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ABSTRACT

A new modeling approach that employs a time-lag kernel can be used to trans-
form a complicated structured model to an equivalent unstructured model. It can
be shown that the connection between the two types of models is provided by the
time-lag kernel, as a natural consequence of reducing a larger set of dynamic equa-
tions of a structured model to a smaller set of dynamic equations of an unstructured
model. The time-lag kernel compacts the process of a cell’s response to the external
stimuli into a simple functional form. This modeling approach retains the general
form of an unstructured model so as to facilitate simple physical interpretation of
the variables. Yet, it retains the predictive power of a structured model by incorpo-
rating only those metabolic intermediates that are important to the dynamics of the
system. The order of a structured model is reduced through the judicious process
of lumping and modal analysis of the eigenvalue-eigenvector of a quasi-linearized
system. By identifying the first few most important modes, such an analysis yields
useful information on the relative time scales of various processes and clarifies the
main feature of the model. The application of the approach is demonstrated with
different structured models. Since a model is to be judged based on its intended
purpose, in many applications a time-lag kernel approach is a viable, attractive
alternative to either an oversimplified unstructured model that does not perform
adequately, an overly complex structured model whose detailed description is un-
necessary, or a purely black box approach that has little appeal due to the total lack
of process structures. The use of the time-lag model in the fermentation control’s

environment will be discussed.






INTRODUCTION

This study is motivated by the general observation that time-lag effects fre-
quently exist in a biochemical reactor system. Its existence has long been recog-
nized, for example, at the beginning of a batch fermentation in the form of a lag
phase. It is also present when a culture is transferred into a new richer medium
that is capable of supporting a higher growth rate than the original one. The recog-
nition of the inadequacy of the unstructured models in predicting the lag behavior
has prompted the proposal of a range of structured models to explain these time-lag
observations. However, most of these models are too complicated and are unsuitable

for process control purposes.

The objective of this study is to develop a simple model that can predict a
variety of transient as well as steady-state behaviors commonly encountered in a
biological reactor. Some of these behaviors include lag phases, diauxic growth,
asymmetric responses, hysteresis effects, and damped and sustained oscillations.
The model shall express the cause-effect relationship in a form appropriate for

practical use in a process design and control environment.

In this paper, a new approach to bioprocess identification and modeling is
outlined. The proposed approach considers the effect on rates and yields of not only
the present state of the system but also the previous history through the concept of
a kernel integral. The resulting set of integro-differential equations are then shown
to be equivalent to a set of first-order ordinary differential equations representing a
generalized structured model. These simple ordinary differential equations can then
be relatively easily manipulated with the well developed mathematical techniques to
yield insightful information on the dynamics of the system, including the analysis
of the stability of steady states, etc. Furthermore, size reduction techniques are

outlined, which can lead to a directly observable model of a lower dimension while
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preserving simultaneously the biological significance of various parameters. Finally,
it is demonstrated experimentally that a time-lag model can be used to predict
correctly transient behaviors based on parameters that have been determined from
steady-state fermentation runs. The experiments were conducted in accordance
with the state-of-the-art on-line monitoring techniques, and on-line and off-line

data were analyzed with advanced parameter estimation algorithms.
FORMULATION OF TIME-LAG MODEL

Time-lag effects are frequently encountered in microbial systems. For example,
they are present at the beginning of a batch fermentation in the form of a lag phase.
When the nutrient concentration is increased, the level of growth enzymes present
in a cell must be increased before a higher rate of biomass synthesis can be achieved.
Again, the metabolic mechanism in this case must be adjusted, and a factory with
a higher capacity has to be assembled so that a larger amount of chemicals can
flow through the anabolic and catabolic pathways. For example, when the limiting
substrate concentration is increased as a result of a step change in the dilution rate in
a continuous fermentor, the specific growth rate of the microorganism does not start
to increase immediately, as does the limiting substrate concentration. In addition
to the aforementioned time-lag phenomena, time-lag effects are also manifested in
various observed oscillatory behaviors due to the response’s dependence on the past
history. It is well known that time-lags in control variables can destabilize a system
and render it oscillatory. Similarly, the presence of time-lags in state variables can
also profoundly influence the stability of the system and cause an otherwise stable
system to oscillate. Oscillations in biological systems are quite prevalent and are

frequently reported in literature.

In this section, we will formulate a model using the time-lag kernel approach

and answer questions regarding the kernel’s functional form. The essence of the
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approach is the inclusion of kernel functions in the equations that describes the

dynamics of a bioreactor.

As an introductory example, first consider the familiar case of a continuous

bioreactor modeled by a lumped-parameter two-state-variable model, namely:

.‘%Qtt_) = —Daz(t) + u(s)z(t) (1)
dfz(tt) = D[s; — s(t)] — %M(S)x(t)a (:2)

where we assume that the specific growth rate, u, of biomass, z, is a function of the

limiting substrate, s.

In this paper, we will restrict our attention to the lag associated with cell
growth. This lag can be incorporated into the above model with the introduction

of a time-lag kernel, k(¢, k), in the specific growth rate:

dz(t) _ ~Dz(t) + Ut p[s(h)]k(t,h)dh] T (-3)

dt o

SO —ploy - st -2 [ [ utsmkemran] o0,

— 0

Note that in this formulation, the microorganism’s growth rate is assumed to be
affected by the chemical environment, namely the limiting substrate concentratic;n
in the fermentation broth surrounding a cell. Lag effects due to other environmental
factors such as temperature, pressure, pH, ionic strength, and nutrient composition

can also be handled similarly.

A general function k() can be specified with a small number of coefficients such
as ag, a1, etc, if it is expressed in terms of a series of base functions that belong to

exponential distribution functions.

k(t) = aogko(t) + arky(t) + azka(t) + ... + amkm(t), (.5)
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where the general expression for the nth exponential distribution function is:
1 t\" 1
ka(t) = ﬁ?(f) e fort=0
0 fort < 0.

(.6)

The reason for choosing this relatively unknown set of exponential distribution
functions is that they permit the transformation of the integro-differential equations
into a set of simple first-order equations to be carried out with care. The first
two exponential distribution functions are sometimes used in ecological studies of
population dynamics, and they have over the years earned special names. The
Oth-order exponential distribution function, ko(t), and the 1st-order exponential
distribution function, k;(y), are called weak and strong generic delay, respectively.

-L
T

n=0 ko = 51;6 . weak generic delay (.7)

n=1 ky = Fze % ... strong generic delay. (.8)

An interesting property of the exponential distribution function can be derived

by differentiating Equation (.6) with respect to ¢:

dkn(t) 1 t -1 —-& 1 t )
T — Z3\n T (2Ar
dt T(n—l)!(T) e Tn! T) ¢ (.9)
= kn—1(t) — kn(t).
Thus, the additional property is that:
dk,(t
T—-# + kn(t) = kn_l(t) forn=0,1,2,..., (.10)
where
0 fort<O
k_1(t) =6(t) = {oo fort=0 (.11)
0 fort>0.

The above equation can also be regarded as a generating function for k, (t).

Accordingly, if k(t) is expressed as the sum of m exponential distribution
functions, the observed specific growth rate at time ¢, expressed as a functional

y(t) = [ iw ©[s(h))k(t — h)dh, will be the weighed sum of m integrals, each of which
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being y;(t) = ffoo ps(h))k;(t — h)dh j = 1,2,...,m. This argument can be shown

to be true by the following equation, starting with k() = 3 7" a;k;(t):

o) = [ Ik - nn
k(t — h)

-~ v

= [ o) | agkste — )| an

”: t = (.12)
_ ;)a,j [ /_ k)t - h)dh}
T u;(t) ’

m
= Z a;y; (t)-
j=0

In actuality, the weighing factors a;’s and the lag time-constant 7' are chosen in
such a way as to fit the observed transient of the specific system in a shift-up or
shift-down experiment. A small value of m varying from one to three usually gives
a very satisfactory fit, and it is rarely necessary to employ m with orders larger

than four.

The reason for choosing exponential probability distribution functions is that
they permit the easy and elegant transformation of a set of integro-differential
equations into a set of simple ordinary differential equations. These exponential
distribution functions possess the property that each and every one of them is the

solution to the following differential equation:

n+1 :
n+1\, d'k,(t)
Z( ; >TT_0 , (.13)
1=0
with the initial conditions:
dik,
_dt"(_O)ZO fort=0,1,2,...,n -1 (.14)
4"k (0) — for 1 = n. (.15)

dtn - Tn+1



For example, ko(t) = Le~ ¥ satisfies:
dko(t
7% | e =0 (.16)
dt
with the initial condition:
1
ko(0) = —. .
0(0) = (-17)
Similarly, ky(t) = stre™ T satisfies:
d?ky (2) dky (¢)
2 1 1 k —
T 2 T 2T e 1t)=0 (.18)
with the set of initial conditions:
ki(0) =0 (.19)
dky(0) 1
= T (.20)

The above properties of the exponential distribution functions can be used to elimi-
nate the kernel from the integro-differential Equations (3) and (4) and convert them
into a larger, but mathematically identical, set of first-order ordinary differential

equations.

If we treat the integral containing the kernel as a new function y,(t), defined

Ya(t) = [ t wu(R)kn (t — h)dh, (.21)

then repeatedly differentiating y,(t) with respect to ¢t with the help of Leibnitz’s

rule yields:

n+1 :
> (nfl)’l“d‘—‘:’i%@ = u(t) |. (.22)

. 2
=0

In general, the resulting equivalent differential equation is one order higher
than the kernel originally contained inside the integral in Equation (.21), includ-

ing Equation (.22), which is the result of a special case of repeated roots for the
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characteristic equation. For example, for the Oth-order kernel ko(t), the equivalent
differential equation is:

dyo (1)

T+ 4o(t) = w(e). (.23.0)

Similarly, for n =1, n = 2, ..., n — 1, and n, the integrals involving k,(t), k2(t),

ees kn—1(t), and k,(t) are transformed respectively to:

T ;’;2(“ +2Tdy;() +yi(8) = ult) (:23.1)

pedat) :tzf) + 372 d2322(t) + 3Tdy;(t) + ya(t) = p(t) (.23.2)

(.23)

T“f%l(ﬂntni""‘l%nt...mT@—%ﬂwn 1(t) = u(t) (23.n—1)
ot &0 e T80 el ) < k). (230

Notice the similarity between these equations, (e.g., Equations (.23.0), (.23.1),
and (.22)), and those equations that are satisfied by the corresponding kernel func-
tions, (e.g., Equations (.16), (.18), and (.13)). A higher-order differential equation
such as Equation (.23.0) can be easily transformed into a set of first-order differ-
ential equations through some well known canonical transformations. Thus, for.a

Oth-order kernel, the set of integral state equations of (3) and (4) is reduced to the

following:
dz
i (y—1)z (.24)
ds 1
E—l—s—?syx (.25)
dy 1
E = T(—y + ll'). (‘36)

As shown later, the biological significance of the Oth-order kernel can be extracted
from the above equivalent set of equations. One of the possible interpretations

of the above set of equations is that the rate of reproduction of the biomass is
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autocatalytically proportional to the biomass itself and to a new variable y. If
one so wishes, this variable y can be interpreted as the concentration or level of
some “critical enzyme” that limits the growth of the microorganism. Furthermore,
Equation (.26) indicates that this “critical enzyme” follows a first-order deactivation
kinetics, and its rate of formation is described by the function p(s). If 4 has a Monod
form, then the production of the enzyme follows that of Michaelis-Menton kinetics,
which, incidentally, is originally derived to describe enzyme kinetics. Thus, time-lag
formulation can partially explain the relationship between the enzyme kinetics and
microbial specific growth rate in terms of the equivalence of the integral form and

the differential form.

REDUCTION OF STRUCTURED MODELS
TO UNSTRUCTURED MODELS

The difference between a complex structured model and a simple unstruc-
tured model is analogous to that between statistical and classical thermodynamics.
Whereas a structured model attempts to explain the observed phenomena through
a large set of differential equations in terms of the more fundamental variables such
as the concentrations of various intermediates, unstructured models are usually
composed of those variables that can be physically “seen” or “felt” more readiiy
and are, thus, ‘more comprehensible to human minds. The proposed modeling ap-
proach herein attempts to retain the general form of an unstructured model so as
to facilitate simple physical interpretation of the variables by such familiar terms
or concepts as the specific growth rate. At the same time, this modeling approach
attempts to incorporate only those metabolic intermediates that are important to
the dynamics of the system. It also attempts to reduce the order of a compli-

cated structured model through the judicious process of lumping and the analysis
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of eigenvalue-eigenvector of a linearized system. How this can be accomplished is

outlined below.

Origin of the Time-Lag Kernel: In general, a dynamic system (including a
structured model) can be described by a set of first-order differential equations:

dx(t) _

5 f(x,u,t), (-27)

where x is the state vector and u is the input to the system. Currently, there is no
general established way of solving such a set of differential equations if they are non-
linear. As long as the nonlinearity is not too severe, one generally quasi-linearizes
the nonlinear set of equations around the point of interest before attempting to
solve them. For a system linear in the state variables, the above equation can be

written as:

dx(t) _
&

A(t)x(t) + g(t). (.28)
Note that the dependence of A on time does not destroy the linearity. The
fundamental-matrix solution to the above differential equation is expressed by the
following Lagrange formula:

t

x(t) = / K(t, b)g(k)dh |

et . (.29)

— K(t, to)x(to) + / K(t, h)g(h)dh,
to

where K is the fundamental matrix of Equation (.27).

K is also sometimes called the transition matrix. It has a few well known,
extremely useful properties. The first one is that it satisfies the following matrix
differential equation analogous to the homogeneous form of the state vector differ-
ential equation:

dK(t,10)

—'—dt—' = A(t)K(t,to) for ¢ Z to, (.30)
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with the initial condition:

K(to,to) =1. (.31)

This dynamic relationship can be further generalized for any h > t5:

dK (t, k)

pram A()K(t, k) for t > to,h > to. (.32)

K(h,h) =1 forh>1g (.33)

The kernel matrix also satisfies the adjoint differential equation:

dKT (¢, h)

7 = —AT(R)KT(t,h)  fort>ty,h>to. (-34)

For any t;, t5, t3 > to, the kernel matrix can be chained:
K(ta,tl) = K(ts,tg) . K(tg,tl). (.35)

The above equation leads directly to the following identities:

I= K(tl,tl) = K(tl,tg) . K(tg,tl)

= K(t1,t) = [K(tz,tl)]—l. (.36)

Thus, the kernel matrix is nonsingular for all t > ty and h > tg. This can also be
seen from the fact that exponential functions are never equal to zero. Furthermore,
t2 '
det]K(tg,tl)‘ = exp { / tr[F(2)] } (.37)
t1
These properties are listed because they can be quite useful when handling a time-

lag kernel.

Because the matrix K(t,h) depends on t and h separately and because the ma-
trix itself may be monstrously dimensioned with numerous nonzero off-diagonal ele-
ments, it is difficult to be graphed and visualized in the traditional three-dimensional
space that one is accustomed to. Thus, the meaning of each element of the matrix
usually cannot be readily communicated with such conventional and easily compre-

hensible biochemical engineering terms as specific growth rate or yield, etc.
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If the linearization matrix A (t) is constant, then this solution further reduces

to:
x(t) = /_t K(t — h)g(h)dh, (-38)
where

K(t) = eAt. (-39)

Thus, the appearance of a kernel in Equations (3)-(4) is spontaneous; it arises
mathematically during the process of solving a set of differential equations. As
shown in the above derivation, what is called the kernel is mathematically equivalent
to the fundamental matrix of a set of first-order ordinary differential equations. One
also sees that the kernel inside the time-lag integral when expressed as k(t — h) is
actually the linearized time-invariant scalar representation of the more general form

of K(t,h) of Equation (.29).

Time-Lag Kernel from a Structured Model: The structured model and the
unstructured model are related in that a structured model can be reduced to an
equivalent unstructured model. It will be shown that the connection between them

is provided by the time-lag kernel.

The first step is to partition the vector of state variables, x(t), based on whether
they appear in an unstructured model. Those variables that appear in the resulting
unstructured model are grouped in xy(t), and the remainder of the state vector
x(t) that are included only in the structured model but not in the unstructured
model are grouped in x2(t). For example, the biomass, substrate, and product
concentrations will be contained in x;(t). All the intermediates and enzymes that
are not considered as the product will be part of x2(t). The result of this partition

of x(t) is:

x(t) = {"1(‘)}. (.40)

X2 (t)
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The linearization matrix A(t) and the non-homogeneous forcing function g(t) can

be partitioned similarly:

Au(t) Am(t)} (.41)

Al) = [Azl(t) Aza(t)
g(t) = {28] - (.42)

With this partition, Equation (.2) becomes:

dx‘;t(t) = Aq(t)x1(t) + Ara(t)x2(t) + 81 (2) (43)

ix—i?l = Agi(£)x1() + Ana(t)x2(t) + 2(%) (:44)

= Az (t)x2(t) + &(2),
where g(t) = Aa1(t)x1(t) + g2(t) is the nonhomogeneous part of Equation (.44)

k]

which has a fundamental matrix solution analogous to Equation (.38) as described
by:
t
Xo = / ng(t, h)g(h)dh, (45)

where Kox(t, ) is the fundamental matrix to As,(t) of Equation (.44).

Thus, the unstructured model’s equivalent of the structured model of Equation

(.27) is now reduced to Equation (.44), whose more general form is:

dx1 (t)

di = f1 (X]_,Xz,u,t), (.46)

where X, is the time-lag integral defined by Equation (.45). If x(t) is composed
of the biomass and limiting substrate concentrations as in our previous example,
then xo is simply the scalar observed specific growth rate, previously denoted y.
Similarly, u is composed of control variables which, in our previous example, are
the dilution rate, D, and the substrate concentration in the feed, sy. Kgz is the

scalar time-lag kernel, k, and g is the scaler intrinsic specific growth rate, p.
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Note that Equation (.46) alone is the unstructured model; the addition of the
information provided by the integral in Equation (.45) upgrades it to a structured
model because these two combined equations are the exact equivalent of the original
structured model described by Equation (.28). The time-lag kernel matrix Ko, is
the relationship that ties these two traditional modeling approaches. As can be
seen from the preceeding equations, the time-lag kernel arises quite naturally as a
consequence of reducing a larger set of dynamic equations of a structured model to

a smaller set of dynamic equations of an unstructured model.

It is emphasized that the time-lag kernel is not simply an artificial mathematical
concept; it is derived from a biological basis. Its presence can be explained by the
fact that there exists a large collection of metabolic pathways and regulation steps.
When a microorganism is subjected to a stimulus, it requires time for the cell to
respond to the external stimuli as it adjusts its internal states one after another. For
example, intermediate metabolites, precursors, enzymes, and various cofactors may
be needed before the final product, which may be a specific enzyme, a chemical, or
simply the cell biomass itself, can be assembled. Thus, the time-lag kernel compacts
all our knowledge about the actual process of how a cell responds to the external
stimuli into a simple functional form. It is the fundamental matrix to the missing
dynamic equations. Conversely, a kernel has an equivalent representation in terms
of structured dynamics. We see that a unique kernel can be constructed given the
dynamics of the system, but the reconstruction of structure from a kernel function
is not unique because more than one different process can be responsible for the
same response and, thus, the same kernel function. In such a circumstance, the rule

of modeling dictates that the simpler mechanism be chosen.

The kernel concept can be used to check the validity of the proposed mech-

anism in a structured model. For example, if the experimentally obtained kernel



- 15—
function does not agree with that directly derived from the structured model, one
can conclude that the original hypothesis is perhaps erroneous, and, as mentioned
earlier, the shape of the kernel function can give one some insight as to the type
of mechanism that may be responsible for the observed kernel. One may then re-
vise his hypothesis and recheck to verify if the kernel function now conforms to the
assumed mechanism. Alternatively, one may build a reasonably good structured
model from some experimentally determined kernel functions. For example, if one
were to find that the time-lag kernel could be approximated by a Oth-order expo-
nential distribution function, then, based on the implied meaning of this kernel,
one might plan further experiments aimed at identifying the rate limiting “critical
enzyme.” Thus, the kernel might be used to help suggest the type of experiment to

be performed.
Examples of Structured Model Reduction:

The methodology on the reduction of a structured model to an unstructured
model will be demonstrated by analyzing some typical structured models. Par-
ticular attention will be focused on the determination of whether a model indeed
has structures and, if so, which state variables have structures. As mentioned pre-
viously, the appearance of a time-lag can be attributed to the process dynamiés
associated with the structure. The time-lag kernel associated with the neglected
kinetic information when a structured model is reduced to an unstructured model

will be derived theoretically.

Imanaka’s Model of Enzyme Production: (Imanaka et al., J. Ferment. Technol.,
50, 633, 1972.) One of the structured examples is Imanaka’s model of enzyme (a-
galactosidase) production developed for Monascus sp. The kinetic expressions are

derived based on the operon theory of enzyme production. For a batch fermentor,



- 16 —

the model consists of the following set of eight dynamic equations:

dX

Biomass: = pX (.47.1)
dS, 1

Glucose: el ——ﬁp,AX (.47.2)
dSp 1

Galactose: el —l—,;uBX (:47.3)

) dsB, . GBSB . .

Intra. Galactose: el [ K. 5 1 5a spi| — k1spi — 1spi (47.4)
dr —

Repressor: i ko — kar — kyr - sp; + ksTsp; — ur (.47.5)

Rep/Ind Complex: r;tm = kyr - sp; — ks¥Spg; — UT8p: (.47.6)
dm

mRNA: o= ke(re — r) — kym — pm (47.7)

] de
Galactosidase: i kgm — pe (.47.8)

In the above equations, the macroscopic variables X (biomass), S4 (glucose),
and Sp (galactose) are expressed in concentration units of mg/(reactor volume);
whereas, the intracellular components sp; (intracellular galactose), r (repressor),
75p;: (repressor-inducer complex), m (messenger RNA), and e (a-galactosidase) are
expressed in concentration units of mg/(g cell). Note that each of the dynamic
equations for the intracellular components has a term that contains x4 multiplied by
the component itself. This term represents the dilution factor due to the expanding

cell volume as the microorganism grows.

Similarly, for a continuous fermentor, the above set of equations become:

dX
Biomass: —r = Hx— DX (.48.1)
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ds 1
Glucose: A = —puaX +D(Sa; — Sa) (.48.2)
dit Y
ds 1
Galactose: 2B upX + D(Sgs — Sg) (.48.3)
dt Ys
dSpg; GpSpX
. : = — Spil —k1Sp; — DSp; 48.
Intra. Galactose o [ Ko+ 5 Bi| — k1SB B (.48.4)
d - Spi | e
Repressor: —d—lf- =koX — k3R — k4R B + ks RSp; — DR (.48.5)
dRSp; R - Sg;
Rep/Ind Complex: dtB = ky XB — ksRSp: — DRSp: (.48.6)
dM
mRNA: —E = ke(Rc — R) - k7M -~ DM (.48.7)
. dE
Galactosidase: P ksM — DE (.48.8)

As in the batch fermentor, X (biomass), S4 (glucose), and Sp (galactose) are
expressed in concentration units of mg/(reactor volume). However, intracellular
components Sp; (intracellular galactose), R (repressor), RSp; (repressor-inducer
complex), M (messenger RNA), and E (a-galactosidase) are expressed in concen-
tration units of mg/(fermentor volume) in the above set of equations for a contin-
uous fermentor. The symbols for the cellular volume-based variables are in lower
case letters, and those for the fermentor volume-based variables are in upper case
letters. This change of units is used to keep the two sets of equations in similar

forms. These two sets of variables differ from each other by a factor of X:
Spi =X -sp; (.49.a)

R=X-r R,=r,-1, (-49.5)

RSB,' =X - rsps (.49.6)
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M=X-m (49.d)

E=X-.¢e (:49.€)

The first three of these equations describe the concentration variation of the
major macroscopic components in the fermentor. These expressions are directly
obtained from the well-known unstructured dynamic equations, with Monod-type

of specific growth rate constitutive relationships.

HL=puas+up (.50.0,)
BmAaSa
— .50.b
27\ Ko+ Sa+ ’ngs;ASB ( )
tmpSp
up = { Kso+Sn for SA < SAc (.50.6)
0 for Sa. < Sa

Because these first three dynamic equations contain no state variables other than
themselves, they are completely decoupled from the rest of the equations and can
be solved independently of the enzyme production. Furthermore, because of this
complete decoupling, there is no structure for the biomass, glucose, or galactose.

Thus, there is no time-lag in the response of these variables.

However, the above statement does not hold true for the enzyme. As shown
in Figure .1, there are five dynamic steps that separate the overall output (e) from
the input (D, Says, and Spy). Thus, all the structure is contained in a sequence of
events that finally lead to the enzyme production. The enzyme production requires
the presence of mRNA (m), which is produced when the repressor level is below

the critical level of r.. Mathematically, this on/off event can be expressed as:

kez{ke forr <r,

.51
0 forr.<r (:51)

The repressor, in turn, is produced at a constant rate and is inactivated by combin-

ing with the inducer — the intracellular galactose (sp;). The transport of galactose



- 19 -
into the cell is effectively turned off when the fermentor glucose concentration ex-

ceeds a critical value of S4.. This statement is expressed mathematically as:

(.52)

U= U for Sa < Sac
o 0 fOI‘SAcSSA

As the first example, the continuous fermentor with a step change in the dilu-
tion rate from D=1.40 hr~! to D=1.42 hr~! at =0 hr is simulated with the above
set of equations. The same set of model parameters claimed to be used by the
original authors are employed to generate the concentration profiles. The values of

the parameters used are reproduced below:

Experimental Model Values

U A 0.215 hr—1!
fom A 0.208 hr—!
Ksa 0.154 g/l
Ksg 0.258 g/l

K; 0.139 g/l

Y4 0.530 g/g cell

Yg 0.516 g/g cell
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Undetermined Model Values

KmB

40. hr—!
1. mg/(g cell)-hr
1. hr—t
0.1 (g cell)/mg-hr
0.0001 hr!
1. hr~!
8. hr-!
4. K unit/(mg mRNA)-hr
100. hr~?
3.5 mg/(g cell)-hr

0.00000001 g/l

Critical Values

SAc 0.225 g/l

Te 0.803 mg/(g cell)

Operating Conditions

D 0.140 — 0.142 hr—!
SfA 20. g/l

StB S. g/l
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Initial Conditions

Xo 13. g/!
Sao 0.223 g/l
Sgo 00501 g/l
$Bio 2.5 mg/(g cell)
ro 0.718 mg/(g cell)
TSBi0 1.28 mg/(g cell)
mg 0.0104 mg/(g cell)
€o 0.297 K units/(g cell)

The original authors’ results are reproduced in Figure .2. The results of this
author’s simulation are shown in Figures .3 and .4. It should be noted that even
after an extensive effort in experimenting with various sets of model parameters
and the time of the dilution rate shift, the author was unable to obtain the type
of behavior claimed by Imanaka et al. Because, as mentioned previously, the first
three macroscopic variables are decoupled, these three dynamic equations can be
analyzed independently of the rest of the equations. It is known that for a system
described by Monod-style dynamics, a sudden increase in the glucose concentration
shown in Figure .2 at t=7 hr is not possible unless some type of external distur-
bance is introduced at that instant. Alternatively, suppose the dilution rate were
shifted at t=7 hr, there would also be sudden changes in the biomass and galactose

concentrations at the same time, which are not present in the same figure.

The first step in expressing a structured model in a time-lag format is to identify

the unstructured variables. In this example, the state vector for the unstructured
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variables is:
X(t)
Sa(t)
S (t)
E(?)
The remaining intracellular variables are partitioned into x5 (t):
Sh: (t)
R(t)
RSp; (t)
M(t)

x1(t) = (.53)

Xa(t) = (.54)

Thus, the equivalent unstructured model presented in the form of Equation (.46)

is: <
- ax ()
dt ux — DX

dS:;t!t! B —'YLAI“AX_*_D(SAJ' —-SA) (55)

dSst!t! _-YLBIJ,BX-{—D(SBf —SB) '

dE(¢) ksM — DE

. dt J N — 4
X1 ¢ fl(xlsx2au:t)

t

The above equation indicates that there is a single time-lag variable M in the

dynamics of enzyme formation. The time-lag kernel differential equation can be

obtained for this multidimensional system from the dynamics of x2(t). Following
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Equation (.44), the linearized dynamics of x5 (t) is expressed as:

"dSB'-gt! .
dt
dR!t!
di —
dRSp;
dt
dM(t
L a4
N, oot
dxo,(t
~U—ky~D 0 0 07 1 Smi(t)
R k4Sp;
SE R U 0 R()
kXAIO{Q k4Spio }5;0' —ks —D 0 RSBi(t
0 —ke 0 —ky— D M(t)
Aga(t) Xa(t)
[ GpSp(t)X(t 7
U KBmBB+SB(t

o | [+ 2eBigme] x(0)

. k‘RXQSEiQ X(t)

4}

L ke X (t) -

s
——

&(t)

(.56)

The solution of the above set of dynamic equations is expressed in the time-lag
kernel matrix form of Equation (.45) as:

t
Xa(t) = / ¢An (=) 5 (h\dh

—oe Kgg(t-h)

t (.57)
— [ Kaalt - Wg)an.

Thus, the time-lag variable M(t) in Equation (.55) can be expressed in an equivalent
kernel integral format as:

keRoS * 0 (.58)
kst — h)-4_12_)‘(L2_B‘_° T haalt - h)kerc}X(h)dh,

where k;;(t) is the ijth element of the matrix exponential e®32¢.
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The above equation can be simplified for the dilution rate shift-up example.
Because of the large value of U, the dynamics of sp; is fast, and sp; is zero for
the most part. Thus, its dynamics can be ignored to reduce the dimension of the
system by 1 in order to facilitate greatly the mathematical analysis. With sp; =0,

Equation (.56) becomes:

dR(t

01 bk 0 R () kX (1)
dBSz; | = 0 —~ks — D 0 RSpi(t) | + 0 (:59)
dM (¢ —kg 0 —ky — D M(t) kGrcX(t)
dt A ~ Dy

dX2ft!
i
Note that linearization is not necessary with sp; = 0. At D=0.142 hr~!, substitut-

ing the numerical values for the model parameters into A4, gives:

—1.142  0.0001 0
Ay = 0 —-0.1421 0 (.60)
-1 0 —0.8142
—1.142 — X 0.0001 0
0 =det|Ags — M| = 0 —0.1421 — )\ 0 (61)
-1 0 —8.142 — )\ :
= (—1.142 — \)(—0.1421 — X)(—8.142 — })
= A =—-1.142 Xy = —0.1421 s = —8.142 (.62a)
-7 ~7.9999 0 —0.1429 1.43x1075 o0
= T=| 0 —79991.0001 0 T ! = 0 -1.25x107% 0
1 1 1 0.1429 —-1.79x10°% 1
(.62b)
ki1(t) kia(t) kis(t)
K(t) = eA22t = | koy(t) koo(t) ka2s(t)
k3i(t) kaz(t) kss(t)
-7 —79999 0] [ert 0 0 —0.1429 143x107° 0O
=| 0 —79991.0001 O 0 €3t 0 0 -1.25x 1075 0
1 1 1L o 0 st | L 0.1429 179 x 1076 1
T At -t
ettt ~0 0
= 0 e*t 0

0.1429(e*st — eM1t) =~ 0 et
(.63¢)
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With the given initial conditions, Equation (.57) is now reduced to:

R(t) kyi(t) kya(t) kis(t) R(0)
RSpi(t) | = | ka1(t) koalt) Kas(t) ] sz?BT(O) }
M(@t) 1 Lksi(t) ksa(t) kss(t)] L M(0) |
%3(t)) Kz(t) x3(0)

(.63)

kot(t — k) kaa(t —h)  kos(t — R) 0
k31(t - h) k32(t - h) k33(t - h) R kercX(h)

) Kz;(ti h) ’ g(h)

‘ ku(t - h) klz(t - h) k13(t — h) kzX(h)
: [ ] }dh

7

Finally, the time-lag variable M(t) is described by the following kernel integral:

t
M(t) = / {0.1420(Xs ) — MleB)) 1 0.803¢% M) } X (h)dh

K(t ~ k)
Ast _ At Ast (.64)
= 0.1429(e** — M )R(o) + e*tM(0)
t
+ / {0.1420 (¥ ¢=P) — ME=R)) 4 0.803¢X M)} X (h)dh.
0
Note that for kg = 0, the above equation is reduced to:
M(t) = e*** M(0), (.65)

and there is no time-lag in the response of the enzyme because all the terms in the

time-lag integral are practically equal to zero.

In Figure .5, the enzyme profile calculated with the time-lag approach, with a
kernel described by Equation (.64), is contrasted with that calculated by integrating
the full set of eight dynamic equations. The kernel is turned on when Sy < Sy4..
Note that this critical point can be determined with the unstructured variables, and
no knowledge of the process structure of enzyme induction and repression is used
in the time-lag calculation. It is apparent that there is no visible difference between
the two curves. Also shown in the same figure is the enzyme level as a function
of time, calculated with Equation (.65) for the entire duration. Since the dynamic

equations for biomass, glucose, and galactose concentrations are unstructured, there
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is absolutely no difference in calculated results of these variables, whether a full set

of equations is used or not.

The next example is the simulation of enzyme production in a batch mode. For
reference purposes, Imanaka et al.’s experimental results and model prediction are
reproduced in Figure .6. As in the continuous mode of operation, this author was
unable to reproduce the same curves with the model and parameters provided by
Imanaka et al., although the overall features of the obtainable batch fermentation
are comparable. The following is a list of the model parameters that were used that
differ from the ones used in the previous example of continuous fermentation, due

to the different operating conditions (temperature, nutrient composition, etc.)

Experimental Model Values

Ema 0.190 hr—!
UmB 0.162 hr—1
Kga 0.145 g/l
Ksp 0.307 g/l

Ya 0.377 g/g cell

Ys 0.361 g/g cell

Undetermined Model Values
kg 6.67 K unit/(mg mRNA)-hr




-27-

Initial Conditions

Xo 0.5 g/l
Sa0 10. g/l
Spo 3. g/l
$Bio 0. mg/(g cell)
ro 0.91 mg/(g cell)
T3Bi0 0. mg/(g cell)
mg 0. mg/(g cell)
€o 0. K units/(g cell)

The simulated results calculated with a full set of eight dynamic equations are
plotted in Figures .7 and .8. The enzyme concentration for the time-lag approach,

shown in Figure .9, is calculated based on the following dynamic equation:

de(t)
dt

= kgm(t) — pe(t), (.66)

where the time-lag variable m(t) is activated at the time when S, becomes smaller
than the critical glucose concentration of S4.. This critical time, denoted as .,
can be determined from the macroscopic variables without the knowledge of the
structure of enzyme production. The slight deviation is due to the fact that the
enzyme profile determined by the full set of dynamic equations is based on the
internal on/off mechanism of mRNA production, which depends on the value of
(re —r). This value is not available to an unstructured model that does not consider
the internal mechanisms, and the closest on/off switch available to an unstructured
model is the crossing of Sy, by S4. In view of the fact that only macroscopic
variables are used to generate the concentration profiles, the agreement is quite

good.
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The equivalent time-lag kernel for the batch case can be derived from Equa-
tions (.47.4)—(.47.7). As before, instead of manipulating the entire set of equations
simultaneously, it is beneficial to make some simplifications. Because U and k; are

large, one can apply the quasi-steady state assumption to sp;. Furthermore, be-

cause K,,p is extremely small, one can assume that 'K_iﬁ_g-jﬁ = Gpg for Sp > K.5.
This leads to:
dspi
0= Zf = U(GB - sB,-) - klsB; — MHSBi (.670,)
UGB UGB SA < SAc
R~ =1 = 2.5 .
BN Gk th Utk 20 T &8y > Kp (1678)

With this simplification, a matrix equation similar to Equation (.59) can be ob-

tained:
dr! )
dtt "—k4SB,' - k3 — K1 ks 0 r(t) kz
——md";t' = kssp: —ks — 0 rsgit) |+ | O (.68)
dm(t) —kg 0 —ky—p m(t) kere
dt - —_— L N——
Aga(t) x2(t) £(t)

dX2 t
dt

The dynamic matrix, after substituting model parameters, is:

—1.25—u  0.0001 0 -125—p 0 0
Agp = 0.25 0.0001 — 0 ~ 0.25 —u 0 (.69)
-1 0 —8—p -1 0 -8—u
~1.25 —u— A 0 0
0 = det|Ag, — M| = 0.25 —p—=2A 0
| 22 | “ (-70)
-1 0 —8—p— A\
=(-125—p = A)(~p - N)(-8—p— )
= A =—-125—p Ao =—p A3 =-8—u (.71a)
1
—6.75 0 0 —sz 0 0
=> T=|135 1 0 T'!'=| 02 10 (.71b)
1 01 L 0 1



—6.75 0 0] [t 0 0 —s35 0 0
K(t) =e®»*=| 135 1 0 0 et o 02 10
L1 o01/lo o e&j|gh 01
T eth ) Ttl . (:71¢)
et ~0 0

= | 0.2(e*?* —eM1t) ert 0
G_}ig(ekst —eMt) ~0 et
Finally, the time-lag variable for the batch fermentation is:
0 fort <t,
m(t) = {mtc + [P Kt — R)X(R)dh forto <t ’ (-72)

where the kernel k(t) is described by:

1
k(t) = — (e"st ~ e"l‘) +0.803¢*3?
( ) 6.75 (_73@)
= 0.9511e*** — 0.1481¢*1*

and the pre-integral factor m;, used to absorb all the information between t = —oco

and t =t, is:
0
m;, = 1 (e’\"'t — e'\lt)r(tc) + e*stpi(t,)
i75 (.73b)

6.
~ oTE (e“t - e'\‘t)rc.

¥4

DISCUSSION

In summary, one of the attractions of using a complicated structured model
is that is can be used to predict the bioreactor behavior under various operating
conditions, provided that the kinetic steps are properly identified and all the model
parameters are correctly assigned. Through literature example in this paper, it is
shown that some of the dynamic steps in a structured model can be eliminated
without seriously affecting the predicted output. Furthermore, a structured model
can be reduced to an unstructured model with the difference being absorbed by
the time-lag kernel. In model translation/reduction, it is often convenient to quasi-
linearize a set of nonlinear differential equations. The next logical step is to analyze

the eigenvalue and eigenvector of the linearized dynamic matrix A(t). Such an
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analysis can yield useful information on the relative time scales of various processes.
After grouping variables properly according to the process time constants, one can
simplify and reduce the dimension of the system by retaining only the first few most
important modes. Eliminating the remaining nonsignificant modes, like pruning a

tree, helps to clarify the main feature of the model.
Parametric vs. Non-Parametric Modeling Approaches:

In conjunction with the discussion on the connection between a structured
model and an unstructured model, it should be noted that our time-lag kernel
modeling approach can also be viewed as a combination of other two opposing
modeling approaches. One such example is the classification of models based on
the presence or absence of differential and algebraic equations in the description of

the process dynamics.

One of the methods of model classification is based on the representation of
one’s knowledge. A model can be classified as parametric if a parameter space is
used to describe the process dynamics. In this approach, one’s knowledge about
the system under consideration is translated into a set of mathematical equations
in terms of differential dynamic relationships supplemented, if necessary, by alge-
braic constitutive relationships. The output of the system is completely determined
once one is supplied with the model parameters, initial conditions, and forcing func-
tions. Properly viewed, both the initial conditions and forcing functions may also
be considered as additional parameters. The dimensionality of the description in a

parametric model is finite.

On the other hand, a non-parametric model of a black box type is also fre-
quently used to describe the system dynamics when one’s knowledge about the
system is poor or when the system is complicated and its description cannot be

easily reduced to mathematical equations. The characterization of the system is
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carried out in a function space without resorting to the use of differential equations.
For example, one may choose to use Fourier series expansions, spectral densities, au-
tocovariance and cross-covariance matrices, time series, or impulse response and, of
course, time-lag kernel functions. One or more of these relationships may be used to
transform the forcing input to the system output without assuming the underlying

structure of the process. These models are in principle infinitely dimensioned.

The advantage of a parametric model, being finite dimensioned, is that the
system can be described concisely with a finite number of parameters. However,
there is a price to be paid for this conciseness in terms of large prediction errors if
the system orders or model parameters are not correctly chosen. If the system is
complicated or if one cannot make valid assumptions regarding the physical process
structure with a certain degree of confidence, then a non-parametric model may be
advantageous. Because such a non-parametric model may be infinitely dimensioned,
it has the capability of yielding a system output that matches exactly with the

observation.

The proposed kernel modeling approach is a hybrid of the parametric and non-
parametric approaches. See Figure .10. For example, state dynamic equations are
written explicitly for those variables whose dynamics are well known. There is
absolutely no doubt that the state equations for the biomass and substrate concen-
trations in a chemostat are valid if cell growth is regulated by a limiting substrate.
These dynamic equations for macroscopic variables are derived based strictly on ma-
terial balance concepts; all other effects can be treated as variations in the specific
growth rate and/or the yield coefficient. Thus, one can justifiably use a parametric

approach to model the macroscopic observations.

On the other hand, one often does not know enough about the dependence of

the specific growth rate on other variables. Under these circumstances, it is not
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practical to derive the dynamic equations for the specific growth rate. In such an
attempt, sound judgment must be made as to what to assume and what to ignore,
and these assumptions must be verified. In specifying the dynamic equations, the
model orders must be known, and functional forms must be supplied. One often
uses saturation functions of the Michaelis-Menten type whenever rate expressions
are called for, but how often, if ever, are these expressions experimentally justified?
Bimolecular elementary reaction rate expressions are often used also, but few stud-
ies have actually been conducted with the same degree of rigor that is demanded
in the traditional proposal of a chemical reaction mechanism. Model discrimina-
tion is seldom performed in biochemical engineering. The moment one single such
expression is inserted into a dynamic equation without independent verifications,
the model complexity becomes superficial. It contains essentially a black box at
this level. More complexity beyond this point is inconsequential because patterns

contained inside a black box cannot be seen.

A complex parametric description usually contains numerous model parameters
whose values must somehow be evaluated, in addition to the model’s sensitivities
to variations in the parameters. As pointed out previously, the predicted system
behavior can be drastically different if the system order, functional form, or model
parameters are not chosen correctly. It has the inherent danger that the entire
model can crumble if there exists a weak link in the model such as an incorrect

assumption.

Thus, for the part of the process whose dynamics are well-known, one can
employ the parametric modeling approach. Whereas, for the part that either is
too complicated to be expressed mathematically with confidence or calls for excess
investment of resources, one can resort to a non-parametric description. This com-

bined approach is especially suited for a system where the level of understanding is
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not uniform across the process substructure. And many examples exist in biochem-
ical engineering where the understanding of the process is quite nonuniform. It is
not unusual that one can write the differential equations for macroscopic or lumped
variables that can be easily quantified (unstructured modeling), but the dynamics
for the intracellular components are often vague. One sacrifices knowledge of the
process if a purely non-parametric approach is to be taken. On the other hand,
one often needs to surpass his means if a purely parametric approach is taken. By
using the combined approach, one can optimize effort by fully utilizing the current

knowledge, without the danger of overreaching.

One example of such combined modeling approaches is the time-lag chemostat
system demonstrated throughout this thesis; it uses differential equations for the
biomass and substrate concentrations but gracefully switches to a time-lag kernel
relationship to transform the input disturbance in the limiting substrate concen-
tration to the observed specific growth rate. It should be emphasized that the
chemostat example is used mainly to illustrate the time-lag approach. By no means
does this simple example insist on the use of a time-lag kernel at level of the specific
growth rate. If one is quite certain on the dynamics of certain intracellular compo-
nents, then dynamic equations can be written for these components, and time-lag
kernels can be employed for more intricate lower level sub-processes. It is only
natural that the transition between a parametric approach and a non-parametric
approach should be based on one’s judgement as to which level his understanding
of the process becomes vague. One should identify the level at which further struc-
tural refinement becomes superfluous due to the lack of actual knowledge. There is
no need for a time-lag kernel if one’s application does not demand accuracy beyond
this point. Otherwise, the use of a time-lag kernel is recommended to compensate

for the lack of detailed knowledge.
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Since a model is to be judged based on its intended purpose, in many appli-
cations a time-lag kernel approach is a viable, attractive alternative to either an
oversimplified unstructured model (abridged parametric model) that does not per-
form adequately, an overly complex structured model (fully developed parametric
model) whose detailed description is unnecessary, or a purely black box approach

(non-parametric model) that has little appeal due to the total lack of process struc-

tures.
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Figure 1. Steps leading to the formation of galactosidase.
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