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There is growing concern regarding the potentially negative impacts of sea 

level rise (SLR) on tidal wetlands in the Mid-Atlantic region of the United States. 

In Chapter one, I investigate the phenotypic plasticity and biomechanical 

properties of Zizania aquatica under experimental inundation treatments. At 

lower elevations and higher inundation designed to simulate SLR, Zizania 

aquatica did indeed respond with phenotypic changes such as increased height 

and stem thickness, and decreased stem density, areal aboveground biomass, and 

modulus of elasticity.  

In Chapter two, I investigate the nitrogen removal role of Chesapeake Bay 

tidal wetlands under current and simulated long-term SLR. I also examine 

nitrogen removal at smaller scales in Maryland, comparing restoration goals for 

nitrogen loading reductions with the loss of nitrogen removal services expected 

by 2025. Tidal wetlands are expected to decrease in the Bay and Maryland and 

associated loss of nitrogen removal services may affect attainment of restoration 

goals.  
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PREFACE 

Chapter one is a complete manuscript, which will be submitted shortly to 

Estuaries and Coasts with co-authors Dr. Lora Harris and Dr. Nathaniel Weston. 

Chapter two is a contribution to a larger collaborative effort in which we 

investigate changes in Chesapeake Bay tidal marshes due to long-term SLR and 

the impact of these changes on nitrogen, carbon, and phosphorus removal 

services. Collaborators will build upon my Chesapeake Bay SLR and nitrogen 

removal analyses to expand the study beyond nitrogen.   
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CHAPTER 1: 

MORPHOLOGICAL CHANGES AND BIOMECHANICAL PROPERTIES 

OF ZIZANIA AQUATICA UNDER EXPERIMENTAL INUNDATION 

TREATMENTS 

 

ABSTRACT 

Data documenting the effect of sea level rise on tidal fresh and oligohaline 

marshes are scarce. A theory has been developed from studies in salt marsh 

ecosystems that a dynamic equilibrium between vegetation and sediment capture 

enables many marsh platforms to respond and adjust to current rates of rise. 

However, these hypotheses have not been tested in freshwater tidal ecosystems. 

Here, I present results from experiments manipulating inundation regimes for an 

annual grass species, Zizania aquatica in an oligohaline marsh. Tested hypotheses 

focus on the phenotypic plasticity and biomechanical properties of Z. aquatica 

experiencing increasing tidal inundation. Zizania aquatica responded to increased 

inundation treatments with phenotypic change such as increased stem height and 

diameter, and decreased stem density, areal aboveground biomass, and modulus 

of elasticity. This work evaluates whether conceptual models regarding the 

plasticity of vegetation measured in salt marshes apply to freshwater 

communities. These preliminary data suggest oligohaline and tidal fresh marshes 

will have very different responses to sea level rise when compared to salt 

marshes. 
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INTRODUCTION 

Tidal marshes provide important ecosystem services such as flood 

mitigation, nutrient cycling, sediment trapping, carbon sequestration, and wildlife 

habitat (Barbier et al. 2011).  Potential consequences of accelerated sea level rise, 

such as changes in plant community structure, reduced diversity and species 

richness, and an overall loss of coastal wetlands, has raised concerns about how 

coastal wetlands will respond to accelerated sea level rise. The global average rate 

of sea level rise is about 1.7 mm yr
-1 

(Titus et al. 2009), which is anticipated to 

accelerate and cause increased inundation of low elevation tidal plant 

communities (Morris 2007a). Prolonged inundation, either by frequency or 

duration, can be harmful to plant diversity. Baldwin et al. (2001) demonstrated 

that 3 to 10 cm of flooding negatively affected seedling recruitment and growth 

for many tidal freshwater marsh plant species and lowered overall diversity.  

Tidal fresh and oligohaline wetlands are characterized by periodic 

inundation by low salinity (0-5) water as a result of tides. Conversely, salt 

marshes have an annual salinity range of 18-30 (Odum 1988). Low salinity tidal 

fresh and oligohaline marshes support a diverse plant community, often with 

multiple dominant species of annuals and perennials (Odum 1988). This may 

enable greater resilience to sea level rise in tidal fresh marshes, because multiple 

species may be able to fill the same niche. Conversely, salt marshes tend to have 

low plant species diversity, and the low marsh is typically dominated by a single 

species, Spartina alterniflora, which is adapted to high salt stress (Odum 1988). 

High rates of net primary production and greater allocation of resources to 
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aboveground biomass production is common in tidal fresh and oligohaline 

marshes (Odum 1988). In contrast, salt marshes tend to have lower net primary 

production and allocate more resources to belowground biomass production and 

mechanisms of avoidance and adaptation, such as processes of exclusion and 

extrusion of salts and toxins (e.g. sulfide; Odum 1988).  

Decomposition rates are high in tidal fresh marshes because the plants 

have high nitrogen content and are composed of more labile materials (Odum 

1988). Therefore, tidal fresh marshes are more likely to require large amounts of 

inorganic sediments for marsh vertical accretion with increasing rates of sea level 

rise, since low marsh annual vegetation allocates more energy to aboveground 

biomass production and peat accumulation is low due to high decomposition 

rates. Fortunately, these marshes are typically not limited by sediment supply due 

to their proximity to sediment sources (Pasternack and Brush 2001). In contrast, 

salt marshes have low decomposition rates, and, consequently, high rates of peat 

accumulation, since the plants have lower nitrogen content and more recalcitrant 

materials, such as lignin and cellulose (Odum 1988). Salt marshes are more 

dependent upon in-situ organic sediment supplies such as plant litter and 

belowground biomass production for vertical sediment accretion. Furthermore, 

salt marshes are likely to be inorganic sediment supply limited, since they are 

nearby marine sediments with low organic carbon content (Odum 1988).  

There is growing concern about how accelerated sea level rise will affect 

tidal wetland communities in general and how the effects will vary between salt 

and tidal fresh wetland systems. Vegetation influences marsh hydrodynamics, 
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which in turn influences sedimentation. Morris et al. (2002) proposed that tidal 

wetland vegetation has evolved to withstand hydrodynamic forces while creating 

physical structure that influences sediment capture and marsh platform accretion, 

thereby shifting marsh elevation toward a dynamic equilibrium with mean sea 

level. In salt marshes, the dominant marsh grass is Spartina alterniflora, which 

generally exists at elevations supraoptimal to plant growth, such that increased 

flooding results in an increase in productivity (Morris et al. 2002). Plant biomass, 

density, height, and structure influence wave and current attenuation in salt marsh 

plant canopies (Leonard et al. 1995b). Emergent plant vegetation causes water 

velocity patterns that vary inversely with canopy drag (Yang 1998, Lightbody and 

Nepf 2006). Bottom current velocity also decreases when stems are present, 

which in turn contributes to sedimentation by diminishing particle resuspension 

and increasing particle capture by vegetation (López and Garcia 1998).   

In salt marshes, sedimentation rates positively correlate with marsh plant 

community density and productivity (Morris et al. 2002). Indeed, the water 

flooding marshes contains less suspended sediment than water overlying open 

mud flats (Yang 1998). Salt marshes studied by Morris et al. (2002) have shown 

higher annual growth during periods of high sea level. Increased inundation in salt 

marshes results in increased plant production and provides greater opportunity for 

the marsh to accrete sediment vertically and move toward a dynamic equilibrium 

between marsh accretion and sea level. However, beyond a certain, unknown, rate 

of sea level rise, the marsh may be unable to accrete sufficiently to keep pace with 

rising water (Warren and Niering 1993, Kirwan and Temmerman 2009). This 
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disconnect, between the rate of sea level rise and sedimentation, may result in the 

conversion of tidal marsh to open water (Morris et al. 2002, Kirwan et al. 2010b). 

Marshes receiving high concentrations of suspended sediments are better able to 

increase marsh surface elevation and maintain stability against increasing sea 

level rise than are marshes with low suspended sediment concentrations (Morris 

et al. 2002, Kirwan et al. 2010a). 

High stem density can increase sedimentation processes (Leonard et al. 

1995a); however, morphological changes may occur in tandem with higher 

densities that can impede this process (Harley and Bertness 1996). For instance, 

Harley and Bertness (1996) found crowded plants allocated more growth to 

aboveground biomass, growing taller and thinner, in an effort to better compete 

for light with their close neighbors. As a result, the crowded plants grew closer to 

their maximum critical height and, consequently, had a tendency to break more 

easily (Harley and Bertness 1996). The study of plant biomechanical properties, 

as pioneered by Niklas (1991, 1992, 1994), has yielded several valuable 

morphological indicators in plants that are hallmarks of phenotypic plasticity. For 

example, the ratio of the critical buckling height of a plant, or the maximum 

height a plant can reach prior to failing under its own weight, to actual height is a 

measure of the factor of safety, or the structural capacity of a plant to withstand 

forces (e.g. wind, current, etc.; Niklas 1994). In the same experiment, Harley and 

Bertness (1996) evaluated the plastic response of plants in plots they had thinned 

to reduce competition with neighbors. They found plants in the thinned plots 

responded with thicker stems, a feature the authors hypothesized provided added 
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stability in the water column (Harley and Bertness 1996). Indeed, many plants 

respond plastically to the surrounding environment; however, there is often a cost 

associated with this phenotypic plasticity (Anten et al. 2005). The plant must 

allocate a disproportionate amount of resources to the phenotypic change that is 

necessary to survive in the surrounding environment (Niklas 1992, Anten 2005), 

such as more resources allocated to stem height at the expense of stem stability. 

Tidal fresh and oligohaline marshes have not been studied as extensively 

as salt marshes; much less is known about whether similar feedbacks among 

inundation, sediment capture, and plant structure apply to these ecosystems. To 

begin to evaluate these feedbacks, I chose an annual grass species, Zizania 

aquatica var. aquatica (southern wild rice), which is common in the low marsh 

zone of tidal fresh and oligohaline marshes in the mid-Atlantic region. Zizania 

aquatica germination begins in late April and flowering occurs from mid-July 

through early September, with most seed dispersal occurring in late August by 

wind and rainstorms (Whigham and Simpson 1977). Baldwin et al. (2001) 

suggested that increased water levels and decreased sediment supply may cause 

reduced survival in species that reproduce by seedling recruitment. As a low 

marsh annual that colonizes the marsh platform via seedling recruitment, Z. 

aquatica may be at greater risk from relative sea level rise; the rate of which is 

approximately 3.5 mm yr
-1

 in the mid-Atlantic region, which is higher than the 

global average (Titus et al. 2009). Whigham and Simpson (1977) found Z. 

aquatica allocates more resources to belowground biomass during its seedling 

phase, but, over the life cycle of this plant, more resources go toward 
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aboveground biomass. As a result, plants stems may become top heavy and suffer 

greater mortality during summer storms (Whigham and Simpson 1977). Zizania 

aquatica may be at greater risk of stem failure under sea level rise as indicated by 

changes in mechanical properties such as the modulus of elasticity (a measure of 

stem stiffness or resistance to deformation; Niklas 1991, 1994).  

I evaluated the phenotypic response of Z. aquatica under experimental 

inundation treatments to determine whether feedbacks between vegetation and 

inundation are similar to those found in salt marshes. Findings from these 

experiments inform our understanding of the potential vulnerability of tidal fresh 

and oligohaline wetlands to increasing sea level rise. I investigated plant 

phenotypic response of Z. aquatica to increased inundation to determine whether 

Z. aquatica will have increased productivity, accompanied by changes in density, 

height, diameter, and modulus of elasticity. In particular, I expected that Z. 

aquatica experiencing increased inundation would respond with increased 

productivity, as was seen with S. alterniflora salt marshes (Morris et al. 2002). 

This change in production was expected to accompany an increase in stem density 

(shoots per meter squared) and stem height and a decrease in stem diameter and 

modulus of elasticity. 
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METHODS 

Study Site and Experimental Design: 

I conducted experiments in a marsh located along the upper Delaware 

River near Salem, New Jersey, USA (Figure 1). Vegetation at the site is 

dominated by a nearly monotypic stand of Z. aquatica. The site is oligohaline, 

with an average salinity of about 2.2. The mean tidal range at the portion of the 

river near the study site is about 1.7 meters (NOAA 2014).  

I conducted the experiment using a single “marsh organ”, modified from 

an earlier design developed by Morris (2004) that has been used extensively in 

studies of wetland inundation (Kirwan and Guntenspergen 2012, Kirwan et al. 

2012, Langley et al. 2013, Morris 2007b). This modified marsh organ is a large 

wooden structure consisting of steps, with each step representing a different 

elevation (Figure 2). The purpose of the marsh organ is to assess the phenotypic 

response of vegetation exposed to increasing inundation, a proxy for sea level 

rise, which was sampled in June and August 2012 and July 2013. This has been 

an active research site with a Z. aquatica marsh organ present since 2010; 

however, the focus of this work is on data collected during 2012. The marsh organ 

contains five steps, each holding 4-5 five-gallon buckets (replicates) filled with 

intact sediment cores taken from the adjacent marsh in 2010 (Figure 3). There was 

a 10 cm difference between each step. Vegetation from the native seed bank 

contained in the intact sediment cores was allowed to naturally colonize the 

buckets. Consequently, Z. aquatica exclusively colonized and regenerated 

throughout the experiment from the marsh sediment cores in the marsh organ 
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buckets. In the experiment, the lowest elevation was most inundated and, 

conversely, the highest elevation was least inundated. The second highest 

elevation best represented elevations where Z. aquatica grows in the adjacent 

marsh.  

Water level data loggers (Schumberger CTD diver) recorded water depth 

as a measure of inundation at the marsh organ. The logger was fastened to a pole 

in the creek next to the marsh organ at 0.3 meters below the lowest marsh organ 

step. The logger data for the marsh organ was georeferenced using a Real Time 

Kinematic GPS to the North American Vertical Datum (NAVD) to determine the 

flooding depth for each elevation on the organ and all depth data were corrected 

to total depth.  

Biomass: 

In order to evaluate the productivity of Z. aquatica in response to 

increasing inundation, I destructively harvested Z. aquatica from the adjacent 

marsh to develop a regression equation with stem length, with which I estimated 

biomass in the marsh organ at each sampling event. Plant stems were cut at the 

sediment surface and morphological measurements were taken prior to placing the 

plants in labeled brown paper bags for drying. All biomass samples were dried to 

constant weight in a drying oven at 60
o
C. I developed an equation (Eq. 1, R

2
 = 

0.67) based upon these destructively harvested data (Figure 4) to estimate plant 

weight in the marsh organ for each sampling event based upon measured plant 

height.  

Weight = 2.16*10
-4

 (Height)
2
 – 4.47*10

-3
 (Height) – 8.86*10

-1
  Eq.1 
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The marsh organ was visited on two occasions during the summer of 2012 

in order to collect morphology and density measurements. Aboveground biomass 

could not be harvested directly from the marsh organ during the growing season, 

as this would have altered the ongoing density and morphological measurements. 

Additionally, aboveground biomass was not harvested at the end of the growing 

season as this experiment was conducted in tandem with another research study at 

the marsh organ. As a result, aboveground biomass was estimated for each 

sampling event, using Equation 1. Aboveground biomass was estimated for each 

experimental unit (i.e. bucket) by substituting the average stem length for 

“height” in Equation 1, which was then averaged for each inundation step.  These 

mean values were then normalized to the bucket area (i.e. 0.07 m
2
) and the stem 

density for each bucket, to compute biomass as grams dry weight per square 

meter.  

Morphology: 

To adequately describe the morphological response of Z. aquatica to 

changed inundation in the marsh organ experiment, I took marsh organ 

measurements and collected Z. aquatica samples from the adjacent marsh on June 

21, 2012 and August 6, 2012, following the protocol described by Morris (2007b). 

During these sampling events, I counted the number of stems in each bucket and 

took morphological measurements (e.g. stem height and diameter). Plant height 

(cm) was measured using a Lufkin Red End folding two-meter stick, and basal 

stem diameter (mm) was measured using vernier calipers close to the sediment 
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surface. Due to the higher plant density within the buckets at the highest 

elevation, a subsample of ten plants was measured.  

In 2013, I was able to revisit the marsh organ to collect morphological, 

biomechanical, and biomass measurements. I harvested Z. aquatica from the 

Salem marsh organ on July 19, 2013. At this sampling event, I recorded stem 

density and removed all stems from the buckets. Stems were cut with clippers at 

the sediment surface and transported within PVC pipes to the lab for processing. 

Upon reaching the lab, the Z. aquatica stems were placed in buckets of tap water 

to maintain turgor until plant measurements commenced.  

In addition to the basic morphological measurements described above, I 

measured and recorded length to the center of mass on the stem, and diameter at 

this center of mass. To determine the center of mass, or the load application site 

(P), the apical portion of the stem was increasingly moved off the edge of a flat 

table until the stem fulcrum balanced on the table edge.  I later tested this 

measurement by cutting and weighing the basal and apical portions of the stems 

and comparing dry weights.  

Biomechanical Characteristics: 

To determine the biomechanical response of Z. aquatica subjected to 

increasing inundation, I conducted measurements to determine the modulus of 

elasticity (E) and second moment of area (I) of Z. aquatica plant stems. 

Collectively, these measurements provide a quantitative assessment of the ability 

of Z. aquatica stems to resist deformation when forces are applied. These 

measurements inform our understanding of the material properties (E), such as 
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stiffness, and morphology (I) of the plant stems, which may lead to the 

vulnerability of Z. aquatica to mechanical stress due to converging physical 

forces of wind or tide (Niklas 1992). I used the following equation to compute E 

(Eq. 2), where P is the load application site, located at the center of gravity 

determined for each individual stem, b is the length from the base of P, δ is the 

stem deflection, and I is the second moment of area (Eq. 3).  

Equation 3 is given for computing the second moment of area of a hollow 

stem. The variables R and r are the inner and outer radii (Figure 5). 

E = Pb
3
/3δI (Eq. 2, Niklas 1992) 

I = (π/4)*(R
4
- r

4
) (Eq. 3, Niklas 1992) 

I conducted these biomechanical measurements using the experimental 

framework developed by Niklas (1992) shown in Figure 6, in which the plant 

stem is cantilevered at a 90° angle. The basal portion of the stem was inserted into 

floral foam, which I clamped to a heavy stand. I measured vertical stem 

deflections (δ) with load applied to a point (P) on the stem. To perform load 

measurements, a 500 mL plastic beaker was connected to the stem load 

application site (b) and successively filled with deionized (DI) water while 

changes in stem deflection were measured. The stem deflection was determined 

based on what distance the apical portion of the stem reached on the level-

adjusted meter stick that was vertically clamped to a second stand.  

Prior to the first load application, I measured the initial location of the 

apical portion of the plant using a level to eliminate the effect of the force of 

gravity. The next deflection measurement was taken using the force of gravity, 
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with the mass of the stem itself acting alone. Following these initial 

measurements, the pre-weighed load constant (i.e. beaker) was applied to the stem 

at the load application site (i.e. center of gravity for the individual stem), and DI 

water was added in known increments (20 mL, for Z. aquatica) to the load 

constant using a calibrated 5 mL Fisherbrand Finnpipette.  Following each load 

application, I measured the deflection by determining the change in height of the 

apical end of the stem along the meter stick. Each stem had 3-5 weights and 

deflections measured. Once the deflection measurements were complete, the final 

step was to cut the stem where the load was applied (b) and measure the inner and 

outer radii (Figure 5). Following data collection, the second moment of area was 

calculated (Eq. 3) and used as input for the modulus of elasticity equation (Eq. 2). 

After E was computed, the frequency distribution patterns of E were examined to 

assess normality and, consequently, whether the experiments were performed 

properly. Upon determination that E was normally distributed for each Z aquatica 

stem measured, an average E was computed for each stem. Finally, I developed a 

regression model (Eq. 4; R
2
 = 0.85) in order to estimate the modulus of elasticity 

for Z. aquatica in 2012. 

E = 3*10
10

 (Diameter) – 4*10
8
 (Eq. 4) 

Statistical Analyses: 

Statistical analyses and regression equations were performed with the free 

statistical software R studio (R Core Team 2013). I performed one-way Analysis 

of Variance (ANOVA) to determine whether differences existed among the 

experimental inundation treatments in the marsh organ. I assessed whether the 
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data met assumptions of homogeneity of variances (car package; Fox and 

Weisberg 2011) and normality of residuals (nortest package; Gross and Ligges 

2012). When these data did not meet the assumptions for homogeneity of 

variances and normality, rather than perform a transformation of these data, I used 

the White Correction ANOVA (car package; Fox and Weisberg 2011). Tukey’s 

post hoc comparisons were conducted using the multcomp package (Hothorn et 

al. 2008). Box and whisker plots, showing the median of the sample and the upper 

and lower quartiles were produced in R studio. Differences were deemed to be 

significant at the 0.05 level. 
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RESULTS 

Z. aquatica production varied strongly as a function of elevation and, 

consequently, inundation treatments. In June 2012, aboveground areal biomass 

was different (p <0.05) among elevations, with biomass significantly greater at 

the highest elevation (0.17 m NAVD) compared to the lowest elevations -0.2 and 

-0.33 m (Figure 7a). By August, there remained a significant difference (p < 

0.0001) for aboveground areal biomass among elevations, with the highest 

elevation having significantly greater biomass compared to all the remaining, 

lower elevation steps (Figure 7b). 

 In contrast to areal aboveground biomass, individual plant weight was not 

significantly different (Figure 8a) among elevation treatments in June. However, 

by August, weight followed a parabolic relationship with elevation and was 

significantly different (p < 0.005; Figure 8b). In August, individual plants 

growing at the lower elevations (-0.07 and -0.2 m, NAVD) had greater weight 

compared to the highest elevation (Figure 8b).  

Stem density was different among elevations for both June (p <0.001; 

Figure 9a) and August (p <0.001; Figure 9b), with stem density being 

significantly greater at the highest elevation compared to the remaining 

elevations. By August the stem density at the highest elevation had decreased to a 

median of about 35 plants per bucket (Figure 9b) from about 60 in June (Figure 

9a). June stem length was significantly different (p = 0.037), though likely due to 

the high variability in length, especially at the lowest elevation (-0.33 m NAVD), 

however, post hoc tests did not indicate significant differences in stem length 
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among elevations (Figure 10a). By August, stem length was different among 

elevations (p < 0.001) and exhibited a parabolic relationship similar to that seen 

with individual plant weight (Figure 10b), with the tallest stems found at 

elevations -0.07 and -0.2 m NAVD. Stem diameter was different among 

elevations (p = 0.036) in June, with significant differences among the highest 

elevation and elevations 0.04 and -0.2 m NAVD (Figure 11a). In August, stem 

diameter was again different among elevations (p = 0.020), with the lower 

elevations having greater stem diameters compared to the highest elevation 

(Figure 11b). Finally, in June, Z. aquatica exhibited a difference among 

elevations for modulus of elasticity (p = 0.035), with lower E at elevations 0.04 

and -0.2 m NAVD compared to the highest elevation (Figure 12a). By August, 

this difference among elevations was more pronounced and all lower elevations, 

compared to the highest elevation, showed lower E, or decreased stem stiffness (p 

< 0.0001; Figure 12b). 
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DISCUSSION 

In this study, Z. aquatica showed changes in productivity, morphology, 

and biomechanical properties in response to flooding regime throughout the 2012 

growing season. In June, different plant responses to elevations occurred, such as 

significantly lower aboveground biomass (Figure 7a), stem density (Figure 9a), 

and modulus of elasticity (Figure 12a) in the lower elevations compared to the 

highest elevation. Moreover, I saw significantly greater stem diameter (Figure 

11a) for Z. aquatica growing in the lower elevations compared to the highest 

elevation; however, I did not observe significant differences between individual 

plant weight (Figure 8a) and stem length (Figure 10a) in June. The plant response 

to flooding was more pronounced in August, with significant differences in all 

measured phenotypic response variables with depth (Figures 7b-12b). These data 

illustrate the phenotypic plasticity exhibited by Z. aquatica throughout this 

experiment. As the plant response to the experimental treatment is greatest by the 

end of the growing season, the focus from here will be on the August 2012 data.  

In salt marshes, Morris et al. (2002) found that Spartina alterniflora 

undergoes a change in production, moving toward supraoptimal growth when 

flooded. I had expected a similar response in Z. aquatica; an increase in areal 

aboveground biomass with increasing inundation. However, Z. aquatica 

responded instead with a significant decrease in areal aboveground biomass at 

lower elevations receiving increased flooding (Figure 7b). While areal biomass 

was greatest at the highest elevation receiving the least amount of inundation 

(0.17 m NAVD), the individual plant weight was significantly greater at the 
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middle (-0.07 m NAVD) and second lowest (-0.2 m NAVD) elevation (Figure 

8b). I found no effect of elevation on plant weight until -0.07 m NAVD, and there 

appears to be a threshold below -0.2 m NAVD where individual plant weight 

decreases with flooding. At the ecosystem scale, I had expected that tidal marshes 

had evolved resilience to withstand changes in inundation, regardless of estuarine 

salinity regime or plant community. However, given the difference between Z. 

aquatica and S. alterniflora responses to flooding, this expectation may be 

incorrect. For example, due to the biogeochemical conditions present in salt 

marshes, S. alterniflora must allocate more resources to salt tolerance and 

belowground biomass production, which means fewer resources are available for 

aboveground growth (Odum 1988). In contrast, Z. aquatica allocates more 

resources to aboveground, rather than belowground, production in order to 

compete for light in a diverse plant community. As a result of this competition to 

grow taller than neighboring plants, Z. aquatica tends to have reduced stem 

stability. While both species make tradeoffs to survive, the phenotypic response 

of each species to the surrounding environmental conditions produces markedly 

different results.   

It is worthwhile to consider the variables that contributed to these results, 

which differ from my initial productivity hypothesis. I hypothesized that higher 

stem density would accompany greater aboveground biomass in the lower 

elevations receiving greater inundation, as was found in S. alterniflora salt 

marshes (Morris et al. 2002). In contrast, I found the highest elevation, which 

received the least inundation, had the greatest areal aboveground biomass and 
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significantly higher stem density (Figure 9b). This result is likely to do greater 

seed germination rate under less flooded conditions, as was seen in Baldwin et al. 

(2001). While biomass and density did not respond as expected, Z. aquatica was 

significantly taller in the lower elevation plots as was expected, specifically in the 

middle (-0.07 m NAVD) and second lowest (-0.2 m NAVD) elevation (Figure 

10b), which contributed to the significantly higher individual plant weight (Figure 

8b) at these elevations. Thinner stem diameter was expected to accompany the 

taller Z. aquatica stems at the lower elevations; however, I found a significantly 

greater stem thickness for Z. aquatica growing at the lower elevations (Figure 

11b).  

These stem density, height, and diameter results differ from those reported 

by Harley and Bertness (1996) for several salt marsh species. Harley and Bertness 

(1996) found that plants growing densely tended to grow taller with thinner stems 

to more effectively compete with neighboring plants for light; whereas, plants 

growing less densely tended to be shorter with thicker stems to increase stability 

in the water column. My results show that densely populated Z. aquatica plants at 

higher elevations were significantly shorter with thinner stems; less densely 

populated plants were significantly taller with thicker stems. Zizania aquatica 

also showed decreased stem stiffness (i.e. increased elasticity) at the lower 

elevations. According to Niklas (1994), mechanical theory predicts that plant stem 

diameter and stiffness tend to increase with an increase in stem height, so that 

taller plants tend to have thicker, stiffer stems when compared to shorter plants. 
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Zizania aquatica investigated at this site does not fit this model, as taller, thicker 

stems had decreased stem stiffness at the lower elevations.  

Finally, I investigated the modulus of elasticity of Z. aquatica stems 

experiencing increased inundation. I found, as expected, that taller Z. aquatica 

growing in the lower elevations had significantly lower modulus of elasticity, or 

decreased stem stiffness (Figure 12b). The average August modulus of elasticity 

result for Z. aquatica was 1.59*10
8
 kg m

-1
s

-2
. This value is within the same order 

of magnitude as other modulus of elasticity results reported in literature. For ease 

of comparison with the results from this study, the following modulus of elasticity 

literature values have been converted to kg m
-1

 s
-2

. For instance, Harley and 

Bertness (1996) found S. alterniflora had an average modulus of elasticity value 

of 5.32*10
8
 kg m

-1
s

-2
, which is comparable to my results. Furthermore, Niklas 

(1995) reported modulus of elasticity values for many herbaceous stems, 

including Juncus spp. (3.21*10
8
 kg m

-1
s

-2
), which is also comparable to Z. 

aquatica values. 

When a plant species is subjected to an altered environment, survival 

depends upon the ability of the plant to respond plastically, with phenotypic 

enhancements, to better tolerate the altered conditions (Puijalon et al. 2007). The 

phenotypic plastic response of plants to altered environmental conditions may 

require tradeoffs, such as thicker, rather than taller, stems to stabilize the plant 

against mechanical failure (Niklas 1992). Zizania aquatica exhibited a range of 

phenotypic responses to the manipulated inundation levels, including taller, 

thicker stems with decreased density, biomass, and modulus of elasticity at lower 
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elevations. The ability of Z. aquatica to respond with phenotypic plasticity to 

decreased elevation, and consequently, increased inundation, is apparent in the 

morphological changes observed between June and August 2012. While Z. 

aquatica did show the capacity for phenotypic plasticity, the question remains 

whether the species has a large enough range in its plastic response to persist 

under these conditions with accelerated rise.  

The mid-Atlantic region of the United States has a relative sea level rise 

rate of about 3.5 mm yr
-1

 (Titus et al. 2009). It has been suggested that a relative 

sea level rise rate of about 2 mm yr
-1

 will cause many wetlands to become 

stressed, and many wetlands may convert to open water under an accelerated rate 

of 7 mm yr
-1 

(Titus et al. 2009). Current theories of wetland response to these 

changes describe vegetation as regulating the marsh elevation toward equilibrium 

with sea level rise up to some rate of sea level rise at which a threshold is reached 

(Morris et al 2002, Mudd et al. 2009). If sea level rises too rapidly, the marsh may 

not be able to maintain the amount of sediment and organic matter accretion 

necessary to survive. Vegetation will either succumb to inundation or possibly 

undergo a landward range shift, if there are no barriers to migration.  

The rate of sea level rise a marsh can endure is largely a function of 

sediment availability. While tidal fresh and oligohaline marshes tend to have a 

sufficient supply of sediments from upland terrestrial sources (Boumans et al. 

2002, Pasternack and Brush 2001), the productivity, morphological, and 

biomechanical response of Z. aquatica stems to increased inundation point to the 

potential vulnerability of this species. Taller stems are typically accompanied by 
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higher stem density in other plant species where the relationship has been 

observed (Niklas 1992, Harley and Bertness 1996, Anten et al. 2005); that was not 

the case in this study. Besides providing the disadvantage of competition, higher 

stem density provides the advantage of structural support (Harley and Bertness 

1996) and buffering from hydrodynamic and wind forces, which will be greatest 

for the tallest plant stems (Anten et al. 2005). In this experiment, stems were 

thicker and more elastic, as well as taller, in the lower elevations, suggesting a 

phenotypic response with the potential to stabilize the stems under increased 

inundation and with lower stem densities.  

While Z. aquatica stems experiencing increased inundation did exhibit 

stabilizing phenotypic responses, these responses were accompanied by 

significantly reduced stem density (Figures 9a and 9b), which suggests the 

potential vulnerability of Z. aquatica to increased flooding. Baldwin et al. (2001) 

investigated the response of several tidal freshwater marsh species to increasing 

inundation and found seedling recruitment and germination was inhibited by 

increased inundation, particularly when flooding occurred early in the growing 

season. Greater flooding early in the growing season had a greater influence on 

seedling recruitment of annual species in particular, which were found in lower 

abundance for the remainder of the year (Baldwin et al. 2001). Zizania aquatica 

growing in the marsh organ represent a naturally regenerating stand, with seedling 

recruitment from the initial intact marsh sediment cores repopulating the marsh 

organ each year. These Z. aquatica density data (Figure 9b) suggest seedling 

recruitment is reduced under increased flooding conditions, as was seen in 
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Baldwin et al. (2001) with other tidal freshwater marsh plants. Moreover, the 

reduced density of Z. aquatica growing under conditions of increased flooding 

suggests that the loss of stems could lead to a reduction in sediment capture 

potential by low marsh vegetation and, therefore, increased erosion of the marsh 

platform. This will likely reduce the ability of the marsh to accrete enough 

sediment to keep up with accelerated sea level rise. 

Another potential vulnerability for Z. aquatica, is associated with the 

stems growing taller under increasing inundation (Figures 10a and 10b). Zizania 

aquatica growing in situ in the marsh has a tendency to become top heavy and 

succumb to stem failure during late summer storms (Whigham and Simpson 

1977). Under conditions of accelerated sea level rise, stem failure may occur 

earlier in the growing season, due to the phenotypic responses reported here, 

which could lead to a loss of seed stock if failure occurs prior to seed production. 

The cumulative effect of these potential vulnerabilities (i.e. taller, less dense 

stems) could lead to reduced seedling recruitment over time with increasing sea 

level rise (Baldwin et al. 2001), which could contribute to a loss of species 

richness (Baldwin et al. 1996) and possible conversion to open water in portions 

of the low marsh if landward migration is not possible. Given the intense pressure 

on coastal systems from urban encroachment, which limits landward migration of 

tidal marshes with sea level rise, it is likely that these marshes will not fare well 

with increasing sea level rise.  

In conducting the manipulated inundation experiments with Z. aquatica, I 

made several necessary assumptions. The marsh organ design, with each step 
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representing a decrease in elevation and, therefore, an increase in flooding, 

approximates how Z. aquatica will respond to increasing inundation as a proxy 

for sea level rise. The experimental units (i.e. buckets) in which Z. aquatica grew 

in these inundation experiments did not provide the exact conditions seen in the 

natural marsh. For instance, these experimental units have the potential to restrict 

the ability of Z. aquatica to spread out vertically (shoots) and horizontally (roots). 

However, this does not appear to have influenced my results. I saw that elevation 

and, consequently, inundation affects shoot density (Figure 9b), which suggests 

the experimental units did not restrict shoot growth. Furthermore, Z. aquatica 

tends to allocate more resources to aboveground rather than belowground growth 

(Whigham and Simpson 1977). Although belowground growth was not 

specifically investigated in this study, given findings from other research 

conducted with Z. aquatica (Whigham and Simpson 1977), it seems likely that the 

experimental units did not restrict root growth.  

The Z. aquatica marsh organ community was shaped by interacting 

biological factors, such as seedling recruitment and intraspecific competition, in 

addition to inundation effects on plant growth and physiology. While this work 

did not consider the complexities associated with species interactions in the 

diverse plant community of the tidal freshwater marsh, it adds to our 

understanding of the autoecology of an important species, providing a framework 

for future efforts to document the impacts of inundation on other freshwater tidal 

plant species in this ecosystem. Furthermore, salinity intrusion into the marsh, 

which may also be a factor influencing tidal freshwater marshes with increasing 
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sea level rise, was not addressed in this simple study of the interaction between Z. 

aquatica and increasing inundation. An increase in salinity accompanied by an 

increase in flooding, could further compound seedling recruitment and 

germination in tidal freshwater marshes. Baldwin et al. (1996) found reduced 

species richness, seedling recruitment, and germination for many oligohaline 

species with a salinity increase greater than 4. Furthermore, Weston et al. (2006) 

found salt-water intrusion into tidal freshwater marshes triggers microbial 

decomposition of organic matter, which could hinder marsh ability to vertically 

accrete and keep pace with sea level rise. 

Further study would be useful to discover interactions amongst a more 

diverse plant community, the effects of reduced Z. aquatica stem density on 

sediment capture, and on the species’ susceptibility to hydrodynamic forces with 

reduced stem density and increased inundation. Finally, future study might also 

consider salinity intrusion, which may be a factor influencing tidal fresh and 

oligohaline marshes with increasing sea level rise.   
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FIGURES 

 
        Figure 1 Site map showing location along the Delaware River.
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Figure 2 Photograph of marsh organ with Zizania aquatica in a small tidal creek. Photo from Dr. Nathaniel Weston. 
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Figure 3 Marsh organ cartoon showing experimental design and change in elevation for each step. 
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Figure 4 Destructive harvest data for Z. aquatica used to develop the following regression equation: Weight = 2.16*10

-

4
 (Height)

2
 – 4.47*10

-3
 (Height) – 8.86*10

-1
 (R

2
 = 0.67; p value: <0.001; df = 502). 
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Figure 5 Diagram illustrating the inner and outer radii measurements required for the second moment of area (I) 

calculation. 
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Figure 6 Cartoon illustrating the experimental framework used for the determining the modulus of elasticity (E), where 

P is the point on the stem where the load is applied, b is the length from the base of the stem to the point where the load 

is applied, and a is the apical portion of the plant. 
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(a)  

(b)  

Figure 7 Zizania aquatica areal aboveground biomass in response to increasing 

inundation (decreasing elevation) treatments in June (a) and August (b) 2012. 

Each box whisker plot represents the median, upper and lower quartiles, and the 

range of the data (4-5 buckets) for the given elevation. Inundation increases with 

changes to elevation from 0.17 m NAVD to -0.33 m NAVD. Letters represent 

statistically significant Tukey differences among elevations with a significance 

level of 0.05. Aboveground biomass was calculated from a quadratic equation 

(Weight = 2.16*10
-4

 (Height)
2
 – 4.47*10

-3
 (Height) – 8.86*10

-1
; R

2
 = 0.67) based 

upon destructive harvest data. Statistics for June (n = ~5 replicates per row, p 

value = 0.0067, F value = 6.4) and August (n = ~5, p value = 0.00015, F value 

=10.5).  
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(a) 

 
(b) 

Figure 8 Zizania aquatica individual plant weight in response to increasing 

inundation (with decreasing elevation) treatments in June (a) and August (b) 

2012. Each box whisker plot represents the median, upper and lower quartiles, 

and the range of the data (4-5 buckets) for the given elevation. Inundation 

increases with changes to elevation from 0.17 m NAVD to -0.33 m NAVD. 

Letters represent statistically significant Tukey differences among elevations with 

a significance level of 0.05. Statistics for June (p value = 0.058, F value = 2.8) 

and August (p value = 0.005, F value =5.3). 
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(a) 

 
(b) 

Figure 9 Zizania aquatica stem density in response to increasing inundation (with 

decreasing elevation) treatments in June (a) and August (b) 2012. Each box 

whisker plot represents the median, upper and lower quartiles, and the range of 

the data (4-5 buckets) for the given elevation. Inundation increases with changes 

to elevation from 0.17 m NAVD to -0.33 m NAVD. Letters represent statistically 

significant Tukey differences among elevations with a significance level of 0.05. 

Statistics for June (p value = < 0.001 F value =63.1) and August (p value = < 

0.001, F value =22.5).
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(a) 

 
(b) 

Figure 10 Zizania aquatica stem length in response to increasing inundation 

(with decreasing elevation) treatments in June (a) and August (b) 2012. Each box 

whisker plot represents the median, upper and lower quartiles, and the range of 

the data (4-5 buckets) for the given elevation. Inundation increases with changes 

to elevation from 0.17 m NAVD to -0.33 m NAVD. Letters represent statistically 

significant Tukey differences among elevations with a significance level of 0.05. 

Statistics for June (p value = 0.036, F value = 3.2) and August (p value < 0.001, F 

value =7.1). 
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(a) 

 
(b) 

Figure 11 Zizania aquatica stem diameter in response to increasing inundation 

(with decreasing elevation) treatments in June (a) and August (b) 2012. Each box 

whisker plot represents the median, upper and lower quartiles, and the range of 

the data (4-5 buckets) for the given elevation. Inundation increases with changes 

to elevation from 0.17 m NAVD to -0.33 m NAVD. Letters represent statistically 

significant Tukey differences among elevations with a significance level of 0.05. 

Statistics for June (p value = 0.036, F value = 3.2) and August (p value = 0.019, F 

value = 3.8). 
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(a) 

 
(b) 

Figure 12 Zizania aquatica stem modulus of elasticity in response to increasing 

inundation (with decreasing elevation) treatments in June (a) and August (b) 

2012. Each box whisker plot represents the median, upper and lower quartiles, 

and the range of the data (4-5 buckets) for the given elevation. Inundation 

increases with changes to elevation from 0.17 m NAVD to -0.33 m NAVD. 

Letters represent statistically significant Tukey differences among elevations with 

a significance level of 0.05. Elasticity was calculated from a regression equation 

(Elasticity = 3*10
10

 (Diameter) – 4*10
8
; R

2
=0.85) based upon results from the 

biomechanical measurements taken in 2013. Statistics for June (p value = 0.035, F 

value =3.3) and August (p value = < 0.001, F value = 9.8).
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CHAPTER TWO: 

THE FUTURE ROLE OF CHESAPEAKE BAY TIDAL 

WETLANDS AS NITROGEN SINKS AND SOURCES UNDER 

PROJECTED SEA LEVEL RISE 

 

ABSTRACT 

There is increasing concern that sea level rise (SLR) could negatively 

impact the Chesapeake Bay through the loss of wetlands. Wetlands act as nutrient 

sinks through burial or, in the case of nitrogen, transformation to di-nitrogen gas 

through denitrification. Upon degradation and submergence, wetlands may act as 

a source, rather than a sink, of nutrients. Projected changes to these ecosystems 

under SLR were not considered when total maximum daily loads (TMDLs) were 

instituted for the Chesapeake Bay, which has implications for restoration efforts. I 

obtained estimates of current and projected areal wetland coverage for the 

Chesapeake Bay under various SLR scenarios and calculated denitrification and 

nitrogen burial rates for Chesapeake Bay tidal wetlands under these scenarios for 

the years 2025, 2050, 2075, and 2100. In addition to presenting these large-scale 

results for the Chesapeake Bay, I describe two case studies at increasingly finer 

scales, comparing 2025 projected TMDL nitrogen loadings to nitrogen removal 

by tidal wetlands undergoing projected SLR for five Maryland major basins and 

22 Calvert county watersheds. My work will inform resource managers, at several 

scales, of the areas with increased vulnerability to accelerated SLR, which may 

have the potential to negatively impact Bay restoration goals associated with 

decreased nitrogen loadings.  
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INTRODUCTION 

Chesapeake Bay Tidal Wetlands: 

The Chesapeake Bay estuary is relatively shallow with broad shoals and 

extensive flats, which gradually slope toward a deeper channel. Bay hydrology is 

driven by tides, which influence the presence of tidal wetlands ranging from tidal 

freshwater marshes and swamps, to brackish and salt marshes. The salinity in the 

Bay varies from oligohaline (< 0.5-2; Odum 1988) in tidal freshwater marshes to 

mesohaline (1-10; Lippson and Lippson 2006) in brackish marshes to polyhaline 

(18-30; Odum 1988) in salt marshes. According to Baldwin et al. (2012), tidal 

wetlands cover an area of about 160,000 ha in the Chesapeake Bay.  

Ecosystem services ensue from the flow of materials and energy from the 

natural environment, which either directly or indirectly benefit humans (Costanza 

et al. 1997). Wetlands provide many ecosystem services, such as filtration of 

toxins and pollutants, the uptake and transformation of nutrients, floodwater 

attenuation, groundwater recharge, water quality improvement, habitat, and 

recreation opportunities (Costanza et al. 1997). Wetlands are advantageously 

situated in the landscape to intercept nutrients and pollutants from upland 

terrestrial sources before they reach estuaries and coastal environments, where the 

increased nutrient loading can lead to eutrophication. Increasing awareness of the 

inherent benefits of wetlands, whether natural, restored, or constructed, has led to 

the managed use of wetlands for trapping nutrients exported from agricultural 

lands (Hansson et al. 2005) or wastewater effluent to improve water quality. 
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These ecologically important services are often not given much consideration in 

policy decisions (Costanza et al. 1997).  

Of specific interest for this study, Chesapeake Bay tidal wetlands provide 

nitrogen removal services (e.g. denitrification and nitrogen burial), which are 

important wetland processes that effectively reduce the flow of nitrogen reaching 

estuarine and coastal environments (White and Howes 1994). Nitrogen loss from 

the wetland may occur as denitrification or anaerobic ammonium oxidation both 

of which result in the conversion of nitrate to di-nitrogen gas to the atmosphere. 

In the case of denitrification, this process occurs as coupled nitrification-

denitrification where there are both oxic and anoxic sediment conditions available 

either spatially or temporally. The process of anaerobic ammonium oxidation 

(anammox) also releases di-nitrogen gas to the atmosphere. However, in the 

Chesapeake Bay, anammox is not considered a primary loss pathway for nitrogen 

(Rich et al. 2008). Nitrate may be converted to ammonium via dissimilatory 

nitrate reduction to ammonium (DNRA), a process that doesn’t remove reactive 

nitrogen from the system, and then stored in marsh sediments before eventually 

being exported from the wetland to coastal marine environments (Koop-Jakobsen 

and Giblin 2010). However, the focus of this study is specific to denitrification, 

the nitrogen loss process that appears to be most prevalent in coastal sediments 

(Kemp et al. 1990, Hussein and Rabenhorst 2002, Kellogg et al. 2013). Nitrogen 

burial occurs when nitrogen, largely recalcitrant, accumulates as a result of 

sedimentation and is stored in tidal wetland soils.  
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Not all tidal wetlands are created equal when it comes to providing 

nitrogen removal services. Indeed, oligohaline (low salinity) marshes in the 

Chesapeake Bay are estimated to remove 2-3 times as much nitrogen as 

mesohaline (high salinity) marshes and are much more extensive in their coverage 

(Boynton et al. 1995). For instance, tidal freshwater wetlands tend to have high 

rates of denitrification (14.7 g m
-2

 yr
-1

; Greene 2005) and N burial (23.4 g m
-2

 yr
-

1
; Merrill and Cornwell 2000) compared to salt marshes (0.6 g m

-2
 yr

-1
 and 3.6-5.2 

g m
-2

 yr
-1

, respectively; Thomas and Christian 2001). Nitrogen removal rates in 

brackish marshes fall in between tidal freshwater and salt marshes, with 

denitrification rates of about 7.36 g m
-2

 yr
-1

 (Kemp 2006) and burial rates of about 

13.6 g m
-2

 yr
-1

 (Merrill and Cornwell 2000).  

Climate Change and SLR: 

Sea level rise (SLR) is an outcome of climate change that could negatively 

impact the Chesapeake Bay through the loss of tidal wetlands. Indeed, this has 

already occurred in the Bay, with many wetlands showing signs of decline, 

particularly along the Eastern shore (Kearney et al. 2002). Marsh stability 

depends upon complex, often nonlinear, feedbacks between SLR, marsh vertical 

accretion, and marsh vegetation (Morris et al. 2002, Mudd et al. 2010). Tidal 

wetlands have a high potential for adjusting to SLR, since an increase in 

inundation is likely to increase sediment deposition and, consequently, marsh 

vertical accretion (Leonard et al. 1995, Reed 1995, Kirwan et al. 2010). However, 

if tidal marshes are unable to vertically accrete sediments sufficiently they will 

surpass a threshold for adaptability to SLR beyond which marsh erosion will 
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occur. According to Kirwan et al. (2010), marshes that have exceeded a SLR 

threshold will likely become submerged and erode within 30-40 years. Eroding 

marshes act as sources, rather than sinks, of nutrients, sediments, and organic 

matter (Boynton et al. 2008).  

When considering the potential impact of SLR on Chesapeake Bay tidal 

wetlands, it is necessary to consider climate and hydrological processes. The 

cumulative effect of these processes combined with SLR may create a more 

substantial impact on tidal wetlands than SLR considered in isolation. Global 

climate models show much uncertainty and variation in their projections, though 

there is a broad consensus in the expected trends. Generally, annual mean 

temperatures will continue to increase in the 21
st
 century (Hayhoe 2007), possibly 

by about 2-5
o
C (Najjar et al. 2010). Additionally, global climate models predict 

an increase in winter and spring mean precipitation and an increase in extreme 

events such as heat waves, storms, and droughts (Hayhoe et al. 2007, Najjar et al. 

2010). In tandem with the predicted changes in precipitation and temperature, it is 

expected that there will be an increase in winter and spring streamflow and a 

decrease in summer streamflow (Hayhoe et al. 2007, Najjar et al. 2010). The 

combination of increased drought, evapotranspiration, and reduced summer 

streamflow may lead to a seasonal increase in Bay salinity, particularly in the 

upper and mid Bay. As riverine inputs decrease in the summer, tidal fresh and 

brackish marshes will likely be stressed by an increase in salinity.  

Mechanisms of global SLR include processes such as glacial ice melting 

and thermal expansion of oceans since the last glaciation. Geographical and 
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temporal variation from the global SLR rate is often due to processes such as 

regional long-term land subsidence from post-glacial rebound and annual/decadal 

fluctuations in atmospheric circulation (e.g. North Atlantic Oscillation) and 

precipitation patterns (Barbosa and Silva 2009). Similar to global climate models, 

there is much uncertainty regarding future SLR projections; however, it is 

generally agreed that SLR will continue to accelerate throughout the 21
st
 century. 

Assuming a constant accelerated rate of SLR as seen in the 20
th

 century, Church 

and White (2006) predict that global sea level will rise to ~ 0.28 - 0.34m by 2100. 

Rahmstorf (2007) developed a semi-empirical model, based upon the relationship 

between historic global SLR and mean surface temperatures, to predict higher 

increase in the global mean sea level (0.5m - 1.4m) by 2100 given a temperature 

increase between 1.4 and 5.8
o
C. The Church and White (2006) global SLR 

prediction have come to be considered conservative, and, in comparison, the 

Rahmstorf (2007) projection is considered to be more likely (Najjar et al. 2010).  

The global rate of SLR is estimated to be about 1.5-2 mm yr
-1

 (Church and 

White 2006, Titus et al. 2009), whereas the regional estimate for the Chesapeake 

Bay is between 3 mm yr-
1
 (Reed et al. 2008, Barbosa and Silva 2009) and 3.5 mm 

yr
-1

 (Titus et al. 2009). Long-term tide gauge data indicates there has been an 

increasing SLR trend for the Chesapeake Bay during the past century (Barbosa 

and Silva 2009, Titus et al. 2009, Najjar et al. 2010). Najjar et al. (2000) predicted 

mean SLR in the Mid-Atlantic region will increase by ~ 0.19 m by 2030 and 0.66 

m by 2095. More recently, Boesch et al. (2013), predict accelerated SLR rates of 

~ 0.43 m by 2050 and 1.1m by 2100 for the tidal waters of Maryland.  
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Total Maximum Daily Loads: 

The U.S. Clean Water Act of 1972 required the establishment of Total 

Maximum Daily Loads (TMDLs) for impaired waters in an effort to improve 

water quality standards. The Chesapeake Bay is listed as an impaired waterbody. 

Executive Order 13508, signed by President Obama, in 2009, recognized the 

Chesapeake Bay as a national treasure worthy of restoration and protection (EO 

2009). As a result, TMDLs were developed by the U.S. Environmental Protection 

Agency (EPA) to set limits on nutrient (nitrogen and phosphorus) and sediment 

pollution in the Bay and its tributaries. These pollution control measures are 

required to be in place by 2025. Watershed Implementation Plans (WIPs) were 

developed on the state level to determine how individual states within the 

Chesapeake Bay watershed will meet the required pollution allocations. At the 

county level in Maryland, progress toward meeting the water quality goals and 

implementation of TMDLs is reevaluated every two years.  

Despite anticipated changes in climate over the next century, we are just 

beginning to modify management actions to take into account the interactive 

effects of climate change on pollutant delivery. Nutrient and sediment delivery are 

expected to increase in the Chesapeake Bay region due to climate and land use 

changes that will likely result in greater runoff (Reed et al. 2008, Najjar et al. 

2010). At the same time, SLR will continue to affect the areas occupied by tidally 

influenced marshes. Healthy, accreting tidal marshes serve as sinks for nitrogen, 

effectively acting as “ecosystem-scale kidneys” (Boynton et al. 2008). Tidal 

marshes in the Patuxent River were found to remove up to 30% of the total 
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nitrogen imported into the marsh (Boynton et al. 2008). In comparison, eroding 

marshes that are unable to accrete enough sediments to keep pace with SLR, as 

seen along the Eastern Shore of Maryland in the Chesapeake Bay (Ward et al. 

1998, Stevenson et al. 2002), have a diminished capacity for nitrogen removal 

services and may act as a source of nitrogen via erosion of buried nitrogen, rather 

than a sink, as they continue to become submerged with accelerated SLR. Loss of 

wetlands due to climate change will further reduce nitrogen removal capacity at 

the same time nitrogen loading is increasing. 

Objectives: 

I seek to answer the following research questions: (1) What role do tidal 

wetlands play in nitrogen removal in relation to current nitrogen loads? (2) How 

will projections of SLR that include changes to wetland area affect loading goals 

set by the TMDLs? (3) How does spatial scale affect our understanding of these 

questions from Bay-wide, to basin scale, to 12-digit watersheds? I expect these 

analyses will provide evidence of a potential increase in nitrogen exported from 

tidal wetlands (released from burial) and a decrease in denitrification as tidal 

wetlands submerge and erode. Furthermore, I expect to find that TMDLs may not 

be adequate to meet restoration goals, as planned, since they do not account for 

wetland N removal services. 
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METHODS 

Chesapeake Bay tidal wetlands provide important nitrogen removal 

services. In an effort to highlight the importance of these wetlands and the 

potential threat accelerated SLR presents to these systems, I provide estimates of 

areal tidal wetland coverage using SLAMM projections for various SLR scenarios 

and estimate nitrogen removal for these scenarios to assess future changes in N 

removal services for tidal wetlands in the Bay. In addition to a large-scale 

examination of tidal wetlands in the entirety of the Chesapeake Bay, this study 

includes similar analyses at increasingly smaller scales. Restoration goals for 

nitrogen loadings by 2025 for five major basins in Maryland that are targeted for 

Phase II of the Watershed Implementation Plan for the Chesapeake Bay TMDL 

(MDE 2012) are explored in comparison to SLR projections.  Because these 

basin-scale WIPs are informed by local efforts by county and municipal 

governments, Phase II of the WIP for Maryland as developed in Calvert County 

was also explored as a case study to examine how changes to tidal wetlands might 

impact restoration efforts in the coastal plain.  The Calvert County WIP has been 

designed for target loads in 2020 (MDE 2012). 

Sea Level Affecting Marsh Model: 

The role of tidal wetlands in mitigating nutrient loads through burial and 

denitrification warrants further investigation using tools that can link watershed 

activities to wetland ecosystem processes while also considering the impacts of 

SLR and changes in hydrology. The aim of this work is to provide broad 

predictions of altered nitrogen removal rates by marshes using previously reported 
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results from a SLR model capable of simulating the response of tidal wetlands to 

long term accelerated SLR projections. The Sea Level Affecting Marshes Model 

(SLAMM; Park et al. 1989; Clough and Park 2008; 

http://www.warrenpinnacle.com/prof/SLAMM) was applied to the Chesapeake 

Bay region in a project funded by the National Wildlife Federation (NWF; Glick 

et al. 2008). The resulting Bay dataset of predicted wetland coverage under 

various SLR scenarios is available to the public.  

SLAMM is an ecosystem-based model that indirectly considers 

hydrodynamics and sediment loads when simulating wetland response to long-

term SLR (Fagherazzi et al. 2012). SLAMM indirectly calculates these 

parameters and does not include mechanistic formulations, so it is incapable of 

simulating feedback mechanisms; however, the simplicity of the model has 

facilitated its widespread application due to fast run-times and ease of use 

(Fagherazzi et al. 2012). SLAMM version 5.0 is a cell based (30 m x 30 m) model 

that easily integrates with raster-based GIS data, incorporating major processes 

affecting wetland fate such as accretion, erosion and inundation as well as an 

algorithm to model saltwater intrusion (Glick et al. 2008, Clough and Park 2008). 

Land categories used in SLAMM are derived from USFWS National Wetland 

Inventory (NWI) categories (Glick et al. 2008, Clough and Park 2008). Technical 

detail describing SLAMM 5.0.2 model processes, assumptions, equations, and 

land categories, are thoroughly detailed by Clough and Park (2008).  

SLR projections used in this SLAMM dataset are based on the emission 

scenarios A1 and B1 from the Intergovernmental Panel on Climate Change 
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(IPCC) Special Report on Emissions Scenario (SRES) Fourth Assessment Report 

(Glick et al. 2008, Craft et al. 2009). Within these scenarios (i.e. A1 and B1) there 

are several groups, (e.g. A1B, A1F1, and B1), which represent various levels of 

economic growth, global population, and technological efficiencies. Emissions 

scenarios are thoroughly detailed by IPCC (2007). The dataset included 

simulations for the following SRES scenarios and groups: B1 mean (0.31 m of 

SLR by 2100), A1B mean (0.39 m), A1FI mean (0.49 m), A1B max (0.69 m) 

(Clough and Park 2008). In addition to the SRES scenarios, there were three 

additional SLR scenarios (i.e. 1.0 m, 1.5 m, and 2.0 m) included in the dataset 

(Clough and Park 2008). Simulations were based on incremental time steps of 25 

years, which cover the period between the years 2000-2100. In addition, a 

reference (1996) simulation was run to enable comparisons and to validate the 

model. The model simulations were developed using USGS digital elevation 

model data, NOAA tidal data, and USFWS National Wetland Inventory data 

inputs, all of which are publicly available. For more details on model inputs, 

please see the NWF Technical report (Glick et al. 2008).  

Dataset Acquisition: 

In order to evaluate changes in tidal wetland area and loss of nitrogen 

removal services with long-term SLR, I exported Chesapeake Bay SLAMM 

zipfiles from Data Basin (2013). Data Basin is a science-based, free and open 

access site developed by the Conservation Biology Institute to support the 

scientific community via shared datasets. The Chesapeake Bay SLAMM files 

were originally created for a study that simulated SLR response of coastal 
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habitats, such as marshes and beaches, in the entire Chesapeake and Delaware 

Bay region (Glick et al. 2008).  

Scenario Selection: 

Chesapeake Bay 

The original geographic information system (GIS) files exported from 

Data Basin included multiple IPCC SRES scenarios, and a broader spatial scale 

that included Delaware Bay and the Delmarva Coastal Bay complex. Therefore, it 

was necessary to narrow the dataset both spatially and to SLR projections 

appropriate for this analysis. The model simulations I chose for my Chesapeake 

Bay tidal wetlands study were based upon the estimated global and local SLR 

rates. There is a general consensus that global SLR projections for the 21
st
 century 

have been previously underestimated (0.28 – 0.34 m; Church and White 2006) 

and will more than likely be in the range of 0.5 - 1.4 m (Rahmstorf 2007, Najjar et 

al. 2010). The SLR trend for the Mid-Atlantic region tends to be comparatively 

higher than the global SLR rate (Titus et al. 2009, Sallenger et al. 2012). By 2100, 

Maryland SLR rates are projected to range between 0.7 - 1.7 m (Boesch et al. 

2013). These combined factors provided the basis for selecting the model 

simulations based upon SRES A1B max (0.69 m), 1.0 m, and 1.5 m rise by the 

end of the 21
st
 century.  

Maryland Basins  

The five Maryland basins selected for inclusion in this study drain into the 

Bay and have tidally-influenced wetlands at their coastal margins. These basins 

are the Eastern Shore, Western Shore, Susquehanna, Patuxent, and Potomac 
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(Figure 1). The SLR scenarios used in the basin study were SRES A1B max and 

1.0 m by 2100. The criteria for scenario selection was two-fold, based upon the 

restoration goals for the Maryland portion of the Bay and the projected rate of 

SLR for Maryland. The restoration goals include reductions in nitrogen loading 

for the entire Maryland basin and each individual basin by 2025 (EPA 2010, 

MDE 2012). Therefore, I narrowed my focus to 2025 SLR projections to assess 

changes in tidal wetland area and nitrogen removal services in the basins in 

comparison to the 2025 restoration goals.  

Boesch et al. (2013) predict a SLR of about 0.43 m by 2050 for Maryland. 

Assuming the predicted SLR accumulates in a linear fashion during the given 

period, in half the time (i.e. 2025), the SLR will be about 0.22 m. Additionally, 

the SRES A1B max SLR scenario (0.69 m), appears to increase in a near-linear 

fashion over the next 100 years (Figure in: Najjar et al. 2010). I used this as a 

guideline to select the SRES A1B max (0.69 m) and 1.0 meter rise by 2100. By 

quartering these rates, these scenarios will represent about 0.17 m and 0.25 m for 

the SRES A1B max and 1.0 meter rise scenarios by 2025.  

Calvert County Watersheds 

The smallest scale study I explored estimated changes at the 12-digit scale 

watersheds in Calvert County, Maryland. A 12-digit watershed scale is the 

smallest hydrologic unit classification used by the U.S. Geological Survey and it 

represents the subwatershed scale. The local county government uses this scale of 

watershed (i.e. 12-digit subwatershed) to develop WIPs to meet the required 

county reductions for nitrogen, phosphorus, and sediment TMDLs for the 
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Chesapeake Bay (MDE 2012). Similarly to the criteria selection for the basin 

study, I selected the scenario for this study based upon restoration goals for 

Calvert County and the projected rate of SLR for Maryland. The Calvert County 

WIP (Calvert County (2013) provides nitrogen loading goals for the 22 Calvert 

County watersheds by 2020. Therefore, I selected the 2025 SLR simulation for 

SRES A1B max (0.17 m) and 0.25 m by 2025.  

Spatial Analyses: 

Chesapeake Bay 

In addition to truncating the simulation scenarios of interest for my study, 

it was also necessary to narrow the areas covered by the simulation. As previously 

mentioned, the original simulations included the Chesapeake Bay, Delaware Bay, 

and coastal lagoons. I was only interested in analyzing tidal wetlands in the 

Chesapeake Bay. I imported the raster-based SLAMM files into ArcGIS (version 

10; ESRI 2010). Using the ArcMap Spatial Analyst extension, raster cells were 

extracted using a vector shapefile of the Chesapeake Bay watershed boundary 

(ftp://ftp.chesapeakebay.net/pub/Geographic/ChesapeakeBay/). I repeatedly 

performed this process for each of the scenarios (i.e. 0.69 m, 1.0 m, and 1.5 m) 

and years (i.e. 1996, 2025, 2050, 2075, and 2100) of interest until all extractions 

were complete.  Because each raster cell was defined as having a 30 by 30 m area, 

areas of each tidal wetland type could be computed by multiplying the number of 

cells found for each wetland category by the area of the raster cells.  

 

 

ftp://ftp.chesapeakebay.net/pub/Geographic/ChesapeakeBay
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Maryland Basin 

GIS shapefiles providing boundaries for the major TMDL Maryland 

basins were obtained from the Maryland Department of the Environment 

(www.mde.maryland.gov). To determine the wetland coverage found in each 

basin for each scenario and simulation year, I applied spatial analyst tools in 

ArcMap to scale each raster file to the basin of interest.  As in the Chesapeake 

Bay–wide analysis, total hectares for each wetland type were then computed. 

Calvert County Watersheds 

Calvert County 12-digit watershed shapefiles for this portion of the study 

were provided by a member of the Calvert County Phase II WIP team (Dr. 

Brownlee, personal communication).  Predicted nitrogen loads and targets for 

each of the 22 watersheds are reported in the Calvert County portion of Phase II 

of the WIP (MDE 2012). I used these smaller scale watershed shapefiles for 

Calvert County to narrow the focus of the study from the SLAMM Chesapeake 

Bay projections down to the Calvert County scale following the same methods 

used for the other study scales.  

Tidal Wetland Computations: 

Upon completing the extractions for all three spatial scales involved in this 

study, the attribute tables were exported for calculations of changes in wetland 

area, denitrification, and N burial in comparison to the reference conditions for 

each scale, scenario, and year.  The 1996 reference year produced by Glick et al. 

(2008) in the SLAMM model application were used as a “time zero” from which I 

computed percent changes in wetland area and nitrogen removal ecosystem 

http://www.mde.maryland.gov/
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services. I eliminated many of the 26 land categories originally incorporated in 

the SLAMM simulation and focused on tidal wetlands, combining similar 

categories into three broad categories of tidal fresh (i.e. tidal fresh marsh, tidal 

fresh swamp), salt (i.e. salt marsh, transitional marsh), and brackish wetlands. 

Nitrogen removal 

I conducted a literature review to find denitrification and nitrogen burial 

rates for each of the broad types of tidal wetlands (Table 1). As much as possible, 

rate measurements for these processes were collected from studies that took place 

in the Chesapeake Bay region. All units were converted to g N m
-2

 yr
-1

 for ease of 

computation. Nitrogen removal services were calculated for each scenario and 

year by multiplying the wetland area by the removal rate derived from literature 

corresponding to that particular type of tidal wetland. These calculations were 

repeated for all scales, scenarios, and years. I computed the estimated percent 

change in tidal wetland area (or nitrogen removal services) for the SLR 

projections. 

Maryland Basin and Calvert County Watersheds  

In addition to the analysis outlined above, I also compared the nitrogen 

removal services performed by the tidal wetlands under the projected SLR 

scenarios by 2025 to the corresponding restoration goals (i.e. nitrogen loadings) 

provided by the TMDLs for the five Basins (EPA 2010) and the WIP for the 22, 

12-digit county watersheds (MDE 2012). For the basins, this was done by 

computing the loss of denitrification or N burial for all the tidal wetlands under 

the two SLR scenarios (i.e. 0.17 m and 0.25 m) from the reference scenario for a 
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given basin. Denitrification and nitrogen burial losses were summed for a 

cumulative computation of total nitrogen removal. These calculations were 

performed for all basins and all scenarios (0.17 m and 0.25 m). For the county 

watersheds, I computed the ratio of total nitrogen removal by all tidal wetlands for 

both 2025 SLR scenarios to the WIP nitrogen loading goal for the given 

watershed. This was performed for all watersheds and all scenarios (reference, 

0.17 m and 0.25 m). The units for the nitrogen loading goals for both the TMDLs 

(EPA 2010) and the WIP (MDE 2012) were converted from lbs yr
-1

 to g yr
-1

, for 

ease of computation. 

Maps and Graphs: 

I created tidal wetland area maps in ArcMap for the three scenarios by 

2100 to compare to the reference wetland area for the Chesapeake Bay. I also 

created tidal wetland area maps for the Maryland basins, though I only mapped 

two scenarios (0.17 m and 0.25 m) by 2025. Similarly, a reference map of tidal 

wetland area was created for the basins. Lastly, I created maps for the Calvert 

County WIP watersheds for the reference scenario to illustrate which watersheds 

have the most wetlands, and as a result, are particularly important as normalized 

to incoming loads and where the largest wetland nitrogen removals are occurring 

in the county. Graphs were created using Microsoft Excel, to show percent change 

from the reference for each scenario.  
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RESULTS AND DISCUSSION 

The largest sources of nitrogen to the Bay are attributed to agriculture 

(38%), atmospheric deposition (21%), sewage and industry (19%), and 

stormwater (16%; CBF 2012). The Chesapeake Bay watershed covers ~172,000 

km
2
 and the Susquehanna River drains an area of ~71, 200 km

2
, making the 

Susquehanna the largest freshwater input from the Bay watershed (Hagy et al. 

2004). With future climate change, there is an expectation that the annual 

discharge from the Susquehanna River will increase by ~24% (Hagy et al. 2004). 

Given the large contribution the Susquehanna River makes to the Chesapeake Bay 

watershed, ~41% (Hagy et al. 2004), an increase in annual discharge will likely 

lead to increase in nitrogen loading to the Bay.  

Tidal marshes act as nitrogen sinks, helping to buffer the Chesapeake Bay 

watershed against some of the negative effects of eutrophication via processes 

such as denitrification and nitrogen burial in marsh sediments (Seitzinger 1988, 

Kemp et al. 2005, Boynton et al. 2008). Land conversion from forest to 

agriculture in the 18
th

 century led to a large pulse of sediment into streams and 

creeks in the Bay watershed, which contributed to the growth of tidal marshes, 

particularly tidal fresh and brackish marshes in the 19
th

 century (Kemp et al. 

2005). By the late 20
th

 century, there was growing concern about whether the tidal 

marshes in the Bay would be able to accrete enough sediment to keep pace with 

accelerated SLR (Kearney et al. 2002, Kemp et al. 2005). Along with the loss of 

many tidal wetlands in the Bay, there has been a loss in the capacity of the 
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remaining marshes to perform nutrient removal services (Kemp et al. 2005). What 

does the future hold for the Chesapeake Bay? 

Chesapeake Bay 

To answer this question, I examined the projected change in Chesapeake 

Bay tidal wetlands for each of the SLR scenarios over the 21
st
 century. Overall, 

total tidal wetland area (ha) is estimated to decrease by 2100 (Table 2; Figure 2) 

for all SLR scenarios (0.69, 1.0, and 1.5 m). By 2025, no substantial change is 

estimated for total tidal wetland area for any of the three scenarios (Table 2). 

There is a more evident change in projected wetland area by 2050, with the most 

estimated loss (about 16%; Table 2) seen in the 1.5 m scenario. Interestingly, by 

2075 the estimated loss of tidal wetland area in both the 1.0 and 1.5 m SLR 

scenarios are about the same (30%) and by 2100 the estimated loss of wetland 

area in the 1.0 m scenario is greatest (43%), surpassing even the 1.5 m scenario 

(39%; Table 2).  

In order to better understand what contributes to this change in total tidal 

wetlands, it is helpful to examine the trends for tidal fresh, brackish, and salt 

marshes separately. The estimated loss of tidal fresh wetland area is consistent 

throughout all years, with the greatest loss occurring in the 1.5 m scenario (70%; 

Table 3; Figure 3). Brackish marsh loss is similar to that of tidal fresh, showing a 

consistent decreasing trend by 2100 and the greatest estimated loss in the 1.5 m 

scenario (89%; Table 4; Figure 4). However, the loss does not appear to be linear, 

as was the case with the tidal fresh marshes, and by 2075 all three SLR scenarios 

converge, with only a difference of about 5% between SLR scenarios by 2100 
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(Table 4; Figure 4). Unlike tidal fresh and brackish marshes, salt marsh area 

increases with SLR, particularly under the 1.5 m projection. By 2050, the 

estimated gain in salt marsh area reaches a peak (267%; Table 5) under the 1.5 m 

scenario. Predicted salt marsh area, while still greater than existing areal extent, 

starts to decline by 2075 (Figure 5). Future studies, when feasible, should 

consider projections into the 22
nd

 century to see if salt marsh fate will be similar 

to that of tidal fresh and brackish marshes in the 21
st
 century. To further illustrate 

the estimated loss of total tidal wetland area expected in the Bay by the end of the 

21
st
 century, I provide maps for each of the simulation scenarios and reference 

conditions of wetland coverage in Figures 6-9. There is an overall decline in tidal 

wetlands, particularly tidal fresh and brackish marshes, and the biggest changes 

are seen on the Eastern shore of the Bay.  

For nitrogen removal services, estimated denitrification (i.e. absolute 

values and percent change) provided by tidal wetlands declined under the 

SLAMM projections of changed wetland coverage in the 21
st
 century, especially 

under higher SLR scenarios (Table 2; Figure 10). By 2100, there is an estimated 

loss in denitrification services by about 77% under the 1.5 m scenario (Table 2). 

Predicted nitrogen burial (i.e. absolute values and percent change) follows a 

similar trend (Table 2; Figure 11), with about 68% loss in burial services by 2100 

under the 1.5 m scenario (Table 2). I also considered how the individual types of 

wetlands contributed to these results and found similar trends as seen previously 

for tidal wetland area, a not unexpected result given the way that these removal 

processes are estimated using multipliers to represent denitrification and burial 
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rates. Tidal fresh and brackish marshes show a consistent decline in nitrogen 

removal services, with the greatest estimated loss occurring by 2100 under the 1.5 

m rise scenario (70%; Table 3 and 89%; Table 4, respectively). As estimated salt 

marsh area increases with increasing SLR so does estimated denitrification and 

nitrogen burial services. Again, there is a peak by 2050 in projected denitrification 

and nitrogen burial (Table 5), followed by a decline (though still positive) in 

estimated nitrogen removal services in salt marshes, though this increase does not 

offset losses of nitrogen removal in lower salinity marshes. These results present 

some interesting wetland responses leading to the question: Why is there an 

overall decrease in tidal wetland area and nitrogen removal services when salt 

marshes are increasing in the Bay with long term SLR? To answer this, it is useful 

to compare the nitrogen removal rates for tidal fresh, brackish, and salt marshes. 

Recall that nitrogen removal services in salt marshes occur at lower rates 

compared to brackish and tidal fresh marshes (Table 1). Salinity influences the 

nitrogen cycling in marsh sediments. For instance, absorption of ammonium is 

dependent upon salinity (Seitzinger et al. 1991, Giblin et al. 2010) and the 

availability of ammonium is necessary for coupled nitrification/denitrification to 

occur. Under low salinities (i.e. tidal freshwater sediments), ammonium is stored 

in sediments and available for nitrification, whereas, under high salinities (i.e. salt 

marshes) ammonium is released from sediments (Seitzinger et al. 1991, Giblin et 

al. 2010). Furthermore, sulfide concentrations tend to be higher in salt marshes 

compared to tidal freshwater marshes, which can inhibit nitrification (Giblin et al. 

2010). Lastly, DNRA has been shown to compete with denitrification for nitrate 
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in high salinity environments (Giblin et al. 2010). So, while predicted salt marsh 

area and nitrogen removal services are expected to increase, likely due to the 

conversion of brackish or tidal fresh wetlands, salt marshes are less efficient when 

it comes to denitrification and nitrogen burial, removing only about 4.1% and 

18%, respectively, of the nitrogen that a tidal fresh marsh does.  

To understand why salt marshes are predicted to increase while brackish 

and tidal fresh wetlands are predicted to decrease it is valuable to consider 

features of the SLR modeling approach. SLAMM incorporates a salinity 

algorithm to model salt-water intrusion with long-term SLR (Craft et al. 2009). 

Salt-water intrusion into estuaries and groundwater is a growing concern 

associated with future SLR (Hilton et al. 2008). Modeling studies suggest 

increases in SLR will also lead to an increase in salinity, which will have an 

impact on salinity sensitive species, such as tidal fresh and brackish marshes 

(Hilton et al. 2008). One modeling study in the Delaware Bay estimates an 

increase in salinity of 0.4 associated with an increase in SLR by 0.13 m when 

stream discharge is seasonally low (Hilton et al. 2008). Salt-water intrusion into 

the estuary and tidal creeks is likely to displace brackish and, particularly, tidal 

fresh wetland species. In oligohaline marshes, it has been found that an increase 

in salinity accompanied by an increase in flooding can lead to a decrease in 

seedling recruitment and germination for many plant species, particularly annual 

species (Baldwin et al. 1996, Baldwin et al. 2001). If there are no barriers to 

landward migration, these species may move further up into the estuary; however, 
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given the intense pressure from urban encroachment around the Bay, there may be 

limits to migration.   

Maryland River Basins 

The U.S. EPA developed TMDLs for the Chesapeake Bay that require 

Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the 

District of Columbia to each develop WIPs for pollutant reductions to meet the 

TMDL restoration goal for the Chesapeake Bay. Of these restoration goals, the 

total nitrogen allocations, or allowable loadings, from these jurisdictions to the 

Chesapeake Bay is 84 billion g yr
-1 

by 2025(USEPA 2010).  

Focusing on TMDLs for an individual state is important, especially given 

the findings from the previous section, which suggest that certain parts of the Bay 

(e.g. Eastern Shore, Figures 6-9) will be more vulnerable to long term SLR than 

others. As a result, I focused on the Maryland tidal basins (Figure 1) to assess the 

vulnerability of tidal wetland area and nitrogen removal services to SLR by 2025, 

when TMDL restoration goals are required to be met. The total nitrogen 

allocation for Maryland is 18 billion g yr
-1

 by 2025 (USEPA 2010).    

In the five Maryland basins, tidal wetland area is estimated to increase 

slightly, ~ 1% (Figure 12) by 2025 under the 0.25 m rise scenario. I also 

examined the change in tidal wetland area for the individual basins. Overall, this 

slight increasing trend in tidal wetland area (ha) is seen in the Eastern Shore, 

Western Shore, and Susquehanna River basins (Table 6). The greatest positive 

and negative changes are predicted to occur under the 0.25 m rise scenario. By 

2025, the Eastern and Western shore basins and the Susquehanna basin are 
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estimated to have tidal wetland gains of about 1%, 5%, and 6%, respectively, 

under the 0.25 m scenario (Figure 13). In comparison, the Patuxent and Potomac 

River basins are predicted to have a decrease in tidal wetland area (Table 6), 

losses of about 2% and 4%, respectively, under the 0.25 m scenario (Figure 13). I 

also examined the types of wetland changes occurring within each basin. For 

instance in the Eastern and Western shore basins, salt marsh area is estimated to 

double and quadruple (Tables 7 and 8, respectively) and in the Susquehanna, tidal 

fresh marshes are estimated to increase slightly and brackish marshes are 

expected to develop (Table 9) from the reference to the 0.25 m scenario. Very 

little change is predicted in the Patuxent River basin (Table 10) and in the 

Potomac River basin gains in salt marsh area, accompanied by losses in tidal fresh 

and brackish marsh are estimated by 2025 under the 0.25 m rise scenario (Table 

11).  

Despite the slight increase in tidal wetlands under the 0.25 m scenario, I 

estimate a loss of denitrification and nitrogen burial potential by ~ 15% and 11% 

(Figure 12), respectively, as a result of converting fresh and brackish wetlands to 

salt marsh habitat. Estimated losses in denitrification services in the individual 

basins are ~ 16% and 10% for the Eastern and Western shore basins, respectively, 

by 2025 (Figure 14) under the 0.25 m scenario. Similarly, losses of about 2% and 

13% are estimated for the Patuxent and Potomac River basins, respectively 

(Figure 14). Finally, a gain in denitrification, estimated to be ~ 7%, is expected in 

the Susquehanna River basin under both 0.17 m and 0.25 m rise scenarios (Figure 
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14). The trends for nitrogen burial are similar to those described above for 

denitrification (Figure 15).  

For absolute values of nitrogen removal see Table 6. Total estimated 

nitrogen removal, summed for the Maryland basins, is ~ 31 billion g N yr
-1

 and 30 

billion g N yr
-1

 under the 0.17 and 0.25 m rise scenarios, respectively, by 2025. In 

comparison, the total nitrogen allocation for the Maryland basins is 18 billion g N 

yr
-1 

(USEPA 2010). The estimated ratio of total nitrogen removal to load 

allocation for the Maryland Basins is ~ 1.8 and 1.7 for the 0.17 and 0.25 m 

scenarios, respectively. These estimates suggest that tidal wetlands are removing 

more nitrogen than the load allocations required by restoration goals established 

for the Maryland basin by 2025. This highlights the importance of tidal wetlands, 

as the protection and restoration of these ecosystems will aid in reaching 

restoration goals.   

In comparison to the results computed for the entire Chesapeake Bay 

watershed through the 21
st
 century, the absolute values and percent change for 

tidal wetlands in the Maryland basins by 2025 is small, overall. However, there 

are some indications that change is expected to occur, particularly, the conversion 

of tidal fresh and brackish marshes into salt marshes, with the exception of the 

Susquehanna River basin, which is expected to gain some tidal fresh and brackish 

marshes by 2025 under the 0.25 m rise scenario (Tables 7-11). Despite this slight 

increase in tidal fresh and brackish marshes in the Susquehanna basin, there is 

expected to be an overall loss in nitrogen removal services in the basins. This is 

likely due to salt-water intrusion, resulting in the conversion of tidal fresh and 
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brackish marshes to salt marshes, which are less efficient when it comes to 

nitrogen removal (Table 1). It should also be noted that, given more time, the 

changes in these basins should be more prominent, as seen in the Bay by 2100; 

however, given that the TMDLs for nitrogen loadings are restoration goals set to 

be achieved by 2025, I focused on the same time frame for this study. Future 

studies should examine longer time scales to see if these trends continue beyond 

2025. Changes in wetlands in Maryland, due to SLR, will likely not play an 

important role in TMDLs by 2025 but future SLR will likely be more significant.  

Calvert County Watersheds 

Calvert County lies within the Patuxent River basin, which is estimated to 

have a slight decline in tidal wetlands of about 2% by 2025 (Figure 13). The 

average load of nitrogen to the Patuxent River basin is about 15.8 g N m
-2

 yr
-1

, 

with diffuse sources being the most prevalent, contributing about 51-70% of the 

total nitrogen (Boynton et al. 2008). Tidal wetlands are critical to the Patuxent 

River basin (Boynton et al. 2008, Williams et al. 2006) and, consequently, to 

Calvert County watersheds. As with the TMDL restoration goals for the basin 

study, the restoration goals for the WIP are set for the short-term, 2020. County 

governments are required to meet WIPs; however, the WIP implementation costs 

are often an impediment to reaching target load reductions (Calvert County 2013). 

For instance, the Maryland state government recommended Calvert County meet 

its required load reductions via upgrades to septic systems and stormwater 

management, which are quite costly to both the county and private property 

owners (Calvert County 2013). Furthermore, septic systems contribute about 4% 
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of the nitrogen pollution to the Bay (CBF 2012). Given the small contribution 

septic systems make to overall nitrogen pollution in the Bay and the costs 

associated with septic upgrades, this may not be the best way to meet restoration 

goals. The alignment of WIP nitrogen reduction goals with the nitrogen removal 

services naturally provided by tidal wetlands in the County might help reach the 

target load reductions. Furthermore, the protection and restoration of tidal 

wetlands within the County might be more cost effective when compared with 

septic upgrades and stormwater management.    

The basis for my examination of the 22 Calvert County watersheds 

(Figure 16) was twofold. Firstly, I wanted to identify where in the county tidal 

wetlands are most prevalent, and, therefore, have the greatest potential to provide 

a natural buffer to nitrogen removal. Secondly, I wanted to compare the county 

watersheds with the most removal potential to the WIP restoration goals for 

nitrogen loading for the individual watersheds. While I performed the removal 

calculations for all the watersheds and the two SLR scenarios for 2025, I will only 

report the reference watershed results here. The reason for this is due to the small 

change seen in tidal wetland area by 2025. Given my results in the Maryland 

basin study, this is not surprising, as it appears a longer time step is necessary to 

see more substantial changes in wetland area resulting from SLR using the 

SLAMM modeling approach. The WIP restoration goals are set for 2020, which is 

why this study was originally focused on SLR scenarios for 2025. This analysis 

can still apprise county resource managers by identifying watersheds where 

wetlands have a particularly large contribution to nitrogen removal services, 



 
 

65 

essentially providing a natural nitrogen removal buffer, and normalizing those 

estimates to watershed based loads to help inform future restoration goals of 

where wetlands are most important for mediating land based loads.  

The Calvert County WIP provides nitrogen reduction goals for each of the 

twenty-two 12-digit watersheds (Calvert County 2013). The highest nitrogen 

reduction goals (~ 25,000 – 48,000 kg N yr
-1

) are set for Hunting, Fishing, St. 

Leonard, Mill, and Hall Creeks followed by Plum Point and Grays Creeks (~ 

16,000 – 25,000 kg N yr
-1

) (Figure 17). It is important to consider which of the 

twenty-two 12-digit watersheds have the natural capacity, via tidal wetlands, to 

remove nitrogen from the tidal creeks and, consequently, help with these 

reduction goals. The 12-digit watersheds providing the highest estimated nitrogen 

removal (i.e. ~ 40,000 - 69, 000 kg N yr
-1

) are Hall, Fishing, Tyverne, Hunting, 

and St. Leonard Creeks, followed by Parkers, Ramsey, and Island Creeks, which 

are estimated to remove between 33, 000 and 39,000 kg N yr
-1

 (Figure 18). These 

watersheds have tidal wetlands estimated to remove high levels of nitrogen (~ 33, 

000 to 69,000 kg N yr
-1

), thus providing a natural buffer to the Bay (Figure 18). In 

contrast, Grays, Calvert Beach Run, and Plum Point Creeks, are a few of the 

county watersheds estimated to provide the lowest nitrogen removal services  

(~ 0 - 4845 kg N yr
-1

). Of these 12-digit watersheds investigated thus far, Plum 

Creek and Grays Creek may potentially have unrealistically high nitrogen 

reduction goals, given the small amount of tidal wetlands present. Finally, I 

combined the above data to develop a ratio for estimated nitrogen removal to 

nitrogen loading (Figure 19). Interestingly, many of the watersheds with the 
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highest ratio of removal to loading are not the watersheds that I expected. For 

instance, Ramsey and Tyverne Creeks are estimated to have the highest ratio, 

between 2.9 to 4.0, whereas, Island, South, and Kings Branch Creeks are 

estimated to have the next highest ratio of removal to loading, between 2.3 to 2.8 

(Figure 19). Buzzard, Graham, Tuckers, Lyons, Fishing, and Parkers Creeks have 

a ratio between 1.3 to 2.2 (Figure 19), which is a higher ratio of removal to 

loading when compared to the watersheds with the most tidal wetlands and 

highest estimated nitrogen removal services. I expected Hall, Hunting, and St. 

Leonard Creeks to have the highest ratio of nitrogen removal to loading, given the 

high estimates of nitrogen removal from the tidal wetlands present in these 12-

digit watersheds (Figure 18). It is surprising, that these 12-digit watersheds have a 

nitrogen removal to loading ratio between 0.5 to 1.2 (Figure 19).   

These estimates, while not providing predictions for the change in tidal 

wetland area for the Calvert County watershed under future SLR scenarios, do 

provide estimates of the 12-digit watersheds where wetlands are particularly 

important as normalized to incoming nitrogen loads. Furthermore, these data 

provide insight into where the largest nitrogen removals are occurring in county 

wetlands. I unexpectedly discovered that the watersheds with the most wetlands 

and the highest estimated nitrogen removal were not the watersheds with the 

highest ratios of nitrogen removal to loading. Tidal wetlands located at the 

boundary between the Calvert County 12-digit watersheds and estuarine receiving 

waters are also exposed to tidal sources of nitrogen, some of which may be 

sourced to distant rivers such as the Susquehanna and Patuxent as well as other, 
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adjacent counties, which have fewer wetlands to attenuate the loads. As a result, 

these contributions from outside the county watersheds could be contributing to 

the unexpectedly low ratios of removal to loading for our county watersheds with 

more wetlands and higher estimates of nitrogen removal.  

Subtidal Estimates  

There is much uncertainty as to what happens to tidal marshes that become 

submerged. Do they continue to provide nitrogen removal services after 

submergence? I did not conduct a full-scale subtidal analysis, but I did make 

several estimates based on subtidal nitrogen removal rates from the literature 

(Table 12; Boynton et al. 2008, Nixon et al. 1996, Green 2005). With the 

assumption that tidal wetland loss is a conversion to subtidal sediments, I 

computed a subtidal estimate of nitrogen removal for the Chesapeake Bay under 

the 0.69 m SLR scenario for 2050 (Table 13).  

Considering a tidal wetlands loss of ~ 5.31x10
7
 m

2
, I estimated subtidal 

denitrification and nitrogen burial as ~ 228, 000 kg N yr
-1

 and 398,000 kg N yr
-1

, 

respectively, using rates of nitrogen removal reported in literature for subtidal 

sediments (Table 12). In contrast to the subtidal nitrogen removal estimates, the 

tidal wetland denitrification and nitrogen burial estimates are ~ 16 million kg N 

yr
-1 

and 31 million kg N yr
-1

, respectively, for the Chesapeake Bay by 2050 under 

the 0.69 m SLR scenario. The gains in estimated subtidal nitrogen removal for 

Bay sediments are small compared to those of tidal wetlands in the Bay, which 

suggests the possible gain in subtidal nitrogen removal will not offset the loss of 

tidal wetlands, particularly tidal freshwater wetlands.  
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The computed subtidal sediment estimates (Table 13) are within the same 

magnitude, though slightly lower, as those reported for Patuxent River 

denitrification (540, 000 kg N yr
-1

) and nitrogen burial (511,000 kg N yr
-1

) by 

Boynton et al. (2008). Similarly, According to Boynton et al. (2008), estimated 

nitrogen losses are less precise when compared to inputs and, as such, subtidal 

denitrification and burial rates are considered accurate to within 15% and 20%, 

respectively.  These caveats are likewise true for my estimates of wetland 

nitrogen losses.  However, it must be emphasized that very little research has been 

done to explore the biogeochemistry of submerged wetland soils and how erosion 

and submergence will affect the nutrient removal processes these sediments 

provide. 

Assumptions and Uncertainty 

SLAMM Shortcomings:  

As with most modeling tools, SLAMM has advantages and disadvantages. 

SLAMM is an ecosystem-based model, which replicates general wetland 

processes (i.e., loss, conversion, salt-water intrusion, etc.) that are associated with 

long-term SLR at a large spatial scale (Fagherazzi et al. 2012). In order to 

accomplish this, SLAMM gives up the mechanistic complexity common in 

smaller-scale models, which focus on a single point in the marsh (Fagherazzi et 

al. 2012). Ecosystem models can simulate simple feedback mechanisms between 

vegetation and the environment, such as sedimentation and hydrodynamics, either 

directly, in one time step, or indirectly, in multiple time steps (Fagherazzi et al. 

2012). As an indirect calculation model, SLAMM makes it easier to run 
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simulations in a timely manner even as the simplicity of the model prohibits 

simulating complex feedback mechanisms (Fagherazzi et al. 2012). Other 

modeling tools (Leonard and Luther 1995, Temmerman et al. 2005, Mudd et al. 

2009) incorporate multiple feedback mechanisms (e.g. canopy structure, 

hydrodynamics, sedimentation, and species interactions, etc.) that may influence 

wetland stability at any given time. The added model complexity associated with 

incorporating these feedback mechanisms slows down simulation run time 

(Fagherazzi et al. 2012). 

It is also worthwhile, when interpreting the simulation outputs from 

SLAMM, to consider additional shortcomings. For instance, there is no 

accounting for the mass balance of solids. In the model, as wetlands become 

submerged and erosion occurs, the marsh platform and its sediments simply 

disappear. Furthermore, since SLAMM is not a hydrological model, it does not 

incorporate factors such as evapotranspiration, precipitation, and water velocity, 

which we know to be important influences on wetland habitat productivity and 

stability. The large spatial extent that SLAMM is capable of simulating comes at 

the cost of these simplifying assumptions. For instance, seasonal and annual 

variability is ignored and accretion and subsidence rates are assumed to be 

constant. In reality, tidal wetlands are influenced by, and often constrained by, 

interacting parameters on multiple sales, such as, diurnal (tidal cycles), seasonal 

(growing seasons, streamflow), and annual (mean precipitation and temperatures), 

in addition to extreme events (e.g. storms, droughts, etc.). Finally, SLAMM 

incorporates a simplifying assumption about localized rates of subsidence and 
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accretion. SLAMM assumes these rates are linear and do not change over time 

(Glick et al. 2008). Accretion rates used in the SLAMM dataset were tidal fresh 

(6.1 mm yr-1), brackish (4.8 mm yr-1), and salt (4.0 mm yr-1), which were 

compiled from 58 marsh studies (Glick et al. 2008). When taking into 

consideration restoration goals associated with sediment reduction and the 

projected loss and conversion of wetlands in the Bay (i.e. reduced sediment 

capture potential), this assumption is not realistic.  

As a first step to selecting and applying a model to a scientific question, it 

is imperative to identify the goals of a research project to match detail in 

mechanistic process, temporal, and spatial resolution to the task at hand.  Despite 

the shortcomings and assumptions associated with SLAMM, it is a useful and 

accessible tool, and is often used by scientists and managers due to its simplicity 

and ease of use (Fagherazzi et al. 2012). Furthermore, when SLAMM simulations 

are combined with wetland specific measurements (e.g. nitrogen removal) 

preliminary predictions can be made as to how long term SLR will influence these 

wetland functions and services (Fagherazzi et al. 2012).    

Nitrogen Removal and SLR Assumptions: 

There are some assumptions I made to calculate the nitrogen removal 

estimates for tidal wetlands. For instance, I made the assumption that rates of 

denitrification and nitrogen burial are constant spatially, given a particular type of 

wetland, and temporally. Boynton et al. (2008) found that rates of nitrogen 

removal varied depending on the spatial scale and, more specifically, removal 

services decreased from high to low marsh elevations.  Additionally, Boynton et 



 
 

71 

al. (2008) report temporal variations in nitrogen removal services, such as a 

decrease in nitrogen removal from early spring through fall. I also made the 

assumption that nitrogen removal rates, taken from literature, were consistent 

throughout the Bay for that particular type of wetland (i.e. tidal fresh, brackish, or 

salt marsh). Again, we know this is not necessarily the case, as each individual 

wetland has specific hydrological and climatic processes and nutrient loading that 

interact to create a particular wetland community. However, I did constrain my 

literature review to nitrogen removal studies in Chesapeake Bay tidal wetlands. 

These nitrogen removal rates are comparable to rates reported outside the 

Chesapeake Bay. Morris (1991) reported denitrification rates for salt and tidal 

fresh marshes in Massachusetts, which range between 0.4-14.3 g N m
-2 

yr
-1

. The 

low end of this range is comparable to the salt marsh denitrification rates reported 

by Thomas and Christian (2001; Table 1) and the high end of this range is 

comparable to the tidal freshwater marsh rate reported by Greene (2005; Table 1). 

In another Massachusetts study, White and Howes (1994) nitrogen burial (3.7-4.1 

g N m
-2

 yr
-1

) rates for salt marshes, which are comparable to the rates reported by 

Thomas and Christian (2001; Table 1).  

I expect, given the uncertainty of climate change effects on wetlands and 

the prevalence of eutrophication in the Bay, that the nitrogen removal rates taken 

from literature values (Table 1) reported over the past decade and extrapolated 

over the next century, may overestimate my removal estimates. Tidal wetlands 

serve as ecotones in the landscape, providing a natural buffer between terrestrial 

uplands and coastal waters. As such, tidal wetlands are well situated to remove 
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excess nutrients and sediments before these pollutants make it to the Bay. It is 

likely that extreme nutrient enrichment may alter these natural buffering processes 

(Kemp et al 2005) and the capacity for long-term nitrogen removal may be 

reduced. If this is indeed the case, these “current” values extrapolated through the 

21
st
 century may lead to an overestimate of nitrogen removal given the projected 

wetland loss expected. However, the purpose here is to simply provide a broad 

scale estimate of how tidal wetlands might respond to long term SLR and how 

this may effect nitrogen removal services.  

It is also important to note the uncertainty associated with nitrogen 

removal rates for specific types of wetlands with future SLR. Salt marshes, 

located farther from nitrogen sources, are typically nitrate limited (Baldwin 2013) 

and conversion to dinitrogen gas typically depends on coupled nitrification-

denitrification. As salt marshes migrate further up the Bay and nitrate sources 

become more readily available, direct denitrification (i.e. the conversion of nitrate 

directly to di-nitrogen gas) could increase salt marsh denitrification rates. It is 

unlikely that salt marsh denitrification rates will get as high as tidal fresh rates but 

they may increase over current rates given increased nitrogen inputs.    

Finally, my use of the pre-existing SLAMM 5.0.2 dataset for estimating 

the loss of tidal wetland area may produce underestimates of wetland loss. The 

dataset incorporated SRES SLR scenarios taken from IPCC’s Fourth Assessment 

Report (AR4; IPCC 2007). The AR4 estimates did not include ice sheet melting, 

which is now thought to contribute ~ 0.9-1.1 mm yr
-1

 to the global average SLR 

(Miller et al. 2013), which could make the SLAMM 5.0.2 projections 
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underestimate tidal wetland loss by the end of the century. Furthermore, the 

conversion of wetland to subtidal habitat may also result in a release of nitrogen 

that cannot be accounted for here. However, given the uncertainty associated with 

climate change, SLR, and how tidal wetlands will respond to both, it is difficult to 

predict the long-term effects of SLR.        

Conclusions and Recommendations 

These nitrogen removal analyses, though broad in scale and utilizing 

“back of the envelope” calculations, provide estimates of potential Chesapeake 

Bay tidal wetland response to short term and long term SLR. Examining multiple 

scales promotes sound, science-based management. For instance, conducting a 

case study, such as with the Calvert County 12-digit watersheds, allows a finer 

scale look at the nitrogen removal role of tidal wetlands, which can then be 

extrapolated to larger scales. Tidal wetlands play an important role in pollution 

reduction in the Bay, as they often serve as nutrient sinks, effectively removing 

these pollutants from further degradation of Bay water quality (Seitzinger et al. 

1988, Boynton et al. 2008). In some cases, the inability to accrete sediments with 

increasing SLR rates can convert the tidal wetlands into a source of nutrients and 

sediments, as is the case with about 50% the tidal marshes in the Chesapeake Bay 

(Boynton et al. 2008, Kemp et al. 2005). High rates of marsh loss on the 

Maryland Eastern shore have been correlated to interior pond formation, which 

coalesce over time to create large open water areas (Kearney et al. 1988). To 

further exacerbate the situation, these marshes are constrained by adjacent land 

use, which effectively creates a barrier to marsh migration (Kearney et al. 1988). 
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As shown in this work on various scales, tidal wetlands provide a natural 

buffer against nitrogen pollution. On the state scale, estimates suggest Maryland 

tidal wetland area will change very little by 2025 due to projected SLR. 

Consequently, these natural buffers should help Maryland meet 2025 restoration 

goals. On the county scale, there can often be a disproportionate amount of 

wetlands and, consequently, naturally occurring nitrogen removal potential within 

a watershed. When considering nitrogen load reductions at a county scale, it is 

important to realize that the local tidal wetlands are not just processing local 

nitrogen. Tidal creeks receive nitrogen inputs from estuarine and large riverine 

sources, which could be attenuated by tidal wetlands within the county. The 

alignment of restoration goals with tidal wetland protection can be extrapolated to 

larger scales. Tidal wetlands may not fare as well under long term SLR, as seen 

with the Chesapeake Bay study. There is already concern regarding the potential 

negative effects of salt-water intrusion on species not accustomed to higher 

salinity ranges (Baldwin et al. 1996, Hilton et al. 2008, Weston et al. 2011). 

Another concern is that tidal wetlands may not be able to migrate landward, due 

to urbanization pressures. As such, tidal wetlands should be considered when 

resource managers are developing restoration goals to reduce pollutants to the 

Bay. Managers should consider these issues and attempt to restore and protect 

tidal wetlands, particularly tidal freshwater wetlands, which have higher nitrogen 

removal rates, as much as possible to help maintain these ecosystem services into 

the future.  
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FIGURES 

 
Figure 1 Reference map of the Maryland major river basins. Map based on Maryland basin TMDLs. 
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Figure 2 Percent change of all Chesapeake Bay tidal wetland area over the 21

st
 century, based on projections using 

0.69, 1.0, and 1.5 meter SLR scenarios. 
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Figure 3 Percent change of tidal fresh wetland area over the 21

st
 century, based on projections using 0.69, 1.0, and 1.5 

meter SLR scenarios. TF = Tidal Fresh.
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Figure 4 Percent change of brackish marsh area over the 21

st
 century, based on projections using 0.69, 1.0, and 1.5 

meter SLR scenarios. 
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Figure 5 Percent change of salt marsh area over the 21

st
 century, based on projections using 0.69, 1.0, and 1.5 meter 

SLR scenarios. 
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Figure 6 Reference map showing tidal wetland area in the Chesapeake Bay. Map 

based upon SLAMM 5.0 simulation of initial conditions. 
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Figure 7 Map showing tidal wetland area in the Chesapeake Bay by 2100 under 

the 0.69 meter SLR scenario. Map based upon SLAMM 5.0 SLR projections. 
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Figure 8 Map showing tidal wetland area in the Chesapeake Bay by 2100 under 

the 1.0 meter SLR scenario. Map based upon SLAMM 5.0 SLR projections. 
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Figure 9 Map showing tidal wetland area in the Chesapeake Bay by 2100 under 

the 1.5 meter SLR scenario. Map based upon SLAMM 5.0 SLR projections. 
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Figure 10 Percent change in denitrification for all Chesapeake Bay tidal wetlands over the 21

st
 century, based on 

projections using 0.69, 1.0, and 1.5 meter SLR scenarios. 
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Figure 11 Percent change in nitrogen burial for all Chesapeake Bay tidal wetlands over the 21

st
 century, based on 

projections using 0.69, 1.0, and 1.5 meter SLR scenarios. 
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Figure 12 Percent change in tidal wetland area and nitrogen removal services for all the Maryland major river basins, 

based upon projections of 0.17 and 0.25 meter SLR scenarios by 2025. Den = denitrification and N Bur = nitrogen 

burial. 
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Figure 13 Percent change in tidal wetlands for each of the Maryland major river basins, based upon projections of 0.17 

and 0.25 meter SLR scenarios by 2025. ES = Eastern Shore, WS = Western Shore, SUS = Susquehanna River, PAT = 

Patuxent River, POT = Potomac River.
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Figure 14 Percent change in tidal wetland denitrification for each of the Maryland major river basins, based upon 

projections of 0.17 and 0.25 meter SLR scenarios by 2025. ES = Eastern Shore, WS = Western Shore, SUS = 

Susquehanna River, PAT = Patuxent River, POT = Potomac River. 
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Figure 15 Percent change in tidal wetland nitrogen burial for each of the Maryland major river basins, based upon 

projections of 0.17 and 0.25 meter SLR scenarios by 2025. ES = Eastern Shore, WS = Western Shore, SUS = 

Susquehanna River, PAT = Patuxent River, POT = Potomac River. 
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   Figure 16 Map showing the 22 Calvert County 12-digit watersheds. 
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Figure 17 Map showing the 22 Calvert County 12-digit watersheds and the   

associated TMDL nitrogen load allocation for 2025. Nitrogen loads provided by 

Dr. David Brownlee (personal communication). 
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Figure 18 Map illustrating the estimated nitrogen removal in Calvert County, 

Maryland tidal wetlands for the 12-digit watersheds. 
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Figure 19 Map illustrating the ratio of estimated nitrogen removal in the Calvert 

County, Maryland 12-digit watershed tidal wetlands to nitrogen load allocations.



 
 

94 

TABLES 
 
Table 1 N Removal Literature Review: Summary of literature review 

denitrification and nitrogen burial rates used in estimates of nitrogen removal for 

tidal wetlands. 

Wetland 
Category 

Nitrogen 
Removal Services 

Source 

Denitrification  
(g N m-2 yr-1) 

Tidal Fresh 
 

14.7 Greene 2005 

Brackish 
 

7.4 Kemp 2006 

Salt 0.6 
Thomas & 

Christian 2001 
Nitrogen Burial 

(g N m-2 yr-1) 
Tidal Fresh 

 
23.4 Merrill & Cornwell 2000 

Brackish 
 

13.6 Merrill & Cornwell 2000 

Salt 4.3 
Thomas & 

Christian 2001 
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Table 2 Bay Tidal Wetlands: Summary of estimated wetland area, denitrification, nitrogen burial, and corresponding 

percent change values for all tidal wetlands in the Chesapeake Bay based upon reference, 0.69, 1.0, and 1.5 meter SLR 

projections over the 21
st
 century.   

Total Tidal 

Year 
Wetland 
Area (ha) 

Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

% Change 
Wetland 

Area 
% Change 

Denitrification 
% Change 

Burial 
Reference 

   1996    267520 22077 39464    
0.69 m rise 

2025 266584 20390 37135 0 -8 -6 
2050 262212 16159 31218 -2 -27 -21 
2075 220447 11105 22853 -18 -50 -42 
2100 168662 8561 17562 -37 -61 -55 

1.0 m rise 
2025 268375 18618 34781 0 -16 -12 
2050 244676 12663 25831 -9 -43 -35 
2075 186665 8572 18214 -30 -61 -54 
2100 152818 6663 14430 -43 -70 -63 

1.5 m rise 
2025 270026 16029 31310 1 -27 -21 
2050 225248 9773 21212 -16 -56 -46 

2075 186967 6817 15846 -30 -69 -60 
2100 164301 5084 12693 -39 -77 -68 
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Table 3 Tidal Fresh: Summary of estimated wetland area, denitrification, nitrogen burial, and corresponding percent 

change values for tidal fresh wetlands in the Chesapeake Bay based upon reference, 0.69, 1.0, and 1.5 meter SLR 

projections over the 21
st
 century.   

Tidal Fresh 

Year 
Wetland 
Area (ha) 

Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

% Change 
Wetland 

Area 
% Change 

Denitrification 
% Change 

Burial 
Reference 

1996  67873 9991 15882    
0.69 m rise 

2025 62597 9214 14648 -8 -8 -8 
2050 52497 7728 12284 -23 -23 -23 
2075 42835 6305 10023 -37 -37 -37 
2100 36966 5441 8650 -46 -46 -46 

1.0 m rise 
2025 59717 8790 13974 -12 -12 -12 
2050 45696 6726 10693 -33 -33 -33 
2075 35903 5285 8401 -47 -47 -47 
2100 27827 4096 6512 -59 -59 -59 

1.5 m rise 
2025 54104 7964 12660 -20 -20 -20 
2050 37531 5525 8782 -45 -45 -45 
2075 26956 3968 6308 -60 -60 -60 
2100 20607 3033 4822 -70 -70 -70 
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Table 4 Brackish Marsh: Summary of estimated wetland area, denitrification, nitrogen burial, and corresponding 

percent change values for brackish wetlands in the Chesapeake Bay based upon reference, 0.69, 1.0, and 1.5 meter SLR 

projections over the 21
st
 century.   

Brackish 

Year 
Wetland 
Area (ha) 

Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

% Change 
Wetland 

Area 
% Change 

Denitrification 
% Change 

Burial 
Reference 

1996 161069 11855 21905    
0.69 m rise 

2025 147211 10835 20021 -9 -9 -9 
2050 106117 7810 14432 -34 -34 -34 
2075 55244 4066 7513 -66 -66 -66 
2100 34462 2536 4687 -79 -79 -79 

1.0 m rise 
2025 126865 9337 17254 -21 -21 -21 
2050 70156 5163 9541 -56 -56 -56 
2075 35250 2594 4794 -78 -78 -78 
2100 26879 1978 3655 -83 -83 -83 

1.5 m rise 
2025 100136 7370 13618 -38 -38 -38 
2050 46178 3399 6280 -71 -71 -71 
2075 27945 2057 3800 -83 -83 -83 
2100 17582 1294 2391 -89 -89 -89 

       
       
       
       

 
 



 
 

98 

Table 5 Salt Marsh: Summary of estimated wetland area, denitrification, nitrogen burial, and corresponding percent 

change values for salt marshes in the Chesapeake Bay based upon reference, 0.69, 1.0, and 1.5 meter SLR projections 

over the 21
st
 century.   

Salt 

Year 
Wetland 
Area (ha) 

Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

% Change 
Wetland 

Area 
% Change 

Denitrification 
% Change 

Burial 
Reference 

1996 38578 231 1676    
0.69 m rise 

2025 56776 341 2467 47 47 47 
2050 103598 622 4501 169 169 168 
2075 122368 734 5317 217 217 217 
2100 97234 583 4225 152 152 152 

1.0 m rise 
2025 81792 491 3554 112 112 112 
2050 128824 773 5597 234 234 234 
2075 115513 693 5019 199 199 199 
2100 98112 589 4263 154 154 154 

1.5 m rise 
2025 115786 695 5031 200 200 200 
2050 141539 849 6150 267 267 267 
2075 132066 792 5738 242 242 242 
2100 126112 757 5480 227 227 227 
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Table 6 Maryland Basin Tidal Wetlands: Summary of estimated wetland area, 

denitrification, and nitrogen burial values for the Maryland Basins based upon 

reference, 0.17, and 0.25 meter SLR projections by 2025.   

 
Tidal Wetlands 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Eastern Shore Basin 
Reference 138485 10626 19360 

0.17 m 138496 9530 17869 

0.25 m 140320 8937 17127 
Western Shore Basin 

Reference 7683 603 1094 

0.17 m 7871 594 1088 

0.25 m 8089 541 1023 
Susquehanna River Basin 

Reference 19 3 5 

0.17 m 21 3 5 

0.25 m 21 3 5 
Patuxent River Basin 

Reference 5267 423 761 

0.17 m 5217 421 757 

0.25 m 5162 414 746 
Potomac River Basin 

Reference 5911 435 801 

0.17 m 5818 415 770 

0.25 m 5632 381 717 
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Table 7 Eastern Shore: Summary of estimated wetland area, denitrification, and nitrogen burial values for the Eastern 

Shore Basin, Maryland based upon reference, 0.17, and 0.25 meter SLR projections by 2025.   

 
 

Eastern Shore Basin 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Tidal Fresh 
Reference 24459 3600 5723 

0.17 m 20972 3087 4907 

0.25 m 19153 2819 4482 
Salt 

Reference 20211 121 878 

0.17 m 32645 196 1418 

0.25 m 41418 249 1800 
Brackish 

Reference 93815 6905 12759 

0.17 m 84879 6247 11544 

0.25 m 79748 5869 10846 
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Table 8 Western Shore: Summary of estimated wetland area, denitrification, and nitrogen burial values for the Western 

Shore Basin, Maryland based upon reference, 0.17, and 0.25 meter SLR projections by 2025.   

 
Western Shore Basin 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Tidal Fresh 
Reference 917 135 214 

0.17 m 905 133 212 

0.25 m 903 133 211 
Salt 

Reference 442 3 19 

0.17 m 770 5 33 

0.25 m 1794 11 78 
Brackish 

Reference 6324 465 860 

0.17 m 6196 456 843 

0.25 m 5392 397 733 
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Table 9 Susquehanna: Summary of estimated wetland area, denitrification, and nitrogen burial values for the 

Susquehanna River Basin, Maryland based upon reference, 0.17, and 0.25 meter SLR projections by 2025.   

 
 

Susquehanna River Basin 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Tidal Fresh 
Reference 19.3 2.8 4.5 

0.17 m 20.7 3.0 4.8 

0.25 m 20.7 3.0 4.8 
Brackish 

0.17 m 0.36 0.03 0.05 

0.25 m 0.36 0.03 0.05 
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Table 10 Patuxent: Summary of estimated wetland area, denitrification, and nitrogen burial values for the Patuxent 

River Basin, Maryland based upon reference, 0.17, and 0.25 meter SLR projections by 2025.   

Patuxent River Basin 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Tidal Fresh 
Reference 1189 175 278 

0.17 m 1173 173 274 

0.25 m 1155 170 270 
Salt 

Reference 773 5 34 

0.17 m 732 4 32 

0.25 m 751 5 33 
Brackish 

Reference 3305 243 450 

0.17 m 3312 244 450 

0.25 m 3256 240 443 
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Table 11 Potomac: Summary of estimated wetland area, denitrification, and nitrogen burial values for the Potomac 

River Basin, Maryland based upon reference, 0.17, and 0.25 meter SLR projections by 2025.   

 
 

Potomac River Basin 

Scenario Area (ha) 
Denitrification 
(x 106 g N yr-1) 

N Burial 
(x 106 g N yr-1) 

Tidal Fresh 
Reference 1178 173 276 

0.17 m 1088 160 255 

0.25 m 1049 154 246 
Salt 

Reference 1277 8 55 

0.17 m 1383 8 60 

0.25 m 1644 10 71 
Brackish 

Reference 3456 254 470 

0.17 m 3346 246 455 

0.25 m 2939 216 400 
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Table 12 Subtidal Literature Review: Summary of literature review subtidal denitrification and nitrogen burial rates. 

Units were converted for ease of comparison. 

Subtidal Denitrification       
(g N m-2 yr-1) 

Subtidal Burial               
(g N m-2 yr-1) 

Literature                   
Source 

4.3 7.6 
Boynton et  

al. 2008 
3.4 4.6 Nixon et al. 1996 
4.9 n/a Greene 2005 
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Table 13 Subtidal Estimates: Summary of Chesapeake Bay subtidal nitrogen removal estimates for 0.69 m SLR 

scenario by 2050. Literature source corresponding to the rate used for each estimate is also included.  

 
 

Subtidal Denitrification       
(g N m-2 yr-1) 

Subtidal Burial               
(g N m-2 yr-1) 

Literature                   
Source 

227872 398135 Boynton et al. 2008 
182089 243033 Nixon et al. 1996 
260425 n/a Greene 2005 
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