ABSTRACT
Title of dissertation: POSITIVE RATIONAL STRONG SHIFT EQUIVALENCE AND THE MAPPING CLASS GROUP OF A SHIFT OF FINITE TYPE
Sompong Chuysurichay, Doctor of Philosophy, 2011
Dissertation directed by: Professor Michael Boyle
Department of Mathematics

This thesis studies two independent topics in symbolic dynamics, the positive rational strong shift equivalence and the mapping class group of a shift of finite type.

In the first chapter, we give several results involving strong shift equivalence of positive matrices over the rational or real numbers, within the path component framework of Kim and Roush. Given a real matrix B with spectral radius less than 1 , we consider the number of connected components of the space $\mathcal{T}_{+}(B)$ of positive invariant tetrahedra of B. We show that $\mathcal{T}_{+}(B)$ has finitely many components. For many cases of B, we show that $\mathcal{T}_{+}(B)$ is path connected. We also give examples of B for which $\mathcal{T}_{+}(B)$ has 2 components. If \mathbb{S} is a subring of \mathbb{R} containing \mathbb{Q} we show that every primitive matrix over \mathbb{S} with positive trace is strong shift equivalent to a positive doubly stochastic matrix over \mathbb{S}_{+}(and consequently the nonzero spectra of primitive stochastic positive trace matrices are all achieved by positive doubly stochastic matrices). We also exhibit a family of 2×2 similar positive stochastic
matrices which are strong shift equivalent over \mathbb{R}_{+}, but for which there is no uniform bound on the lag and matrix sizes of the strong shift equivalences required.

For an $\operatorname{SFT}\left(X_{A}, \sigma_{A}\right)$, let \mathcal{M}_{A} denote the mapping class group of $\sigma_{A} . \mathcal{M}_{A}$ is the group of flow equivalences of the mapping torus Y_{A}, (i.e., self homeomorphisms of Y_{A} which respect the direction of the suspension flow) modulo the subgroup of flow equivalences of Y_{A} isotopic to the identity. In the second chapter, we prove several results for the mapping class group \mathcal{M}_{A} of a nontrivial irreducible SFT $\left(X_{A}, \sigma_{A}\right)$ as follows. For every $n \in \mathbb{N}, \mathcal{M}_{A}$ acts n-transitively on the set of circles in the mapping torus Y_{A} of $\left(X_{A}, \sigma_{A}\right)$. The center of \mathcal{M}_{A} is trivial. \mathcal{M}_{A} contains an embedded copy of $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>$ for any $\operatorname{SFT}\left(X_{B}, \sigma_{B}\right)$ flow equivalent to $\left(X_{A}, \sigma_{A}\right)$. A flow equivalence $F: Y_{A} \rightarrow Y_{A}$ has an invariant cross section if and only if F is induced by an automorphism of the first return map to some cross section of Y_{A} (such a return map is an irreducible SFT flow equivalent to σ_{A}). However, there exist elements of \mathcal{M}_{A} containing no flow equivalence with an invariant cross section. Finally, we define the groupoid $P E_{\mathbb{Z}}(A)$ of positive equivalences from A. There is an associated surjective group homomorphism $\pi_{A}: P E_{\mathbb{Z}}(A) \rightarrow \mathcal{M}_{A} / \mathcal{S}_{A}$ (where \mathcal{S}_{A} is the normal subgroup of \mathcal{M}_{A} generated by Nasu's simple automorphisms of return maps to cross sections). In the case of trivial Bowen-Franks group, there is another group homomorphism, $\rho_{A}: P E_{\mathbb{Z}}(A) \rightarrow \mathrm{SL}(\mathbb{Z})$. We show that for every $[F] \in \mathcal{M}_{A} / \mathcal{S}_{A}$ and V in $\operatorname{SL}(\mathbb{Z})$ there exists g in $P E_{\mathbb{Z}}(A)$ such that $\pi_{A}(g)=[F]$ and $\rho_{A}(g)=V$.

POSITIVE RATIONAL STRONG SHIFT EQUIVALENCE AND THE MAPPING CLASS GROUP OF A SHIFT OF FINITE TYPE

by
Sompong Chuysurichay
Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy
2011
Advisory Committee:
Professor Michael Boyle, Chair/Advisor
Professor Brian Hunt
Professor Michael Jakobson
Professor James Purtilo
Professor Jonathan M. Rosenberg

(C) Copyright by

Sompong Chuysurichay
2011

Dedication

To my parents, Prapai and Jumrat Chuysurichay.

Acknowledgments

I am greatly indebted to Professor Michael M. Boyle, my thesis advisor, for his thoughtful and helpful advice and for his patience. Sincere thanks and deep appreciation are also extended to Professors Michael Brin, Brian Hunt, Michael Jakobson, James Purtilo, and Jonathan M. Rosenberg, who have served on my preliminary oral and final defense committees.

I would like to thank all of the teachers who have taught me, for their valuable knowledge. I am also grateful to the Development and Promotion of Science and Technology Talents Project (DPST), Thailand, for providing me support throughout my graduate study. I would also like to express my great gratitude to my family for their love and encouragement during my study.

Table of Contents

List of Abbreviations V
1 Strong Shift Equivalence of Positive Matrices 1
1.1 Introduction 1
1.2 Definitions and Background 7
1.2.1 Nonnegative Matrices 7
1.2.2 Shift Spaces and Shifts of Finite Type 8
1.2.3 Strong Shift Equivalence and Shift Equivalence 10
1.2.4 Rational Strong Shift Equivalence 12
1.3 Positive Invariant Tetrahedra 16
1.3.1 Tetrahedra and Positive Tetrahedra 16
1.3.2 New Tetrahedra from Old 21
1.3.3 Invariant Tetrahedra and Positive Invariant Tetrahedra 25
$1.4 \mathcal{T}_{+}(B)$ Has Only Finitely Many Connected Components 31
1.5 Same Connected Component Criteria 33
1.6 Some Cases in Which $\mathcal{T}_{+}(B)$ Is Disconnected 34
1.7 Connected Components of $\mathcal{T}_{+}(B)$ When B is 1×1 and 2×2 36
1.8 Positive Stochastic Matrices Strong Shift Equivalent to Positive Dou- bly Stochastic Matrices 46
1.9 Unbounded Lag of SSE 50
1.10 Some Cases in Which $\mathcal{T}_{+}(B)$ Is Connected 52
2 The Mapping Class Group of a Shift of Finite Type 63
2.1 Introduction 63
2.2 Definitions and Background 65
2.2.1 Suspensions, Cross Sections, and Flow Equivalences 65
2.2.2 The Parry-Sullivan Theorem and Invariants for Flow Equiva- lence 67
2.2.3 Positive Equivalences and the Bowen-Franks Representation 68
2.3 The Mapping Class Group, Circles, and The Center 72
2.4 The Mapping Class Group, Cross Sections, and Automorphisms of The Shifts 75
2.5 The Mapping Class Group and The Positive Equivalence Groupoid 79
Bibliography 84

List of Abbreviations

\mathbb{N}	The set of positive integers
\mathbb{Z}	The set of integers
\mathbb{Q}	The set of rational numbers
\mathbb{R}	The set of real numbers
\mathbb{Z}_{+}	The set of nonnegative integers
\mathbb{Q}_{+}	The set of nonnegative rational numbers
\mathbb{R}_{+}	The set of nonnegative real numbers
$\operatorname{Conv}(T)$	The convex hull of T
$\operatorname{Fix}\left(\sigma_{A}\right)$	The set of all fixed points of σ_{A}
$\operatorname{Per}\left(\sigma_{A}\right)$	The set of all periodic points of σ_{A}
$\mathcal{T}_{+}(B)$	The set of positive invariant tetrahedra of B
$\mathcal{S}_{+}(B)$	The set of positive stochastic matrices similar to $B \oplus 1$
$\mathrm{GL}_{n}(\mathbb{R})$	The set of $n \times n$ invertible matrices over \mathbb{R}
$\mathrm{S}_{n}(\mathbb{R})$	The set of invertible $n \times n$ matrices over \mathbb{R} with equal row sum
$\mathrm{SL}^{(\mathbb{Z})}$	The stable special linear group over \mathbb{Z}
S^{1}	The unit circle
0_{n}	The $n \times n$ zero matrix
I_{n}	The $n \times n$ identity matrix
Δ^{n}	The standard n-simplex, $\left\{\left(l_{1}, \ldots, l_{n+1}\right) \in \mathbb{R}_{+}^{n+1}: l_{1}+\cdots+l_{n+1}=1\right\}$
SFT	Shift of finite type
ISFT	Irreducible shift of finite type
MSFT	Mixing shift of finite type

Chapter 1

Strong Shift Equivalence of Positive Matrices

1.1 Introduction

Symbolic dynamics has roots in the study of geodesic flows and general dynamical systems by the discretization of space and time. Applications of symbolic dynamics can be found in hyperbolic dynamics [Bow73], data storage and transmission [ACH83], and linear algebra [BoH91]. The fundamental objects we study in symbolic dynamics are shifts of finite type (SFTs). Shifts of finite type can be represented by nonnegative matrices. Let A be an $n \times n$ nonnegative matrix. We consider A as an adjacency matrix of a finite directed graph \mathcal{G}_{A} with n ordered vertices and a finite edge set E and $A_{i j}=$ the number of edges from vertex i to vertex j. Let E be the set of all edges in \mathcal{G}_{A} and X_{A} be the set of bi-infinite sequences $\left(x_{i}\right)$ such that for all $i \in \mathbb{Z}$, the terminal vertex of x_{i} is the initial vertex of x_{i+1}, i.e. $X_{A}=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}} \mid\right.$ each $x_{i} x_{i+1}$ is a path in $\left.\mathcal{G}_{A}\right\}$. Define the shift map $\sigma: X_{A} \rightarrow X_{A}$ by the rule $(\sigma x)_{i}=x_{i+1}$. Then $\left(X_{A}, \sigma\right)$ is called an edge shift of finite type defined by A. Given two matrices A and B, one naturally ask: do they present topologically conjugate SFTs?

The conjugacy problem for shifts of finite type gives rise to strong shift equivalence theory. In 1973, R.F. Williams introduced strong shift equivalence and showed that two shifts of finite type are topologically conjugate if and only if their presenting
matrices are strong shift equivalent over \mathbb{Z}_{+}. Let A and B be nonnegative integral matrices. A and B are elementary strong shift equivalent over \mathbb{Z}_{+}if there are nonnegative integral matrices U, V such that $A=U V$ and $B=V U . A$ and B are strong shift equivalent over \mathbb{Z}_{+}if there is a chain of nonnegative integral matrices $A=A_{0}, A_{1}, \ldots, A_{l}=B$ such that A_{i} and A_{i+1} are elementary strong shift equivalent over \mathbb{Z}_{+}for all $i=0,1, \ldots, l-1$. The number l is the lag of the given strong shift equivalence. Despite its good-looking definition, strong shift equivalence is still very difficult to fully understand. Williams also introduced a more tractable equivalence relation called shift equivalence and conjectured that shift equivalence and strong shift equivalence over \mathbb{Z}_{+}are the same. A and B are shift equivalent over \mathbb{Z}_{+}if there are nonnegative integral matrices U, V and a positive integer l such that

$$
A^{l}=U V, B^{l}=V U, A U=U B, B V=V A
$$

The conjecture was proved false by K.H. Kim and F.W. Roush in 1992 (reducible case) and 1997 (irreducible case). Although Williams' Conjecture is false in general, the gap between shift equivalence and strong shift equivalence over \mathbb{Z}_{+}remains mysterious.

In this chapter, we study Williams' Conjecture by relaxing the problem to the level of positive rational and real matrices. The definition of elementary strong shift equivalence, strong shift equivalence, and shift equivalence over \mathbb{Q}_{+}and \mathbb{R}_{+}can be defined analogously. We expect that the Williams' conjecture is true for positive rational (or real) matrices. This is the conjecture posed by Mike Boyle in [Bo02a]. The key ingredients we use are geometric objects called positive invariant tetrahedra
within the path component method introduced by Kim and Roush. We summarize the essential features of their method now (providing more detail later).

For the summary we need some definitions. If A is an irreducible matrix, then its stochasticization $P(A)$ is the stochastic matrix defined as $P(A)=\frac{1}{\lambda} D^{-1} A D$ where $\lambda>0$ is the Perron eigenvalue of A and D is the diagonal matrix whose vector of diagonal entries is the stochastic right eigenvector of A. Given an $(n-1) \times(n-1)$ real matrix B with spectral radius <1, a positive invariant ordered tetrahedron for B is an n-tuple $\left(v_{1}, \ldots, v_{n}\right)$ of vectors in \mathbb{R}^{n-1} such that the convex hull of $\left\{v_{1}, \ldots, v_{n}\right\}$ is an $(n-1)$-dimensional simplex and the convex hull of $\left\{v_{1}, \ldots, v_{n}\right\}$ is sent to its interior under B. Let $\mathcal{T}_{+}^{\text {ord }}(B)$ denote the space of positive invariant ordered tetrahedra of B.

Now we can summarize essential features of the path component method of Kim and Roush for positive matrices A and C.
(1) A, C are $\mathrm{SSE}-\mathbb{R}_{+}$to positive matrices A^{\prime}, C^{\prime} respectively, which in addition are similar matrices.
(2) If there is a path $A_{t}, 0 \leq t \leq 1$, of positive similar matrices from $A=A_{0}$ to $C=A_{1}$, then A and C are $\mathrm{SSE-} \mathbb{R}_{+}$. If A and C have rational entries, then they are $\operatorname{SSE}-\mathbb{Q}_{+}$.
(3) For $T=\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{T}_{+}^{\text {ord }}(B)$ let P_{T} denote the stochastic matrix P such that $v_{i} B=\sum_{i=1}^{n} p_{i j} v_{j}$. Then P_{T} is similar to $B \oplus 1$. A path T_{t} in $\mathcal{T}^{\text {ord }}(B), 0 \leq t \leq 1$, produces a path of positive similar stochastic matrices $P_{T_{t}}, 0 \leq t \leq 1$.

The main point is that conditions (1) - (3) provide sufficient conditions for strong shift equivalence over $\mathbb{R}_{+}\left(\right.$or $\left.\mathbb{Q}_{+}\right)$. In this framework, Kim and Roush proved
that matrices over $\mathbb{R}_{+}\left(\mathbb{Q}_{+}\right)$with equal spectral radius, a simple root of the characteristic polynomial, and with no other nonzero eigenvalue, are $\operatorname{SSE}-\mathbb{R}_{+}\left(\mathbb{Q}_{+}\right)$. This is the unique general sufficient condition for $\operatorname{SSE}-\mathbb{R}_{+}\left(\mathbb{Q}_{+}\right)$. The corresponding problem over \mathbb{Z}_{+}is open. They did this in the end by proving $\mathcal{T}_{+}^{\text {ord }}(B)$ is path connected when B is nilpotent. Consequently we are motivated to study the structure of connected components of $\mathcal{T}_{+}^{\text {ord }}(B)$ for more general B.

In section 1.2, we give general background. In section 1.3, we develop basic ideas about (ordered) tetrahedra, (ordered) positive tetrahedra, and (ordered) positive invariant tetrahedra. In section 1.4, we show that $\mathcal{T}_{+}^{\text {ord }}(B)$ has only finitely many connected components (and therefore there are only finitely many $\mathrm{SSE}-\mathbb{R}_{+}$ classes for positive matrices of a given size).

Section 1.5 gives some basic moves to produce positive invariant ordered tetrahedra which stay in the same connected component. In section 1.6, we give a class of examples for which the space of positive invariant tetrahedra is disconnected: if

$$
B=\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\beta
\end{array}\right), \alpha, \beta \in(0,1)
$$

and $\alpha+\beta \geq 1$ then $\mathcal{T}_{+}(B)$ is disconnected (an element of $\mathcal{T}_{+}(B)$ is a set $\left\{v_{1}, \ldots, v_{n}\right\}$ such that $\left.\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{T}_{+}^{\text {ord }}(B)\right)$. Unfortunately, we have no example for which we can prove the space of positive stochastic matrices in the same similarity class is disconnected.

In section 1.7, we focus on the space of positive invariant tetrahedra for 1×1 and 2×2 matrices. We show the following

1. $\mathcal{T}_{+}(B)$ is path connected if B has one of the Jordan forms
(a) $(\lambda), \lambda \in(-1,1)$,
(b) $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right), \alpha, \beta \in[0,1)$,
(c) $\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\beta\end{array}\right), \alpha, \beta \in[0,1)$ and $\alpha+\beta<1$,
(d) $\left(\begin{array}{cc}-\alpha & 0 \\ 0 & -\alpha\end{array}\right), \alpha \in\left[0, \frac{1}{2}\right)$,
(e) $\left(\begin{array}{ll}\alpha & 1 \\ 0 & \alpha\end{array}\right), \alpha \in[0,1)$.
2. $\mathcal{T}_{+}(B)$ has exactly 2 connected components when B has the Jordan form

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\beta
\end{array}\right), \alpha, \beta \in(0,1) \text { and } \alpha+\beta \geq 1
$$

Whether $\mathcal{T}_{+}(B)$ is path connected is still unknown when B has one of the remaining Jordan forms which are compatible with $B \oplus 1$ being similar to a positive stochastic matrix:
(a) $\left(\begin{array}{cc}-\alpha & 0 \\ 0 & -\beta\end{array}\right), \alpha, \beta \in(0,1)$ and $\alpha+\beta<1$,
(b) $\left(\begin{array}{cc}-\alpha & 1 \\ 0 & -\alpha\end{array}\right), \alpha \in\left(0, \frac{1}{2}\right)$,
(c) $\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right),(\alpha, \beta) \in \operatorname{int}(\operatorname{Conv}(T))$ where $T=\left\{(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)\right\}$.

The failure in understanding the number of components of $\mathcal{T}_{+}(B)$ in the above

3 unknown cases is that we still do not know the geometry of $\mathcal{T}_{+}(B)$ when B has no nonnegative eigenvalue.

In section 1.8, we show that every positive stochastic matrix over any subsemiring of \mathbb{R}_{+}containing \mathbb{Q}_{+}is strong shift equivalent to a positive doubly stochastic matrix. As a consequence, we show that the set of nonzero spectra of doubly stochastic matrices and positive-trace primitive stochastic matrices are the same. In section 1.9, we give an example of a class of 2×2 positive, similar, SSE- \mathbb{R}_{+}matrices for which there is no uniform bound on the lag and matrix size required for a SSE- \mathbb{R}_{+}. The examples are the stochastic matrices

$$
P_{t}=\frac{1}{4}\left(\begin{array}{cc}
3+t & 1-t \\
1+t & 3-t
\end{array}\right), 0 \leq t<1
$$

Finally, in section 1.10 we collect some miscellaneous results involving the space $\mathcal{T}_{+}(B)$. For any $n \in \mathbb{N}$, we show that $\mathcal{T}_{+}(B)$ is path connected if B has the following Jordan form:
(a) $B=0_{n}$.
(b) $B=\lambda I_{n}$ where $-\frac{1}{n}<\lambda<1$.
(c) B is nilpotent (this is a reproof of the Kim-Roush result).
(d) $B=\lambda I_{n}+N$ where N is nilpotent.
(e) $B=(\lambda) \oplus 0_{n}$ where $-1<\lambda<1$.

1.2 Definitions and Background

1.2.1 Nonnegative Matrices

Let $A=\left(a_{i j}\right)$ be a real $n \times n$ matrix. A is nonnegative if $a_{i j} \geq 0$ for all i, j. A is positive if $a_{i j}>0$ for all i, j. A is irreducible if A is nonnegative, square, and for any (i, j) there is some n such that $\left(A^{n}\right)_{i j}>0 . A$ is primitive if A is nonnegative, square, and there is some $n \in \mathbb{N}$ such that A^{n} is positive. The period $\operatorname{per}(i)$ of a state i is the greatest common divisor of all integers $n \in \mathbb{N}$ for which $\left(A^{n}\right)_{i i}>0$. We define $\operatorname{per}(i)=\infty$ if no such integers exist. The period of A, denoted by $\operatorname{per}(A)$, is the greatest common divisor of $\operatorname{per}(i)$ that are finite, or is ∞ if $\operatorname{per}(i)=\infty$ for all $i=1, \ldots, n . A$ is aperiodic if $\operatorname{per}(A)=1 . A$ is primitive if and only if it is irreducible and aperiodic. A is quasi-stochastic if every row sum of A is $1 . A$ is stochastic if it is nonnegative and quasi-stochastic. A is doubly stochastic if it is stochastic and every column sum of A is 1 .

We will use the following properties of nonnegative matrices.

Theorem 1.2.1. (Perron) Let A be a primitive matrix. Then there exists an eigenvalue λ of A, called the Perron eigenvalue, with the following properties:
(a) $\lambda>0$,
(b) λ is a simple root of the characteristic polynomial of A,
(c) λ has a positive eigenvector v,
(d) If α is any other eigenvalue of A then $|\alpha|<\lambda$,
(e) any nonnegative eigenvector of A is a positive multiple of v.

A vector $l=\left(l_{1}, \ldots, l_{n}\right)$ is called the left Perron eigenvector of an $n \times n$ stochastic matrix P if l is positive, $l_{1}+\cdots+l_{n}=1$, and $l P=l$. For any square matrix A, the Jordan form away from zero of $A, J^{\times}(A)$, is the matrix obtained by removing from the Jordan form of A all rows and columns with zeros on the main diagonal.

1.2.2 Shift Spaces and Shifts of Finite Type

Let \mathcal{A} be a finite set of symbols, called the alphabet, and let $\mathcal{A}^{\mathbb{Z}}=\{x=$ $\left(x_{i}\right)_{i \in \mathbb{Z}}: x_{i} \in \mathcal{A}$ for all $\left.i \in \mathbb{Z}\right\}$ denote the set of all bi-infinite sequences of elements in \mathcal{A}. $\mathcal{A}^{\mathbb{Z}}$ is called the full \mathcal{A}-shift. The shift map σ on the full shift $\mathcal{A}^{\mathbb{Z}}$ is given by the rule $(\sigma(x))_{i}=x_{i+1}$. We topologize \mathcal{A} with the discrete topology. Then the topology of $\mathcal{A}^{\mathbb{Z}}$ is given by the product topology. The metric defined by $d(x, x)=0$ and for $x \neq y, d(x, y)=\frac{1}{k+1}$ where $k=\min \left\{|i|: x_{i} \neq y_{i}\right\}$ induces the product topology on $\mathcal{A}^{\mathbb{Z}}$. A word in the full shift $\mathcal{A}^{\mathbb{Z}}$ is a finite sequence $a_{1} a_{2} \cdots a_{n}$ where $a_{i} \in \mathcal{A}$ for all $i \in\{1,2, \ldots, n\}$. A subshift or a shift space of $\mathcal{A}^{\mathbb{Z}}$ is a compact, shift invariant subspace of the full shift $\mathcal{A}^{\mathbb{Z}}$ together with the restriction of the shift map. A shift of finite type is a shift space X with the property that there is a finite list of words such that X consists of precisely the sequences in the full shift that do not contain any of these words. For a word w of length n and $k \in \mathbb{N}$, we define the cylinder set X_{w}^{k} as $X_{w}^{k}=\{x \in X: x[k, k+n-1]=w\}$. For $k=0$, we denote X_{w} for the cylinder set X_{w}^{0}.

Suppose $\left(X, \sigma_{X}\right)$ and $\left(Y, \sigma_{Y}\right)$ are shift spaces. A map $f: X \rightarrow Y$ is called a code if it is continuous and $f \circ \sigma_{X}=\sigma_{Y} \circ f . f$ is a block code if there is a number
n and a function F from the set of words of length $2 n+1$ in X to a finite set of alphabets in Y such that $(f(x))_{i}=F\left(x_{i-n} \cdots x_{i+n}\right)$. The Curtis - Hedlund - Lyndon Theorem asserts that every code is a block code. If f is surjective, it is called a factor map. If f is injective, then it is called an embedding. If it is bijective then it is called a conjugacy of subshifts. We say that $\left(X, \sigma_{X}\right)$ and $\left(Y, \sigma_{Y}\right)$ are topologically conjugate if there is a conjugacy $f: X \rightarrow Y$.

Let A be an $n \times n$ nonnegative integral matrix. A can be viewed as an adjacency matrix of a finite directed graph G with n ordered vertices and a finite edge set E and $A_{i j}=$ the number of edges from vertex i to vertex j. Let E be the set of alphabet and X_{A} be the set of bi-infinite sequences $\left(x_{i}\right)$ such that for all $i \in \mathbb{Z}$, the terminal vertex of x_{i} is the initial vertex of x_{i+1}. Then X_{A} as a subset of the full E shift with the restriction of the shift map σ_{A} on X_{A} is a shift of finite type, called the edge shift defined by A. Let $\left(X_{A}, \sigma_{A}\right)$ denote the edge shift defined by A. Every shift of finite type is topologically conjugate to an edge shift $\left(X_{A}, \sigma_{A}\right)$ for some nonnegative integral matrix A. A shift space $\left(X, \sigma_{X}\right)$ is irreducible if for every ordered paired of words u, v there is a word w such that $u w v$ is also a word in X. (X, σ_{X}) is mixing if for every ordered pair of words u, v there is an N such that for each $n \geq N$ there is a word w of length n such that $u w v$ is also a word in X. An edge shift of finite type defined by $A\left(X_{A}, \sigma_{A}\right)$ is irreducible if and only if A is irreducible and it is mixing if and only if A is primitive. The class of mixing shifts of finite type are the basic class of SFTs. Often, problems involving SFTs can be reduced to MSFTs.

1.2.3 Strong Shift Equivalence and Shift Equivalence

Let A and B be square matrices over a semiring \mathcal{R} containing 0 and 1 as the additive and multiplicative identities.

1. A is elementary strong shift equivalent over $\mathcal{R}(\operatorname{ESSE}-\mathcal{R})$ to B if there exist matrices U, V over \mathcal{R} with $A=U V, B=V U$.
2. A is strong shift equivalent over $\mathcal{R}(\mathrm{SSE}-\mathcal{R})$ to B if there exists a finite sequence of matrices over $\mathcal{R} A=A_{0}, A_{1}, \ldots, A_{l}=B$ such that A_{i} is ESSE- \mathcal{R} to A_{i+1} for all $i=0, \ldots, l-1$. Such a finite sequence is a strong shift equivalence over \mathcal{R}. The number l is the lag of the strong shift equivalence. By the size of the strong shift equivalence, we mean $\max \left\{n_{i}: 0 \leq i \leq l, A_{i}\right.$ is $\left.n_{i} \times n_{i}\right\}$.
3. A is shift equivalent over $\mathcal{R}($ SE- $\mathcal{R})$ to B if there exist matrices U, V over \mathcal{R} and $l \in \mathbb{N}$ such that $A^{l}=U V, B^{l}=V U$ and $A U=U B, V A=B V$

For any semiring \mathcal{R}, SSE- \mathcal{R} and SE- \mathcal{R} are equivalence relations whereas ESSE\mathcal{R} is not transitive. In fact, SSE- \mathcal{R} is the transitive closure of ESSE- \mathcal{R}. It is obvious that ESSE- \mathcal{R} implies SSE- \mathcal{R} for any semiring \mathcal{R}. For all the semiring \mathcal{R} under our consideration the implication cannot be reversed. It is not difficult to show that SSE- \mathcal{R} implies SE- \mathcal{R}. For example, suppose that

$$
\begin{aligned}
& A=U_{0} V_{0} \\
& A_{1}=V_{0} U_{0}=U_{1} V_{1}, \\
& A_{2}=V_{1} U_{1}=U_{2} V_{2} \\
& B=V_{2} U_{2} .
\end{aligned}
$$

Then $A^{3}=U_{0} U_{1} U_{2} V_{2} V_{1} V_{0}$ and $B^{3}=V_{2} V_{1} V_{0} U_{0} U_{1} U_{2}$. Thus we choose $U=U_{0} U_{1} U_{2}, V=$
$V_{2} V_{1} V_{0}$ and $l=3$. It is known that if the semiring \mathcal{R} has nice algebraic structure then SE- \mathcal{R} implies SSE- \mathcal{R}. For example, if \mathcal{R} is a Dedekind domain then SE- \mathcal{R} implies SSE- \mathcal{R} [BoH93]. Thus SE- \mathcal{R} implies SSE- \mathcal{R} for $\mathcal{R}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$. The main interest in SSE- \mathcal{R} and SE- \mathcal{R} is when $\mathcal{R}=\mathbb{Z}_{+}$and $\mathcal{R}=\mathbb{Q}_{+}$. Strong shift equivalence and shift equivalence were introduced in a seminal paper of R. F. Williams in [Wi73]. The following theorem of Williams gives the meaning of strong shift equivalence over \mathbb{Z}_{+} for symbolic dynamics.

Theorem 1.2.2. [Wi73] $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are topologically conjugate if and only if A is $\mathrm{SSE}-\mathbb{Z}_{+}$to B .

Shift equivalence over \mathbb{Z}_{+}also has a meaning in symbolic dynamics. We say that $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are eventually conjugate if there is an $N \in \mathbb{N}$ such that $\left(X_{A}, \sigma_{A}^{n}\right)$ and $\left(X_{B}, \sigma_{B}^{n}\right)$ are topologically conjugate for all $n \geq N$.

Theorem 1.2.3. [LM95, Theorem 7.5.15] $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are eventually conjugate if and only if A is $\mathrm{SE}-\mathbb{Z}_{+}$to B .

The advantages of using $\mathrm{SE}-\mathbb{Z}_{+}$rather than $\mathrm{SSE}-\mathbb{Z}_{+}$is that $\mathrm{SE}-\mathbb{Z}_{+}$deals with equations of 4 matrices (not an unknown chain as $S S E-\mathbb{Z}_{+}$does). $S E-\mathbb{Z}_{+}$is decidable [KR88] whereas it is still unknown if SSE- \mathbb{Z}_{+}is decidable. In 1974, Williams conjectured that $\mathrm{SE}-\mathbb{Z}_{+}$implies $\mathrm{SSE}-\mathbb{Z}_{+}$. The conjecture was refuted by Kim and Roush in the reducible case [KR92a] and then the irreducible case [KR99].

1.2.4 Rational Strong Shift Equivalence

Our main interest in this chapter is the rational strong shift equivalence of positive matrices. Understanding this relation is a natural step toward understanding SSE- \mathbb{Z}_{+}, and a natural matrix problem independently. $\mathrm{SSE}-\mathbb{Q}_{+}$can also be given a description in symbolic dynamics. Two shifts of finite type $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are rationally isomorphic if there is some $k \in \mathbb{N}$ such that $\left(X_{[k]} \times X_{A}, \sigma_{[k]} \times \sigma_{A}\right)$ and $\left(X_{[k]} \times X_{B}, \sigma_{[k]} \times \sigma_{B}\right)$ are topologically conjugate, or equivalently, if there is some $k \in \mathbb{N}$ such that $\left(X_{k A}, \sigma_{k A}\right)$ and $\left(X_{k B}, \sigma_{k B}\right)$ are topologically conjugate. Then it is easy to see that $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are rationally isomorphic if and only if A is SSE- \mathbb{Q}_{+}to B.

The basic elementary strong shift equivalences are conjugations by permutation matrices and state splitting and amalgamations. If A and B are matrices over a semiring \mathcal{R} with $B=P A P^{-1}$ where P is a permutation matrix then A and B are ESSE- \mathcal{R} because $A=U V$ and $B=V U$ where $U=A P^{-1}$ and $V=P$. State splitting and amalgamations are basic elementary strong shift equivalence which connect matrices from different dimensions. They were first introduced in [Wi73] for matrices over \mathbb{Z}_{+}. In this thesis, we extend the same idea to matrices over subsemirings of \mathbb{R}_{+}. Let A be an $n \times n$ nonnegative matrix over a subsemiring of \mathbb{R}_{+}. Let A^{\prime} be an $(n+1) \times n$ matrix obtained by splitting row i of A into rows i and $i+1$ and the other rows of A and A^{\prime} are the same. We duplicate column i of A^{\prime} and form an $(n+1) \times(n+1)$ matrix B. Let U be an $n \times(n+1)$ matrix obtained by duplicating column i of the identity matrix I_{n} and set $V=A^{\prime}$. Then $A=U V$ and
$B=V U$. We say that B is obtained from A by a row splitting and A is obtained from B by a row amalgamation.
Example 1.2.4. Let $A=\left(\begin{array}{ccc}2 & \frac{1}{2} & 1 \\ \frac{1}{3} & 1 & 3 \\ 1 & 4 & \frac{1}{4}\end{array}\right)$. We split the second row of A to obtain

$$
A^{\prime}=\left(\begin{array}{ccc}
2 & \frac{1}{2} & 1 \\
\frac{1}{6} & \frac{1}{3} & 2 \\
\frac{1}{6} & \frac{2}{3} & 1 \\
1 & 4 & \frac{1}{4}
\end{array}\right)=V .
$$

Then we duplicate the second column of A^{\prime} and obtain

$$
B=\left(\begin{array}{cccc}
2 & \frac{1}{2} & \frac{1}{2} & 1 \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{3} & 2 \\
\frac{1}{6} & \frac{2}{3} & \frac{2}{3} & 1 \\
1 & 4 & 4 & \frac{1}{4}
\end{array}\right) .
$$

We get the matrix U by duplicating the second column of I_{3} :

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then $A=U V$ and $B=V U$.

Column splitting and column amalgamations are defined similarly by switching the role of rows to columns. it is well-known that every strong shift equivalence can be factored as a series of row splitting followed by a conjugacy and then by column
amalgamations [KR91a]. The study of rational strong shift equivalence for primitive rational matrices can be reduced to the positive case by the following result.

Theorem 1.2.5. [KR86] Any primitive rational square matrix with a positive trace is strong shift equivalent over \mathbb{Q}_{+}to a positive matrix.

Mike Boyle also stated the following conjecture in [Bo02a]

Conjecture 1.2.6. (Positive Rational Shift Equivalence Conjecture) Suppose A, B are square positive matrices which are shift equivalent over \mathbb{Q}_{+}. Then A, B are strong shift equivalent over \mathbb{Q}_{+}.

The following is the only known theorem which asserts for some unital subring \mathcal{R} of \mathbb{R}, that all matrices in some nontrivial $\mathrm{SE}-\mathcal{R}_{+}$class are $\mathrm{SSE}-\mathcal{R}_{+}$.

Theorem 1.2.7. [KR90] Let \mathcal{R} be \mathbb{Q}_{+}or \mathbb{R}_{+}. Suppose A and B are square matrices over \mathcal{R} similar to $(\lambda) \oplus N$ with $\lambda>0$ and N is nilpotent. If A and B are SE- \mathcal{R}, then A and B are SSE- \mathcal{R}.

To prove this theorem, Kim and Roush built up a more general structure for approaching the problem geometrically. First, they move the shift equivalence classes to similarity classes by proving the following theorem.

Theorem 1.2.8. [KR90] Let S be \mathbb{Q} or \mathbb{R}. Let A, B be positive matrices. If A is SE- S_{+}to B then there are positive matrices C, D over S such that A is $\operatorname{SSE}-S_{+}$to C, B is $\mathrm{SSE}-S_{+}$to D, and C, D are similar over S.

Then they establish the path component method.

Theorem 1.2.9. [KR91a] Let A, B be positive real matrices such that there is a path P_{t} of positive real similar matrices joining $P_{0}=A$ and $P_{1}=B$. Then A and B are strong shift equivalent over \mathbb{R}_{+}. If in addition A and B are rational matrices, then A and B are $\mathrm{SSE}-\mathbb{Q}_{+}$.

Consequently we are motivated to study the path connected components of positive real matrices in the same similarity class over \mathbb{R}. We recall a standard fundamental construction.

Definition 1.2.10. If A is an irreducible matrix with spectral radius λ, then the stochasticization of A is the stochastic matrix $P(A)=\frac{1}{\lambda} D^{-1} A D$, where D is the diagonal matrix whose vector of diagonal entries is the stochastic right eigenvector of A.
Example 1.2.11. Let $A=\left(\begin{array}{cc}10 & 3 \\ 3 & 2\end{array}\right)$. Then $\lambda=11$ and $D=\left(\begin{array}{cc}\frac{3}{4} & 0 \\ 0 & \frac{1}{4}\end{array}\right)$, so $P(A)=\frac{1}{11}\left(\begin{array}{cc}\frac{4}{3} & 0 \\ 0 & 4\end{array}\right)\left(\begin{array}{cc}10 & 3 \\ 3 & 2\end{array}\right)\left(\begin{array}{cc}\frac{3}{4} & 0 \\ 0 & \frac{1}{4}\end{array}\right)=\frac{1}{11}\left(\begin{array}{cc}10 & 1 \\ 9 & 2\end{array}\right)$.

Given $c>0, A_{t}$ is a path of positive similar matrices from A_{0} to A_{1} if and only if $c A_{t}$ is a path of positive similar matrices from $c A_{0}$ to $c A_{1}$. So, without loss of generality, we may study the path components of positive real matrices of spectral radius 1 in the same similarity class. For such a matrix A, let $P(A)=D^{-1} A D$ be its stochasticization as above. Now $(t D+(1-t) I)^{-1} A(t D+(1-t) I), 0 \leq t \leq 1$, gives a path of positive similar matrices from A to $P(A)$. On the other hand, if $A_{t}, 0 \leq t \leq 1$, is a path of positive similar matrices from A to B, and $P_{t}=D_{t}^{-1} A_{t} D_{t}$ is the stochasticization as above, then $P_{t}, 0 \leq t \leq 1$, is a path of positive similar
stochastic matrices from $P(A)$ to $P(B)$. So, there is a path of positive similar matrices from A to B if and only if there is a path of positive similar stochastic matrices from $P(A)$ to $P(B)$. Paths of positive stochastic matrices can be studied geometrically as paths of positive invariant tetrahedra.

1.3 Positive Invariant Tetrahedra

Positive invariant tetrahedra are basic tools in the path component method developed by Kim and Roush. They play an important role in the proof of Theorem 1.2.7. In this section we study basic properties of tetrahedra, positive tetrahedra, and positive invariant tetrahedra which will be used throughout this chapter.

1.3.1 Tetrahedra and Positive Tetrahedra

Definition 1.3.1. Let T be a set of n vectors in \mathbb{R}^{n-1}. T is a tetrahedron if the convex hull of $T, \operatorname{Conv}(T)$, is an $(n-1)-$ dimensional (geometric) simplex. T is a positive tetrahedron when in addition the interior of its convex hull contains the origin. An ordered (positive) tetrahedron is a tuple of vectors whose the set of all vectors in the tuple forms a (positive) tetrahedron. We denote $T=\left\{v_{1}, \ldots, v_{n}\right\}$ for a tetrahedron and $T=\left(v_{1}, \ldots, v_{n}\right)$ for an ordered tetrahedron.

Example 1.3.2. $T_{0}=\{(1,0),(0,1),(-1,0)\}$ is a tetrahedron but not a positive tetrahedron. $T_{1}=\{(1,0),(0,0),(-1,0)\}$ is not a tetrahedron. $T_{2}=\{(1,0),(0,1),(-1,-1)\}$ is a positive tetrahedron.

We recall some basic facts in the next two propositions. The results hold for
both tetrahedra and ordered tetrahedra.

Proposition 1.3.3. Let $T=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{n-1}$. The following statements are equivalent
(a) T is a tetrahedron.
(b) For every i, the set $\left\{v_{1}-v_{i}, \ldots, v_{i-1}-v_{i}, v_{i+1}-v_{i}, \ldots, v_{n}-v_{i}\right\}$ is a basis of \mathbb{R}^{n-1}.
(c) There exists i such that the set $\left\{v_{1}-v_{i}, \ldots, v_{i-1}-v_{i}, v_{i+1}-v_{i}, \ldots, v_{n}-v_{i}\right\}$ is a basis of \mathbb{R}^{n-1}.
(d) If $\sum_{i=1}^{n} r_{i} v_{i}=\sum_{i=1}^{n} s_{i} v_{i}$ where $\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}$ then $r_{i}=s_{i}$ for all $i=1, \ldots, n$.
(e) If $\sum_{i=1}^{n} c_{i} v_{i}=0$ and $\sum_{i=1}^{n} c_{i}=0$ then $c_{i}=0$ for all $i=1, \ldots, n$.
(f) For every $v \in \mathbb{R}^{n-1}$, there is a unique representation $v=\sum_{i=1}^{n} c_{i} v_{i}$ where $c_{i} \in \mathbb{R}, i=1, \ldots, n$ and $\sum_{i=1}^{n} c_{i}=1$.
(g) $\operatorname{Conv}(T)$ has nonempty interior in \mathbb{R}^{n-1}.

Proof. (a) \Rightarrow (b) Fix $i \in\{1, \ldots, n\}$. If T is a tetrahedron, then $\operatorname{Conv}(T)$ is an $(n-1)$-dimensional simplex. Thus $\left\{v_{1}-v_{i}, \ldots, v_{i-1}-v_{i}, v_{i+1}-v_{i}, \ldots, v_{n}-v_{i}\right\}$ is a linearly independent set, hence a basis of \mathbb{R}^{n-1}.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ This is obvious.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ Without loss of generality, assume that $\left\{v_{2}-v_{1}, \ldots, v_{n}-v_{1}\right\}$ is a
basis of \mathbb{R}^{n-1}. Suppose that $\sum_{i=1}^{n} r_{i} v_{i}=\sum_{i=1}^{n} s_{i} v_{i}$ where $\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}$. Then

$$
\begin{aligned}
\sum_{i=2}^{n}\left(r_{i}-s_{i}\right)\left(v_{i}-v_{1}\right) & =\sum_{i=1}^{n}\left(r_{i}-s_{i}\right)\left(v_{i}-v_{1}\right) \\
& =\sum_{i=1}^{n} r_{i} v_{i}-\sum_{i=1}^{n} s_{i} v_{i}-\left(\sum_{i=1}^{n} r_{i}-\sum_{i=1}^{n} s_{i}\right) v_{1} \\
& =0
\end{aligned}
$$

Thus $r_{i}=s_{i}$ for all $i=2, \ldots, n$. Since $\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}, r_{1}=s_{1}$. Therefore, $r_{i}=s_{i}$ for all $i=1, \ldots, n$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ Suppose that $\sum_{i=1}^{n} c_{i} v_{i}=0$ and $\sum_{i=1}^{n} c_{i}=0$. Then $\sum_{i=1}^{n} c_{i} v_{i}=$ $\sum_{i=1}^{n} 0 \cdot v_{i}$ and $\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} 0$. Thus $c_{i}=0$ for all $i=1, \ldots, n$.
(e) \Rightarrow (a) Suppose that $\sum_{i=1}^{n} c_{i}\left(v_{i}-v_{1}\right)=0$. Then

$$
\begin{aligned}
\left(-\sum_{i=2}^{n} c_{i}\right) v_{1}+\sum_{i=2}^{n} c_{i} v_{i} & =\sum_{i=1}^{n} c_{i}\left(v_{i}-v_{1}\right) \\
& =0
\end{aligned}
$$

By assumption, we have $c_{i}=0$ for all $i=2, \ldots, n$. This shows that $\left\{v_{2}-v_{1}, \ldots, v_{n}-v_{1}\right\}$ is a linear independent set of $n-1$ vectors in \mathbb{R}^{n-1}, hence a basis. Thus T is a tetrahedron.
(a)-(e) \Rightarrow (f) Suppose $v \in \mathbb{R}^{n-1}$. Then $v-v_{1}=\sum_{i=2}^{n} c_{i}\left(v_{i}-v_{1}\right)$ for some scalar c_{i}, so $v=\left(1-\sum_{i=2}^{n} c_{i}\right) v_{1}+\sum_{i=2}^{n} c_{i} v_{i}=\sum_{i=1}^{n} d_{i} v_{i}$ where $d_{1}=1-\sum_{i=2}^{n} c_{i}$ and $d_{i}=c_{i}$ for all $i=2, \ldots, n$. Note that $\sum_{i=1}^{n} d_{i}=1$. Then (d) implies that the representation is unique.
$(\mathrm{f}) \Rightarrow(\mathrm{e})$ Suppose that $\sum_{i=1}^{n} c_{i} v_{i}=0$ and $\sum_{i=1}^{n} c_{i}=0$. Suppose there is an i such that $c_{i} \neq 0$. Then $c_{i}=-\sum_{k \neq i} c_{i}$ and $v_{i}=-\frac{1}{c_{i}} \sum_{k \neq i} c_{k} v_{k}$. Note that
$\sum_{k \neq i} \frac{-c_{k}}{c_{i}}=1$. But $v_{i}=1 \cdot v_{i}+\sum_{k \neq i} 0 \cdot v_{k}$. Since the representation is unique, $c_{k}=0$ for all $k \neq i$. This implies $c_{i}=0$ which is a contradiction. Therefore, $c_{i}=0,1 \leq i \leq n$.
$(\mathrm{f}) \Rightarrow(\mathrm{g})$ For any $v \in \mathbb{R}^{n-1}$, define $f(v)=\left(c_{1}, \ldots, c_{n}\right)$ where $v=\sum_{i=1}^{n} c_{i} v_{i}$ and $\sum_{i=1}^{n} c_{i}=1$. Since the representation is unique, f is well-defined and continuous. Let $x_{0}=\frac{1}{n} \sum_{i=1}^{n} v_{i}$. Then $x_{0} \in \operatorname{Conv}(T)$. Since $f\left(x_{0}\right)=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ has positive coordinates in \mathbb{R}^{n}, there exists an open ball $B\left(x_{0}, \epsilon\right) \subset \mathbb{R}^{n-1}$ for some $\epsilon>0$ such that $f(x)$ has positive coordinates for all $x \in B\left(x_{0}, \epsilon\right)$ by continuity of f. This shows that $B\left(x_{0}, \epsilon\right) \subset \operatorname{Conv}(T)$ and hence x_{0} is in the interior of $\operatorname{Conv}(T)$.
$(\mathrm{g}) \Rightarrow(\mathrm{f})$ Let $v \in \mathbb{R}^{n-1}$. Choose $x_{0} \in \operatorname{int}(\operatorname{Conv}(T))$. Then the origin is in the interior of the convex hull of $\left\{v_{1}-x_{0}, \ldots, v_{n}-x_{0}\right\}$. There is $t>0$ such that $t\left(v-x_{0}\right)$ is in the convex hull of $\left\{v_{1}-x_{0}, \ldots, v_{n}-x_{0}\right\}$. Thus there is a unique representation $0=\sum_{i=1}^{n} r_{i}\left(v_{i}-x_{0}\right)$ and $t\left(v-x_{0}\right)=\sum_{i=1}^{n} s_{i}\left(v_{i}-x_{0}\right)$ where $r_{i}, s_{i}>$ $0,1 \leq i \leq n$ and $\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}=1$. Let $c_{i}=r_{i}+\frac{s_{i}-r_{i}}{t}, 1 \leq i \leq n$. Then $\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} r_{i}+\frac{1}{t} \sum_{i=1}^{n}\left(s_{i}-r_{i}\right)=1$ and

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} v_{i}-x_{0} & =\sum_{i=1}^{n} c_{i}\left(v_{i}-x_{0}\right) \\
& \left.=\sum_{i=1}^{n} r_{i}\left(v_{i}-x_{0}\right)+\frac{1}{t} \sum_{i=1}^{n} s_{i}\left(v_{i}-x_{0}\right)-\frac{1}{t} \sum_{i=1}^{n} r_{i}\left(v_{i}-x_{0}\right)\right) \\
& =v-x_{0}
\end{aligned}
$$

Hence $v=\sum_{i=1}^{n} c_{i} v_{i}$.

Proposition 1.3.4. Let $T=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{n-1}$ be a tetrahedron. Then the following statements are equivalent.
(a) T is a positive tetrahedron.
(b) There are positive scalars c_{i} such that $\sum_{i=1}^{n} c_{i} v_{i}=0$ and $\sum_{i=1}^{n} c_{i}=1$.
(c) There are positive scalars c_{i} such that $\sum_{i=1}^{n} c_{i} v_{i}=0$.

Proof. (a) \Rightarrow (b) Since T is a positive tetrahedron, the origin must be in the interior of $\operatorname{Conv}(T)$. Thus $0=\sum_{i=1}^{n} c_{i} v_{i}$ for some $c_{i}>0,1 \leq i \leq n$ and $\sum_{i=1}^{n} c_{i}=1$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ This is obvious.
(c) \Rightarrow (a) Suppose that $\sum_{i=1}^{n} c_{i}=0$ for some $c_{i}>0,1 \leq i \leq n$. For each i, let $d_{i}=\frac{c_{i}}{c_{1}+\cdots+c_{n}}$. Then $\sum_{i=1}^{n} c_{i}=0$ and $\sum_{i=1}^{n} d_{i}=1$. Thus the origin is in the interior of $\operatorname{Conv}(T)$ and hence T is a positive tetrahedron.

In many situations, it is convenient to represent a (ordered) tetrahedron with a matrix. We may represent an ordered tetrahedron $T=\left(v_{1}, \ldots, v_{n}\right)$ by an $n \times(n-1)$ matrix whose row i is the vector v_{i},i.e.

$$
T=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

For a lighter notation, we will use T for both the ordered tetrahedron and its associated matrix. For a tetrahedron $S=\left\{w_{1}, \ldots, w_{n}\right\}$, we may represent S by the matrix of the ordered tetrahedron $\left(w_{1}, \ldots, w_{n}\right)$. Also, sometimes we will choose an order for S tacitly.

1.3.2 New Tetrahedra from Old

In this section, we develop several ways to construct a new tetrahedron and positive tetrahedron from the given one. These results will be used in later sections.

Proposition 1.3.5. Let $T=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{n-1}$ be a positive tetrahedron.
(a) If $A \in \mathrm{GL}_{n-1}(\mathbb{R})$, then $T A=\left\{v_{1} A, \ldots, v_{n} A\right\}$ is a positive tetrahedron.
(b) If $A \in \mathrm{~S}_{n}(\mathbb{R})$, then $A T$ is a positive tetrahedron.

Proof. (a) Since T is a tetrahedron and A is invertible, the set $\left\{v_{2} A-v_{1} A, \ldots, v_{n} A-\right.$ $\left.v_{1} A\right\}$ is a basis of \mathbb{R}^{n-1}. Thus $T A$ is a tetrahedron by Proposition 1.3.3 (c).
(b) Let $A T=\left\{w_{1}, \ldots, w_{n}\right\}$. Suppose that $c_{1} w_{1}+\cdots+c_{n} w_{n}=0$ with $c_{1}+\cdots+$ $c_{n}=0$. Let $\left(d_{1}, \ldots, d_{n}\right)=\left(c_{1}, \ldots, c_{n}\right) A$. Then we have $\left(d_{1}, \ldots, d_{n}\right) T=\left(c_{1}, \ldots, c_{n}\right) A T=$ 0 . Let r be the row sum of A. Then

$$
\begin{aligned}
d_{1}+\cdots+d_{n} & =\left(d_{1}, \ldots, d_{n}\right)(1, \ldots, 1)^{t} \\
& =\left(c_{1}, \ldots, c_{n}\right) A(1, \ldots, 1)^{t} \\
& =r\left(c_{1}, \ldots, c_{n}\right)(1, \ldots, 1)^{t} \\
& =r\left(c_{1}+\cdots+c_{n}\right) \\
& =0 .
\end{aligned}
$$

We have that $\left(d_{1}, \ldots, d_{n}\right)=0$ since T is a tetrahedron. This implies $\left(c_{1}, \ldots, c_{n}\right)=0$ since A is invertible. Thus $A T$ is a tetrahedron by Proposition 1.3.3 (e).

Proposition 1.3.6. Let $T_{0}=\left\{v_{1}, \ldots, v_{n-1}, v_{n}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{n-1}, w_{n}\right\}$ be positive tetrahedra. Then $\operatorname{Conv}\left(T_{0}\right) \cap \operatorname{Conv}\left(T_{1}\right)$ is the convex hull of a positive tetrahedron.

Proof. Clearly, $\operatorname{Conv}\left(T_{0}\right) \cap \operatorname{Conv}\left(T_{0}\right)$ contains a neighborhood of the origin. The issue is to show there is a single vector u such that this intersection equals $\operatorname{Conv}\left(v_{1}, \ldots, v_{n-1}, u\right)$.

For $i=1, \ldots, n-1$, let
G_{i} be the supporting hyperplane of T_{0} containing $T_{0}-\left\{v_{i}\right\}$,
H_{i} be the supporting hyperplane of T_{1} containing $T_{1}-\left\{v_{i}\right\}$,
H_{n} be the supporting hyperplane of T_{0} and T_{1} containing $\left\{v_{1}, \ldots, v_{n-1}\right\}$,
G_{i}^{+}be the half space containing T_{0} and having G_{i} as its boundary, and
H_{i}^{+}be the half space containing T_{1} and having H_{i} as its boundary.
Then $\operatorname{Conv}\left(T_{0}\right)=G_{1}^{+} \cap G_{2}^{+} \cap \cdots \cap H_{n}^{+}$and $\operatorname{Conv}\left(T_{1}\right)=H_{1}^{+} \cap H_{2}^{+} \cap \cdots \cap H_{n}^{+}$. Let $T_{1}^{(i)}=G_{i}^{+} \cap G_{i-1}^{+} \cap \cdots \cap G_{1}^{+} \cap T_{1}$. We will show that $T_{1}^{(i)}$ is a simplex for any $i=1, \ldots, n-1$. If $T_{1}^{(1)}=G_{1}^{+} \cap T_{1}=\operatorname{Conv}\left(T_{1}\right)$ then for $i=1$ we are done. Suppose that $T_{1}^{(1)} \neq \operatorname{Conv}\left(T_{1}\right)$. Note that

$$
\begin{aligned}
& v_{1}=H_{2} \cap H_{3} \cap \cdots \cap H_{n}, \\
& v_{2}=G_{1} \cap H_{3} \cap \cdots \cap H_{n}, \\
& \vdots \\
& v_{n-1}=G_{1} \cap H_{2} \cap \cdots \cap H_{n-2} \cap H_{n}
\end{aligned}
$$

and $H_{2} \cap \cdots \cap H_{n-1}$ is a line passing through v_{1} and w_{n}, say L. Thus $G_{1} \cap H_{2} \cap \cdots \cap$ H_{n-1} is empty, a point, or the line L. If $G_{1} \cap H_{2} \cap \cdots \cap H_{n-1}$ is empty then $G_{1}^{+} \cap T_{1}=$ T_{1} which contradicts the assumption. Since $v_{1} \notin G_{1}, G_{1} \cap H_{2} \cap \cdots \cap H_{n-1} \neq L$. Thus $G_{1} \cap H_{2} \cap \cdots \cap H_{n-1}$ is a point. Let $u_{n}=G_{1} \cap H_{2} \cap \cdots \cap H_{n-1}$. We will show that

$$
G_{1}^{+} \cap H_{2}^{+} \cap \cdots \cap H_{n}^{+}=\operatorname{Conv}\left(v_{1}, \ldots, v_{n-1}, u_{n}\right)
$$

Because u_{n} is the convex combination of v_{1} and w_{n}, both of which are in $G_{1}^{+} \cap H_{n}^{+}$, we have $G_{1}^{+} \cap H_{2}^{+} \cap \cdots \cap H_{n}^{+} \supset \operatorname{Conv}\left(v_{1}, \ldots, v_{n-1}, u_{n}\right)$. To show the other containment, suppose that $x \in G_{1}^{+} \cap H_{2}^{+} \cap \cdots \cap H_{n}^{+}$. Determine a_{i} in \mathbb{R}^{n-1} by the conditions $G_{1}=\left\{x \in \mathbb{R}^{n-1}: x \cdot a_{1}=1\right\}$ and $H_{i}=\left\{x \in \mathbb{R}^{n-1}: x \cdot a_{i}=1\right\}$ for $i=2, \ldots, n$. Then $G_{1}^{+}=\left\{x \in \mathbb{R}^{n-1}: x \cdot a_{1} \leq 1\right\}$ and $H_{i}^{+}=\left\{x \in \mathbb{R}^{n-1}: x \cdot a_{i} \leq 1\right\}$ for $i=2, \ldots, n$. Because $\left\{v_{1}, \ldots, v_{n-1}, u_{n}\right\}$ is a tetrahedron, there are scalars c_{i} such that $x=c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}+c_{n} u_{n}$ and $c_{1}+\cdots+c_{n}=1$. Then

$$
\begin{aligned}
x \cdot a_{1} & =c_{1} v_{1} \cdot a_{1}+\cdots+c_{n-1} v_{n-1} \cdot a_{1}+c_{n} u_{n} \cdot a_{1} \\
& =c_{1} v_{1} \cdot a_{1}+c_{2}+\cdots+c_{n} \\
& =c_{1} v_{1} \cdot a_{1}+1-c_{1} .
\end{aligned}
$$

Thus $c_{1}=\frac{1-x \cdot a_{1}}{1-v_{1} \cdot a_{1}}$. Similarly, $c_{i}=\frac{1-x \cdot a_{i}}{1-v_{i} \cdot a_{i}}$ for $i=2, \ldots, n-1$ and $c_{n}=\frac{1-x \cdot a_{n}}{1-u_{n} \cdot a_{n}}$. Since $x \in G_{1}^{+}, x \cdot a_{1} \leq 1$ (the denominators are positive; e.g., since $v_{1} \in G_{1}^{+} \backslash G_{1}, v_{1}$. $\left.a_{1}<1\right)$. Since $v_{1} \in G_{1}^{+} \backslash G_{1}$, we have $v_{1} \cdot a_{1}<1$, and thus $c_{1}=\frac{1-x \cdot a_{1}}{1-v_{1} \cdot a_{1}} \geq 0$. Similarly, $c_{i} \geq 0$ for all $i=2, \ldots, n$. Hence $x \in \operatorname{Conv}\left(v_{1}, \ldots, v_{n-1}, u_{n}\right)$. This proves the claim. Consequently, $T_{1}^{(1)}$ is a tetrahedron. By using the same argument, $T_{1}^{(i)}$ is a tetrahedron for any $i=2, \ldots, n-1$. Thus

$$
\begin{aligned}
\operatorname{Conv}\left(T_{0}\right) \cap \operatorname{Conv}\left(T_{1}\right) & =H_{n}^{+} \cap T_{1}^{(n-1)} \\
& =T_{1}^{(n-1)}
\end{aligned}
$$

is a tetrahedron since $T_{1}^{(n-1)} \subseteq \operatorname{Conv}\left(T_{1}\right) \subseteq H_{n}^{+}$. This completes the proof.

Theorem 1.3.7. Let $T_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a positive tetrahedron. Then the following statements hold.
(a) If $T_{1}=\left\{w_{1}, \ldots, w_{n}\right\} \subset \mathbb{R}^{n-1}$ and $\operatorname{Conv}\left(T_{0}\right) \subseteq \operatorname{Conv}\left(T_{1}\right)$, then T_{1} is a positive tetrahedron.
(b) If $c_{1}, c_{2}, \ldots, c_{n}$ are positive then $T_{1}=\left\{c_{1} v_{1}, c_{2} v_{2}, \ldots, c_{n} v_{n}\right\}$ is a positive tetrahedron.
(c) If $T_{1}=\left\{v_{1}, \ldots, v_{n-1}, w_{n}\right\}$ is a positive tetrahedron then $T_{t}=\left\{v_{1}, \ldots, v_{n-1},(1-\right.$ t) $\left.v_{n}+t w_{n}\right\}, 0 \leq t \leq 1$ are positive tetrahedra.

Proof. (a) Since $\operatorname{Conv}\left(T_{0}\right)$ has nonempty interior, $\operatorname{Conv}\left(T_{1}\right)$ has nonempty interior. Clearly, the origin is in the interior of $\operatorname{Conv}\left(T_{1}\right)$. Thus T_{1} is a positive tetrahedron.
(b) Let $c=\min \left\{c_{1}, \ldots, c_{n}\right\}$. Then $T_{2}=\left\{c v_{1}, \ldots, c v_{n}\right\}$ is clearly a positive tetrahedron. Moreover, $\operatorname{Conv}\left(T_{2}\right) \subseteq \operatorname{Conv}\left(T_{1}\right)$. Consequently, T_{1} is a positive tetrahedron by part (a).
(c) By Proposition 1.3.6, $\operatorname{Conv}\left(T_{0}\right) \cap \operatorname{Conv}\left(T_{1}\right)$ is the convex hull of a tetrahedron. Let $v \in \operatorname{Conv}\left(T_{0}\right) \cap \operatorname{Conv}\left(T_{1}\right)$. Suppose that $v=c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}+c_{n} v_{n}$ and $v=d_{1} v_{1}+\cdots+d_{n-1} v_{n-1}+d_{n} w_{n}$ for some c_{j}, d_{j}. Then $\frac{t v}{c_{n}}=\frac{c_{1} t}{c_{n}} v_{1}+\cdots+\frac{c_{n-1} t}{c_{n}} v_{n-1}+t v_{n}$ and $\frac{(1-t) v}{d_{n}}=\frac{d_{1}(1-t)}{d_{n}} v_{1}+\cdots+\frac{d_{n-1}(1-t)}{d_{n}} v_{n-1}+(1-t) w_{n}$. Thus

$$
\begin{aligned}
{\left[\frac{t}{c_{n}}+\frac{1-t}{d_{n}}\right] v=} & {\left[\frac{c_{1} t}{c_{n}}+\frac{d_{1}(1-t)}{d_{n}}\right] v_{1}+\cdots+\left[\frac{c_{n-1} t}{c_{n}}+\frac{d_{n-1}(1-t)}{d_{n}}\right] v_{n-1}+v_{n}(t) } \\
v= & {\left[\frac{c_{1} d_{n} t+d_{1} c_{n}(1-t)}{d_{n} t+c_{n}(1-t)}\right] v_{1}+\cdots+\left[\frac{c_{n-1} d_{n} t+d_{n-1} c_{n}(1-t)}{d_{n} t+c_{n}(1-t)}\right] v_{n-1} } \\
& +\left[\frac{c_{n} d_{n}}{d_{n} t+c_{n}(1-t)}\right] v_{n}(t) .
\end{aligned}
$$

Hence $v \in \operatorname{Conv}\left(T_{t}\right)$ for all $t \in[0,1]$. By part (a), $T_{t}, 0 \leq t \leq n$ are positive tetrahedra.

1.3.3 Invariant Tetrahedra and Positive Invariant Tetrahedra

Let B be an $(n-1) \times(n-1)$ real matrix. For the rest of this chapter, we always assume that B has all eigenvalues less than 1 in absolute value.

Definition 1.3.8. Let $T=\left\{v_{1}, \ldots, v_{n}\right\}$ be a (ordered) tetrahedron. T is called an (ordered) invariant tetrahedron for B if the convex hull of T is sent to itself under B. T is called a (ordered) positive invariant tetrahedron of B if the convex hull of T is sent to its interior under B.

Proposition 1.3.9. Let T be an invariant tetrahedron of a matrix B. Then the origin must be in the convex hull of T. If T is a positive invariant tetrahedron of B then T is also a positive tetrahedron.

Proof. Note that $T B \subseteq \operatorname{Conv}(T)$. Then $\left.T B^{n} \subseteq \operatorname{Conv}(T)\right)$ for all $n \in \mathbb{N}$. But $\lim _{n \rightarrow \infty} T B^{n}=\{0\}$, so $\{0\} \subseteq \operatorname{Conv}(T)$. If T is a positive invariant tetrahedron of B then the origin must be in the interior of $\operatorname{Conv}(T)$. Thus T is a positive tetrahedron.

Theorem 1.3.10. Let $T=\left\{v_{1}, \ldots, v_{n}\right\}$ be a tetrahedron. Then T is a (positive) invariant tetrahedron of B if and only if there is a (positive) stochastic matrix P such that $T B=P T$.

Proof. Suppose that $T=\left\{v_{1}, \ldots, v_{n}\right\}$ is an invariant tetrahedron of B. For each $i \in\{1, \ldots, n\}$ we have $v_{i} B=\sum_{j=1}^{n} p_{i j} v_{i}$ for some $p_{i j} \geq 0$ such that $\sum_{j=1}^{n} p_{i j}=1$ since $v_{i} B$ is in $\operatorname{Conv}(T)$. Put $P=\left(p_{i j}\right)$. Then P is stochastic and satisfies the equation $T B=P T$.

Suppose conversely that $T B=P T$ for some (positive)stochastic matrix P. Let $v=\sum_{i=1}^{n} c_{i} v_{i}$ where $c_{i} \geq 0$ and $\sum_{i=1}^{n} c_{i}=1$. Then

$$
\begin{aligned}
v B & =\sum_{i=1}^{n} c_{i} v_{i} B \\
& =\sum_{i=1}^{n} c_{i}\left(\sum_{j=1}^{n} p_{i j} v_{j}\right) \\
& =\sum_{i=1}^{n} d_{i} v_{i}
\end{aligned}
$$

where $d_{i}=\sum_{j=1}^{n} c_{j} p_{j i}$. Note that $d_{i} \geq 0$ and

$$
\begin{aligned}
\sum_{i=1}^{n} d_{i} & =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{j} p_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} c_{j} p_{j i} \\
& =\sum_{j=1}^{n} c_{j}\left(\sum_{i=1}^{n} p_{j i}\right) \\
& =\sum_{j=1}^{n} c_{j} \\
& =1
\end{aligned}
$$

Thus $v B$ is in the convex hull of T. Note that T is positive invariant if and only if $p_{i j}>0$ for all i, j.

Let $\mathcal{T}_{+}(B)$ denote the set of all positive invariant tetrahedra of $B, \mathcal{T}_{+}^{\text {ord }}(B)$ denote the space of ordered positive invariant tetrahedra of B, and $\mathcal{S}_{+}(B)$ denote the space of positive stochastic matrices similar to $B \oplus 1$. We topologize $\mathcal{T}_{+}(B)$ by using the Hausdorff metric and topologize $\mathcal{T}_{+}^{\text {ord }}(B)$ and $\mathcal{S}_{+}(B)$ by using the subspace topology of the Euclidean space. The space of positive invariant tetrahedra
has proved its worth in the study of rational strong shift equivalence by Kim and Roush.

Remark 1.3.11. There is a natural continuous function $\mathcal{T}_{+}^{\text {ord }}(B) \rightarrow \mathcal{T}_{+}(B)$ defined by $\left(v_{1}, \ldots, v_{n}\right) \mapsto\left\{v_{1}, \ldots, v_{n}\right\}$. Thus a path in $\mathcal{T}_{+}^{\text {ord }}(B)$ induces a path in $\mathcal{T}_{+}(B)$.

Theorem 1.3.12. Let T be an ordered positive tetrahedron and denote $\mathbf{1}=$ $(1,1, \ldots, 1)^{t}$. Then $T \in \mathcal{T}_{+}^{\text {ord }}(B)$ if and only if the matrix $(T \mathbf{1})(B \oplus 1)(T \mathbf{1})^{-1}$ is positive.

Proof. If $T \in \mathcal{T}_{+}(B)$ then there is a positive stochastic matrix P such that $T B=$ $P T$. This implies that $(T 1)(B \oplus 1)=P(T 1)$, so $(T 1)(B \oplus 1)(T 1)^{-1}=P$ is positive. Conversely, suppose that $P=\left(\begin{array}{ll}T 1\end{array}\right)(B \oplus 1)(T \mathbf{1})^{-1}$ is positive. We will show that P has row sum 1. Note that $(T \mathbf{1})(0,0, \ldots, 1)^{t}=(1,1, \ldots, 1)^{t}$. Thus

$$
\begin{aligned}
P(1,1, \ldots, 1)^{t} & =(T \mathbf{1})(B \oplus 1)(T \mathbf{1})^{-1}(1,1, \ldots, 1)^{t} \\
& =\left(\begin{array}{ll}
T & \mathbf{1}
\end{array}\right)(B \oplus 1)(0,0, \ldots, 1)^{t} \\
& =(T \mathbf{1})(0,0, \ldots, 1)^{t} \\
& =(1,1, \ldots, 1)^{t} .
\end{aligned}
$$

Hence P is positive and stochastic. Then we have $(T \mathbf{1})(B \oplus 1)=P(T \mathbf{1})$ and it can be reduced to $T B=P T$. Therefore, $T \in \mathcal{T}_{+}(B)$.

Definition 1.3.13. For an ordered tetrahedron $T=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n-1}, let P_{T} be the quasi-stochastic matrix P such that $v_{i} B=\sum_{i=1}^{n} p_{i j} v_{j}, 1 \leq i \leq n$.

Remark 1.3.14. If T is an ordered invariant tetrahedron of B then P_{T} is stochastic. If in addition T is positive then P_{T} is positive and stochastic.

For any $T \in \mathcal{T}_{+}^{\text {ord }}(B)$, define $\pi_{B}(T)=P_{T}$. We recall the following theorem in [KR90].

Theorem 1.3.15. [KR90] $\pi_{B}: \mathcal{T}_{+}^{\text {ord }}(B) \rightarrow \mathcal{S}_{+}(B)$ is continuous and surjective.

Proof. By Theorem 1.3.12, we have $P_{T}=\left(\begin{array}{ll}T & \mathbf{1})(B \oplus 1)(T 1)^{-1} \text {. Thus } \pi_{B} \text { is contin- }\end{array}\right.$ uous. Let $P \in \mathcal{S}_{+}(B)$. Suppose that $P=C(B \oplus 1) C^{-1}$ for some $C \in \mathrm{GL}_{n}(\mathbb{R})$. Let C_{n} denote the last column of C. Then $P C=C(B \oplus 1)$ implies $P C_{n}=C_{n}$. Thus C_{n} is a right eigenvector of P corresponding to 1 , so $C_{n}=k(1,1, \ldots, 1)^{t}$ for some $k>0$. Let R_{i} be the $i^{\text {th }}$ row of C. Then $R_{i}=\left(v_{i}, k\right)$ for some $v_{i} \in \mathbb{R}^{n-1}, 1 \leq i \leq n$. Define $T=\left(v_{1}, \ldots, v_{n}\right)$. We will show that T is an ordered tetrahedron. Since C is invertible, $\left\{R_{1}, \ldots, R_{n}\right\}$ is a basis of \mathbb{R}^{n}. Suppose that $\sum_{i=2}^{n} c_{i}\left(v_{i}-v_{1}\right)=0$. Then $\sum_{i=2}^{n} c_{i} R_{i}-\left(\sum_{i=2}^{n} c_{i}\right) R_{1}=\sum_{i=2}^{n} c_{i}\left(R_{i}-R_{1}\right)=\sum_{i=2}^{n} c_{i}\left(v_{i}-v_{1}, 0\right)=0$. Thus $c_{i}=0$ for all $i=2, \ldots, n$. By Proposition 1.3.3(c), T is an ordered tetrahedron as claimed. Note that $P C=\left(P T, C_{n}\right)$ and $C(B \oplus 1)=\left(T B, C_{n}\right)$, so $T B=P T$. By Theorem 1.3.10, $T \in \mathcal{T}_{+}^{\text {ord }}(B)$ and $P_{T}=P$. Thus π_{B} is surjective.

The following proposition suggests us to study the space of positive invariant tetrahedra for some simple matrix B, e.g. B may be chosen as the real Jordan canonical form.

Proposition 1.3.16. Let A and B be similar matrices over \mathbb{R}. Then
(a) $\mathcal{T}_{+}^{\text {ord }}(A)$ is homeomorphic to $\mathcal{T}_{+}^{\text {ord }}(B)$.
(b) $\mathcal{T}_{+}(A)$ is homeomorphic to $\mathcal{T}_{+}(B)$.

Proof. Suppose that $A=C B C^{-1}$. For any $T \in \mathcal{T}_{+}^{\text {ord }}(A)$, there is a positive stochastic matrix P_{T} such that $T A=P_{T} T$. Then we have $(T C) B=T A C=P_{T}(T C)$. Thus
$T C \in \mathcal{T}_{+}^{\text {ord }}(B)$. The map $T \longmapsto T C$ defines a homeomorphism between $\mathcal{T}_{+}^{\text {ord }}(A)$ and $\mathcal{T}_{+}^{\text {ord }}(B)$. The same argument can be applied for $\mathcal{T}_{+}(A)$ and $\mathcal{T}_{+}(B)$.

Proposition 1.3.17. Let $T=\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{T}_{+}^{\text {ord }}(B)$ and $l=\left(l_{1}, \ldots, l_{n}\right) \in \operatorname{int}\left(\Delta^{n-1}\right)$. Then the following statements are equivalent.
(a) $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$.
(b) l is the left Perron eigenvector of P_{T}.

Proof. (a) Suppose that $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$. Then

$$
\begin{aligned}
\left(l_{1} v_{1}+\cdots+l_{n} v_{n}\right) B & =0 \\
\left(l_{1} p_{11}+\cdots+l_{n} p_{n 1}\right) v_{1}+\cdots+\left(l_{1} p_{1 n}+\cdots+l_{n} p_{n n}\right) v_{n} & =l_{1} v_{1}+\cdots+l_{n} v_{n}
\end{aligned}
$$

Applying Proposition 1.3.3 (d), we get $\sum_{i=1}^{n} l_{i} p_{i j}=l_{j}$ for all $j=1,2, \ldots, n$. Consequently, we have $l P_{T}=l$ and hence l is the left Perron eigenvector of P_{T}.
(b) Suppose that $l P_{T}=l$. Then

$$
\begin{aligned}
\left(l_{1} v_{1}+\cdots+l_{n} v_{n}\right) B & =l_{1} v_{1} B+l_{2} v_{2} B+\cdots+l_{n} v_{n} B \\
& =l_{1}\left(p_{11} v_{1}+\cdots+p_{1 n} v_{n}\right)+\cdots+l_{n}\left(p_{n 1} v_{1}+\cdots+p_{n n} v_{n}\right) \\
& =\left(l_{1} p_{11}+\cdots+l_{n} p_{n 1}\right) v_{1}+\cdots+\left(l_{1} p_{1 n}+\cdots+l_{n} p_{n n}\right) v_{n} \\
& =l_{1} v_{1}+\cdots+l_{n} v_{n} .
\end{aligned}
$$

Since B has all eigenvalues less than 1 in absolute value, $l_{1} v_{1}+\cdots+l_{n} v_{n}$ can not be an eigenvector of B corresponding to an eigenvalue 1 . Therefore $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$.

Proposition 1.3.18. Let $S=\left(v_{1}, \ldots, v_{n}\right), T=\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{T}_{+}^{\text {ord }}(B)$. Then the following are equivalent.
(a) $P_{S}=P_{T}$.
(b) There exists an invertible matrix A such that $w_{i}=v_{i} A$ for $1 \leq i \leq n$ and $A B=B A$.

Proof. $(b) \Rightarrow(a)$ Suppose that $v_{i} B=p_{i 1} v_{1}+\cdots+p_{i n} v_{n}$ for all $i=1, \ldots, n$. Then

$$
\begin{aligned}
w_{i} B & =v_{i} A B \\
& =v_{i} B A \\
& =\left(p_{i 1} v_{1}+\cdots+p_{i n} v_{n}\right) A \\
& =p_{i 1} w_{1}+\cdots+p_{i n} w_{n} .
\end{aligned}
$$

Thus $P_{S}=P_{T}$.
$(a) \Rightarrow(b)$ Suppose that $v_{i} B=p_{i 1} v_{1}+\cdots+p_{i n} v_{n}$ and $w_{i} B=p_{i 1} w_{1}+\cdots+p_{i n} w_{n}$ for all $i=1, \ldots, n$. Then $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$ and $l_{1} w_{1}+\cdots+l_{n} w_{n}=0$ for some $l=\left(l_{1}, \ldots, l_{n}\right) \in \operatorname{int}\left(\Delta^{n}\right)$. By Proposition 1.3.3 (g), $\left\{v_{1}, \ldots, v_{n-1}\right\}$ and $\left\{w_{1}, \ldots, w_{n-1}\right\}$ are bases of \mathbb{R}^{n-1}. Define a linear transformation $L: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ by $L\left(v_{i}\right)=w_{i}$ for all $i=1, \ldots, n-1$. Then

$$
\begin{aligned}
L\left(v_{n}\right) & =L\left(-\frac{1}{l_{n}}\left(l_{1} v_{1}+\cdots+l_{n-1} v_{n-1}\right)\right) \\
& =-\frac{1}{l_{n}}\left(l_{1} L\left(v_{1}\right)+\cdots+l_{n-1} L\left(v_{n-1}\right)\right) \\
& =-\frac{1}{l_{n}}\left(l_{1} w_{1}+\cdots+l_{n-1} w_{n-1}\right) \\
& =w_{n}
\end{aligned}
$$

Thus there is an invertible matrix A such that $w_{i}=v_{i} A$ for all $i=1, \ldots, n$. For any
$i \in\{1, \ldots, n\}$, we have

$$
\begin{aligned}
v_{i} A B & =w_{i} B \\
& =p_{i 1} w_{1}+\cdots+p_{i n} w_{n} \\
& =\left(p_{i 1} v_{1}+\cdots+p_{i n} v_{n}\right) A \\
& =v_{i} B A .
\end{aligned}
$$

Therefore, $A B=B A$.

1.4 $\mathcal{T}_{+}(B)$ Has Only Finitely Many Connected Components

Definition 1.4.1. A semialgebraic subset of \mathbb{R}^{n} is a subset of points in \mathbb{R}^{n} which is the solution set of a boolean combination of polynomial equations and inequalities with real coefficients.

It is well-known that a semialgebraic set has finitely many connected components. See e.g. [BCR98, Theorem 2.4.4] for more details.

Theorem 1.4.2. $\mathcal{T}_{+}^{\text {ord }}(B)$ has finitely many connected components.

Proof. It suffices to show that $\mathcal{T}_{+}^{\text {ord }}(B)$ is a semialgebraic set. Let $T \in \mathcal{T}_{+}^{\text {ord }}(B)$. Then T satisfies the matrix inequality

$$
(T \mathbf{1})(B \oplus 1)(T \mathbf{1})^{-1}>0
$$

which is equivalent to the system of polynomial inequalities in $n(n+1)$ variables

$$
\begin{aligned}
& \{\operatorname{det}(T \mathbf{1})>0,(T \mathbf{1})(B \oplus 1) \operatorname{adj}(T \mathbf{1})>0\} \text { or } \\
& \{\operatorname{det}(T \mathbf{1})<0,(T \mathbf{1})(B \oplus 1) \operatorname{adj}(T \mathbf{1})<0\}
\end{aligned}
$$

Thus $\mathcal{T}_{+}^{\text {ord }}(B)$ is a semialgebraic set.

Corollary 1.4.3. The following statements hold.
(a) $\mathcal{T}_{+}(B)$ has finitely many connected components.
(b) $\mathcal{S}_{+}(B)$ has finitely many connected components.
(c) There are finitely many SSE- \mathbb{R}_{+}classes in the same similarity class.

Proof. (a) The map $\left(v_{1}, \ldots, v_{n}\right) \mapsto\left\{v_{1}, \ldots, v_{n}\right\}$ induces a fewer number of connected components in $\mathcal{T}_{+}(B)$ than the number of connected components in $\mathcal{T}_{+}^{\text {ord }}(B)$.
(b) This follows from Theorem 1.3.15 and Theorem 1.4.2.
(c) By Theorem 1.2.9, the number of SSE- \mathbb{R}_{+}classes is at most the number of connected components of $\mathcal{S}_{+}(B)$.

Remark 1.4.4. We can show directly that $\mathcal{S}_{+}(B)$ has finitely many connected components by noticing that $\mathcal{S}_{+}(B)$ is a semialgebraic set. Let $p_{B}(t)$ be the characteristic polynomial of $B \oplus 1$. Let $p_{B}(t)=\prod_{k=1}^{m}\left(q_{k}(t)\right)^{j_{k}}$ where the q_{i} are irreducible and distinct, and $j_{k} \in \mathbb{N}$. Then $P \in \mathcal{S}_{+}(B)$ if and only if

- $\sum_{j=1}^{n} p_{i j}=1,1 \leq i \leq n$,
- $p_{i j}>0$ for $i, j=1, \ldots, n$,
- $\operatorname{rank}\left(q_{k}(P)\right)^{j}=\operatorname{rank}\left(q_{k}(B \oplus 1)\right)^{j}, 1 \leq k \leq m, 1 \leq j \leq j_{k}$.

That a matrix M has a given rank r is equivalent to $r \times r$ being the size of the largest submatrix of M with nonzero determinant. This is a semialgebraic condition on M.

1.5 Same Connected Component Criteria

The purpose of this section is to prove the following theorems.

Theorem 1.5.1. Suppose $T_{0}, T_{1} \in \mathcal{T}_{+}^{\text {ord }}(B)$. For $0 \leq t \leq 1$, set $T_{t}=(1-t) T_{0}+t T_{1}$. If T_{t} is a positive tetrahedron for each $t \in[0,1]$ then T_{0} and T_{1} are in the same connected component.

Proof. Suppose $z \in T_{t}$. Then there exist $x \in T_{0}$ and $y \in T_{1}$ such that $z=(1-t) x+$ $t y$, and $z B=(1-t) x B+t y B$. There exist $x^{\prime} \in \operatorname{int}\left(\operatorname{Conv}\left(T_{0}\right)\right)$ and $y^{\prime} \in \operatorname{int}\left(\operatorname{Conv}\left(T_{1}\right)\right)$ such that $x B=x^{\prime}$ and $y B=y^{\prime}$ and then for $0<t<1, z B=(1-t) x^{\prime}+t y^{\prime} \in$ $\operatorname{int}\left(\operatorname{Conv}\left((1-t) T_{0}\right)\right)+\operatorname{int}\left(\operatorname{Conv}\left(t T_{1}\right)\right) \subset \operatorname{Conv}\left(T_{t}\right)$. This shows that $T_{t} \in \mathcal{T}_{+}^{\text {ord }}(B)$ for all $t \in[0,1]$. So T_{0} and T_{1} are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$.

Theorem 1.5.2. Each of the following pairs of positive invariant tetrahedra of B are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$.
(a) $T_{0}=\left(v_{1}, \ldots, v_{n}\right), T_{1}=\left(c_{1} v_{1}, \ldots, c_{n} v_{n}\right)$ where c_{1}, \ldots, c_{n} are positive.
(b) $T_{0}=\left(v_{1}, \ldots, v_{n-1}, v_{n}\right), T_{1}=\left(v_{1}, \ldots, v_{n-1}, w_{n}\right)$
(c) $T_{0}=\left(v_{1}, \ldots, v_{n-1}, v_{n}\right), T_{1}=\left(w_{1}, \ldots, w_{n-1}, v_{n}\right)$ where v_{i}, w_{i}, v_{n} are colinear for all $i=1, \ldots, n-1$.

Proof. (a) For $0 \leq t \leq 1$, define $T_{t}=\left(\left(1-t+c_{1} t\right) v_{1}, \ldots,\left(1-t+c_{n} t\right) v_{n}\right)$. By Theorem 1.3.7 (b), T_{t} is a positive tetrahedron for all $t \in[0,1]$. Therefore, T_{0} and T_{1} are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$ by Theorem 1.5.1.
(b) For $0 \leq t \leq 1$, define $T_{t}=\left(v_{1}, \ldots, v_{n-1},(1-t) v_{n}+t w_{n}\right)$. By Theorem 1.3.7 (c), T_{t} is a positive tetrahedron for all $t \in[0,1]$. Therefore, T_{0} and T_{1} are in the
same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$ by Theorem 1.5.1.
(c) Let $u_{i} \in\left\{v_{i}, w_{i}\right\}$ be such that

$$
\left\|u_{i}-w_{n}\right\|=\max \left\{\left\|v_{i}-w_{n}\right\|,\left\|w_{i}-w_{n}\right\|\right\} \text { for } i=1,2, \ldots, n-1
$$

Define $T_{\frac{1}{2}}=\left(u_{1}, u_{2}, \ldots, u_{n-1}, w_{n}\right)$. Note that v_{i} and w_{i} lie between u_{i} and w_{n} for all $i=1,2, \ldots, n-1$. Thus $\operatorname{Conv}\left(T_{\frac{1}{2}}\right)=\operatorname{Conv}\left(T_{0}\right) \cup \operatorname{Conv}\left(T_{1}\right)$. This implies that $T_{\frac{1}{2}} \in$ $\mathcal{T}_{+}^{\text {ord }}(B)$. For $0 \leq t \leq 1$, define $T_{\frac{t}{2}}=(1-t) T_{0}+t T_{\frac{1}{2}}$. Then $\operatorname{Conv}\left(T_{0}\right) \subseteq \operatorname{Conv}\left(T_{\frac{t}{2}}\right)$ for all $t \in[0,1]$. Thus $T_{\frac{t}{2}}$ is a positive tetrahedron for all $t \in[0,1]$. So T_{0} and $T_{\frac{1}{2}}$ are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$ by Theorem 1.5.1. Similarly, $T_{\frac{1+t}{2}}=(1-t) T_{\frac{1}{2}}+t T_{1}$ is a positive tetrahedron for any $t \in[0,1]$. Thus, $T_{\frac{1}{2}}$ and T_{1} are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$ and hence T_{0} and T_{1} are in the same connected component of $\mathcal{T}_{+}^{\text {ord }}(B)$.

1.6 Some Cases in Which $\mathcal{T}_{+}(B)$ Is Disconnected

In this section, we show that the space $\mathcal{T}_{+}(B)$ can be disconnected. In the next section we will show that $\mathcal{T}_{+}(B)$ has exactly 2 connected components when $B=\operatorname{diag}(\alpha,-\beta)$ with $\alpha, \beta>0$ and $\alpha+\beta \geq 1$.

Lemma 1.6.1. Let $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ where $-1<\beta \leq \alpha<1$. Suppose that $T=\{(0,1),(-b, y),(c, z)\}$ where $b, c>0$ is a positive tetrahedron. If $T \in \mathcal{T}_{+}(B)$ then $\alpha-\beta<1$.

Proof. If $\alpha=\beta$ then we are done. Suppose that $\beta<\alpha$. The corresponding matrix
for T is
$P=\frac{1}{D}\left(\begin{array}{ccc}-(b z+c y)+\beta(b+c) & (1-\beta) c & (1-\beta) b \\ -(b z+c y)+\alpha b(z-y)+\beta y(b+c) & \alpha b(1-z)-\beta c y+c & \alpha b(y-1)-\beta b y+b \\ -(b z+c y)+\alpha c(y-z)+\beta z(b+c) & \alpha c(z-1)-\beta c z+c & \alpha c(1-y)-\beta b z+b\end{array}\right)$
where $D=-(b z+c y)+b+c$. Note that $l=\left(l_{1}, l_{2}, l_{3}\right)$ where $l_{1}=-\frac{b z+c y}{D}, l_{2}=$ $\frac{b}{D}, l_{3}=\frac{c}{D}$ is the left Perron eigenvector of P. Thus $D>0$. Since $p_{23}>0$, we have $y>\frac{\alpha-1}{\alpha-\beta}$. Since $p_{32}>0$, we have $z>\frac{\alpha-1}{\alpha-\beta}$. Since $p_{11}>0$, we have $\beta>\frac{b z+c y}{b+c}>\frac{\alpha-1}{\alpha-\beta}$. Thus $\beta(\alpha-\beta)>\alpha-1,(1-\beta)(\alpha-\beta-1)<0$, and hence $\alpha-\beta<1$.
Proposition 1.6.2. If $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ where $\alpha-\beta \geq 1$ then $\mathcal{T}_{+}(B)$ is not path connected.

Proof. Let $T_{0}=\{(-a, 0),(1,1),(1,-1)\}$ and $T_{1}=\{(a, 0),(-1,-1),(-1,1)\}$ where $a>-\frac{\alpha+\beta}{1+\beta}$. Because $T_{0}=-T_{1}$, both T_{0} and T_{1} correspond to the same positive stochastic matrix

$$
P=\frac{1}{1+a}\left(\begin{array}{ccc}
1+\alpha a & \frac{(1-\alpha) a}{2} & \frac{(1-\alpha) a}{2} \\
1-\alpha & \frac{\alpha+\beta+(1+\beta) a}{2} & \frac{\alpha-\beta+(1-\beta) a}{2} \\
1-\alpha & \frac{\alpha-\beta+(1-\beta) a}{2} & \frac{\alpha+\beta+(1+\beta) a}{2}
\end{array}\right) .
$$

Thus $T_{0}, T_{1} \in \mathcal{T}_{+}(B)$. Suppose that there is a path T_{t} connecting T_{0} and T_{1}. Then there is some $t_{0} \in(0,1)$ such that $T_{t_{0}}=\{(0, x),(-b, y),(c, z)\}$ for some $x \neq 0$ and $b, c>0$. Thus $\frac{1}{x} T_{t_{0}} \in \mathcal{T}_{+}(B)$. From Lemma 1.6.1, we get $\alpha-\beta<1$ which is a contradiction.

Remark 1.6.3. Let T_{0}, T_{1} be as in the last proof. Given P in $\mathcal{S}_{+}(B)$, we have $P=P_{T}$ for some $T \in \mathcal{T}_{+}(B)$. There is a path in $\mathcal{T}_{+}(B)$ to T_{0} or T_{1}, and thus a path
of similar positive stochastic matrices from P to $P_{T_{0}}=P_{T_{1}}$. Therefore, although $\mathcal{T}_{+}(B)$ is disconnected, the space $\mathcal{S}_{+}(B)$ is connected.

1.7 Connected Components of $\mathcal{T}_{+}(B)$ When B is 1×1 and 2×2

In this section, we determine the number of connected components of $\mathcal{T}_{+}(B)$ when B is a 1×1 and 2×2 matrix. It is easy to find the number of connected components of $\mathcal{T}_{+}(B)$ when B is 1×1. Unfortunately, we do not have a complete characterization of the number of connected components of $\mathcal{T}_{+}(B)$ when B is 2×2. We summarize the results as follows.

1. $\mathcal{T}_{+}(B)$ is path connected when B has the Jordan form
(a) $(\lambda), \lambda \in(-1,1)$,
(b) $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right), \alpha, \beta \in[0,1)$,
(c) $\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\beta\end{array}\right), \alpha, \beta \in[0,1)$ and $\alpha+\beta<1$,
(d) $\left(\begin{array}{cc}-\alpha & 0 \\ 0 & -\alpha\end{array}\right), \alpha \in\left[0, \frac{1}{2}\right)$,
(e) $\left(\begin{array}{ll}\alpha & 1 \\ 0 & \alpha\end{array}\right), \alpha \in[0,1)$.
2. $\mathcal{T}_{+}(B)$ has 2 connected components when B has the Jordan form $\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\beta\end{array}\right), \alpha, \beta \in$ $(0,1)$ and $\alpha+\beta \geq 1$.

Whether $\mathcal{T}_{+}(B)$ is path connected is still unknown when B has one of the remaining Jordan forms which are compatible with $B \oplus 1$ being similar to a positive stochastic matrix:
(a) $\left(\begin{array}{cc}-\alpha & 0 \\ 0 & -\beta\end{array}\right), \alpha, \beta \in(0,1)$ and $\alpha+\beta<1$,
(b) $\left(\begin{array}{cc}-\alpha & 1 \\ 0 & -\alpha\end{array}\right), \alpha \in\left(0, \frac{1}{2}\right)$,
(c) $\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right),(\alpha, \beta) \in \operatorname{int}(\operatorname{Conv}(T))$ where $T=\left\{(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)\right\}$.

We begin with the easy 1×1 case.

Proposition 1.7.1. [KR90] Let $B=(\lambda),-1<\lambda<1$. Then $\mathcal{T}_{+}(B)$ is path connected.

Proof. Let $T_{0}=\{a, x\}, T_{1}=\{b, y\}$ be positive invariant tetrahedra of B. We can assume that $a<0<x$ and $b<0<y$. Let $a_{t}=(1-t) a+t b$ and $x_{t}=(1-t) x+t y$. Define $T_{t}=\left\{a_{t}, x_{t}\right\}$. Note that $a_{t}<0<x_{t}$. Thus T_{t} is a positive tetrahedron for any $t \in[0,1]$. The corresponding stochastic matrix for T_{t} is

$$
P_{t}=\frac{1}{a_{t}-x_{t}}\left(\begin{array}{cc}
\lambda x_{t}-a_{t} & (1-\lambda) x_{t} \\
(\lambda-1) a_{t} & x_{t}-\lambda a_{t}
\end{array}\right)
$$

It is easy to check that P_{t} is positive for any $t \in[0,1]$. Thus T_{t} is positive invariant under B for any $t \in[0,1]$. Therefore $\mathcal{T}_{+}(B)$ is path connected.

The spectra of 3×3 stochastic matrices are completely characterized by Loewy and London(see e.g. [ELN04]). We give special cases for positive stochastic matrices.

Theorem 1.7.2. Let $\alpha, \beta \in(-1,1) . \Lambda=\{1, \alpha, \beta\}$ is a spectrum of a 3×3 positive stochastic matrix if and only if $\alpha+\beta>-1$.

Theorem 1.7.3. Let $\alpha, \beta \in \mathbb{R}$ with $\alpha^{2}+\beta^{2}<1$. Let $T=\left\{(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)\right\}$. $\Lambda=\{1, \alpha+\beta i, \alpha-\beta i\}$ is a spectrum of a 3×3 positive stochastic matrix if and only if $(\alpha, \beta) \in \operatorname{int}(\operatorname{Conv}(T))$.

These results give all possible Jordan forms of a 2×2 matrix B for which $B \oplus 1$ is similar to a 3×3 positive stochastic matrix.

Theorem 1.7.4. Let $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ where $\alpha \geq|\beta|$.
(a) If $\alpha-\beta<1$ then $\mathcal{T}_{+}(B)$ is path connected.
(b) If $\alpha-\beta \geq 1$ then $\mathcal{T}_{+}(B)$ contains exactly 2 path connected components.

Proof. Let $T_{0}=\left\{v_{1}, v_{2}, v_{3}\right\} \in \mathcal{T}_{+}(B), L_{i j}$ be the line segment connecting v_{i} and v_{j} for all $1 \leq i<j \leq 3$, and $W_{i j}$ be the convex hull of $0, v_{i}, v_{j}$ for all $1 \leq i<j \leq 3$. Then one of $W_{i j}$ intersects the x-axis at the origin only, say W_{12}. If L_{12} is parallel to the x-axis then we can perturb L_{12} so that L_{12} is not parallel to the x-axis. Suppose without loss of generality that L_{12} has positive slope or a vertical line. Let u_{1} be the intersection between the line connecting v_{1} and v_{2} and the x-axis. We can also assume that v_{1} is on a line segment connecting u_{1} and v_{2}. Let $T_{1}=\left\{u_{1}, v_{2}, v_{3}\right\}$. Then $\operatorname{Conv}\left(T_{0}\right) \subseteq \operatorname{Conv}\left(T_{1}\right)$. Since u_{1} is on the x-axis, $u_{1} B=\alpha u_{1}$ which is in the interior of T_{1} and hence $T_{1} \in \mathcal{T}_{+}(B)$. Thus every positive invariant tetrahedron of B is in the same connected component as an invariant tetrahedron whose one vertex is on the x-axis. Next, suppose that $T_{2}=\{(a, 0),(b, y),(c, z)\}$ where $a \neq 0$. We
consider 2 cases.
Case 1: $a<0$. We can assume without loss of generality that $b \leq c$. Then $c>0$. Let $T_{3}=\left\{(-1,0),\left(-\frac{b}{a},-\frac{y}{a}\right),\left(-\frac{c}{a},-\frac{z}{a}\right)\right\}$. The positive tetrahedron of the form $\{(-1,0),(d, w),(d,-w)\}, d>0$ is in $\mathcal{T}_{+}(B)$ because it corresponds to the matrix

$$
\frac{1}{2(1+d)}\left(\begin{array}{ccc}
2(\alpha+d) & 1-\alpha & 1-\alpha \\
2(1-\alpha) d & (1-\beta)+(\alpha-\beta) d & (1+\beta)+(\alpha+\beta) d \\
2(1-\alpha) d & (1+\beta)+(\alpha+\beta) d & (1-\beta)+(\alpha-\beta) d
\end{array}\right)
$$

Then T_{3} is in the same connected component as $T_{4}=\left\{(-1,0),\left(-\frac{c}{a},-\frac{z}{a}\right),\left(-\frac{c}{a}, \frac{z}{a}\right)\right\}$. Thus T_{4} is in the same connected component as $T_{5}=\{(-1,0),(1,1),(1,-1)\}$ via the path

$$
T_{4+t}=\left\{(-1,0),\left(\frac{a t-(1-t) c}{a}, \frac{a t-(1-t)|z|}{a}\right),\left(\frac{a t-(1-t) c}{a}, \frac{a t+(1-t)|z|}{a}\right)\right\} .
$$

Case 2: $a>0$. By using similar arguments as in case $1, T_{2}$ is in the same connected component as $T_{6}=\{(1,0),(-1,1),(-1,-1)\}$. Therefore every positive invariant tetrahedron of B is in the same connected component as either T_{5} or T_{6}.
(a) If $\alpha-\beta<1$ then a positive tetrahedron $T_{7}=\{(0,1),(-1, \alpha-1),(1, \alpha-1)\}$ is in $\mathcal{T}_{+}(B)$. Let L be the line segment connecting $(-1, \alpha-1)$ and (1, $\left.\alpha-1\right)$. We can perturb L so that it has positive or negative slope after perturbation. We denote L^{\prime} and T_{7}^{\prime} as the line segment L and the positive tetrahedron T_{7} after perturbation respectively. By continuity, T_{7}^{\prime} is still in $\mathcal{T}_{+}(B)$ and in the same connected component as T_{7}. If L^{\prime} has positive slope then T_{7}^{\prime} is in the same connected component as T_{6}. If L^{\prime} has negative slope then T_{7}^{\prime} is in the same connected component as T_{5}. Thus T_{5}
and T_{6} are in the same connected component. Therefore $\mathcal{T}_{+}(B)$ is path connected.
(b) If $\alpha-\beta \geq 1$ then Proposition 1.6.2 implies that T_{5} and T_{6} are not in the same connected component. Thus $\mathcal{T}_{+}(B)$ has exactly 2 path connected components.

Lemma 1.7.5. Let $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\beta\end{array}\right)$ where $0<\alpha<\beta<1$ and $a, b, c, x, y>0$.
(a) If $T_{0}=\{(1,0),(a, x),(-b,-y)\} \in \mathcal{T}_{+}(B)$ then

$$
T_{1}=\{(1,0),(0, x),(-b,-y)\} \in \mathcal{T}_{+}(B)
$$

(b) If $T=\{(1,0),(-a, x),(-b,-y)\} \in \mathcal{T}_{+}(B)$ then $a<\frac{1-\beta^{2}}{\beta^{2}-\alpha^{2}}$.
(c) If $0<a<\frac{1-\beta^{2}}{\beta^{2}-\alpha^{2}}$ and $1<c<\frac{1}{\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) a}$ then

$$
T=\{(1,0),(-a, x), c(-\alpha a,-\beta x)\} \in \mathcal{T}_{+}(B)
$$

(d) If $\alpha+\beta<1$ and $\beta x<y<\left(\frac{1-\alpha}{\alpha+\beta}\right) x$ then

$$
T=\{(0, x),(-a,-y),(b,-y)\} \in \mathcal{T}_{+}(B) .
$$

Proof. (a) Let $v_{1}=(1,0), v_{2}=(a, x), v_{3}=(-b,-y)$ and H_{1}, H_{2}, H_{3} be lines passing through $T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{2}\right\}$ respectively. Then H_{1}, H_{2}, H_{3} can be described by the equations

$$
\begin{aligned}
& H_{1}:\left(\frac{x+y}{a y-b x}\right) X-\left(\frac{a+b}{a y-b x}\right) Y=1 \\
& H_{2}: X-\left(\frac{b+1}{y}\right) Y=1 \\
& H_{3}: X+\left(\frac{1-a}{x}\right) Y=1 .
\end{aligned}
$$

Since v_{1} is an eigenvector of B corresponding to a positive eigenvalue $\alpha<1, v_{1} B \in$ $\operatorname{int}\left(\operatorname{Conv}\left(T_{1}\right)\right)$. The line H_{1} intersects the y-axis at $v_{4}=\left(0, \frac{b x-a y}{a+b}\right)$. Since $v_{3} B=$
$(-\alpha b, \beta y)$ which is in the second quadrant, $v_{3} B \in \operatorname{int}\left(\operatorname{Conv}\left(v_{1}, v_{3}, v_{4}\right)\right)$. Let $v_{5}=$ $(0, x)$. Then

$$
\begin{aligned}
\operatorname{Conv}\left(v_{1}, v_{3}, v_{4}\right) & \subseteq \operatorname{Conv}\left(v_{1}, v_{3}, v_{5}\right) \\
& =\operatorname{Conv}\left(T_{1}\right)
\end{aligned}
$$

because $\frac{b x-a y}{a+b}<x$. Thus $v_{3} B \in \operatorname{int}\left(\operatorname{Conv}\left(T_{1}\right)\right)$. The line H_{2} intersects the y-axis at $v_{6}=\left(0,-\frac{y}{b+1}\right)$. Since $v_{2} B \in \operatorname{int}\left(\operatorname{Conv}\left(T_{1}\right)\right) \subseteq H_{2}^{+}$, we have $\alpha a+\beta x\left(\frac{b+1}{y}\right)<1$ which is equivalent to $-\frac{y}{b+1}<-\beta x$. Thus $v_{5} B=(0,-\beta x) \in \operatorname{int}\left(\operatorname{Conv}\left(T_{1}\right)\right)$. Therefore, $T_{1} \in \mathcal{T}_{+}(B)$.
(b) Let $v_{1}=(1,0), v_{2}=(-a, x), v_{3}=(-b,-y)$ and H_{1}, H_{2}, H_{3} be lines passing through $T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{2}\right\}$ respectively. Then H_{1}, H_{2}, H_{3} can be described by the equations

$$
\begin{aligned}
& H_{1}:-\left(\frac{x+y}{a y+b x}\right) X-\left(\frac{a-b}{a y+b x}\right) Y=1 \\
& H_{2}: X-\left(\frac{b+1}{y}\right) Y=1 \\
& H_{3}: X+\left(\frac{a+1}{x}\right) Y=1 .
\end{aligned}
$$

Since $v_{2} B^{2} \in \operatorname{int}(\operatorname{Conv}(T)) \subseteq H_{3}^{+}$, we must have $-\alpha^{2} a+\left(\frac{a+1}{x}\right) q^{2} x<1$ which is equivalent to

$$
a<\frac{1-\beta^{2}}{\beta^{2}-\alpha^{2}} .
$$

(c) Let $v_{1}=(1,0), v_{2}=(-a, x), v_{3}=c(-\alpha a,-\beta x)$ and H_{1}, H_{2}, H_{3} be lines passing through $T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{1}\right\}, T_{0}-\left\{v_{2}\right\}$ respectively. Then H_{1}, H_{2}, H_{3} can
be described by the equations

$$
\begin{aligned}
& H_{1}:-\left(\frac{\beta c+1}{(\alpha+\beta) a c}\right) X-\left(\frac{\alpha c-1}{(\alpha+\beta) c x}\right) Y=1 \\
& H_{2}: X-\left(\frac{\alpha a c+1}{\beta c x}\right) Y=1 \\
& H_{3}: X+\left(\frac{1+a}{x}\right) Y=1 .
\end{aligned}
$$

Since v_{1} is an eigenvector of B corresponding to a positive eigenvalue $\alpha<1, v_{1} B \in$ $\operatorname{int}(\operatorname{Conv}(T))$. Since $c>1, v_{2} B$ lies on the line segment between v_{3} and the origin. Thus $v_{2} B \in \operatorname{int}(\operatorname{Conv}(T))$. Note that $v_{3} B=c\left(-\alpha^{2} a, \beta^{2} x\right)$. To show that $v_{3} B \in$ $\operatorname{int}(\operatorname{Conv}(T))$, it suffice to check that $v_{3} B \in H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}$. Note that

$$
\begin{aligned}
\left(\frac{\beta c+1}{(\alpha+\beta) a c}\right)\left(\alpha^{2} a c\right)+\left(\frac{\alpha c-1}{(\alpha+\beta) c x}\right)\left(\beta^{2} c x\right) & =\frac{\alpha^{2}(\beta c+1)+\beta^{2}(\alpha c-1)}{\alpha+\beta} \\
& =\frac{\alpha \beta c(\alpha+\beta)+(\alpha-\beta)(\alpha+\beta)}{\alpha+\beta} \\
& =\alpha \beta c+\alpha-\beta \\
& <1, \text { since } c<\frac{1}{\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) a} .
\end{aligned}
$$

Thus $v_{3} B \in H_{1}^{+}$. We also have that

$$
\begin{aligned}
-\alpha^{2} a c-\left(\frac{1+\alpha a c}{\beta c x}\right)\left(\beta^{2} c x\right) & <0 \\
& <1 \\
-\alpha^{2} a c+\left(\frac{1+a}{x}\right)\left(\beta^{2} c x\right) & =-\alpha^{2} a c+(1+a) \beta^{2} c \\
& =\left(\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) a\right) c \\
& <1 \text { by assumption }
\end{aligned}
$$

Hence $v_{3} B \in H_{2}^{+} \cap H_{3}^{+}$. This completes the proof for 3$)$.
(d) Let $v_{1}=(0, x), v_{2}=(-a,-y), v_{3}=(b,-y)$ and H_{1}, H_{2}, H_{3} be lines passing through $T-\left\{v_{1}\right\}, T-\left\{v_{1}\right\}, T-\left\{v_{2}\right\}$ respectively. Then H_{1}, H_{2}, H_{3} can be described by the equations

$$
\begin{aligned}
& H_{1}:-\frac{1}{y} Y=1 \\
& H_{2}:\left(\frac{x+y}{b x}\right) X+\frac{1}{x} Y=1 \\
& H_{3}:-\left(\frac{x+y}{a x}\right) X+\frac{1}{x} Y=1 .
\end{aligned}
$$

The line H_{1} intersects the y-axis at $(0,-y)$. Note that $v_{1} B=(0,-\beta x)$. Since $-\beta x>-y,(0,-\beta x)$ is on the line segment between $(0,-y)$ and the origin. Hence $v_{1} B \in \operatorname{int}(\operatorname{Conv}(T))$. Note that $v_{2} B=(-\alpha a, \beta y)$ is in the second quadrant. Thus it suffices to check that $v_{2} B \in H_{3}^{+}$. We have

$$
\begin{aligned}
-\left(\frac{x+y}{a x}\right)(-\alpha a)+\frac{1}{x}(\beta y) & =\alpha\left(1+\frac{y}{x}\right)+\beta\left(\frac{y}{x}\right) \\
& =\alpha+(\alpha+\beta) \frac{y}{x} \\
& <\alpha+1-\alpha \\
& =1
\end{aligned}
$$

Thus $v_{2} B \in H_{3}^{+}$. For v_{3}, we have $v_{3} B=(\alpha b, \beta y)$ which is in the first quadrant. Thus it suffices to check that $v_{3} B \in H_{2}^{+}$. We have

$$
\begin{aligned}
\left(\frac{x+y}{b x}\right)(\alpha b)+\frac{1}{x}(\beta y) & =\alpha\left(1+\frac{y}{x}\right)+\beta\left(\frac{y}{x}\right) \\
& =\alpha+(\alpha+\beta) \frac{y}{x} \\
& <\alpha+1-\alpha \\
& =1 .
\end{aligned}
$$

Hence $v_{3} B \in H_{2}^{+}$. Therefore, $T \in \mathcal{T}_{+}(B)$.
Theorem 1.7.6. Let $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\beta\end{array}\right)$ where $0<\alpha<\beta<1$.
(a) If $\alpha+\beta<1$ then $\mathcal{T}_{+}(B)$ is path connected.
(b) If $\alpha+\beta \geq 1$ then $\mathcal{T}_{+}(B)$ has exactly 2 connected components.

Proof. By using the same idea as in Theorem 1.7.4, any positive tetrahedron of B is in the same connected component as an invariant tetrahedron whose one vertex is on the x-axis and by scaling we can assume that the vertex is either $(1,0)$ or $(-1,0)$. Without loss of generality, we assume that the vertex is $(1,0)$. Let

$$
T_{0}=\{(1,0),(a, x),(b,-y)\} \text { where } x, y>0
$$

If $a>0$ then $b<0$ and $T_{1}=\{(1,0),(0, x),(b,-y)\} \in \mathcal{T}_{+}(B)$ and is in the same connected component as T_{0}. If $b>0$ then $a<0$ and $T_{1}^{\prime}=\{(1,0),(a, x),(0,-y)\} \in$ $\mathcal{T}_{+}(B)$ and is in the same connected component as T_{0}. By using perturbation, T_{1} (or T_{1}^{\prime}) can be moved to T_{2} of the form

$$
T_{2}=\{(1,0),(-a, x),(-b,-y)\} \text { where } a, b, x, y>0
$$

T_{2} is still in the same connected component as T_{0}. Next, we show that if

$$
T_{3}=\{(1,0),(-c, z),(-d,-w)\} \in \mathcal{T}_{+}(B)
$$

then it is in the same connected component as T_{2}. From Lemma 1.7.5, T_{2} and T_{3} are in the same connected component as

$$
\begin{aligned}
& T_{4}=\left\{(1,0),(-a, x), c_{1}(-\alpha a,-\beta x)\right\} \text { where } c_{1}=\frac{1}{2}\left(1+\frac{1}{\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) a}\right) \\
& T_{5}=\left\{(1,0),(-c, z), c_{2}(-\alpha c,-\beta z)\right\} \text { where } c_{2}=\frac{1}{2}\left(1+\frac{1}{\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) c}\right)
\end{aligned}
$$

respectively. Let $x_{t}=(1-t) a+t c, y_{t}=(1-t) x+t z$, and $c_{t}=\frac{1}{2}\left(1+\frac{1}{\beta^{2}+\left(\beta^{2}-\alpha^{2}\right) x_{t}}\right)$ for $t \in[0,1]$. Then $T_{4+t}=\left\{(1,0),\left(-x_{t}, y_{t}\right), c_{t}\left(-\alpha x_{t},-\beta y_{t}\right)\right\}$ is a path in $\mathcal{T}_{+}(B)$ connecting T_{4} and T_{5}. This shows that all positive invariant tetrahedra of B which have $(1,0)$ in their vertex are in the same connected component. Similarly, all positive invariant tetrahedra of B having $(-1,0)$ in their vertex are in the same connected component.
(a) If $\alpha+\beta<1$ then $T_{6}=\{(0,1),(-1, \alpha-1),(1, \alpha-1)\} \in \mathcal{T}_{+}(B)$. The line segment connecting $(-1, \alpha-1)$ and $(1, \alpha-1)$ can be perturbed to have both positive and negative slopes. Thus T_{8} connects all invariant tetrahedra of B. Therefore, $\mathcal{T}_{+}(B)$ is path connected.
(b) If $\alpha+\beta \geq 1$ then an invariant tetrahedron whose one vertex is $(1,0)$ cannot be in the same connected component as its reflection about the y axis. Thus $\mathcal{T}_{+}(B)$ has 2 connected components.
Theorem 1.7.7. Let $B=\left(\begin{array}{cc}-\lambda & 0 \\ 0 & -\lambda\end{array}\right), 0 \leq \lambda<\frac{1}{2}$. Then $\mathcal{T}_{+}(B)$ is path connected.

Proof. This is a special case of Theorem 1.10.5.
Theorem 1.7.8. Let $B=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right), \lambda \geq 0$. Then $\mathcal{T}_{+}(B)$ is path connected.
Proof. This is a special case of Theorem 1.10.7.

1.8 Positive Stochastic Matrices Strong Shift Equivalent to Positive Doubly Stochastic Matrices

Throughout this section, we assume that \mathbb{S} is a subring of \mathbb{R} containing \mathbb{Q}. We will prove that every positive stochastic matrix over \mathbb{S} is strong shift equivalent over \mathbb{S}_{+}to a positive doubly stochastic matrix. As a corollary, the nonzero spectra of primitive doubly stochastic matrices of positive trace are the same as the nonzero spectra of primitive stochastic matrices of positive trace.

Lemma 1.8.1. Every positive stochastic matrix over \mathbb{S} is similar and strong shift equivalent over to a positive stochastic matrix over \mathbb{S}_{+}whose left Perron eigenvector is rational.

Proof. Let P be an $n \times n$ positive stochastic matrix with the left Perron eigenvector $l=\left(l_{1}, \ldots, l_{n}\right)$. For each k, let $r_{k} \in \mathbb{Q}_{+}^{n-1}$ be such that $r_{k j} \leq l_{j}$ for all $j=1, \ldots, n-1$ and $\lim _{n \rightarrow \infty} r_{k}=\left(l_{1}, \ldots, l_{n-1}\right)$. Define

$$
M_{k}=\left(\begin{array}{ccccc}
\frac{l_{1}}{r_{k 1}} & 0 & \cdots & 0 & 1-\frac{l_{1}}{r_{k 1}} \\
0 & \frac{l_{2}}{r_{k 2}} & \cdots & 0 & 1-\frac{l_{2}}{r_{k 2}} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \frac{l_{n-1}}{r_{k, n-1}} & 1-\frac{l_{n-1}}{r_{k, n-1}} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

and $P_{k}=M_{k} P M_{k}^{-1}$. Note that $M_{k} \rightarrow I_{n}$ and $P_{k} \rightarrow P$ as $k \rightarrow \infty$ and

$$
M_{k}^{-1}=\left(\begin{array}{ccccc}
\frac{r_{k 1}}{l_{1}} & 0 & \cdots & 0 & 1-\frac{r_{k 1}}{l_{1}} \\
0 & \frac{r_{k 2}}{l_{2}} & \cdots & 0 & 1-\frac{r_{k 2}}{l_{2}} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \frac{r_{k, n-1}}{l_{n-1}} & 1-\frac{r_{k, n-1}}{l_{n-1}} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \geq 0
$$

for all $k \in \mathbb{N}$. Choose N such that $M_{N} P>0$. Let $\hat{l}=\left(\hat{l_{1}}, \ldots, \hat{l_{n}}\right)$ where $\hat{l_{j}}=r_{N j}$ for $j=1, \ldots, n-1$ and $\hat{l_{n}}=1-r_{N 1}-\cdots-r_{N, n-1}$. Then \hat{l} is rational, $\hat{l} M_{N}=l$, and

$$
\begin{aligned}
\hat{l} P_{N} & =\hat{l} M_{N} P M_{N}^{-1} \\
& =l P M_{N}^{-1} \\
& =l M_{N}^{-1} \\
& =\hat{l}
\end{aligned}
$$

Thus \hat{l} is the left Perron eigenvector of P_{N}. Since $M_{N} P>0, P$ is similar and strong shift equivalent over to P_{N}.

Theorem 1.8.2. Every positive stochastic matrix over \mathbb{S} is strong shift equivalent over \mathbb{S}_{+}to a positive doubly stochastic matrix over \mathbb{S}.

Proof. Let P be an $n \times n$ stochastic matrix over \mathbb{S}. By Lemma 1.8.1, we can assume that P has rational left Perron eigenvector $l=\left(\frac{r_{1}}{s_{1}}, . ., \frac{r_{n}}{s_{n}}\right)$ where $r_{i}, s_{i} \in \mathbb{N}$ for all $i=1, \ldots, n$. Let $M=\operatorname{lcm}\left(s_{1}, \ldots, s_{n}\right)$. Then l can be written as $l=\left(\frac{m_{1}}{M}, \ldots, \frac{m_{n}}{M}\right)$ where $m_{i}=\frac{r_{i} M}{s_{i}} \in \mathbb{N}$ for all $i=1, \ldots, n$. If $m_{1} \neq 1$, we perform a column splitting on the
first column of P as follows:

$$
P^{(1)}=\left(\begin{array}{ccccc}
\frac{1}{m_{1}} p_{11} & \left(1-\frac{1}{m_{1}}\right) p_{11} & p_{12} & \cdots & p_{1 n} \\
\frac{1}{m_{1}} p_{11} & \left(1-\frac{1}{m_{1}}\right) p_{11} & p_{12} & \cdots & p_{1 n} \\
\frac{1}{m_{1}} p_{21} & \left(1-\frac{1}{m_{1}}\right) p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{m_{1}} p_{n 1} & \left(1-\frac{1}{m_{1}}\right) p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right) .
$$

The left Perron eigenvector of $P^{(1)}$ is $l^{(1)}=\left(\frac{1}{M}, \frac{m_{1}-1}{M}, \frac{m_{2}}{M}, \ldots, \frac{m_{n}}{M}\right)$. If $m_{1}-1 \neq 1$ we perform a column splitting on the second column of $P^{(1)}$ by splitting the second column of $P^{(1)}$ as $\frac{1}{m_{1}-1} C_{2}^{(1)}$ and $\left(1-\frac{1}{m_{1}-1}\right) C_{2}^{(1)}$ where $C_{2}^{(1)}$ is the second column of $P^{(1)}$. Suppose $P^{(2)}$ is the matrix after splitting $P^{(1)}$. Then the left Perron eigenvector of $P^{(2)}$ is $l^{(2)}=\left(\frac{1}{M}, \frac{1}{M}, \frac{m_{1}-2}{M}, \ldots, \frac{m_{n}}{M}\right)$. Continuing in this manner, we finally get an $M \times M$ matrix $P^{(k)}$ whose the left Perron eigenvector $l^{(k)}$ is $\frac{1}{M}(1,1, \ldots, 1)$ for some $k \in \mathbb{N}$. Note that $P^{(i)}$ is stochastic for all $i=1, . ., k$. Therefore, $P^{(k)}$ is doubly stochastic. This completes the proof.

Corollary 1.8.3. The set of nonzero spectra of positive doubly stochastic matrices over \mathbb{S} and the set of nonzero spectra of primitive stochastic matrices over \mathbb{S} with positive trace coincide.

It is not true in general that every positive stochastic matrix is strong shift equivalent over \mathbb{S}_{+}to a positive doubly stochastic matrix of the same size, because there are positive stochastic matrices whose nonzero spectra cannot be the nonzero spectra of doubly stochastic matrices of the same size. An example can be found in [J81]. We will reprove it. We first reprove the following result of Johnson [J81].

Proposition 1.8.4. [J81] There is no 3×3 doubly stochastic matrix with the characteristic polynomial $t(t-1)(t+1)$.

Proof. Suppose there is such a matrix

$$
A=\left(\begin{array}{ccc}
a & b & 1-a-b \\
c & d & 1-c-d \\
1-a-c & 1-b-d & a+b+c+d-1
\end{array}\right) .
$$

Observe that $\operatorname{det}(A)=0$ and $\operatorname{Tr}(A)=0$. Since A is nonnegative and $\operatorname{Tr}(A)=0$, we have $a=d=a+b+c+d-1=0$. Thus $b+c=1$. Then A can be rewritten as

$$
A=\left(\begin{array}{lll}
0 & b & c \\
c & 0 & b \\
b & c & 0
\end{array}\right)
$$

Hence $b^{3}+c^{3}=\operatorname{det}(A)=0$. This implies $b=c=0$ which is a contradiction.

Next, we define for any $n \in \mathbb{N}$ the matrix

$$
A_{n}=\left(\begin{array}{ccc}
\frac{1}{n+2} & \frac{n}{n+2} & \frac{1}{n+2} \\
\frac{n}{n+2} & \frac{1}{n+2} & \frac{1}{n+2} \\
\frac{n}{n+2} & \frac{1}{n+2} & \frac{1}{n+2}
\end{array}\right) .
$$

Suppose that there is a sequence of 3×3 doubly stochastic matrices $\left\{B_{n}\right\}$ such that B_{n} and A_{n} are similar for all $n \in \mathbb{N}$. By compactness, $\left\{B_{n}\right\}$ has a convergent subsequence $\left\{B_{n_{k}}\right\}$. Suppose that $\left\{B_{n_{k}}\right\}$ converges to a matrix B. Then B is doubly stochastic since the set of doubly stochastic matrices is closed. For any $n \in \mathbb{N}$, the characteristic polynomial of A_{n} is $p_{n}(t)=t(t-1)\left(t+\frac{n-1}{n+2}\right)$ which converges to $t(t-1)(t+1)$ as $n \rightarrow \infty$. Thus B must have the characteristic polynomial
$t(t-1)(t+1)$ which is a contradiction. So there must be some matrix $A_{n_{0}}$ which is not similar to a doubly stochastic matrix. Since strong shift equivalence preserves the Jordan form away from zero(and in this case it is the Jordan form), $A_{n_{0}}$ is not strong shift equivalent over \mathbb{S}_{+}to a 3×3 doubly stochastic matrix.

1.9 Unbounded Lag of SSE

The purpose of this section is to provide the following example.

Theorem 1.9.1. For $t \in[0,1]$, define

$$
P_{t}=\frac{1}{4}\left(\begin{array}{ll}
3+t & 1-t \\
1+t & 3-t
\end{array}\right)
$$

For $0 \leq t<1$, the matrices P_{t} are positive, similar, and SSE- \mathbb{R}_{+}. However, for any $L>0$, there exists $t \in(0,1)$ such that there is no SSE- \mathbb{R}_{+}of lag less than L using matrices with size fewer than L.

Definition 1.9 .2 . A (not necessarily square) nonnegative matrix P is called generalized row stochastic if every row sum of P is 1 .

We recall the stochasticization of an irreducible matrix $A, P(A)=\frac{1}{\lambda} D^{-1} A D$ where λ is the Perron eigenvalue of A and D is the diagonal matrix whose vector of diagonal entries is the stochastic right eigenvector of A. We need the following theorem for the proof of Theorem 1.9.1.

Theorem 1.9.3. Let A and B be respectively $m \times m$ and $n \times n$ irreducible matrices over \mathbb{R}. If A and B are ESSE- \mathbb{R}_{+}then $P(A)$ and $P(B)$ are also ESSE- \mathbb{R}_{+}. Moreover,
there exist generalized row stochastic matrices R, S such that $P(A)=R S$ and $P(B)=S R$.

Proof. Since A and B are elementary strong shift equivalent over \mathbb{R}_{+}, they have the same Perron eigenvalue λ. Let $v \in \mathbb{R}^{m}$ and $w \in \mathbb{R}^{n}$ be such that $A v=\lambda v$ and $B w=$ λw. Let $D=\operatorname{diag}\left(v_{1}, \ldots, v_{m}\right)$ and $E=\operatorname{diag}\left(w_{1}, . ., w_{n}\right)$. Then $P(A)=\frac{1}{\lambda} D^{-1} A D$ and $P(B)=\frac{1}{\lambda} E^{-1} B E$. Suppose that $A=X Y$ and $B=Y X$. Then

$$
P(A)=\left(\frac{1}{\lambda} D^{-1} X E\right)\left(E^{-1} Y D\right) \text { and } P(B)=\left(E^{-1} Y D\right)\left(\frac{1}{\lambda} D^{-1} X E\right)
$$

Thus $P(A)$ and $P(B)$ are elementary strong shift equivalent over \mathbb{R}_{+}. Next, suppose that $P(A)=U V$ and $P(B)=V U$. Let $e_{m}=(1, \ldots, 1)^{t} \in \mathbb{R}^{m}$ and $e_{n}=(1, \ldots, 1)^{t} \in$ \mathbb{R}^{n}. Since $P(A) U=U P(B)$, we have $P(A) U e_{n}=U P(B) e_{n}=U e_{n}$. Thus $U e_{n}$ is a right eigenvector of $P(A)$ corresponding to an eigenvalue 1 and hence $U e_{n}=\alpha e_{m}$ for some $\alpha>0$. Similarly, $V e_{m}=V P(A) e_{m}=P(B) V e_{m}$, so $V e_{m}=\beta e_{n}$ for some $\beta>0$. Let $R=\frac{1}{\alpha} U$ and $S=\frac{1}{\beta} V$. Then $R e_{n}=\frac{1}{\alpha} U e_{n}=e_{m}$ and $S e_{m}=\frac{1}{\beta} V e_{m}=e_{n}$. Thus R, S are generalized row stochastic matrices. Furthermore, we have $P(A)=$ $U V=(\alpha \beta) R S$ and $P(B)=V U=(\alpha \beta) S R$. Note that

$$
\begin{aligned}
m & =e_{m}^{t} P(A) e_{m} \\
& =\alpha \beta e_{m}^{t} R S e_{m} \\
& =\alpha \beta e_{m}^{t} R e_{n} \\
& =\alpha \beta e_{m}^{t} e_{m} \\
& =m \alpha \beta .
\end{aligned}
$$

Thus $\alpha \beta=1$ and hence $P(A)=R S$ and $P(B)=S R$.

Proof of Theorem 1.9.1. The similarity holds because $\operatorname{Tr}\left(P_{t}\right)=6, \operatorname{det}\left(P_{t}\right)=8$ for all $0 \leq t<1$. By Theorem 1.2.9, P_{t} and P_{0} are SSE- \mathbb{R}_{+}for all $0 \leq t<1$. It is well-known that strong shift equivalence preserves irreducibility [LM95, Proposition 7.4.1]. So P_{0} and P_{1} are not strong shift equivalent over \mathbb{R}_{+}because P_{0} is irreducible whereas P_{1} is reducible. Next, suppose that P_{0} and P_{t} are SSE over \mathbb{R}_{+}via 2×2 matrices with lag $l \leq k$ and size $n \leq k$ for all $t \in(0,1)$. Without loss of generality, we assume that the lag $l=k$ for all $t \in(0,1)$. For each $t \in(0,1)$ we have a chain of ESSEs over $\mathbb{R}_{+} P_{0}, A_{1}(t), \ldots, A_{k-1}(t), P_{t}$ together with a chain of intermediate matrices $\left(R_{1}(t), S_{1}(t)\right), \ldots,\left(R_{k}(t), S_{k}(t)\right)$. Since P_{t} is positive for $0 \leq t<1$, each A_{i} has a unique maximal irreducible submatrix, say A_{i}^{0}. The given SSE restricts to an SSE of the A_{i}^{0}. So, without loss of generality, we assume $A_{i}^{0}=A_{i}$. By passing through Theorem 1.9.3, we can assume that $A_{j}(t), R_{j}(t), S_{j}(t)$ are generalized row stochastic for all $j=1, \ldots, k$ and all $t \in(0,1)$. Then all matrices are bounded (by 1), so there is a subsequence $t_{n} \rightarrow 1$ such that $A_{j}\left(t_{n}\right) \rightarrow A_{j}, R_{j}\left(t_{n}\right) \rightarrow R_{j}, S_{j}\left(t_{n}\right) \rightarrow S_{j}$ for some A_{j}, R_{j}, S_{j}. But then we get a strong shift equivalence over \mathbb{R}_{+}between P_{0} and P_{1} which is a contradiction.

1.10 Some Cases in Which $\mathcal{T}_{+}(B)$ Is Connected

In this section, we collect some miscellaneous results which show that the space $\mathcal{T}_{+}(B)$ is path connected.

Theorem 1.10.1. Let $n \in \mathbb{N}$. $\mathcal{T}_{+}(B)$ is path connected if B has the following forms
(a) $B=0_{n}$.
(b) $B=\lambda I_{n}$ where $-\frac{1}{n}<\lambda<1$.
(c) B is nilpotent [KR90].
(d) $B=\lambda I_{n}+N$ where $0 \leq \lambda<1$ and N is nilpotent.
(e) $B=(\lambda) \oplus 0_{n}$ where $-1<\lambda<1$.

Theorem 1.10.1 is a combination of the following theorems.

Theorem 1.10.2. For $n>1, \mathcal{T}_{+}\left(0_{n-1}\right)$ is path connected.

Proof. Let $T_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a positive tetrahedron. Suppose that
$l_{1} v_{1}+\cdots+l_{n} v_{n}=0$. Let $T_{1}=\left\{v_{1}, \ldots, v_{n-1}, u_{n}\right\}$ where $u_{n}=-\left(v_{1}+\cdots+v_{n-1}\right)$. Then T_{1} is a positive tetrahedron.

Define $T_{t}=\left\{v_{1}, \ldots, v_{n-1}, v_{n}(t)\right\}$ where $v_{n}(t)=(1-t) v_{n}+t u_{n}$. Then T_{t} is a positive tetrahedron for all $t \in[0,1]$ because $l_{1}(t) v_{1}+\cdots+l_{n-1}(t) v_{n}(t)=0$ where $l_{j}(t)=\frac{(1-t) l_{j}+t l_{n}}{1-t+n l_{n} t}$ for $j=1, \ldots, n-1$ and $l_{n}(t)=\frac{l_{n}}{1-t+n l_{n} t}$. This proves that every positive tetrahedron is in the same connected component as a positive tetrahedron which has zero vertex sum.

Next, suppose that $T_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $T_{1}=\left\{w_{1}, \ldots, w_{n}\right\}$ where $v_{1}+\cdots+v_{n}=$ 0 and $w_{1}+\cdots+w_{n}=0$. Define a linear transformation $L: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ by

$$
L\left(v_{i}\right)=w_{i} \text { for all } i=1, \ldots, n-1
$$

Let A be the matrix of L with respect to the basis $\left\{v_{1}, \ldots, v_{n-1}\right\}$. If $\operatorname{det}(A)<0$, we can define $L\left(v_{1}\right)=w_{2}$ and $L\left(v_{2}\right)=w_{1}$ so that $\operatorname{det}(A)>0$. Thus there is a path A_{t} in $G L_{n-1}(\mathbb{R})$ such that $A_{0}=I_{n-1}$ and $A_{1}=A$. Then the path $T_{t}=\left\{v_{1} A_{t}, \ldots, v_{n} A_{t}\right\}$ is a path of positive tetrahedra connecting T_{0} and T_{1}. This completes the proof.

There are other matrices whose the space of invariant tetrahedra coincide with $\mathcal{T}_{+}\left(0_{n-1}\right)$. The following results give all such possible matrices.

Lemma 1.10.3. Let $T=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathcal{T}_{+}(B)$ with $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$. Then the following statements are equivalent:
(a) $T_{0}(d)=\left\{v_{1}, \ldots, v_{n-1}, d v_{n}\right\} \in \mathcal{T}_{+}(B)$ for all $d \geq 1$
(b) v_{n} is an eigenvector of B corresponding to an eigenvalue $\lambda \geq 0$.

Proof. (b) \Rightarrow (a) This direction is obvious.
(a) \Rightarrow (b) Suppose that $T_{0}(d)=\left\{v_{1}, \ldots, v_{n-1}, d v_{n}\right\} \in \mathcal{T}_{+}(B)$ for all $d \geq 1$. Let $Q(d)=\left(q_{i j}(d)\right.$ be the corresponding positive stochastic matrix of $T_{0}(d)$. Applying Theorem 1.3.7 (b) with $c_{1}=c_{2}=\cdots=c_{n-1}=1$ and $c_{n}=\frac{1}{d}$, we get

$$
\begin{aligned}
q_{n j}(d) & =\frac{c_{j}}{c_{n}}\left[p_{n j}+\frac{l_{j}\left\{c_{n}-\left(c_{1} p_{n 1}+\cdots+c_{n} p_{n n}\right)\right\}}{c_{1} l_{1}+\cdots+c_{n} l_{n}}\right] \\
& =d c_{j}\left[p_{n j}+\frac{l_{j}\left\{\frac{1}{d}-\left(1-p_{n n}+\frac{p_{n n}}{d}\right)\right\}}{1-l_{n}+\frac{l_{n}}{d}}\right] \\
& =d c_{j}\left[p_{n j}+\frac{(1-d) l_{j}\left(1-p_{n n}\right)}{l_{n}+d\left(1-l_{n}\right)}\right]
\end{aligned}
$$

for all $j=1,2, \ldots, n$. For $j=n$ we have

$$
\begin{aligned}
q_{n n}(d) & =p_{n n}+\frac{(1-d) l_{n}\left(1-p_{n n}\right)}{l_{n}+d\left(1-l_{n}\right)} \\
& =\frac{l_{n}+d\left(p_{n n}-l_{n}\right)}{l_{n}+d\left(1-l_{n}\right)}
\end{aligned}
$$

For $j \in\{1,2, \ldots, n-1\}$ we have

$$
\begin{aligned}
q_{n j}(d) & =d\left[p_{n j}+\frac{(1-d) l_{j}\left(1-p_{n n}\right)}{l_{n}+d\left(1-l_{n}\right)}\right] \\
& =d\left[\frac{l_{n} p_{n j}+l_{j}\left(1-p_{n n}\right)+d\left\{p_{n j}\left(1-l_{n}\right)-l_{j}\left(1-p_{n n}\right)\right\}}{l_{n}+d\left(1-l_{n}\right)}\right] .
\end{aligned}
$$

Letting $d \rightarrow \infty$ we have $q_{n n}(d) \rightarrow \frac{p_{n n}-l_{n}}{1-l_{n}}$. Thus $p_{n n} \geq l_{n}$. If $p_{n j}\left(1-l_{n}\right) \neq l_{j}\left(1-p_{n n}\right)$ for some $j \in\{1,2, \ldots, n-1\}$ then $q_{n j}(d) \rightarrow \pm \infty$ as $d \rightarrow \infty$ which is a contradiction. Thus $p_{n j}=\frac{l_{j}\left(1-p_{n n}\right)}{1-l_{n}}$. Moreover, we have

$$
\begin{aligned}
q_{n j}(d) & =\frac{d\left[p_{n j}\left(1-l_{n}\right)+l_{n} p_{n j}\right]}{l_{n}+d\left(1-l_{n}\right)} \\
& =\frac{d p_{n j}}{l_{n}+d\left(1-l_{n}\right)} .
\end{aligned}
$$

Let $\lambda=\frac{p_{n n}-l_{n}}{1-l_{n}} \geq 0$. Then

$$
\begin{aligned}
v_{n} B & =p_{n 1} v_{1}+\cdots+p_{n, n-1} v_{n-1}+p_{n n} v_{n} \\
& =\left(\frac{1-p_{n n}}{1-l_{n}}\right)\left(l_{1} v_{1}+\cdots l_{n-1} v_{n-1}\right)+p_{n n} v_{n} \\
& =\left(\frac{1-p_{n n}}{1-l_{n}}\right)\left(-l_{n} v_{n}\right)+p_{n n} v_{n} \\
& =\left(\frac{p_{n n}-l_{n}}{1-l_{n}}\right) v_{n} \\
& =\lambda v_{n} .
\end{aligned}
$$

Thus v_{n} is an eigenvalue of B corresponding to the eigenvalue $\lambda \geq 0$.

Theorem 1.10.4. $\mathcal{T}_{+}(B)=\mathcal{T}_{+}\left(0_{n-1}\right)$ if and only if $B=\lambda I_{n-1}$ for some $\lambda \geq 0$.

Proof. Suppose that $B=\lambda I_{n-1}$ for some $0 \leq \lambda<1$. Let $T=\left\{v_{1}, \ldots, v_{n}\right\}$ be a positive tetrahedron. Then $v_{i} B=\lambda v_{i}$ is in the interior of T because it is on the line between the origin and v_{i}. Thus $T \in \mathcal{T}_{+}(B)$ and hence $\mathcal{T}_{+}(B)=\mathcal{T}_{+}(0)$.

Suppose that $\mathcal{T}_{+}(B)=\mathcal{T}_{+}(0)$. Let v_{1} be a nonzero vector in \mathbb{R}^{n-1}. Choose a basis of \mathbb{R}^{n-1} which has v_{1} as a basis element, say $\left\{v_{1}, \ldots, v_{n-1}\right\}$. Let

$$
v_{n}=-\left(v_{1}+\cdots+v_{n-1}\right) .
$$

Then $T=\left\{v_{1}, \ldots, v_{n}\right\}$ is a positive tetrahedron and hence $T(d)=\left\{d v_{1}, v_{2}, \ldots, v_{n}\right\}$ are also positive tetrahedra for all $d \geq 1$ by Theorem 1.3.7 (b). From assumption $T(d) \in \mathcal{T}_{+}(B)$ for all $d \geq 1$. Lemma 1.10.3 implies that v_{1} is an eigenvector of B corresponding to a nonnegative eigenvalue. This shows that every nonzero vector of \mathbb{R}^{n-1} is an eigenvector of B corresponding to some nonnegative eigenvalue. Therefore $B=\lambda I_{n-1}$ for some $0 \leq \lambda<1$.

Theorem 1.10.5. Let $B=-\lambda I_{n-1}, 0 \leq \lambda<\frac{1}{n-1}$. Then $\mathcal{T}_{+}(B)$ is path connected.

Proof. Let $T_{0}=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathcal{T}_{+}(B)$ with $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$. Then T_{0} corresponds to the matrix $P=(1+\lambda) L-\lambda I_{n}$ where L is a positive stochastic matrix having every row equals $l=\left(l_{1}, \ldots, l_{n}\right)$. Thus $l_{i} \in\left(\frac{\lambda}{1+\lambda}, \frac{1}{1+\lambda}\right)$ for all $i=1, \ldots, n$. Then the set of vectors $l \in \operatorname{int}\left(\Delta^{n-1}\right)$ such that $T=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathcal{T}_{+}(B)$ and $l_{1} v_{1}+$ $\cdots+l_{n} v_{n}=0$ is convex. In particular, we have $\frac{1}{n} \in\left(\frac{\lambda}{1+\lambda}, \frac{1}{1+\lambda}\right)$. Thus T_{0} and $T_{1}=\left\{v_{1}, \ldots, v_{n-1},-\left(v_{1}+\cdots+v_{n-1}\right)\right\}$ are in the same connected component. Next, suppose that $T_{2}=\left\{u_{1}, \ldots, u_{n}\right\}, T_{3}=\left\{w_{1}, \ldots, w_{n}\right\} \in \mathcal{T}_{+}(B)$ where $u_{1}+\cdots+u_{n}=0$ and $w_{1}+\cdots+w_{n}=0$. Let A_{1} be an invertible matrix with positive determinant such that $u_{i} A_{1}=w_{i}$ for all $i=1, \ldots, n$. Then T_{2} and T_{3} are in the same connected component via the path $T_{2+t}=\left\{u_{1} A_{t}, \ldots, u_{n} A_{t}\right\}$ where A_{t} is a path of invertible matrices connecting $A_{0}=I_{n-1}$ and A_{1}. Thus $\mathcal{T}_{+}(B)$ is path connected.

Theorem 1.10.6. [KR90]
If B is an $(n-1) \times(n-1)$ nilpotent matrix then $\mathcal{T}_{+}(B)$ is path connected.

Proof. The original proof of this theorem can be found in [KR90]. In this thesis, we
give another proof. We can assume without loss of generality that B is of the form

$$
\left(\begin{array}{cccccc}
0 & \epsilon_{1} & 0 & \cdots & 0 & 0 \\
0 & 0 & \epsilon_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \epsilon_{n-2} \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

where $\epsilon_{i} \in\{0,1\}$ for all $i=1,2, \ldots, n-2$. Let $T_{0}, T_{1} \in \mathcal{T}_{+}(B)$. Let T_{t} be a path of positive tetrahedra connecting T_{0} and T_{1}. Then there is a path P_{t} of quasi-stochastic matrices corresponding to the path T_{t}. For $\theta \in(0,1]$, define $D(\theta)=\operatorname{diag}\left(\theta^{-1}, \theta^{-2}, \ldots, \theta^{1-n}\right)$. Then $D(\theta) B=\theta B D(\theta)$ for all $\theta \in(0,1]$. Let $l_{t}=\left(l_{1}(t), \ldots, l_{n}(t)\right) \in \operatorname{int}\left(\Delta^{n-1}\right)$ be such that $l_{1}(t) v_{1}(t)+\cdots+l_{n}(t) v_{n}(t)=0$ and L_{t} be the matrix whose every row equals l_{t}. Then observe that $L_{t} T_{t}=0$. Thus

$$
\begin{aligned}
T_{t} D(\theta) B & =\theta T_{t} B D(\theta) \\
& =\theta P_{t} T_{t} D(\theta) \\
& =\left[(1-\theta) L_{t}+\theta P_{t}\right] T_{t} D(\theta) \\
& =\left[L_{t}+\theta\left(P_{t}-L_{t}\right)\right] T_{t} D(\theta) .
\end{aligned}
$$

By compactness, we choose $\theta_{0}>0$ such that $L_{t}+\theta_{0}\left(P_{t}-L_{t}\right)>0$ for all $t \in[0,1]$. Then $T_{t} D\left(\theta_{0}\right) \in \mathcal{T}_{+}(B)$ for all $t \in[0,1]$ and, consequently, $T_{0} D\left(\theta_{0}\right)$ and $T_{1} D\left(\theta_{0}\right)$ are in the same connected component. To finish the proof, we show that T_{i} and $T_{i} D\left(\theta_{0}\right)$ are in the same connected component for $i=0,1$. Fix $i \in\{0,1\}$. For $t \in[0,1]$,
define $T_{i}(t)=T_{i} D\left(\theta_{0}^{t}\right)$. Then

$$
\begin{aligned}
T_{i}(t) B & =T_{i} D\left(\theta_{0}^{t}\right) B \\
& =\theta_{0}^{t} T_{i} B D\left(\theta_{0}^{t}\right) \\
& =\theta_{0}^{t} P_{i} T_{i} D\left(\theta_{0}^{t}\right) \\
& =\theta_{0}^{t} P_{i} T_{i}(t) \\
& =\left[\left(1-\theta_{0}^{t}\right) L_{i}+\theta_{0}^{t} P_{i}\right] T_{i}(t)
\end{aligned}
$$

One can easily check that $\left(1-\theta_{0}^{t}\right) L_{i}+\theta_{0}^{t} P_{i}>0$ for all $t \in[0,1]$. Thus T_{i} and $T_{i} D\left(\theta_{0}\right)$ are in the same connected component. The proof is completed.

A slight generalization of Theorem 1.10.6 is the following result.

Theorem 1.10.7. Let $B=\lambda I_{n-1}+N$ where $0 \leq \lambda<1$ and N is the Jordan form of a nilpotent matrix. Then $\mathcal{T}_{+}(B)$ is path connected.

Proof. Let $\lambda<\alpha<1$. Then $B=\alpha\left(\frac{\lambda}{\alpha} I_{n-1}\right)+(1-\alpha)\left(\frac{1}{1-\alpha} N\right)$. First, we show that $\mathcal{T}_{+}\left((1-\alpha)^{-1} N\right) \subseteq \mathcal{T}_{+}(B)$. Suppose that $T \in \mathcal{T}_{+}\left((1-\alpha)^{-1} N\right)$. Then $T(1-$ $\alpha)^{-1} N=Q T$ for some positive stochastic matrix Q and $T B=(\alpha P+(1-\alpha) Q) T$ where P is similar to $\frac{\lambda}{\alpha} I_{n-1} \oplus 1$. Observe that P is positive and stochastic since $T \in \mathcal{T}_{+}\left(\lambda \alpha^{-1} I_{n-1}\right)$. Thus $T \in \mathcal{T}_{+}(B)$. This proves the claim. Next, we show that any $T_{0} \in \mathcal{T}_{+}(B)$ is in the same connected component as some $T_{1} \in \mathcal{T}_{+}\left((1-\alpha)^{-1} N\right)$. Let $T_{0}=\left\{v_{1}, \ldots, v_{n}\right\} \in \mathcal{T}_{+}(B)$. Then

$$
T_{0} B=(\alpha P+(1-\alpha) Q) T_{0}
$$

where P is positive, stochastic, and similar to $\left(\lambda \alpha^{-1}\right) I_{n-1} \oplus 1$ and Q is quasistochastic and similar to $(1-\alpha)^{-1} N \oplus 1$. Note that Q is not necessarily positive.

For $\theta \in(0,1]$, define $D(\theta)=\operatorname{diag}\left(\theta^{-1}, \theta^{-2}, \ldots, \theta^{1-n}\right)$. Then $D(\theta) N=\theta N D(\theta)$ for all $\theta \in(0,1]$. Let $l=\left(l_{1}, \ldots, l_{n}\right) \in \operatorname{int}\left(\Delta^{n-1}\right)$ be such that $l_{1} v_{1}+\cdots+l_{n} v_{n}=0$ and L be the matrix whose every row equals l. Then $L T_{0}=0$ and

$$
\begin{aligned}
T_{0} D(\theta) B & =\left[\alpha T_{0}\left(\lambda \alpha^{-1} I_{n-1}\right)+(1-\alpha)\left(T_{0}\left(\theta(1-\alpha)^{-1} N\right)\right)\right] D(\theta) \\
& =[\alpha P+(1-\alpha)((1-\theta) L+\theta Q)] T_{0} D(\theta)
\end{aligned}
$$

One can see that each entry of $\alpha P+(1-\alpha)[(1-\theta) L+\theta Q]$ is a linear function of θ.

$$
\text { If } \theta=0 \text { then }(\alpha P+(1-\alpha)((1-\theta) L+\theta Q))=\alpha P+(1-\alpha) L>0
$$

$$
\text { If } \theta=1 \text { then }(\alpha P+(1-\alpha)((1-\theta) L+\theta Q))=\alpha P+(1-\alpha) Q>0
$$

Consequently, $\alpha P+(1-\alpha)((1-\theta) L+\theta Q)$ is positive for all $\theta \in[0,1]$. Thus $T_{0} D(\theta) \in \mathcal{T}_{+}(B)$ for all $\theta \in(0,1]$. Choose θ_{0} sufficiently small so that $\left(1-\theta_{0}\right) L+$ $\theta_{0} Q>0$ and let $T_{1}=T_{0} D\left(\theta_{0}\right)$. Then $T_{1} \in \mathcal{T}_{+}\left((1-\alpha)^{-1} N\right)$ since $T_{1}\left((1-\alpha)^{-1} N\right)=$ $\left[\left(1-\theta_{0}\right) L+\theta_{0} Q\right] T_{1}$.

Furthermore, T_{0} and T_{1} are in the same connected component of $\mathcal{T}_{+}(B)$ via the path

$$
T_{t}=T_{0} D\left(\theta_{0}^{t}\right), t \in[0,1]
$$

Since $\mathcal{T}_{+}\left((1-\alpha)^{-1} N\right)$ is path connected, we complete the proof.

Let $\lambda \in(-1,1)$ and define $B_{n}=(\lambda) \oplus 0_{n-1}$.

Theorem 1.10.8. $\mathcal{T}_{+}\left(B_{n-1}\right)$ is path connected for all $n \in \mathbb{N}$.

Proof. We can assume without loss of generality that $0 \leq \lambda<1$. Let $T_{0}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ be a positive invariant tetrahedron of B_{n-1}. Suppose without loss of
generality that $\min _{1 \leq i \leq n} v_{i 1}=v_{11}$ and $\max _{1 \leq i \leq n} v_{i 1}=v_{n 1}$. We divide the proof into 5 steps.

Step 1: Since $T_{0} \in \mathcal{T}_{+}\left(B_{n-1}\right)$, we can extend v_{1} along the line joining v_{1} and v_{n} to \hat{v}_{1} so that $\hat{v}_{11}<v_{11}$ and $\hat{v}_{1} B \subseteq \operatorname{int}\left(\operatorname{Conv}\left(T_{0}\right)\right)$. Then $T_{1}=\left\{\hat{v}_{1}, v_{2}, \ldots, v_{n}\right\} \in$ $\mathcal{T}_{+}\left(B_{n-1}\right)$. By Theorem 1.5.2 (b) T_{1} is in the same connected component as T_{0}.

Step 2: We extend v_{i} along the line joining \hat{v}_{1} and v_{i} to the point \hat{v}_{i} which has $\hat{v}_{i 1}=v_{n 1}$ for any $i=2, \ldots, n-1$. For convenience, we also define $\hat{v}_{n}=v_{n}$. Let $T_{2}=\left\{\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{n}\right\}$. Then $T_{2} \in \mathcal{T}_{+}\left(B_{n-1}\right)$ since $T_{2} B_{n-1}=T_{1} B_{n-1}$ and $\operatorname{Conv}\left(T_{1}\right) \subseteq$ $\operatorname{Conv}\left(T_{2}\right) . T_{2}$ is in the same connected component as T_{1} by Theorem 1.5.2 (c).

Step 3: Define $v_{b}=\frac{1}{n} \sum_{i=2}^{n} \hat{v}_{i}$ and set $w_{i}=v_{b}+a\left(\hat{v}_{i}-v_{b}\right)$ for $i=2, \ldots, n$ where $a \geq 1$ is large enough so that $\left(v_{n 1}, 0,0, \ldots, 0\right)$ is in the interior of the convex hull of w_{2}, \ldots, w_{n}. Let $T_{3}=\left\{\hat{v}_{1}, w_{2}, \ldots, w_{n}\right\}$ and define $T_{2+t}=\left\{v_{1}(t), \ldots, v_{n}(t)\right\}$ for $t \in[0,1]$ where

$$
v_{1}(t)=\hat{v}_{1} \text { and } v_{i}(t)=\hat{v}_{i}+t\left(w_{i}-\hat{v}_{i}\right) \text { for } i=2, \ldots, n
$$

Observe that

$$
\begin{aligned}
\frac{v_{1}(t)+\cdots+v_{n}(t)}{n} & =\frac{1}{n} \sum_{i=1}^{n}\left(\hat{v}_{i}+t\left(w_{i}-\hat{v}_{i}\right)\right) \\
& =\frac{t}{n} \sum_{i=1}^{n} w_{i}+\frac{(1-t)}{n} \sum_{i=1}^{n} \hat{v}_{i} \\
& =\frac{t}{n} \sum_{i=1}^{n}\left(a \hat{v}_{i}+(1-a) v_{b}\right)+\frac{(1-t)}{n} \sum_{i=1}^{n} \hat{v}_{i} \\
& =\left[a t v_{b}+(1-a) t v_{b}\right]+(1-t) v_{b} \\
& =v_{b}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\hat{v}_{i} & =\frac{1}{1+t(a-1)} v_{i}(t)+\frac{t(a-1)}{1+t(a-1)} v_{b} \\
& =\frac{1}{1+t(a-1)} v_{i}(t)+\frac{t(a-1)}{1+t(a-1)}\left[\frac{v_{1}(t)+\cdots+v_{n}(t)}{n}\right] \text { for all } i=1, \ldots, n .
\end{aligned}
$$

Thus $\operatorname{Conv}\left(T_{2}\right) \subseteq \operatorname{Conv}\left(T_{2}(t)\right)$ for all $t \in[0,1]$. Hence $T_{2}(t)$ is a positive tetrahedron for any $t \in[0,1]$. It is easy to see that

$$
\begin{aligned}
T_{2}(t) B_{n-1} & =\left[\lambda \hat{v}_{11}, \lambda v_{n 1}\right] \times\{0\} \times \cdots \times\{0\} \\
& \subseteq \operatorname{int}\left(\operatorname{Conv}\left(T_{2}\right)\right) \\
& \subseteq \operatorname{int}\left(\operatorname{Conv}\left(T_{2}(t)\right)\right) \text { for all } t \in[0,1]
\end{aligned}
$$

Then $T_{2+t} \in \mathcal{T}_{+}\left(B_{n-1}\right)$ for all $t \in[0,1]$. This shows that T_{2} and T_{3} are in the same connected component.

Step 4: Let w_{1} be the point in $\operatorname{Conv}\left(T_{3}\right) \cap\{(x, 0, \ldots, 0): x<0\}$ which has maximum norm. Then w_{1} is on the boundary of $\operatorname{Conv}\left(T_{3}\right)$ and $\hat{v}_{11} \leq w_{11}<\lambda \hat{v}_{11} \leq 0$. Let $T_{4}=\left\{w_{1}, \ldots, w_{n}\right\}$. Note that $\left\{w_{2}, \ldots, w_{n}\right\}$ is a basis of \mathbb{R}^{n-1}. The origin is in the interior of T_{4} because it is in $T_{3} B=T_{4} B$. Thus T_{4} is a positive tetrahedron. We also have

$$
\begin{aligned}
T_{4} B_{n-1} & =\left[\lambda w_{11}, \lambda v_{n 1}\right] \times\{0\} \times \cdots \times\{0\} \\
& \subseteq\left(w_{11}, v_{n 1}\right) \times\{0\} \times \cdots \times\{0\} \\
& \subseteq \operatorname{int}\left(\operatorname{Conv}\left(T_{4}\right)\right)
\end{aligned}
$$

Thus $T_{4} \in \mathcal{T}_{+}\left(B_{n-1}\right)$. Theorem 1.5.2 (b) guarantees that T_{4} is still in the same connected component as T_{3}.

Step 5: Let $u_{i}=\frac{1}{v_{n 1}} w_{i}$ for any $i=1, \ldots, n$. Define $T_{5}=\left\{u_{1}, \ldots, u_{n}\right\} . T_{5}$ is in the same connected component as T_{4} by Theorem 1.5.2 (a). Let $x_{i}=\left(u_{i 2}, \ldots, u_{i n}\right)$ for $i=2, \ldots, n$ and define $T_{5}^{\prime}=\left\{x_{2}, \ldots, x_{n}\right\}$. Let y_{i} be the $(i-1)$ th standard basis element of \mathbb{R}^{n-2} for $i=2, \ldots, n-1$ and $y_{n}=-\left(y_{2}+\cdots+y_{n-1}\right)$. Define $T_{6}^{\prime}=\left\{y_{2}, \ldots, y_{n}\right\}$. Then T_{5}^{\prime} and T_{6}^{\prime} are positive tetrahedra. By Theorem 1.10.2 there is a path $T_{5+t}^{\prime}=\left\{x_{2}(t), \ldots, x_{n}(t)\right\}$ connecting T_{5}^{\prime} and T_{6}^{\prime}. The path

$$
T_{5+t}=\left\{u_{1}, u_{2}(t), \ldots, u_{n}(t)\right\}
$$

where $u_{i 1}(t)=1$ and $u_{i j}(t)=x_{i j}(t)$ for all $i, j=2, \ldots, n$ is the path in $\mathcal{T}_{+}\left(B_{n-1}\right)$ connecting T_{5} and $T_{6}=\left\{u_{1}, z_{2}, \ldots, z_{n}\right\}$ where $z_{i 1}=1$ and $z_{i j}=y_{i j}$ for all $i, j=$ $2, \ldots, n$. Therefore, $\mathcal{T}_{+}\left(B_{n-1}\right)$ is path connected, as required.

Chapter 2

The Mapping Class Group of a Shift of Finite Type

2.1 Introduction

One of the interesting problems in symbolic dynamics is the classification of SFTs up to flow equivalence. Given any discrete dynamical system we can also construct a corresponding continuous-time dynamical system by using suspension flows defined on the mapping torus of the original discrete system. Given a dynamical system (X, T) where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism, we define the mapping torus Y_{T} of (X, T) as

$$
Y_{T}=\{(x, t): x \in X, t \in \mathbb{R}\} / \sim
$$

where $(x, 1) \sim(T(x), 0)$. Distinct equivalence classes may be uniquely represented by $\{[x, t]: x \in X, 0 \leq t<1\}$. For any $s \in \mathbb{R}$, the suspension flow α on Y_{T} is defined by $\alpha_{s}([x, t])=[x, s+t]$ for any $[x, t] \in Y_{T}$. Two discrete dynamical systems are flow equivalent if the corresponding suspensions are conjugate as flows. Any conjugacy of discrete dynamical systems induces a flow equivalence of the corresponding suspension flows, but flow equivalence is a much weaker equivalence relation in general. For shifts of finite type, Parry and Sullivan [PS75] showed that flow equivalence of SFTs is generated by conjugacy, state stretching, and state contracting. For an SFT $\left(X_{A}, \sigma_{A}\right)$, we define a state stretching as follows: Pick any symbol a in the alphabet
of X_{A} and then replace a by a word $a_{1} a_{2}$ where a_{1}, a_{2} are new symbols. The inverse of a state stretching is called a state contracting. Using a matrix interpretation of state stretching, they also showed that $\operatorname{det}(I-A)$ is an invariant of flow equivalence. Bowen and Franks [BowF77] then showed that the Bowen-Franks group $\operatorname{cok}(I-A)=\mathbb{Z}^{n} /(I-A) \mathbb{Z}^{n}$, if A is $n \times n$, is also an invariant of a flow equivalence. Then Franks [F84] completely solved the flow equivalence problem for nontrivial ISFTs by showing these two invariants are complete. Huang has completely characterized reducible SFTs up to flow equivalence [Huang94, Huang95, Bo02b, BoHuang03]. Boyle [Bo02b] also gave an alternative approach via positive equivalence.

Two discrete dynamical systems (X, T) and $\left(X^{\prime}, T^{\prime}\right)$ are flow equivalent if there is a homeomorphism $F: Y_{T} \rightarrow Y_{T^{\prime}}$ whose restriction to any orbit is an orientation preserving homeomorphism onto some orbit of the range flow. F is called a flow equivalence. Two flow equivalences $F_{0}, F_{1}: Y_{T} \rightarrow Y_{T^{\prime}}$ are isotopic if there is a path ϕ_{t} in the space of flow equivalences $Y_{T} \rightarrow Y_{T^{\prime}}$ such that $\phi_{0}=F_{0}$ and $\phi_{1}=F_{1}$. The mapping class group \mathcal{M}_{A} of an $\operatorname{ISFT}\left(X_{A}, \sigma_{A}\right)$ is the group of flow equivalences on the mapping torus Y_{A} of $\left(X_{A}, \sigma_{A}\right)$ modulo the subgroup of flow equivalences which are isotopic to the identity. It is the analogue of the automorphism group $\operatorname{Aut}\left(\sigma_{A}\right)$, the group of homeomorphisms of $\left(X_{A}, \sigma_{A}\right)$ which commute with $\sigma_{A} . \mathcal{M}_{A}$ is even more complicated than $\operatorname{Aut}\left(\sigma_{A}\right)$, although it is still countable. In Section 2.3, we show that \mathcal{M}_{A} acts n-transitively and faithfully on the set of circles in Y_{A} for every $n \in \mathbb{N}$, and the center of \mathcal{M}_{A} is trivial. In Section 2.4 , we show that \mathcal{M}_{A} contains an embedded copy of $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>$ for any $\operatorname{SFT}\left(X_{B}, \sigma_{B}\right)$ flow equivalent to $\left(X_{A}, \sigma_{A}\right)$. Also, a flow equivalence $F: Y_{A} \rightarrow Y_{A}$ has an invariant cross section if and
only if F is induced by an automorphism of the first return map to some cross section of Y_{A} (which is an irreducible SFT flow equivalent to $\left(X_{A}, \sigma_{A}\right)$). However, we will show that not every flow equivalence has an invariant cross section. In Section 2.5, we show that every flow equivalence on Y_{A} is compatible with every right projection of a positive equivalence to $\mathrm{SL}(\mathbb{Z})$.

Altogether, these results provide supporting evidence for the possibility that the kernel of the Bowen-Franks representation (described below in Section 2.2.3) is simple.

2.2 Definitions and Background

2.2.1 Suspensions, Cross Sections, and Flow Equivalences

Let X be a compact metric space. Let $T: X \rightarrow X$ be a homeomorphism and $f: X \rightarrow \mathbb{R}$ be continuous and positive. Define the suspension $Y_{f, T}$ by

$$
Y_{f, T}=\{(x, t): x \in X, 0 \leq t \leq f(x)\} / \sim
$$

where $(x, f(x)) \sim(T(x), 0)$. Distinct equivalence classes may be represented uniquely by $\{[x, t]: x \in X, 0 \leq t<f(x)\}$. For $n \geq 0$, define $f_{0} \equiv 0, f_{n}(x)=\sum_{j=0}^{n-1} f\left(T^{j}(x)\right)$, and $f_{-n}(x)=-\sum_{j=1}^{n} f\left(T^{-j}(x)\right)$ for all $x \in X$. For any $s \in \mathbb{R}$, the suspension flow α on $Y_{f, T}$ is defined by $\alpha_{s}([x, t])=\left[T^{n}(x), s+t-f_{n}(x)\right]$ where $n \in \mathbb{Z}$ is such that $f_{n}(x) \leq s+t<f_{n+1}(x)$. If $f \equiv 1$ on X then $Y_{f, T}$ is called the mapping torus of (X, T) and is denoted by Y_{T}. The suspension flow α on Y_{T} can be simply defined by $\alpha_{t}([x, s])=[x, s+t]$ for any $t \in \mathbb{R} . X \times \mathbb{R}$ carries the "vertical" flow, $\widetilde{\alpha}$, for which
$\widetilde{\alpha_{s}}:(x, t) \mapsto(x, t+s)$. The rule $(x, t) \mapsto[x, t]$ defines a surjective local homeomorphism $\pi_{T}: X \times \mathbb{R} \rightarrow Y_{T}$ which intertwines the vertical and suspension flows. Two discrete dynamical systems (X, T) and $\left(X^{\prime}, T^{\prime}\right)$ are flow equivalent if there is a homeomorphism $F: Y_{T} \rightarrow Y_{T^{\prime}}$ whose restriction to any orbit is an orientation preserving homeomorphism onto some orbit of the range flow. F is called a flow equivalence. If $F: Y_{T} \rightarrow Y_{T^{\prime}}$ is a flow equivalence, then there is a homeomorphism \widetilde{F} such that

commutes. The lift \widetilde{F} is not unique.
A cross section C of the suspension flow α on Y_{T} is a closed set of Y_{T} such that $\alpha: C \times \mathbb{R} \rightarrow Y_{T}$ is a local homeomorphism onto Y_{T}. It follows that every orbit hits C in forward time and in backward time, the first return time defined by $f_{c}(x)=\inf \left\{s>0: \alpha_{s}(x) \in C\right\}$ is continuous and strictly positive on C, and the first return map $T_{c}: C \rightarrow C$ defined by $T_{c}(x)=\alpha_{f_{c}(x)}(x)$ is a homeomorphism. Discrete systems (X, T) and $\left(X^{\prime}, T^{\prime}\right)$ are flow equivalent if and only if there is a flow Y with two cross sections whose return maps are conjugate respectively to T and T^{\prime}. Two flow equivalences $F_{0}, F_{1}: Y_{T} \rightarrow Y_{T^{\prime}}$ are isotopic if there is a path ϕ_{t} in the space of flow equivalences $Y_{T} \rightarrow Y_{T^{\prime}}$ such that $\phi_{0}=F_{0}$ and $\phi_{1}=F_{1}$.

Let $\left(X_{A}, \sigma_{A}\right)$ be a shift of finite type. The mapping torus of $\left(X_{A}, \sigma_{A}\right)$ is denoted by Y_{A}. The mapping class group of Y_{A}, denoted by \mathcal{M}_{A}, is the group of flow equivalences $Y_{A} \rightarrow Y_{A}$ modulo the subgroup of flow equivalences which are
isotopic to the identity. Abusing notation, given a flow equivalence $F: Y_{A} \rightarrow Y_{A}$, we may still refer to F (rather than its equivalence class $[F]$) as an element of \mathcal{M}_{A}.

2.2.2 The Parry-Sullivan Theorem and Invariants for Flow Equivalence

Definition 2.2.1. Let $\left(X_{A}, \sigma_{A}\right)$ be a shift of finite type. We define a state stretching as follows: Pick any symbol a in the alphabet of X_{A} and then replace a by a word $a_{1} a_{2}$ where a_{1}, a_{2} are new symbols. The inverse of a state stretching is called a state contracting.

Example 2.2.2. Suppose X is the 2 -shift $\{0,1\}^{\mathbb{Z}}$. We replace every 0 with $0_{1}, 0_{2}$, e.g.,

$$
\cdots 101011001 \cdots \Rightarrow \cdots 10_{1} 0_{2} 10_{1} 0_{2} 110_{1} 0_{2} 0_{1} 0_{2} 1 \cdots
$$

We can describe the return map as the subshift obtained from the 2 -shift by stretching the symbol 0 to 0_{1} and 0_{2}. This subshift is the golden mean shift.

Theorem 2.2.3. [PS75] Let $\left(X_{A}, \sigma_{A}\right)$ be an SFT. Then $F: Y_{A} \rightarrow Y_{A}$ is a flow equivalence if and only if there exist $\operatorname{SFTs}\left(X_{1}, T_{1}\right),\left(X_{2}, T_{2}\right)$ which are conjugate to (X_{A}, σ_{A}) and T_{1} becomes T_{2} by a finite sequence of state stretchings and state contractings.

As a consequence of the Parry-Sullivan Theorem, we state the following fact.

Proposition 2.2.4. For any shift of finite type $\left(X_{A}, \sigma_{A}\right), \mathcal{M}_{A}$ is countable.

Proof. By Theorem 2.2.3, a flow equivalence (up to isotopy) can be obtained by a conjugacy followed by a series of state stretchings or state contractings and followed
by a conjugacy. There are only countably many ways to obtain each step. Thus \mathcal{M}_{A} is a subset of the product of 3 countable sets. Therefore, \mathcal{M}_{A} is countable.

Given an $n \times n$ integral matrix A, we define the Bowen-Franks group of A as $\operatorname{cok}(I-A)=\mathbb{Z}^{n} /(I-A) \mathbb{Z}^{n}$. For a shift of finite type $\left(X_{A}, \sigma_{A}\right)$, it is known that $\operatorname{det}(I-A)[P S 75]$ and $\operatorname{cok}(I-A)[B o w F 77]$ are invariants of flow equivalence. If $\left(X_{A}, \sigma_{A}\right)$ is irreducible and nontrivial, then they are complete invariants.
Example 2.2.5. Let $A=\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)$. Then $\operatorname{cok}(I-A) \cong$ $\operatorname{cok}(I-B) \cong 0$ and $\operatorname{det}(I-A)=\operatorname{det}(I-B)=-1$. Thus the full 2 -shift and the golden mean shift are flow equivalent. However, they are not shift equivalent.

2.2.3 Positive Equivalences and the Bowen-Franks Representation

Let A and B be irreducible matrices. We embed A and B to the set of essentially irreducible infinite matrices over \mathbb{Z}_{+}, those which have only one irreducible component. Mike Boyle [Bo02b], building on [F84] within the "positive KTheory" approach to symbolic dynamics [Wa00, BoW04, Bo02a], developed a general method to construct flow equivalences $F: Y_{A} \rightarrow Y_{B}$ given that A and B are flow equivalent. A basic elementary matrix E is a matrix in $\operatorname{SL}(\mathbb{Z})$ which has off-diagonal entry $E_{i j}=1$ where $i \neq j$ and 1 on the main diagonal and 0 elsewhere, e.g.

$$
E=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We define 4 basic positive equivalences as follows: suppose $A_{i j}>0$,

$$
\begin{array}{ll}
(E, I): I-A \rightarrow E(I-A), & \left(E^{-1}, I\right): E(I-A) \rightarrow I-A \\
(I, E): I-A \rightarrow(I-A) E, & \left(I, E^{-1}\right):(I-A) E \rightarrow I-A .
\end{array}
$$

A positive equivalence is the composition of basic positive equivalences. We will only discuss the flow equivalence induced by the basic positive equivalence (E, I) : $I-A \rightarrow E(I-A)$. We can apply the same idea with the others. Define A^{\prime} from the equation $E(I-A)=I-A^{\prime}$. Then A and A^{\prime} agree except in row i, where we have

$$
\begin{aligned}
& A_{i k}^{\prime}=A_{i k}+A_{j k} \text { if } j \neq k, \text { and } \\
& A_{i j}^{\prime}=A_{i j}+A_{j j}-1
\end{aligned}
$$

Let \mathcal{G}_{A} be a directed graph having A as the adjacency matrix with edge set \mathcal{E}_{A}. We can describe a directed graph $\mathcal{G}_{A^{\prime}}$ which has A^{\prime} as its adjacency matrix as follows. Pick an edge e which runs from a vertex i to a vertex j in $\mathcal{G}_{A}(e$ exists because $A_{i j}>0$ by assumption). The edge set $\mathcal{E}_{A^{\prime}}$ will be obtained from \mathcal{E}_{A} as follows:
a) remove e from \mathcal{E}_{A}.
b) For every vertex k, for every edge f in \mathcal{E}_{A} from j to k add a new edge named $[e f]$ from i to k.

Let \mathcal{E}_{A}^{*} be the set of new edges obtained from the above construction. Define a map $\gamma: \mathcal{E}_{A^{\prime}} \rightarrow \mathcal{E}_{A}^{*}$ by $\gamma(f)=f$ and $\gamma([e f])=e f$. Then γ induces a map $\widehat{\gamma}: X_{A} \rightarrow X_{A^{\prime}}$ defined naturally by the rule

$$
\widehat{\gamma}: \cdots x_{-2}^{\prime} x_{-1}^{\prime} \cdot x_{0}^{\prime} x_{1}^{\prime} \cdots \mapsto \cdots \gamma\left(x_{-2}^{\prime}\right) \gamma\left(x_{-1}^{\prime}\right) \cdot \gamma\left(x_{0}^{\prime}\right) \gamma\left(x_{1}^{\prime}\right) \cdots
$$

Define a flow equivalence $F_{\gamma}: Y_{A^{\prime}} \rightarrow Y_{A}$ by

$$
F([x, t])= \begin{cases}{[\widehat{\gamma}(x), t],} & \text { if } x \in X_{e} \text { for every single edge } e \\ {[\widehat{\gamma}(x), 2 t],} & \text { if } x \in X_{[e f]} \text { for every edge of the form }[e f] .\end{cases}
$$

One can check that F_{γ} is a flow equivalence.

Example 2.2.6. Suppose

$$
A=\left(\begin{array}{lll}
2 & 2 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right), A^{\prime}=\left(\begin{array}{lll}
2 & 2 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \text {, and } E=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Then $E(I-A)=I-A^{\prime}$. Label edges on \mathcal{G}_{A} and write

$$
A=\left(\begin{array}{ccc}
a+b & c+d & 0 \\
0 & e & f \\
g & h & 0
\end{array}\right) .
$$

To get the graph $\mathcal{G}_{A^{\prime}}$, we pick an edge c (or d) and write

$$
E=\left(\begin{array}{lll}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we have
$I-A=\left(\begin{array}{ccc}1-a-b & -c-d & 0 \\ 0 & 1-e & -f \\ -g & -h & 1\end{array}\right)$, so $E(I-A)=\left(\begin{array}{ccc}1-a-b & -d-c e & -c f \\ 0 & 1-e & -f \\ -g & -h & 1\end{array}\right)=I-A^{\prime}$.

Thus

$$
A^{\prime}=\left(\begin{array}{ccc}
a+b & d+c e & c f \\
0 & e & f \\
g & h & 0
\end{array}\right)
$$

Note that this idea is compatible with the construction of $\mathcal{G}_{A^{\prime}}$ described before. The flow equivalence $F: Y_{A^{\prime}} \rightarrow Y_{A}$ is defined by

$$
F([x, t])= \begin{cases}{[\widehat{\gamma}(x), t],} & \text { if } x \in X_{a} \cup X_{b} \cup X_{d} \cup X_{f} \cup X_{g} \cup X_{h} \\ {[\widehat{\gamma}(x), 2 t],} & \text { if } x \in X_{[c e]} \cup X_{[c f]} .\end{cases}
$$

We will be considering the following result from [Bo02b].

Theorem 2.2.7. Suppose A, B are nontrivial essentially irreducible matrices defining SFTs with more than a single orbit; U, V are in $\mathrm{SL}(\mathbb{Z})$; and $U(I-A) V=I-B$.

Then for some positive integer k, there are positive equivalences $\left(E_{i}, F_{i}\right)$ from $I-A_{i}$ to $I-A_{i+1}, 0 \leq i \leq k$, such that $A_{0}=A, A_{k}=B$ and $(U, V)=$ $\left(E_{k} \cdots E_{1}, F_{1} \cdots F_{k}\right)$.

In other words, every $\mathrm{SL}(\mathbb{Z})$ equivalence from $I-A$ to $I-B$ is a composition of basic positive equivalences.

Let $\left(X_{A}, \sigma_{A}\right)$ be a nontrivial irreducible SFT. Let $(U, V):(I-A) \rightarrow(I-A)$ be a positive equivalence and $F_{(U, V)}$ be an associated flow equivalence. We define $F_{(U, V)}^{*}: \operatorname{cok}(I-A) \rightarrow \operatorname{cok}(I-A)$ by the rule $[u] \mapsto[u V]$ (we use the action on row vectors to define $\operatorname{cok}(I-A)$). Then $F_{(U, V)}^{*}$ is an isomorphism. Given any flow equivalence $F: Y_{A} \rightarrow Y_{A}$, there is a positive equivalence $(U, V):(I-A) \rightarrow$ $(I-A)$ such that $F=F_{(U, V)}$. Let $F^{*}=F_{(U, V)}^{*}$. Let Aut $(\operatorname{cok}(I-A))$ denote
the group of group automorphisms of $\operatorname{cok}(I-A)$. We define the map $\rho: \mathcal{M}_{A} \rightarrow$ Aut $(\operatorname{cok}(I-A))$ by the rule $\rho: F \mapsto F^{*}$. We call ρ the Bowen-Franks representation of $\left(X_{A}, \sigma_{A}\right)$. It was proved in [Bo02b] that this rule indeed gives a well defined group homomorphism. If Y_{A} is not a circle then ρ is surjective [Bo02b].

2.3 The Mapping Class Group, Circles, and The Center

Theorem 2.3.1. Let $\left(X_{A}, \sigma_{A}\right)$ be an irreducible shift of finite type. For $F \in \mathcal{M}_{A}$, the following are equivalent
a) F is isotopic to the identity.
b) $F(\mathcal{O})=\mathcal{O}$ for all suspension flow orbits \mathcal{O} in Y_{A}.
c) $F(\mathcal{C})=\mathcal{C}$ for all but finitely many circles \mathcal{C} in Y_{A}.

Proof. The equivalence is obvious if X_{A} is a single orbit (i.e., X_{A} has a single circle).
So, we may suppose X_{A} is nontrivial (i.e., contains more than one orbit).
$\mathrm{a}) \Rightarrow \mathrm{b})$ Suppose there is an isotopy F_{t} such that $F_{0}=F$ and $F_{1}=$ the identity on Y_{A}. For any $x \in X_{A}, F_{t}([x, 0])$ is a path of points in Y_{A}. Thus $F([x, 0])=$ $F_{0}([x, 0])$ is in the same connected component of Y_{A} as $F_{1}([x, 0])=[x, 0]$. These components are precisely the flow orbits.
b) \Rightarrow a) Let $\widetilde{F}: X_{A} \times \mathbb{R} \rightarrow X_{A} \times \mathbb{R}$ be a lift of F (i.e., $\pi_{\sigma_{A}} \widetilde{F}=F \pi_{\sigma_{A}}$, and \widetilde{F} is a homeomorphism). This gives a continuous function $\delta:(x, t) \rightarrow \mathbb{R}$ such that $\widetilde{F}:(x, t) \mapsto \widetilde{\alpha}_{\delta(x, t)}(x, t)$. By the equivariance of $\pi_{\sigma_{A}}, \delta(x, t)$ depends only on $y=[x, t]$. So, for y in $Y_{A}, F(y)=\alpha_{\delta(y)}(y)$, where $\delta: Y_{A} \rightarrow \mathbb{R}$ is continuous. Now for $0 \leq t \leq 1$ define $F_{t}(y)=\alpha_{t \delta(y)}(y)$. This gives the isotopy from F to the identity.
b) \Rightarrow c) This is trivial.
c) $\Rightarrow \mathrm{b})$ Let $x \in X_{A}$. Since σ_{A} is irreducible, $\operatorname{Per}\left(\sigma_{A}\right)$ is dense in X_{A}. There is a sequence of distinct points x_{n} in $\operatorname{Per}\left(\sigma_{A}\right)$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then $F\left(\left[x_{n}, 0\right]\right) \rightarrow F([x, 0])$ as $n \rightarrow \infty$. Since $F(\mathcal{C})=\mathcal{C}$ for all but finitely many circles, we have, for all but finitely many n, that there exists t_{n} such that $F\left(\left[x_{n}, 0\right]\right)=\left[x_{n}, t_{n}\right]$. Appealing to the lift \widetilde{F} of F, we have that there exists $T>0$ such that for all n we may require $\left|t_{n}\right| \leq T$. Taking a convergent subsequence of $\left(t_{n}\right)$ with limit t, we conclude $F([x, 0])=[x, t]$. This shows that $F\left(\mathcal{O}_{x}\right)=\mathcal{O}_{x}$ where \mathcal{O}_{x} represents the flow orbit containing $[x, 0]$.

Corollary 2.3.2. The mapping class group \mathcal{M}_{A} of an irreducible SFT σ_{A} acts by permutations on the set of circles of Y_{A}. This action is faithful.

Proof. This follows immediately from Theorem 2.3.1.

Remark 2.3.3. Theorem 2.3.1 also implies that the action of \mathcal{M}_{A} on the (ordered) cohomology group $C\left(X_{A}, \mathbb{Z}\right) /\left(I-\sigma_{A}\right) C\left(X_{A}, \mathbb{Z}\right)$ (considered in [BoH96] and [KRW01]) is faithful.

Theorem 2.3.4. Let $\left(X_{A}, \sigma_{A}\right)$ be an irreducible shift of finite type. Then \mathcal{M}_{A} acts n-transitively on the set of circles in Y_{A} for all $n \in \mathbb{N}$.

Proof. Let $\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}\right\}$ and $\left\{\mathcal{C}_{1}^{\prime}, \ldots, \mathcal{C}_{n}^{\prime}\right\}$ be sets of n distinct circles. For each $i \in$ $\{1,2, \ldots, n\}$, let x_{i}, x_{i}^{\prime} be representatives of the circles $\mathcal{C}_{i}, \mathcal{C}_{i}^{\prime}$ respectively. We take a k-block presentation of $\left(X_{A}, \sigma_{A}\right)$ where k is large enough that any point of period p comes from a path of length p without repeated vertices except initial and terminal
vertices and no two of these loops share a vertex. If one of these loops, say L, has length greater than 1 , then we apply a basic positive equivalence which corresponds to cutting out an edge e on the loop L and replacing it with edges labeled $[e f]$, for the edge f following e. The new loop will have length $p-1$ in the new graph. Continuing in the same fashion, we get a loop of length 1 . Since no two of these loops share a vertex, we can apply the same idea to another loop without changing the former loop. Continuing in this way, we get a graph with loops $y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}$ of length 1 , each of which comes from the loop containing $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$. If necessary we continue to apply basic positive equivalences until we get a graph with at least one point of least period n, for every positive integer n. Let $\left(X_{B}, \sigma_{B}\right)$ be the SFT induced by the graph $\mathcal{G}_{B} .\left(X_{B}, \sigma_{B}\right)$ is flow equivalent to $\left(X_{A}, \sigma_{A}\right)$. Since $y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}$ are fixed points in $\left(X_{B}, \sigma_{B}\right)$ and σ_{B} is mixing with points of all least periods, there is an inert automorphism $u \in \operatorname{Aut}\left(\sigma_{B}\right)$ such that $u\left(y_{i}\right)=y_{i}^{\prime}$ for all $i=1, \ldots, n$ [BoF91]. Extend u to a flow equivalence $\widehat{u}: Y_{B} \rightarrow Y_{B}$ by $\widehat{u}([x, t])=[u(x), t]$. Let $G: Y_{A} \rightarrow Y_{B}$ be a flow equivalence arising from the construction. Then $F=G^{-1} \widehat{u} G$ is the required flow equivalence, i.e., $F\left(\mathcal{C}_{i}\right)=\mathcal{C}_{i}^{\prime}$ for all $i=1, \ldots, n$.

Theorem 2.3.5. The center of \mathcal{M}_{A} is trivial.

Proof. Let \mathcal{C} be a circle in Y_{A} and F be an element in the center of \mathcal{M}_{A}. Suppose that $F(\mathcal{C}) \neq \mathcal{C}$. Note that $F(\mathcal{C})$ is also a circle. Then there is a flow equivalence G such that $G(\mathcal{C})=\mathcal{C}$ and $G(F(\mathcal{C})) \neq F(\mathcal{C})$ by Theorem 2.3.4. Thus $F G(\mathcal{C})=F(\mathcal{C}) \neq$ $G F(\mathcal{C})$ which is a contradiction. Hence $F(\mathcal{C})=\mathcal{C}$ for all circles \mathcal{C} in Y_{A}. Therefore, F is isotopic to the identity by Theorem 2.3.1.

2.4 The Mapping Class Group, Cross Sections, and Automorphisms of The Shifts

Let $\left(X_{A}, \sigma_{A}\right)$ be an ISFT. For $u \in \operatorname{Aut}\left(\sigma_{A}\right)$, define $\widehat{u}: Y_{A} \rightarrow Y_{A}$ by $\widehat{u}([x, t])=$ $[u x, t]$. Clearly, $\widehat{u} \in \mathcal{M}_{A}$. Define $\phi: \operatorname{Aut}\left(\sigma_{A}\right) \rightarrow \mathcal{M}_{A}$ by $\phi(u)=\widehat{u}$.

Theorem 2.4.1. Let ϕ be defined as above. Then
a) ϕ is a group homomorphism.
b) $\left.\operatorname{Ker}(\phi)=<\sigma_{A}\right\rangle$, the cyclic group generated by σ_{A}.

Proof. a) Let $u, v \in \operatorname{Aut}\left(\sigma_{A}\right)$ and $[x, t] \in Y_{A}$. Then

$$
\begin{aligned}
\widehat{u v}([x, t]) & =[u v(x), t] \\
& =\widehat{u}([v(x), t]) \\
& =\widehat{u} \widehat{v}([x, t]) .
\end{aligned}
$$

Thus $\widehat{u v}=\widehat{u v}$. This means that ϕ is a homomorphism.
b) Let $u \in \operatorname{Ker}(\phi)$. Then $\widehat{u}(\mathcal{O})=\mathcal{O}$ for all flow orbits \mathcal{O} in Y_{A} by Theorem 2.3.1. Thus $[u(x), 0]=\widehat{u}([x, 0])=[x, h(x)]$ for some continuous function $h: X_{A} \rightarrow \mathbb{R}$. This shows that $h(x) \in \mathbb{Z}$ for all $x \in X_{A}$, and $[u(x), 0]=\left[\sigma_{A}^{h(x)}(x), 0\right]$. Let x be a point with a dense orbit in X_{A} under the shift, and set $M=h(x)$. Since $u(x)=\sigma_{A}^{M}(x)$, for $n \in \mathbb{Z}$ we have $u\left(\sigma_{A}^{n}(x)\right)=\sigma_{A}^{n} u(x)=\sigma_{A}^{n} \sigma_{A}^{M}(x)=\sigma_{A}^{M}\left(\sigma_{A}^{n}(x)\right)$. Thus $u=\sigma_{A}^{M}$ on the shift orbit of x, and by continuity $u=\sigma_{A}^{M}$ everywhere. If $u=\sigma_{A}^{n}$ for some $n \in \mathbb{Z}$ then \widehat{u} is isotopic to the identity on Y_{A}. Define isotopy by going to lift and $\widetilde{F}_{t}(x, s)=(x, s+n t), 0 \leq t \leq 1$. Thus $\operatorname{Ker}(\phi)=\left\langle\sigma_{A}\right\rangle$.

Theorem 2.4.2. If A and B are flow equivalent then $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>$ is embedded to \mathcal{M}_{A}.

Proof. Let $F: Y_{B} \rightarrow Y_{A}$ be a flow equivalence. Then F induces an isomorphism $\widehat{F}: \mathcal{M}_{B} \rightarrow \mathcal{M}_{A}$ defined by $\widehat{F}(G)=F G F^{-1}$ for all $G \in \mathcal{M}_{B}$. By Theorem 2.4.1 b), there is an embedding of $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>$ into \mathcal{M}_{B}. Then we have an embedding $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>\rightarrow \mathcal{M}_{B} \xrightarrow{\widehat{F}} \mathcal{M}_{A}$.

Example 2.4.3. If $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are flow equivalent then it is not necessarily true that their groups $\operatorname{Aut}\left(\sigma_{A}\right) /<\sigma_{A}>$ and $\operatorname{Aut}\left(\sigma_{B}\right) /<\sigma_{B}>$ are isomorphic as groups. Consider

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), B=A^{2}, \text { and, } C=[2]
$$

By the invariants for the classification of irreducible SFTs up to flow equivalence, they are flow equivalent (if $D=A, B$, or C, then $\operatorname{cok}(I-D)$ is trivial and $\operatorname{det}(I-D)=-$ 1). But in $\operatorname{Aut}\left(\sigma_{B}\right)$, the center has a square root and in the others it does not.

Definition 2.4.4. Let $F: Y_{A} \rightarrow Y_{A}$ be a flow equivalence. A cross section C of Y_{A} is called an invariant cross section for F if $F(C)=C$. When F is used to denote the element $[F]$ of \mathcal{M}_{A}, we say F has an invariant cross section if any element of $[F]$ (any equivalence isotopic to F) has an invariant cross section.

For example, $\left\{[x, 0]: x \in X_{A}\right\}$ is an invariant cross section for any F induced by an element of $\operatorname{Aut}\left(\sigma_{A}\right)$. If equivalences F, F^{\prime} have the same invariant cross section C, and $F(y)=F^{\prime}(y)$ for all y in C, then F and F^{\prime} are isotopic.

Theorem 2.4.5. Let $F: Y_{A} \rightarrow Y_{A}$ be a flow equivalence. If F has an invariant cross section C then F is isotopic to an equivalence induced by an automorphism of the first return map T_{c}.

Proof. Let $u=\left.F\right|_{C}$. Then $u: C \rightarrow C$ is a homeomorphism. We will show that $u T_{c}=T_{c} u$. Let $y \in C$. Then $u T_{c}(y)=u \alpha_{f_{c}(y)}(y)$ and $T_{c} u(y)=\alpha_{f_{c}(u(y))}(u(y))$. Observe that y and $\alpha_{f_{c}(y)}(y)$ are closest points of C in the same flow orbit. Also, $u(y)$ and $\alpha_{f_{c}(u(y))}(u(y))$ are closest points of C in the same flow orbit. Since F is orientation preserving and $u: y \mapsto u(y), u: \alpha_{f_{c}(y)}(y) \mapsto \alpha_{f_{c}(u(y))}(u(y))$. This shows that $u T_{c}=T_{c} u$ as required. Therefore, $u \in \operatorname{Aut}\left(T_{c}\right)$.

Proposition 2.4.6. Let $\left(X_{A}, \sigma_{A}\right)$ be an irreducible SFT. Suppose $\left(X^{\prime}, \sigma^{\prime}\right)$ is an irreducible subshift of finite type of $\left(X_{A}, \sigma_{A}\right), F \in \mathcal{M}_{A}$, and F maps $Y_{\sigma^{\prime}}$ into itself but not onto itself. Then F has no invariant cross section.

Proof. Suppose $F: Y_{A} \rightarrow Y_{A}$ is induced by an automorphism u of the return map T_{c} to some cross section C. The restriction of T_{c} to $C \cap Y_{\sigma^{\prime}}$ defines an irreducible SFT, because it is flow equivalent to $\left(X^{\prime}, \sigma^{\prime}\right)$, since $C \cap Y_{\sigma^{\prime}}$ is a cross section of $Y_{\sigma^{\prime}}$. Therefore the restriction of u to $C \cap Y_{\sigma^{\prime}}$, being an injection into $C \cap Y_{\sigma^{\prime}}$, must be a surjection. But this implies \widehat{u} maps $Y_{\sigma^{\prime}}$ onto itself, which is a contradiction.

We can construct a flow equivalence which satisfies the conditions of Proposition 2.4.6 and therefore has no invariant cross section.

Example 2.4.7. Given a finite set F of words, let F^{*} denote the space of doubly infinite sequences formed by all possible concatenations of those words. Let $S=$
$\left\{a, b, c, d_{1} d_{2}\right\}^{*}$. Define a flow equivalence $F: Y_{S} \rightarrow Y_{S}$ to be the induced flow equivalence of the automorphism defined by permuting a and c and permuting b and $d_{1} d_{2}$. Let $\bar{S}=\left\{c, d_{1} d_{2}\right\}^{*}$ and $T=\{a, b\}^{*}$. Define $\phi: \bar{S} \rightarrow T$ by the rule $c \mapsto a$ and $d_{1} d_{2} \mapsto a b$. Theorem 1.5 in [BoK93] states that if there exists some N such that for all $n>N, \pi_{n}(S)-\pi_{n}(\bar{S}) \geq 2 n$ then ϕ extends to an automorphism of S where $\pi_{n}(S), \pi_{n}(\bar{S})$ represent the number of periodic points of S, \bar{S} with least period n, respectively. For any $n \geq 3$, the number of periodic points of \bar{S} is at least $n+1$. Given any periodic point of \bar{S} which comes from a word of length $n-1$, we can construct 2 periodic points of S with least period n by adding a or b at the end of the word. Thus $\pi_{n}(S)-\pi_{n}(\bar{S}) \geq 2 \pi_{n-1}(\bar{S}) \geq 2 n$ for all $n \geq 4$. This implies that ϕ extends to an automorphism u of S by [BoK93, Theorem 1.5]. Then $\widehat{F}=\widehat{u} F$ maps Y_{T} properly into itself since there is no flow orbit of Y_{T} that maps to the flow orbit containing the point $\left[b^{\infty}, 0\right]$. By Proposition 2.4.6, \widehat{F} has no invariant cross section.

Proposition 2.4.8. Let $\left(X_{A}, \sigma_{A}\right)$ be an irreducible SFT. Let $F \in \mathcal{M}_{A}$. If there is a circle \mathcal{C} such that $\left\{F^{n}(\mathcal{C}): n \in \mathbb{N}\right\}$ is an infinite collection of circles then F has no invariant cross section.

Proof. If $u \in \operatorname{Aut}\left(\sigma_{A}\right)$ then any periodic orbit of σ_{A} is mapped into the finite set of periodic orbits of equal period. Therefore the orbit of a circle under \widehat{u} must equal finitely many circles.

Example 2.4.9. Let \widehat{F} be defined as in Example 2.4.7. Let \mathcal{C} be the circle containing the point $\left[b^{\infty}, 0\right]$. For each $n \in \mathbb{N}$, let \mathcal{C}_{n} be the circle containing the point $\left(a^{n} b\right)^{\infty}$ in X_{A}. Then $\left\{\widehat{F}^{n}(\mathcal{C}): n \in \mathbb{N}\right\}=\left\{\mathcal{C}_{n}: n \in \mathbb{N}\right\}$ which is infinite.

We close this section with the following problem.

Problem 2.4.10. Characterize flow equivalences which have an invariant cross section.

2.5 The Mapping Class Group and The Positive Equivalence Groupoid

Consider triples $[(I-A),(U, V),(I-B)]$ such that A, B, U, V have entries in \mathbb{Z}_{+}, A and B define infinite irreducible SFTs, one of U, V is $I d$ and the other is a basic elementary matrix (at most one entry differs from I, and it can only be off-diagonal), the matrix I is the infinite identity matrix, the matrices A, B have only finitely many nonzero entries. We picture the triple as a directed edge labeled (U, V) from a vertex $I-A$ to a vertex $I-B$, in a countably infinite directed graph.

Now we define a groupoid $G\left(\mathbb{Z}_{+}\right)$, as a groupoid of morphisms in a category. The objects of the category are the matrices $I-A$. A triple $[(I-A),(U, V),(I-B)]$ as described in the previous paragraph is a morphism from $I-A$ to $I-B$. Its formal inverse $[(I-A),(U, V),(I-B)]^{-1}$ is a morphism from $I-B$ to $I-A$. A general element of the groupoid is a concatenation $g_{1} \cdots g_{n}$ of such elementary morphisms, with g_{i} a morphism from $I-A_{i}$ to $I-B_{i}$, such that $I-B_{i}=I-A_{i+1}, 1 \leq i \leq n$. The identity morphism 1_{I-A} from $I-A$ to $I-A$ is $[(I-A),(I, I),(I-A)]$.

The description of the groupoid in the infinite directed graph is that the elements are finite concatenations of edges, where the concatenation must be legal; and adjacent inverses may be cancelled; legal addition of edges 1_{I-A} does not change a group element. A path P from $I-A$ to $I-B$ determines a flow equivalence $\rho(P)$
from Y_{A} to Y_{B} (see the construction in Section 2.2.3). Now let $P E_{\mathbb{Z}}(A)$ be the subgroupoid of $G\left(\mathbb{Z}_{+}\right)$corresponding to elements which begin and end at $I-A$ (we use \mathbb{Z} to indicate that the entries of A are not restricted to $\{0,1\})$. This $P E_{\mathbb{Z}}(A)$ is a group. Let \mathcal{S}_{A} be the subgroup of \mathcal{M}_{A} generated by "simple" flow equivalences, of the form $G F G^{-1}$ where G is in \mathcal{M}_{A} and F is induced by a basic simple automorphism of a return map to a cross section. A simple automorphism of an SFT is an automorphism which is conjugate to a code generated by a graph automorphism which fixes all vertices. A basic simple automorphism is an automorphism conjugate to a 1-block code defined by a permutation of edges which exchanges two edges (with the same initial and terminal vertices) and leaves the other fixed. Every simple automorphism is a composition of basic simple automorphisms. The rule ρ above defines a homomorphism ρ_{A} from $P E_{\mathbb{Z}}(A)$ to $\mathcal{M}_{A} / \mathcal{S}_{A}$. We know that ρ_{A} is well defined and surjective $[\mathrm{Bo} 02 \mathrm{~b}]$. There is another homomorphism, π_{A}, from $P E_{\mathbb{Z}}(A)$ to $\mathrm{SL}(\mathbb{Z})$. This is the homomorphism determined by sending each generator $[(I-A),(U, V),(I-B)]$ to V. We will need the following background.

Definition 2.5.1. Let $M \in \mathrm{GL}_{n}(\mathbb{Z})$ and I be the $\mathbb{N} \times \mathbb{N}$ identity matrix . By identifying M as $\left(\begin{array}{cc}M & 0 \\ 0 & I\end{array}\right)$, we have an embedding of $\mathrm{GL}_{n}(\mathbb{Z})$ into the group of $\mathbb{N} \times \mathbb{N}$ invertible matrices. Then we have an ascending chain of subgroups $\mathrm{GL}_{1}(\mathbb{Z}) \subset$ $\mathrm{GL}_{2}(\mathbb{Z}) \subset \mathrm{GL}_{2}(\mathbb{Z}) \subset \cdots$. The stable linear group over \mathbb{Z} is defined by $\mathrm{GL}(\mathbb{Z})=$ $\bigcup_{n=1}^{\infty} \mathrm{GL}_{n}(\mathbb{Z})$. If $A \in \mathrm{GL}_{n}(\mathbb{Z})$ and $B \in \mathrm{GL}_{m}(\mathbb{Z})$ we define $A B$ as the matrix multiplication of the embedding of A and B in $\operatorname{GL}_{k}(\mathbb{Z})$ for any $k \geq m, n$. The subgroup $\operatorname{SL}(\mathbb{Z})$ generated similarly by the determinant 1 matrices over \mathbb{Z} is called
the stable special linear group over \mathbb{Z}, and is generated by the elementary matrices in \mathbb{Z} (those equal to Id except possibly in one off-diagonal entry). For each $n \geq 0$ and $k \geq 1$, we define the group homomorphism $g_{n k}: \mathrm{GL}_{k}(\mathbb{Z}) \rightarrow \mathrm{GL}_{k}(\mathbb{Z} / n \mathbb{Z})$ by $g_{n k}(M)=\bar{M}$. The n-congruence subgroup of $\mathrm{GL}_{k}(\mathbb{Z})$ is defined as $\mathrm{CL}_{k}(n, \mathbb{Z})=$ $\operatorname{Ker}\left(g_{n k}\right)$. Let $\mathrm{E}_{k}(n, \mathbb{Z})$ denote the group generated by all elementary matrices in $\operatorname{CL}_{k}(n, \mathbb{Z})$. Set $\operatorname{CL}(n, \mathbb{Z})=\bigcup_{k=1}^{\infty} \mathrm{CL}_{k}(n, \mathbb{Z})$ and $\mathrm{E}(n, \mathbb{Z})=\bigcup_{k=1}^{\infty} \mathrm{E}_{k}(n, \mathbb{Z})$.

Theorem 2.5.2. [S76] Let H be a normal subgroup of $\operatorname{SL}(\mathbb{Z})$. Then there exists a unique integer $n \geq 0$ such that

$$
\mathrm{E}(n, \mathbb{Z}) \subseteq H \subseteq \mathrm{CL}(n, \mathbb{Z})
$$

Theorem 2.5.3. Suppose that $\left(X_{A}, \sigma_{A}\right)$ is a mixing SFT with positive entropy and $\operatorname{cok}(I-A)=0$. For every element $F \in \mathcal{M}_{A} / \mathcal{S}_{A}$, and every V in $\operatorname{SL}(\mathbb{Z})$, there is an element $g \in P E_{\mathbb{Z}}(A)$ such that $\rho_{A}(g)=F$ and $\pi_{A}(g)=V$. Equivalently, the restriction of π_{A} to $\left(\rho_{A}\right)^{-1}(I d)$ is surjective.

Proof. First, we show that π_{A} is surjective. Since $\operatorname{cok}(I-A)=0, I-A$ is invertible. Given $V \in \mathrm{SL}(\mathbb{Z})$, we choose $U=(I-A) V^{-1}(I-A)^{-1} \in \mathrm{SL}(\mathbb{Z})$. Then $U(I-A) V=$ $I-A$ and is an $\mathrm{SL}(\mathbb{Z})$ equivalence of $I-A$ to itself, and by Theorem 2.2.7 it is induced by a positive equivalence. Thus π_{A} is surjective. Next, we assume without loss of generality that A has an off-diagonal entry 1 . Let $K=\rho_{A}^{-1}(I d)$. Then K is a normal subgroup of $P E_{\mathbb{Z}}(A)$. Since π_{A} is surjective, $\pi_{A}(K)$ is a normal subgroup of $\mathrm{SL}(\mathbb{Z})$. The next three equations describe positive equivalences whose composition is the identity map.

$$
\begin{aligned}
& \left(\begin{array}{cc}
I-A & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-A & I
\end{array}\right)=\left(\begin{array}{cc}
I-A & 0 \\
-A & I
\end{array}\right) \\
& \left(\begin{array}{cc}
I & 0 \\
-I & I
\end{array}\right)\left(\begin{array}{cc}
I-A & 0 \\
-A & I
\end{array}\right)=\left(\begin{array}{cc}
I-A & 0 \\
-I & I
\end{array}\right) \\
& \left(\begin{array}{cc}
I-A & 0 \\
-I & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
I & I
\end{array}\right)=\left(\begin{array}{cc}
I-A & 0 \\
0 & I
\end{array}\right) \\
& \operatorname{Thus}\left(\begin{array}{cc}
I & 0 \\
-I & I
\end{array}\right)\left(\begin{array}{cc}
I-A & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
I-A & I
\end{array}\right)=\left(\begin{array}{cc}
I-A & 0 \\
0 & I
\end{array}\right) \text {. Let } \\
& U=\left(\begin{array}{cc}
I & 0 \\
-I & I
\end{array}\right), V=\left(\begin{array}{cc}
I & 0 \\
I-A & I
\end{array}\right) .
\end{aligned}
$$

Note that $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ represents the same infinite matrix as A. By Theorem 2.2.7, there is a composition of basic elementary positive equivalences $\left(U_{i}, V_{i}\right), 1 \leq i \leq n$, such that $U=U_{n} U_{n-1} \cdots U_{1}$ and $V=V_{1} V_{2} \cdots V_{n}$. Then the concatenation of edges $\left[\left(I-A_{i}\right),\left(U_{i}, V_{i}\right),\left(I-B_{i}\right)\right], 1 \leq i \leq n$, induces the identity on $\mathcal{M}_{A} / \mathcal{S}_{A}$. Since A has off-diagonal entry $1, V$ is not in the n-congruence subgroup of $\mathrm{SL}(\mathbb{Z})$ for any $n \neq 1$. By Theorem 2.5.2, we must have $\mathrm{E}(1, \mathbb{Z}) \subseteq \pi_{A}(K) \subseteq \mathrm{CL}(1, \mathbb{Z})$. But $\mathrm{CL}(1, \mathbb{Z})=\mathrm{GL}(\mathbb{Z})$ and hence $\mathrm{E}(1, \mathbb{Z})=\mathrm{SL}(\mathbb{Z})$. So, $\pi_{A}(K)=\mathrm{SL}(\mathbb{Z})$. This completes the proof.

We finish this section with the following question.

Question 2.5.4. Is the kernel of the Bowen-Franks homomorphism from the mapping class group of a positive entropy irreducible shift of finite type simple?

The result in Theorem 2.5.3 shows that in the case the Bowen-Franks group is trivial, we can get no more information about the normal subgroup structure of $\mathcal{M}_{A} / \mathcal{S}_{A}$ from the natural projection onto $\mathrm{SL}(\mathbb{Z})$ of $P E_{\mathbb{Z}}(A)$. The extension of this result to \mathcal{M}_{A} has not yet been established.

Bibliography

[ACH83] Roy Adler, Don Coppersmith, and Martin Hassner, Algorithms for sliding block codes - An application of symbolic dynamics to information theory, IEEE Trans. Inform. Theory 29 (1983), no. 1, 5-22.
[B98] Leslie Badoian, Flow equivalence of shifts of finite type and flow K-theory, Thesis (Ph.D.) University of California, Berkeley. 1998.
[Ba83] Kirby Baker, Strong shift equivalence of 2×2 matrices of nonnegative integers, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 501-508.
[BCR98] J. Bochnak, M. Coste, M-F. Roy. Real Algebraic Geometry. Springer, 1998.
[Bo08] Mike Boyle, Open problems in symbolic dynamics. Geometric and probabilistic structures in dynamics, 69-118, Contemp. Math., 469, Amer. Math. Soc., Providence, RI, 2008.
[Bo02a] Mike Boyle, Positive K-theory and symbolic dynamics, Dynamics and randomness (Santiago, 2000), 31-52, Nonlinear Phenom. Complex Systems, 7, Kluwer Acad. Publ., Dordrecht, 2002.
[Bo02b] Mike Boyle, Flow equivalence of shifts of finite type via positive factorizations, Pacific J. Math. 204 (2002), no. 2, 273-317.
[Bo93] Mike Boyle, Symbolic dynamics and matrices. Combinatorial and graphtheoretical problems in linear algebra (Minneapolis, MN, 1991), 1-38, IMA Vol. Math. Appl., 50, Springer, New York, 1993.
[Bo88a] Mike Boyle, Eventual extensions of finite codes, Proc. Amer. Math. Soc. 104 (1988), no. 3, 965-972.
[Bo88b] Mike Boyle, Nasu's simple automorphisms, Dynamical systems (College Park, MD, 1986-87), 23-32, Lecture Notes in Math., 1342, Springer, Berlin, 1988.
[Bo84] Mike Boyle, Shift equivalence and the Jordan form away from zero, Ergodic Theory Dynam. Systems 4 (1984), no. 3, 367-379.
[BoF91] Mike Boyle and Ulf-Rainer Fiebig, The action of inert finite-order automorphisms on finite subsystems of the shift, Ergodic Theory Dynamical Systems 11 (3) (1991) 413-425.
[BoH96] Mike Boyle and David Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210.
[BoH93] Mike Boyle and David Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121-149.
[BoH91] Mike Boyle and David Handelman, The spectra of nonnegative matrices via symbolic dynamics, Ann. of Math. (2) 133 (1991), no. 2, 249-316.
[BoHuang03] Mike Boyle and Danrun Huang, Poset block equivalence of integral matrices, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3861-3886.
[BoK93] Mike Boyle and Wolfgang Krieger, Automorphisms and subsystems of the shift, J. Reine Angew. Math. 437 (1993), 13-28.
[BoK87] Mike Boyle and Wolfgang Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), no. 1, 125-149.
[BoLR88] Mike Boyle, Douglas Lind, and Daniel Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), no. 1, 71-114.
[BoS05] Mike Boyle and Michael C. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. London Math. Soc. (3) 91 (2005), no. 1, 184-214.
[BoW04] Mike Boyle and John B. Wagoner, Positive algebraic K-theory and shifts of finite type, Modern dynamical systems and applications, 45-66, Cambridge Univ. Press, Cambridge, 2004.
[Bow73] Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.
[BowF77] Rufus Bowen and John Franks, Homology for zero-dimensional nonwandering sets, Ann. Math. (2) 106 (1977), no. 1, 73-92.
[BrS02] Michael Brin and Garrett Stuck, Introduction to dynamical systems. Cambridge University Press, Cambridge, 2002.
[ELN04] Patricia D. Egleston, Terry D. Lenker, and Sivaram K. Narayan, The nonnegative inverse eigenvalue problem, Tenth Conference of the International Linear Algebra Society. Linear Algebra Appl. 379 (2004), 475-490.
[F84] John Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 53-66.
[H69] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 31969 320-375.
[Huang95] Danrun Huang, Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras, J. Reine Angew. Math. 462 (1995), 185-217.
[Huang94] Danrun Huang, Flow equivalence of reducible shifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 695-720.
[J81] Charles R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), no. 2, 113-130.
[K98] Bruce P. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, Universitext, Springer-Verlag, Berlin, 1998.
[KRW01] K. H. Kim, F. W. Roush, and Susan G. Williams, Duality and its consequences for ordered cohomology of finite type subshifts, Combinatorial \& computational mathematics (Pohang, 2000), 243-265, World Sci. Publ., River Edge, NJ, 2001.
[KR99] K. H. Kim and F. W. Roush, The Williams conjecture is false for irreducible subshifts, Ann. of Math. (2) 149 (1999), no. 2, 545-558.
[KR92a] K. H. Kim and F. W. Roush, Williams' conjecture is false for reducible subshifts, J. Amer. Math. Soc. 5 (1992), no. 1, 213-215.
[KR92b] K. H. Kim and F. W. Roush, Strong shift equivalence of Boolean and positive rational matrices, Linear Algebra Appl. 161 (1992), 153-164.
[KR91a] K. H. Kim and F. W. Roush, Path components of matrices and strong shift equivalence over Q^{+}, Linear Algebra Appl. 145 (1991), 177-186.
[KR91b] K. H. Kim and F. W. Roush, Strong shift equivalence over subsemirings of Q^{+}, Pure Math. Appl. Ser. B 2 (1991), no. 1, 33-42.
[KR90] K. H. Kim and F. W. Roush, Full shifts over R^{+}and invariant tetrahedra, Pure Math. Appl. Ser. B 1 (1990), no. 4, 251-256.
[KR88] K. H. Kim and F. W. Roush, Decidability of shift equivalence, Dynamical systems (College Park, MD, 1986-87), 374-424, Lecture Notes in Math., 1342, Springer, Berlin, 1988.
[KR86] K. H. Kim and F. W. Roush, On strong shift equivalence over a Boolean semiring, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 81-97.
[LM95] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.
[PS75] Bill Parry and Dennis Sullivan, A topological invariant of flows on 1dimensional spaces, Topology 14 (1975), no. 4, 297-299.
[S76] D. A. Suprunenko, Matrix groups, Translated from the Russian, Translation edited by K. A. Hirsch, Translations of Mathematical Monographs, Vol. 45. American Mathematical Society, Providence, R.I., 1976.
[Wa00] John B. Wagoner, Strong shift equivalence and K2 of the dual numbers, With an appendix by K. H. Kim and F. W. Roush. J. Reine Angew. Math. 521 (2000), 119-160.
[Wi73] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153; errata, ibid. (2) 99 (1974), 380-381.

