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In many real-world applications in optimal information collection and stochas-

tic approximation, statistical estimators are often constructed to learn the true pa-

rameter value of some utility functions or underlying signals. Many of these estima-

tors exhibit excellent empirical performance, but full analyses of their consistency

are not previously available, thus putting decision-makers in somewhat of a predica-

ment regarding implementation. The goal of this dissertation is to fill this blank of

missing consistency proofs.

The first part of this thesis considers the consistency of estimating a mono-

tonic cost function which appears in an optimal learning algorithm that incorpo-

rates isotonic regression with a Bayesian policy known as Knowledge Gradient with

Discrete Priors (KGDP). Isotonic regression deals with regression problems under

order constraints. Previous literature proposed to estimate the cost function by

a weighted sum of a pool of candidate curves, each of which is generated by the

isotonic regression estimator based on all the previous observations that have been



collected, and the weights are calculated by KGDP. Our primary objective is to

establish the consistency of the suggested estimator. Some minor results, regarding

with the knowledge gradient algorithm and the isotonic regression estimator under

insufficient observations, are also discussed.

The second part of this thesis focuses on the convergence of the bias-adjusted

Kalman filter (BAKF). The BAKF algorithm is designed to optimize the statistical

estimation of a non-stationary signal that can only be observed with stochastic

noise. The algorithm has numerous applications in dynamic programming and signal

processing. However, a consistency analysis of the process that approximates the

underlying signal has heretofore not been available. We resolve this open issue

by showing that the BAKF stepsize satisfies the well-known conditions on almost

sure convergence of a stochastic approximation sequence, with only one additional

assumption on the convergence rate of the signal compared to those used in the

derivation of the original problem.
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Chapter 1: Introduction

In this chapter, we will review the development of regression analysis under

order restrictions, namely, isotonic regression, with concepts and theoretical results

that applied in this thesis. We then introduce one class of Bayesian methods, called

discrete priors, and compare it with previously established algorithms in the litera-

ture. We shows how this Bayesian framework is incorporated with isotonic regression

to construct our weighted sum estimator. An application in transportation science

is presented at the end as an illustration to the motivation of our work.

1.1 Literature Review

In the application of regression analysis, issues emerge very often where order

constraints have to be exerted on the regression function. Such challenges draw a

great attention in literature for the recent decades. We begin with the history of

isotonic regression analysis and its interaction with Bayesian methodology.

Isotonic Regression

The usual goal of regression analysis is to estimate the conditional expecta-

tion of a dependent variable ỹ given some independent variables x̃. The function
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µ(x) = E(ỹ|x̃ = x) of x, as the regression of ỹ on x̃, often furnishes the best fit

to the distribution of ỹ in the sense of least squares. In many applications, we are

able to assert a priori that the dependent response has a monotonic relation with

one or more predictors. That is, there are some prespecified structure or order con-

straints imposed on the response. Structure involving orderings and inequalities is

often useful since it is easy to interpret, understand, and explain. For example, in

epidemiological studies, it is often of the researcher’s interest to evaluate the rela-

tionship between the dosage of a particular toxic exposure and the likelihood of an

adverse response, controlling for confounding factors. Considering potential regula-

tory provisions and identifying public health significance, it is critical to efficiently

estimate the dose-response function. In such studies, one may typically presume a

priori that the occurrence of an adverse response would not be less likely as dose

increases, adjusting for key confounding factors such as gender and age. It is well

documented that incorporating such ordering restrictions can improve the efficiency

of statistical inference procedures and power to detect trend in response (Barlow and

Scheuer, 1966; Robertson et al., 1988). More real world applications of such order

constraints can be found in operations research (Maxwell and Muckstadt, 1985), bi-

ology (Lee, 1996), genetics (Gjuvsland et al., 2013), psychology (Kalish et al., 2016),

meteorology (Roth et al., 2015), environmental science (Hussian et al., 2005), sig-

nal processing (Acton and Bovik, 1998), economics (Aït-Sahalia and Duarte, 2003),

sports (Dawson and Magee, 2001) and many others fields.

Isotonic regression (IR), sometimes called monotonic regression (MR), studies

regression problems in which knowledge of the predictors in a certain experiment

2



determines an ordering, partial or total, of the corresponding values of µ(x). Here,

the word “isotonic” means “order-preserving”; order restrictions on parameters re-

quire that the parameter to be isotonic with respect to a partial order on the index

set. The theory of order-restricted estimation and testing was developed under a

variety of scenarios. The first comprehensive monographs are Barlow et al. (1972)

and Robertson et al. (1988), which provided all fundamental theoretical results in

estimation and hypothesis testing. In modern application, constraints often crop up

either as (partial/total, linear/non-linear, or even implicit) ordering on the so-called

parameter space(s), or as (linear/non-linear) inequalities on contemplated parame-

ters; they may also show up on the observations or experimental outcomes termed

the responses. Most recently, the field of constrained statistical inference (Silvapulle

and Sen, 2011), specifically focuses on the constraints in the form of ordering and

inequality restraints of diverse types, and extends beyond classical likelihood-based

parametric models.

1.1.1 Bayesian Approach

We begin our in-depth review with Bayesian related topics as this is the main

research direction of our thesis. In order-restricted inference, Bayesian methods seek

to incorporate prior information regarding a collection of parameters to improve the

quality of the inference. An early application of Bayesian idea was by Kraft and

van Eeden (1964), who studied the problem of estimating a nondecreasing set of bi-

nomial parameters (bioassay, in their terminology). Barlow et al. (1972) described
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an approach to Bayesian estimation for independent samples from members of an

exponential family and give a theorem which yields the mode of the posterior dis-

tribution as an isotonic regression. Dykstra and Laud (1981) studied a Bayesian

nonparametric approach to estimate an increasing hazard rate. Broffitt (1984) con-

sidered a Bayesian approach to some order-restricted problems which are motivated

by the so-called graduation techniques in actuarial science. Sedransk et al. (1985)

discussed the problem of estimating an ordered set of multinomial probabilities using

Bayesian methods. Bacchetti (1989) developed additive isotonic models that gener-

alize linear models by replacing lines with nondecreasing transformations. Bayesian

ideas received more attention starting with the 1990s. Lavine and Mockus (1995)

provided a theoretical study on a nonparametric Bayes method for isotonic regres-

sion. Dunson and Neelon (2003) applied Bayesian inference on order-constrained

parameters in generalized linear models. Neelon and Dunson (2004) established a

new framework for Bayesian isotonic regression and order-restricted inference with a

prior formulated as a latent autoregressive normal process. Dunson (2005) proposed

a Bayesian semiparametric approach for inference on an unknown isotonic regression

function with count data. Cai and Dunson (2007) suggested a Bayesian approach

for addressing multivariate isotonic regression splines motivated by applications to

carcinogenicity studies. Brezger and Steiner (2008) incorporated Bayesian p-splines

with monotonic regression to deal with the issue of estimating price response func-

tions from store-level scanner data. Wang and Dunson (2011) developed a new class

of density regression models that incorporate stochastic-ordering constraints and

that offer a prior structure which enables full support to the conditional distribu-

4



tion of the response given the predictors. For a more general overview of Bayesian

perspectives, in the broader concept of constrained statistical inference than as in

isotonic regression, we refer readers to Chapter 8 of Silvapulle and Sen (2011).

Among these paper, Dunson’s work claims that one of the most appealing

advantages of applying prior information is the ease of incorporating complex order

restrictions on either regression functions or parameters, but this may not always

hold. As in frequentist statistics, we obtain an estimator by solving an optimization

problem (with order restrictions) in some parameter space. As long as the space is

a convex set, it is easy to incorporate additional constraints. However, in Bayesian

statistics, we need a (prior) distribution for the parameters we try to estimate, and

there are no standard distributions on the space of isotonic functions. Therefore, in

such occasions it maybe more difficult to specify a Bayesian prior distribution while

leveraging the order restrictions.

Nevertheless, the advantage of Bayesian analysis is that it equips us with a

much richer and deeper uncertainty model than in frequentist statistics, where each

model parameter is assigned a point estimate. On the contrary, a Bayesian would

provide a whole (posterior) distribution over all the values that the parameter can

take, yielding a more detailed profile on how likely the parameter is to take on differ-

ent values. The quality of the Bayesian modeling process is measured by the degree

to which a posterior distribution is more informed than a prior distribution for the

unknown parameters of interest.Therefore as concluded in Gill (2014, Sec.1.2), with

Bayesian analysis, assertions about unknown model parameters are not expressed in

the conventional way as single point estimates along with associated reliability as-
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sessed through the standard null hypothesis significance test. Instead the emphasis

is on making probabilistic statements using prior and posterior distributions. Such

characteristics are particularly desirable because when people try to make decisions

subject to unknown parameters, they really need this extra uncertainty to help ap-

praise the probability that a decision is either way too sub-optimal or much worse

than our expectation. It also helps to assess, under various scenarios, the deficiency

of our model performance if indeed there is a large discrepancy between the true

parameter value and our belief.

However, the benefits of Bayesian analysis do not come without a price. Many

calculations in Bayesian analysis, including posterior densities and simulation algo-

rithms, suffer extremely heavy numerical complexity and require massive computa-

tional resources. For instance, algorithms like Markov chain Monte Carlo (MCMC)

or Metropolis-Hastings, let us evaluate and calculate the posterior density, but do

not allow for efficient updating.

Remark (The Bayes-frequentist controversy).

According to Carlin and Louis (2008), traditionally frequentists evaluate procedures

based on imagining repeated sampling from a particular model (the likelihood),

which defines the probability distribution of the observed data conditional on un-

known parameters. Properties of the procedure are evaluated in this repeated sam-

pling framework for fixed values of unknown parameters; good procedures perform

well over a broad range of parameter values. In contrast, Bayesians require a sam-

pling model and, in addition, a prior distribution on all unknown quantities in the
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model. The prior and likelihood are used to compute the conditional distribution

(the posterior distribution) of the unknowns given the observed data, from which

all statistical inferences arise.

Historically, frequentists have criticized Bayesian procedures for their inability

to deal with all but the most basic examples, for over-reliance on computation-

ally convenient priors, and for being too fragile in their dependence on a specific

prior (i.e., for a lack of robustness in settings where the data and prior conflict).

Bayesians have criticized frequentists for failure to incorporate relevant prior infor-

mation, inefficiency and inflexibility. Another common Bayesian criticism is that,

while frequentist methods do avoid dependence on any single set of prior beliefs, the

resulting claims of “objectivity” are often illusory since such methods still require

assumptions about the underlying data generating mechanism, such as a simple (of-

ten normal) model free from confounding, selection bias, measurement error, etc.

Bayesians often remark that the choice of prior distribution is only one assumption

that should be explicitly declared and checked in a statistical analysis. Importantly,

the Bayesian formalism propagates uncertainty through the analysis enabling a more

detailed assessment of the variability in estimated quantities of interest.

1.1.2 Discrete Priors

We now review some Bayesian methods that have been recently developed and

are relevant to our work. Chen et al. (2015) proposed a framework based on Discrete

Priors (DP) for searching the true function which, for us, is isotonic among finitely
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many alternative functions (or “curves”). Discrete priors make Bayesian inference

and updating to be more concise and computationally efficient, and allow us to

handle more complicated objects (like isotonic functions or any other functions).

While other work usually imposes a Bayesian model directly on the isotonic function,

in the DP approach, the isotonic functions are deterministic and the Bayesian prior

distribution simply randomizes over functions in the so-called candidate set.1 The

candidate set includes finitely many isotonic functions, one of which must be the

true function. One major limitation of using such a finite candidate set is the risk

of inconsistent estimation if in fact none of the candidate curves are near the true

curve. To handle this issue, He and Powell (2016) and He (2017) proposed Discrete

Priors with Resampling (DP-R). They construct a so-called pool of curves, which

is a set containing considerably more alternative functions then the candidate set.

Then, the curves in the candidate set are updated and replaced by resampling from

the pool of curves. Nevertheless, the DP-R still requires that the true function is

either contained in the pool of curves or close to one of its alternatives. As this could

still be unrealistic for many real world settings, Huang et al. (2018) further relax

such assumption by proposing the so-called Discrete Priors with Resampling and

Regeneration (DP-R&R) as a modification to DP-R. They update the functions

in the pool of curves with a regeneration process which brings better alternative

functions (in the sense of mean squared error defined later) into consideration. In

their work and throughout the information collection process, none of the functions
1Note that, because the isotonic functions are fixed, we can connect our analysis of the estima-

tors (of these isotonic functions) back to frequentist statistics.
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in the pool of curves are presumed to be equal to or close to the true curve.

To the best of our knowledge, a complete consistency analysis of the estimators

proposed in these three works (Chen et al., 2015; He and Powell, 2016; Huang et al.,

2018) has not been available. Therefore our goal in this thesis is to carry out a

theoretical investigation of the consistency property of the estimator of the true

function under DP-R&R. Although the statistical model is Bayesian, our analytical

techniques are non-Bayesian. We rely on some tools from frequentist statistical

analysis to prove the consistency of what we called the “Bayes-inspired estimators.”

We will discuss more mathematical detail about DP-R&R in Section 1.3.

1.1.3 Other Applications and Extensions

Initially, isotonic regression arose when several means were compared and esti-

mated. Armitage (1955) gave an early insight in testing linear trends in proportions

and frequencies. Later, Bartholomew (1959a; 1959b) provided a test of homogene-

ity for ordered alternatives, where the alternatives are some mean parameters to be

estimated, which was further refined and extended in Bartholomew (1961). Numer-

ous hypothesis testing questions under extremely diversified constraints have been

explored in Barlow et al. (1972, Ch.3 and 4) and Robertson et al. (1988, Ch.2, 4

and 5), and with application to biomedical science and bioinformatics in Silvapulle

and Sen (2011, Ch.3, 4, 5, 6 and 9). For other issues dealing with monotone and

unimodal density estimation, convexity, and goodness of fit, see Groeneboom (1985;

1989; 2001b; 2001a) and Durot (2001; 2002; 2010).
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When it may not be possible to arrive at a total or simple ordering, especially

when the alternatives (or independent predictors) are multivariate or multidimen-

sional vectors, one may consider partial ordering in issues related to monotonic

functions (see Brunk et al., 1957; Hansohm and Hu, 2012; Stout, 2015). Estima-

tion subject to order restrictions arises also when estimating different variations of

variance in the analysis of variance. A discussion of theory and examples under

both complete and partial ordering among the expected mean squares is available

in Thompson (1962). Despite the popular normality assumptions on the conditional

distribution of the response ỹ given x̃ = x in many regression analysis, the general

theory of isotonic regression makes no distributional assumptions of this kind al-

though many cases that are under consideration fall into the realm of exponential

families. Another exponential family that often appears in practice is the binomial

distribution, which is well investigated in Ayer et al. (1955) and van Eeden (1956;

1957a; 1957b; 1958). If sometimes the value of predictor variable x represents time,

then the ordering is in the sense that the conditional expectation of the response

is believed to be varying in a given pattern with time. Instead of observing ỹ on

a discrete and finite set of x values, a sequence of ỹ values over a block of time is

now recorded. Boswell (1966) analyzed such an example with the Poisson process

where the rate parameter is a function of time; for a more recent study for count

data, see Dunson (2005). There is plenty of work applying isotonic regression under

nonparametric and semiparametric scenarios; see for example Mukerjee (1988) and

Cheng (2009). Isotonic regression plays an important role in solving the so-called

change-point problem; a review in this area can be found in Khodadadi and Asghar-
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ian (2008). Isotonic regression has also emerged in the domain of data mining and

machine learning (Caruana and Niculescu-Mizil, 2006; Du and Goel, 2018).

Extensions include, but are not limited to, generalized isotonic regression for

fitting isotonic models under convex diffrentiable loss functions through recursive

partitioning (Luss and Rosset, 2014); generalized monotonic regression using ran-

dom change points (Holmes and Heard, 2003); nearly-isotonic regression which is

formulated as a convex optimization problem (Tibshirani et al., 2011); sensitiv-

ity analysis in isotonic regression (Chakravarti, 1993); online version of isotonic

regression when data are collected sequentially (Kotłowski et al., 2016); isotonic

regression in efficient learning of generalized linear models and single index models

(Kakade et al., 2011); isotonic regression via partitioning with Lp metric (Stout,

2013); and smoothing isotonic regression with regularization/penalization (Sysoev

and Burdakov, 2018; Wu et al., 2015).

1.2 Preliminaries of Isotonic Regression

In this section, we introduce a number of definitions and consistency theorems

that are previously established in literature, as the foundation of our proofs in

Chapter 2.

1.2.1 Basic Concepts

As we mentioned previously, Barlow et al. (1972) and Robertson et al. (1988)

provide a broad review of the fundamental theory, tests and applications in order-
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restricted statistical inference. Based on these two monographs we now introduce

necessary definitions, properties and theorems in isotonic regression analysis for this

thesis. Recalling that the word “isotonic” means order preserving, we begin with

the definition of simple order and partial order according to Barlow et al. (1972,

Def. 1.2 in Sec. 1.3).

Definition 1.2.1 (Simple and Partial Order).

Let X = {x1, x2, . . . , xk}. A binary relation “>” on X establishes a simple order

on X if:

(1) it is reflexive: x > x for x ∈X;

(2) it is transitive: x, y, z ∈X, x > y, y > z imply x > z;

(3) it is antisymmetric: x, y ∈X, x > y, y > x imply x = y;

(4) every two elements are comparable: x, y ∈X implies either x > y or y > x.

A partial order is reflexive, transitive and antisymmetric, but there may be non-

comparable elements. Notice that every simple order is a partial order.

Frequently, xi, i = 1, 2, ..., k are distinct real numbers, in which case we can

assume that x1 < x2 < · · · < xk without loss of generality. Therefore x1 < x2 <

· · · < xk establishes a simple order on X. As we only consider alternatives that are

always comparable, we assume to use the simple order on X henceforward unless

specified.

For i = 1, 2, . . . , k, set m(xi) be the number of observations recorded at xi.

Let yj(xi), j = 1, 2, . . . ,m(xi), be the corresponding set of measurements of some
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quantity. That is, ∀xi ∈X, y1(xi), . . . , ym(xi)(xi) are observations on a distribution

with some unknown mean parameter denoted by µ(xi) = µi.

Definition 1.2.2 (Isotonic Function).

A real valued function f on X is called isotonic if x, y ∈ X and x ≤ y imply

f(x) ≤ f(y). If x, y ∈ X and x ≤ y imply f(x) ≥ f(y), then f is called antitonic

with respect to the simple order x ≤ y.

Definition 1.2.3 (Isotonic Regression).

Let g be a given function on X and w a given positive function on X. An isotonic

function g∗ on X is an isotonic regression of g with weights w with respect to the

simple ordering x1 ≤ x2 ≤ · · · ≤ xk if it minimizes the sum

∑
x∈X

[g(x)− f(x)]2w(x) (1.2.1)

in the class of isotonic functions f on X. When the weight function and the simple

ordering are understood, we call g∗ simply an isotonic regression of g.

Definition 1.2.4 (Sample Regression).

Suppose µ = µ(x), x ∈ X is some mean function to be estimated. For i =

1, 2, . . . , k, let m(xi) be the number of observations recorded at xi. Let yj(xi),

j = 1, 2, . . . ,m(xi), be the corresponding set of independent measurements of some

quantity. The sample regression function ȳ is defined by

ȳ(xi) = 1
m(xi)

m(xi)∑
j=1

yj(xi), xi ∈X,
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or the sample average of all the observation values measured at xi. In the context

of isotonic regression the sample regression function ȳ can be regarded as a basic

estimate of the mean function µ.

A simple approach for estimating µ is to solve the ordinary least squares

problem

∑
xi∈X

m(xi)∑
j=1

[yj(xi)− f(xi)]2

where the values of f(xi) are decision variables. Since

m(xi)∑
j=1

[yj(xi)− f(xi)]2 =
m(xi)∑
j=1

[yj(xi)− ȳ(xi)]2 +m(xi) [ȳ(xi)− f(xi)]2 ,

an equivalent problem is to minimize

∑
xi∈X

[ȳ(xi)− f(xi)]2m(xi) (1.2.2)

in the class of linear functions f on X.

If no restriction were to be placed on µ, its least squares estimate is clearly

the function ȳ(x), x ∈X. In the situation where µ is known to be nondecreasing in

x, a least squares estimate of µ would be obtained by minimizing the weighted sum

of squares (1.2.2) in the class of isotonic functions with respect to the simple order

on X: functions f such that xi ≤ xj implies f(xi) ≤ f(xj).

Definition 1.2.5 (Sample Isotonic Regression).
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Let w be a positive function on X. The sample isotonic regression, or isotonized

sample regression function with weights w is the isotonic regression ȳ∗ of ȳ. That

is, it minimizes
∑
x∈X

[ȳ(x)− f(x)]2w(x) (1.2.3)

subject to f(xi) ≤ f(xj) for xi ≤ xj. In practice, we use the number of observations

recorded on x as the weight, that is: w(x) = m(x), x ∈X.

Comparing Definition 1.2.5 and Definition 1.2.3, g∗ is the isotonic regression

of g and ȳ∗ is the isotonic regression of ȳ. We see that ȳ∗ and ȳ are just special

cases of g∗ and g respectively. In the case of a simple order, estimation of an

isotonic regression function is closely related to estimation of a cumulative (sample)

regression function. This part has no major impact to our analysis in this thesis.

Therefore we direct readers to Barlow et al. (1972, Sec.2.2), Brunk (1970) and

Marshall (1970) for more detailed discussions.

Graphical interpretation–greatest convex minorant

A graphical interpretation of the isotonic regression is to plot the cumulative

sums

Gj =
j∑
i=1

g(xi)w(xi)

against the cumulative sums of weights

Wj =
j∑
i=1

w(xi),
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where xi ∈ X and j = 1, 2, ..., k. That is, one plots the points Pj = (Wj, Gj) with

P0 = (0, 0) in the Cartesian plane. These points constitute the cumulative sum

diagram (CSD) of the given function g with weights w. The slope of the segment

joining Pj−1 to Pj is just g(xj). The slope of the chord joining Pi−1 to Pj(i ≤ j)

represents the weighted average

Av{xi, xi+1, . . . , xj} =
j∑
r=i

g(xr)w(xr)/
j∑
r=i

w(xr). (1.2.4)

Barlow et al. (1972) prove that the isotonic regression of g, i.e. g∗, is given by

the slope of the greatest convex minorant (GCM) of the CSD. The GCM is also

commonly known as the “convex envelope” and graphically it is the path along

which a taut string lies if it joins P0 and Pk and is constrained to lie below the CSD.

The value of the isotonic regression g∗ at a point xj is just the slope of the GCM at

the point P ∗j with horizontal coordinate ∑j
i=1w(xi). If P ∗j is a corner of the graph of

the GCM, g∗(xj) is the slope of the segment extending to the left. An illustration of

CSD with its corresponding GCM is given in Figure 1.2.1. The isotonic regression

g∗ can be easily calculated by the Pool-Adjacent-Violators (PAV) algorithm in O(n)

steps (Ayer et al., 1955). The graphs of CSD and GCM were investigated long

before Barlow et al. (1972). A program developed by Kruskal (1964) provides the

scheme of implementing the Pool-Adjacent-Violator algorithm, and an illustration

of the computation with a portion of the data from Bhattacharyya and Klotz (1966)

can be found in Barlow et al. (1972, Example 1.3 in Sec.1.2) . For other variations

of this algorithm we refer readers to Barlow et al. (1972, Sec.2.3). For more detail

16



Figure 1.2.1: Examples of CSD and GCM (Barlow et al., 1972; Robertson et al.,
1988)
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Figure 1.2.2: Graphical interpretation of pooling adjacent violators (Barlow et al.,
1972)

and recent developments in GCM, PAV and computationally and algorithmically

related topics, see for example Lee et al. (1983), Pardalos and Xue (1999), Anevski

and Hössjer (2006), and Luss et al. (2010). We present a simple illustration of this

algorithm in Figure 1.2.2.

1.2.2 Properties of Isotonic Regression Estimates

We state theorems on the uniqueness, existence and consistency of the isotonic

regression estimator g∗ from Barlow et al. (1972, Sec.1.3, 2.1, 2.6), which are the

most important properties for our work.

Theorem 1.2.1 (Uniqueness).

An isotonic regression g∗ of g with weights w is an isotonic function on X with
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respect to a simple order and satisfies

∑
x∈X

[g(x)− g∗(x)] [g∗(x)− f(x)]w(x) ≥ 0

and

∑
x∈X

[g(x)− f(x)]2w(x) ≥
∑
x∈X

[g(x)− g∗(x)]2w(x) +
∑
x∈X

[g∗(x)− f(x)]2w(x)

for every isotonic function f on X.

Conversely, if an isotonic function u satisfies

∑
x∈X

[g(x)− u(x)] [u(x)− f(x)]w(x) ≥ 0

for every isotonic function f on X then u is an isotonic regression of g with weights

w. There is at most one such isotonic function.

Theorem 1.2.2 (Necessary and Sufficient Condition).

An isotonic function u on X is the isotonic regression of g with weights w if and

only if
∑
x∈X

[g(x)− u(x)]u(x)w(x) = 0

and
∑
x∈X

[g(x)− u(x)] f(x)w(x) ≤ 0
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for all isotonic function f . The isotonic regression g∗ of g also satisfies

∑
x∈X

g(x)w(x) =
∑
x∈X

g∗(x)w(x)

For a slightly different version of this theorem, see Barlow et al. (1972, Thm.1.8).

The existence of an isotonic regression is proved as a corollary to the following The-

orem 1.2.3, which is also used later to prove consistency.

Theorem 1.2.3 (Existence).

If g1 and g2 are isotonic functions on X such that g1(x) ≤ g(x) ≤ g2(x) for x ∈X,

and if g∗ is an isotonic regression of g, then also g1(x) ≤ g∗(x) ≤ g2(x) for x ∈X.

In particular, if a and b are constants such that a ≤ g(x) ≤ b for x ∈ X, then also

a ≤ g(x) ≤ b for x ∈X. Hence, an isotonic regression of g exists.

The consistency of isotonic regression estimator is the foundation of our the-

oretical work in this thesis. The following Theorem 1.2.4 of Barlow et al. (1972,

Thm.2.1) states that if ȳ∗ is the isotonic regression of the sample mean ȳ, then ȳ∗

is better then ȳ in terms of least squares.

Theorem 1.2.4 (Isotonic Regression of an Estimator is Better Than the Estimator

Itself).

Let µ be an unknown function on X, known to be isotonic with respect to the simple

order on X. Let w(x), x ∈ X be a set of positive weights. Let g be an estimate of
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µ. Let g∗ be the isotonic regression of g with weights w. Then

∑
x∈X

[µ(x)− g∗(x)]2w(x) ≤
∑
x∈X

[µ(x)− g(x)]2w(x).

We can interpret the squared difference [µ(x)− g(x)]2 as a “loss” sustained if

g(x) is taken as estimate of the unknown true µ(x). In this sense Theorem 1.2.4

indicates that if µ is isotonic, the (weighted) average loss is not greater when the

estimate g is replaced by its isotonic regression g∗.

The main theorem of consistency (Barlow et al., 1972, Thm.2.2) further shows

that if an estimator (or a basic estimator like ȳ) of µ is consistent (or strongly

consistent), then its isotonic regression ȳ∗ is also a consistent (strongly consistent)

estimator of µ. Consider a setX, not necessarily finite, endowed with a partial order.

Let µ be an isotonic function onX. Let {Xn} be an expanding class of finite subsets

of X: Xn ⊂ Xn+1 · · · ⊂ X; set X ′ = ∪nXn. (In certain applications, Xn may

coincide with X for each n.) Denote by µn a restriction of µ to Xn: µn(x) = µ(x)

for x ∈ Xn. Let g̃n be an estimator of µ, n = 1, 2, .... By applying Theorem 1.2.4,

Barlow et al. (1972, Thm.2.2) state the following main consistency results.

Theorem 1.2.5 (Consistency).

For n = 1, 2, ..., let wn(x), x ∈ Xn (or w̃n(x), x ∈ Xn) be positive reals (or positive

random variables). Let {g̃n,Xn} be a consistent (strongly consistent) sequence of

estimators of µ at each x ∈ X ′ = ∪nXn. Let µ be isotonic on X. Denote by g̃∗n

the isotonic regression of g̃n on Xn with weights wn (or w̃n), n = 1, 2, .... Then

{g̃∗n,Xn} also is a consistent (strongly consistent) sequence of estimators of µ at
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each x ∈X ′.

The above two theorems deal with consistency when µ is isotonic on X. If µ

is not isotonic, define µ∗ as the isotonic regression of µ, and consider estimating the

(unknown) isotonic regression function µ∗. It should be noted that µ∗ is not defined

until a weight function w on X is specified. Once the weight w on X is clear, one

may take the isotonic regression of ȳ with weights w as estimator of µ∗. Then by

using the strong law of large numbers, Barlow et al. (1972, Thm. 2.15) prove that

ȳ∗ converges to µ∗ almost surely as minxi∈X m(xi)→∞.

Theorem 1.2.6 (Consistency of Sample Isotonic Regression Estimator ).

The sample isotonic regression function ȳ∗ with weights w(x), x ∈X, converges with

probability 1 to the isotonic regression µ∗ at each x ∈X as

min
x∈X

m(x)→∞

where m(x) is the number of observations recorded at x.

The first theorem of this kind to our knowledge was given by Ayer et al. (1955).

A generalization appears in Brunk (1955), and both are subsumed by Brunk (1958,

Thm. 6.2), of which a corrected version appears in Brunk (1970, Thm. 4.1 in

Sec.1.3). For an extension of these results to generalized isotonic regression, see

Robertson and Wright (1975).

We now state one more theorem from Robertson et al. (1988, Thm.1.3.5) that

will be used in the proof of a lemma later. Suppose g and w are functions defined
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on X, set

Av(A) =
∑
x∈A g(x)w(x)∑
x∈Aw(x)

for those A such that A 6= ∅ and A ⊂ X. That is: Av(A) is a special average of

g(x) over a nonempty subset A of X with weights w. Let [g∗ = c] denote the set

{x ∈ X : g∗(x) = c}. While Av(A) depends on g, this will not be made explicit in

the notation.

Theorem 1.2.7.

If c is any real number and if the subset [g∗ = c] of X on which g∗ takes the value

c is nonempty, then

c = Av([g∗ = c]).

Note that the definition of Av(A) is very similar to the expression 1.2.4.

1.3 Paradigm of Discrete Prior

In this section, we introduce the definition of the candidate set, the pool of

curves and the information collection process, as well as two major algorithms:

resampling and regeneration, all of which lead to the construction of our weighted

sum estimator.

1.3.1 General Setup and Notations

We will make modifications to the corresponding definition and notations in

Section 1.2.1 to maintain a consistent style. We begin with a slight modification to
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the definition of X in the previous context and in the Definition 1.2.1.

Definition 1.3.1 (Set of Choices).

Set

X = {x1, x2, ..., xM}

as a collection of M different choices where x1, x2, ..., xM are M distinct real num-

bers. Without loss of generality for the purpose of our research needs, we may

further specify that

x1 = 1, x2 = 2, ..., xM = M.

That is: X = {1, 2, ...,M}. From now on we use this X = {1, 2, ...,M} for the rest

of this thesis unless otherwise specified.

Definition 1.3.2. Define an unknown function

µ(xi) = µi, xi ∈X,

which is assumed to be isotonic with respect to the simple order x1 < x2 < ... < xM ,

that is, 1 < 2 < ... < M , on the set X. We call µ(xi) = µi the true function, or the

true curve. For simplicity, we may write µ(x), x ∈X when the context is clear.

In many practical applications, such a true function µ is considered as a util-

ity function (Chen et al., 2015) or a cost function (Huang et al., 2018) either to

be maximized or minimized over the set of alternatives. The main goal of this

thesis, however, is to study the consistency of the proposed estimator of this true
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function through an information collection process with a budget of N sequential

measurements.

In each experiment, we only query one choice of x ∈ X and obtain a single

noisy measurement ŷ(x) of µ(x). At the nth experiment (or call it iteration or

measurement), we measure xn−1 and choose to measure xn ∈ X in the next round

of experiment according to some exogenous decision-making rule. Note that xn with

superscript index n indicates that it is the one element in X we query at the time

(n + 1) experiment, and it should not be confused with the notation in Definition

1.3.1. We assume in the (n+1)th experiment, the inherent independent sequence of

noise, W n+1, is normally distributed with mean zero and variance σ2 that is known

to us. Thus, for n = 0, 1, ...,N − 1, the independent sample measurement ŷn+1(xn)

for the alternative xn is of the form

ŷn+1(xn) = µxn +W n+1

where W n+1 iid∼ N(0, σ2). Notice that, as pointed out in Chen et al. (2015), the deci-

sion x is indexed by superscript n and the measurement ŷ is indexed by superscript

(n+ 1) for the purpose of emphasizing the fact that ŷn+1 is an unknown stochastic

value when the measurement decision is made at time n. The value of ŷn+1 will only

be observed at the time (n+ 1) experiment after the time n measurement has been

performed. We formally state the filtration in the following definition.

Definition 1.3.3 (Filtration Up To Time n).

Denote by Fn the sigma algebra generated by the history of decisions and
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Time 0 1 2 ... n− 1 n n+ 1

Measurement ŷ1(x0) ŷ2(x1) ... ŷn−1(xn−2) ŷn(xn−1) ŷn+1(xn)
Decision x0 x1 x2 ... xn−1 xn xn+1

Table 1.1: Information Collection

measurements up to time n. That is:

Fn = σ(x0, ŷ1(x0), x1, ŷ2(x1), ..., xn−1, ŷn(xn−1)).

An illustration of the information collection process can be found in Table 1.1.

Definition 1.3.4 (Information Collection).

We define the following three quantities that are related to information collection:

(1) Let

Ĥ
n = {ŷ1(x0), ŷ2(x1), ..., ŷn(xn−1), xi ∈X, i = 0, 1, 2, ..., n− 1}

be the history of independent observations up to time n, i.e., the first n infor-

mation collection measurements.

(2) Let

wn = wn(x), x ∈X = {1, 2, ...,M}

be the number of measurements taken on the alternative x up to time n.

Then ∑x∈X w
n(x) = n. Throughout this thesis, we assume that wn(x) → ∞

as n→∞ for each x ∈X.
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(3) Define the sample mean function of each x up to time n as

ȳn = ȳn(x) = 1
wn(x)

wn(x)∑
j=1

ŷj(x), x ∈X.

Notice that, for the sake of conciseness, we slightly sacrifice the clarity in nota-

tion by abusing the usage of subscript of ŷ. Here each ŷj(x), j = 1, 2, ..., wn(x)

is a measurement taken on that particular x and it may not be the jth obser-

vation in the sequence of information collection Ĥn.

Remark. This wn is in the same role of the function m in Definition 1.2.4. Again

this is due to the fact that in real applications we use the number of measurements

taken on each alternative as the weight function in sample isotonic regression. We

use x ∈X when generically referring to an arbitrary element of X, and use xi ∈X

to additionally emphasize its order in the sequence of measurements.

1.3.2 Candidate Set and Pool of Curves

The concept of a candidate set is first introduced in Chen et al. (2015) to over-

come the computational difficulty of Bayesian inference on functions. Later, He and

Powell (2016) extend the idea with a much larger set, the pool of curves, such that

the curves in the candidate set can be updated by the curves in the pool of curves

with some resampling criterion. Huang et al. (2018) allows the functions in the pool

of curves to be updated and extended with some regeneration mechanism. Since

both of these two sets will be updated during the information collection process,

naturally their notation will include the time index n.
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Definition 1.3.5 (Candidate Set and Pool of Curves).

Denote by Cn and Pn respectively the candidate set and the pool of curves up to

the nth information collection experiment. Set

Cn = {fn1 , fn2 , ..., fnL}.

We use C and P when we refer to the candidate set and pool of curves generically.

Throughout the entire information collection process, the number of elements

in the candidate set is fixed at ‖Cn‖ = L for all n. However, we allow the L

candidates in Cn to be replaced by other better (in terms of some criterion) functions.

The superscript n indicates the current number of iterations and the subscripts

i, i = 1, 2, ..., L only indicate that fni is the ith candidate in Cn.

As will be elaborated more in Section 1.3.3, we generate new candidate func-

tions by isotonic regression and add them into Pn as extensions. Because we may

not able to add a function into Pn at each time the regeneration procedure is trig-

gered, we distinguish the sequence of isotonic regression estimators from the actual

sequence of functions that are being added into the pool of curves in the following

definition using the notations in Definition 1.3.4:

Definition 1.3.6 (Sample Isotonic Regression Based on the Measurement History

Ĥ
n ).

On the set of alternatives X, define {fn}∞n=1 as the sequence of sample isotonic

regression estimators of ȳn with weight wn according to the measurement history

Ĥ
n.
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Let
{
fNq

}∞
q=1

be the sequence of functions that is added into the pool of curves.

That is, {Nq}∞q=1 is the subsequence of time indices at which a function in {fn}∞n=1

is added into the pool of curves. In addition, for two functions h, g ∈ {fn}∞n=1 that

are added into the pool of curves with h added later than g, we write Nh and N g

as the moment of time (or order of the experiment) when h and g are being added

respectively. Then in this case, Nh > N g.

Now we may write

Pn = {fN1 , fN2 , ..., fNl(n)}

with cardinality ‖Pn‖ = l(n). Because we only add at most one function at a time

and never remove functions from the pool of curves, for the time indices n > Nh >

N g we have

PNg ⊆ PNh ⊆ Pn.

For example, up to the 100th iteration, we could have

P100 = {fN1 , fN2 , fN3} = {f 7, f 25, f 90}.

Thus in this particular example, the cardinality of the current pool of curves P100

is l(n) = l(100) = 3, with N1 = 7, N2 = 25, Nl(n) = Nl(100) = N3 = 90. That is: in

the first 100 iterations we add in total three candidates at the 7th, 25th and 90th

iteration.

We end this subsection with the definition of three types of the Mean Squared
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Error (MSE) used in the regeneration and resampling procedures and later in the

consistency proofs. In general they are the MSE between two functions, between

a function and the sample mean, and between a function with the measurement

history up to the time this function is added into the pool of curves.

Definition 1.3.7 (Mean Squared Errors (MSE)).

For any two functions h, g ∈ {fn} that are added into P at the time Nh and N g

respectively, denote by ĤNh

= {ŷ1, ŷ2, ..., ŷN
h} the measurement history up to time

Nh. We define the following mean squared errors using the measurement history

Ĥ
Nh

and Ĥn accordingly:

(1) Define the MSE between h and ĤNh

as

Ξ̂(h, ĤNh

) = 1
Nh

∑
x∈X

∑
1≤j≤wNh (x)

[h(x)− ŷj(x)]2.

(2) Define the MSE between h and g as

Ξ(h, g) = 1
M

∑
x∈X

[h(x)− g(x)]2.

Note that Ξ(h, g) defined in this way is indeed the square of an L2-norm up

to a scale factor 1/M. Additionally the sample mean up to time Nh, ȳNh =

ȳN
h(x), x ∈ X, is also a finite function whose M values on X can be viewed

as an M -dimensional vector. Thus in the same fashion we write:
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(3) The MSE between the function h and ȳNh as

Ξ(h, ȳNh) = 1
M

∑
x∈X

[h(x)− ȳNh(x)]2.

Similarly, for an arbitrary n, the MSE between the function h with ȳn based

on Ĥn is defined as

Ξ(h, ȳn) = 1
M

∑
x∈X

[h(x)− ȳn(x)]2.

1.3.3 Regeneration Procedure

We begin with the formulation of the prior probabilities of the candidates in

Cn. Suppose for each candidate fnl ∈ Cn there is a corresponding current probability

pnl , l = 1, 2, ..., L. That is: pnl is the current prior probability that the l-th candidate,

fnl , is the true curve µ at the current experiment time n. In this sense the functions

in the candidate set Cn are considered as the discrete priors of µ with probability

pnl , l = 1, 2, ..., L. Conditioning on fnl being the true curve and on deciding to

measure xn in the next iteration, the (n + 1)th observation is given by ŷn+1 ∼

N(fnl (xn), σ2), and the likelihood of fnl is given by

L(ŷn+1|µ = fnl ) = 1√
2πσ

exp
{
− [ŷn+1 − fnl (xn)]2

2σ2

}
.
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Applying Bayes Theorem, the posterior probability of fnl being the true curve, pn+1
l ,

is proportional to the prior pnl multiplied by the above likelihood:

pn+1
l = P(µ = fnl |Fn+1)

= P(µ = fnl |ŷn+1(xn), xn, ..., ŷ1(x0), x0)

∝ L(ŷn+1|µ = fnl , x
n, ..., ŷ1(x0), x0)·P(µ = fnl |xn, ..., ŷ1(x0), x0)

= L(ŷn+1|µ = fnl , x
n)·P(µ = fnl |xn,Fn)

= L(ŷn+1|µ = fnl , x
n)·P(µ = fnl |Fn)

= L(ŷn+1|µ = fnl )· pnl

= 1√
2πσ

exp
{
− [ŷn+1 − fnl (xn)]2

2σ2

}
pnl .

Since pn+1
l , l = 1, 2, ..., L should sum to 1, after dividing by the normalizing factor

L∑
l′=1

1√
2πσ

exp
{
− [ŷn+1 − fnl′ (xn)]2

2σ2

}
pnl′ ,

the updating equation for pl is given by

pn+1
l =

exp
{
− [ŷn+1 − fnl (xn)]2 /(2σ2)

}
pnl∑L

l′=1 exp
{
− [ŷn+1 − fnl′ (xn)]2 /(2σ2)

}
pnl′
. (1.3.1)

As will be discussed in the next section, when resampling happens we are

not able to use (1.3.1). Instead we need to use the posterior probability derived

according to the entire measurement history up to time (n+ 1) if the resampling is

triggered at time (n + 1). In that case, conditional on fn+1
l being the true curve,
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the likelihood of fn+1
l based on all of the previous observations is given by

L
(
Ĥ

n+1 = {ŷ1, ŷ2, ..., ŷn+1}
∣∣∣µ = fn+1

l

)

=
n∏
i=0

1√
2πσ

exp

−
[
ŷi+1 − fn+1

l (xi)
]2

2σ2

 .

Then the corresponding posterior pn+1
l is updated by

pn+1
l =

∏n
i=0 exp

{
−
[
ŷi+1 − fn+1

l (xi)
]2

/(2σ2)
}
p0
l∑L

l′=1
∏n
i=0 exp

{
−
[
ŷi+1 − fn+1

l′ (xi)
]2

/(2σ2)
}
p0
l′

=

∏n
i=0 exp

{
−
[
ŷi+1 − fn+1

l (xi)
]2

/(2σ2)
}

∑L
l′=1

∏n
i=0 exp

{
−
[
ŷi+1 − fn+1

l′ (xi)
]2

/(2σ2)
} (1.3.2)

where p0
l′ , l
′ = 1, 2, ..., L are assumed to have a uniform prior distribution, i.e., p0

1 =

p0
2 = ... = p0

L = 1/L.

The idea of regenerating new candidates to be added into P was first proposed

in Huang et al. (2018). The regeneration is triggered every nreg iterations and the

procedure can be summarized in Algorithm 1.

Again even with such regeneration procedure, we do not assume that the true

curve µ would ever be included in P .

1.3.4 Resampling Procedure

The resampling method was first introduced by He and Powell (2016) and

then slightly simplified by Huang et al. (2018). The resampling is triggered either

every nres iterations, or over a certain percentage of the candidates in Cn satisfying
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Algorithm 1: Regeneration Procedure

1 Suppose at the nth iteration, the regeneration is triggered after recording

the observation ŷn. Then regenerate the curve fn as the sample isotonic

regression estimator of ȳn with weight wn based on the measurement

history Ĥn. Notice that fn is an element of {fn}∞n=1 in Definition 1.3.6.

2 for each curve fNj , j = 1, 2, ..., l(n), in the pool Pn do

3 Calculate the MSE Ξ(fn, fNj)

4 endfor

5 if all the MSE Ξ(fn, fNj) ≥ εnreg for some positive threshold value εnreg
then

6 Insert the curve fn into the pool, i.e., Pn+1 = Pn⋃{fn}.
7 endif

8 Reduce the threshold to εn+1
reg = εnreg· γ where γ ∈ (0, 1). The initial

threshold is ε0reg = εreg so that εnreg = εreg· γn, where γn is the nth power

of γ.

9 Return the updated pool Pn+1

34



pnl ≤ εres where εres ∈ (0, 1) is some threshold value. Combining the process in these

two works with our own modification for the purpose of later proof, we present the

modified resampling procedure in Algorithm 2. Note that in the Step 4 of Algorithm

2, the weighted sampling without replacement is not a simple process. We refer to

the Algorithm 1 in He and Powell (2016) for more computation details.

As in the case of regeneration, we do not assume that the true curve µ would

ever be included in C. Notice that in each round of iteration the resampling pro-

cedure may be triggered more than one time since it could take several rounds

of resampling such that a certain percentage, say 25% of the (or L/4 that many)

candidates in Cn are all satisfying pnl ≤ εres.

1.3.5 Estimator of the True Curve

Definition 1.3.8. Denote by f̄n the estimator of the true curve µ on X up to the

nth information collection experiment. Let L = {1, 2, ..., L} be the index set for C.

Then f̄n is formulated as a weighted sum of all the candidate functions in Cn:

f̄n(x) =
∑
l∈L

pnl f
n
l (x), x ∈X.

In this thesis we study the asymptotic behavior of this estimator and prove the

strong consistency of f̄n as an estimator of µ.
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Algorithm 2: Resampling Procedure

1 Let N be the information collection budget which is the maximum

number of experiments we can afford.

2 for n = 0 to N − 1 do

Step 1 Take the measurement ŷn+1 and update each pnl for fnl ∈ Cn by (1.3.1) i.e.,

pn+1
l = exp {−[ŷn+1 − fnl (xn)]2 /(2σ2)} pnl∑L

l′=1 exp {−[ŷn+1 − fnl′ (xn)]2 /(2σ2)} pnl′

Step 2 Remove curves with pn+1
l ≤ εres from Cn. Let Kdel be the number of deleted

curves.

If Kdel = 0 then remove one curve with the smallest pn+1
l from Cn and set

Kdel = 1.

Step 3 Calculate the mean squared errors Ξ(h, ȳn) for each h ∈ Pn based on Ĥn.

Select K curves (K > Kdel) with the smallest MSEs.

Step 4 From the K curves, using weighted (pnl ) sampling without replacement,

select Kdel curves to be resampled into Cn.

Step 5 Again update the probabilities pn+1
l of each candidate in Cn by (1.3.2), i.e.,

pn+1
l =

∏n
i=0 exp

{
−[ŷi+1 − fn+1

l (xi)]2 /(2σ2)
}

∑L
l′=1

∏n
i=0 exp

{
−[ŷi+1 − fn+1

l′ (xi)]2 /(2σ2)
}

Here we do not use (1.3.1) because pn values are not available for the Kdel

curves that are newly added into Cn.

end for

Return the updated Cn+1 and pn+1
l , l = 1, 2, ..., L.
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1.4 Motivating Example

Our research topic originates from the field of supply chain and logistics, specif-

ically, the vehicle allocation problem in mega-cities. In the recent decade, the pros-

perity of e-commerce generates enormous numbers of business-to-consumer (B2C)

customers in major large cities worldwide. Such a dramatic change of business

model greatly challenges the city logistics, due to the immense demands with high

volatility based on the location of customers in different regions, and the need to

make deliveries subject to limited shipping capacities and resources.

Huang et al. (2018) studied the vehicle allocation problem in Beijing and it

can be generally described as follows. Suppose that a logistic company owns M

homogeneous vehicles and the entire urban area its delivery service covers can be

divided into R regions. In each region r, on a daily basis, set Lr as the random

vector of all the customer locations and Dr as the random vector of the delivery

quantities. Then the pair (Lr(ω),Dr(ω)) is a realization of the everyday task that

the company faces. Now, a natural question to ask is how to allocate theM vehicles

to the R regions such that the total expected operational cost is minimized. The

cost function can be different for each choice of region r. An illustration of two

different cost functions for two regions r and r′ is given in Figure 1.4.1.

If the true operational cost function is known or easy to evaluate, we essentially

face a deterministic resource allocation problem which can be solved using standard

optimization algorithms. However in practice the accurate assessment for the cost of

each set of vehicle allocation plans could be computationally expensive and subject
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Figure 1.4.1: Different expected cost functions of two regions in (Huang et al.,
2018)

to some limited experimental budget. Therefore we need an efficient way to collect

information regarding with the true cost function, and such a topic falls into the

realm of optimal information collection and learning, which is beyond the primary

scope of this thesis. We discuss it in Appendix A.

To relate this motivating example back to Section 1.3, X is the set of all pos-

sible vehicle allocations within one region. Recall that the cost function is assumed

to be monotonic and piecewise linear, and that we only observe sample points for

costs on discrete integer values, namely, the number of vehicles assigned to a region.

The goal is to estimate the true cost function µ by a series of measurements (Ĥn)

taken on each allocation. Although the cost function could be depending on regions,

the theoretical derivations are very similar for each different region. Therefore we

only study the problem within one region and we do not use a subscript r for any

of the quantities defined in the previous sections.
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Chapter 2: Consistency of Weighted Estimator in DP-R&R

In this chapter we present a consistency analysis of the estimator f̄n. Section

2.1 shows that, through the regeneration procedure, we are able to add infinitely

many functions to the pool of curves and they can be arbitrarily close to the true

curve. Section 2.2 argues that the curves (with the smallest MSE) that we resam-

ple into the candidate set are in fact getting closer to the true curve during the

information collection process. Section 2.3 demonstrates that for functions that are

distanced away from the true curve, we are able to remove them by the resampling

procedure so that eventually all such inferior functions will be deleted and substi-

tuted by functions that can be arbitrarily close to the true curve. Finally in Section

2.4 we establish the strong consistency of the estimator f̄n for the true function

µ. As a supplement to the consistency proof, in Section B we discuss the limiting

behavior of isotonic regression estimators where not every alternative is measured

infinitely many times.

2.1 Cardinality of Pool of Curves

Given a fixed sample path ω, as n goes to infinity the limiting cardinality of

Pn is either finite or infinite. We investigate these two cases below, beginning with a
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lemma which shows that the event where an isotonic regression estimator coincides

with the true function is a measure zero set.

Lemma 2.1.1. Suppose a function h = fN
h ∈ {fn}∞n=1 is an isotonic regression

estimator of ȳNh(x). For any subset X ′ ⊆X, define

B̃ = {ω : h(x) = µ(x) for all x ∈X ′ ⊆X} ,

which is the event that h partially coincides with µ on X. Then P(B̃) = 0.

Proof. First, notice that the isotonic regression estimator h is the optimal solution

to a quadratic programming problem in equation (1.2.3). It is shown by Theorem

1.2.1 that the isotonic regression estimator is unique. We then derive our argument

based on the relationship between the isotonic regression estimator and the Greatest

Convex Minorant (GCM) of the Cumulative Sum Diagram (CSD) of ȳNh(x), x =

1, 2, . . . ,M . In general, the isotonic regression h partitions X into sets on which h

is constant, that is, into level sets for ȳNh , called solution blocks by Barlow et al.

(1972). On each of these solution blocks the value of h is the weighted average of the

values of ȳNh over the block, using weights wNh defined in the Definition 1.3.4. In

other words, the solution blocks are the sets of consecutive elements ofX on each of

which h assumes a particular value. There are at most finitely many solution blocks

since X is a finite set.

Let Ei, i ∈ D = {1, 2, ..., d} be the d solution blocks of ȳNh on X. Then

X = ⋃
i∈D Ei where Ei∩Ej = ∅, i 6= j. Suppose µ1, µ2, ..., µd are the d distinct values

of µ(x) on X and d ≤ M . Then there exists a subset of indices D′ ⊆ D such that
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X ′ ⊆ ⋃
j∈D′ Ej and h(x) = µ(x) = µj,∀x ∈ Ej, j ∈ D′. Denote by ξ = ξ(x) = ξx

the function we need to estimate, then in our case ξ(x) = ȳN
h(x), x ∈X. It follows

from Theorem 1.2.7 that

µj =
∑
x∈Ej ξx · wN

h(x)∑
x∈Ej w

Nh(x) , j ∈ D′. (2.1.1)

Let d′ = ‖D′‖. Then the vector (ξ1, ξ2, . . . , ξM)t loses d′ degrees of freedom due

to (2.1.1) above. Because the sample means ȳNh(x) are normally distributed and

independent due to the exogenousness of the sequence of decisions xn, the vector

ȳN
h is multivariate normal. Denote by η an M -dimensional multivariate normal

random variable with mean equal to the value of the true curve and with some

known covariance matrix Σ, i.e., η ∼ NM(µ,Σ) where

µ = (µ(1), µ(2), . . . , µ(M))t = (µ1, µ2, ..., µM)t.

Define

E =

(ξ1, ξ2, . . . , ξM)t ∈ RM |h = arg min
f isotonic on X

M∑
x=1

[f(x)− ξx]2wN
h(x),∀x ∈X

 ,

then dim(E ) = M − d′ < M , since 1 ≤ d′ ≤ d ≤ M . That is, E lives in a

lower-dimensional subspace of RM . In order to show P(B̃) = 0, it is sufficient

to show that P(η ∈ E ) = 0. Letting λ denote the Lebesgue measure on a M -

dimensional Euclidean space, it follows that λ(E ) = 0. Since the induced measure

of η is absolutely continuous with respect to Lebesgue measure, λ(E ) = 0 implies
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P(η ∈ E ) = 0. Hence P(B̃) = P(η ∈ E ) = 0.

Theorem 2.1.1 (Finite Cardinality).

For a fixed sample path ω such that lim
n�∞
‖Pn(ω)‖ <∞, we have:

i) The true curve µ ∈ limn�∞Pn(ω). That is, there exists a large enough N such

that for all n ≥ N we have µ ∈ Pn(ω).

ii) Let A = {ω : limn�∞ ‖Pn(ω)‖ <∞}. Then P(A) = 0.

Proof. For simplicity, we use Pn(ω) = Pn once the sample path ω is fixed. Because

we assume the cardinality of the limiting set is finite, we define the finite set P∞ ={
f[1], f[2], . . . , f[L̄]

}
as the limiting set of Pn. That is, there exists N large enough

such that

Pn = P∞ =
{
f[1], f[2], . . . , f[L̄]

}

for all n ≥ N .

We proceed by contradiction. Suppose µ /∈ P∞, set δ = min
l∈I

Ξ
(
f[l], µ

)
and

I =
{

1, 2, . . . L̄
}
. Recall εnreg = γn·εreg where εreg is a pre-specified fixed threshold and

γ ∈ (0, 1). Then set Nγ (δ, εreg) = ln (δ/εreg) / ln (γ) such that, for n > Nγ (δ, εreg),

we have

n >
ln (δ/εreg)

ln (γ)
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=⇒ n · ln (γ) < ln (δ/εreg)

=⇒ γn < δ/εreg

=⇒ γn · εreg < δ

=⇒
√
εnreg <

√
δ,

which indicates 0 <
√
δ −

√
εnreg. Recall that fn is the isotonic regression estimator

of ȳn(x) based on the measurement history up to the nth step. Moreover, ȳn(x) is

a strongly consistent estimator of µ(x) at each x ∈X. Thus by Theorem 1.2.5 and

Theorem 1.2.6, fn is also a strongly consistent estimator of µ(x) at each x ∈X. The

strong consistency of fn guarantees that for any ε satisfying 0 < ε <
√
δ −

√
εnreg,

there exists Nε such that for n ≥ Nε, we have
√

Ξ (fn, µ) < ε. For such ε and

Nε,γ = max{Nγ (δ, εreg) , Nε},

we have for all l ∈ I and n ≥ Nε,γ:

√
Ξ
(
fn, f[l]

)
=

√√√√ 1
M

M∑
x=1

[
fn (x)− f[l](x)

]2

= M− 1
2‖fn − f[l]‖2

= M− 1
2‖(fn − µ) +

(
µ− f[l]

)
‖2

≥M− 1
2{‖µ− f[l]‖2 − ‖fn − µ‖2}

=
√

Ξ
(
f[l], µ

)
−
√

Ξ (fn, µ)
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≥
√
δ − ε

>
√
εnreg.

Therefore, Ξ
(
fn, f[l]

)
> εnreg for all l ∈ I and n ≥ Nε,γ. That is, we find at least one

function fNε,γ 6= f[l] for all l ∈ I such that min
l∈I

Ξ
(
fNε,γ , f[l]

)
> εnreg. Therefore we

should add fNε,γ into the set P∞. However, this is a contradiction to the fact that

P∞ is the finite and fixed limiting set of Pn.

To show ii), define B = {ω : µ ∈ P∞ (ω)}. By the result in i) we have for

∀ω ∈ A, it implies that ω ∈ B. Thus

P(A) ≤ P (B)

= P
(
µ(x) = f[l′](x) ∈ PN ′

,∀x ∈X, for some l′ ∈ I and N ′ large enough
)

= P
(
f[l′](x) takes exactly the same value as µ(x) for all x ∈X

)
(2.1.2)

We need to show that (2.1.2) evaluates to zero. Equivalently, we can show that

P(η ∈ C ) = 0 where η is as defined in Lemma 2.1.1 and C is defined as:

C =

(ξ1, ξ2, . . . , ξM)t ∈ RM |µ = arg min
f isotonic on X

M∑
x=1

[f(x)− ξx]2wN
h(x),∀x ∈X

 .

We see that C is just a special case of E where h = f[l′], X ′ = X and d′ = d = M .

Therefore, applying Lemma 2.1.1 implies dim(C ) = M −M = 0. It follows that

P(η ∈ C ) = 0, and hence P(A) = 0.

Theorem 2.1.1 shows that, first, if the pool of curves were to have finite number
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of curves, then it would contain the true curve; second, in fact the cardinality of

the pool of curves is infinite almost surely. The following corollary states that we

are able to add infinitely many curves into P that are arbitrarily close to the true

curve.

Corollary 2.1.1 (Infinite Cardinality).

For a fixed sample path ω such that lim
n�∞
‖Pn(ω)‖ = ∞,

{
fNq

}∞
q=1

is the sequence

that are being added into the pool of curves. Then fNq(x) converges to µ(x) almost

surely on X.

Proof. Again followed by Theorem 1.2.6, the sequence of isotonic regression estima-

tor {fn}∞n=1 converge to µ(x) almost surely and uniformly (sinceX is a finite set) on

X as n→∞. The sequence
{
fNq

}∞
q=1

is just a subsequence of {fn}∞n=1. Therefore,

the strong consistency follows trivially from the strong consistency of {fn}∞n=1.

2.2 Resampling from Pn into Cn

Motivation

According to the version of the resampling algorithm in Huang et al. (2018),

the criterion for adding functions from Pn to Cn is that we pick a certain number of

functions that have the smallest MSE with respect to the measurement history up to

the moment this function is added into Pn. We have shown that, almost surely, the

sequence of functions being added into Pn converges to the true curve µ. Then the

criterion requires that the functions that are getting closer and closer to µ should
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also have smaller MSE with respect to the most recent measurement history. That

is, if we choose an arbitrary ε and h, g ∈ Pn such that Ξ(h, µ) < ε < Ξ(g, µ), and

N g < Nh ≤ n, then we hope to see that this implies Ξ̂
(
h, Ĥ

n)
< Ξ̂

(
g, Ĥ

n). In

other words, h is a better candidate than g in the sense of MSE based on the latest

updated measurement history Ĥn. Furthermore, to ensure that we add “good”

functions from P to C, we need the curves with the smallest MSE also to be within

ε of the true curve µ.

Modification to the Resampling Algorithm

We first modify the MSE used at Step 2 of the Resampling Procedure in Huang

et al. (2018, Algorithm 2). In the nth experiment when calculating the MSE of a

function h in Pn based on the measurement history up to time n, instead of using

Ξ̂
(
h, Ĥ

n) = 1
n

∑
x∈X

wn(x)∑
j=1

[ŷj(x)− h(x)]2,

we now refer to the MSE between h and the sample mean with respect to Ĥn:

Ξ (h, ȳn) = 1
M

∑
x∈X

[h(x)− ȳn(x)]2.

This modification is reflected in Step 3 of Algorithm 2. In addition, recall that in

each round we denote by Kdel the number of deleted curves and by K the number

of curves with the smallest MSE where K > Kdel.

Theorem 2.2.1 (Functions with Smallest MSE).
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Define fnN[1]
, fnN[2]

, ..., fnN[K]
∈ Pn as the functions with the K smallest Ξ (f, ȳn) , f ∈

Pn, and sort them in ascending order, i.e., Ξ
(
fnN[i]

, ȳn
)
< Ξ

(
fnN[j]

, ȳn
)
for i < j.

Then the following holds almost surely:

i) For any ε > 0 and any g = fN
g ∈ Pn with Ξ(g, µ) > 9ε/4, there exists a time

T > N g such that for all Ns and Nt such that Ns > Nt > T > N g we have

Ξ(g, ȳNs) > ε > Ξ(fNt , ȳNs) and Ξ(fNt , µ) < ε.

ii) For the previous ε and time T , we have Ξ
(
fnN[i]

, µ
)
< ε, i = 1, 2, ..., K, for

∀n > T .

Proof. Recall that l(n) is the number of curves in Pn and Nl(n) indexes the most

recent added element of Pn. It is always true that either Nl(n) = n or Nl(n) < n.

One should keep in mind that it is possible to have

PNl(n) = PNl(n)+1 = ... = PNl(n)+q′ = Pn

for some q′ ∈ Z+, which corresponds to the situation that there is no function being

added at the (Nl(n) + 1)th, ..., (Nl(n) + q′)th experiment. Therefore we first consider

the case when n is the very first time that the pool of curves contains all of the

functions fN1 , fN2 , ..., fNl(n) . That is: the case with Nl(n) = n.

For statement i), set d0 = Ξ(g, µ). For any ε < 4d0/9, there is Ξ(g, µ) = d0 >

9ε/4, or equivalently,
√

Ξ(g, µ) > 3
√
ε/2. For this particular ε, because the sequence{

fNq
}∞
q=1

also converges to the true curve µ almost surely, there exists a time T1 >

N g such that for any time Ns > Nt > T1 > N g, we have Ξ(fNt , µ) < ε/4 and
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Ξ(fNs , µ) < ε/4. Note that the sample mean ȳn(x) is also anM -dimensional discrete

function. Thus by the strong law of large numbers (SLLN), assuming wn(x) → ∞

as n → ∞, we have ȳn(x) a.s.−→ µ(x),∀x ∈ X. Therefore there exists a time T2 >

N g such that for any time Ns > Nt > T2 > N g, we have Ξ(ȳNt , µ) < ε/4 and

Ξ(ȳNs , µ) < ε/4. Equivalently, −
√

Ξ(ȳNt , µ) > −
√
ε/2 and −

√
Ξ(ȳNs , µ) > −

√
ε/2.

Thus, there exists T = max(T1, T2) such that for any time Ns > Nt > T > N g, we

have the following two inequalities based on the triangle inequality of an L2-norm:

√
Ξ(g, ȳNs) ≥

√
Ξ(g, µ)−

√
Ξ(ȳNs , µ)

>
3
√
ε

2 +
(
−
√
ε

2

)

=
√
ε

indicating Ξ(g, ȳNs) > ε and at the same time

0 ≤
√

Ξ(fNt , ȳNs)

≤
√

Ξ(fNt , µ) +
√

Ξ(ȳNs , µ)

<

√
ε

2 +
√
ε

2

=
√
ε

indicating Ξ(fNt , ȳNs) < ε.

Therefore we have shown that there exists a time T > N g such that for all

Ns > Nt > T > N g we have Ξ(g, ȳNs) > ε > Ξ(fNt , ȳNs) and Ξ(fNt , µ) < ε/4 < ε.

Statement i) guarantees that any function that is sufficiently far from the true µ

48



will eventually be a worse candidate than functions from the large pool.

For statement ii), it is shown in statement i) that Ξ(g, ȳNs) > ε > Ξ(fNt , ȳNs)

for any Ns > Nt > T > N g and function g = fN
g with Ξ(g, µ) > ε. This indicates

any function g that is far enough from the true µ will always have a bigger MSE

with respect to the latest sample mean than those functions that can be arbitrarily

close to the true µ. Remember that we assume Nl(n) = n, so consider Nl(n) = n =

Ns > Nt > T , meaning that the current pool of curves is

Pn = PNs = {fN1 , fN2 , ..., fT , ..., fNt , ..., fNs}.

Because we assumed that wn(x) → ∞, we may then choose Ns > T large

enough such that at least K terms are added between times T and Ns. Following

that we have two cases:

(1) fNsN[i]
∈
{
fT , ..., fNt , ..., fNs

}
\{fT} and Ξ

(
fNsN[i]

, ȳNs
)
< ε for all i = 1, 2, ..., K.

That is, all of the K functions with the smallest MSE are added after time T .

(2) There is at least one such function, say fNsN[j]
, j ∈ {1, 2, ..., K}, satisfies fNsN[j]

∈{
fN1 , fN2 , ..., fT

}
and Ξ

(
fNsN[j]

, ȳNs
)
< ε. That is at least one of the K func-

tions with the smallest MSE is added before time T .

For case (1), there existsNti with T < Nti ≤ Ns, i = 1, 2, ..., K such that Ξ
(
fNti , ȳNs

)
is the ith smallest. Therefore, setting fNsN[i]

= fNti , i = 1, 2, ..., K, we find that all of

the K functions fNsN[i]
in PNs = Pn satisfy Ξ

(
fnN[i]

, µ
)
< ε, i = 1, 2, ..., S. For case

(2), we claim that such fNsN[j]
satisfies Ξ

(
fNsN[j]

, µ
)
< ε. Otherwise, if Ξ

(
fNsN[j]

, µ
)
> ε,
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from statement i) it must be true that Ξ
(
fNsN[j]

, ȳNs
)
> ε. This is a contradiction to

the condition of fNsN[j]
in case (2).

We now consider the second situation when Nl(n) < n. For simplicity, set

Nl(n) = Nt < n. So Nt is now the last function being added into Pn, but the

functions fNt+1, fNt+2, ..., fn are not in Pn. By a similar argument as in statement

i), for all ε > 0 we are able to find a large enough time T ′ satisfying:

• A function fT ′ is added into Pn at time T ′;

• T ′ < Nt, i.e., T ′ is not the last time we add a function into Pn;

• For g = fN
g and all time points n > m > T ′ > N g, we have:

1) fm can be arbitrarily close to µ, that is,

Ξ(fm, µ) < ε

4 < ε

2) fm can be arbitrarily close to the sample mean, that is,

0 ≤
√

Ξ(fm, ȳn)

≤
√

Ξ(fm, µ) +
√

Ξ(ȳn, µ)

<

√
ε

2 +
√
ε

2

=
√
ε

which implies Ξ(fm, ȳn) < ε.
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3) g is far enough from the sample mean, that is,

√
Ξ(g, ȳn) ≥

√
Ξ(g, µ)−

√
Ξ(ȳn, µ)

>
3
√
ε

2 + (−
√
ε

2 )

=
√
ε

which implies Ξ(g, ȳn) > ε.

Therefore we have shown that there exists another time T ′ > N g such that for all

n > m > T ′ > N g we have Ξ(g, ȳn) > ε > Ξ(fm, ȳn) and Ξ(fm, µ) < ε.

In this case, however, not all such fm are in Pn because they may not all be

added during the regeneration process. That is, assuming Nl(n) = Nt, we write

Pn = {fN1 , fN2 , ..., fNu , fT
′
, fNu+1 , ..., fNt},

where Nu < T ′ < Nu+1, then fm ∈ Pn only for m ∈ {Nu+1, ..., Nt} and fm /∈ Pn for

m ∈ {Nt + 1, Nt + 2, ..., n}. This means that the K isotonic regression estimators

fnN[i]
with the smallest Ξ

(
fnN[i]

, ȳn
)
may not be added into Pn. In fact, they could

all be in the set
{
fNt+1, fNt+2, ..., fn

}
. Nevertheless, we are still able to identify the

first K smallest Ξ(fm, ȳn) where fm ∈
{
fNu+1 , ..., fNt

}
⊆ Pn, such that all these

fm still satisfy 0 ≤ Ξ(fm, ȳn) < ε and Ξ(fm, µ) < ε.

Again, pickNt large enough such that the cardinality of the set
{
fNu+1 , ..., fNt

}
satisfies ‖

{
fNu+1 , ..., fNt

}
‖ ≥ K. Then by similar argument as in the previous case

(1) and case (2), there exists time T ′ and K times Nti , i = 1, 2, ..., K, with either
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Nti > T ′ or Nti < T ′, such that Ξ
(
fNti , ȳn

)
< ε is the ith smallest among all

functions in Pn and also Ξ
(
fNti , µ

)
< ε, i = 1, 2, ..., K. Hence, setting fnN[i]

=

fNti , i = 1, 2, ..., K, we have found all of the K functions fnN[i]
in Pn and shown that

they all satisfy Ξ
(
fnN[i]

, µ
)
< ε, i = 1, 2, ..., K.

This conclude the proof of the second statement and of Theorem 2.2.1.

Remember in Algorithm 2, the resampling procedure can be triggered multiple

times within each iteration, we then have the following corollary with regard to the

sequence of the last function being resampled from C to P .

Corollary 2.2.1. Consider a subsequence
{
gNr

}∞
r=1
⊆
{
fNq

}∞
q=1

where gNr is the

last function being resampled into the candidate set from the pool of curves within

each iteration. Then gNr(x) a.s.→ µ(x),∀x ∈X, as r →∞.

Proof. Remember that whenever the resampling is triggered, we only sample from

the K functions in the pool of curves that have the smallest MSE with respect

to the latest sample mean. Therefore, by Theorem 2.2.1, ∀ε > 0, there exists

T ′′ = max(T, T ′) such that for fnN[1]
, fnN[2]

, ..., fnN[K]
∈ Pn, we have Ξ

(
fnN[i]

, µ
)
< ε, i =

1, 2, ..., K, for ∀n > T ′′. Therefore set fnNmax = arg max
fnN[i]

{Ξ
(
fnN[i]

, µ
)
, i = 1, 2, ..., K},

then 0 ≤ Ξ(fnNmax , µ) < ε implies Ξ(fnNmax , µ) a.s.→ 0. Since r is related to n, set

r = r(n) and assume r(n)→∞ as n→∞, we have gNr = gNr(n) ∈ Pn for some n.

Then 0 ≤ Ξ(gNr , µ) = Ξ(gNr(n) , µ) ≤ Ξ(fnNmax , µ) for some n. Thus it follows that

Ξ(gNr , µ) = Ξ
(
gNr(n) , µ

)
a.s.→ 0. Hence gNr(x) a.s.→ µ(x),∀x ∈X, as r →∞.
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2.3 Improvement of the Candidate Set

2.3.1 Candidate Categorization and a Potential Issue

Recall that in Step 2 of our resampling procedure any candidate fnl ∈ Cn with

pnl < εres, where εres is the pre-specified threshold, will be removed and replaced

by an updated curve fn+1
l . If no such fnl satisfies this condition, we then remove

the function fnl′ where pnl′ = arg min
l∈Cn

pnl . This makes sure that we are guaranteed to

be able to remove at least one function in each experiment so that we can always

replace functions in Cn from the ones in Pn at each iteration. This is crucial to our

analysis because, due to the features of Pn that have been explored previously, this

criterion allows us to keep replacing “bad” functions in C with “good” functions as

defined below:

Definition 2.3.1 (Good and Bad Functions).

Let us state the criterion of categorizing a “good” function and a “bad” function

with respect to ε > 0:

1) A function g is called a bad, or inferior, function if for a fixed ε > 0, Ξ(g, µ) > ε.

2) A function g is called a good, or superior, function if for a fixed ε > 0, Ξ(g, µ) ≤

ε.

The general interpretation of a bad function g is that for a given small value

ε, among the candidates in C, g is too far away from the true curve compared to

other candidates. Thus g is not considered as a promising candidate and we wish
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to replace it by a better function that is closer to the true curve, and hence the

word “good” is used to describe the superiority of such a function over the original

inferior one that needs to be replaced.

Potential Issue

For notational simplicity in this subsection, we consider an arbitrary element,

written as gl = fnl , in the candidate set Cn. The joint likelihood of gl based on the

measurement history up to n is :

L
(
Ĥ

n
|µ = gl

)
=
(√

2πσ
)−n
·
n−1∏
i=0

exp
{
− [ŷi+1 − gl(xi)]2

2σ2

}
, xi ∈X = {1, 2, ...,M}.

Rewrite the MSE between gl and Ĥ
n as:

Ξ̂
(
gl, Ĥ

n) = 1
n

n−1∑
i=0

[ŷi+1 − gl(xi)]2, xi ∈X.

We can see that the relation between L
(
Ĥ

n
|µ = gl

)
and Ξ̂

(
gl, Ĥ

n) is:

L
(
Ĥ

n
|µ = gl

)
=
(√

2πσ
)−n
· exp

{
− n

2σ2 · Ξ̂
(
gl, Ĥ

n)}
.

Using this relation and equation (1.3.2), we may rewrite pnl in terms of MSE as:

pnl =
exp

{
−(n/(2σ2)) · Ξ̂

(
gl, Ĥ

n)}
∑L
l′=1 exp

{
−(n/(2σ2)) · Ξ̂

(
gl′ , Ĥ

n)} .
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We can see that, first, if Ξ̂
(
gl, Ĥ

n) has a relatively large value, it implies that gl

is likely (but not definitely) to be an inferior candidate. Second, a relatively large

Ξ̂
(
gl, Ĥ

n) tends to give a small pnl , which could be smaller than the threshold

εres leading to the removal of gl. Nonetheless, it is possible that a bad function gl

happens to have small Ξ̂
(
gl, Ĥ

n) which might induce pnl > εres, causing the potential

problem of not being able to remove the inferior gl. We would like to eliminate this

situation by showing that there exists a time T̃ and a certain subsequence {nk}∞k=1,

along which Ξ̂
(
gl, Ĥ

nk
)
is greater than Ξ̂

(
gnk , Ĥ

nk
)
after time T̃ . Asymptotically,

in that case there will be at least one term in the denominator of pnkl of lower order

compared to the numerator, which eventually would result in pnkl < εres and the

removal of gl.

2.3.2 Limits of the Ratio wn(x)/n

We start by clarifying some of the notations. We keep {fn}∞n=1 as the sequence

of isotonic regression estimators based on Ĥn, and still let
{
fNq

}∞
q=1
⊆ {fn}∞n=1 be

the subsequence that is added into the pool of curves. Then there exists another

subsequence (as mentioned in the Corollary 2.2.1), denoted by
{
gNr

}∞
r=1
⊆
{
fNq

}∞
q=1

such that gNr is the last function being resampled into the candidate set out of the

K functions in the pool of curves that have the smallest MSE. In fact, the index

Nr coincides with n because in each iteration we resample at least one new function

from P to C due to our modification to the resampling procedure. In other words,

for each time index n, there exists a q such that gn = fNq . Thus, we may write
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{
gNr

}∞
r=1

= {gn}∞n=1, and we use {gn}∞n=1 for the rest of this thesis. Now we are

ready to study the limit of the ratio.

Recall that wn(x), x ∈ X = {1, 2, ...,M} is the number of measurements

taken on x up to time n and ∑x∈X w
n(x) = n. Each wn(x)/n is bounded within

the interval [0, 1] and ∑x∈X(wn(x)/n) = 1. Therefore, there exists a subsequence

{gnk}∞k=1 ⊆ {gn}
∞
n=1 along which the ratio converges uniformly to a limiting function

ρ(x). That is:

lim
k→∞

wnk(x)
nk

= ρ(x), ∀x ∈X.

Notice that ρ(x) ∈ [0, 1] and ∑
x∈X ρ(x) = 1. Therefore there exists at least one

x0 ∈X such that ρ(x0) > 0.

2.3.3 Limiting Behavior of Two Mean Squared Errors

In this section, we consider an inferior function gl in the candidate set and the

previous subsequence {gnk}∞k=1 mentioned in Section 2.3.2. We need to study the

limiting behavior of Ξ̂
(
gnk , Ĥ

nk
)
and Ξ̂

(
gl, Ĥ

nk
)
as mentioned in Section 2.3.1.

2.3.3.1 The Limit of MSE with gnk

Let us decompose the MSE Ξ̂
(
gnk , Ĥ

nk
)
as:

Ξ̂
(
gnk , Ĥ

nk
)

= 1
nk

∑
x∈X

wnk (x)∑
j=1

[ŷj(x)− gnk(x)]2

= 1
nk

∑
x∈X

[ynk(x)− gnk(x)]2wnk(x) + 1
nk

∑
x∈X

wnk (x)∑
j=1

[ŷj(x)− ynk(x)]2
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+ 1
nk

∑
x∈X

wnk (x)∑
j=1

[ynk(x)− gnk(x)] [ŷj(x)− ynk(x)]

:= Snk1 + Snk2

where the cross term

1
nk

∑
x∈X

wnk (x)∑
j=1

[ynk(x)− gnk(x)] [ŷj(x)− ynk(x)]

= 1
nk

∑
x∈X

[ynk(x)− gnk(x)]
wnk (x)∑
j=1

[ŷj(x)− ynk(x)]

= 1
nk

∑
x∈X

[ynk(x)− gnk(x)] · 0

= 0.

First consider Snk2 . Denote by s2
nk

(x) the sample variance for the observations taken

on x. Then:

Snk2 = 1
nk

∑
x∈X

wnk (x)∑
j=1

[ŷj(x)− ynk(x)]2

=
∑
x∈X

wnk(x)
nk

· w
nk(x)− 1
wnk(x)

 1
wnk(x)− 1

wnk (x)∑
j=1

[ŷj(x)− ynk(x)]2


=
∑
x∈X

wnk(x)
nk

·
[
wnk(x)− 1
wnk(x) · s2

nk
(x)
]
. (2.3.1)

For the right hand side of (2.3.1), as k →∞ we have s2
nk

(x) a.s.−→ σ2(x) and (wnk(x)−

1)/wnk(x) a.s.−→ 1 by the strong law of large numbers. Therefore

wnk(x)− 1
wnk(x) · s2

nk
(x) a.s.−→ σ2(x)
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as k → ∞. Thus the right hand side of (2.3.1) converges to the weighted sum of

group sample variances. Since we assume uniform group variance with σ2(x) =

σ2,∀x ∈X, then the right hand side of equation (2.3.1) is σ2. That is,

Snk2 =
∑
x∈X

wnk(x)
nk

·
[
wnk(x)− 1
wnk(x) · s2

nk
(x)
]

a.s.−→
∑
x∈X

ρ(x) · σ2(x)

= σ2 ∑
x∈X

ρ(x)

= σ2.

For Snk1 , first by Corollary 2.2.1, we have gnk a.s.→ µ(x),∀x ∈X. Together with

the strong consistency of the sample mean ynk(x), for any ε > 0, there exists T ∗ > T ′′

such that when nk > T ∗ we have Ξ (ynk(x), µ(x)) < ε/(4M) and Ξ (gnk , µ(x)) <

ε/(4M). Then by the triangle inequality of L2-norm, we have

√
Ξ (ynk(x), gnk(x)) <

√
Ξ (ynk(x), µ(x)) +

√
Ξ (gnk , µ(x))

<
1
2

√
ε

M
+ 1

2

√
ε

M

=
√
ε

M

=⇒ Ξ (ynk(x), gnk(x)) < ε/M .

Thus,

Snk1 =
∑
x∈X

[ynk(x)− gnk(x)]2 w
nk(x)
nk
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<
∑
x∈X

[ynk(x)− gnk(x)]2

= M · Ξ (ynk(x), gnk(x))

< M · ε
M

= ε.

That is, Snk1 converges to zero almost surely. Hence, we have

lim
k→∞

Ξ̂
(
gnk , Ĥ

nk
)

= lim
k→∞

(Snk1 + Snk2 )

= lim
k→∞

Snk1 + lim
k→∞

Snk2

= 0 + σ2

= σ2.

2.3.3.2 The Limit of MSE with gl

Let us again decompose the MSE Ξ̂
(
gl, Ĥ

nk
)
as:

Ξ̂
(
gl, Ĥ

nk
)

= 1
nk

∑
x∈X

wnk (x)∑
j=1

[ŷj(x)− gl(x)]2

= 1
nk

∑
x∈X

[ynk(x)− gl(x)]2wnk(x) + 1
nk

∑
x∈X

wnk (x)∑
j=1

[ŷj(x)− ynk(x)]2

:= Snk1,l + Snk2

then we still have Snk2
a.s.−→ σ2 as k →∞.
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For Snk1,l , we have:

Snk1,l = 1
nk

∑
x∈X

[ynk(x)− gl(x)]2wnk(x)

=
∑
x∈X

[ynk(x)− gl(x)]2 · w
nk(x)
nk

(2.3.2)

For the right hand side of equation (2.3.2), by the discussion in Section 2.3.2 we

have:

1) limk→∞w
nk(x)/nk = ρ(x) ∈ [0, 1].

2) There exists at least one x0 ∈X such that ρ(x0) > 0.

3) The SLLN gives ynk(x) a.s.−→ µ(x),∀x ∈X, which implies

[ynk(x)− gl(x)]2 a.s.−→ [µ(x)− gl(x)]2,∀x ∈X.

Since Snk1,l is a finite sum, the limit of Snk1,l exists. So, we can define

L
′

1 := lim
k→∞

Snk1,l =
∑
x∈X

[µ(x)− gl(x)]2 · ρ(x).

Due to Lemma 2.1.1, we know that for an isotonic regression estimator gl(x),

P(gl(x) = µ(x),∀x ∈ X) = 0. Together with the above properties 1) and 2) of

ρ(x) also stated in Section 2.3.2, we know that L′
1 > 0 almost surely.
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Hence, we have

lim
k→∞

Ξ̂
(
gl, Ĥ

nk
)

= lim
k→∞

(
Snk1,l + Snk2

)
= L

′

1 + σ2

> σ2.

2.3.4 Removing Inferior Functions

Theorem 2.3.1 (Removal of Bad Functions ).

Suppose that an inferior function gl with respect to ε is in Cn for some n. Then there

exists a time N greater than n at which gl will be removed from CN and replaced by

a good (superior) function.

Proof. Because limk→∞ Ξ̂
(
gnk , Ĥ

nk
)

= σ2 and limk→∞ Ξ̂
(
gl, Ĥ

nk
)

= L
′
1 + σ2 > σ2,

for any ε < L
′
1

2 , there exists T1 > T ∗ such that for k > T1,
∣∣∣Ξ̂ (gnk , Ĥnk

)
− σ2

∣∣∣ < ε.

There also exists T ′1 > 0 such that for k > T ′1,
∣∣∣Ξ̂ (gl, Ĥnk

)
−
(
L

′
1 + σ2

)∣∣∣ < ε.

Therefore, taking Tl = max(T1, T
′
1), for k > Tl we have:

Ξ̂
(
gnk , Ĥ

nk
)
< σ2 + ε < σ2 + L

′
1

2 < σ2 + L
′

1 − ε < Ξ̂
(
gl, Ĥ

nk
)
.

That is,

Ξ̂
(
gl, Ĥ

nk
)
− Ξ̂

(
gnk , Ĥ

nk
)
> 0

for k > Tl. We write Cnk\{gl, gnk} as the nkth candidate set with gl and gnk deleted,
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and let

SCnk\{gl,gnk} =
∑

gl′∈Cnk\{gl,gnk}
exp

{
− nk

2σ2 · Ξ̂
(
gl′ , Ĥ

nk
)}

.

We may rewrite the probability pnkl of gl as:

pnkl

=
exp

{
−(nk/(2σ2)) · Ξ̂

(
gl, Ĥ

nk
)}

∑L
l′ exp

{
−(nk/(2σ2)) · Ξ̂

(
gl′ , Ĥ

nk
)}

=
exp

{
−(nk/(2σ2)) · Ξ̂

(
gl, Ĥ

nk
)}

exp
{
−(nk/(2σ2)) · Ξ̂

(
gl, Ĥ

nk
)}

+ exp
{
−(nk/(2σ2)) · Ξ̂

(
gnk , Ĥ

nk
)}

+ SCnk/{gl,gnk}

≤
exp

{
−(nk/(2σ2)) · Ξ̂

(
gl, Ĥ

nk
)}

exp
{
−(nk/(2σ2)) · Ξ̂

(
gl, Ĥ

nk
)}

+ exp
{
−(nk/(2σ2)) · Ξ̂

(
gnk , Ĥ

nk
)}

= 1
1 + exp

{
(nk/(2σ2)) ·

[
Ξ̂
(
gl, Ĥ

nk
)
− Ξ̂

(
gnk , Ĥ

nk
)]} .

The condition pnkl < εres suffices to remove gl which equivalently requires that for

k > Tl, we have:

1
1 + exp

{
(nk/(2σ2)) ·

[
Ξ̂
(
gl, Ĥ

nk
)
− Ξ̂

(
gnk , Ĥ

nk
)]} < εres

2σ2 · ln (1/εres − 1)
Ξ̂
(
gl, Ĥ

nk
)
− Ξ̂

(
gnk , Ĥ

nk
) < nk (2.3.3)

Notice that the left hand side of equation (2.3.3) can be positive if we request

εres < 1
2 , which is usually imposed by researchers applying DP-R. Therefore there

exists T ′l such that inequality (2.3.3) holds for all k > T ′l .

Therefore take T̃l = max(Tl, T
′
l ). For k > T̃l, we have pnkl < εres. Hence, we

found a time T̃l and a subsequence {nk}∞k=1, along which the “bad” function gl could
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be removed after time T̃l. Finally, suppose the cardinality of the candidate set is

‖C‖ = L. Then there are at most L inferior functions gl′ , l′ = 1, 2, ..., L. Thus for

each bad gl′ , we can find a time T̃l′ after which pnkl′ < εres so that we are able to

remove gl′ . Take T̃max = max
l′=1,2,...,L

(T̃l′). Then after T̃max, all the bad functions in the

candidate set can be removed. Furthermore, by Theorem 2.2.1, all of the removed

bad functions will be replaced by good functions within ε of µ.

We are now ready to establish the consistency of the estimator of the true

function specified in Definition 1.3.8.

2.4 Consistency of the Weighted Estimator

Recall from Definition 1.3.8 that the iteration index n = 0, 1, 2, ...,N − 1,

{fnl }
∞
n=1 is an evolving sequence of functions that represents the l-th element in the

candidate set. We write the nth candidate set Cn = {fn1 , fn2 , ..., fnL} and still use pnl

as the probability of fnl . The estimator of the true function µ after time is:

f̄n(x) =
∑
l∈L

pnl f
n
l (x), x ∈X

where L = {1, 2, ..., L} is the index set.

Theorem 2.4.1 (Consistency).

The function f̄n(x) is a strongly consistent estimator of the true function µ(x),∀x ∈

X.

Proof. By Theorem 2.3.1 and Theorem 2.2.1, for any ε > 0, there exists a time Nall
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such that when n > Nall, for ∀l ∈ L and ∀x ∈X we have almost surely

Ξ(fnl (x), µ(x)) <
ε2

M
,

which indicates

0 ≤ 1
M

[fnl (x)− µ(x)]2

≤ 1
M

∑
x∈X

[fnl (x)− µ(x)]2

= Ξ(fnl (x), µ(x))

<
ε2

M
,

and

0 ≤ 1
M

[fnl (x)− µ(x)]2 < ε2

M

=⇒ 0 ≤ |fnl (x)− µ(x)| < ε.

Therefore, fnl (x) converges to µ(x) almost surely for ∀l ∈ L and ∀x ∈ X. This

implies that for ∀l ∈ L, ∀x ∈X and n > Nall we have:

∣∣∣f̄n(x)− µ(x)
∣∣∣ =

∣∣∣∣∣∣
∑
l∈L

pnl f
n
l (x)− µ(x) · 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l∈L

pnl f
n
l (x)−

∑
l∈L

pnl µ(x)

∣∣∣∣∣∣
≤
∑
l∈L

pnl |fnl (x)− µ(x)|
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< ε ·
∑
l∈L

pnl

= ε

Hence, the estimator f̄n(x) converges to µ(x) almost surely for ∀x ∈X. We conclude

that f̄n(x) is a (strongly) consistent estimator of the true function µ(x), x ∈X.
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Chapter 3: Almost Sure Convergence of the Bias-Adjusted Kalman

Filter

3.1 Introduction

In this chapter we consider the topic of predicting and estimating a background

signal in a sequentially recursive manner. This statistical issue arises in economics

(Van and Dana, 2003), forecasting (Gardner, 1985; Hyndman et al., 2008), simu-

lation optimization (Fu, 2002), bioinformatics (Giegerich, 2000), signal processing

(Bouzeghoub et al., 2000) and dynamic programming (Powell, 2007, Ch.6). The

underlying signal may represent a stationary or nonstationary series of stock prices,

inventory levels, expensive experimental outcomes, genetic sequence alignments or

sensor readings of a mechanical system. In most of these applications, the mean

value of the signal is unknown to the researcher and can only be estimated from

noisy observations with some prespecified variance structure. The impact of the

noise can be smoothed with new incoming observations. In its most typical form,

the procedure recursively updates the estimates according to

θ̄n+1 = (1− αn)θ̄n + αnX̂n+1 (3.1.1)
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where θ̄n is the current estimate at time n, X̂n+1 is the observation obtained at time

(n + 1), and αn is a weight between 0 and 1 and is commonly referred to (e.g., in

dynamic programming and stochastic approximation) as a stepsize. It is also known

by other terminologies such as learning rate (machine learning), smoothing constant

(forecasting) or gain (signal processing). The magnitude of αn determines the rate

at which new information is combined with the existing knowledge.

Define {θn}∞n=1 as the underlying sequence of signals. The optimal choice of

stepsize for (3.1.1) depends on the stationarity of {θn}∞n=1. For observations that

come from a nonstationary series, it is very often the case (e.g. in dynamic pro-

gramming) that the learning process undergoes an initial unstable phase where the

estimates fluctuate erratically, and then converge to an eventual value, assuming the

underlying signal converges to a limit point. Nonstationarity arises when either the

starting estimate is way off target or the underlying signal itself is of a nonstationary

nature due to the physical system. In such scenarios, typically we desire the αn to

be relatively high in the early learning stage so as to drive the estimating process

towards the potential true parameter, and then we reduce it later.

Equation (3.1.1) can be viewed as a form of stochastic approximation (SA),

introduced by Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). Pflug

(1988) provided an overview of some deterministic and adaptive stepsize rules, and

points out that the major drawback of applying a deterministic stepsize rule is the

strong dependence between its performance and the initial estimate. It is suggested

that during the progress of the estimation procedure, it could be advantageous to

adopt certain adaptive rules that enable the stepsizes to vary based on the collected
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observations.

The study of optimal stepsizes are also carried out in many other practical

realms. Gardner (1985) compared various stepsize rules developed in the forecast-

ing community. In the field of reinforcement learning. Darken and Moody (1991)

tackled the issue of allowing the stepsize to evolve at multiple rates, and uses time-

dependent deterministic models to calculate the stepsize. The usage of time-varying

stepsize sequences has been suggested by researchers in signal processing and adap-

tive control to boost the speed of convergence of filter coefficients; see for example

Mikhael et al. (1986) and Bouzeghoub et al. (2000) for a general review. A num-

ber of techniques have been proposed where the stepsize is computed adaptively

as a function of prediction or estimation errors (Kesten, 1958; Saridis, 1970). An-

other approach is to adjust the stepsize by a correction term that is a function of

the gradient of the error measure that needs to be minimized (Kushner and Yang,

1995; Douglas and Mathews, 1995; Douglas and Cichocki, 1998; Schraudolph, 1999).

However, most gradient adaptive stepsize methods suffer the limitation of using a

smoothing parameter for updating the stepsize values. The ideal parameter value

depends on the specific problem and changes with each coefficient being estimated,

causing intractable computational issues when the number of parameters is large.

Among the rich family of stepsize structures, the Kalman Filter stepsize is

broadly used in adaptive control applications. The Kalman Filter technique esti-

mates system states sequentially by incorporating two parts: previous estimates

and newly recorded information. The relative weights placed on these two parts

are controlled by the Kalman Filter stepsize αn, which is calculated adaptively by
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minimizing the expected value of the squared prediction error

E
[
(ε̂n)2

]
= E

[(
X̂n+1 − θ̄n

)2
]

;

see for example Stengel (1994) and Choi and Van Roy (2006). Suppose θn = θn−1+un

is the sequence of system states with E(un) = 0 and V ar(un) = ρ2, and X̂n = θn+εn

is the sequence of measurements of system states with εn ∼ N(0, σ2). Then the

computation of Kalman Filter stepsizes depends on both of the measurement noise

and the process noise, according to the equations:

αn = pn−1

pn−1 + σ2 ,

pn = (1− αn)pn−1 + ρ2.

George and Powell (2006) first introduced the bias-adjusted Kalman Filter

procedure (BAKF) specifically to handle non-stationary system signals. The BAKF

procedure enables the stepsize to be dependent on the estimation bias of θ̄n, which

allows αn to be responsive to the level of measurement noise compared to the rate

of change of the underlying system signals. For more details and in-depth moti-

vations of the BAKF method, see Powell (2007, Ch.6). One appealing advantage

of the BAKF procedure is that it adaptively learns non-stationary signals, which

leads to a much faster approximation process in approaching an accurate estimate.

This feature is crucial in many applications where each observation can be highly

expensive in financial costs or time (see Simão et al. (2009; 2010)).
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It has been well established in the stochastic approximation literature that

the conditions on αn which ensure the almost sure convergence of the estimating

sequence θ̄n to the right limit point are the following two expressions:

∞∑
n=0

αn =∞, (3.1.2)

∞∑
n=0

α2
n <∞. (3.1.3)

The interpretation is that essentially we require the stepsize to diminish to zero

towards the infinite time horizon so that (3.1.1) converges. However, αn should not

vanish too rapidly since otherwise the process will be trapped at a suboptimal value.

Although there are plenty of stepsize algorithms satisfying the conditions, many of

them suffer from low convergence rates in practice (Ryzhov et al., 2015). On the

contrary, the BAKF procedure exhibits remarkable performance in many practical

situations, but a thorough consistency analysis is yet to be explored. Ryzhov (2018)

has shown convergence of the BAKF stepsize in the sense of L2, but we are interested

in extending this result to almost sure convergence. Therefore, based on Ryzhov

(2018) and George and Powell (2006), our plan for this chapter is to show the

almost sure convergence of the estimation process and thus the strong consistency

of θ̄n to its limiting value.

We need to emphasize that the empirical performance of BAKF is not our

major concern, since the practical superiority of BAKF has been demonstrated by

70



George and Powell (2006), together with a comprehensive comparison of BAKF

against a broad choice of other stepsize rules. The sole objective of our work is to

establish the theoretical properties of BAKF in a stronger sense of convergence. The

rest of this chapter is organized as follows. Section 3.2 introduces the model that

induces BAKF and some theoretical results derived by Ryzhov (2018) and George

and Powell (2006). Section 3.3 extends the L2 convergence in Ryzhov (2018) to

the almost sure case. Section 3.4 concludes and propose some future work in the

theoretical part of BAKF.

3.2 Review of Model, Notations and Definitions

We begin with the model settings of the BAKF stepsize algorithm. Consider

a deterministic sequence {θn}∞n=1 which represents the underlying non-stationary

system states that varies over time. We are able to obtain noisy measurements

X̂n = θn + εn

where {εn}∞n=1 is a sequence of independent random noise with E(εn) = 0 and

V ar(εn) = σ2, assumed known to the researchers. Presumably, the observation

sequence X̂n is much more volatile than the underlying signal, that is, the rate of

change of θn is much smaller than the variance σ2. Thus, a smoothing technique

needs to be applied to dampen the impact of the noisy measurements on our es-

timates θ̄n, which is defined by (3.1.1). We denote by θ̄0 the initial estimate and

assume that θn → θ∗.
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The BAKF chooses the stepsize αn in equation (3.1.1) by minimizing the

expected squared error of the smoothed estimate θ̄n with respect to θn on the interval

[0, 1] . That is:

αn = arg min
α∈[0,1]

E
[
θ̄n(α)− θn

]2
. (3.2.1)

George and Powell (2006) derive the closed form solution of (3.2.1) as

αn = λnσ
2 + (βn+1)2

(1 + λn)σ2 + (βn+1)2 (3.2.2)

where

βn+1 = E[θn+1 − θ̄n]

= θn+1 − E[θ̄n] (3.2.3)

represents the bias in the estimate from the previous iteration, and λn is the coeffi-

cient of the variance of θ̄n defined by

V ar(θ̄n) = λnσ
2

and can be calculated due to George and Powell (2006) by

λn =


α2

0, n = 1

α2
n−1 + (1− αn−1)2λn−1, n ≥ 2,
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where α0 is an deterministic initial stepsize value in [0, 1]. In a real application, βn+1

would also need to be estimated by a statistical procedure, but for our consistency

analysis, we focus on its explicit form in (3.2.3) and the stepsize αn in (3.2.2). Ryzhov

(2018) has already established some propositions and theorems about BAKF which

we summarize below.

The first two propositions show the boundedness of both the expectation and

variance of our estimates.

Proposition 3.2.1. Define ζn = Eθ̄n. The sequence {ζn} is uniformly bounded in

n, regardless of the stepsize used for updating.

Proposition 3.2.2. For all n, 0 ≤ λn ≤ 1.

The following Theorem 3.2.1 establishes the L1 convergence of our estimates

and the bias term. The next Theorem 3.2.2 proves that both of the variance of θ̄n

and the stepsize sequence vanish to zero.

Theorem 3.2.1. ζn → θ∗ and thus βn
L1−→ 0.

Theorem 3.2.2. limn→∞ λn = 0 and limn→∞ αn = 0.

With these propositions and theorems, Ryzhov (2018) further shows that θ̄n

converges to θ∗ in L2. To see this, write

E
[
θ̄n − θ∗

]2
= E

[
θ̄n − ζn + ζn − θ∗

]2
= E

[
θ̄n − ζn

]2
+ (ζn − θ∗)2 + 2(ζn − θ∗)E

(
θ̄n − ζn

)
= V ar(θ̄n) + (ζn − θ∗)2 + 0
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= λnσ
2 + (ζn − θ∗)2

→ 0.

The third equation is due to the definition of ζn and the last convergence is by

Theorems 3.2.1 and 3.2.2.

To extend this result to almost sure convergence, typically we need the two

conditions in (3.1.2) and (3.1.3). Recall that George and Powell (2006) have proved

that αn ≥ 1
n+1 for all n which implies that ∑∞n=0 αn =∞. They also provide strong

empirical evidence that indicates αn ≤ c
n+1 for all n with some constant c, but they

have not been able to prove it as of their writing. In the next section we introduce

the rigorous proof of this inequality, which would lead to the fulfillment of the second

condition ∑∞n=0 α
2
n <∞.

3.3 Main Results

We begin with the following additional assumption:

Assumption 1. There exists some fixed positive constant h such that for all n, the

sequence {θn} satisfies

|θn − θ∗| ≤
h

2(n+ 1)3/2 ;

and αn ≥ 1
n+1 for all n.

In words, we make a stronger assumption on the rate of convergence of the

underlying system states in order to obtain stronger convergence of the estimator.
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However, note that the measurement variance σ2 can still be arbitrarily large.

For simplicity of the proof, we now suppose that θ∗ = 0 without loss of gen-

erality. To show the almost sure convergence of {θ̄n}, we first present the following

result on the convergence rate of the prediction bias term βn.

Lemma 3.3.1. Under Assumption 1, the sequence {βn} satisfies

|βn+1| ≤ 2h√
n+ 1

for all n.

Proof. Recall θ∗ = 0 and by Assumption 1 for all n we have

|θn| ≤
h

2(n+ 1)3/2

= 1
2

√
n√

n+ 1
1
n

h
√
n

(n+ 1)

= 1
2

1√
1 + 1/n

(
1 + 1

n
− 1

)
h
√
n

(n+ 1)

≤

√1 + 1
n
− 1

 h
√
n

(n+ 1) (3.3.1)

= h

√
n+ 1−

√
n

n+ 1 (3.3.2)

To see why the last inequality holds, consider the concave function f(x) =
√
x. For

any two nonnegative points x and y, the concavity of f(x) implies

f(y)− f(x) ≤ f ′(x)(y − x) (3.3.3)
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where the derivative f ′(x) = (1/2)x−1/2. Set x = 1 + 1/n and y = 1. The inequality

(3.3.3) becomes

f(1)− f(1 + 1
n

) ≤ f ′(1 + 1
n

)(− 1
n

)

=⇒ 1−
√

1 + 1
n
≤ 1

2
1√

1 + 1/n
(− 1
n

)

=⇒
√

1 + 1
n
− 1 ≥ 1

2
1√

1 + 1/n
1
n

= 1
2

1√
1 + 1/n

(1 + 1
n
− 1)

which is the inequality in (3.3.1).

Now we will show that |Eθ̄n| ≤ h∗/
√
n+ 1 for all n and some constant h∗ by

induction. For n = 1, since θ̄0 is deterministic that may not be zero and α0 is an

arbitrary starting value in (0, 1), we can find such a constant h∗ ≥ h such that

|Eθ̄1| = |E[(1− α0)θ̄0 + α0X̂1]|

≤ (1− α0)|θ̄0|+ α0|EX̂1|

= (1− α0)θ̄0 + α0θ1

= (1− α0)θ̄0
√

2 + α0h√
2

≤ h∗√
2
.

Suppose that |Eθ̄n| ≤ h∗/
√
n+ 1 holds for some n. Then we have

|Eθ̄n+1| = |E[(1− αn)θ̄n + αnX̂n+1]|
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= |(1− αn)Eθ̄n + αnEX̂n+1|

≤ (1− αn)|Eθ̄n|+ αn|EX̂n+1|

≤
(

1− 1
n+ 1

)
|Eθ̄n|+ |θn+1|

≤
(

1− 1
n+ 2

)
h∗√
n+ 1

+ h

√
(n+ 1) + 1−

√
n+ 1

(n+ 1) + 1

= h∗
√
n+ 1
n+ 2 + h∗

√
n+ 2−

√
n+ 1

n+ 2

= h∗√
(n+ 1) + 1

where the second inequality holds because 1/(n + 1) ≤ αn ≤ 1 and the third in-

equality holds because of equation (3.3.2). Therefore, for all n, we have |Eθ̄n| ≤

h∗/
√
n+ 1 . Then for all n, we have

|βn+1| = |θn+1 − Eθ̄n|

≤ |θn+1|+ |Eθ̄n|

≤ h

2(n+ 1) 3
2

+ h∗√
n+ 1

≤ h∗√
n+ 1

+ h∗√
n+ 1

= 2h∗√
n+ 1

which completes the proof.

For simplicity of derivations, we define the following additional notations

b =
⌈

4h2

σ2

⌉
,
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l = max{b+ 1, 4},

c = l + b,

where d·e is the ceiling function. Obviously, all b, l, c are positive integers satisfying

1 < l < c < 2l and c+ l − 1 > 1. By Lemma 3.3.1, we have

(βn+1)2 ≤ 4h2

n+ 1

≤ bσ2

n+ 1

for all n. We now proceed to our main theorem, which shows that αn = O (1/(n+ 1)),

and whence ∑n α
2
n <∞.

Theorem 3.3.1. Under Assumption 1, we have

λn−1 ≤
l

n− c
and αn−1 ≤

c

n

for all n ≥ c+ l.

Proof. We will establish the proof by induction. First for n = c+ l, by Proposition

3.2.2 we have

λc+l−1 ≤ 1 = l

c+ l − c
.

Now suppose that λn−1 ≤ l/(n− c) for n > c+ l. We will show that

λn−1 ≤
l

n− c
=⇒ αn−1 ≤

c

n
=⇒ λn ≤

l

n+ 1− c.
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By Lemma 3.3.1 and equation 3.2.2, we have

αn−1 = λn−1σ
2 + β2

n

(1 + λn−1)σ2 + β2
n

≤ σ2l/(n− c) + σ2b/n

σ2(1 + l/(n− c)) + σ2b/n

≤ σ2l/(n− c) + σ2b/(n− c)
σ2(1 + l/(n− c)) + σ2b/(n− c)

= l + b

(n− c) + l + b

= c

(n− c) + c

= c

n
. (3.3.4)

Thus we can represent αn−1 = an/n, where 1 ≤ an ≤ c. Then

an
n

= αn−1 = 1− σ2

(1 + λn−1)σ2 + β2
n

which implies

σ2

(1 + λn−1)σ2 + β2
n

= 1− an
n

=⇒ 1 + λn−1 + β2
n

σ2 = n

n− an

=⇒ λn−1 + β2
n

σ2 = an
n− an

,

whence

λn−1 ≤
an

n− an
. (3.3.5)

We will consider two cases an ≤ l and an > l respectively.
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First, if an ≤ l, we derive

λn = α2
n−1 + (1− αn−1)2λn−1

=
(
an
n

)2
+
(

1− an
n

)2
λn−1

≤
(
an
n

)2
+
(

1− an
n

)2 an
n− an

= a2
n + an(n− an)

n2

= an
n

≤ l

n+ 1− c,

where the first inequality holds because of (3.3.5), and the last inequality holds

because an ≤ l and c > 1 (recall 1 < l < c < 2l).

On the other hand, in the case when an > l, we write

λn = α2
n−1 + (1− αn−1)2λn−1

=
(
an
n

)2
+
(

1− an
n

)2
λn−1

≤
(
an
n

)2
+
(

1− an
n

)2 l

n− c

where the last inequality is due to the induction assumption mentioned at the be-

ginning of our proof. Thus, to show λn ≤ l/(n+ 1− c), it suffices to show

(
an
n

)2
+
(

1− an
n

)2 l

n− c
≤ l

n+ 1− c,
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which implies

a2
n

n2 ≤
l

n+ 1− c −
(

1− an
n

)2 l

n− c

≤ l
n2(n− c)− (n− an)2(n+ 1 + c)

n2(n+ 1 + c)(n− c)

≤ l
(2nan − a2

n)(n− c)− (n− an)2

n2(n+ 1 + c)(n− c)

which is equivalent to the inequality

n2l
[
(2nan − a2

n)(n− c)− (n− an)2
]
− a2

nn
2(n+ 1 + c)(n− c) ≥ 0.

That is

l
[
(2nan − a2

n)(n− c)− (n− an)2
]
− a2

n(n+ 1 + c)(n− c) ≥ 0.

For simplicity, we define the notation

f(n; an) := l
[
(2nan − a2

n)(n− c)− (n− an)2
]
− a2

n(n+ 1 + c)(n− c).

Then we expand f(n; an) and complete the square in terms of the parabola in n:

f(n; an) = (l(2an − 1)− a2
n)n2 −

[
l(a2

n + 2can − 2an)− a2
n(2c− 1)

]
n

+ a2
n(c− 1)(l − c)

= (l(2an − 1)− a2
n)
[
n− l(a2

n + 2can − 2an)− a2
n(2c− 1)

2(l(2an − 1)− a2
n)

]2
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+ 4(l(2an − 1)− a2
n)a2

n(c− 1)(l − c)− [l(a2
n + 2can − 2an)− a2

n(2c− 1)]2

4(l(2an − 1)− a2
n) .

Thus, to show that f(n; an) ≥ 0, it is sufficient to show the following three inequal-

ities:

l(2an − 1)− a2
n > 0, (3.3.6)

c+ l ≥ l(a2
n + 2can − 2an)− a2

n(2c− 1)
2(l(2an − 1)− a2

n) , (3.3.7)

f(c+ l; an) ≥ 0, (3.3.8)

because when (3.3.6) and (3.3.7) hold, we have

f(n; an) ≥ f(c+ l; an)

for all n ≥ c+ l. At that point, (3.3.8) leads to f(n; an) ≥ 0.

Recall 1 < l < an ≤ c. To show inequality (3.3.6), it is sufficient to show

l >
a2
n

2an − 1 ,

where

g(an) := a2
n

2an − 1

is an increasing function of an with 1 < l < an ≤ c. To see this, take the derivative
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of g(an) with respect to an

g′(an) =
(

a2
n

2an − 1

)′

= 2an(2an − 1)− 2a2
n

(2an − 1)2

= 2an(an − 1)
(2an − 1)2

> 0.

Thus g(an) ≤ g(c) and to show l > g(an), it is sufficient to show l > g(c) =

c2/(2c− 1), which is equivalently to show l(2c− 1)− c2 > 0. This holds since

l(2c− 1)− c2 = l(2(l + b)− 1)− (l + b)2

= 2l2 + 2lb− l − l2 − 2lb− b2

= l(l − 1)− b2

> 0,

where the last inequality hold because by definition l ≥ b + 1. Hence, (3.3.6) is

satisfied.

To show inequality (3.3.7), we can see that, since (3.3.6) is valid, it is sufficient

to show

2(c+ l)(l(2an − 1)− a2
n)−

[
l(a2

n + 2can − 2an)− a2
n(2c− 1)

]
≥ 0
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where the left hand side of the above inequality can be manipulated as

2(c+ l)(l(2an − 1)− a2
n)−

[
l(a2

n + 2can − 2an)− a2
n(2c− 1)

]
= 4ancl − 2cl + 4anl2 − 2l2 − 2a2

nc− 2a2
nl − a2

nl − 2ancl + 2anl + 2ca2
n − a2

n

= 2ancl + 4anl2 + 2anl − 3a2
nl − a2

n − 2cl − 2l2

= (2anl − 2l2) + (2ancl + 2anl2 − 3a2
nl) + (2anl2 − a2

n − 2cl)

≥ (2l· l − 2l2) + (2an· anl + anl
2 − 3a2

nl) + (2l· l2 − (2l)2 − 2(2l)l)

= 0 + (2a2
nl + anl

2 − 3a2
nl) + (2l3 − 8l2)

≥ (2l2· l + l· l2 − 3l2· l) + (2l3 − 8l2)

= 0 + 2l2(l − 4)

≥ 0,

where the first and the second inequality holds because l < an ≤ c < 2l and the last

inequality hold since in fact l ≥ 4 by construction. Hence, (3.3.7) is satisfied.

To show inequality (3.3.8), we can see that

f(c+ l; an)

= 2ancl2 + 2ancl + 2anl3 + 2anl2 − 2a2
nl

2 − 2a2
nl − c2l − 2cl2 − l3

= (2ancl2 − 2a2
nl

2) + (2ancl − 2a2
nl) + (2anl2 − l3) + (2anl3 − c2l − 2cl2)

≥ (2ananl2 − 2a2
nl

2) + (2ananl − 2a2
nl)

+ (2l· l2 − l3) + (2l· l3 − (2l)2l − 2· 2l· l2)

= 0 + 0 + l3 + 2l3(l − 4)
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≥ 0,

where the first inequality holds since l < an ≤ c < 2l and the final inequality holds

again since l ≥ 4. Hence, (3.3.8) is satisfied. Now all of the conditions (3.3.6)-(3.3.8)

are satisfied which means we have f(n; an) ≥ 0, whence

λn ≤
l

n+ 1− c

when an > l.

Up until now, we have proved that

λn−1 ≤
l

n− c
=⇒ αn−1 ≤

c

n
=⇒ λn ≤

l

n+ 1− c.

Therefore, by mathematical induction, for all n ≥ c+ l, we have

λn−1 ≤
l

n− c

and

αn−1 ≤
c

n
,

which completes the proof.

Combining the result in Theorem 3.3.1 and in George and Powell (2006), we

have shown that
1

n+ 1 ≤ αn ≤
c

n+ 1
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which means both of the conditions ∑∞n=0 αn = ∞ and ∑∞n=0 α
2
n < ∞ are satisfied.

This implies that θ̄n converges to θ∗ almost surely due to the well-known theory of

stochastic approximation (Kushner and Yin, 2003).

3.4 Conclusion and Future Work

In this chapter, we reviewed the bias-adjusted Kalman filter procedure which

is an algorithm for finding an optimal stepsize in a stochastic approximation process

with non-stationary observations. We generalized the convergence of the estimator

to the system states, from L2 convergence, proved in previous literature, to almost

sure convergence, by verifying that the Kalman filter stepsize satisfies the well-known

conditions for almost sure convergence of stochastic approximation. This result has

not been previously available in the literature and is particularly noteworthy because

BAKF is the first algorithm to employ an optimal stepsize that can automatically

adapt to the level of noise in a measured signal. Optimal stepsizes have been proven

to dramatically enhance the performance of stochastic approximation algorithm in

both dynamic programming and signal processing, and it is important to see that the

legitimacy of BAKF stepsizes is substantiated by asymptotic consistency. Therefore

we can be confident that the procedure will not fundamentally misdirect us in real

implementation.

Nevertheless, one major concern of the BAKF stepsize is the bias term βn

whose calculation involves the unknown underlying sequence of states θn. Obviously,

in many applications, the bias term is also unknown and must be approximated. The
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study by George and Powell (2006) proposes an approximate version of the BAKF

stepsize given by the plug-in estimator

ᾱn = λ̄nσ̄
2
n + (β̄n+1)2

(1 + λ̄n)σ̄2
n + (β̄n+1)2

(3.4.1)

where

β̄n+1 = (1− νn)β̄n + νn(X̂n+1 − θ̄n)

σ̄2
n = δ̄n − β̄n

1 + λ̄n−1

where νn = 1/(n + 1) is a deterministic stepsize, δn is the expected value of the

squared prediction errors with

δn := E
[(
X̂n − θ̄n−1

)2
]

= (1 + λn−1)σ2 + β2
n,

which is further approximated by

δ̄n = (1− νn−1)δ̄n−1 + νn−1(X̂n − θ̄n−1)2,

and λ̄n is the approximation of λn that is calculated recursively by

λ̄n := ᾱ2
n−1 + (1− ᾱn−1)2 λ̄n−1.

Notice that under these settings, ᾱn no longer coincides with the solution to the
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optimization problem in equation 3.2.1. Compared to the deterministic αn in equa-

tion 3.2.2, ᾱn is the plug-in estimator by replacing the corresponding deterministic

quantities with its stochastic approximation counterpart. Our future efforts are to

extend the consistency results of the estimator θ̄n to the case with the stochastic

stepsize ᾱn.
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Appendix A: Convergence of Knowledge Gradient Policy

In Section 1.3, the measurement decision xn is due to a exogenous decision-

making policy. One such policy is the knowledge gradient (KG) policy, which was

first proposed and studied in Frazier et al.(2008; 2009) and extended by Ryzhov et al.

(2012). In recent years, KG was applied in combination with Bayesian methods, one

of which is the knowledge gradient with discrete priors (KGDP). This policy KGDP

was first introduced by Chen et al. (2015), and later was extended to KGDP with

resampling (KGDP-R) by He and Powell (2016) and further extended to KGDP

with resampling and regeneration (KGDP-R&R) by Huang et al. (2018). We refer

readers to Huang et al. (2018, Table 1) for a summary of papers on knowledge

gradient policies.

In Chapter 2, we have shown the consistency of the estimator of the true (cost)

function under the assumption that the information collection policy (i.e., KGDP)

would potentially guarantee us enough observations for each alternative in the set

X = {1, 2, ...,M}. In this appendix, let N be the number of experiments we are

able to perform under the budget. We would like to address two more topics with

regard to KGDP as mentioned in Section 1.4. The first topic is the formulation of

KGDP when there is more than one delivery region (as in Huang et al. (2018) and our
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motivating example), in which case there are R different true cost functions for the R

regions. Another topic, as a follow up to the first one, is whether or not the marginal

information gain of measuring one more alternative can be shown to have limit zero

so that we could maximize the potency of the (N ) experiments under the budget.

In this appendix, we will consider R regions and we begin with some modifications

to our previous notations and definitions to accommodate this change. Notice that

our previous consistency proof still holds for each region considered individually.

A.1 Modified Notations and Definitions

The following notations and definitions are designed for proofs related to the

KGDP and are only used for expressions and derivations in this appendix.

Definition A.1.1. We rewrite the candidate set for the region r at the time n as

Cnr = {fnr1, fnr2, ..., fnrL}.

We still use a fixed number L of candidate functions over the entire sequence of

experiments.

Definition A.1.2. In Definition 1.3.2 we defined the true curve for only one region.

Similarly, we define an unknown function µr(x), x ∈X that is assumed to be isotonic

with respect to the simple order 1 < 2 < ... < M , on the set X = {1, 2, ...,M}.

We call µr(x) the true function, or the true curve of the region r. If we allocate xr

delivery resources to region r, then the µr(xr) is interpreted as the true cost of such
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an allocation.

Definition A.1.3. Consider the following optimization problem as described in

Huang et al. (2018):

min
x1,...,xR

R∑
r=1

µr(xr) (A.1.1)

s.t.
R∑
r=1

xr = M, xr ∈X

Denote by X the feasible region of x in the above resource allocation minimization

model (A.1.1), where x = (xr)∀r is the R-dimensional vector of integer variables

representing a resource allocation solution. Therefore, x = (xr)∀r ∈ X and xr ∈

X = {1, 2, ...,M}. Italic X denotes the set of alternatives and scripted X denotes

the set of all possible recourse allocation solutions.

Definition A.1.4. Denote by Sn the state variable that contains our belief about

the candidates and the R true curves at time n. We write

Sn = {pn11, ..., p
n
rl, ..., p

n
RL} = {pnrl}∀r,l

where r = 1, 2, ..., R, l = 1, 2, ..., L, and pnrl is the probability that the l-th curve

in the candidate set Cnr , that is, fnrl, is the true curve for region r. The state Sn is

updated in the Bayesian fashion described in Section 1.3.3 and 1.3.4.

Definition A.1.5. Denote by f̄nr the estimator of the true curve µr on X up to the

nth information collection experiment. Keep L = {1, 2, ..., L} as the index set for C.
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Then as in Definition 1.3.8, f̄nr is formulated as a weighted sum of all the candidate

functions in Cnr :

f̄nr (x) =
∑
l∈L

pnrlf
n
rl(x), x ∈X

and the overall cost for all the R regions given a resource allocation x = (xr)∀r is

calculated as
R∑
r=1

f̄nr (xr) =
R∑
r=1

∑
l∈L

pnrlf
n
rl(xr), ∀x ∈X .

In the main part of this thesis we have proved the asymptotically strong consistency

of f̄nr as an estimator of µr.

Since we now have more than one region under consideration, in each iteration

we need to decide one region to be measured in addition to one choice of alternative.

Moreover, the algorithm evaluates only one region-resource combination (r,m) in

each measurement. Therefore we have:

Definition A.1.6. The sequence of decisions, denoted by xn, n = 0, 1, ...,N−1, is a

series of bi-vectors each of which is a region-resource combination that we choose to

measure in the next experiment. We use x when referring to a decision generically.

The corresponding measurements are ŷn+1(xn), n = 0, 1, ...,N − 1.

Finally we still keep F as the set of all finite and non-increasing monotonic

functions defined on the discrete set of alternatives X.
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A.2 Knowledge Gradient

As mentioned in both He and Powell (2016) and Huang et al. (2018), the knowl-

edge gradient at a specific measurement decision x reflects the expected marginal

gain on the value of information acquired from evaluating x; and in the nth experi-

ment the KG policy selects the decision x that maximizes the KG value. Precisely,

the knowledge gradient with discrete prior (KGDP), denoted by νKGDP,n(x), is the

expected improvement between the best estimated value in the nth iteration and

the best expected estimated value in the (n+ 1)st iteration if the previous decision

is x = (r,m).

A.2.1 Decomposition of KGDP

Based on the Huang et al. (2018, Eqn.(7)), we decompose the KGDP as follows:

νKGDP,n(x)

= En
[

min
x∈X

R∑
r′=1

f̄nr′(xr′)− min
x∈X

R∑
r′=1

f̄n+1
r′ (xr′)

∣∣∣∣∣Sn,x = (r,m)
]

= min
x∈X

R∑
r′=1

f̄nr′(xr′)− En
[

min
x∈X

R∑
r′=1

f̄n+1
r′ (xr′)

∣∣∣∣∣Sn,x = (r,m)
]

= min
x∈X

R∑
r′=1

L∑
l=1

pnr′lf
n
r′l(xr′)

− Efn
rl′
Eŷn+1|fn

rl′

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′) +

L∑
l=1

pn+1
rl fnrl(xr)


∣∣∣∣∣∣Sn,x, µr = fnrl′


:= An −Bn(x),
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where µr = fnrl′ indicates that fnrl′ is the true curve among the L candidates in Cnr .

Our ultimate goal is to show that the limit of νKGDP,n(x) is zero as n goes to infinity.

The intuition is that as we measure the decision x = (r,m) infinitely many times

and gradually learn the true curve, the marginal value of information for measuring

x one more time would be diminishing to zero. Note that we drop the x in the

notation An because this part is irrelevant to the region-resource we measure.

Given that fnrl′ is the true curve, the (n + 1)th observation, which is a mea-

surement taken on the region r and alternative m, is given by ŷn+1 ∼ N (fnrl′(m), σ2)

with density
1√
2πσ

exp
[
−(ŷ − fnrl′(m))2

2σ2

]
.

For simplicity, we drop the time index and use ŷ to denote observations generically

when the integration (in the later proof) is with respect to the observation. Before

calculating Bn(x), we denote by pn+1
rl|l′ the posterior probability of the curve fnrl (being

the true curve) given that fnrl′ is the real true curve. Writing ŷ = fnrl′(m) +W where

W ∼ N (0, σ2), we have by Bayes rule:

pn+1
rl|l′ =

exp
[
− (fnrl′(m) +W − fnrl(m))2 /(2σ2)

]
pnrl∑L

l′′=1 exp
[
− (fnrl′(m) +W − fnrl′′(m))2 /(2σ2)

]
pnrl′′

=
exp

[
− (ŷ − fnrl(m))2 /(2σ2)

]
pnrl∑L

l′′=1 exp
[
− (ŷ − fnrl′′(m))2 /(2σ2)

]
pnrl′′

.

Note that pn+1
rl|l′ depends on m which is given by the decision x = (r,m).
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We now rewrite Bn(x) as:

Bn(x)

= Efn
rl′
Eŷ|fn

rl′

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′) +

L∑
l=1

pn+1
rl fnrl(xr)


∣∣∣∣∣∣Sn,x, µr = fnrl′


=

L∑
l′=1

Eŷ|fn
rl′

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′) +

L∑
l=1

pn+1
rl|l′ f

n
rl(xr)


∣∣∣∣∣∣Sn,x = (r,m)

 · pnrl′
=

L∑
l′=1

ˆ
ŷ

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′) +

L∑
l=1

fnrl(xr)
exp

[
− (ŷ − fnrl(m))2 /(2σ2)

]
pnrl∑L

l′′=1 exp
[
− (ŷ − fnrl′′(m))2 /(2σ2)

]
pnrl′′


× 1√

2πσ
exp

[
−(ŷ − fnrl′(m))2

2σ2

]
dŷ

]
· pnrl′

=
L∑
l′=1

ˆ
ŷ

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}

×
1√
2πσ exp

[
− (ŷ − fnrl′(m))2 /(2σ2)

]
∑L
l′′=1 exp

[
− (ŷ − fnrl′′(m))2 /(2σ2)

]
pnrl′′

dŷ

 · pnrl′
= 1√

2πσ

ˆ
ŷ

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}

×
∑L
l′=1 exp

[
− (ŷ − fnrl′(m))2 /(2σ2)

]
pnrl′∑L

l′′=1 exp
[
− (ŷ − fnrl′′(m))2 /(2σ2)

]
pnrl′′

 dŷ
= 1√

2πσ

ˆ +∞

−∞

min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}]
dŷ
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Thus for r′ ∈ {1, 2, ..., R}\{r},

Bn(x) = 1√
2πσ

ˆ +∞

−∞
min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}
dŷ (A.2.1)

A.2.2 The Limit of KGDP

In this section we establish the main theorem that shows the KGDP asymp-

totically vanishes to zero.

Theorem A.2.1. The knowledge gradient with discrete priors at x = (r,m) goes

to zero as n goes to infinity. That is lim
n→∞

νKGDP,n(x) = 0.

Proof. We will proceed by calculating lim
n→∞

An and lim
n→∞

Bn(x) respectively and then

show that lim
n→∞

An = lim
n→∞

Bn(x). From our previous proof of Theorem 2.4.1, for each

region r, the function fnrl(xr) converges to µr(xr) almost surely on X and Cnr . That

is

lim
n→∞

fnrl(xr) = µr(xr) (A.2.2)

for all xr ∈ X and fnrl ∈ Cnr . In addition for each region r, the estimator converges

to the true curve almost surely, that is,

lim
n→∞

f̄nr (xr) = µr(xr) (A.2.3)

for all xr ∈X. We then have for any x = (xr)∀r ∈X :
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lim
n→∞

An = lim
n→∞

[
min
x∈X

R∑
r′=1

L∑
l=1

pnr′lf
n
r′l(xr′)

]

= min
x∈X

{
lim
n→∞

R∑
r′=1

L∑
l=1

pnr′lf
n
r′l(xr′)

}
(A.2.4)

= min
x∈X

{
lim
n→∞

R∑
r′=1

f̄nr′(xr′)
}

= min
x∈X

{
R∑

r′=1
lim
n→∞

f̄nr′(xr′)
}

= min
x∈X

{
R∑

r′=1
µr′(xr′)

}
. (A.2.5)

Notice that here (A.2.4) is valid since all fnrl and µr are in F and the minimum

operator is taken over a finite set.

When finding the limit of Bn(x), one key step is to interchange the limit and

the integral operator. Recall that fnrl ∈ Cnr and fnr′l ∈ Cnr′ , we define

ψn (ŷ) = min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)·

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}

which is everything inside the integral sign in (A.2.1), and

φnx0 (ŷ) =
∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(x0

r′)·
L∑

l′′=1
exp

[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(x0
r) exp

[
−(ŷ − fnrl(m))2

2σ2

]
pnrl
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where the vector x0 ∈X is a particular realization of the resource allocation to the

R regions and x0 = (x0
r)Rr=1. Here , we choose the x0 ∈X such that

x0 = arg max
x∈X

|φnx (ŷ)|

which implies that

|ψn (ŷ)| ≤
∣∣∣φnx0 (ŷ)

∣∣∣ . (A.2.6)

For each r ∈ {1, 2, ..., R} and l ∈ {1, 2, ..., L}, pnrl is bounded between 0 and 1. Thus

there exists p∗rl ∈ [0, 1] and a subsequence
{
nrlk
}∞
k=1

along which

lim
k→∞

p
nrlk
rl = p∗rl, ∀r ∈ {1, 2, ..., R}, ∀l ∈ {1, 2, ..., L}.

Furthermore there exists a general subsequence

{nk}∞k=1 ⊂ ∪
R
r=1 ∪Ll=1

{
nrlk
}∞
k=1

along which for all r ∈ {1, 2, ..., R} and all l ∈ {1, 2, ..., L}

lim
k→∞

pnkrl = p∗rl.

Along this general subsequence {nk}∞k=1, since each function fnrl(xr) converges to

µr(xr), we also have limk→∞ f
nk
rl (xr) = µr(xr). Now we define

98



ψ (ŷ)

= min
x∈X

∑
r′ 6=r

µr′(xr′)· exp
[
−(ŷ − µr(m))2

2σ2

]
+ µr(xr) exp

[
−(ŷ − µr(m))2

2σ2

]
= min

x∈X

{
R∑

r′=1
µr′(xr′)· exp

[
−(ŷ − µr(m))2

2σ2

]}

and

φx0 (ŷ)

=
∑
r′ 6=r

µr′(x0
r′)· exp

[
−(ŷ − µr(m))2

2σ2

]
+ µr(x0

r) exp
[
−(ŷ − µr(m))2

2σ2

]

=
R∑

r′=1
µr′(x0

r′)· exp
[
−(ŷ − µr(m))2

2σ2

]

We first apply the dominated convergence theorem in Koralov and Sinai (2007,

Thm.3.26) (or Çınlar (2011, Thm.4.16)) to show that

lim
n→∞

ˆ +∞

−∞
φnx0 (ŷ) dŷ =

ˆ +∞

−∞
lim
n→∞

φnx0 (ŷ) dŷ =
ˆ +∞

−∞
φx0 (ŷ) dŷ. (A.2.7)

Second, we apply the dominated convergence theorem in Kallenberg (2006, Thm.1.21)

together with ψn (ŷ) → ψ (ŷ), φnx0 (ŷ) → φx0 (ŷ), |ψn (ŷ)| ≤ φnx0 (ŷ) and (A.2.7),

showing that

lim
n→∞

ˆ +∞

−∞
ψn (ŷ) dŷ =

ˆ +∞

−∞
lim
n→∞

ψn (ŷ) dŷ =
ˆ +∞

−∞
ψ (ŷ) dŷ. (A.2.8)
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Finally we use (A.2.8) to calculate the limit of Bn(x). We begin with the proof of

(A.2.7).

We have shown that lim
n→∞

fnrl(xr) = µr(xr) and lim
n→∞

f̄nr (xr) = µr(xr) for all

xr ∈X and fnrl ∈ Cnr . If we further define

f̄ enr =
L∑

l′′=1
exp

[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

and

f̄n,enr (xr) =
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl,

then exp
[
− (ŷ − fnrl′′(m))2 /(2σ2)

]
is a continuous function of the value of fnrl′′(m),

and the product fnrl(xr) exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
is a continuous function of the

value of fnrl(xr) and fnrl(m). Thus we have

lim
n→∞

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
= exp

[
−(ŷ − µr(m))2

2σ2

]

and

lim
n→∞

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
= µr(xr) exp

[
−(ŷ − µr(m))2

2σ2

]
.

Because f̄ enr and f̄n,enr (xr) can be viewed as the weighted sum of

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
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and

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]

respectively with weights sum to one (those pnrl’s), applying the same technique in

the consistency proof of Theorem 2.4.1 we would have

lim
n→∞

f̄ enr = exp
[
−(ŷ − µr(m))2

2σ2

]
(A.2.9)

and

lim
n→∞

f̄n,enr (xr) = µr(xr) exp
[
−(ŷ − µr(m))2

2σ2

]
. (A.2.10)

With the above two equations (A.2.9) and (A.2.3), it is easy to see that

lim
n→∞

φnx0 (ŷ) = lim
n→∞

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(x0

r′)·
L∑

l′′=1
exp

[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(x0
r) exp

[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}
(A.2.11)

= lim
n→∞


∑
r′ 6=r

f̄nr′(x0
r′)
 · f̄ enr + f̄n,enr (x0

r)


= lim

n→∞

∑
r′ 6=r

f̄nr′(x0
r′)· lim

n→∞
f̄ enr + lim

n→∞
f̄n,enr (x0

r)

=
∑
r′ 6=r

µr′(x0
r′)· exp

[
−(ŷ − µr(m))2

2σ2

]
+ µr(x0

r) exp
[
−(ŷ − µr(m))2

2σ2

]

=
R∑

r′=1
µr′(x0

r′)· exp
[
−(ŷ − µr(m))2

2σ2

]

= φx0 (ŷ) . (A.2.12)

Note that the above equation (A.2.12) does not depend on the specific x0 and it

101



holds for any x ∈X . Therefore we have

lim
n→∞

φnx (ŷ) = φx (ŷ) . (A.2.13)

Our next step would be finding an function φ̃x0(ŷ) that is integrable with respect

to ŷ such that
∣∣∣φnx0 (ŷ)

∣∣∣ ≤ φ̃x0(ŷ).

By (A.2.2) and (A.2.3), there exists Nε such that for all l and region r when

n > Nε, we have

|fnrl(xr)− µr(xr)| < ε,
∣∣∣f̄nr (xr)− µr(xr)

∣∣∣ < ε

and

|fnrl(m)− µr(m)| < ε.

Together with

µr(1) ≥ µ(2) ≥ ... ≥ µ(M),

the previous three inequalities imply that

fnrl(xr) ≤ µr(xr) + ε ≤ µr(1) + ε, f̄nr (xr) ≤ µr(xr) + ε ≤ µr(1) + ε

and

µr(m)− ε < fnrl(m) < µr(m) + ε.
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The key to the construction of φ̃x0(ŷ) lies in the way we bound

exp
[
−(ŷ − fnrl(m))2

2σ2

]
.

Up to a scale factor (
√

2πσ)−1 the exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
behaves like the

normal density curve of ŷ that is centered at ŷ = fnrl(m). Therefore when n > Nε,

geometrically each exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
has the same shape and with its axis

of symmetry at ŷ = fnrl(m), where fnrl(m) ∈ (µr(m)− ε, µr(m) + ε). In addition each

exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
is always positive and reaching its maximum value 1 at

ŷ = fnrl(m). Thus we can see that:

• for ŷ > µr(m) + ε, we have

exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
< exp

[
− (ŷ − (µr(m) + ε))2 /(2σ2)

]
;

• for ŷ < µr(m)− ε, we have

exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
< exp

[
− (ŷ − (µr(m)− ε))2 /(2σ2)

]
;

• for ŷ ∈ [µr(m)− ε, µr(m) + ε], we have

exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
≤ 1.
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Figure A.2.1: exp
[
−(ŷ−fnrl(m))2

2σ2

]
centered at fnrl(m) ∈ (µr(m)− ε, µr(m) + ε)

Based on this fact we set

β(ŷ) =



exp
[
− (ŷ − (µr(m) + ε))2 /(2σ2)

]
, ŷ > µr(m) + ε,

1, ŷ ∈ [µr(m)− ε, µr(m) + ε]

exp
[
− (ŷ − (µr(m)− ε))2 /(2σ2)

]
, ŷ < µr(m)− ε.

,

Graphical illustrations of the construction of β(ŷ) are in Figure A.2.1 and A.2.2

Then 0 < exp
[
− (ŷ − fnrl(m))2 /(2σ2)

]
< β(ŷ) for ŷ ∈ (−∞,+∞). Meanwhile for

the previous ε, there exists Kε such that for k > Kε we have pnkrl < p∗rl + ε. Thus:

∣∣∣φnx0 (ŷ)
∣∣∣

=

∣∣∣∣∣∣
∑
r′ 6=r

f̄nr′(x0
r)·

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(x0
r) exp

[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

∣∣∣∣∣
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Figure A.2.2: Construction of β(ŷ)

≤

∣∣∣∣∣∣
∑
r′ 6=r

(µr(1) + ε) ·
L∑

l′′=1
β(ŷ) (p∗rl + ε) +

L∑
l=1

(µr(1) + ε)β(ŷ) (p∗rl + ε)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
r′ 6=r

(µr′(1) + ε)· β(ŷ)(1 + Lε) + (µr(1) + ε)β(ŷ)(1 + Lε)

∣∣∣∣∣∣
=
∣∣∣∣∣
R∑

r′′=1
(µr′′(1) + ε)β(ŷ)(1 + Lε)

∣∣∣∣∣
:= φ̃(ŷ).

Remembering that β(ŷ) > 0 for all ŷ ∈ (−∞,+∞), we can see that φ̃(ŷ) is integrable

with respect to ŷ because

ˆ +∞

−∞

∣∣∣φ̃(ŷ)
∣∣∣ dŷ

=
ˆ +∞

−∞

∣∣∣∣∣
R∑

r′′=1
(µr′′(1) + ε)(1 + Lε)β(ŷ)

∣∣∣∣∣ dŷ
≤
ˆ +∞

−∞

R∑
r′′=1
|(µr′′(1) + ε)(1 + Lε)β(ŷ)| dŷ
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=
R∑

r′′=1
|(µr′′(1) + ε)(1 + Lε)| ·

ˆ +∞

−∞
β(ŷ)dŷ

=
R∑

r′′=1
|(µr′′(1) + ε)(1 + Lε)|

√
2πσ

{ˆ +∞

µr(m)+ε

1√
2πσ

exp
[
−(ŷ − (µr(m) + ε))2

2σ2

]
dŷ

+
ˆ µr(m)−ε

−∞

1√
2πσ

exp
[
−(ŷ − (µr(m)− ε))2

2σ2

]
dŷ +

ˆ µr(m)+ε

µr(m)−ε

1√
2πσ
· 1dŷ

}

≤
R∑

r′′=1
|(µr′′(1) + ε)(1 + Lε)|

√
2πσ

{
1
2 + 1

2 + 2ε√
2πσ

}

= (1 + Lε)
(√

2πσ + 2ε
)
·

R∑
r′′=1
|(µr′′(1) + ε)| (A.2.14)

where the quantity in (A.2.14) is finite regardless of the value of ε. Thus,
∣∣∣φnx0 (ŷ)

∣∣∣ ≤
φ̃(ŷ) and φ̃(ŷ) is integrable. Combined with φnx0 (ŷ)→ φx0 (ŷ), by the dominated con-

vergence theorem in Çınlar (2011, Thm.4.16) or Koralov and Sinai (2007, Thm.3.26),

we showed (A.2.7). That is, λ
[
φnx0 (ŷ)

]
→ λ [φx0 (ŷ)] where λ denotes the Lebesgue

integral.

Next, since all fnrl and µr are in F , fnrl(m) and fnrl′′(m) are irrelevant with x

and the minimum operator is over a finite set, we may interchange the “limit” and

“min” operator. Then applying equation (A.2.13) implies

lim
n→∞

ψn (ŷ)

= lim
n→∞

min
x∈X
{φnx (ŷ)}

= min
x∈X

{
lim
n→∞

φnx (ŷ)
}

= min
x∈X
{φx (ŷ)}

= ψ (ŷ) , (A.2.15)
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that is, lim
n→∞

ψn (ŷ) = ψ (ŷ). Therefore, we have |ψn (ŷ)| ≤
∣∣∣φnx0 (ŷ)

∣∣∣ (by (A.2.6)) for

all n and such that ψn (ŷ) → ψ (ŷ) (by (A.2.15)), φnx0 (ŷ) → φx0 (ŷ) (by (A.2.12)),

and λ
[
φnx0 (ŷ)

]
→ λ [φx0 (ŷ)]. By the dominated convergence theorem of Kallenberg

(2006, Thm.1.21), we have

λ [ψn (ŷ)]→ λ [ψ (ŷ)]

which is equivalent to (A.2.8).

We now calculate the limit of Bn(x) as follows:

lim
n→∞

Bn(x)

= lim
n→∞

1√
2πσ

ˆ +∞

−∞
min
x∈X

∑
r′ 6=r

L∑
l=1

pnr′lf
n
r′l(xr′)·

L∑
l′′=1

exp
[
−(ŷ − fnrl′′(m))2

2σ2

]
pnrl′′

+
L∑
l=1

fnrl(xr) exp
[
−(ŷ − fnrl(m))2

2σ2

]
pnrl

}
dŷ

= lim
n→∞

1√
2πσ

ˆ +∞

−∞
ψn (ŷ) dŷ

= 1√
2πσ

ˆ +∞

−∞
lim
n→∞

ψn (ŷ) dŷ

= 1√
2πσ

ˆ +∞

−∞
ψ (ŷ) dŷ

= 1√
2πσ

ˆ +∞

−∞
min
x∈X

{
R∑

r′=1
µr′(xr′)· exp

[
−(ŷ − µr(m))2

2σ2

]}
dŷ

= min
x∈X

{
R∑

r′=1
µr′(xr′)

}ˆ +∞

−∞

1√
2πσ

exp
[
−(ŷ − µr(m))2

2σ2

]
dŷ

= min
x∈X

{
R∑

r′=1
µr′(xr′)

}
. (A.2.16)
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Comparing (A.2.5) and (A.2.16), we have lim
n→∞

An = lim
n→∞

Bn(x). Hence,

lim
n→∞

νKGDP,n(x) = lim
n→∞

[An −Bn(x)]

= lim
n→∞

An − lim
n→∞

Bn(x)

= 0

We conclude the proof that the KGDP evaluated at a particular region-allocation

combination x = (r,m) diminishes to zero if we are able to query this x infinitely

many times. i.e., n→∞.
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Appendix B: Isotonic Regression with Finite Measurements

Isotonic Estimator With Finite Measurements

In this section, we discuss the theoretical limiting behavior of isotonic regres-

sion estimator when not every x ∈X is measured infinitely many times.

B.1 Motivation and Objective Function

In our previous proof of the consistency of the estimator of the cost function, we

made a critical assumption that the knowledge gradient (KG) algorithm would mea-

sure each alternative x ∈ X = {1, 2, ...,M} infinitely often. In other words, during

the information collection process when the number of iterations n goes to infinity,

the number of observations on x, namely wn(x), also goes to infinity. Although such

a property is desired for KG and any other learning algorithms beyond KG, it may

not always be fulfilled or known to be inherent with the learning algorithms that

researchers choose to apply. Learning the properties of isotonic regression when

partial alternatives are queried finitely many times can be meaningful for future re-

search in those learning algorithms. Therefore in this section we examine this issue

and study the behavior of the isotonic regression estimator under the scenario that
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not all of the alternatives are measured infinitely many times. We begin with some

key notations and a revisit to the definition of the isotonic regression estimator.

Definition B.1.1. Denote by X∞ the set of alternatives in X that are measured

infinitely often (i.o.) under KG, that is: X∞ = {x ∈ X : wn(x)→∞ as n→∞}.

Then denote by Xc
∞ the set of alternatives that are measured finitely often under

KG. That is, Xc
∞ = {x ∈ X : wn(x) is finite as n→∞}. Therefore X∞ and Xc

∞

form a partition on X with X = X∞
⋃
Xc
∞ and X∞

⋂
Xc
∞ = ∅.

Definition B.1.2. Because isotonic regression is an minimization problem subject

to some order constraints, we denote by F the set of all finite and non-increasing

monotonic functions defined on the discrete set of alternatives X. From now on to

the end of this chapter, our discussion is restricted to all x ∈X and f(x) ∈ F .

Remark. In addition to the monotonicity and discreteness, non-negativity is usu-

ally required for some objective functions like an operational cost function in the

motivating example described in Section 1.4. However, for the general purpose of

learning asymptotic properties of isotonic regression estimator, our discussion and

conclusions do not depend on non-negativity hence we do not restrict f(x) to be

non-negative.

We still keep ȳn = ȳn(x) = (1/wn(x))∑wn(x)
j=1 ŷj(x), x ∈X as the sample mean

of all the measurements taken on x up to the nth iteration, i.e., Ĥn; and µ(x), x ∈X

as the value of the true cost function at x. The sample isotonic regression estimator

of ȳn was previously denoted by (ȳn)∗ when all x ∈X are measured infinitely often.

We now denoted by f̂ ∗n(x) the sample isotonic regression estimator of ȳn when some
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alternatives in X are measured finitely many times. Then f̂ ∗n(x) is defined as:

f̂ ∗n(x) = arg min
f(x)

∑
x∈X

[ȳn(x)− f(x)]2wn(x),

subject to f(x) ∈ F .

We can further decompose the objective function based on the number of measure-

ments of each alternative:

f̂ ∗n(x) = arg min
f(x)

∑
x∈X

[ȳn(x)− f(x)]2wn(x)

= arg min
f(x)

 ∑
x∈X∞

[ȳn(x)− f(x)]2wn(x) +
∑

x∈Xc
∞

[ȳn(x)− f(x)]2wn(x)


:= arg min

f(x)

{
SnX∞ + SnXc

∞

}
subject to f(x) ∈ F .

Our goal is to show that for x ∈X∞, lim
n→∞

f̂ ∗n(x) = µ(x) and for x ∈Xc
∞, lim

n→∞
f̂ ∗n(x)

exists.

Heuristically, we explain the results by looking at the behavior of SnX∞ and

SnXc
∞

individually, then jointly when finding the optimal minimized value. First,

observe that SnXc
∞

would converge to some positive random variable. The reason is

that in this case we are not measuring x’s i.o. so that after a certain time, we would

not update ȳn(x) and wn(x) any more, and they would converge to some respective

constants. Thus SnXc
∞
would eventually be equal to a constant number depending on

the values of f(x). Second, since ȳn(x) is a strongly consistent estimator of µ(x), af-
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ter some time large enough, SnX∞ would be very close to∑x∈X∞ [µ(x)− f(x)]2wn(x)

but meanwhile, wn(x) would be very large. Third, note that each term in the sum-

mation of SnX∞ and SnXc
∞

is non-negative; then, to minimize SnX∞ + SnXc
∞

under

isotonic constraints we need to think which of SnX∞ or SnXc
∞

can we either force to

zero, or try to minimize first. As we discussed, as n → ∞, SnXc
∞

is very likely to

end up with a finite number; and each summand in SnX∞ would also be very large

as long as ȳn(x) − f(x) 6= 0. Thus the value of SnX∞ would become very large and

there will be a time large enough such that SnX∞ � SnXc
∞
, meaning the value of the

objective function would be dominated by SnX∞ . Therefore, to minimize the objec-

tive function we need to set f̂ ∗n(x) = ȳn(x),∀x ∈ X∞, which eventually converges

to the true function value µ(x). We will proceed by first exploring the behavior of

SnXc
∞

and SnX∞respectively, then make comparisons of these two partial sums, which

followed by derivations in regard with the minimization under ordered constraints.

The final main conclusion will be stated as Theorem (B.4.1).

B.2 Behavior of the Sum with x Measured Finitely Often

We prove the following limiting result for

SnXc
∞

=
∑

x∈Xc
∞

[ȳn(x)− f(x)]2wn(x)

with f(x) ∈ F .

Lemma B.2.1.
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As n→∞, the limit of SnXc
∞

exists and is a function of x ∈Xc
∞.

Proof. By the definition of Xc
∞, there exists a time N1 such that for all n > N1,

wn(x) = w̃(x) and ȳn(x) = ỹ(x), where w̃(x) and ỹ(x) are some constant numbers

which only depend on x. Additionally, f(x) is finite for all x ∈ Xc
∞ and the

cardinality of Xc
∞ is also finite. Therefore, SnXc

∞
is a summation of finitely many

terms and we have:

lim
n→∞

SnXc
∞

= lim
n→∞

∑
x∈Xc

∞

[ȳn(x)− f(x)]2wn(x)

=
∑

x∈Xc
∞

[
lim
n→∞

ȳn(x)− f(x)
]2
· lim
n→∞

wn(x)

=
∑

x∈Xc
∞

[ỹ(x)− f(x)]2 w̃(x)

:= S̃Xc
∞

Clearly, the limit S̃Xc
∞ is finite as a function of all x ∈Xc

∞.

B.3 Behavior of the Sum with x Measured Infinitely Often

In Lemma B.2.1 we showed that after time N1, the value of SnXc
∞
will stop being

updated and eventually converge to a finite quantity only depends on x ∈Xc
∞ and

f(x) ∈ F . We prove the following lemma:

Lemma B.3.1.

There exists a time τ after which for any x ∈X and f(x) ∈ F ,
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1) If the true function µ is strictly monotonic, then S̃Xc
∞ is the lower bound of(

SnX∞ + SnXc
∞

)
. The lower bound is achieved at f(x) = f̂ ∗n(x) = ȳn(x), x ∈

X∞ for all n > τ .

2) If the true function µ is strictly monotonic, i.e., µ(x) ≥ µ(x′) for x < x′, then

the lower bound of
(
SnX∞ + SnXc

∞

)
is achieved at f(x) = f̂ ∗n(x) = f̃n(x), x ∈

X∞ for all n > τ , where f̃n(x) is the isotonic regression estimator of the

function ȳn(x) on the set X∞.

Proof. (1) Assuming µ(x) > µ(x′),∀x, x′ ∈X and x < x′. Since ȳn(x) is a consistent

estimator of µ(x) on x ∈X∞ (notX), we have ȳn(x)→ µ(x) as n→∞. Therefore

there exists a time N2 such that for n > N2 and all x < x′ ∈X∞, we have:

|ȳn(x)− µ(x)| < 1
2 |µ(x)− µ(x′)| = 1

2[µ(x)− µ(x′)] (B.3.1)

and

|ȳn(x′)− µ(x′)| < 1
2 |µ(x)− µ(x′)| = 1

2[µ(x)− µ(x′)]. (B.3.2)

Based on (B.3.1) and (B.3.2), we have:

ȳn(x) > µ(x)− 1
2[µ(x)− µ(x′)]

= 1
2[µ(x) + µ(x′)]

= µ(x′) + 1
2[µ(x)− µ(x′)]

> ȳn(x′). (B.3.3)
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That is after time N2 the sample mean will also satisfy strict monotonicity.

By the definition of X∞, for any x ∈ X∞ ⊂ X we have wn(x) → ∞ as n →

∞. Thus there exists a time N3 > max(N1, N2) such that for n > N3 and any

f(x) ∈ F we have: 1) SnXc
∞

= S̃Xc
∞ , and 2) the inequality

wn(xi,n) > S̃Xc
∞

[ȳn(xi,n)− f(xi,n)]2
(B.3.4)

where we assume that for each time index n there is at least one such xi,n ∈ X∞

satisfying ȳn(xi,n) 6= f(xi,n). We are able to make such an assumption because

ȳn(xi,n) is normally distributed with mean µ(xi,n) and variance σ2/wn(xi,n). For a

continuous random variable ȳn(xi,n) we have P(ȳn(xi,n) = f(xi,n)) = 0. Thus the

required xi,n exists almost surely. Additionally, (B.3.4) is valid not only because the

denominator is nonzero almost surely, but also because for any n, both ȳn(·) and

f(·) are finite on X. Meanwhile,

SnX∞ =
∑

x∈X∞

[ȳn(x)− f(x)]2wn(x)

≥ [ȳn(xi,n)− f(xi,n)]2wn(xi,n) (B.3.5)

≥ S̃Xc
∞ . (B.3.6)

Notice that (B.3.6) is true for all n > N3 and any f(x) ∈ F , with the only assump-

tion being the existence of such xi,n. Furthermore, still assuming the existence of

such xi,n for each n, we have

lim
n→∞

SnX∞ =∞. (B.3.7)
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This equation (B.3.7) is valid since in (B.3.5), [ȳn(xi,n)− f(xi,n)]2 is nonzero almost

surely and wn(xi,n)→∞ as n→∞.

To minimize the sum
(
SnX∞ + SnXc

∞

)
among all f(x) ∈ F , we need f(x) such

that the dominating and unbounded term SnX∞ is minimized and hopefully dimin-

ishes to zero. As we have shown above, as long as there is at least one xi,n ∈ X∞

where ȳn(xi,n) does not agree with f(xi,n), SnX∞ will dominate the sum. Recall that

in (B.3.3) we have shown the strict monotonicity of ȳn, i.e., after time N3 the func-

tion ȳn(x) is strictly decreasing in x. Therefore, setting τ = N3 and for n > τ and

f(x) ∈ F , we have

SnX∞ + SnXc
∞
≥ SnXc

∞
= S̃Xc

∞ . (B.3.8)

The equality sign holds when SnX∞ = 0, which is equivalent to setting f(x) = ȳn(x)

for all x ∈ X∞. This is valid again due to the strict monotonicity of ȳn(x).

Therefore, S̃Xc
∞ is a lower bound on

(
SnX∞ + SnXc

∞

)
and is achieved by setting

f̂ ∗n(x) = f(x) = ȳn(x) for all x ∈ X∞ and n > τ . Finally we need to minimize

S̃Xc
∞ which will be discussed in Theorem B.4.1.

(2) Assuming µ(x) ≥ µ(x′),∀x, x′ ∈ X and x > x′. In this case we only need

to discuss the case when µ(x1) = ... = µ(xk) and x1 ≥ ... ≥ xk. Note that these xi

can be from either X∞ or Xc
∞. To find the isotonic regression estimator f̂ ∗n of ȳn

under such assumption on the true function,we propose a two-step method below:

Step 1: for all x ∈X∞, find

f̃n(x) = arg min
f(x)

∑
x∈X∞

[ȳn(x)− f(x)]2wn(x) (B.3.9)
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subject to f(x) ∈ F

That is, f̃n(x) is the isotonic regression estimator of the function ȳn(x) only

on the set X∞.

Step 2: for all x ∈Xc
∞, and n ≤ N1, find

g̃n(x) = arg min
g(x)

∑
x∈Xc

∞

[ȳn(x)− g(x)]2wn(x)

subject to g(x) ∈ F and g(x) = f̃n(x),∀x ∈X∞

and when n > N1, find

g̃n(x) = arg min
g(x)

∑
x∈Xc

∞

[ỹ(x)− g(x)]2 w̃(x)

subject to g(x) ∈ F and g(x) = f̃n(x),∀x ∈X∞

where w̃(x) and ỹ(x), defined in Lemma B.2.1, are some constant numbers

only depend on x.

Step 3: for all x ∈X, assign values of f̂ ∗n(x) as

f̂ ∗n(x) =


f̃n(x), x ∈X∞

g̃n(x), x ∈Xc
∞

(B.3.10)

In the step 2, we would have similar arguments like (B.3.4) and (B.3.6). There exists

a time N4 > N1 such that for n > N4 and any f(x) ∈ F we have: 1) SnXc
∞

= S̃Xc
∞ ,

117



and 2) the inequality

wn(xj,n) > S̃Xc
∞

[ȳn(xj,n)− f(xj,n)]2
(B.3.11)

where we assume that for each n there is at least one such xj,n ∈X∞ with ȳn(xj,n) 6=

f(xj,n). Notice again that (B.3.11) is valid since ȳn(xj,n) 6= f(xj,n) almost surely

and for any n, both ȳn(·) and f(·) are finite on X. Meanwhile,

SnX∞ =
∑

x∈X∞

[ȳn(x)− f(x)]2wn(x)

≥ [ȳn(xj,n)− f(xj,n)]2wn(xj,n)

≥ S̃Xc
∞ . (B.3.12)

We still have lim
n→∞

SnX∞ =∞, but S̃Xc
∞ may not be a lower bound on

(
SnX∞ + SnXc

∞

)
since SnX∞ may not reach zero. This is because in step 1 we are no longer able to set

f(x) = ȳn(x). Thus it is not guaranteed that ȳn(x)− f̃n(x) = 0. Nevertheless, when

n > N4, we have
(
SnX∞ + SnXc

∞

)
=
(
SnX∞ + S̃Xc

∞

)
and SnX∞ is dominating S̃Xc

∞ .

Moreover, setting f(x) = f̃n(x) would still give us a lower bound on
(
SnX∞ + S̃Xc

∞

)
.

Notice here S̃Xc
∞ is only the limit of SnXc

∞
, not the lower bound.

Let τ = max(N3, N4), we set, for n > τ ,

Sn,minX∞ = min
f(x)∈F

∑
x∈X∞

[ȳn(x)− f(x)]2wn(x)

=
∑

x∈X∞

[
ȳn(x)− f̃n(x)

]2
wn(x).
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Then what we have shown above is that our original objective function
(
SnX∞ + SnXc

∞

)
satisfies

SnX∞ + SnXc
∞

= SnX∞ + S̃Xc
∞ ≥ Sn,minX∞ + S̃Xc

∞

for all n > τ . Respectively considering the two functions in (B.3.10), Sn,minX∞ is the

minimum value of SnX∞ by applying f̃n(x) and S̃Xc
∞ is minimized by applying g̃n(x).

Furthermore, f̂ ∗n(x) in (B.3.10) is a feasible solution to the original minimization

problem whose objective value is equal to its global lower bound. Hence this f̂ ∗n(x)

is the optimal solution to the isotonic regression problem.

B.4 Main Result

We are now ready to prove the main structural result.

Theorem B.4.1 (Limit of Isotonic Regression Estimator Under Partially Finite

Measurements).

For x ∈ X = X∞
⋃
Xc
∞, the isotonic regression estimator f̂ ∗n(x) of the sample

mean ȳn(x) satisfies:

lim
n→∞

f̂ ∗n(x) =


µ(x), if x ∈X∞,

exists, if x ∈Xc
∞.

where µ(x) is the curve of true function on X = X∞
⋃
Xc
∞.

Proof. (1) Assuming strict monotonicity of the true function µ. For x ∈X∞, since

ȳn(x) is a strongly consistent estimator of µ(x) on x ∈X, we have ȳn(x) a.s.−→ µ(x) as
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n→∞. Thus by Lemma B.3.1, as n→∞, lim
n→∞

f̂ ∗n(x) = lim
n→∞

ȳn(x) = µ(x), x ∈X∞.

Meanwhile for each x ∈Xc
∞ and the τ in Lemma B.3.1, we have for n > τ :

f̂ ∗n(x) = arg min
f(x)∈F and f(x)=ȳn(x),x∈X∞

{
SnXc

∞

}

= arg min
f(x)∈F and f(x)=ȳn(x),x∈X∞

 ∑
x∈Xc

∞

[ȳn(x)− f(x)]2wn(x)

 ,

each of which is finite. Hence, lim
n→∞

f̂ ∗n(x) = µ(x) for x ∈ X∞ and lim
n→∞

f̂ ∗n(x) exists

for x ∈Xc
∞.

(2) Assuming non-strict monotonicity of the true cost function. In this case,

for x ∈ X∞, since f̃n(x) in (B.3.10), as defined in equation (B.3.9), is the isotonic

regression estimator of the sample means ȳn (where itself is strongly consistent),

thus by Theorem 1.2.5 and Theorem 1.2.6, f̃n(x) is a strongly consistent estimator

of µ(x) on x ∈ X∞. That is: f̃n(x) a.s.−→ µ(x) as n → ∞. Again by (B.3.10), as

n→∞,

lim
n→∞

f̂ ∗n(x) = lim
n→∞

f̃n(x) = µ(x), x ∈X∞.

Similarly for each x ∈ Xc
∞ and the τ specified in Lemma B.3.1, based on (B.3.10)

we have for n > τ

f̂ ∗n(x) = g̃n(x)

each of which is finite. Hence, lim
n→∞

f̂ ∗n(x) = µ(x) for x ∈ X∞ and lim
n→∞

f̂ ∗n(x) exists

for x ∈Xc
∞.
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B.5 Simulation

To visualize the main results in Theorem B.4.1, we present the following figures

under different simulation setups. Let x (number of trucks) be elements in X, n be

number of measurements on each choice of x, µ be the true (cost) function value at

each x, and σ be the standard variance; we assume a uniform σ value throughout our

simulation study. We use n = 10, 000 to simulate the case of an x that is measured

infinitely often, and n = 20 for finitely often.

Setup 1: SetX = {1, 2, ..., 10} and measure the 1st and 10th x infinitely often,

the rest finitely often. The true curve is a decreasing straight line with values at

each x specified in Table B.1. The results are in Figure B.5.1.

Setup 2: Set X = {1, 2, ..., 11} and measure the 1st, 6th and 11th x infinitely

often, the rest finitely often. The true curve is decreasing and convex first then

concave, with values at each x specified in Table B.2.

The results are in Figure B.5.2.

Setup 3: Set X = {1, 2, ..., 11} and measure the 1st, 6th and 11th x infinitely

often, the rest finitely often. The true curve is decreasing and concave first then

convex, with values at each x specified in Table B.3.

The results are in Figure B.5.3.

We can see that the isotonic regression estimator is very close to the true curve

at points we measure infinitely often (i.e. n = 10000).
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x 1 2 3 4 5 6 7 8 9 10

n 10000 20 20 20 20 20 20 20 20 10000
µ 45 40 35 30 25 20 15 10 5 1
σ Uniformly = 40

Table B.1: Simulation Setup 1

Figure B.5.1: Simulation Setup 1

x 1 2 3 4 5 6 7 8 9 10 11

n 10000 20 20 20 20 10000 20 20 20 20 10000
µ 50 40 33 28 26 25 24 22 17 10 1
σ Uniformly = 40

Table B.2: Simulation Setup 2
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Figure B.5.2: Simulation Setup 2

x 1 2 3 4 5 6 7 8 9 10 11

n 10000 20 20 20 20 10000 20 20 20 20 10000
µ 50 49 47 42 35 25 15 8 3 1 0
σ Uniformly = 40

Table B.3: Simulation Setup 3
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Figure B.5.3: Simulation Setup 3
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