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Abstract 

This paper surveys the contributions and applications of queuing theory in the field of 

healthcare.  The paper summarizes a range of queuing theory results in the following areas: 

waiting time and utilization analysis, system design, and appointment systems.  The paper also 

considers results for systems at different scales, including individual departments (or units), 

healthcare facilities, and regional healthcare systems.  The goal is to provide sufficient 

information to analysts who are interested in using queuing theory to model a healthcare process 

and want to locate the details of relevant models.   

Introduction 

The organizations that care for persons who are ill and injured vary widely in scope and 

scale, from specialized outpatient clinics to large, urban hospitals to regional healthcare systems.  

Despite these differences, one can view the healthcare processes that these organizations provide 

as queuing systems in which patients arrive, wait for service, obtain service, and then depart.  

The healthcare processes also vary in complexity and scope, but they all consist of a set of 

activities and procedures (both medical and non-medical) that the patient must undergo in order 

to receive the needed treatment.  The resources (or servers) in these queuing systems are the 

trained personnel and specialized equipment that these activities and procedures require. 
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A considerable body of research has shown that queuing theory can be useful in real-

world healthcare situations, and some reviews of this work have appeared.  McClain (1976) 

reviews research on models for evaluating the impact of bed assignment policies on utilization, 

waiting time, and the probability of turning away patients.  Nosek and Wilson (2001) review the 

use of queuing theory in pharmacy applications with particular attention to improving customer 

satisfaction.  Customer satisfaction is improved by predicting and reducing waiting times and 

adjusting staffing.  Preater (2002) presents a brief history of the use of queuing theory in 

healthcare and points to an extensive bibliography of the research that lists many papers 

(however, it provides no description of the applications or results).  Green (2006a) presents the 

theory of queuing as applied in healthcare.  She discusses the relationship amongst delays, 

utilization and the number of servers; the basic M/M/s model, its assumptions and extensions; 

and the applications of the theory to determine the required number of servers.   

This paper surveys the contributions and applications of queuing theory in the field of 

healthcare.  The reviews mentioned above focus on presenting mathematical models or limit 

their scope to a single type of application.  This paper, however, seeks to show the applicability 

of queuing theory from the perspective of healthcare organizations.  Thus, this paper summarizes 

a range of queuing theory results in the following areas: waiting time and utilization analysis, 

system design, and appointment systems.  This covers processes that provide direct patient 

treatment and processes that provide auxiliary services such as pharmacy and medical laboratory 

processing.  The paper also considers results for systems at different scales, including individual 

departments (or units), healthcare facilities, and regional health systems.  The goal is to provide 

sufficient information to analysts who are interested in using queuing theory to model a 
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healthcare process and want to locate the details of relevant models.  We assume that the reader 

is familiar with healthcare organizations and the basic concepts of queuing theory. 

This survey covers analytical queuing theory models applied directly to healthcare 

systems.  It is reasonable for an analyst to understand, adapt, and apply such a model to his own 

situation.  Because they require specialized software and the details of the simulation model are 

usually unknown, this paper does not review simulation studies of healthcare processes. 

Queuing models and simulation models each have their advantages.  It is clear that 

queuing models are simpler, require less data, and provide more generic results than simulation 

(see also Green, 2006a).  However, discrete-event simulation permits modeling the details of 

complex patient flows.  Jacobson et al. (2006) present a list of steps that must be done carefully 

to model each healthcare scenario successfully using simulation and warn about the slim margins 

of tolerable error and the effects of such errors in lost lives.  Tucker et al. (1999) and Kao and 

Tung (1981) use simulation to validate, refine or otherwise complement the results obtained by 

queuing theory.  Albin et al. (1990) show how one can use queuing theory for get approximate 

results and then use simulation models to refine them.  We will not explore simulation studies 

further in this paper. 

Spreadsheets and software tools based on queuing theory research can automate the 

necessary calculations.  For example, Albin et al. (1990) use the QNA software, which calculates 

the time that patients are in a multi-node network, server utilization, the mean and variance of the 

number of customers at each node, the mean and variance of waiting time at each node, the mean 

and variance of the number of customers in the network, and the proportion of customers at each 

node that arrived from other nodes.  Aaby et al. (2006) describe the use of spreadsheets to 

implement queueing network models of mass vaccination and dispensing clinics.  However, the 
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authors are not aware of any other software that is specifically designed to analyze queuing 

models of healthcare processes. 

The next section (“Waiting time and Utilization Analysis”) is an overview of research 

into using queuing theory as an analytical tool to predict how particular healthcare configurations 

affect delay in patient service and healthcare resource utilization.  The “System Design” section 

reviews research of a prescriptive nature that seeks to determine the optimal allocation of 

resources necessary to attain the goals determined by healthcare providers and decision makers.  

In “Appointment Systems” we look at applications to appointment scheduling where the main 

challenge is reducing patient waiting without greatly increasing server idleness.  The “System 

Size” section considers results for systems of different scales.  The paper ends with some 

observations about the use of queuing theory and suggestions for future research. 

Waiting Time and Utilization Analysis 

In a queuing system, minimizing the time that customers (in healthcare, patients) have to 

wait and maximizing the utilization of the servers or resources (in healthcare, doctors, nurses, 

hospital beds, e.g.) are conflicting goals.   

Reneging 

When a patient is waiting in a queue, he may decide to forgo the service because he does 

not wish to wait any longer.  This phenomenon, called reneging, is an important characteristic of 

many healthcare systems.  The probability that a patient reneges usually increases with the queue 

length and the patient’s estimate of how long he must wait to be served.  In systems where 

demand exceeds server capacity, reneging is the only way that a system attains a “state of 

dysfunctional equilibrium” (Hall et al., 2006). 
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An important example of such a system is an emergency department.  Broyles and 

Cochran (2007) calculate the percentage of patients who leave an emergency department without 

getting help using arrival rate, service rate, utilization, capacity.  From this percentage, they 

determine the resulting revenue loss.   

It is possible to redesign a queuing system to reduce reneging.  A common approach is to 

separate patients by the type of service required.  Roche et al. (2007) find that the number of 

patients who leave an emergency department without being served is reduced by separating non-

acute patients and treating them in dedicated fast-track areas.  Most of their waiting would be for 

tests or test results after having first seen a doctor.  The paper also estimates the size of the 

waiting area for patients and those accompanying them. 

Variable Arrival Rate 

Although most analytical queuing models assume a constant customer arrival rate, many 

healthcare systems have a variable arrival rate.  In some cases, the arrival rate may depend upon 

time but be independent of the system state.  For instance, arrival rates change due to the time of 

day, the day of the week, or the season of the year.  In other cases, the arrival rate depends upon 

the state of the system.   

A system with congestion discourages arrivals.  Worthington (1991) suggests that 

increasing service capacity (the traditional method of attempting to reduce long queues) has little 

effect on queue length because as soon as patients realize that waiting times would reduce, the 

arrival rate increases, which increases the queue again.  Worthington (1987) presents an 

M(λq)/G/S model for service times of any fixed probability distribution and for arrival rates that 

decrease linearly with the queue length and the expected waiting time. 
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The arrival rate may increase over time due to population growth or other factors.  

Rosenquist (1987) studies how an increase in patient arrival rate affects waiting times and queue 

length for an emergency radiology service. 

Priority Queuing Discipline 

In most healthcare settings, unless an appointment system is in place, the queue discipline 

is either first-in-first-out or a set of patient classes that have different priorities (as in an 

emergency department, which treats patients with life-threatening injuries before others). 

McQuarrie (1983) shows that it is possible, when utilization is high, to minimize waiting 

times by giving priority to clients who require shorter service times.  This rule is a form of the 

shortest processing time rule that is known to minimize waiting times.  It is found infrequently in 

practice due to the perceived unfairness (unless that class of customers is given a dedicated 

server, as in supermarket check-out systems) and the difficulty of estimating service times 

accurately. 

When arriving patients are placed in different queues, each of which has a different 

service priority, the queue discipline may be preemptive or non-preemptive.  In the latter, low 

priority patients receive service only when no high priority patients are waiting, but the low 

priority patient who is receiving service is not interrupted if a high priority patient arrives and all 

servers are busy.  In the preemptive queue discipline, however, the service to a low priority 

patient is interrupted in this event.  Green (2006a) presents models for both queue disciplines. 

Siddhartan et al. (1996) analyze the effect on patient waiting times when primary care 

patients use the Emergency Department.  They propose a priority discipline for different 

categories of patients and then a first-in-first-out discipline for each category.  They find that the 
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priority discipline reduces the average wait time for all patients: however, while the wait time for 

higher priority patients reduces, lower priority patients endure a longer average waiting time. 

Haussmann (1970) investigates the relationship between the composition of prioritized 

queues and the number of nurses responding to inpatient demands.  The research finds that slight 

increases in the number of patients assigned to a nurse and/or a patient mix with more high-

priority demands result in very large waiting times for low priority patients. 

Worthington (1991) analyzes patient transfer from outpatient physicians to inpatient 

physicians.  The patient is assigned one of three priority levels.  Based on the priority level, there 

is a standard time period before which a referred patient should be scheduled to see the inpatient 

physician.  The model assumes sufficient in-patient capacity to treat the highest priority category 

within its standard time, and proposes sharing the remaining service capacity amongst the lower 

priority levels in such a manner that they each exceed their standard target times by the same 

percentage. 

Taylor et al. (1969) model an emergency anesthetic department operating with priority 

queuing discipline.  They are interested in the probability that a patient would have to wait more 

than a certain amount of time to be served. 

Fiems et al. (2007) investigate the effect of emergency requests on the waiting times of 

scheduled patients with deterministic processing times.  It is a preemptive repeat priority queuing 

system in which the emergency patients interrupt the scheduled patients and the latter’s service is 

restarted as opposed to being resumed.  This paper models a single server queue and divides time 

into equally long slots (discretizing time).  Periods of emergency interruptions are considered to 

have no server available from the point of view of the scheduled patients (vacation).  The result 

is a discrete-time queuing model with exhaustive vacations. 
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Blocking 

Blocking occurs when a queuing system places a limit on queue length.  For example, an 

outpatient clinic may turn away walk-in patients when its waiting room is full.  In a hospital, 

where in-patients can wait only in a bed, the limited number of beds may prevent a unit from 

accepting patients.  McManus et al. (2004) present a medical-surgical Intensive Care Unit where 

critically ill patients cannot be put in a queue and must be turned away when the facility is fully 

occupied.  This is a special case where the queue length cannot be greater than zero, which is 

called a pure loss model (see Green, 2006a, for more details). 

Koizumi et al. (2005) find that blocking in a chain of extended care, residential and 

assisted housing facilities results in upstream facilities holding patients longer than necessary.  

They analyze the effect of the capacity in downstream facilities on the queue lengths and waiting 

times of patients waiting to enter upstream facilities.  System-wide congestion could be caused 

by bottlenecks at only one downstream facility. 

System Design 

Because patient waiting is undesirable, limiting waiting times is an important objective 

when designing a healthcare system.  This section reviews work on determining system capacity 

based on desired system goals and requirements.  The variables of interest are usually staffing 

levels, beds, or other key resources.   

Bailey (1954) first establishes the existence in outpatient and inpatient clinics of a 

threshold capacity which occurs at the point where service supply equals demand.  When the 

number of servers is below this threshold, a clinic develops an infinite queue.  Slightly above this 

threshold, waiting time and queue length are low.  He argues that it is therefore sufficient to 
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design for a capacity that exceeds the expected demand (with stochastic error accounted for) by a 

value of 1 or 2.  Long waiting lists are most likely the result of accumulated backlog which can 

be depleted by a temporary surge in supply.  Seasonal variations in supply would also result in a 

sharp rise in waiting list length. 

Moore (1977) reduces customer waiting time for birth and death certificates at the Dallas 

bureau of vital statistics by decreasing the time required to serve each customer.  This research 

first uses queuing theory to calculate the service rate required to achieve a target waiting time of 

15 minutes.  This service rate is converted to the time required to serve one customer.  The 

reduced time required to serve each customer is attained through the use of new equipment and 

more efficient processes. 

Agnihothri and Taylor (1991) seek the optimal staffing at a hospital scheduling 

department that handles phone calls whose intensity varies throughout the day.  There are known 

peak and non-peak periods of the day.  The paper groups periods that receive similar call 

intensity and determines the necessary staffing for each such intensity, so that staffing varies 

dynamically with call intensity.  As a result of redistributing server capacity over time, customer 

complaints immediately reduced without an addition of staff.  Green (2006b) uses the same 

approach and names it Stationary Independent Period by Period (SIPP) to adjust staffing in order 

to reduce the percentage of patients that renege.  However, arguing that congestion starts some 

time after the arrival peak, the staffing levels should lag behind the service demand levels (lag 

SIPP). 

Blocking 

In systems with blocking, congestion not only increases patient waiting time but also 

reduces the throughput of the system.  Bruin et al. (2005) determine the number of beds required 
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to achieve a maximum turn away rate of 5% at the emergency cardiac department of the 

university medical centre of Amsterdam which implements the pure loss model.  Cooper and 

Corcoran (1974) deal with the same problem extended to a sequence of two stations each of 

which should have a maximum turn-away rate of 5%.  Milliken et al. (1972) seek a 1% turn-

away rate in an obstetrics department in which vaginal births have priority over scheduled 

caesarian sections.  They point out the benefits of economies of scale so that larger facilities 

incur lower bed investment per additional birth. 

Given a desired maximum turn-away rate, Bruin et al. (2007) determine the optimal 

number of beds in a cardiology department.  The cardiology department is modeled as a network 

of 3 sub-departments.  The research finds that too few beds downstream is the primary cause of 

refused admissions upstream and that congestion effects can add 20-30% to patient length of stay 

in the department.  They characterize having a fixed target utilization rate as unrealistic and 

conclude that a downstream utilization of 55% is necessary to attain a 2% turn-away rate.  As an 

alternative, departments could be merged to gain the benefits of economies of scale thereby 

meeting the goal at higher occupancy rates. 

Blair and Lawrence (1981) seek to design the capacity of horizontally integrated burn 

care facilities throughout the state of New York, so that no more than 5% of patients are turned 

away from the system.  If a patient goes to a facility which is fully occupied, that facility would 

refer to the patient to another which is not filled.  If all facilities are fully occupied, the patient is 

lost to the system.  First, they use queuing theory to determine the capacity of the entire system 

as if it were one queuing system.  This capacity is then allocated to facilities in a manner that 

best attains their individual goals.  They find such a system-planned approach ideal for a system 

with low demand and high infrastructural costs. 
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Tucker et al. (1999) consider activating a second operating room (OR) team during the 

night shift.  Using queuing theory, they find that the probability of two patients needing the OR 

services is negligible. 

Minimize Costs 

Determining server capacity by minimizing the costs in a healthcare queuing system is a 

special case of system design.  Most of the research assigns costs to patient waiting time and to 

each server.  After modeling the system using queuing theory, minimizing costs reduces to an 

exercise of finding the resource allocation that costs the least or generates the most profit.   

Keller and Laughhunn (1973) set out to determine the capacity with minimal costs 

required to serve patients at the Duke University Medical center.  They find that the current 

capacity is good but needs to be redistributed in time to accommodate patient arrival patterns. 

Young (1962a, b) proposes an incremental analysis approach in which the cost of an 

additional bed is compared with the benefits it generates.  Beds are added until the increased cost 

equals the benefits. 

Shimshak et al. (1981) consider a pharmacy queuing system with preemptive service 

priority discipline where the arrival of a prescription order suspends the processing of lower 

priority prescriptions.  Different costs are assigned to wait-times for prescriptions of different 

priorities. 

Gupta et al. (1971) choose the number of messengers required to transport patients or 

specimens in a hospital by assigning costs to the messenger and to the time during which a 

request is in queue.  In this problem, non-routine requests are superimposed on top of routine, 

scheduled requests.  The authors also calculate the number of servers required so that a given 
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percentage of requests does not exceed a given wait time and the average number of patients in 

the queue does not exceed a given threshold. 

Assuming a phase-type service distribution, Gorunescu et al. (2002a) assign costs based 

on a base stock inventory policy.  In this pure loss model, there is a holding cost associated with 

an empty bed, a penalty cost associated with each patient turned away, and a profit assigned to 

each day a bed is occupied. 

Khan and Callahan (1993) incorporate advertising into their model to control the demand 

for laboratory services.  For each staffing level, they determine the number of clients that would 

maximize profits.  They then choose the staffing level with maximum profits and apply the 

necessary amount of advertising that would attract the desired number of clients.  The model 

assumes that clients would leave without service if they wait above a certain amount of time. 

Rosenquist (1987) chooses staffing capacity in an outpatient radiology service with a 

limited waiting area by minimizing cost.  He suggests scheduling patients when possible and 

segregating patients based on expected examination duration.  Such measures would reduce 

variability and decrease expected waiting times. 

Gorunescu et al. (2002b) use backup beds (only staffed during peak demand) to reduce 

the probability of patient turn-away at a marginal cost.  The model assumes a phase-type service 

distribution. 

Appointment Systems 

Compared to systems without appointments, systems with appointments reduce the 

arrival variability and waiting times at the facility.  However, it is important to note that systems 

with appointments require patients to wait outside the facility.  Of course, because it is not at the 

facility, this waiting can be productive time and therefore has lower cost to the patient.  (Plus, 

 12



they do not occupy space in the facility’s waiting rooms.)  A key issue has been to reduce patient 

waiting times without causing a significant increase in doctor idle time, a significant cost for the 

healthcare facility. 

Bailey (1952, 1954) proposes (a) appointment interval and (b) consultant arrival time as 

two variables that determine the efficiency of an appointment system.  In order to find a balance 

between patient wait time and consultant idle time, first determine the relative values of patient 

time and consultant time.  The ratio of the total time wasted by all patients to the consultant’s 

idle time should equal the value of the consultant’s time relative to the patients’.  He chooses to 

assign individual appointment times at intervals equal to the average patient processing time and 

finds that the consultant should arrive at the same time as the second patient.   

Brahimi and Worthington (1991) design an appointment system to reduce the number of 

patients in the queue at any time, and reduce patient waiting time without significantly increasing 

doctor idle time.  They explore the effect of patients who do not show up for their appointments.  

The clinic starts out with a certain number of patients waiting and a maximum number of 

patients allowed at any time. 

In Vasanawala and Desser (2005) a radiology department has some time slots scheduled 

for routine radiology analysis.  Emergency requests may require rescheduling of scheduled 

requests.  Given a 1% or 5% probability of rescheduling, the authors use queuing theory to 

determine how many scheduled slots to leave empty during routine scheduling. 

Many outpatient appointments allow booking appointments months in advance.  

DeLaurentis et al. (2006) point out that patient no-shows without cancelling appointments could 

lead to waste of resources.  They propose implementing short-notice appointment systems based 

on a queuing network analysis tailored to the realities of any particular outpatient clinic.  Their 
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approach assumes the availability of a certain number of staff who can be distributed amongst 

the different stations of the queuing network in several combinations.  A combination is chosen 

based on its resulting utilization per station and expected patient length of stay in clinic.  The 

implementations of these ideas did not improve the appointment system, a failure which they 

attribute to the clinic using many visiting doctors and the patients being unable to schedule visits 

with their primary care physician at short notice. 

Bottlenecks 

In a queuing network, there are several nodes at which services are dispensed.  A patient 

may have to go through several nodes, and thus several queues in order to obtain the desired 

service.  In the context of appointment systems, we can expect nodes where the ratio of demand 

to available service capacity is relatively high to become bottlenecks.  Such bottlenecks would 

have high utilization and increase overall patient waiting times even though other nodes may 

have low utilization. 

Albin et al. (1990) find the bottlenecks at the Hurtado Health Center appointment clinic 

by collecting data and analyzing it using QNA, the queuing network analysis software program.  

Though their model deviates appreciably from assumptions, they are able to find the bottle necks 

by identifying the nodes where wait times are longest.  They then reduce overall waiting time by 

offering common-sense recommendations on a node-by-node basis. 

System Size 

As mentioned in the introduction, the size of healthcare organizations varies greatly.  

Following Hall et al. (2006), we can distinguish between three different scales.  The smallest 

scale is the department, “a unit within a larger center oriented toward performing a single 
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function, or a group of closely related functions.”  The next larger scale organization is the health 

care center, which is a group of proximate, coordinated departments amongst which patients can 

flow.  The largest scale that we consider is the regional health system, a hierarchy of facilities 

with the most routine services provided by local clinics and the most specialized, resource-

intensive services provided at a few regional facilities.   

Hall et al. (2006) also present a macro system scale that considers the life cycle of an 

individual’s state of wellness and his interactions with the healthcare system throughout a 

lifetime.  We have found no research applying queuing theory to this type of system.   

Most of the research reviewed above has been done at the department scale.  Here we 

will highlight some work at the two larger scales.   

Kao and Tung (1981) investigate the redistribution of hospital beds amongst the inpatient 

departments of a hospital.  First, a baseline patient capacity is chosen for each department.  

Additional beds are then allocated to departments in a manner to minimize patient overflows 

from one department to another.  Forecasts are used to determine both the baseline bed allocation 

and the anticipated patient demand in order to minimize overflow. 

Blair and Lawrence (1981) investigate a regional hierarchy of burn care facilities where 

excess demand at one facility is absorbed by other facilities in the same region and overflows at 

one region are absorbed by other regions.  Worthington (1991) considers the coordination of 

patient flow from outpatient clinics to inpatient clinics.  Koizumi et al. (2005) model the mental 

healthcare system as a chain of facilities including acute hospitals, extended acute hospitals, 

residential facilities and supported housing. 
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Conclusions 

This paper has surveyed the use of queuing theory for the analysis of different types of 

healthcare processes.  Models for estimating waiting time and utilization, models for system 

design, and models for evaluating appointment systems have been presented.  The survey has 

reviewed models for departments (or units), facilities, and systems. 

We can draw some conclusions from the work surveyed above.  The variability in 

demand for healthcare services and service times mean that simplistic rules like mandating 

specific utilization levels or fixing patient to resource ratios would lead only to congestion and 

poor quality of service and are unlikely to be successful approaches to contain or reduce 

healthcare costs.  Larger organizations with more patients are able to attain the same quality of 

service at higher utilizations than smaller organizations.  Although appointment systems are 

often designed to avoid doctor idle time (without considering patient waiting time), it is possible 

to reduce patient wait time without significantly increasing doctor idle time. 

As long as increasing the productivity of healthcare organizations remains important, 

analysts will seek to apply relevant models to improve the performance of healthcare processes.  

This paper shows that many models are available today.  However, analysts will increasingly 

need to consider the ways in which distinct queuing systems within an organization interact.  

Consider, for instance, the following analogy from manufacturing, where a traditional factory 

(with a functional layout) has been transformed into manufacturing cells whose production is 

closely linked to the final assembly line through simple signals (such as kanbans).  While 

healthcare organizations don’t resemble factories, they do have links between subsystems (such 

as operating rooms and the post-operative recovery unit), and these interfaces need 
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improvements.  Developing appropriate models of the links (or interfaces) between the distinct 

queuing systems is an important direction for future research. 
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