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Chapter 1: Background Literature Review

Effects of Domestication on Bird Behavior

Broiler chickens have been genetically selected for increased growth, 

performance, and efficient feed conversion rates.  Adjusted behavior strategies are not the 

only consequences of artificial selection.  Physiological changes have occurred in 

domestic broilers as well.  The interaction of these two factors is what enhances 

productivity.  Compared to layer-type and wild-type jungle fowl broilers eat more, grow 

larger faster, and show higher feed efficiency and lower energy expenditure (Jackson & 

Diamond 1996). 

These intense selection pressures have adjusted broilers’ foraging strategy to 

minimize energy expenditure, through diminished physical exertion, while maximizing 

energy intake, through increased food consumption and efficiency. Such adjustments may 

be adaptive in the commercial environment where feed and water is provided free choice.  

Birds selected for highly efficient feed conversion spend most of their time resting and 

eating (Braastad & Katle 1989; Channing et al. 2001; Cornetto & Estevez 2001a; Murphy 

and Preston 1988; Nicol 1992; Schutz et al. 2001; Schutz & Jensen 2001).  Results from 

the combination of inactivity and crowding include leg problems, breast blisters, and 

injuries from maladaptive behavior patterns, all of which negatively impact the birds’ 

welfare.  

Domestic poultry, layers and broilers, are most likely descendents of red jungle 

fowl (Dawkins 1989; Siegel et al. 1992).  Through the years of selection for production 
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trait meat-type and egg-type strains have developed with markedly different 

physiological and behavioral characteristics.  Egg-type birds are far more active, still are 

a ‘flight risk’ in production environments, and obviously have been selected for increased 

egg production.  Therefore it is reasonable to assume that all resources are applied to 

ward the production of eggs.  Broilers, however, have been selected for rapid weight 

gain.  As meat-type birds, broilers are heavier than layers and display fewer and less 

pronounced activity levels.  They are generally considered in the industry to be “lazy” 

and not prone to flight.  Because of their selection for efficient food conversion rates they 

presumably direct all resources to body mass, particularly in the breast region.  These 

enlarged breasts and overall muscle mass are certainly a contributing factor to the basic 

poor leg health 

Katanbaf (1988) found that growing birds distribute all resources into growth. 

Jackson and Diamond (1996) warn however that conscious selection for production traits 

may have led to negative byproducts in bird health and welfare. The immunological 

system may be compromised as a result of allocating resources to production traits.  

Katanbaf (1988) showed reduced resistance to immune challenges and Rauw et al. (1998) 

noted reduced fertility in males and females, negative immune performance, increased 

rates of injury and mortality, and sensitivity to environmental stresses - concluding that 

growth capitalized all resources leaving the birds unable to cope with the environment.

Assessing the welfare of modern strains through comparison with wild jungle 

fowl may not be the most appropriate method.  A departure from natural behaviors is 

expected in any domestic animal that must adapt and learn to strive in captive 

environments (Dawkins 1989; Newberry 1995).  To succeed in modern environments the 
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behavior of broiler birds are required to adjust from that of wild-type birds.  However, 

Ferrante et al. (2001) cautioned that animals have difficulty coping with rapidly changing 

industrial environments and management practices.  

Jones and Hocking (1999) addressed the ability of modern science to adjust the 

genetic selection process for modern broiler breeder stock to include ability to cope with 

environmental and social stresses. The authors reported that levels of fear and social 

stress “respond readily to genetic selection” (p.343).  Selecting birds based on their 

performance traits and also their ability to cope and thrive under commercial 

environments would improve well-being and raise the current levels of bird welfare 

(Craig & Muir 1998).  Advances in animal breeding and husbandry have produced 

modern poultry strains with highly efficient performance traits. Further advances can 

increase animal production, but also produce healthy, well-adjusted animals.  

Dominance Hierarchies and Aggressive Behavior

Aggressiveness in poultry is a goal-oriented behavior in that all agonistic behavior 

stems from the ethological drive to gain and ultimately control access to resources.  

Resources represent tangible benefits for the animal, such as feed and water, mates, 

perching sites, nest boxes or pen wall space.  Resource control enables an animal to 

maximize its fitness, resulting in an increased number and quality of progeny (reviewed 

in Grant 1993).  Through resource monopolization birds attain benefits that outweigh the 

cost of aggressive interactions (Brown 1964), such as energy expenditure and risk of 

injury or death.  
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The Formation of Hierarchies and their Ensuing Benefits

Aggressive behavior in poultry has been shown to decrease with formation 

of a dominance hierarchy, or pecking order (Syme & Syme 1979; Rushen 1982). 

The dominance hierarchy assures resource exploitation by dominant individuals 

and is maintained by occasional pecks and threats (Banks 1984; Banks et al. 1979; 

Stahl et al. 2001).  Dominants are usually the winners of the aggressive 

interactions, while subordinates will lose most encounters.  Dominance and 

subordinance is relative:  status is expressed when birds encounter one another. 

The exact characteristics that make a bird dominant or submissive are not 

completely understood.  Many studies have suggested that phenotypic qualities 

such as comb size and body weight contribute to rankings (for review, see Syme 

& Syme 1979; Cloutier & Newberry 2000).  Furthermore, during the formation of 

the hierarchy recent social experience, such as winning or losing a fight, has also 

been shown to have a significant impact a bird’s rank (Cloutier & Newberry 

2000).

All animals in the group benefit from social hierarchies (Pagel & Dawkins 

1997).  The most dominant animals are granted preferential access to resources 

without suffering retaliatory behavior, while subordinates evade further costly 

altercations (Rushen 1982; Banks 1984; Pagel & Dawkins 1997; Stahl et al. 

2001).  Both gain a level of environmental predictability; and avoid the initial cost 

of fighting over a resource in future encounters.  Pagel and Dawkins (1997) 

hypothesized that social hierarchies are beneficial to all parties at small group 

sizes, even if the rate of resource acquisition is not increased for dominants.  This 
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is because neither dominants nor subordinates will have to pay the cost of fighting 

over resources once a dominance relationship has been established.  

The attempts to form a social hierarchy can be detected as early as week 2 

in domestic broilers; at this point birds begin to threaten and peck at one another 

(Rushen 1982).  However the dominance hierarchy does not become settled until 

after weeks 6 to 8 for females and 10 to12 for males (Rushen 1982).  According 

to Rushen (1982) the dominance hierarchy becomes stable as birds begin to 

submit to aggressive behaviors, rather than retaliate.  Rushen argues that the 

bird’s final position in the peck order will depend most importantly on its 

individual characteristics, the age when it first started behaving aggressively, and 

the age at which other birds began submitting to it.  

Costs and Assumptions of Hierarchy Formation

Wild Junglefowl generally maintain flocks of between 5 and 48 

individuals (Collias et al. 1966).  Social hierarchies have been documented in both 

wild and domestic bird flocks housed in natural, free-range, and small production 

environments (Banks et al. 1979; Mankovich & Banks 1982; Rushen 1982; Banks 

1984; Gvaryahu et al. 1994; Stahl 2001).  Hierarchical formation and stability is 

based on the assumption that birds recognize most, if not all counterparts 

individually and remember the outcomes of past encounters with those 

individuals.  Only by recognizing its social position relative to other individuals 

can the bird behave according to the hierarchy, and thus benefit from it (Syme & 

Syme 1979).  To benefit from the social order birds must encounter each group 

member on a regular basis.  However as group size increases individual 
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identification may become difficult or even cognitively impossible at very large 

flock sizes (McBride & Foenander 1962; Mench & van Tienhoven 1986).  Hence 

in increasingly large groups the dissolution of the hierarchical system is predicted.  

Birds may loose the cognitive capacity to recognize additional individuals and 

such efforts may prove too costly when birds can expect to have little contact with 

all flock mates (Pagel and Dawkins 1997).  

A bird can only recoup the initial energy expended to form hierarchies 

when further aggression becomes unnecessary.  If a bird fails to encounter 

individuals frequently, recognize them and remember the outcome of any 

previous encounters, hierarchies will never form and aggression will continue 

indefinitely.  As group size increases more aggressive interactions become 

necessary in order to settle all possible dyadic relationships.  Because of the initial 

cost of hierarchy formation, it will only become established when the chances of 

re-encountering each individual is high, ensuring recouping of the initial cost 

(Pagel & Dawkins 1997).

Theoretical bases for the underlying assumptions of hierarchy formation 

can be further explored with economic demand curves.  Time spent engaging in 

aggressive activities draws the bird away from foraging and procurement of feed.  

When food and water are provided ad libitum for thousands of birds, the cost of 

defending a resource can never be recouped (reviewed in Grant 1993).  Birds 

engaged in an agonistic encounter lose foraging time and, as their attention is 

directed towards one another, individuals not involved in aggression have free 

access to resources.  At small group sizes the cost of aggressive encounters, such 
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as the energy expended and the risk of injury, will be outweighed by the benefits 

of resource monopolization and avoidance of further altercations.  As group size 

increases net benefits peak and eventually diminish, beyond which a tolerant 

strategy is more energetically favorable (Estevez et al. 1997).  These parabolic 

demand curves are not only dependent on group size but also spacing and 

availability of different resources, for example food, water, wall space, etc.  

In experiments using small group sizes (less than 60) aggression has been 

shown to increase as group size increases (Al-Rawi & Craig 1975; Hughes & 

Woodgush 1977).  Al-Rawi and Carig (1975) noted increases in aggression levels 

as group size increased from 4 to 28 birds.  Douglis (1948) found that birds were 

able to recognize 27 individuals, both with permanent and transient group 

membership.  This would suggest that birds are capable of forming dominance 

hierarchies at small group sizes, thus aggression should initially increase with 

group size increase as they attempted to do so.  However beyond cognitive 

capacities or ethological benefits social tolerance is predicted and has been 

demonstrated in numerous experiments (Estevez et al. 1997; Hughes et al. 1997; 

Nicol et al. 1999).  Hughes et al. (1997) mixed birds from a flock of 300 with 

either birds from a different flock, or birds from their home flock.  The authors 

found no differences in aggression measures.  Birds apparently did not recognize 

individuals from their own home pen and thus could not classify birds from 

another flock as ‘unfamiliar’. No social hierarchy was attempted and birds 

adopted a strategy of tolerance towards strangers.
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Conditions Affecting Aggression

Genetic selection, as well as the environmental and social conditions 

present in production settings, has a profound effect on aggression (Mench 1988; 

Nicol et al. 1999; Cornetto et al. 2002).  Broilers (meat-type birds) have been 

selected for efficient feed conversion rates, rapid weight gain and increased total 

body weight.  A genetic predisposition for reduced activity levels may aid in 

increasing broiler performance.  Broilers do not employ energetically demanding 

aggressive strategies and in fact show an increase in the generally low number of 

pecks and aggressive threats when food is limited.  Mench (1988) found fewer 

pecks and threats in broilers when compared with layers (egg-type birds).  

However this discrepancy faded once broilers were feed restricted.  Increased 

aggression under feed restricted management has important welfare application, 

as this is a commercial practice within broiler breeder flocks, who are raised for 

breeding rather than meat purposes.  

Aside from the total number of individuals in a pen, the specific number 

with which a bird must compete at any given time may be a contributing factor to 

the aggressive/defensive strategy.  Estevez et al. (2002) found that the specific 

number of competitors present at a resource dictated the aggressive/defense 

tactics birds employed. As the group size at a resource increased the number of 

pecks delivered decreased, suggesting a switch from a competitive to a tolerant 

social strategy.  This active switch in behavior strategy was further substantiated 

when the authors found consistent peck numbers after testing groups of 15 birds 

obtained from the larger group sizes.



9

When examining social effects on aggression, group size, stocking density 

and pen size are often confounded.  These three factors can have profoundly 

different effects on aggressive behavior (Keeling & Savenije 1995; Carmichael et 

al. 1999; Nicol et al. 1999). In order to study the effect of group size investigators 

must choose to either maintain constant stocking density, thus increasing pen size 

as group size increases, or maintain constant pen size.  In the case of the former, 

pen size varies with group size.  However in both scenarios one effect is always 

confounded with group size and the actual effects cannot be distinguished from 

one another.  Thus caution must be taken when examining the effects of group 

size, stocking density and pen size on aggression because variables are 

confounded.  Freed (2003) designed an experiment in which all three factors were 

addressed and discovered that pen size, or more specifically the amount of 

available space per bird, was the most significant factor affecting behavior. 

Nicol et al. (1999) distinguished between stocking density and flock size 

by comparing this experiment, in which stocking density was increased by 

increasing group size within a given pen with that of Carmichael et al. (1999) in 

which stocking density was manipulated by decreasing the pen size for a given 

group size.  This comparison revealed increases in feather pecking when stocking 

density and group size were confounded, but no such increase when pen area and 

stocking density were confounded. Only through cross-comparison studies and 

through studies such as Freed (2003), designed specifically to test all three 

confounded factors, can the individual effect for group size, pen size, and 

stocking density be exposed. 
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Besides pen size, the distribution, type and number of resources such as 

food, water, nest boxes, and pen space have demonstrated significant effects on

both the amount and severity of aggression (King 1965; for review, see Hughes 

1980; for review, see Craig & Adams 1984).  Barren environments, which are 

common in commercial settings, may contribute to increased aggression near 

resources and in the void center regions.  Birds prefer to use peripheral pen space 

and will crowd along the walls (Newberry & Hall 1990; Keeling 1995; Newberry 

& Shackleton 1997; Cornetto et al. 2002).  This crowding often increases the 

number of disturbances along the walls and may amplify the amount of 

aggression for desirable resting locations.  By incorporating cover, in the form of 

panels, in home pen environments Cornetto et al. (2002) reduced the number of 

overall disturbances and aggressive interactions but more specifically the amount 

of aggression seen in the empty center space diminished.  

Understanding the basic principles under which aggressive strategies 

operate is of paramount importance to the poultry industry.  Aggressive 

interactions have negative impacts on both the general health and welfare of birds, 

but also on their production value. While broilers may demonstrate adaptation to 

modern production environments through adopting a high-tolerance, low-

aggression strategy, the inability to form a social group, leading to constantly 

encountering unrecognized individuals may be stressful, and increases exposure 

to low-grade pecking, caused by large flock sizes and high stocking densities

(Newberry & Hall 1990; Grigor et al. 1995a; Nicol et al. 1999; El-Lethey et al. 

2000). Besides the obvious welfare concerns, the bird may be in a state of 
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elevated stress due to the inability to escape such social pressures (Gross & Siegel 

1981; Dawkins 1995). Constant elevated stress levels lead to sub-optimal 

performance (Al-Rawi & Craig 1975; Craig & Adams 1984; Nicol et al. 1999; El-

Lethey et al. 2000).  If aggressive strategies can be understood and eventually 

controlled or manipulated through improved management practices than all 

parties involved will benefit, the birds as well as the poultry industry. 

Foraging Theory

Optimal foraging theory predicts that those animals that choose appropriate 

foraging strategies for their environment, and maximize their net energetic gain, have 

improved chances of survival and opportunities to pass on their genes to subsequent 

generations.  The pressure of natural selection to maximize fitness comprises the 

underpinnings of optimal foraging theory (Charnov 1976; Parker & Stuart 1976).  Many 

animals forage in environments containing spatially distributed clumps of food, or 

patches.  However, in order to maximize fitness and reach optimality animals must 

actively distinguish the best foraging strategies, and patches of superior quality (Lewis 

1980; Alm et al. 2002; Morris et al. 2002).  Optimality theory assumes that animals are 

able to estimate average patch quality within their environment, and that they weigh the 

energy required to travel among patches, seek, and forage for food (Alonso et al. 1995; 

Lewis 1980), and identify the energetic gain available to them from each patch (Charnov 

1976; Parker & Stuart 1976).  If operating under optimal foraging conditions, domestic 

fowl should assess the quality of a current patch relative to the average patch quality and 

energy expenditure required to access available resources.  
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Marginal Value Theory (MVT) describes optimal foraging in patchy 

environments.  It predicts that in an environment with homogeneous patches birds should 

remain at a patch only long enough to compensate for the cost of moving to another patch 

(Alonso et al. 1995).  If patch quality is heterogeneous, consisting of both rich and poor 

patches, birds should visit patches of highest quality first, depleting resources until 

quality reaches the average patch quality within the environment (Charnov 1976; Lewis 

1980; Alonso et al. 1995).  

The model predicts the convergence of foraging strategies with the optimum 

difference between foraging cost and gain.  Birds should defend a patch from others only 

when the energy and time costs are outweighed by the benefits of resource 

monopolization (Brown 1964).  At small group sizes, when energetic costs of resource 

defense can be recouped, birds will attempt to assert their dominance over others and 

exclude subordinates from sharing in resources (Banks et al. 1979; Banks 1984).  When 

group dynamics are incorporated with the optimal foraging model, strategies of 

individuals within the group may differ from one another as a function of dominance 

status (Caraco 1981; Clark & Mangel 1984; Caraco et al. 1989; Stahl et al. 2001).  Stahl 

et al. (2001) documented that the subordinate birds in wild arctic barnacle geese (Branta 

leucopsis) flocks were located along the front edges, traveling at a faster pace and 

foraging more quickly than the dominants foraging along a front behind them.  However 

once subordinate birds uncovered resources dominant individuals rushed in and excluded

other birds.  The foraging strategies seen in these flocks opposed one another, with 

subordinates attempting to move ahead of dominants and consume discovered resources 

before being ousted.  Caraco et al. (1989) compared the foraging strategy of single versus 
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paired juncos, Junco hyemalis, in patchy environments.  This study corroborated the 

results from Stahl et al. (2001) in that dominant individuals expelled subordinates from 

their discovered resource patches, causing them to adjust their foraging strategy.  Despite 

the obvious advantage to dominant individuals, various models and supporting studies 

have demonstrated the unapparent benefits to subordinates.

Clark and Mangel (1984) developed a model of flock foraging behavior to 

demonstrate the benefits of staying in a group for subordinate birds.  Individuals foraging 

in groups constantly monitor the foraging results of other group members and share in 

any information, or resources, gleaned.  The collective information gained by being 

within a group surpasses that which is available to any single individual, subordinate or 

dominant.  While a byproduct of low social status is delayed access to resources, 

subordinates in fact gain from this predictable circumstance (Pagel & Dawkins 1997).  

The initial energy lost during the formation of a pecking order, or dominance hierarchy, 

is recouped when birds no longer contest over subsequent resources.  Thus subordinates 

not only benefit from group membership through an improved foraging rate over solitary 

foraging, but also benefit from the social hierarchy in that further aggression over 

discovered resources is avoided, as would not be the case if solitary.  However one caveat 

of group membership and social hierarchies, if they are to benefit foraging strategy, is 

that individuals must recognize each other – which may not be possible under modern 

production practices (McBride & Foenander 1962; Mench & van Tienhoven 1986).  

Environmental factors may not be the only way domestication alters foraging 

strategies for domestic fowl.  Domesticated animals under intense artificial selection for 

high production traits behave in a more energy-conservative fashion than those not under 
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such pressures (Gustafsson et al. 1999; Andersson et al. 2001).  These changes have been 

demonstrated by comparing the foraging strategy of wild-type red jungle fowl to that of 

domesticated birds, and also by comparing the foraging strategies of different strains of 

domestic chickens selectively bred for different production traits (Braastad & Katle 1989; 

Andersson et al. 2001; Schutz et al. 2001; Lindqvist et al. 2002). Jungle fowl are 

presumed to be the ancestor to modern strains of domestic fowl (West & Zhou 1989; 

Siegel et al. 1992) and thus provide a basis for comparing behavior strategies (Dawkins 

1989; Siegel et al. 1992).  In repeated experiments wild-type birds spend a lower 

proportion of time eating from a readily available source, preferring to forage for their 

feed (Schutz & Jensen 2001).  Jungle fowl adopt a more energy-demanding foraging 

strategy and engage in more contrafreeloading behavior than domestic chickens (Schutz 

& Jensen 2001; Schutz et al. 2001; Lindqvist et al. 2002). Contrafreeloading is a foraging 

strategy for which an animal actively chooses to work for food when the same reward is 

readily available without additional work required.  Bizeray et al. (2002a) noted the 

reluctance of domestic birds to forage for food when other resources were readily 

available.  

Contrafreeloading, and its prevalence among various wild species (for review see 

Inglis et al. 1997), suggests that the mere consumption of food is neither the sole 

motivating factor nor the sole benefit of foraging behavior.  The animal can be said to 

gain as much from the mere act of foraging, in the way of information about its 

environment, as it does from actually feeding (Hughes & Duncan 1988; Linqvist et al. 

2002).  Energetically expensive behavioral strategies such as contrafreeloading are only 

maintained in the wild if they offer valuable benefits, such as providing crucial 
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information or enabling a critical interaction with the environment.  If, in the wild, 

predation is the most important variable in determining patch quality then 

contrafreeloading may offer detailed environmental information vital to avoid predation, 

such as the availability and proximity of suitable cover (Arcis & Desor 2003).  However, 

if the risk of starvation is an animal’s most critical pressure then contrafreeloading would 

provide necessary information about patch quality and habitat variability in an uncertain 

environment (Linqvist et al. 2002). This knowledge would prevent the animal from 

starving when abundant food sources or rich patches become scarce.  

While environmental conditions and selection pressure have changed the behavior 

of domestic fowl, their behavior has often remained intact. The risk of predation has been 

eliminated in modern production environments, relaxing natural selection pressures 

present in the wild. However domestic fowl consistently behave according to anti-

predator strategies and show vigilance, flocking and other fear responses in captive 

environments (Gvaryahu et al. 1989; Jones & Waddington 1992; Nicol 1992; Newberry 

& Shackelton 1997; Schutz et al. 2001). These behavioral responses necessary for 

survival when encountering a predator have not been eliminated from the domestic fowl’s 

behavioral repertoire. Modern production environments have also eliminated the risk of 

starvation. The production industry standard is the provision of ad libidum food, with the 

main exception being the restricted feeding regime for domestic broiler breeders which 

are required to grow more slowly in order to improve reproductive fitness (Mench 1988). 

Given the relaxation of the two most likely selection pressures benefiting 

contrafreeloading strategies, in a situation where maximum weight gain and energy 
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conservation is extensively selected for over generations, not surprisingly, such 

energetically demanding behaviors will be reduced.

While domestic fowl display quantitatively less overall active behaviors when 

compared with their more wild relatives (Schutz et al. 2001) they have been shown to 

choose patches according to the work required and optimally forage under the principles 

of marginal value theory (Andersson et al. 2001). Some studies have examined the 

effects of increased distance between patches (Andersson et al. 2001) as well as the 

effects of increasing manipulation time by mixing food rewards with litter or wood 

shavings (Lindqvist et al. 2002).  However, birds were trained prior to testing, and were 

acclimating to the testing procedure (Andersson et al. 2001; Schutz et al. 2001; Lindqvist 

et al. 2002) and possibly able to anticipate the provision of different quality patches.  

None of these studies examined the mediating effects of group size on foraging strategy, 

as all birds were either isolated for testing, or tested in pairs.  

By examining the foraging strategy of domestic fowl in patchy environments, but 

also under various resource distribution scenarios, investigators can gain a better 

understanding of the foraging decisions birds make in production settings.  These 

foraging decisions have important relevance to production, because the variation among 

bird weights will be high, and bird welfare (Wiepkema & Koolhaas 1993).  Further 

investigation into the mediating effects of flock size on foraging behavior, both at small, 

large, and intermediate group sizes will discern the specific effects of social environment 

on foraging. 
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Use Of Space

Many environmental factors influence how domestic birds use available space, 

some of which have been previously alluded to and briefly mentioned in this manuscript. 

Social factors such as stocking density and group size (Banks 1984; Keeling & Duncan 

1991; Zhou & Stricklin 1992; Keeling 1994; Estevez et al. 1997; Carmichael et al. 1999), 

as well by physical factors such as pen size (Stricklin et al. 1979; Hughes 1980; McBride 

& Craig 1985; Newberry & Hall 1990) resource distribution (McBride & Craig 1985), 

and age (Hughes 1980; Newberry & Hall 1990; Newberry & Shackleton 1997; Cornetto 

& Estevez 2001b) significantly impact movements.  The effect on an individual’s use and 

distribution pattern often results in an alteration of the total area utilized collectively by 

the birds or the combined home range. 

When social hierarchies affect the use of space in domestic fowl, generally at 

smaller group sizes, dominant individuals control space nearer to the food resources 

(Banks 1984, reviewed in Grigor et al. 1995a).  Dominant individuals monopolize these 

attractive pen areas and frustrate the attempts of subordinates to gain access to those 

areas.  When investigating the behavior of laying hens, Gibson and Dunn (1985) 

suggested that dominant individuals enjoy a greater freedom of movement than 

subordinates.  Dominants move around the pen freely, unchallenged by subordinate 

individuals; thus gaining access to all areas and settling more frequently in the most 

attractive areas.  Conversely, as subordinates navigate the pen area they can be 

challenged by dominants; in order to avoid confrontations subordinate individuals will 

avoid dominants and thus limit their freedom of movement around the pen, 

demonstrating diminished use of attractive areas (reviewed in Grigor et al. 1995a). 
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As group size increases the formation of a dominance hierarchy becomes 

unprofitable. McBride and Foenander (1962) predicted that at large group sizes birds will 

remain in specific areas of the available space where they will form subgroups and within 

these subgroups establish a hierarchical social system. Therefore, the combined effects of 

social dominance and large group size would limit use of space.  This theory assumes that 

birds attempt to form dominance relationships with each encountered individual through 

aggressive interactions, and that such interactions are both costly and stressful.  

Attempting to diminish stress and energy expended during costly encounters, the authors 

concluded that birds would restrict movements to a small range, functionally creating 

numerous territories within the available space.  By remaining within a territory birds 

develop a local hierarchy with the other resident individuals and are able to avoid 

encounters with strangers.  This hypothesis, however, has not been supported in recent 

studies (Newberry & Hall 1990; Estevez et al. 1997; Carmichael et al. 1999; Channing et 

al. 2001).

Newberry and Hall (1990) found that birds did not stick to well-delineated home 

sites, or territories, but rather continually mingled within the space.  Estevez et al. (1997) 

also found that birds did not restrict their movements to specific territories within the pen, 

but rather were recorded at various locations across the entire pen.  The amount of pen 

space used by focal individuals did not change with increasing group size.  Again this 

finding directly contradicts the predictions of McBride and Foenander (1962) in that 

individuals from groups of 200 did not use less of the available pen area than birds in 

groups of 50, as would be predicted if birds were attempting to avoid unknown 

individuals.  While social hierarchies have a significant effects on bird movement at 
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small group sizes, similar effects are not well-supported at large group sizes.  This 

discrepancy suggests that the effects of group size are independent of the effects of social 

hierarchies. In large group sizes the physical barriers created by high stocking densities 

and/or large numbers of individuals, limit movement rather than social interactions 

occurring between flock members. This exact hypothesis was tested by Freed (2003) in 

which bird models, appropriately sized balls, were used to simulate the presence of other 

individuals while removing any possible social effects. It was the mere presence of these 

models that limited bird movement and available space, in the absence of any possible 

social interactions.  

While many studies have examined the behavioral effects of stocking density, 

group size and pen size they are not independent of one another.  Inexorably, when 

comparing two parameters, for example stocking density at constant group sizes, the third 

parameter, in this example pen size, must be manipulated with stocking density.  Any 

interpretation of the effects of stocking density are not independent of pen size which 

must be decreased when holding group size constant, thus confounding the effects of 

stocking density with pen size.  The only study, to my knowledge, which has 

simultaneously explored the independent effects of all three environmental factors, is that 

of Freed (2003). Thus any interpretation of the effects of group size must take into 

considerations the confounded effects of either altered pen size or stocking density, and 

the same is true when examining stocking density and pen size.  

With this caution in mind, studies have demonstrated behavioral effects of group 

size, pen size, and stocking density (Nicol 1987; Keeling 1994; Estevez et al. 1997; 

Newberry & Hall 1997; Carmichael et al. 1999; Channing et al. 2001).  Estevez et al. 
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(1997) found no difference in the amount of pen space used by broilers from pens of 

identical size.  The authors suggest that pen size and stocking density, rather than group 

size, limits the amount of space a bird uses.  Channing et al. (2001) examined the effect 

of group size on laying hens, while holding stocking density constant, thus increasing pen 

size with group size.  The authors found that birds in all group sizes used an equal 

percentage of available space, however both the minimum and maximum neighbor 

distance increased with group size.  The authors caution against a possible increased 

potential for, and incidence of crowding at larger group sizes.  Newberry and Hall (1990) 

examined pen size, rather than group size per se with broilers, but in doing so maintained 

constant stocking density by manipulating group size.  The authors found increased use 

of the total available pen space with increasing pen size, and consequently increasing 

group size.  Keeling (1994) and Carmichael et al. (1999) investigated the effects of 

stocking density in laying hens, however stocking density effects were confounded with 

pen size, which decreased in order maintain a constant group size.  Birds adjusted their 

time budgets under spatial restriction, limiting the activity of certain behaviors, such as 

walking and ground pecking, which require a larger amount of space than standing, 

which became a filler behavior (Keeling 1994).  These results are similar to those found 

by Carmichael et al. (1999); birds decreased their movement and increased standing 

when stocking density increased but group size remained constant.  The authors 

concluded that the proportion of birds moving was least at the largest stocking density 

because of the adverse effects crowding has on movement.  Similarly Nicol (1987) 

examined the effect of cage size while maintaining constant group size, thus increasing 

stocking density with cage size and confounding the two effects.  Birds in restricted cages 
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rested, sat, and pecked more often than birds from larger cages, which ate more and 

stretched more often than restricted birds (Nicol 1987).  There were pronounced, and 

immediate, behavioral changes when restricted birds were moved to large cages; they 

stretched and flapped their wings more often than birds reared in spacious environments.  

When comparing results from many studies, stocking densities, pen sizes, group 

sizes, and housing conditions often vary from one to another leading to a wide variety of 

experiment conditions.  Estevez et al. (1997) made use of pens 10.5m2, and stocking 

densities of 4.8 birds/m2 for 50 birds, 9.5/m2 for 100 birds, 14.3/m2 for 150 birds and 

19.0/m2 for 200 birds.  These stocking densities are similar to those in Carmichael et al. 

(1999), of 9.9 birds/m2, 13.5/m2, 16.0/m2 and 19.0/m2.  However in Carmichael et al. 

(1999) a perchery housing system with a constant height and width of 4.4m, but various 

lengths from 4m to 7.2m, was utilized in order to create the various stocking densities 

with 300 birds in each system. Channing et al. (2001) used this same perchery system, 

however birds were maintained at a relatively high constant stocking density of 18.5 

birds/m2, while group size increased from 323 to 912 birds.  Newberry and Hall (1990) 

maintained a constant stocking density of 7.5 birds/m2 for 3040 birds housed in a 407m2

pen, as well as for 1520 birds in a 203.5m2 pen.  Keeling (1994) housed three birds in 

pens ranging from 1.3m2 to 0.42m2, creating stocking densities from 2.3 birds/m2 to 7.1 

birds/m2.  Nicol (1987) housed hens in similarly small group sizes, but in battery cages 

ranging from 0.85m2 to 2.3m2, with stocking densities of 7.1 birds/m2 to 2.6/m2

respectively.  The results from these different studies complement one another despite 

differences in experimental conditions.  Pen size was experimentally increased in all 

studies except Estevez et al. (1997), in which pen size was controlled and stocking 
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density and group size were increased.  From the studies reported, general behavioral 

trends can be distinguished as pen size increases; the total amount of area used by the 

birds also increases (Newberry & Hall 1990; Carmichael et al. 1999), even when area 

occupied per day does not change (Newberry & Hall 1990), and distribution throughout 

the available space does not change (Channing et al. 2001).  The additional finding by 

Estevez et al. (1997) that group size is not the significant factor affecting the use of total 

available space, when birds are housed at constant pen size suggests that it is that pen’s 

size, as well as the stocking density, that most substantially influences the amount of 

space a bird utilizes.

Many studies have demonstrated the beneficial effects environment enrichment 

has in promoting an increase in the overall use of available pen space, as well as to 

distribute birds more evenly (Newberry & Shackelton 1997; Kells et al. 2001; Cornetto & 

Estevez 2001b).  Void, predictable environments, such as current commercial poultry 

houses, offer domestic fowl little stimulation, and may affect their welfare and ultimately 

their productivity (Mench & van Tienhoven 1986; Wemelsfelder 1993; Wiepkema & 

Koolhass 1993; Mench 1998).  Typically birds congregate along pen walls, decreasing 

the amount of central area occupied and increasing disturbances and aggressive 

interactions in highly contested areas (Newberry & Hall 1990; Newberry & Shackelton 

1997; Cornetto et al. 2002).  However by incorporating cover, in the form of panels, bird 

numbers decreased along pen walls and increased around the provided cover panels 

(Newberry & Shackelton 1997; Cornetto & Estevez 2001b).  Furthermore aggressive 

interactions decreased, as did the number of disturbances (Cornetto et al. 2002).
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How domestic animals use the space available to them is paramount in 

understanding their adaptations to current production environments (Keeling 1995).  

Welfare and productivity can be improved through better understanding of animal 

behavior and the stimuli that inhibit, as well as those that elicit, natural behavior patterns 

(Craig & Adams 1984; Keeling 1995).

Environmental Enrichment

The number of different definitions for environmental enrichment are only 

surpassed by the multitude of types reported in the literature.  It has been defined by 

physical change that leads to increasing: biological relevance to the animal (Newberry 

1995), spatial complexity (Cornetto & Estevez 2001a), exploratory behavior (Mench 

1998) and environmental challenges (Wemelsfelder & Birke 1997).  Research has shown 

that environmental enrichment improves performance (Gvaryahu et al. 1989; Bell et al. 

1998; Jones et al. 1980) modifies and enhances behavior patterns (Bizeray et al. 2002a; 

Cornetto & Estevez 2001a), stimulates activity (Kells et al. 2002), reduces aggression and 

disturbances (Cornetto et al. 2002) and mortality (Gvaryahu et al. 1994), and decreases 

fear responses (Nicol 1992; Jones and Waddington 1992; Jones 1982; Reed et al. 1993).  

Enrichment can include the provision of basic items such as nest boxes, dust bathing 

materials, perches or cover, but can also include commercial pecking devices and other 

such novelties designed to promote exploratory or foraging behaviors.

Newberry (1995) limits the definition and application of environmental 

enrichment based on the biological relevance to the animal.  Enrichment is distinguished 

from the mere provision of novel items in that the item or environmental change must 
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improve the biological functioning of the animal.  Mench (1998) in turn defines two 

types of environmental enrichment, those that satisfy strongly motivated, high priority 

behaviors and those that stimulate information-seeking behaviors.  The complex and 

variable qualities of natural environments predict a motivation to seek complexity and 

novelty in order to satisfy information gathering drives (Mench 1998).  Barren 

environments may foster frustration, boredom or stress related behaviors that are often 

expressed through feather pecking, cannibalism, or pacing.  Many investigators have 

studied the myriad of deleterious effects barren commercial environments may foster, 

such as the destructive redirection of natural behaviors towards pen mates in the absence 

of appropriate outlets (Gross 1983; Mench & van Tienhoven 1986; Dawkins 1988; 

Wemelsfelder 1993; Wiepkema & Koolhaas 1993; Wemelsfelder & Birke 1997; Mench 

1998; Newberry 1999). 

The modern commercial poultry production environment may sabotage bird 

welfare and performance because of its barren nature, lacking in complexity and 

stimulation.  Under these conditions maladaptive behaviors such as feather pecking and 

cannibalism may develop, which may negatively impact both welfare and productivity 

(Aerni et al. 2000; Dawkins 1988; El-Lethey et al. 2000; Gvaryahu et al. 1994; Newberry 

1995; Wemelsfelder & Birke 1997; Wemelsfelder 1993).  Welfare may deteriorate due to 

boredom or frustration resulting from constant, unchanging and under-stimulating 

environments (Gross 1983; Bell et al. 1998; Dawkins 1988; McBride & Craig 1985; 

Newberry 1999).  Recently, environmental enrichment has been examined as a 

preventative measure to decrease or inhibit destructive behaviors.  Mench et al. (1998) 

acknowledged that successful enrichment devices improve health and physiology, 
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increase the range of normal behaviors, diminish abnormal or stereotyped behaviors 

and/or improve an animal’s ability to cope with stresses.  

Newberry (1999) found that domestic fowl had a strong drive to seek out novelty 

and challenge.  The thwarting of these motivations may lead to boredom or frustration.  

Mench (1998) and Pettit-Riley and Estevez (2000) discussed the importance of 

exploratory behavior and control over the environmental, respectively, and the possible 

uses of environmental enrichment towards those ends.  Wiepkema and Koolhaas (1993) 

suggest that some environmental unpredictability, in the form of novelty or exploratory 

opportunities, is necessary to avoid boredom.  Early experience, either in a poor or 

enriched environment, exerts a profound affect on the animal’s later behavioral repertoire 

and ability to cope with stressors (Jones and Hocking 1999).  Wemelsfelder and Birke 

(1997) include environmental challenge, the dynamic conditions of an animal’s 

environment requiring interaction and responses, as an integral component for behavioral 

well-being. The lack of environmental challenge has a substantial impact on bird well-

being.  The authors discuss the key role of environmental control in stress management, 

brain development and behavioral plasticity.  Wemelsfelder (1993) suggests that 

increased stereotypies seen in modern poultry reared in barren, intensive housing 

conditions indicate the impairment of species-typical behaviors, and ultimately denote 

suffering for the animal.  Gross (1983) found that in barren environments such as cages, 

birds had reduced immune function as well as basic lethargy and diminished weight gain 

relative to floor-kept birds. 

While the lack of environmental enrichment and complexity may lead to impaired 

welfare, their inclusion is not strictly preventative; many authors have reported high 
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performance and carcass quality and improved well-being (Gvaryahu et al. 1989; Bell et 

al. 1998; Jones et al. 1980).  Jones and Waddington (1992) investigated the effects of 

early environmental enrichment on fear responses of layer chicks later in life.  In all trials 

birds reared in enriched environments demonstrated less freezing, more approach and 

investigating behaviors as well as increased vocalizations and shorter emergence times 

from a novel area.  The authors theorized that early enrichment enhanced the chicks’ 

abilities to adapt to subsequent environmental stressors, and reduced the frightening 

properties of novelty.  Nicol (1992) found lower tonic immobility duration and higher 

general home pen activity levels in laying hens that were given access to perches and 

novel items to investigate.  Reductions in fear responses will decrease the likelihood of 

exaggerated fear responses like hysteria which lead to injuries, heart attacks, increased 

susceptibility to heat stress and overall high levels of stress (Hughes 1980; Jones 1982; 

Jones & Waddingto, 1992; Nicol 1992; Reed et al. 1993; Mench 1998).  

Reed et al. (1993) noted decreased carcass quality in caged layers due to 

significantly more strikes against the cage, causing broken bones during depopulation in 

birds without enrichment objects compared to those provided enrichment.  Environmental 

enrichment, in the form of multiple small easily manipulated items, has demonstrated a 

growth-stimulating effect in broilers through improved body weight gain and feed 

conversion rates (Jones et al. 1980).  Gvaryahu et al. (1989) found significant 

improvements in feed conversion and body weights of meat-type birds given a small 

imprinting object and small, easily manipulated enrichment devices.  In addition 

Gvaryahu et al. (1994) found improved egg production and decreased mortality rates in 
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laying hens given access to commercial enrichment devices designed to increase pecking 

and bird-object interactions.  

Increasing environmental complexity breaks up monotonous floor space. Not all 

of the available space is utilized, and enrichment in the form of cover and perches has the 

effect of spreading birds more evenly throughout their enclosure (Hughes & Elson 1977; 

Newberry & Shackleton 1997; Cornetto & Estevez 2001b).  Cornetto and Estevez 

(2001b), Cornetto et al. (2002) and Newberry and Shackelton (1997) were able to 

encourage more even dispersion across pen floors both in broilers and layers, and thus 

decreased both aggressive interactions and large aggregations by introducing cover, in the 

form of panels.  Hughes and Elson (1977) provided broilers with perches, and noticed an 

improved distribution in the pen, but also a reduction in the number of disturbances.  

When Cornetto and Estevez (2001a, 2001b) incorporated panels in home pens, aggressive 

interactions as well as the number of disturbances decreased. When moving about the 

pen broilers choose the most direct path, often directly over, rather than around, 

conspecifics; stepping on other birds can often lead to injuries.  Disturbances caused by 

birds aggregating at pen walls may decrease carcass quality because of scratches and 

bruising. Even distribution created by enrichment would improve production.  

Increasing motor patterns and general activity, as well as behavioral repertoires 

and plasticity in poultry are important goal of enrichment.  Modern broiler strains spend 

the majority of their daytime resting (Cornetto et al. 2002).  These prolonged periods of 

resting may have adverse effects on bird health through the appearance of lesions and 

sores as well as hock and leg burns from prolonged period on wet litter (Søresen et al. 

2000).  Leg problems are a major concern in the broiler industry; a 1993 survey of 
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commercial broiler production companies estimated that the incidence of leg deformities 

and lameness cost the industry between $80 and $120 million dollars annually (Morris 

1993).  This inactivity may be the result of leg problems that make movement and 

activity painful. However genetic selection for rapid weight gain and large body size 

significantly contribute to the incidence and severity of leg deformities (Craig & Muir 

1998; Rauw et al. 1998; Jones & Hocking 1999; Bokkers & Koene 2003).  Incorporating 

enrichment designed to increase exercise, such as barriers or perches, has been shown to 

improve bone conditioning (Rau et al., 1998; Su et al., 1999; Sørensen et al., 2000; 

Bizeray et al. 2002b).  These improvements will in turn reduce mortalities and culling 

percentages related to leg problems (Morris 1993). 

Birds appear highly motivated to seek and use available forms of cover and 

perform more comfort behaviors and use more available space (Newberry & Shackleton 

1997; Cornetto & Estevez 2001b; Kells et al. 2001; Estevez et al. 2002).  By providing 

birds with straw bales in commercial houses Kells et al. (2001) noted a decrease in 

resting periods, an increase in locomotion and also longer bouts of activity.  Bizeray et al. 

(2002a) found comparable results after increasing environmental complexity by 

incorporating small barriers.  These barriers stimulated a greater variety in motor 

patterns.  Birds used barriers as perches, demonstrating adaptive use of incorporated 

environmental complexity and diversification of behavior patterns. Newberry and 

Shackleton (1997) provided young layers with panels to increase cover and noted that 

birds often perched on top of the panels as well as positioned alongside them in large 

numbers.  
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Cover and perches have obvious biological relevance to birds.  In wild 

environments, birds would use tree branches and bushes for roosting and to seek 

protection from predators and aggressive flock-mates.  In poultry houses birds are often 

kept on large open floors, with no option to perch or seek cover.  Crowding seen along 

pen walls may be an attempt to seek the only available cover (Newberry & Shackleton 

1997; Cornetto & Estevez 2001b).  These studies demonstrate that birds spend a 

disproportionate amount of time near pen walls and Kells et al. (2001) noted that in 

addition to walls birds clustered around support poles when available.  These behaviors 

are evidence of a strong behavioral drive to seek cover and protection, which is 

minimally provided in commercial settings.

There are a variety of theories about practices relating to welfare requirements, 

behavioral needs and appropriate levels of stimulation, enrichment, and complexity for 

domestic fowl.  There are also a variety of definitions for welfare, suffering and 

behavioral needs.  Hughes and Duncan (1988) determined that birds are significantly 

more motivated to perform certain behavior patterns, and frustration results from the 

birds’ inability to perform them.  Dawkins (1988) cautioned that suffering should only be 

declared when motivation unable to be fulfilled is prolonged or intense.  Further 

investigation into the effects of environmental complexity and its lack thereof are 

necessary to improve both welfare and production.  These factors must be carefully 

studied and seriously considered to better design suitable housing conditions.
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Chapter 2: Use of Space, Social Spacing and Aggressive 
Behavior Under Varying Levels of Environmental Complexity

Abstract

The effects of cover panels designed to increase the level of environmental 

complexity in a testing arena were compared across three group sizes, five, 10, and 20 

individuals per group of domestic fowl. Animals were tested under three environmental 

scenarios, either in an empty control arena, with one long panel, or with four panels equal 

in total length to the one long panel, representing increased environmental complexity. 

Environmental complexity had a more pronounced effect on smaller group sizes. Larger 

groups occupied more of the total pen space, but the use of space by individuals (core 

areas) did not vary with GS. The total core area occupied by group members increased 

with group size. Overall aggression was low, but groups behaved differently in each of 

the environmental conditions. Because birds were transported from their communal home 

pen environment to the testing arena, individuals demonstrated the capacity to 

immediately adapt to a new environment. Domestic fowl not only responded to the 

different physical environmental features but their behavior was markedly affected by 

group size, despite common home backgrounds.
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Introduction

The management and housing conditions for domestic fowl offer little in the way 

of natural environmental features possessing historical and biological, relevance. Most 

specifically this refers to the absence of concealing cover, a fundamental element in wild 

habitats (Gray et al. 2000; Jensen et al. 2003). Newberry and Shackelton (1997) defined 

cover as a structural feature of the environment that enables animals to conceal 

themselves from predators or the aggression of conspecifics. The presence of suitable 

cover is one of the most crucial elements in distinguishing suitable wild environments 

(reviewed in Lima & Dill 1990) and plays a key role in foraging decisions (Elton 1939; 

Jensen et al. 2003). The presence of cover is a salient influence on domestic animal 

behavior and this influence has endured the process of domestication. Evidence of the 

effect of cover is the persistent fearful reactions of domestic fowl to actual and supposed 

predators (Gvaryahu et al. 1989; Jones & Waddington 1992; Nicol 1992; Newberry & 

Shackelton 1997; Schutz et al. 2001). The lack of suitable cover in the agricultural 

production system may negatively impact domesticated fowl and contribute to stress and 

abnormal behaviors such as stereotypies (Newberry & Shackelton 1997). 

Because the fear of predation continues to shape the behavior patterns of domestic 

fowl (Keeling 1995) the availability of cover, or lack thereof, has been shown to 

significantly influence the way flocks use the space available to them (Newberry & 

Shackleton 1997; Cornetto & Estevez 2001a). In barren environments birds 

disproportionately cluster along pen walls (Newberry & Hall 1990) or any notable 

environmental feature, such as roof support poles (Kells et al. 2001).  This clustering 

decreased the amount of central area occupied and increases the potential for disturbances 
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and aggressive interactions (Newberry & Hall 1990; Newberry & Shackelton 1997; 

Cornetto et al 2002). Newberry and Shackelton (1997) as well as Cornetto and Estevez 

(2001b) incorporated panels providing cover. Both examined the behavior of domestic 

fowl and found that the number of birds along pen wall decreased as animals distributed 

more evenly throughout the enclosure. In both studies animals showed a high degree of 

motivation to seek and utilize the provisioned cover. Kells et al. (2001) found that in 

empty chicken houses animals crowded around the only elements available, structural 

support beams. By increasing the level of environmental complexity with panels, 

Cornetto et al. (2002) reported an effective decrease in aggressive interactions and 

disturbances. The welfare of domestic animals housed in intensive production 

environments has come under public scrutiny as of late (Mench & van Tienhoven 1986). 

Cover panels offer an economical alternative to featureless housing conditions with the 

potential to favorably impact welfare and productivity. 

In addition to environmental features, stocking density, group size (GS), and pen 

size influence spatial and aggressive behavior (Keeling & Savenije 1995; Estevez et al. 

1997; Charmichael et al. 1999; Nicol et al. 1999; Freed 2003). These factors, however, 

have not been tested independently of one another in published studies. Thus 

interpretations of behavioral effects must take into account confounding factors. For 

example, in order to examine the effects of stocking density while controlling GS, pen 

size must be manipulated. Any significant results cannot be uniquely attributed to 

stocking density alone, because pen size was concomitantly manipulated. Thus in this 

example stocking density and pen size are confounded with one another and their effects 

cannot be statistically distinguished from one another. 
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While acknowledging confounded effects, studies have demonstrated significant 

behavioral effects of group size (GS), pen size, and stocking density (Nicol 1987; 

Keeling 1994; Estevez et al. 1997 & 2003; Newberry & Hall 1997; Carmichael et al. 

1999; Channing et al. 2001; Freed 2003). After increasing pen size by allowing outdoor 

access Estevez et al. (1997) found no difference in the amount of pen space used by 

individuals from different stocking densities. Channing et al. (2001) examined the effect 

of GS while holding stocking density constant and found that laying hens in all group 

sizes used a similar percentage of the available space. Similarly Newberry and Hall 

(1990) examined the effects of pen size and found an increased use of space as pen size 

and subsequently GS, were increased. Freed (2003) investigated the differences between 

stocking density and GS effects, and found that the amount of space available to a bird 

was the dominating factor for the use of space patterns in domestic fowl. 

How animals distribute and use the space available to them is crucial to the 

welfare and productivity of domestic species maintained in captivity. Uniform, 

predictable environments such as commercial poultry houses offer domestic fowl little 

stimulation, decreasing welfare and ultimately productivity (Mench & van Tienhoven 

1986; Wemelsfelder 1993; Wiepkema & Koolhass 1993; Mench 1998). This and future 

studies of effective, sensitive methods for determining use of space patterns are essential. 

Behavioral responses to environmental complexity (EC), and perhaps more importantly 

the detriment incurred in environments devoid of sufficient complexity, are important 

factors requiring additional investigation. 

The techniques for measuring dispersal and the use of space in confined, domestic 

species are not fully developed. Confinement negates many of the assumptions that 
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underlie classical techniques developed for the study of wild species, namely freedom of 

movement and a bivariate normal distribution with increased use of center areas (White 

& Garrott 1990). We have chosen to generate core areas with a kernel density estimation 

technique adjusted for the confined condition of our test animals. This method is more 

sensitive than quadrant analysis, conveying additional information about how animals use 

the space available to them. Quadrant analysis has been used in similar studies (Cornetto 

& Estevez 2001b; Newberry & Shakelton 1997) and as the name implies involves 

dividing the available space into pieces, or quadrants, and comparing counts of the 

number of times animals appear in each quadrant. While this conveys information about 

the direct location of an animal it does not confer a detailed and specific value for the 

amount of space utilized, which is provided by core areas. Rather than quantifying the 

exact location of individuals, core areas detail the area of movement based on an animals 

recorded locations. In addition a visual plot of these location points and core areas can be 

generated to suggest preferences for specific locales within the available space. Core 

areas are calculated from the locations where an individual was recorded, similar to home 

range estimation techniques used with wild, radio-collared animals. From the total 

number of locations a distribution of core areas is created specifying the frequency or 

intensity of their use. These core areas convey the frequency, or probability, of detecting 

an animal within the given area. 

The benefits of kernel density core area estimates are numerous. This technique 

produces consistent results (Worton 1995; Seaman & Powell 1996; Blundell et al. 2001). 

Because the core area captures the extent of movement by the animals, subsequent 

analyses from similar environmental conditions will reveal similar results. Quadrant 
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analysis however may not produce similar results because, while animals will most likely 

show similar extents of movement, they may not frequent the exact same locations 

between studies. Furthermore the results from quadrant analysis are dependent upon the 

choice of quadrant size. Kernel density estimation involved efficient mathematical 

techniques that are applicable across scientific fields, animal species, and units of 

measurements and can be used to estimate an animal’s concentrated area of movement. 

This estimate for the extent of an animal’s movement applies to both confined and free 

situations. 

Minimum convex polygon is another technique used to quantify animal home 

ranges. The widest-reaching points over which the animal was located generate the 

polygon (Mohr 1947). While this technique conveys the minimum range over which a 

wild animal travels based on its observed movements, the specifics conveyed about 

confined environments are not particularly informative. Concerning confined domestic 

fowl, which cluster along pen walls (Newberry and Hall 1990; Cornetto et al. 2002), the 

polygon will be roughly equivalent to the pen size. Kernel density core areas, however, 

do not necessarily encompass all points and instead define the most important areas of 

activity for an animal. The information they convey, the extent to which the animal 

travels within the pen, is both representative and informative. The concept of core areas 

can be applied to other animals under similar environmental conditions. In addition to 

core areas, inter-bird distances, mainly in the form of nearest neighbor analyses (NN) are 

frequently used to determine social spacing behavior in domestic fowl (Banks 1984; 

Keeling and Duncan 1991; Keeling 1994; Keeling 1995). 
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This experiment investigated the effects of cover treatments and different group 

sizes on the spacing and aggressive behavior of young domestic fowl. We hypothesized 

that the level of environmental complexity (EC) would influence the spatial distribution 

patterns and aggressive strategies of domestic fowl. As EC increases birds should 

disperse and use larger pen areas when offered concealment and protection. We further 

expected these behavioral responses to follow basic behavioral ecology predictions, such 

that experimental GS would significantly impact the response to EC. Smaller group sizes, 

with increased susceptibility to predation, should have a greater response to EC than 

larger groups. Larger group sizes should foster diminished group cohesion, or inter-

individual proximity, as group members move farther from one another and spread within 

the pen.

Methods and Materials

Facilities and Experimental Animals

This experiment was conducted at the University of Maryland’s Upper 

Marlboro Applied Poultry Research Facility from March 17th 2003 through June 

3rd 2003. A total of 336 one-day old male chicks were obtained from a 

commercial hatchery (Allen’s Farm Inc., Salisbury DE). Upon arrival to the 

facility the chicks were randomly divided into eight groups of forty-two birds and 

were housed in separate pens. The pens were constructed of PVC piping and 

black netting, measuring 1.8m x 2.4m with a floor area of 4.5m2 covered with 

5cm of wood shavings. Birds were maintained on a 14L:10D lighting program in 
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an effort to promote slow growth and leg health. Temperature regulation followed 

commercial practices. Ventilation was provided by temperature controlled 

curtains and a central air tube and ceiling fans. In each pen, food was provided ad 

libitum through a central tubular hopper and water through a line of nipple 

drinkers (7 nipples p/pen, 6 birds per nipple) located along one side of the pen. 

The diet was specifically formulated to slow growth rate, consisting of 3 phases, 

starter (19% crude protein, 2800.00kcal/kg metabolizable energy), grower (17% 

crude protein, 2801.70 kcal/kg metabolizable energy), and finisher (19% crude 

protein, 3251.70 kcal/kg metabolizable energy). The starter phase was provided 

from days 0-14, the grower from 15-50, and the finisher from 50 until completion 

of the experiment at day 79. Mortalities were recorded daily.

Birds were tagged at three weeks of age on each side of the neck using the 

Swiftack for Poultry Identification System (Heartland Animal Health, Inc). 

Circular tags were made of sturdy laminated white paper, 5cm in diameter. 

Numbers were solid black and printed on both sides, ranging from 1 to 35. Seven 

birds per pen were left unmarked as replacements in the event of mortalities. For 

testing purposes each of the eight pens were divided in three experimental groups 

of 5 (GS5), 10 (GS10) and 20 birds (GS20). Birds were permanent group members 

and for tested with the same individuals. Five individuals in each of the 

experimental GS per pen were designated, at random, as focal birds. If a tagged, 

non-focal bird died then a new individual was tagged with that same number. If a 

focal individual died we used the group member with the next highest tag number 

to complete the group for testing. 
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Experimental Design

For this study on the effects of GS and EC on the use of space and 

aggression in the domestic fowl we constructed three testing arenas, each 

measuring 2.25m x 7.25m with a floor area of 16.3m2. We covered the floor with 

5cm wood shavings and the walls in black plastic sheeting. Water was provided 

ad libitum from 14 nipple drinkers located in two lines at each end of the arena. 

Multiple arenas enabled each experimental GS from one home pen to be tested 

simultaneously. Each arena was marked with a grid system along sidewalls, as 

well as the long back wall opposite the main corridor. Sidewalls were marked 

with letters A-I, and the back wall was marked with numbers 1-29, all spaced 

0.25m apart. This marking system created a readable grid of 261 0.25m2 squares.  

Each experimental GS was tested once under all three levels of EC – void, 

single, and quadruple (quad). The void treatment was a control and consisted of 

an empty arena, while the arenas for the single and quad treatments each 

contained panels constructed from white PVC pipe frames and a double-layer of 

screen mesh. All birds could be identified through the panel screens. The single 

treatment was comprised of a single panel, four meters long and 90 cm tall 

positioned in the center of the arena. The quad treatment was comprised of four 

panels, each one meter long and 90 cm tall staggered in a broken line such that 

panels did not overlap. The arena layout for each treatment is shown in Appendix 

5-1.  

For the test each of the experimental group sizes were caught by hand and 

transported in crates from one of the eight home pens to one of the testing arenas. 
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After all birds had been caught each crate was delivered to the center of an arena 

and all birds were released.  Prior to testing all birds were habituated to the testing 

arena and transportation procedures during weeks one and two. During this 

habituation period each experimental GS was transported three times, once to 

each arena, and remained there for one hour. The order of testing was assigned at 

random and occurred between three and four weeks of age. Birds were transferred 

according to their respective GS, to one of the three arenas. 

Measurements

Immediately following the transfer to the testing arena, and prior to the 

beginning of data collection, birds were given a 15-minute acclimation period. 

The initial part of testing lasted one hour and consisted of observational scan 

sampling. All arenas were observed at one-minute intervals, for one hour, and the 

location and identity of the five focal individuals were plotted on a scaled grid 

map along with the location of all remaining individuals. During the hour a total 

of twenty observational scans were collected for each of the three arenas. After 

the hour of use of space data collection each arena was observed separately for 15 

minutes. During this time all aggressive interactions between birds were recorded 

together with the location within the arena where the interaction occurred. The ID 

of the birds involved as well as a designation of either ‘giver’ or ‘receiver’ of 

aggression was recorded. The order of observation was randomly assigned. 

The scans were encoded by the Chickitizer v.4 software package (Sanchez 

and Estevez 1998). This software operates in conjunction with a digitizer 

(Advanced) to code each location in XY coordinates and append information such 
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as the pen and experimental GS as well as bird ID. From this data we were able to 

calculate the core area estimates, at 30, 50 and 90% using the ArcView GIS (v 

3.2) software and the Animal Movement Extension (v 2.04β; Hooge & 

Eichenlaub 2000). Core area levels correspond to the probability of finding a bird 

within the calculated area, and are constructed based on an assessment of 

recorded positions. The output is an area measurement (m2) that corresponds to 

the amount of space over which an individual is suggested to traverse based on 

the available data. We adjusted bandwidth of the kernel density estimator to 0.4. 

This value was used since we determined from testing multiple reported [H] 

values (Worton 1989; Seaman & Powell 1996; Blundell et al. 2001) that this 

value produced the least amount of bias, given the pen size, while retaining the 

most information. Two sets of core area measurements were calculated from the 

location of focal individuals. First, a core area was determined for each individual 

(Individual Core Area - ICA), and the second was calculated from the location of 

all five focal birds taken together (Total Core Area - TCA). As opposed to a 

traditional core area measurement TCA measures the amount of space used by all 

five focal birds, essentially behaving like a measure of group dispersion. We have 

assumed that the five focal individuals are randomly located within the entire 

group. In addition to core areas, we computed inter-bird Euclidian distances such 

as maximum and minimum distances between every pair of birds in each scan. 

Maximum distance was defined as the farthest recorded distance and the 

minimum distance was defined as the smallest recorded distance between any two 

individuals. Nearest neighbor (NN) distances were also calculated from the 
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closest individual for each bird from each trial, averaged across all animals for 

each scan.

Inter-bird distances were separated into two components, expected 

distances based on random movement, and behavioral effects. In order to 

distinguish between the two we ran a simulation program (S-plus 6.1, MathSoft, 

Seattle, WA) based on the pen measurement and different GS. The results from 

this simulation for maximum, minimum and NN distances are shown in Appendix 

5-2. The behavioral component for inter-bird distances was designated as the 

deviation from the random expectations, or observed values minus expected. 

Statistical Analysis

All analyses were conducted using a Mixed Model ANOVA in SAS 

statistical analysis software (v. 8.1, SAS Institute, Cary, NC). Separate ANOVAs 

were conducted for each core are level, as well as for the minimum, maximum 

and NN distances and aggressive interactions. Model assumptions of normality 

and homogeneity of variance were tested. Square root transformations were 

performed on inter-bird distances and core area measurements to satisfy those 

assumptions. The experiment was designed as a factorial with experimental GS 

and EC levels analyzed as fixed factors. The model was adjusted for the 

covariance structure based on the fact that each GS was tested a total of three 

times and housed together. Because the covariance for GS being exposed to all 

treatment was estimated at zero for some measurements, it was removed from all 

analyses. All mean comparisons were reported using Tukey’s LSD for Type 1 

error rates (for review see Jones 1984).
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Results

Individual Core Areas (ICA)

The 30% ICA was not significantly affected by GS (F2,56=2.86, p=0.0659) 

nor by the different cover panel treatments (F2,56=0.52, p=0.5987) or the 

interaction of GS and EC (F4,56=0.356, p=0.8457). Similarly the 50% ICA (GS: 

F2,56=2.02, p=0.1418; EC: F2,56=0.91, p=0.4086; Interaction: F4,56=0.58, 

p=0.6755) and the 90% ICA (GS: F2,56=0.64, p=0.5294; EC: F2,56=0.95, 

p=0.3943; Interaction: F2,56=1.52, p=0.2083) were not affected by any of the 

experimental factors. 

Total Core Areas (TCA)

Total core area was measured as the core area of five focal individuals and 

acted as an estimate of group dispersal. As GS increased, the five focal 

individuals should become more distant from one another, thus increasing the 

TCA calculation. The 30% TCA (Fig. 2-1a) was not significantly affected by EC 

(F2,56=0.51, p=0.6026) nor the interaction (F4,56=0.58, p=0.6774), but was 

significantly affected by GS (F2,56=10.44, p <0.001). Likewise, the 50% TCA 

(Fig. 2-1b) was only affected by GS (F2,56=15.37, p <0.0001) and not by EC 

(F2,56=0.17, p=0.8466) or the interaction (F2,56=0.13, p=0.9722). Similar results 

were obtained for the 90% TCA (Fig. 2-1c), as GS produced the only significant 

effect (F2,56=19.30, p <0.0001). Both EC (F2,56=0.35, p=0.7033) and its interaction 

with GS were not significant ( F4,56=1.18, p=0.3292).
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Figure 2-1. Total core area (TCA) calculated from all focal individuals at GS5, GS10 and 
GS20, for the 30% (a), 50% (b) and 90% (c) levels. Bars represent least squares means (±
SEM). Bars sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment.
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Figure 2-2. Minimum inter-bird distances for GS5, GS10 and GS20, and level of 
environmental complexity (EC). Bars represent least squares means (± SEM). Bars 
sharing any identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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Inter-Bird Distances

When considering the minimum distance between any two birds in an 

experimental GS, under each EC (Fig. 2-2), the interaction of the level of EC and 

GS was significant (F4,56= 6.57, p=0.0002). Because of the overwhelming effect 

of group size (F2,56=21.49, p<0.0001) we have included this result in our 

discussion. EC was not significant (F2,56=1.26, p=0.2927). The deviation from 

random for the minimum inter-bird distance was also significantly affected by the 

interaction of GS and EC (F4,56=6.94, p=0.0001; Fig. 2-3). Again, because the F 

value was smaller than that for GS we have also discussed that main effect. GS 

was highly significant (F2,56=4256.39, p<0.0001) but EC was not for the 

minimum inter-bird distance deviation from random (F2,56=1.48, p=0.2359). 

The maximum distance between any two birds was also significantly 

effected by GS (F2,56=151.34, p<0.0001; Fig 2-4) but not by EC (F2,56= 0.75, 

p=0.4749) or the interaction of the two (F4,56=0.12, p=0.9736). The deviation 

from random for the maximum inter-bird distance was also affected by GS 

(F2,56=25.37, p<0.0001; Fig 2-5) and not by EC (F2,56=0.56, p=0.5762) or the 

interaction (F4,56=0.08, p=0.9985). 

The average NN distance considering all birds was affected by GS 

(F2,56=4.58, p=0.0144) but not by EC (F2,56=0.15, p=0.86308). The interaction of 

GS and EC was also significant (F4,56=4.35, p=0.0039; Fig. 2-6). The deviation 

from random for the NN distance was also significantly affected by GS (F2,56= 

2264.71, p<0.0001) more so than the interaction of GS and EC (F4,56=4.73, 

p=0.0023; Fig 2-7). 
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Figure 2-3. Minimum inter-bird distance deviation from random by group size (GS) and 
level of environmental complexity (EC). Bars represent least squares means (± SEM). 
Bars sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment. Bars designated with an asterisk (*) differ significantly from zero.



47

Group Size (GS)

5 10 20

M
ax

im
um

 I
nt

er
-B

ir
d 

D
is

ta
nc

e 
(m

)

0

1

2

3

4

5

c

b

a

Figure 2-4. Maximum inter-bird distances by GS5, GS10 and GS20. Bars represent least 
squares means( ± SEM).  Bars sharing any identical letters are not significantly different, 
p>0.05; Tukey’s adjustment.



48

Group Size (GS)

5 10 20

D
ev

ia
tio

n 
fr

om
 R

an
do

m
 (

m
)

-5

-4

-3

-2

-1

0

c

b

a

Figure 2-5. Maximum inter-bird distance deviation from random by group size (GS). 
Bars represent least squares means (± SEM). Bars sharing any identical letters are not 
significantly different, p>0.05; Tukey’s adjustment. All bars differ significantly from 
zero.
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Figure 2-6. Nearest neighbor (NN) distance for GS5, GS10 and GS20, according to level 
of environmental complexity. Bars represent least squares means (± SEM). Bars sharing 
any identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 2-7.  The deviation from random for the nearest neighbor (NN) distances, 
according to group size and level of environmental complexity (EC). Bars represent least 
squares means (± SEM). Bars sharing any identical letters are not significantly different, 
p>0.05; Tukey’s adjustment. All bars differ significantly from zero.
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EC did not significantly affect the deviation from random for the NN distances 

(F2,56=0.35, p=0.7061). 

Aggression

There was no significant affect of either GS (F2,54=0.57, p=0.5716) or EC 

(F2,54=0.55, p=0.5774) on aggressive interactions. The order in which pens were 

observed determined the amount of time animals spent in the testing arena; this 

time effect was significant (F2,54 = 4.58, p=0.0146).  In the first observation we 

observed 0.81 ± 0.128 (mean ± SE) interactions per bird per minute, which was 

significantly more than the last observation with 0.37 ± 0.133 interactions (t=3.03, 

p=0.0104) however the first observation did not differ significantly from the 

second observation which had 0.65 ± 0.134 aggressive interactions (t=1.37, 

p=0.3612). Similarly the second observation did not differ from the third (t=1.53, 

p=0.2855). The only interaction effect of significance was for EC by GS 

(F4,54=2.62, p=0.0451; Fig. 2-8), however no means were significantly different 

from one another.
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Figure 2-8. Total number of aggressive interactions on a per bird basis for each 15-
minute trial. Means ± SEM are separated by GS5, GS10 and GS20, according to level of 
environmental complexity. No means were significantly different, p>0.05; Tukey’s 
adjustment.
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Discussion

Our results agree with others studies that have examined the influence of various 

environmental factors on the use of available pen space by domestic fowl. The behavioral 

effects of social factors such as stocking density and GS (Banks 1984; Keeling & Duncan 

1991; Keeling 1994; Carmichael et al. 1999), physical factors such as pen size and 

physical features (Hughes 1980; Newberry & Hall 1990; Newberry & Shackleton 1997) 

and environmental conditions such as the provision of cover and perches (Keeling & 

Savenije 1995; Newberry & Shackleton 1997; Cornetto & Estevez 2002a; Cornetto & 

Estevez 2002b; Cornetto et al. 2003) have all been widely reported. The various 

environmental conditions in this study not only altered the total area utilized by the flock 

as a collective but also specifically affected inter-bird distances which were all 

significantly different than random. While TCA and maximum inter-bird distances 

increased with GS the minimum inter-bird and NN distances revealed complex changes 

in animal spacing according to the level of EC. Inter-bird distances were significantly 

smaller than random suggesting that each clumped to a greater degree than expected, but 

this clumping behavior was most pronounced in GS5, with the greatest deviation.

The ICA levels were not significantly affected by GS, or EC. This suggests that 

despite different environmental conditions the extent of pen use was similar for all 

individuals. The most substantial factor influencing the extent of pen use appeared to be 

pen size, as it was constant across all group sizes and panel treatments. This finding is 

consistent with other studies, which have examined social and physical factors that may 

affect, or limit, pen use in domestic fowl (Newberry and Hall 1990; Channing et al. 

2001). However our approach employed core area analysis as opposed to distance 
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traveled, minimum convex polygon or quadrant analysis, similar to the study of Estevez 

et al. 1997. 

While experimental group sizes were housed together in a home pen, each 

expressed pronounced behavioral responses not only to the physical environmental 

changes but also to the changes in GS. The three experimental GS were housed together 

in order to control the background environment for each group, and to enable us to 

capture the immediate behavioral response of animals both to varying levels of EC and 

changes in GS. Concerning TCA, minimum, maximum and NN distances as well as 

aggression, behavioral responses were affected by GS despite similar background 

environmental conditions. We conclude that domestic fowl possess the capacity to 

immediately adapt to changes in environment and group size. 

For the TCA, calculated from the simultaneous location of all focal birds, animals 

in larger groups consistently spread over a greater amount of the available pen space. If 

birds oblige a constant amount of individual space, then the total space occupied by 20 

individuals should be greater than that of 5. A random, even distribution of birds should 

result in a larger TCA calculated for the 5 focal individuals in GS20, followed by GS10

and lastly GS5. While the amount of area occupied by the focal birds increased with GS, 

birds were not distributing themselves in order to maintain a constant amount of 

individual space, nor were they moving in random patterns with respect to inter-bird 

distances. 

GS5 and GS10 minimum distance deviations from random were all significantly 

smaller that zero, suggesting that birds within these two GS or maintained closer 

distances to one another than expected. GS20 minimum inter-bird distance deviations 
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were not significantly different from zero. This larger GS behaved more similarly to 

random and minimum distance was not affected by EC. Considering the minimum inter-

bird distance EC had a substantial effect on GS5, but this effect diminished with 

increasing GS and was in fact not evident for GS10 or GS20. Only birds in GS5 altered the 

distance of the closest neighbor according to the level of EC, with the closest neighbors 

in the void treatment. We expected these results from minimum distances and their 

deviation from random, in accordance with behavioral ecology and the anti-predatory 

function of flocking. The environment should exert greater influence on the behavior of 

smaller groups as compared to larger ones. Over short time periods larger group sizes 

may benefit most significantly from the protection of group size as opposed to the 

provision of panels, as seen by the lack of EC affects. Groups were only observed for one 

hour, and the immediate response to environmental changes was most dominated by 

physical environmental factors for GS5 as compared to social factors for GS10 and GS20.

The average NN distances followed a similar pattern to the minimum inter-bird 

distances. EC did not affect GS20 and GS10 individual’s NN distances, or their deviation 

from random, however GS5 was significantly affected by EC. Group cohesion was a 

measure of the average distance between individuals, or how close birds flocked together 

in relation to the random expectations. Overall GS5 had the greatest group cohesion, with 

the smallest NN distances and the greatest deviation from randomness, particularly when 

in the void treatment. Group cohesion for individuals in GS10 and GS20 was not affected 

by the panel treatments. 

TCA and NN distances supported our expectation that smaller GS would display a 

greater degree of flock cohesion, however this depends on the level of EC. Predation risk 
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decreases with increasing group size (Lima 1995). From an evolutionary perspective, 

birds are expected to maintain a more cohesive, or tightly knit group, at smaller GS 

(Caraco 1981; Carbone et al. 2003). If predation is the major force driving flock cohesion 

then individuals from smaller groups should stay closer to one another than birds in larger 

groups. Accordingly, animals from GS5 maintained the smallest maximum inter-bird 

neighbor distances when compared to the two larger GS, and for all inter-bird distances 

were more deviant from random than the two larger GS. 

Clark and Mangel (1984) predicted different patterns of group cohesion 

depending upon the motivations for group formation. If flock formation is predominantly 

a response to predation pressure, then groups should be large and highly cohesive. 

However if groups form in response to foraging strategies then groups should be smaller, 

and less cohesive in order to reduce competition and allow for independent searches. 

Keeling (1995) found that chickens maintained the greatest distance between themselves 

and flock mates while foraging. The author suggested that birds moved farther apart from 

one another so as to avoid foraging in areas that had previously been harvested by others. 

Similarly, Carbone et al. (2003) found that geese from larger flocks were more widely 

dispersed than geese from smaller flocks, and that larger flocks expanded at a faster rate. 

The authors hypothesized that this expansion of larger flocks was a product of the trade-

off between predation risk and competition. Larger flocks provide better anti-predator 

protection than smaller ones, thus allowing individuals to relax flock cohesion. However 

with an increase in the number of foraging individuals comes greater competition 

between flock members. We found evidence of increasing flock dispersal with increasing 

GS, as NN distances were larger for GS10 and GS20 than GS5. Furthermore, the deviation 
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from randomness was greatest for GS5. This deviation decreased as GS increased, 

suggesting stronger behavioral affects on inter-bird distances at small GS as compared to 

larger ones. 

The proximity of a neighbor is not as significant on predation as group dispersal. 

It is likely that a threshold limit for cohesion, or close distance to conspecifics exists, 

after which no additional protection is gained from flocking. This threshold is directly 

related to GS, increasing as flock size increases. While individuals need to be close 

enough to one another to both detect and transmit information about predators, after this 

threshold of inter-individual proximity is satisfied closer individuals offer no additional 

advantages. Maximum inter-bird distances measure the amount of space individuals in a 

group are willing to place between themselves; this distance has a direct impact on 

predation (Carbone et al. 2003). As GS increased the greatest distance between any two 

individuals also increased, as the overall area occupied by the birds was greater. The 

TCA, in conjunction with NN distances, suggested that individuals increased pen usage 

with increasing GS. The effects of EC on inter-bird distances differed across GS. 

Interactions in minimum and NN distances, and their deviation from random, illustrated 

that GS5 was more susceptible to the effects of EC than GS10 or GS20. 

Overall there was a low level of aggression, regarding aggressive interactions,. 

While there was a significant interaction of EC and GS, no means differed significantly 

from one another; the most significant result was that the groups responded differently to 

the various levels of EC. The amount of aggression seen was most significantly impacted 

by time difference between the first and last arena to be observed. There was a linear 

decline in aggression as the length of time in the test arena increased. The first and last 
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observations showed the greatest and least number of aggressive interactions, 

respectively. Prior to the onset of the observational period for aggressive interactions 

individuals were in the arena for one hour, during which spatial sampling occurred. At 

the end of testing the third and final GS to be observed had been in the testing arena for 

an hour and 45 minutes while the first to be observed only remained in the arena for an 

hour and 15 minutes. This additional time leads to the difference in number of aggressive 

interactions observed. We suspect that the transportation process and subsequent 

acclimation to the testing arena had an overwhelming effect on aggression, blocking the 

effects of environmental conditions such as GS or EC. Domestic fowl naturally form 

social hierarchies in small group sizes (Rushen 1982; Banks et al., 1979; Mankovich & 

Banks, 1982; Banks, 1984) and utilize aggressive threats and pecks maintain these 

hierarchies (Banks 1984; Banks et al. 1979; Stahl et al. 2001). Other studies have noted 

differential effects of GS on aggressive behavior, namely a curvilinear relationship. At 

small group sizes aggression increased with GS (Al-Rawi & Craig 1975; Hughes & 

Woodgush 1977) but once GS grows larger, aggression begins to decrease (Estevez et al. 

1997; Freed 2003). Because aggression was significantly impacted by the order of 

observation, we speculated that activity levels most likely dropped throughout the 

duration of the trial, leading to fewer aggressive interactions in the last arena to be 

observed as compared to the first. When Newberry (1999) provided chicken the 

opportunity to explore a novel area birds initially rushed into the new space. However 

after the first 5 minutes the number of birds crossing over the threshold decreased. A 

similar burst of activity may have occurred in this study. 
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This experiment differed from previous experiments involving cover panels 

(Newberry & Hall 1997; Cornetto & Estevez 2001a,b; Cornetto et al. 2002) in that birds 

were transferred to an experimental arena during which time they encountered cover 

panels that altered the level of EC.  While we found the most significant results of EC at 

smaller group sizes, previous studies have also shown a substantial effect at much larger 

group sizes. Our experimental protocol may have affected behavior of the fowl in a way 

that altered otherwise prevailing reactions to the provision of cover and differences in 

EC. GS20 may require a greater amount of time to become acclimated to panels and fully 

explore their benefits. In smaller group sizes there could be stronger pressure to seek 

protection and cover, whereas large group size affords individuals this protection. 

Learning may be an important factor shaping the use of panels in larger group sizes, 

which lack this strong pressure to seek cover and protection, as other studies have found 

panels to have a significant impact (Cornetto & Estevez 2001a,b). Our results confirm the 

importance of GS and social environments on use of space. Smaller group sizes were 

more significantly affected by EC than larger group sizes. GS20 individuals were the least 

affected by the level of EC, and GS10 individuals demonstrated the widest inter-bird 

distances greatest group spread. 
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Chapter 3: Influence of Patch Locations Mediated by Group 
Size on Aggression and Use of Space

Abstract

Use of space and aggressive interactions in the domestic fowl (Gallus gallus 

domesticus) were investigated under various group sizes, patch locations and levels of 

patch accessibility. Birds were tested in three experimental group sizes of five, 10, 

and 20 individuals per group and three patch location arrangements. This experiment 

consisted of two phases; during phase one groups had free access to all patches but in 

phase two patch access was restricted to a single individual. Groups were moved to a 

testing arena containing a single large patch, two medium-sized patches or four small 

patches. In all situations the total amount of food resources was identical. Individual 

and total core areas, as well as maximum, minimum, and nearest neighbor inter-

individual distances were affected by group size, patch location, and patch 

accessibility. Birds in different experimental group sizes responded differently to 

patch locations. The minimum inter-individual distances for groups of five birds were 

affected by patch location while groups of 10 and 20 individuals were not. As 

expected maximum inter-bird distances and total core areas increased with GS. 

Aggression increased with group size only when patch access was restricted. Because 

the three experimental group sizes were temporarily created from a larger home group 

housed together, the results of this experiment demonstrate the capability of domestic 

fowl to immediately adapt their use of space and inter-individual distances according 
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to environmental conditions, and responded in ways that are consistent with the 

predictions of optimal foraging theory. 
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Introduction

The dispersal and availability of resources within an animal’s environment has 

a significant impact not only on the specific use of those resources, but also on the 

use of space (Mench & van Tienhoven 1986; Grigor et al 1995b; Arcis & Desor 

2003), and on group dynamics for flocking species (Clark & Mangel 1984; Grant 

1993; Caraco et al. 1989). The costs and benefits associated with group size shape 

individuals’ flocking and foraging strategies (Clark & Mangel 1984). Resource 

patchiness is important as individuals attempt to optimize the costs and benefits 

associated with competing behavioral strategies. Individuals gain enhanced predator 

avoidance by flocking. However in group foraging, competition between individuals 

increases with increasing group size (Clark & Mangel 1984). Patterns of resource 

distirbution heavily impact an animal’s ability to defend resources (Carpenter 1987; 

Grant 1993). Dominance hierarchies and social status are critical in determining an 

animal’s access to, and share of, resources (King 1965; Banks 1984; Caraco et al. 

1989; Keeling 1995; Pagel & Dawkins 1997; Stahl et al. 2001; Dubois et al. 2003). 

Foraging strategies are influenced by the same environmental factors that 

impact survival and fitness. Optimality is achieved by minimizing the amount of 

energy expended gaining access to a resource, for example - search time, handing 

time and fighting, and by maximizing the energy gained from those resources. While 

the factors influencing the foraging strategies of wild animals are well documented, 

such as patch and nutrient quality (Lewis 1980; Alonso et al. 1995; Morris et al. 

2002) or social dominance (Sullivan 1984; Caraco et al. 1989; Carrascal & Moreno 
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1992), the behavior of domestic species, maintained under unnatural, confined 

environmental conditions, has been less thoroughly investigated. 

Marginal value theory (Charnov 1976; Parker & Stuart 1976) predicts that 

animals exploit patches based upon both their relative quality and also their distance 

from one another. Concerning group foraging species, patches present a situation in 

which multiple individuals may monopolize access. At small group sizes and with a 

single small resource, dominant individuals attempt to monopolize access while 

subordinates are relegated to waiting (Banks et al. 1979; Banks 1984; Pagel & 

Dawkins 1997). However as the resource patch grows in size it becomes more 

difficult for a single individual to defend and animals should switch from resource 

defense to tolerance, or sharing (Brown 1964). At this point the benefits gained from 

monopolization do not justify the costs of defense, which include risk of injury, 

energy expenditure and loss of feeding opportunities while engaged in defensive 

behaviors. With numerous close patches it is possible for multiple individuals to gain 

access, as patch defense by a single individual would be too costly. The decisions of 

group foragers must be based not only on social position, but relative costs and 

benefits of defense that are directly related to the distribution of resource patches. 

Although genetic selection has successfully improved the performance of 

domestic animals their behavioral patterns have been altered as a consequence of this 

selection (Mench 1988; Jones & Hocking 1999; Andersson et al. 2001; Schutz & 

Jensen 2001; Schutz et al. 2001). Therefore their foraging strategies may not be 

appropriate in current housing environments. We would expect that because of the 

absence of natural selection to act upon and shape bird behavior and foraging 
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strategies that their response to unfamiliar group sizes and patches may be contrary to 

the predicted optimal foraging strategies. Done et al. (1996) found that domestic pigs 

oriented themselves according to trough size, rather than the specific amount of food 

poured into the trough. Furthermore, once the food was poured pigs did not switch to 

a trough with more food immediately, but rather reacted only to diminished returns at 

their chosen trough. Non-optimal decisions may lead to an increase in stress, 

aggression and other behavioral changes (Done et al.1996), which have been shown 

to diminish weight gain and productivity as well as overall well-being (King 1965; 

Gvaryahu et al. 1994; Estevez et al. 1997; Hughes et al.1997; Mench & Morrow-

Tesch 1998). Dispersing resources to beneficially manipulate behavioral strategies 

can maximize both animal welfare and productivity. 

The manner in which domestic species use the available space is an important 

issue to both animal production and welfare. Movement patterns may depend not only 

on the presence of conspecifics (Freed 2003), but also on the location of resources 

(Estevez et al. 2002; Arcis & Desor 2003). Previous experiments incorporating 

enrichment, such as perches or cover panels, have found significant impacts on 

spacing and movement patterns (Newberry & Shackelton 1997; Channing et al. 2001; 

Cornetto & Estevez 2001b). These elements increased environmental complexity, 

which is lacking in uniform litter-floor production houses. Research has also shown 

that group size (GS) and group dynamics, stocking density, and pen size all have 

important consequences on how animals move and use space in confined 

environments (Banks et al. 1979; Newberry & Hall 1990; Keeling 1994; Estevez et 

al. 1997; Carmichael et al.1999; Freed 2003). 
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In this experiment we examined how variations on environmental parameters 

affect the foraging strategies and use of space in the domestic fowl. The broiler 

chicken strain used for this experiment has been bred for generations via intense 

artificial selection for high growth rate and performance and is typically reared in 

unnaturally large groups with homogeneously distributed non-depleting resources. 

Conditions in production environments contradict wild conditions, namely small GS 

and heterogeneously clumped, non-abundant food resources. Unlike confined 

domesticated species, wild animals rarely encounter food abundance such that 

resource defense becomes more costly than a scramble foraging strategy (Grant 

1993). Despite artificial selection pressures and unnatural environments, we 

hypothesized that domestic fowl are capable of adapting their foraging and behavioral 

strategies according to changes in their environments, both social and physical. We 

predicted that birds would immediately adjust their behavior to a new environment 

differing not only in the type and dispersal of resources but also in the number of 

conspecifics present. Our particular experimental protocol allowed us to measure the 

immediate behavioral repercussions of new GS as well as new environmental 

conditions while controlling for background social experiences.

Methods and Materials

Facilities and Experimental Animals

This experiment was conducted at the University of Maryland’s Upper 

Marlboro Applied Poultry Research Facility from March 17th 2003 through 

June 3rd 2003. A total of 336 one-day old male chicks were obtained from a 
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commercial hatchery (Allen’s Farm Inc., Salisbury DE). Upon arrival to the 

facility the chicks were randomly divided into eight groups of forty-two birds 

and were housed in separate pens. The pens were constructed of PVC piping 

and black netting, measuring 1.8m x 2.4m with a floor area of 4.5m2 covered 

with 5cm of wood shavings. Birds were maintained on a 14L:10D lighting 

program in an effort to promote slow growth and leg health. Temperature 

regulation followed commercial practices. Ventilation was provided by 

temperature controlled curtains and a central air tube and ceiling fans. In each 

pen, food was provided ad libitum through a central tubular hopper and water 

through a line of nipple drinkers (7 nipples p/pen, 6 birds per nipple) located 

along one side of the pen. The diet was specifically formulated to slow growth 

rate, consisting of 3 phases, starter (19% crude protein, 2800.00kcal/kg 

metabolizable energy), grower (17% crude protein, 2801.70 kcal/kg 

metabolizable energy), and finisher (19% crude protein, 3251.70 kcal/kg 

metabolizable energy). The starter phase was provided from days 0-14, the 

grower from 15-50, and the finisher from 50 until completion of the 

experiment at day 79. Mortalities were recorded daily.

All birds were tagged at three weeks of age on each side of the neck 

using the Swiftack for Poultry Identification System (Heartland Animal

Health, Inc). Circular tags were made of sturdy laminated white paper, 5cm in 

diameter. Numbers were solid black and printed on both sides, ranging from 1 

to 35. Seven birds per pen were left unmarked as replacements in the event of 

mortalities. For testing purposes each of the eight pens were divided in three 
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experimental groups of 5 (GS5), 10 (GS10) and 20 birds (GS20). Five 

individuals in each of the experimental GS per pen were designated, at 

random, as focal birds. If a tagged, non-focal bird died then a new individual 

was tagged with that same number. If a focal individual died we used the 

group member with the next highest tag number to complete the group for 

testing. 

Experimental Design

For this study we constructed three testing arenas, each measuring 

2.25m x 7.25m with a floor area of 16.3m2. We covered the floor with 5cm 

wood shavings and the walls in black plastic sheeting. Water was provided ad 

libitum from 14 nipple drinkers located in two lines at each end of the arena. 

Multiple arenas enabled each experimental GS from one home pen to be 

tested simultaneously. Each arena was marked with a grid system along 

sidewalls, as well as the long back wall opposite the main corridor. Sidewalls 

were marked with letters A-I, and the back wall was marked with numbers 1-

29, all spaced 0.25m apart. This marking system created a readable grid of 

261, 0.25m2 squares.  

For each test one experimental GS was transported in crates from one 

of the eight home pens to the testing arena. Habituation to the testing arena 

and transportation procedures occurred from one to two weeks of age, during 

which time all experimental group sizes from a single home pen were 

transported together three times, once to each arena, and remained there for 

one hour. Birds were habituated to the food at one week of age when it was 
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scattered in the home pen hoppers containing their normal feed. This was 

done for three consecutive days, after which the food was not presented again 

until testing. 

Testing occurred between ages five and eight weeks of age. This 

experiment had two distinct phases, a free access phase and restricted access 

phase. In the first phase groups were given free access to resources while in 

the second access was limited to a single individual. Birds were between five 

and six weeks of age for the first part of testing, and seven to eight weeks of 

age during the second. GS were tested in random order. Birds were transferred 

according to their respective GS, to one of the three arenas. Birds were caught 

by hand in their home pen and were placed in crates with experimental group 

members. After all birds had been caught each crate was delivered to the 

center of an arena and all birds were released.  

To simulate different patch treatments, food was arranged in three 

different arrangements that mimicked patchy resources and were labeled 

patchy, spread and clumped. Four brown plastic dishes, 8cm in diameter and 

2cm in depth, were arranged on 12cm high platforms to create the different 

resource patches. The patchy treatment consisted of four small patches created 

by four elliptical platforms each holding one dish. Each patch was placed in 

the periphery of the arena, close to the corners of the testing arena, 0.75m 

from the sidewalls and 0.5m from the back and front walls. The spread 

treatment consisted of two elliptical platforms, each containing two dishes. 

These platforms were placed 1.25m from the center of the arena to create two 
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medium-sized patches. The clumped treatment consisted of one large elliptical 

platform placed in the center of the arena, holding all four dishes. The 

distribution patterns for each resource treatment are shown in Appendix 5-3. 

Each experimental group size was exposed to every patch location scenario.

During each trail a total of 10 grams of food, containing 44% crude 

protein, was available per bird. This total was then equally divided between 

the 4 dishes, such that for GS5 each individual dish contained 12.5g of cat 

food, while for GS10 each dish contained 25g, and for GS20 each dish 

contained 50g of cat food. For the second phase the experimental design was 

identical but patch access was now restricted to only a single bird. This was 

achieved by completely lining each patch with transparent plastic laminate 

sheeting (0.23m x 0.37m) except for a 4 cm opening on one of the sides. Each 

experimental GS, from each home pen, was again tested under all three patch 

locations, patchy, spread and clumped. 

Measurements

Immediately following the transfer to a testing arena, and prior to the 

beginning of data collection, birds were given a 15-minute acclimation period. 

Observations started after the acclimation period, at which point food was 

added to each patch. Three experimental group sizes were simultaneously 

tested during one hour. The initial part of testing lasted one hour and consisted 

of observational scan sampling. All arenas were observed at one-minute 

intervals, for one hour, and the location and identity of the five focal 

individuals was plotted on a scaled grid map along with the location of all 
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remaining individuals. During the hour a total of twenty observational scans 

were collected for each of the three arenas one for each one-minute interval. 

Immediately following the sampling period each patch was weighed, 

and re-filled with the same amount of food in preparation for the aggression 

observational period. After the initial use of space data collection each arena 

was observed separately for 15 minutes at which time all aggressive 

interactions between birds were recorded. The order of observation was 

randomly assigned, allowing any effects of time spent in the arena to be 

discerned. 

The scans were encoded by the Chickitizer v.4 software package 

(Sanchez and Estevez 1998). This software operates in conjunction with a 

digitizer (Advanced) to code each location in XY coordinates and append 

information such as the pen and experimental GS as well as bird ID. We then 

employed a non-parametric kernel density estimation method to calculate the 

core area estimates, at 30, 50 and 90% using the ArcView GIS (v 3.2) 

software and Animal Movement Extension (v 2.04β; Hooge & Eichenlaub 

2000). Core area levels correspond to the probability of finding a bird within 

the calculated area, and are constructed based on an assessment of recorded 

positions. The output is a specific numerical area (m2) that corresponds to the 

extent of area over which an individual is suggested to traverse based on the 

available data. We adjusted the bandwidth of the kernel density estimator to 

0.4. This value was used since we determined from testing multiple reported 

[H] values (Worton 1989; Seaman & Powell 1996; Blundell et al. 2001) that 
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this value produced the least amount of bias, given the constrained possible 

area, while retaining the most information. Two sets of core area 

measurements were calculated from the location of focal individuals. First, a 

core area was determined for each individual (Individual Core Area - ICA), 

and the second was calculated from the location of all five focal birds taken 

together (Total Core Area - TCA). As opposed to a traditional core area 

measurement TCA measures the amount of space traversed and occupied by 

all five focal birds, essentially behaving like a group dispersion measurement. 

In addition to core areas, we computed inter-bird Euclidian distances such as 

maximum and minimum distances between any two birds in each trail. 

Maximum distance was defined as the farthest recorded distance and the 

minimum distance was defined as the smallest recorded distance between any 

two individuals. Nearest neighbor (NN) distances were also calculated from 

the closest individual for each bird from each trial, averaged across all animals 

for each scan.

Inter-bird distances were separated into two components, expected 

distances based on random movement, and behavioral effects. In order to 

distinguish between the two we ran a simulation program (S-plus 6.1, 

MathSoft, Seattle, WA) based on the pen measurement and different GS. The 

results from this simulation for maximum, minimum and NN distances are 

shown in Appendix 5-2. The behavioral component for inter-bird distances 

was designated as the deviation from the random expectations, or observed 

values minus expected. 
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Statistical Analysis

All analyses were conducted using a Mixed Model ANOVA in SAS 

statistical analysis software (v. 8.1, SAS Institute, Cary, NC). Separate 

ANOVAs were conducted for each core area level, as well as for the 

minimum, maximum and NN distances, aggression and patch consumption. 

Model assumptions of normality and homogeneity of variance were tested and 

adjustments were made as necessary. Aggression values were log transformed 

and core areas were square root transformed to better satisfy model 

assumptions. The experiment was designed as a factorial with experimental 

GS and patch location treatments analyzed as fixed factors. The model was 

adjusted for the covariance structure based on the fact that each GS was tested 

a total of three times, and that each pen held three separate group sizes. 

Because the covariance for group sizes being exposed to multiple patch 

locations was estimated at zero it was subsequently dropped from the model. 

All mean comparisons were reported after Tukey’s LSD for Type 1 error rates 

(for review see Jones 1984).

Results

Free Access Phase

Individual Core Area (ICA)

The results indicate that the 30% ICA were not significantly 

affected by GS (F2,53.4= 0.38, p= 0.6876), patch locations (F2,53.4= 2.82, 

p= 0.0683) or the interaction of two factors (F4,54= 0.69, p= 0.5996). 
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The 50% ICA however were significantly affected by patch locations 

(F2, 53.3= 3.32, p= 0.0439; Fig. 3-1) but were not affected by GS 

(F2,53.3= 1.06, p= 0.6871), or the interaction (F4, 53.8= 0.57, p= 0.6871. 

Concerning the 90% ICA, GS (F2, 52.9=2.11, p=0.1317) and the 

interaction of GS and patch locations (F4, 53.5=0.19, p=0.9417) were 

not significant factors while the effect of patch locations alone 

bordered on significance (F2, 52.9= 3.02, p= 0.0574). 

Total Core Area (TCA)

The interaction of the two factors, group size and patch 

locations, was significant on the 30% estimation (F4,53.9= 3.36, p= 

0.0158; Fig. 3-2). The 50% TCA were only significantly affected by 

GS (F2,53.3= 12.00, p< 0.0001; Fig. 3-3a) and were not affected by the 

patch locations (F2,53.3= 0.10, p= 0.9036). The interaction of these two 

factors was also not significant (F4,53.9= 2.51, p= 0.0527), but did 

indicate likely behavioral differences in reaction to the patch locations 

across GS. For the 90% TCA, as with the 50% TCA, only GS was

significant (F2,52.8= 28.35, p< 0.0001; patch locations: F2,52.8= 1.89, p= 

0.1606; interaction: F4,53.3= 1.42, p=0.2414; Fig. 3b). 



74
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Figure 3-1. Individual core area (ICA) measurements at the 50% level for the free 
access phase. Bars represent least squares means (± SEM). Bars sharing any identical 
letters are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-2. Total core area (TCA) measurements at 30%, according to the interaction 
of GS and patch locations for the free access phase. Bars represent least squares 
means (± SEM). Bars sharing any identical letters are not significantly different, 
p>0.05; Tukey’s adjustment.
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Figure 3-3. Free access phase total core area (TCA) measurements at 50% (a) and 
90% (b) levels. Bars represent least squares means (± SEM). Bars sharing any 
identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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Inter-Bird Distances

The minimum inter-bird distance was significantly affected by 

the patch locations (F2,52.4= 3.45, p=0.0390, Fig. 3-4a) as well as GS 

(F2,52.4= 51.60, p< 0.0001, Fig. 3-4b) but not by the interaction of these 

two factors (F4,53= 0.30, p=0.8796). Similarly the deviation from 

random for the minimum inter-bird distance was significantly affected 

by GS (F2,52.5=2776.90, p<0.0001; Fig. 3-5) but not by patch locations 

(F2,52.5=3.08, p=0.0544) or the interaction of the two (F4,52.4=0.23, 

p=0.9183). The maximum distance between any two birds was 

affected by GS (F2,51.5= 56.15, p< 0.0001) and the patch locations 

(F2,51.5= 3.32, p=0.0441) as well an interaction (F4,52.2= 4.73, 

p=0.0025; Fig. 3-6). Despite the interaction we discuss the strong 

effect of GS due to its much higher F value. There was a similar 

pattern of significance concerning the deviation from random for the 

maximum inter-bird distances. The interaction was significant 

(F4,52.3=5.96, p=0.0005; Fig. 3-6), however the main effect of GS 

(F2,51.6=15.25, p<0.0001) was more significant while the effect of 

patch locations on the deviation from random for the maximum inter-

bird distance was not as significant (F2,51.6=3.61, p=0.0342). NN 

distance was also significantly impacted by GS (F2,51.7 = 3.82, p< 

0.0284; Fig. 3-6), but not patch locations (F2,51.7 = 0.46, p=0.6364) or 

the interaction of the two (F4,52.5 = 0.48, p=0.7511). The deviation 

from random for the NN distance was also affected by GS 
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(F2,52=141.98, p<0.0001, Fig. 3-7) but not by patch locations 

(F2,52=0.24, p=0.7864) or the interaction of the two (F4,52.9=0.34, 

p=0.8481).

Patch Consumption

The percent of total patch consumption was not affected by the 

patch locations (F2,49.2= 0.10, p= 0.9090), GS (F2,49.2= 2.13, p= 

0.1302), or the interaction of the two (F4,50.4= 0.92, p= 0.4599). On 

average birds consumed 78.7 ± 4.91% (mean ± SEM) of the available 

food. 

Aggression

The frequency of aggressive interactions measured during the 

15-minute observation period, was not affected by the patch locations

(F2,53.8= 1.67, p= 0.1978), GS (F2, 53.8= 0.10, p= 0.9025), or the 

interaction of the two factors (F4,43.5= 1.19, p= 0.1858).  The effect of 

observational order was also not significant (F2, 53.8= 2.21, p=0.1192). 
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Figure 3-4. Minimum inter-bird distances by patch locations (a) and GS (b) for the 
free access phase. Bars represent least squares means (± SEM). Bars sharing any 
identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-5. Minimum inter-bird distance deviation from random by group size (GS) 
for the free access phase. Bars represent least squares means (± SEM). Bars sharing 
any identical letters are not significantly different, p>0.05; Tukey’s adjustment. All 
bars are significantly different from zero.
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Figure 3-6. Maximum inter-bird distances according to the interaction of GS and 
patch locations for the free access phase. Bars represent least squares means (± SEM). 
Bars sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment.
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Figure 3-7. Maximum inter-bird distance deviation from random by group size (GS) 
and patch environment for the free access phase. Bars sharing any identical letters are 
not significantly different at p>0.05; Tukey’s adjustment. Bars marked with an 
asterisk (*) differ significantly from zero. 
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Figure 3-8. Nearest neighbor (NN) distance according to GS for the free access 
phase. Bars represent least squares means (± SEM). Bars sharing any identical letters 
are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-9. Nearest neighbor (NN) distance deviation from random by group size 
(GS) for the free access phase. Bars represent least squares means (± SEM). Bars 
sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment. All bars differ significantly from zero.
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Restricted Access Phase

Individual Core Area (ICA)

Neither the 30%, 50%, nor 90% core area measurements were 

significantly affected by GS (30%: F2,56= 0.19, p= 0.8287; 50%: F2,56= 

0.01, p=0.9925; 90%: F2,56= 0.47, p=0.6251 ), the patch locations 

(30%: F2,56= 0.36, p= 0.69985; 50%: F2,56= 0.17, p= 0.8457; 90%: 

F2,56= 0.78, p= 0.4651 ), nor the interaction of the two (30%: F4,56= 

0.17, p= 0.9530; 50%: F4,56= 0.31, p= 0.8698; 90%: F4,56= 0.20, p= 

0.9393 ). 

Total Core Area (TCA)

The 30% group home ranges were significantly affected by 

patch locations (F2,56= 7.02, p=0.0234; Fig. 3-10a) but not GS (F2,56= 

1.24, p=0.3380). The interaction of the two was also not significant 

(F4,56= 0.35, p=0.8426). The 50% group home range areas were also 
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Figure 3-10. Total core area (TCA) measurements at 30% (a) and 50% (b) for the 
restricted access phase. Bars represent least squares means (± SEM).  Bars sharing 
any identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-11. Group size effects on the 90% total core are (TCA) areas for the 
restricted access phase. Bars represent least squares means (± SEM).  Bars sharing 
any identical letters are not significantly different, p>0.05; Tukey’s adjustment.
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 affected by the patch locations (F2,56= 5.02, p=0.0099; Fig. 3-10b) and 

again not by GS (F2,56= 1.10, p= 0.3407) or the interaction (F4,56= 0.59, 

p= 0.6716). GS significantly affected the 90% TCA (F2,56= 3.84, p= 

0.0274; Fig. 3-11), but patch locations did not (F2,56= 2.81, p= 0.0689). 

There was no effect of the interaction of patch locations and GS (F4,56= 

0.11, p= 0.9775).

Inter-Bird Distances

The minimum inter-bird distance was significantly affected by 

the interaction of GS and patch locations (F4,56= 3.24, p= 0.0184; Fig. 

3-12). Because both the main effects of GS (F2,56= 60.62, p< 0.0001) 

and patch locations (F2,56= 7.62, p=0.0012) were also significant and 

produced higher F values we have discussed main effects. The 

deviation from random for the minimum inter-bird distance was 

significantly affected by the interaction of GS and patch locations 

(F4,56=3.54, p=0.0121; Fig. 3-13) however the main effects of GS 

(F2,56=934.89, p<0.0001) and patch locations (F2,56=7.50, p=0.0013) 

were greater. The maximum distance between two birds was only 

significantly affected by GS (F2,56= 48.74, p< 0.0001; Fig. 3-14), not 

patch locations (F2,56= 0.73, p= 0.4880) or the interaction of the two 

(F4,56= 0.24, p= 0.9126). The deviation from random for the maximum 

inter-bird distance behaved similarly, with a significant effect of GS 

(F2,56=12.00, p<0.0001; Fig. 3-15) and non significant effects of patch 

locations (F2,56=0.73, p=0.4864) and the interaction term (F4,56=0.23, 
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p=0.9203).  NN distance was significantly impacted by GS (F2,56 = 

23.26, p< 0.0001; Fig. 3-16) but was not affected by patch locations 

(F2,56 = 1.82, p=0.1720) or the interaction of GS and patch locations 

(F4,56 = 1.21, p=0.3172). The deviation from random for the NN 

distance was again significantly affected by GS (F2,56=70.10, 

p<0.0001; Fig. 3-17) but not patch locations (F2,56=1.72, p=0.1877) or 

the interaction (F4,56=1.36, p=0.2610).

Patch Consumption

All groups nearly depleted the available food. The average 

percent of total patch consumption was influenced by GS (F2,63= 4.09, 

p= 0.0214) but not by the patch locations (F2,63= 1.48, p= 0.2348) or 

the interaction of the two factors (F4,63= 1.31, p= 0.2744). GS10 

consumed 99.9 ± 1.81% of the available resources, which was 

significantly greater than GS5 who consumed 93.2 ± 1.81% (t=2.59, 

p=0.0318). Neither GS5 nor GS10 were significantly different from the 

99.2 ± 1.81% consumed by GS20 (p > 0.05).  
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Figure 3-12. Minimum inter-bird distances according to the interaction of GS and 
patch locations for the restricted access phase. Bars represent least squares means (±
SEM). Bars sharing any identical letters are not significantly different, p>0.05; 
Tukey’s adjustment.
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Figure 3-13. Minimum inter-bird distance deviation from random by group size (GS) 
and patch location for the restricted access phase. Bars represent least squares means 
(± SEM). Bars sharing any identical letters are not significantly different, p>0.05; 
Tukey’s adjustment. Bars designated with an asterisk (*) differ significantly from 
zero.
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Figure 3-14. Maximum inter-bird distances, by GS for the restricted resource access 
phase. Bars represent least squares means (± SEM). Bars sharing any identical letters 
are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-15. Maximum inter-bird distance deviation from random by group size (GS) 
for the restricted access phase. Bars represent least squares means (± SEM). Bars 
sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment. Bars marked with an asterisk (*) differ significantly from zero.
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Figure 3-16. Nearest neighbor (NN) distances separated by GS, from the restricted 
access phase. Bars represent least squares means (± SEM). Bars sharing any identical 
letters are not significantly different, p>0.05; Tukey’s adjustment.
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Figure 3-17. Nearest neighbor (NN) distance deviation from random by group size 
(GS), for the restricted access phase. Bars represent least squares means (± SEM). 
Bars sharing any identical letters are not significantly different, p>0.05; Tukey’s 
adjustment. All bars differ significantly from zero.
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Figure 3-18. Effects of group size on the number of aggressive interaction in the 
restricted access phase per bird and 15 minute observational period. Bars represent 
least squares means (± SEM). Bars sharing any identical letters are not significantly 
different, p>0.05; Tukey’s adjustment.
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Aggression

GS was the only factor that significantly affected aggression 

(F2,60= 5.23, p= 0.0081; Fig. 3-18). Generally aggression increased 

with GS. Patch locations (F2,60.4= 0.62, p= 0.5430), order of 

observation (F2,7.88= 0.28, p= 0.7629), and the patch treatment by GS 

interaction (F4,60.1= 0.28, p= 0. 8912) effects were all non-significant. 

All interactions involving order of observation were also insignificant.

Discussion

The ICA at the 50% level was significantly affected by the patch locations 

when birds were granted free patch access. ICA was largest within the patchy 

treatment (four periphery patches) and smallest in the spread treatment (two patches 

equidistance from the center). GS effects were not significant on ICA at any level in 

either the restricted or free access phase. Patch locations were nearly significant on 

90% ICA suggesting an influence of patch location on individuals’ larger range of 

movement in the free access phase. When access to resources was restricted to a 

single individual, the 30%, 50%, and 90% ICA did not differ across GS or resource 

distribution scenario. Under these restricted conditions neither spatial clumping, nor 

competitor density altered the amount of space used by individual birds.

Previous works have analyzed the movements and use of space of domestic 

species and have established that animals are influenced by the social effects of 

dominance hierarchies (reviewed in Grigor et al. 1995a), and the availability of space 
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(Newberry & Hall 1990; Freed 2003). Space can be limited by pen size (Newberry & 

Hall 1990; Estevez et al. 1997), group size (Channing et al. 2001) or stocking density 

(Estevez et al. 1997; Carmichael et al. 1999). Channing et al. (2001) studied the 

effects of colony size on spatial distribution while maintaining constant densities and 

found no effect of colony size; birds used equal proportions of available space. Freed 

(2003) distinguished between social and environmental effects on home pen core 

areas with domestic fowl, and found that the most influential factor for bird 

movement was the amount of free space available within the pen. Because pen size 

was equal for all patch location treatments and to all experimental GS it could be the 

factor determining ICA, even though birds never used the entire pen.

Unlike ICA, TCA in the free access phase were mostly determined by 

experimental GS and not by patch location. This result is not at all surprising. If birds 

required a more or less constant amount of space to perform their daily routines then 

20 birds would obviously occupy a greater area than five, and the dispersal of the five 

focal individuals should logically be greater at larger GS. Interestingly TCA in the 

second phase, when access was restricted to a single individual, differed according to 

patch location for the 30% and 50% core areas but not for the 90% level. It appeared 

that at these smaller levels, which measured concentrated pen use, birds in all GS 

used similar total amounts of space. The 90% TCA in the restricted access phase were 

not affected by patchiness, rather only by GS. This switch between significance of 

patch environments and GS suggests that this greater extent of pen use was more 

significantly affected by GS than the location of patches. The 90% TCA represented 

the spread of the focal birds within the pen and were expected to increase with GS.
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Birds did not appear to distribute evenly across all GS and in fact birds in 

different GS responded differently to patch locations in both the free and restricted 

access phase. When birds were provided free access to resources, patch environments 

significantly affected minimum inter-individual distances, a measure of the closest 

individuals. This reflects our expectation that patchiness should influence, and 

increase inter-bird distances. Under restricted access the minimum inter-bird 

distances were not affected by the patch environment for GS10 and GS20, but 

significantly increased with patchiness for GS5. For this GS minimum distances were 

shortest in the clumped environment and longest in the patchy environment. Again 

this finding was expected, and it is understandable that smaller GS would be more 

significantly affected by environmental conditions than larger GS. Smaller GS afford 

individuals less predator avoidance than large groups and thus environmental 

conditions should play more of a role in shaping the behavior of these smaller groups 

(Pulliam 1973). 

In both phases we observed an overall decrease in minimum and NN distances 

as GS increased. This trend of decreasing distances with increasing GS was predicted 

from the random simulation based on the pen dimensions. We expected smaller GS to 

have a greater deviation from these random values than the larger GS, and in fact this 

is what we found. Concerning the minimum inter-bird distances in the restricted 

access phase both GS5 and GS10 were significantly smaller than random, while GS20

was significantly larger than random. This suggests that the larger GS was farther 

apart than randomly expected. Flock cohesion, as measured by NN distances, 

increased with increasing GS while the deviation from random decreased with 
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increasing GS. While the physical distance between birds decreased as GS increased, 

larger flocks were closer to random expectations than smaller ones; smaller flocks 

clumped to a greater degree. In both the free and restricted access phase GS5 NN 

distances were significantly larger than GS20, which was the opposite of what we 

expected. The results of both minimum inter-individual and NN distances are 

counterintuitive and seem to be inconsistent with expected foraging strategies 

predicted for the different GS used in this experiment. Birds from larger groups were 

expected to maintain larger inter-individual minimum, maximum and NN distances 

compared to birds in smaller GS. While maximum inter-individual distances did 

increase with GS in both phases, minimum inter-individual and NN distances 

decreased with GS. However while the actual distances between birds were different 

than what we expected, we did find that the deviation from randomness was greater 

for smaller groups. While the risk of predation decreases as GS increases (Lima 

1995), the level of competition for resources also increases between group members 

(Clark & Mangel 1984). We expected to find an increase in inter-individual distances 

with GS as birds attempted to minimize resource competition. Likewise, because the 

risk of predation is larger for small groups, we expected that smaller GS would 

maintain smaller inter-bird distances. In support of our original expectation is the fact 

that the minimum inter-bird distances for GS20 were greater than random 

expectations while distances for the two smaller GS were smaller.

Other studies have demonstrated that birds distribute themselves farther apart 

whilst foraging, and maintain closer contact with flock members when performing 

behaviors such as resting and preening (Keeling & Duncan 1991; Keeling 1994; 
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Keeling 1995). GS5 individuals had the greatest opportunity to feed from patches, as 

each individual had a maximum of four competitors while individuals from GS20 had 

a maximum of 19. Because individuals from larger GS encountered a higher level of 

competition when attempting to gain access to resources, some may have given up 

attempts to forage and therefore resigned to performing other behaviors. Any 

behaviors other than foraging, such as standing, resting, or preening are performed at 

closer distances than foraging (Keeling & Duncan 1991). If individuals were 

predominantly not engaged in foraging behaviors in larger GS because of the 

increased competition, then NN and minimum inter-individual distances should 

decrease as GS increased. This difference in inter-bird distances based on behavior 

may explain why minimum and NN distances behaved against to our original 

expectations.

Maximum inter-bird distances measured group spread, and were unequally 

influenced by patchiness when comparing free versus restricted access phases. Under 

free access patch locations did not affect the dispersal of GS5 and GS20 individuals, 

while those from GS10 were farthest apart in the patchy, and closest together in the 

clumped environment. In the second phase, when patch access was restricted, only 

GS significantly affected maximum inter-bird distances. Not surprisingly maximum 

inter-bird distances increased with GS, as 20 equally spaced individuals should take 

up more pen space, thus the distance between the two farthest individuals should be 

greater at this GS than that of five individuals. From an ethological perspective larger 

flocks should have greater dispersal, or larger maximum inter-individual distances 

than small flocks. Because flocking reduces predation risk, and the degree of 
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protection is directly related to group size (Lima 1995) then smaller flocks are more 

vulnerable than large flocks, and the two farthest group members should be closer 

together in smaller rather than larger GS. This difference in maximum inter-bird 

distance would also happen if birds maintained a constant distance between them, but 

they did not. Furthermore because competition increases with increases GS larger 

group should place more distance between themselves and group members in an 

effort to reduce this foraging competition.

Previous work on patch locations has focused on the productivity and welfare 

of laying hens in battery cages in relation to the orientation of feed troughs (reviewed 

in Craig & Adams 1984, and in Mench & van Tienhoven 1986). Other experiments 

have investigated social effects, rather than group size effects per se, on resource use 

and movements (Mankovich & Banks 1982; Banks 1984). Indications of social 

dominance effects were not detected in the present experiment as many individuals 

gained resource access in both restricted and free access phases (personal 

observation). When birds had free access to patch resources no significant differences 

in aggressive resource defense strategies were detected across either GS or patch 

locations. Furthermore, patch locations played no role on how much food the birds 

consumed. But we observed increased aggression with GS when birds were forced to 

compete for limited access to patches. This is similar to the findings of Mench (1988) 

who determined that aggression in broilers increased when access to resources 

became limited. With access restricted to a single individual, at any given time more 

birds were excluded from eating in the larger GS than in the smaller ones. Thus a 

greater number of individuals remained hungry and had to wait to gain patch access. 
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This explained the increase in aggression with GS, not because birds were defending 

resources (in fact the smaller GS had a better opportunity to guard distributed 

patches), but rather aggression in this case seemed related to scramble competition 

strategies used to gain access to patches. 

There was an overall effect of patch location on the inter-bird distances in 

both the restricted and free patch access phases, but once again these results were not 

consistent across all GS for all measurements. When patch access was restricted GS, 

or the number of competitors, was important for both aggressive strategies and 

resource consumption. The level of competition had important consequences on 

group cohesion, or NN distances, and how individuals dispersed within the available 

space. With respect to TCA and maximum inter-individual distances groups adopted 

different foraging strategies in accordance with the number of competitors in the free 

access phase. In the restricted access phase patch locations dominated TCA for the 

two smaller levels (30% and 50%) while increasing GS, or competitor density, 

predicted the 90% TCA. 

The patchiness of an environment was found to influence how domestic fowl 

used the available space as well as the inter-individual distances maintained. 

Furthermore patch location affected GS differently. Birds showed less aggression in 

the free access phase than in the restricted phase, which is in accordance with other 

studies on broiler chickens (Mench 1988). GS was the most significant factor for 

inter-bird distances; however GS responses were not uniform across patch locations. 

The effects of induced competition as a result of limited access had a profound effect 

on bird behavior.
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Results of this experiment demonstrate that the dispersal of food resources as 

well as the accessibility of those resources has an impact on how animals use the 

space available to them and flock cohesion. Furthermore this experiment 

demonstrated that these effects are interdependent with the effects of GS. A better 

understanding on how animals use their space and identification of limiting factors 

can have important repercussion for the welfare and performance of domestic fowl.
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Chapter 4: Evidence of Optimal Foraging Strategies by 
Domestic Fowl (Gallus gallus domesticus)

Abstract

The behavior of domestic fowl was compared to the predictions of optimal 

foraging theory and specifically marginal value theory as applies to a patchy 

environment. Birds were tested in three group sizes to further examine the mediating 

effects of group size on foraging behavior. Despite generations of intense artificial 

selection pressures birds continue to forage in an energy-conservative manner. In a three-

patch discrimination trial birds consumed significantly more food with increasing patch 

quality. Larger group sizes consumed the greatest amount of food, suggesting that 

resource monopolization did not occur. The number of foraging bouts, as well as 

individuals foraging, also increased with patch quality and group size. Foraging duration, 

or patch residence time, increased with patch quality but decreased with increasing group 

size. Aggression increased with patch quality but was not affected by group size. Finding 

showed that birds are capable of discerning patch quality based on the amount of work 

required to obtain a food reward, and adjust this foraging strategy according to the 

number of competitors present.   
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Introduction

Optimal foraging predicts that an animal will forage in a manner that maximizes 

its net energy gain (Charnov 1976; Caraco 1981). When confronted with a patchy 

environment, the amount of time an animal spends foraging, patch residence time (PRT), 

as well as food consumption will increase with patch quality (McNair 1982; Alonso et al. 

1995). Optimal foraging decisions require that an animal not only be able to determine 

the average patch quality within its environment, but also readily distinguish between 

patches of different quality. Patch quality may differ in the obvious sense that patches 

vary in the total amount of resources available. However, it is possible that when sharing 

identical resource quantities patches differ in resource accessibility and thus generate 

different foraging efficiency potentials. If resources are more difficult to access and 

consume then foraging efficiency is diminished and animals must spend more time and 

energy in pursuit of resources. Animals must not only determine the abundance of 

resources within a patch but must further differentiate between patches according to the 

maximum net energy gain per unit time possible. Research has repeatedly shown that 

wild species are able to discriminate and accurately choose patches based on resource 

availability, nutrient quality, and net energy gain (Lewis 1980; Caraco et al.1989; Valone 

& Giraldeau 1993; Alonso et al. 1995; Kie 1996; Alm et al. 2002; Kacelnik & Brunner 

2002; Schaefer et al. 2003). 

For many species foraging strategies are significantly affected by group 

dynamics. When patches are scattered and unpredictable, individuals improve their 

efficiency by foraging in groups; however this success depends heavily on patch density, 

and level of competition (Clark & Mangel 1984; Carco et al.1989). Information about the 
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availability of resources within an environment increases with flock size (Clark & 

Mangel 1984), as the chances for finding resources increases. Considered as a whole, the 

group possess a greater amount of information than any single individual. Group 

members, therefore, monitor the foraging of others in order to capitalize on rewarding 

information (Clark & Mangel 1984). However group dynamics predict that not all 

members will enjoy the same feeding rate. When resources are discovered, dominants 

will attempt to monopolize access and thus improve their foraging outcomes in relation to 

subordinates. Stahl et al. (2001) found that subordinates search at a faster rate and mainly 

occupy the front edges of the foraging flock while dominant individuals displace 

subordinates once patches are discovered. Even without hierarchical competition the 

number of individuals present at a patch, all attempting to feed, will create scramble 

competition. As compared to resource defense and monopolization scramble competition 

occurs when group members all compete simultaneously, not to defend or monopolize, 

but merely for access to resources. This behavior is likened to an ‘every-man-for-himself’ 

strategy. Without the ability to control access to resources all birds will attempt to 

consume as much of the available resource as possible, as quickly as possible (Emlen & 

Oring 1977; Robb & Grant 1998; Estevez et al. 2002). This scramble competition, which 

may lead to an increase in aggression, is different from true resource defense. Rather than 

competing to control access to resources individuals are vying with others to merely gain 

access to the contested resource.

While the ability to forage optimally in patchy environments and group contexts 

is well documented in studies of wild species from natural environments, limited work 

has focused on the current discriminating ability of domestic animals. Many domestic 
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species have been shaped by generations of intense artificial selection geared towards 

increasing growth and productivity-related traits (Dumont & Petit 1998; Gustafsson et al. 

1999; Arcis & Desor 2003). This selection, based almost exclusively on performance, has 

introduced a myriad of morphological and physiological changes (Jones et al. 1980; 

Mench & van Tienhoven 1986; Jackson & Diamond 1996; Rauw et al. 1998; Bokkers & 

Koene 2003). In addition to, and possibly resulting from the physical changes incurred 

through the process of domestication, behaviors have been altered (Mench 1988; 

Braastad & Katle 1989; Savory & Mann 1997; Rauw et al. 1998; Schutz et al. 2001). 

Newberry (1995) argues that these may to some extent be necessary.  Modifications 

would enable the animal to adjust its behavior according to the transition from a natural 

environment to a production situation in which food and shelter are readily available and 

the risk of predation is minimal or non-existent. Therefore, it may be expected that 

domesticated species would progressively become less efficient in their foraging 

strategies. If natural selection no longer acted on foraging strategies and behavior 

domesticated species may cease to operate according to optimal foraging predictions. 

Without exposure to patches or a variety of foods, and the pressure of natural selection to 

readily distinguish between them, foraging efficiency may become relaxed over a number 

of generations. 

Recent work with domesticated species demonstrates that despite massive 

artificial selection pressures the behavioral repertoire of domestic animals remains intact 

in relation to their wild ancestors. Changes that have occurred are confined to differences 

in frequency of expression. A number of these studies have demonstrated that, in the 

absence of natural selection pressures, a significant relaxation has occurred in the 
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willingness of domestic species to work for food. For example, domestic pigs 

demonstrate adjusted expressions of feeding behavior when compared to wild boars. 

Gustafsson et al. (1999) found that domestic pigs stayed at patches longer, and had fewer 

overall sampling visits to available patches when compared with wild boars. Similar 

results have been found in domestic fowl (Andersson et al. 2001; Schutz & Jensen 2001; 

Schutz et al. 2001). Schutz & Jensen (2001) demonstrated that junglefowl employ a 

contrafreeloading foraging strategy, which is choosing to work for a food reward when 

the same reward is freely available. Domestic fowl engage in significantly less 

contrafreeloading behaviors. Andersson et al. (2001) found that wild type individuals 

frequently demonstrate a more costly foraging strategy that involves more transitions 

between patches, and an increased number of sampling visits. 

Foraging strategies that have been directly affected by artificial selection and 

relaxed predation and starvation pressures may not agree with optimal foraging 

predictions in domestic environmentals. Sampling increases an animal’s fitness in 

naturally unpredictable environments as without it foragers may have limited knowledge 

of environmental quality (Arcis & Desor 2003). Artificial, or domestic, environments are 

predictable regarding resource location and availability of food and water. Under these 

conditions domestic species incur an increased cost by employing energy-demanding 

foraging strategies that involves frequent information gathering via sampling (Gustafsson 

et al. 1999; Schutz & Jensen 2001). Nonetheless, the changes reported in foraging 

behavior of domesticated species in artificial, predictable environments do not violate 

optimal foraging theory predictions. These changes appear to ultimately increase the 

animals’ fitness under such environmental conditions and pressures. 
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Domestic fowl (Gallus gallus domesticus), descendents of the red jungle fowl 

(Siegel et al. 1992) provide an excellent animal model for investigating the mediating 

effects of artificial selection and GS on foraging behavior. Domestic fowl have been 

selected for large body mass and rapid growth (Jackson & Diamond 1996; Rauw et al. 

1998). Under modern production settings birds are fed a uniform poultry meal from 

feeders distributed in a patchy but predictable fashion. While recent studies have 

provided clear evidence for the retention of foraging strategies by domestic fowl, little is 

known as to whether or not birds can discriminate between patches of varying food 

accessibility, to ease of consumption, rather than availability. Few have investigated the 

response of optimal foraging strategies to different group sizes (GS) and the ability to 

discern patch quality in unpredictable situations

The present study examined the foraging behavior of different GS of naïve 

domestic fowl in a patchy environment. Patches contained the same exact amount of an 

attractive food source, but ranged according to food accessibility. The accessibility of a 

food resource to an animal is similar to the handling effort required to obtain the food 

reward. We suggested that adjusted foraging strategies, appropriate in domestic 

environments, should not violate the predictions of optimal foraging theory. Namely, we 

hypothesized that birds would forage in the most energy efficient manner according to 

the accessibility of food as well as the number of competitors present. We predicted that 

discriminatory abilities remain, despite the pressures of artificial selection. The animal 

model we chose was a modern broiler strain that has been under notably heavier artificial 

selection for growth and production qualities relative to other domestic species. Despite 

these extreme pressures we predicted that birds could discern patch quality on the basis of 
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food accessibility, and subsequently opt to forage at patches requiring the least amount of 

effort. We also predicted a higher level of competition at the highest quality patch as GS 

increases. As consequence of this increased competition we expected to find a larger 

number of individuals foraging from sub-optimal patches at larger GS. 

Materials and Methods

Facilities and Experimental Animals

This experiment was conducted at the University of Maryland’s Upper 

Marlboro Applied Poultry Research Facility from March 17th 2003 through June 

3rd 2003. A total of 336 one-day old male broiler chicks were obtained from a 

commercial hatchery (Allen’s Farm Inc. in Seaford, DE). Upon arrival to the 

facility chicks were divided into eight separate pens of forty-two birds. The pens 

were constructed of PVC piping and black netting, measuring 1.8m x 2.4m with a 

floor area of 4.5m2 covered with 5cm of wood shavings. Birds were maintained 

on a lighting program of 14L: 10D in an effort to promote slow growth and leg 

health. Temperature and ventilation programs followed commercial practices. 

Food and water were provided ad libitum through a central large tubular hopper 

and a line of nipple drinkers (7 nipples p/pen, 6 birds per nipple) located along 

one side of each pen. Feeding followed commercial practices. The diet was 

specifically formulated to slow growth rate, consisting of 3 phases, starter (19% 

crude protein, 2800.00kcal/kg metabolizable energy) and grower (17% crude 

protein, 2801.70 kcal/kg metabolizable energy), and finisher (19% crude protein, 

3251.70 kcal/kg metabolizable energy). The starter phase was administered from 
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days 0-14, the grower from 15-50, and the finisher from 50 until completion of 

the experiment at day 79. Mortalities were recorded daily.

Birds were tagged at three weeks of age on each side of the neck using the 

Swiftack for Poultry Identification System (Heartland Animal Health, Inc). 

Circular tags were made of sturdy laminated white paper, 5cm in diameter. 

Numbers of solid black were printed on both sides, ranging from 1 to 35. Seven 

birds per pen were left unmarked as replacements in the event of mortalities. The 

experiment reported here took place when the birds were eight to nine weeks of 

age. During testing each of the eight pens of birds were divided into three 

experimental groups of 5 (GS5), 10 (GS10) and 20 birds (GS20). Five individuals in 

each of the experimental GS per pen were designated, at random, as focal birds. If 

a tagged, non-focal bird died then a new individual was tagged with that same 

number. If a focal individual died we used the group member with the next 

highest tag number to complete the group for testing. The three experimental GS 

were housed together in order to create a similar background environment for 

each testing group, and enabled us to measure the distinct reaction of birds to a 

new environment.

Experimental Design

For this study we constructed three testing arenas, each measuring 2.4m x 

7.3m. We covered the arena floor with 5cm wood shavings and the walls in black 

plastic sheeting. Water was provided ad libitum from 14 nipple drinkers located in 

two lines at each end of the arena. Two hours prior to testing birds were feed 
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restricted. This was accomplished by placing a white plastic bag around the food 

hopper to prevent access. 

Resource patches were created from dark brown plastic containers, 10 cm 

in diameter, 14cm deep and placed on 12cm high platforms. To increase the level 

of competition at each patch we limited access to one individual. This was 

accomplished by attaching sturdy clear plastic around the patch, except for a 4cm 

opening on one side. Three patches were arranged in a triangular fashion, 80cm 

apart from one another in the centre of the arena with each opening facing the 

center of the triangle. All patches contained 50 grams of dry cat food, which had 

previously been demonstrated to be highly attractive. Varying amounts of litter: 

60ml, 120ml or 180ml were mixed with the cat food to create different food 

accessibilities. These patches ranged in food to litter ratios from a high quality 

patch (HQP) with 25% to 75% litter to food, a mid quality patch (MQP) with 50% 

to 50% and a low quality patch (LQP) with 75% litter and 25% food. Patches 

containing more wood shavings required greater effort to obtain the food 

resource, as litter was not edible. The height of the food/litter mixture was 

standardized to reach the 9cm of the LQP by affixing discs inside the MQP and 

HQP. Another disc was placed on top of the mixture, and removed immediately

following the birds release into the testing arena. The position of each patch 

within the triangular arrangement varied randomly. 

For each test one GS was transported in crates from their home pen to a 

testing arena. After testing, the second GS was removed from the same home pen 

and transported to a different arena for testing. This procedure was repeated with 
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the final GS. The home pen and GS order, as well as designated testing arena, 

were randomly assigned. Each experimental GS was tested only once. These birds 

were used in a prior experiment and had been transported, in crates, from their 

home pens to the testing arenas for a period of nine weeks and had become 

acclimated to the procedure. Birds were exposed to the patches one week prior to 

this experiment, twice a day for three consecutive days. Patches were filled with 

100g of cat food and placed in the centre of each home pen. Birds eagerly and 

quickly consumed all of the available food and considerable numbers of birds 

would gather around the patches (personal observation). The Institutional Animal 

Care and Use Committee at the University of Maryland approved this 

experimental protocol (R-03-04) prior to the beginning of testing.

Measurements

For each experimental trial a 30 min. observation period was video 

recorded for later analysis using the Observer (v.4.1 Noldus). From these videos 

we collected the identification number (ID) of each bird at each foraging patch 

(HQP, MQP and LQP), and calculated average foraging durations and total patch 

residence time (PRT). We defined foraging durations as the length of time during 

which the fowl had its head inside the patch. PRT encompassed the total amount 

of time a patch was occupied during the 30 mins. Each time a bird’s head passed 

through the patch opening it was counted as a foraging bout regardless of whether 

it was the same bird successively or different individuals. At 1 min. intervals 

(from 1 to 30 min.) we collected the total number of birds located within the patch 

area, defined by the 5 cm area surrounding each patch. In addition, we recorded 
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all aggressive interactions that occurred at a patch by individual IDs. Aggressive 

interactions that occurred outside of the 5cm patch diameter were not recorded. 

Aggressive definitions were modified from Estevez et al. (2002) and consisted of 

pecks, threats, leaps, kicks, fights and fights with pecks. To determine patch 

resource consumption the patches were weighed prior to and after each testing 

session. 

Statistical Analysis

All analyses were conducted using Mixed Model ANOVA in SAS 

statistical analysis software (v. 8.1, SAS Institute, Cary, NC). Model assumptions 

of normality and homogeneity of variance were examined. The number of 

individuals foraging from each of the HQP, MQP and LQP patches and the 

number of aggressive interactions were log transformed while the total number of 

patch foraging bouts and total patch consumption measures were square root 

transformed. In addition, variance components were separated by patch for the 

PRT analysis in order to meet the assumptions of homogeneity of variance. All 

data was analyzed by a Mixed model with experimental GS and patch quality as 

fixed factors with pen as a random blocking factor. A Kronecker product was 

incorporated, generating covariance matrices to account for multiple 

dependencies in variables. This design enabled two variance matrices to be 

calculated, an unstructured matrix and a compound symmetry matrix. The 

unstructured matrix accounted for the random block effect of pen, while the 

compound symmetry matrix accounted for the repeated-measure dependence of 

the patch treatment response variables, as all three patch treatments were 
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presented in cafeteria (multiple choice) style. Because of the low occurrence of 

aggressive behaviors, a variable composed of total aggression noted was modeled 

for statistical analysis. Total aggression was measured as the sum of all aggressive 

interactions per 30 minute testing session, on a per bird basis. Mean comparisons 

were according to Tukey’s LSD adjustment for Type I error rates (for review see 

Jones 1984).

Results

Patch Resource Consumption

The total patch resource consumption (Fig. 4-1), measured as the 

difference between pre-trial and post-trial weights, was significantly affected by 

both GS (F2,21=4.66, p=0.0212) and patch quality (F2,20=20.61, p<0.0001) but not 

by the interaction of the two (F4,23.2=0.73, p=0.5791). A posteriori contrasts 

revealed a significant difference in the amount of food consumed at both the MQP 

and LQP between GS5 and the larger two, GS10 and GS20 (t=3.07, p=0.0059).

Number of Foraging Bouts and Distinct Foraging Individuals

Recording individual bird ID’s enabled us to examine if the total number 

of distinct individuals (visitors) foraging at patches differed between GS and/or 

between patches (Fig. 4-2). GS and patch quality had significant effects on the 

total number of distinct individuals foraging (F2,20=17.73, p<0.0001 and 

F2,19=7.24, p=0.0046 respectively) but the interaction of GS and patch quality was 

non-significant (F4,22=1.73, p=0.1790). A contrast measuring for differences in 
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Figure 4-1.  Differences in total food consumption at the HQP, MQP and LQP (a) and at 
GS5, GS10 and GS20 (b).  Bars represent least squares means (± SEM).  Bars sharing any 
identical letters are not significantly different, p>0.05 after Tukey’s adjustment.
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Figure 4-2. The total number of distinct foraging individuals at each patch (a) and in 
each group size (b). Bars represent least squares means (± SEM).  Bars sharing any 
identical letters are not significantly different, p>0.05 after Tukey’s adjustment.
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foraging visits to the LQP and MQP between GS10/GS20 and GS5 demonstrated 

that on average 2.6 additional individuals visited these lower quality patches at 

higher GS (t20=5.15, p< 0.0001). The number of foraging bouts at each patch 

during the 30 minute testing interval (Fig. 4-3) was significantly affected by GS 

(F2,21=4.74, p=0.0201) and patch quality (F2,20=5.58, p=0.0119) while the 

interaction effect was found to be non significant (F4,23.2=0.79, p=0.5459). 

Foraging Duration and Patch Residence Time

Two measures of foraging time were calculated, the average foraging 

duration and the total time a patch was occupied for the 30 minute trial (PRT).  

Significant effects of GS (F2,12.1=9.94, p=0.0028) as well as patch quality 

(F2,13.2=15.69, p=0.0003) were demonstrated for foraging duration (Fig. 4-4) 

while the  interaction effect was non significant (F4,14.3=1.96, p=0.1564). Total

PRT (Fig. 4-5) was similarly affected by GS (F2,13.2=13.20, p=0.0122) and patch 

quality (F2,18.2=11.86, p=0.0005) but not the interaction of the two (F4,17.4=0.54, 

p=0.7074).

Aggressive Interactions at Each Patch

We observed a low overall level of aggression. Therefore for the statistical 

analysis we used an index of total aggression, combining all behaviors. Despite 

the overall low frequency of aggressive events we found patch quality to have a 

significant affect on total aggression (F2,20=3.68, p=0.0436; Table 4-1) while GS 
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Figure 4-3. The total number of patch foraging bouts per 30 min. testing period, 
delineated by patch quality (a) and group size (b).  Bars represent least squares means (±
SEM).  Bars sharing any identical letters are not significantly different, p>0.05 after 
Tukey’s adjustment.
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Figure 4-4. Average foraging bout duration by patch quality (a) and group size (b) for the 
30 minute testing period.  Bars represent least squares means (± SEM).  Bars sharing any 
identical letters are not significantly different, p>0.05 after Tukey’s adjustment.
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Figure 4-5. Total patch residence time (s) by patch quality (a) and group size 
(b) for the 30 minute testing period.  Bars represent least squares means (±
SEM).  Bars sharing any identical letters are not significantly different, 
p>0.05 after Tukey’s adjustment.
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Threats Pecks Standoffs Fights
Fights 
with

Pecks
Chases Total

Total per 
bird, per

trial
HQP 20 26 7 3 2 7 65 0.26±0.08a

MQP 8 19 4 0 1 5 37 0.16±0.06b

LQP 4 10 4 0 0 0 18 0.07±0.01ab

Table 4-1. Total number of aggressive behaviors recorded during all testing sessions 
(n=8), as well as the total number of aggressive interactions per bird, per experimental 
trial.  Only total aggression, measured as a combination of all aggressive interactions, 
was statistically analyzed (α=0.05).  Means ± SEM are reported, any means with identical 
letters are not significantly different after a Tukey adjustment.
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Figure 4-6. Average number of individuals present at the HQP (a), MQP (b) and LQP (c) 
at one-minute intervals. Bars represent least squares means (± SEM).  Bars sharing any 
identical letters are not significantly different, p>0.05 after Tukey’s adjustment.
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and interaction effects were non significant (F2,21=0.43, p=0.6560; F4,23.2=0.68, 

p=0.6122 respectively).

Individuals Present at Patches

Because of the dependence of observations taken at one-minute intervals, 

time was treated as a repeated measure. For this measurement we were not 

interested in examining the relationships between patches, but rather the behavior 

of individuals at each separate patch. Thus the data was separated by patch and 

each was analyzed separately. There was a significant effect of GS on the number 

of individuals present at each patch (Fig. 4-6), the HQP (F2,56.2=4.55, p=0.0147), 

the MQP (F2,52.8=6.24, p=0.0037) and LQP (F2,50.2=9.42, p=0.0003). 

Discussion

The results of our investigation demonstrate that despite generations of artificial 

selection domestic fowl are able to adjust their foraging strategies according to the 

predictions of optimal foraging theory in order to gain maximum efficiency. Our birds 

were capable of distinguishing between patches based on the effort required to obtain a 

food reward and demonstrated a consistent preference for the HQP as opposed to the 

lower quality patches (MQP and LQP). Because litter was inedible, foraging from the 

LQP was presumably more labor intensive than doing so from the HQP or MQP. At the 

HQP we consistently observed a higher number of individuals, a higher number of 

foraging bouts and increased PRT which all establish the strong preference for this patch. 
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Birds at all group sizes consumed more food from the HQP, followed by the MQP 

and lastly the LQP, despite the equal amount of available food at all three patches. As the 

HQP was depleted its quality diminished relative to the other patches, and birds began 

exploring other patches. We predicted, and found, an increased usage of the two lower 

quality patches (MQP & LQP) with GS10 and GS20 (t=3.07, p=0.0059) because the rate of 

depletion was greater at these GS as compared to the smaller GS5. The consumption 

differences found between patches at each GS corresponded with marginal value theorem 

predictions, namely that individuals should forage at higher quality patches until that 

quality equals the average patch quality (Charnov 1976; McNair 1982). Individuals 

should make use of the best available foraging situation and at large group sizes this 

entails visiting lower quality patches as a direct result of increased competition due to 

increased GS. 

As predicted the number of foragers, the number of foraging bouts, bout duration 

and PRT increased with patch quality. In all group sizes birds discerned the superior 

quality of the HQP, as it required the least amount of work for food, and subsequently 

visited and foraged from this patch more often than any other.  If birds were unable to 

distinguish patch quality, or showed no preference, then PRT, along with the number of 

foragers and total foraging bouts should not differ between patches. Despite the scale of 

patch quality, and without previous experience in this particular situation, birds quickly 

and consistently distinguished the superiority of the HQP. We expected, however, that if 

foraging efficiency was improved at the HQP then birds should have spent less time 

foraging for equal amounts of food from this patch as compared to the lower quality 

patches.
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While sampling is a beneficial and necessary behavior in the wild, its presence in 

modern domestic species is not required for commercial environments. Animals 

employing such a strategy will most likely decrease their feeding rate as compared to 

other, stationary individuals readily feeding. Alternatively, because multiple individuals 

were foraging from all patches simultaneously the relative quality of the HQP need not 

necessarily fall below that of the MQP and LQP. At the end of the 30-minute trial an 

average of 15.5g remained in the HQP while 20.3 and 30.5g remained in the MQP and 

LQP respectively. Because litter was inedible and presumably remained at each patch the 

ratio of food to litter remained of better quality at the HQP in relation to the other two, 

even after extensive depletion.

The results from this study are similar to others that demonstrated the 

energetically parsimonious foraging strategies of domestic fowl (Schutz et. al. 2001; 

Andersson et al. 2001; Lindqvist et al. 2002). However this study employed unique 

approaches because intensely selected animal subject were tested in GS and were not 

exposed to the experimental treatments prior to data collection.  The behavioral responses 

to patches of different quality were instantaneous rather than conditioned. Birds in this 

experiment were only acclimated to the transportation, to the testing arena, and the food 

type. Our experimental animals had no prior information about, nor could they anticipate 

the availability or varying quality of patches. We examined foraging strategies of the 

domestic fowl at different GS as opposed to examining strategies of individuals, or 

testing birds in pairs (Andersson et al. 2001; Lindqvist et al. 2002). It is reasonable to 

expect that foraging strategies differ when birds are tested in groups versus singly or in 

pairs (Clark & Mangel 1984). 
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With only three patches available, each closely situated to the others, it would 

have been possible for the three most dominant birds to each guard a single patch. 

Because access was limited to a single bird, only one individual could forage from a 

patch at any time, while other birds were restricted to either unoccupied patches or 

‘waiting in line’. If resource monopolization occurred then a maximum of three 

individuals should gain access to all patches. This behavior was not consistent with our 

findings at any GS, as on average 4.47 ± 0.355 individuals visited the HQP during the 30-

minute testing session. We did not find any evidence in this experiment that birds 

monopolized patch access at any of the GS. We observed that the number of foraging 

individuals and foraging bouts increased with GS. These results are contrary to the 

hypothesis that individuals would defend and monopolize access to resources particularly 

at large GS as indicated by McBride and Foenander (1962). 

The HQP may have become increasingly harder to access at larger GS, due to the 

increased number of competitors, as there were significantly more individuals foraging 

from the MQP and LQP in the two larger GS (GS20 & GS10) than in the GS5 (p< 0.0001). 

During testing, when a bird occupied the HQP, subsequent individuals could opt to wait 

to gain access or forage from the MQP or the LQP. The results suggest that individuals 

unsuccessful in gaining access to higher quality resources moved on to forage in the 

lower quality patches. This is a similar finding to those of Estevez et al. (2002), in which 

domestic fowl were tested in GS of 15 to 120, with patches placed in the centre and 

periphery of the pen. In both GS the number of birds surrounding a centre patch remained 

constant but periphery patch visitors increased with GS. 
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While the number of foraging individuals rose from 3.3 birds in GS5 to 5.3 birds 

in GS20, the relative proportion of foraging individuals decreased with GS. The 

proportion of birds foraging in GS5 was 65.7% (unique individuals/total number), 48.8% 

for GS10 and 26.3% for GS20. This suggests that a patch may have had a specific 

saturation point, at which more birds cannot be accommodated. Possibly, the majority of 

birds from the GS10 and GS20 were not able to initially gain access to the triangular area 

where resources were located and thus retreated to other parts of the arena. Rather than 

expend energy to return and investigate when patches were unoccupied, these birds may 

have restricted their activities to the other areas of the pen. Broiler fowl often suffer from 

a high incidence and severity of leg deformities and become increasingly inactive with 

age (Kestin et al. 1992; Morris 1993; Savory & Mann 1997). These factors most likely 

contributed significantly to the overall low levels of activity and foraging. 

The average foraging duration decreased with increasing GS. This decrease seems 

to be a byproduct of the increase in the number of foraging individuals. When many birds 

are scrambling for access, individuals may be able to decrease their exposure to 

aggression from other group members by decreasing the amount of time spent at a dish. 

Because individuals from larger GS had potentially more competitors, they may adjust 

the amount of time spent foraging while others are present. The significantly different 

number of foraging individuals across GS at each patch supports this notion. 

Alternatively birds could simply be pushed out of a patch more often in the larger GS, as 

birds often jostled to gain patch access, and subsequently shortened average PRT for any 

one individual. This hypothesis of jockeying for a foraging position at the HQP is 
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supported by the fact that aggression increased with patch quality and the greatest amount 

was noted at the HQP. 

Birds did not change their aggressive strategy in the context of GS but rather 

according to patch quality. This suggests that birds were operating under optimal 

foraging theory predictions as they recognized the superior quality of the HQP and thus 

were willing to expend more energy in order to gain access. Estevez et al. (2002) found 

an increase in aggression as a function of the number of competitors present, rather than 

as a function of the total number of individuals in the pen. The fact that aggression did 

not significantly differ between GS, but did differ significantly with respect to the 

number of competitors present confirms the hypothesis that it is not the total number of 

birds present in the pen, but rather the specific number of competitors at a resource, and 

the quality of that resource, which dictates differences in aggressive behavior (Estevez et. 

al. 2002). In this experiment birds were most likely squabbling to gain access to resources 

as opposed to openly fighting to monopolize control of patches. 

The definite preference, in all groups, for higher quality patches is well supported 

by all of the results, including patch consumption, the number of foraging bouts and 

individual foragers, PRT, foraging duration, the number of individuals present at patches 

and aggressive interactions. Most likely the non significant patch differences, such as 

between the HQP and LQP with total aggression, are strictly due to the lack of power. 

This low level of power is a product of the small sample size available as well as the high 

variability recorded for some measures. These few non significant results lie in direct 

contrast to the bulk of the data that is in overwhelming support of distinct behavioral 

responses to patches of varying quality. Our results demonstrated that, despite 
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generations of intense artificial selection, in a patchy environment varying along a range 

of quality, domestic fowl employ strategies that are consistent with the predictions of 

optimal foraging theory. Birds are not only able to differentiate between sources of food 

based solely on the amount of work required, but further apply foraging strategies 

appropriate for the number of competitors present at a resource.
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Chapter 5: Summary and Conclusions

Across experiments domestic fowl readily adjusted to the testing conditions and 

continually behaved according to the predictions of optimal foraging theory. In the 

cafeteria-style patch discrimination experiment, all measurements taken, patch 

consumption, number of foraging bouts and individuals, PRT, and aggressive 

interactions, confirmed that despite generations of artificial selection pressures birds 

forage optimally in novel and unpredictable environments. Not only have broiler 

chickens been removed from a natural environment in which foraging strategies shape 

survival and fecundity, but also the particular birds used in this experiment had no prior 

experience discerning patch quality. Their immediate and consistent response of choosing 

the HQP, in all GS, revealed that optimal foraging strategies remain a part of the 

domestic fowl’s behavioral repertoire. The second experiment utilized varying patch 

locations and sizes and again confirmed the optimal foraging abilities of birds in all GS. 

Birds adopted non-aggressive strategies when free access was granted to patches, 

however when access was limited birds scrambled in order to gain, but not necessarily 

monopolize, patch access.

The use of space by domestic fowl was mostly determined by the size of the 

testing arena. In the environmental complexity experiment, as well as in the patch 

location experiment, ICA were not significantly different between GS. Environmental 

complexity had no effect on ICA, and neither did patch location when access was 

restricted to a single individual. Neither GS nor environmental conditions affected ICA, 

suggesting that the testing arena, the only factor constant across GS and experiments, 

determined how much space individuals utilized. This finding is similar to that of Freed 



133

(2003), who found that the physical amount of space available to birds determined their 

extent of movement. Other studies as well have shown the determining effects of 

available space on fowl movement and use of space. Carmichael et al. (1999) found 

differences in movement patterns across different stocking densities of laying hens, and 

suggested that crowding effects of increased stocking density reduce the amount of area 

available to a bird, thus reducing its movements and pen use. 

TCA measurements in both the environmental complexity and patch location 

experiments increased with GS, as were expected. This finding is in accordance with the 

predictions of behavioral ecology theory; larger GS should take up more pen space and 

thus the five focal individuals should be more spread apart in these larger groups. 

Because predation risk is reduced at larger GS (Pulliam 1973) and foraging competition 

increases (Stahl et al. 2001) we expected larger GS to have larger maximum inter-bird 

distances in both experiments, which is exactly what we found. The different responses 

of GS to the experimental conditions were also in accordance with behavioral ecology 

predictions.

GS5 was more influenced by environmental conditions than GS10 or GS20 with 

respect to environmental patch locations. GS5 individuals did not benefit from the same 

level of protection from their small flock size as compared to larger groups, and thus 

environmental factors should have a greater influence on their behavior. We expected 

inter-bird distance measures to reflect a higher degree of flock cohesion in this smaller 

GS, with decreasing flock cohesion as GS increased. This finding was evident in the 

environmental complexity experiment. However, when tested in the patch location 

phases, inter-bird distances were more heavily impacted by bird behavior than by GS 
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effects. Behavior appeared to dominate random effect for all of the inter-bird distances, 

across each experiment. GS5 was consistently more deviant from randomness than the 

other two GS, suggesting increased group cohesion at this small GS.

In all experiments aggression was relatively low as compared to other 

experiments with broiler chickens (Mench 1988; Cornetto et al. 2002; Estevez et al. 

2002). Despite the special diet designed to promote health and activity, birds were 

relatively inactive and non-aggressive (personal observation). This strategy, of little 

energy expenditure, is most likely highly effective in maximizing growth. In the attempt 

to increase weight gain and decrease growth time, artificial selection has changed the 

behaviors of the birds, mainly by increasing feeding motivation and decreasing activity 

(Katanbaf 1988; Mench & van Tienhoven 1986; Weeks 1994 Jones & Hocking 1999). 

When tested in experimental GS different from their home environment 

individuals changed their behavior, as supported by the consistent GS effects on various 

behavioral measurements in all experiments. Despite the generations of intense artificial 

selection for improved performance the behavioral repertoires have not been altered in 

such a way as to violate theoretical predictions of resource defense, foraging theory, or 

flocking strategies. These findings have significant implications for production houses 

and animal management practices. Fowl demonstrated the capacity to respond to 

environmental conditions not present under agricultural conditions, such as resource 

patches and changing environmental complexity. Mench (1998) suggested that animals 

possessing complex natural environments, and demonstrating current behavioral 

capabilities of adapting and responding to those environments demonstrate a motivation 

or need for such dynamic environments. In most broiler production houses in the United 
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States thousands of chickens are kept on uniform, barren litter floors with uniformly and 

predictably distributed resources. Environments with too little stimulation have been 

shown to be detrimental to animal health and wellbeing (Wemelsfelder & Birke 1997) 

just as environments with too much stress and stimulation have been shown to be 

negative (Rauw et al. 1998). In addition to damaging animal health, stress, boredom, and 

frustration decrease animal productivity, which is the driving factor for all agricultural 

systems. 

The use of space calculations employed in these experiments, core areas using 

kernel density estimates, appeared useful as a technique for measuring the use of pen 

space by confined species. Least squares cross validation was not used in this case, 

because of the large bias these values produced. Instead fixed kernel smoothing factors of 

0.4 were used, after comparisons with 0.8, 0.6, 0.3, and 0.2. While smaller values may 

have been even less biased, as measured by the amount of core area estimated outside of 

the pen boundaries, they preserved less information about the shape and general 

movement patterns of bird core areas. These smaller values produced graphs with small 

circular areas enclosing individual points where birds were observed. Our experiment 

demonstrated that core area calculations provide useful information about the use of 

space of domestic animals, even in confined environments. This technique, in addition 

with traditional techniques of quadrant analysis can aid in elucidating spacing behavior 

and patterns of domestic species, despite the difficulties confinement poses to the model. 

The behavioral strategies demonstrated by all GS of domestic fowl in each of the 

experiments conformed to the tenets of behavioral ecology and optimal foraging. Group 

sizes were differentially affected by environmental conditions, foraged from the highest 
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quality patch, scrambled for resource access rather wasting energy attempting to 

monopolize patches, shared resources with conspecifics under free access but fought to 

gain access when it was limited and maintained inter-bird distances which minimized 

competition as well as potential predation risk. What is most commanding is that birds 

had never been exposed to environmental complexity or resource patches prior to the 

trials; all behavioral responses were immediate and unlearned. Without prior knowledge 

or experience individuals optimized both the costs and benefits associated with 

competing behavioral strategies. These optimality decisions are not stimulated in home 

environments where larger groups have little or no complexity and free access to large, 

non-depleting resources, thus natural selection has no opportunity to act on the behavioral 

repertoire of domestic fowl under artificial breeding conditions. The implications of these 

behavioral responses suggest that domestic fowl are quite capable of complex behavioral 

responses to environmental conditions. A more complete understanding and manipulation 

of these behavioral responses can maximize both animal welfare and productivity. 

Furthermore core area analysis, typically reserved for the study of wild, un-confined 

species is a useful tool in the investigation of use of space of domestic species. 
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Appendices
5-1 Testing arena layout for the three treatments. As a control birds were tested in an empty arena without panels. The single treatment 
consisted of one long pane, represented by the dashed vertical line. For the quadruple panel (quad) treatment four panels were 
arranged, as designated by the solid lines. 
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5-2 Expected minimum (a), nearest neighbor (b) and maximum (c) inter-bird 
distances if birds positioned themselves randomly within the pen space, according to 
group size (GS).
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5-3 Distribution of patches in the testing arena. For the clumped treatment one large patch was created in the center, designated by the 
light grey square with C. For the spread treatment two equally-sized patches were placed equidistance from the center, represented by 
the two grey squares with S. The patchy treatment consisted of four patches placed along the periphery of the pen, shown by four dark 
grey squares containing P.
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