells in the statistics that were not part of a larger group.  No subjective 

measures were used to include or exclude specific cells from the population analyses. 

In order to track the individual motions of cells in a large population, custom 

image analysis routines had to be developed, as most standard particle tracking 

routines fail in this situation.  Specifically, cells can deform their shape and merge 

with other cells, breaking the assumptions held by particle-tracking algorithms.  In 

addition, many of the pre-processing steps (such as bandpass filtering) fail to identify 

the objects in an image, as cells in streams present objects that can vary in size up to 

the order of the image size.  Therefore, a new method was used, described below and 

shown in Figure A.2. 

In brief, objects of any size greater than a noise threshold (typically on the order 

of 4 pixels for a low-magnification image) were identified.  Objects that overlapped 

from frame to frame one a one-to-one basis were considered to be the same object.  If 

multiple objects in one frame merged in the next, a merge event was documented, and 

the number of cells in the resultant object was stored.  If one object in a frame split 

into multiple objects in the subsequent frame, a split event was documented, and the 

number of cells in the splitting object was stored.  If an object was considered to be 

too large to be a single cell, a guess of the number of cells in that object was stored.  

By combining data on merges, splits, and sizes in a data set, objects that were 

individual cells were identified.  The center-of-mass translocation data of these 

objects were the only ones used in generating statistics of single cells. 
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A.2.3. Cell Metrics 

Cell centroids were calculated by finding the center-of-mass of individual 

objects in the binarized images. These positions were then smoothed using a 3-frame 

(30 sec) unweighted sliding window – a time that corresponds to a distance of about 

1.5 pixel (at 4X magnification), comparable to the uncertainty of our tracking 

algorithm at this lowest resolution (see below).   For fluorescent images, no 

smoothing was performed, as the time between frames was already 30 secs.   

Frame N Frame N+1 Event 

  

Motion 

  

Split 

  

Merge 

Figure A.2 – Explanation of the Cell Tracking Algorithm 

 
Illustration of the cell tracking algorithm.  The position of an object in frame N (left; 
shown in green) is compared to the overlapping objects in frame N+1 (right; shown in 
green; object in frame N is shown in dotted outline).  If one object overlaps (top row), 
then the object has moved.  If an object is now overlapped by two (middle row), then 
a split occurred, and we mark the original object as a group (i.e. composed of more 
than one cell).  If two objects are now overlapped by one (bottom row), a merge 
occurred, and we mark the new object as a group. 



 176 
 

Velocities were determined by finding the displacement between smoothed 

center positions in each frame: ( , ) = ( ) ( )i i iu t i x t x t t− −∆
r r r

, where ( )ix t
r

is the smoothed 

centroid of cell i at time t, and t∆  is the time between frames. Velocity was only 

counted in averages during a timeframe in which cells had a net displacement of 20 

µm over a 5 min period. This procedure reduced noise and eliminated the 

contribution of cells that essentially moved in place. After a non-fluorescent cell 

touched another cell or entered a stream it was ignored, and speeds of streams or 

other cell groups were not computed.  Errors in finding cell centers are presumed to 

be ≤ 1 pixel in x and y, and therefore overall xδ v  ≤ 1.4 pixels. This distance 

corresponds to less than 4.4 µm (at 4X magnification), 3.5 µm (5X), or 1.8 µm (10X).  

Using smoothed centers presumably reduced this uncertainty further.   

The mean squared displacement (MSD) gives a measure for the type of motion 

displayed by cells, and is computed as ,MSD( ) ( ) ( )i i t ix t x tτ τ= 〈 − − 〉
r r

, where the 

brackets indicate averages over all times t and all cells i. Unlike the calculation of 

velocities, cells were only counted if they had a net displacement of 20 µm over the 

entire cell track. Otherwise, the (stricter) criteria used in calculating velocity 

introduced an artificial persistence over short timescales. We also note that MSDs 

that were smaller than the noise value, considered to be one pixel, were ignored. The 

MSD values were assumed to locally take the form MSD( ) *C ατ τ= . The exponent 

α gives the information about the type of motion that the cell displays: α=1 defines 

diffusive motion, 1<α<2 is superdiffusive motion, and α=2 is straight-line motion. 
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The instantaneous chemotactic index (CI) for cell i at time t is defined as 

ˆCI( , ) = [ ( ) ( )] / ( ) cos[ ( )]i i i it i u t r t u t tθ=
r r

o  , where ˆ ( )ir t is the unit direction vector from 

cell i to the pipette at time t and ( )i tθ  is the angle between cell i’s motion vector at 

time t and the vector pointing to the pipette. With this definition, CI = 1 means a cell 

is moving directly towards the pipette, CI = 0 means a cell is moving perpendicular to 

the direction to the pipette, and CI = 1−  means a cell is moving directly away from 

the pipette. 

Signal recruitment range for non-streaming cells was computed by first binning 

the instantaneous CI of cells in all frames based on distance from the pipette. These 

indices were then averaged for each bin. When the average CI for a bin was above a 

certain threshold (0.1), that bin was considered to be directed toward the pipette. The 

distance from the pipette to the farthest bin above the threshold was considered to be 

the ‘signal range’ of the pipette. 

Polarization, a measure of object elongation, is given by  

2

4

P

A
ε

π
=               (A.1) 

where P is the object perimeter and A is the object area.  This definition of ε means 

that polarization is 1 for a circle and greater than 1 for other objects, with larger 

values corresponding to more elongated objects. 
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A.2.4. Use of Algorithms 

This section explains the use of the tracking software developed during the 

research presented in this thesis.  Note that the software package itself comes with a 

README.TXT file that contains much of the following information, and each 

function’s usage and logic is commented inside each function file.  This software was 

developed to be run on MATLAB, a matrix-based scientific computing programming 

language.  All software runs on version R2009a (and potentially older versions) and 

requires the ‘Image Analysis’ toolbox.  Note that all functions listed below have a 

very thorough commented header explaining their use.  Type ‘help (function)’ or 

‘doc (function)’ at the MATLAB command line to view these comments. 

PIV capabilities require the mpiv toolbox to be in a subdirectory called 'mpiv'.  

This toolbox requires access to the DACE tools.  The mpiv toolbox can be found 

here: http://www.oceanwave.jp/softwares/mpiv/. 

Running the analysis suite (specifically, the file ‘makeInitialize.m’) creates a 

directory structure, where each subdirectory contains organized files corresponding to 

each function’s output.  This output can then later be retrieved by the user (so that the 

function does not have to be run again) and is used automatically by subsequent 

functions.  Specifically, the directory structure is the following: 

‘Image Directory’: the directory containing the original images 

‘Image Directory/data’: directory containing MATLAB-readable files written 

by each function 

‘Image Directory/figures’: directory containing MATLAB figures written by 

functions that generate plots 
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‘Image Directory/movies’: contains JPEG-compressed or uncompressed AVI 

files written by functions that generate movies 

‘Image Directory/temp’: contains temporary files that are deleted when read 

 

A.2.4.1 Quick Start: Go from Images to Single Cell Statistics 

1. Convert your images to WHITE cells on a BLACK background (using 

ImageJ or another program).  Save these files as individually named 

UNCOMPRESSED files (e.g. 'tif' files) in a directory. 

2. In MATLAB, change to the directory with all the Cell Tracking program 

files. 

3. Edit 'defaultParameters.m' (e.g. type 'open defaultParameters.m') and make 

sure 

   --->  baseDirectory = 'Your Directory Here'; 

 --->  parameterSet = 1; 

 Then save the file. 

4. At the MATLAB prompt, type  

 ---> makeInitialize;         

 Follow the on-screen commands.  If you do not know the pixel size or frame 

rate, just type '1' for those values and remember that they are in pixels and frames! 

5. At the MATLAB prompt, type 

 ---> makeRegions; 

6. At the MATLAB prompt, type 

 ---> makeTracks; 
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7. At the MATLAB prompt, type 

 ---> makeVelocities; 

 Follow the on-screen commands.  I recommend a smoothing window of 3. 

8. At the MATLAB prompt, type 

 ---> plotVelocityStatistics; 

 Follow the on-screen prompts and you're done! 

 

To make a movie with your tracks, type 

---> plotTracksMovie  

from the command prompt.  Follow the on-screen instructions! 

 

To make the data from a figure into a Microsoft Excel (tm) readable file, click 

on the figure, then type 

---> dumpFigureToExcel 

which will create a file that Excel (tm) can open. 

 

A.2.4.2 A More Thorough Explanation 

Here is a list of all the functions available.  Every function marked with a 

bullet requires that all previous bulleted functions have been run.  All functions 

marked with a check require that all previous bulleted (but not checked) 

functions have been run. 

FOR SINGLE CELL TRACKS: 
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• Edit 'defaultParameters' to set up the image directory and the parameter set 

number.  This must be properly done before running ANY of the programs below. 

• Run 'makeInitialize' to interactively set up the analysis process. 

• Run 'makeRegions' to threshold and find objects in the original image sequence. 

• Run 'makeTracks' to identify cells by joining the objects from frame to frame to 

create cell tracks. If interrupted, run with second argument as 'true' to resume 

tracking where it left off. ALTERNATIVE: run 'makeManualTracks' to identify 

tracks by hand.  Does not identify groups.  ALTERNATIVE: run 

'makeSimpleTracks' for sparsely-populated data that move a lot from frame to 

frame.  Does not identify groups. 

� Run 'plotTracksMovie' to make a movie showing the cells and all the 

tracks 

� Run 'plotSingleTracksMovie' to make a movie showing single cells' 

motion 

� Run 'plotTracksDiagram' to make a figure showing all single tracks 

starting from the origin 

� Run 'plotMSDs' to show MSD and logarithmic derivative (alpha) values 

for the tracks. 

� Run 'findTrackedDensity' to find the number of cells and surface density 

in a given frame 

• Run 'makeVelocities' to smooth position information and calculate velocities 

� Run 'plotVelocityStatistics' to plot all sorts of information about the cell 

population 
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� Run 'plotGradientStatistics' to see how well cells move up an IMAGED 

gradient. 

� Run 'plotSingleStatistics' to plot statistics for individual cells. 

• Run 'makeTrackSync' to synchronize a brightfield and fluorescent data set    

 

FOR CELL FIELDS USING PIV (Particle Image Velocimetry): 

• Edit 'defaultPIVParameters' to set up the image directory and the parameter set 

number.  This must be properly done before running ANY of the programs below. 

• Run 'makePIVInitialize' to interactively set up the analysis process. 

• Run 'makePIV' to run the PIV.  This may take a while... 

� Run 'plotPIVMovie' to make a movie with the PIV overlaid on the original 

images. 

� Run 'plotPIVCI' to find the chemotactic index of the cell field 

 

MISCELLANEOUS FILES: 

Run 'findUntrackedDensity' to find the cell density in an image.  A rough 

estimate, at best. 

 

A.2.4.3 File-by-file Explanation 

THE MEANING OF NAMES: 

o do_____.m -> generally an internal function, not for external use. 

o make_____.m -> does grunt work of doing the basic image analysis and setting 

up variables 
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o find_____.m -> will do some sort of analysis that gives a single-line answer 

o plot_____.m -> does more advanced analysis, plots and saves the results (as well 

as the plots) 

o qad_____.m -> stands for 'quick and dirty', is a one-shot (temporary) file doing 

some analysis quickly.  Untested, undocumented  

o recover_____.m -> for manual-input programs, this picks up if the process was 

interrupted. 

o view______.m -> view the output of a 'make' function.  Doesn't necessarily save 

anything. 

 

ALPHABETICAL LIST OF FUNCTIONS 

o doGetGoodTracks - return a list of tracks that matches user-specified criteria 

o doGradientCenter - prompt the user to identify sources of chemoattractant. 

o doInsideROI - takes an ROI and tracks, and returns the rows that are inside the 

ROI 

o doMSD - returns the MSD and MSD log-log slopes for a set of input tracks 

o doPlotError - takes a structure and performs errorbar() on various values of that 

structure 

o doPlotLog - takes a structure and performs loglog() on various values of that 

structure 

o doPlotStats - takes a structure and performs plot() on various values of that 

structure 
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o doRegions - takes a grayscale image and ROI and return an appropriately 

thresholded image 

o doROI - return a user-selected Region of Interest (ROI) 

o findTrackedDensity - finds the cell surface density in a particular frame 

o findUntrackedDensity - takes an image file, binarizes it, and guesses at the cell 

surface density 

o InvertIm  - inverts an arbitrary image.  Written by Stead Kiger - see the HELP for 

this funciton. 

o makeInitialize - begins the analysis process and sets up the subdirectory structure 

o makeManualTracks - make cell tracks, by hand.  Requires patience and 

perseverance, and does not identify groups. 

o makePIV - does the grunt work of making velocity matrices from input images. 

o makePIVInitialize - begins the analysis process and sets up the subdirectory 

strucutre 

o makeRegions - makes thresholded images from the input images 

o makeSimpleTracks - makes tracks by combinatorially matching region centers.  

Use for sparsely populated images. 

o makeTracks - identifies cells, groups, numbers in each group, etc.  The main 

workhorse.  Can also resume if interrupted. 

o makeTrackSync - synchronize a brightfield and fluorescent data set 

o makeVelocities - takes track position information and calculates velocities 

o plotMSDs - plots MSD and the logarithmic derivative (alpha) for a set of tracks 
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o plotPIVCI - analyzes the PIV movie in the context of cells moving up a 

chemoattractant gradient 

o plotPIVMovie - makas a movie overlaying the PIV analysis on top of the original 

data 

o plotSingleStatistics - plots statistics of individual cells. 

o plotSingleTracksMovie - plots zoomed-in movie of single tracks  

o plotTracksDiagram - makes a plot showing the tracks of all cells, where each cell 

starts at the origin 

o plotTracksMovie - make a movie of moving cells.  All sorts of settable options. 

o plotVelocityStatistics - plots various statistics of a cell population 

o track - Implementation of Weeks's tracking algorithm.  See file for contact info 

and other information. 
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