
ABSTRACT

Title of dissertation: POSITIVE RATIONAL STRONG SHIFT
EQUIVALENCE AND THE MAPPING CLASS
GROUP OF A SHIFT OF FINITE TYPE

Sompong Chuysurichay, Doctor of Philosophy, 2011

Dissertation directed by: Professor Michael Boyle
Department of Mathematics

This thesis studies two independent topics in symbolic dynamics, the positive

rational strong shift equivalence and the mapping class group of a shift of finite

type.

In the first chapter, we give several results involving strong shift equivalence

of positive matrices over the rational or real numbers, within the path component

framework of Kim and Roush. Given a real matrix B with spectral radius less than

1, we consider the number of connected components of the space T+(B) of positive

invariant tetrahedra of B. We show that T+(B) has finitely many components. For

many cases of B, we show that T+(B) is path connected. We also give examples of

B for which T+(B) has 2 components. If S is a subring of R containing Q we show

that every primitive matrix over S with positive trace is strong shift equivalent to

a positive doubly stochastic matrix over S+ (and consequently the nonzero spectra

of primitive stochastic positive trace matrices are all achieved by positive doubly

stochastic matrices). We also exhibit a family of 2 × 2 similar positive stochastic



matrices which are strong shift equivalent over R+, but for which there is no uniform

bound on the lag and matrix sizes of the strong shift equivalences required.

For an SFT (XA, σA), let MA denote the mapping class group of σA. MA is

the group of flow equivalences of the mapping torus YA, (i.e., self homeomorphisms

of YA which respect the direction of the suspension flow) modulo the subgroup of

flow equivalences of YA isotopic to the identity. In the second chapter, we prove

several results for the mapping class group MA of a nontrivial irreducible SFT

(XA, σA) as follows. For every n ∈ N, MA acts n-transitively on the set of circles

in the mapping torus YA of (XA, σA). The center of MA is trivial. MA contains

an embedded copy of Aut(σB)/ < σB > for any SFT (XB, σB) flow equivalent to

(XA, σA). A flow equivalence F : YA → YA has an invariant cross section if and only

if F is induced by an automorphism of the first return map to some cross section of

YA (such a return map is an irreducible SFT flow equivalent to σA). However, there

exist elements ofMA containing no flow equivalence with an invariant cross section.

Finally, we define the groupoid PEZ(A) of positive equivalences from A. There

is an associated surjective group homomorphism πA : PEZ(A) → MA/SA (where

SA is the normal subgroup of MA generated by Nasu’s simple automorphisms of

return maps to cross sections). In the case of trivial Bowen-Franks group, there

is another group homomorphism, ρA : PEZ(A) → SL(Z). We show that for every

[F ] ∈MA/SA and V in SL(Z) there exists g in PEZ(A) such that πA(g) = [F ] and

ρA(g) = V .
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Chapter 1

Strong Shift Equivalence of Positive Matrices

1.1 Introduction

Symbolic dynamics has roots in the study of geodesic flows and general dy-

namical systems by the discretization of space and time. Applications of symbolic

dynamics can be found in hyperbolic dynamics [Bow73], data storage and trans-

mission [ACH83], and linear algebra [BoH91]. The fundamental objects we study

in symbolic dynamics are shifts of finite type (SFTs). Shifts of finite type can be

represented by nonnegative matrices. Let A be an n × n nonnegative matrix. We

consider A as an adjacency matrix of a finite directed graph GA with n ordered ver-

tices and a finite edge set E and Aij = the number of edges from vertex i to vertex

j. Let E be the set of all edges in GA and XA be the set of bi-infinite sequences

(xi) such that for all i ∈ Z, the terminal vertex of xi is the initial vertex of xi+1, i.e.

XA = {(xi)i∈Z| each xixi+1 is a path in GA}. Define the shift map σ : XA → XA by

the rule (σx)i = xi+1. Then (XA, σ) is called an edge shift of finite type defined by

A. Given two matrices A and B, one naturally ask: do they present topologically

conjugate SFTs?

The conjugacy problem for shifts of finite type gives rise to strong shift equiva-

lence theory. In 1973, R.F. Williams introduced strong shift equivalence and showed

that two shifts of finite type are topologically conjugate if and only if their presenting
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matrices are strong shift equivalent over Z+. Let A and B be nonnegative integral

matrices. A and B are elementary strong shift equivalent over Z+ if there are non-

negative integral matrices U, V such that A = UV and B = V U . A and B are

strong shift equivalent over Z+ if there is a chain of nonnegative integral matrices

A = A0, A1, ..., Al = B such that Ai and Ai+1 are elementary strong shift equivalent

over Z+ for all i = 0, 1, ..., l − 1. The number l is the lag of the given strong shift

equivalence. Despite its good-looking definition, strong shift equivalence is still very

difficult to fully understand. Williams also introduced a more tractable equivalence

relation called shift equivalence and conjectured that shift equivalence and strong

shift equivalence over Z+ are the same. A and B are shift equivalent over Z+ if

there are nonnegative integral matrices U, V and a positive integer l such that

Al = UV,Bl = V U,AU = UB,BV = V A.

The conjecture was proved false by K.H. Kim and F.W. Roush in 1992 (reducible

case) and 1997 (irreducible case). Although Williams’ Conjecture is false in general,

the gap between shift equivalence and strong shift equivalence over Z+ remains

mysterious.

In this chapter, we study Williams’ Conjecture by relaxing the problem to the

level of positive rational and real matrices. The definition of elementary strong shift

equivalence, strong shift equivalence, and shift equivalence over Q+ and R+ can be

defined analogously. We expect that the Williams’ conjecture is true for positive

rational (or real) matrices. This is the conjecture posed by Mike Boyle in [Bo02a].

The key ingredients we use are geometric objects called positive invariant tetrahedra
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within the path component method introduced by Kim and Roush. We summarize

the essential features of their method now (providing more detail later).

For the summary we need some definitions. If A is an irreducible matrix,

then its stochasticization P (A) is the stochastic matrix defined as P (A) = 1
λ
D−1AD

where λ > 0 is the Perron eigenvalue of A and D is the diagonal matrix whose vector

of diagonal entries is the stochastic right eigenvector of A. Given an (n−1)×(n−1)

real matrix B with spectral radius < 1, a positive invariant ordered tetrahedron for

B is an n-tuple (v1, ..., vn) of vectors in Rn−1 such that the convex hull of {v1, ..., vn}

is an (n − 1)−dimensional simplex and the convex hull of {v1, ..., vn} is sent to

its interior under B. Let T ord+ (B) denote the space of positive invariant ordered

tetrahedra of B.

Now we can summarize essential features of the path component method of

Kim and Roush for positive matrices A and C.

(1) A,C are SSE-R+ to positive matrices A′, C ′ respectively, which in addition

are similar matrices.

(2) If there is a path At, 0 ≤ t ≤ 1, of positive similar matrices from A = A0

to C = A1, then A and C are SSE-R+. If A and C have rational entries, then they

are SSE-Q+.

(3) For T = (v1, ..., vn) ∈ T ord+ (B) let PT denote the stochastic matrix P such

that viB =
∑n

i=1 pijvj. Then PT is similar to B⊕1. A path Tt in T ord(B), 0 ≤ t ≤ 1,

produces a path of positive similar stochastic matrices PTt , 0 ≤ t ≤ 1.

The main point is that conditions (1) − (3) provide sufficient conditions for

strong shift equivalence over R+ (or Q+). In this framework, Kim and Roush proved
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that matrices over R+(Q+) with equal spectral radius, a simple root of the charac-

teristic polynomial, and with no other nonzero eigenvalue, are SSE-R+(Q+). This is

the unique general sufficient condition for SSE-R+(Q+). The corresponding problem

over Z+ is open. They did this in the end by proving T ord+ (B) is path connected when

B is nilpotent. Consequently we are motivated to study the structure of connected

components of T ord+ (B) for more general B.

In section 1.2, we give general background. In section 1.3, we develop basic

ideas about (ordered) tetrahedra, (ordered) positive tetrahedra, and (ordered) pos-

itive invariant tetrahedra. In section 1.4, we show that T ord+ (B) has only finitely

many connected components (and therefore there are only finitely many SSE-R+

classes for positive matrices of a given size).

Section 1.5 gives some basic moves to produce positive invariant ordered tetra-

hedra which stay in the same connected component. In section 1.6, we give a class

of examples for which the space of positive invariant tetrahedra is disconnected: if

B =

 α 0

0 −β

 , α, β ∈ (0, 1)

and α+ β ≥ 1 then T+(B) is disconnected (an element of T+(B) is a set {v1, ..., vn}

such that (v1, ..., vn) ∈ T ord+ (B)). Unfortunately, we have no example for which we

can prove the space of positive stochastic matrices in the same similarity class is

disconnected.

In section 1.7, we focus on the space of positive invariant tetrahedra for 1× 1

and 2× 2 matrices. We show the following

1. T+(B) is path connected if B has one of the Jordan forms
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(a) (λ), λ ∈ (−1, 1),

(b)

 α 0

0 β

 , α, β ∈ [0, 1),

(c)

 α 0

0 −β

 , α, β ∈ [0, 1) and α + β < 1,

(d)

 −α 0

0 −α

 , α ∈ [0, 1
2
),

(e)

 α 1

0 α

 , α ∈ [0, 1).

2. T+(B) has exactly 2 connected components when B has the Jordan form α 0

0 −β

 , α, β ∈ (0, 1) and α + β ≥ 1.

Whether T+(B) is path connected is still unknown when B has one of the

remaining Jordan forms which are compatible with B⊕1 being similar to a positive

stochastic matrix:

(a)

 −α 0

0 −β

 , α, β ∈ (0, 1) and α + β < 1,

(b)

 −α 1

0 −α

 , α ∈ (0, 1
2
),

(c)

 α β

−β α

 , (α, β) ∈ int(Conv(T )) where T = {(1, 0), (−1
2
,
√
3
2

), (−1
2
,−
√
3
2

)}.

The failure in understanding the number of components of T+(B) in the above
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3 unknown cases is that we still do not know the geometry of T+(B) when B has no

nonnegative eigenvalue.

In section 1.8, we show that every positive stochastic matrix over any subsemir-

ing of R+ containing Q+ is strong shift equivalent to a positive doubly stochastic

matrix. As a consequence, we show that the set of nonzero spectra of doubly stochas-

tic matrices and positive-trace primitive stochastic matrices are the same. In section

1.9, we give an example of a class of 2 × 2 positive, similar, SSE-R+ matrices for

which there is no uniform bound on the lag and matrix size required for a SSE-R+.

The examples are the stochastic matrices

Pt =
1

4

 3 + t 1− t

1 + t 3− t

 , 0 ≤ t < 1.

Finally, in section 1.10 we collect some miscellaneous results involving the space

T+(B). For any n ∈ N, we show that T+(B) is path connected if B has the following

Jordan form:

(a) B = 0n.

(b) B = λIn where − 1
n
< λ < 1.

(c) B is nilpotent (this is a reproof of the Kim-Roush result).

(d) B = λIn +N where N is nilpotent.

(e) B = (λ)⊕ 0n where −1 < λ < 1.
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1.2 Definitions and Background

1.2.1 Nonnegative Matrices

Let A = (aij) be a real n× n matrix. A is nonnegative if aij ≥ 0 for all i, j. A

is positive if aij > 0 for all i, j. A is irreducible if A is nonnegative, square, and for

any (i, j) there is some n such that (An)ij > 0. A is primitive if A is nonnegative,

square, and there is some n ∈ N such that An is positive. The period per(i) of a

state i is the greatest common divisor of all integers n ∈ N for which (An)ii > 0. We

define per(i) =∞ if no such integers exist. The period of A, denoted by per(A), is

the greatest common divisor of per(i) that are finite, or is ∞ if per(i) = ∞ for all

i = 1, ..., n. A is aperiodic if per(A) = 1. A is primitive if and only if it is irreducible

and aperiodic. A is quasi-stochastic if every row sum of A is 1. A is stochastic if

it is nonnegative and quasi-stochastic. A is doubly stochastic if it is stochastic and

every column sum of A is 1.

We will use the following properties of nonnegative matrices.

Theorem 1.2.1. (Perron) Let A be a primitive matrix. Then there exists an eigen-

value λ of A, called the Perron eigenvalue, with the following properties:

(a) λ > 0,

(b) λ is a simple root of the characteristic polynomial of A,

(c) λ has a positive eigenvector v,

(d) If α is any other eigenvalue of A then |α| < λ,

(e) any nonnegative eigenvector of A is a positive multiple of v.
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A vector l = (l1, ..., ln) is called the left Perron eigenvector of an n×n stochastic

matrix P if l is positive, l1 + · · · + ln = 1, and lP = l. For any square matrix A,

the Jordan form away from zero of A, J×(A) , is the matrix obtained by removing

from the Jordan form of A all rows and columns with zeros on the main diagonal.

1.2.2 Shift Spaces and Shifts of Finite Type

Let A be a finite set of symbols, called the alphabet, and let AZ = {x =

(xi)i∈Z : xi ∈ A for all i ∈ Z} denote the set of all bi-infinite sequences of elements

in A. AZ is called the full A-shift. The shift map σ on the full shift AZ is given

by the rule (σ(x))i = xi+1. We topologize A with the discrete topology. Then the

topology of AZ is given by the product topology. The metric defined by d(x, x) = 0

and for x 6= y, d(x, y) = 1
k+1

where k = min{|i| : xi 6= yi} induces the product

topology on AZ. A word in the full shift AZ is a finite sequence a1a2 · · · an where

ai ∈ A for all i ∈ {1, 2, ..., n}. A subshift or a shift space of AZ is a compact, shift

invariant subspace of the full shift AZ together with the restriction of the shift map.

A shift of finite type is a shift space X with the property that there is a finite list

of words such that X consists of precisely the sequences in the full shift that do not

contain any of these words. For a word w of length n and k ∈ N, we define the

cylinder set Xk
w as Xk

w = {x ∈ X : x[k, k + n − 1] = w}. For k = 0, we denote Xw

for the cylinder set X0
w.

Suppose (X, σX) and (Y, σY ) are shift spaces. A map f : X → Y is called a

code if it is continuous and f ◦ σX = σY ◦ f . f is a block code if there is a number
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n and a function F from the set of words of length 2n + 1 in X to a finite set of

alphabets in Y such that (f(x))i = F (xi−n · · ·xi+n). The Curtis - Hedlund - Lyndon

Theorem asserts that every code is a block code. If f is surjective, it is called a

factor map. If f is injective, then it is called an embedding. If it is bijective then it

is called a conjugacy of subshifts. We say that (X, σX) and (Y, σY ) are topologically

conjugate if there is a conjugacy f : X → Y .

Let A be an n×n nonnegative integral matrix. A can be viewed as an adjacency

matrix of a finite directed graph G with n ordered vertices and a finite edge set E

and Aij = the number of edges from vertex i to vertex j. Let E be the set of

alphabet and XA be the set of bi-infinite sequences (xi) such that for all i ∈ Z,

the terminal vertex of xi is the initial vertex of xi+1. Then XA as a subset of the

full E shift with the restriction of the shift map σA on XA is a shift of finite type,

called the edge shift defined by A. Let (XA, σA) denote the edge shift defined by

A. Every shift of finite type is topologically conjugate to an edge shift (XA, σA) for

some nonnegative integral matrix A. A shift space (X, σX) is irreducible if for every

ordered paired of words u, v there is a word w such that uwv is also a word in X.

(X, σX) is mixing if for every ordered pair of words u, v there is an N such that

for each n ≥ N there is a word w of length n such that uwv is also a word in X.

An edge shift of finite type defined by A (XA, σA) is irreducible if and only if A is

irreducible and it is mixing if and only if A is primitive. The class of mixing shifts

of finite type are the basic class of SFTs. Often, problems involving SFTs can be

reduced to MSFTs.
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1.2.3 Strong Shift Equivalence and Shift Equivalence

Let A and B be square matrices over a semiring R containing 0 and 1 as the

additive and multiplicative identities.

1. A is elementary strong shift equivalent over R(ESSE-R) to B if there exist

matrices U, V over R with A = UV,B = V U.

2. A is strong shift equivalent over R(SSE-R) to B if there exists a finite

sequence of matrices over R A = A0, A1, ..., Al = B such that Ai is ESSE-R to Ai+1

for all i = 0, ..., l − 1. Such a finite sequence is a strong shift equivalence over R.

The number l is the lag of the strong shift equivalence. By the size of the strong

shift equivalence, we mean max{ni : 0 ≤ i ≤ l, Ai is ni × ni}.

3. A is shift equivalent over R(SE-R) to B if there exist matrices U, V over R

and l ∈ N such that Al = UV,Bl = V U and AU = UB, V A = BV

For any semiringR, SSE-R and SE-R are equivalence relations whereas ESSE-

R is not transitive. In fact, SSE-R is the transitive closure of ESSE-R. It is obvious

that ESSE-R implies SSE-R for any semiring R. For all the semiring R under our

consideration the implication cannot be reversed. It is not difficult to show that

SSE-R implies SE-R. For example, suppose that

A = U0V0,

A1 = V0U0 = U1V1,

A2 = V1U1 = U2V2

B = V2U2.

ThenA3 = U0U1U2V2V1V0 andB3 = V2V1V0U0U1U2. Thus we choose U = U0U1U2, V =
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V2V1V0 and l = 3. It is known that if the semiringR has nice algebraic structure then

SE-R implies SSE-R. For example, if R is a Dedekind domain then SE-R implies

SSE-R [BoH93]. Thus SE-R implies SSE-R for R = Z,Q,R. The main interest in

SSE-R and SE-R is when R = Z+ and R = Q+. Strong shift equivalence and shift

equivalence were introduced in a seminal paper of R. F. Williams in [Wi73]. The

following theorem of Williams gives the meaning of strong shift equivalence over Z+

for symbolic dynamics.

Theorem 1.2.2. [Wi73] (XA, σA) and (XB, σB) are topologically conjugate if and

only if A is SSE-Z+ to B.

Shift equivalence over Z+ also has a meaning in symbolic dynamics. We say

that (XA, σA) and (XB, σB) are eventually conjugate if there is an N ∈ N such that

(XA, σ
n
A) and (XB, σ

n
B) are topologically conjugate for all n ≥ N .

Theorem 1.2.3. [LM95, Theorem 7.5.15] (XA, σA) and (XB, σB) are eventually

conjugate if and only if A is SE-Z+ to B.

The advantages of using SE-Z+ rather than SSE-Z+ is that SE-Z+ deals with

equations of 4 matrices (not an unknown chain as SSE-Z+ does). SE-Z+ is decid-

able [KR88] whereas it is still unknown if SSE-Z+ is decidable. In 1974, Williams

conjectured that SE-Z+ implies SSE-Z+. The conjecture was refuted by Kim and

Roush in the reducible case [KR92a] and then the irreducible case [KR99].
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1.2.4 Rational Strong Shift Equivalence

Our main interest in this chapter is the rational strong shift equivalence of pos-

itive matrices. Understanding this relation is a natural step toward understanding

SSE-Z+, and a natural matrix problem independently. SSE-Q+ can also be given a

description in symbolic dynamics. Two shifts of finite type (XA, σA) and (XB, σB)

are rationally isomorphic if there is some k ∈ N such that (X[k]×XA, σ[k]×σA) and

(X[k] × XB, σ[k] × σB) are topologically conjugate, or equivalently, if there is some

k ∈ N such that (XkA, σkA) and (XkB, σkB) are topologically conjugate. Then it is

easy to see that (XA, σA) and (XB, σB) are rationally isomorphic if and only if A is

SSE-Q+ to B.

The basic elementary strong shift equivalences are conjugations by permuta-

tion matrices and state splitting and amalgamations. If A and B are matrices over

a semiring R with B = PAP−1 where P is a permutation matrix then A and B

are ESSE-R because A = UV and B = V U where U = AP−1 and V = P . State

splitting and amalgamations are basic elementary strong shift equivalence which

connect matrices from different dimensions. They were first introduced in [Wi73]

for matrices over Z+. In this thesis, we extend the same idea to matrices over sub-

semirings of R+. Let A be an n× n nonnegative matrix over a subsemiring of R+.

Let A′ be an (n + 1) × n matrix obtained by splitting row i of A into rows i and

i+ 1 and the other rows of A and A′ are the same. We duplicate column i of A′ and

form an (n + 1) × (n + 1) matrix B. Let U be an n × (n + 1) matrix obtained by

duplicating column i of the identity matrix In and set V = A′. Then A = UV and
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B = V U . We say that B is obtained from A by a row splitting and A is obtained

from B by a row amalgamation.

Example 1.2.4. Let A =


2 1

2
1

1
3

1 3

1 4 1
4

 . We split the second row of A to obtain

A′ =



2 1
2

1

1
6

1
3

2

1
6

2
3

1

1 4 1
4


= V.

Then we duplicate the second column of A′ and obtain

B =



2 1
2

1
2

1

1
6

1
3

1
3

2

1
6

2
3

2
3

1

1 4 4 1
4


.

We get the matrix U by duplicating the second column of I3:

U =


1 0 0 0

0 1 1 0

0 0 0 1

 .

Then A = UV and B = V U .

Column splitting and column amalgamations are defined similarly by switching

the role of rows to columns. it is well-known that every strong shift equivalence can

be factored as a series of row splitting followed by a conjugacy and then by column
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amalgamations [KR91a]. The study of rational strong shift equivalence for primitive

rational matrices can be reduced to the positive case by the following result.

Theorem 1.2.5. [KR86] Any primitive rational square matrix with a positive trace

is strong shift equivalent over Q+ to a positive matrix.

Mike Boyle also stated the following conjecture in [Bo02a]

Conjecture 1.2.6. (Positive Rational Shift Equivalence Conjecture) Suppose A,B

are square positive matrices which are shift equivalent over Q+. Then A,B are

strong shift equivalent over Q+.

The following is the only known theorem which asserts for some unital subring

R of R, that all matrices in some nontrivial SE-R+ class are SSE-R+.

Theorem 1.2.7. [KR90] Let R be Q+ or R+. Suppose A and B are square matrices

over R similar to (λ) ⊕ N with λ > 0 and N is nilpotent. If A and B are SE-R,

then A and B are SSE-R.

To prove this theorem, Kim and Roush built up a more general structure

for approaching the problem geometrically. First, they move the shift equivalence

classes to similarity classes by proving the following theorem.

Theorem 1.2.8. [KR90] Let S be Q or R. Let A,B be positive matrices. If A is

SE-S+ to B then there are positive matrices C,D over S such that A is SSE-S+ to

C, B is SSE-S+ to D, and C,D are similar over S.

Then they establish the path component method.
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Theorem 1.2.9. [KR91a] Let A,B be positive real matrices such that there is a

path Pt of positive real similar matrices joining P0 = A and P1 = B. Then A and

B are strong shift equivalent over R+. If in addition A and B are rational matrices,

then A and B are SSE-Q+.

Consequently we are motivated to study the path connected components of

positive real matrices in the same similarity class over R. We recall a standard

fundamental construction.

Definition 1.2.10. If A is an irreducible matrix with spectral radius λ, then the

stochasticization of A is the stochastic matrix P (A) = 1
λ
D−1AD, where D is the

diagonal matrix whose vector of diagonal entries is the stochastic right eigenvector

of A.

Example 1.2.11. Let A =

 10 3

3 2

. Then λ = 11 and D =

 3
4

0

0 1
4

, so

P (A) = 1
11

 4
3

0

0 4


 10 3

3 2


 3

4
0

0 1
4

 = 1
11

 10 1

9 2

 .

Given c > 0, At is a path of positive similar matrices from A0 to A1 if and

only if cAt is a path of positive similar matrices from cA0 to cA1. So, without loss of

generality, we may study the path components of positive real matrices of spectral

radius 1 in the same similarity class. For such a matrix A, let P (A) = D−1AD be

its stochasticization as above. Now (tD + (1 − t)I)−1A(tD + (1 − t)I), 0 ≤ t ≤ 1,

gives a path of positive similar matrices from A to P (A). On the other hand, if

At, 0 ≤ t ≤ 1, is a path of positive similar matrices from A to B, and Pt = D−1t AtDt

is the stochasticization as above, then Pt, 0 ≤ t ≤ 1, is a path of positive similar
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stochastic matrices from P (A) to P (B). So, there is a path of positive similar

matrices from A to B if and only if there is a path of positive similar stochastic

matrices from P (A) to P (B). Paths of positive stochastic matrices can be studied

geometrically as paths of positive invariant tetrahedra.

1.3 Positive Invariant Tetrahedra

Positive invariant tetrahedra are basic tools in the path component method

developed by Kim and Roush. They play an important role in the proof of Theo-

rem 1.2.7. In this section we study basic properties of tetrahedra, positive tetrahe-

dra, and positive invariant tetrahedra which will be used throughout this chapter.

1.3.1 Tetrahedra and Positive Tetrahedra

Definition 1.3.1. Let T be a set of n vectors in Rn−1. T is a tetrahedron if the

convex hull of T , Conv(T ), is an (n − 1)− dimensional (geometric) simplex. T is

a positive tetrahedron when in addition the interior of its convex hull contains the

origin. An ordered (positive) tetrahedron is a tuple of vectors whose the set of all

vectors in the tuple forms a (positive) tetrahedron. We denote T = {v1, ..., vn} for

a tetrahedron and T = (v1, ..., vn) for an ordered tetrahedron.

Example 1.3.2. T0 = {(1, 0), (0, 1), (−1, 0)} is a tetrahedron but not a positive tetra-

hedron. T1 = {(1, 0), (0, 0), (−1, 0)} is not a tetrahedron. T2 = {(1, 0), (0, 1), (−1,−1)}

is a positive tetrahedron.

We recall some basic facts in the next two propositions. The results hold for
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both tetrahedra and ordered tetrahedra.

Proposition 1.3.3. Let T = {v1, ..., vn} ⊆ Rn−1. The following statements are

equivalent

(a) T is a tetrahedron.

(b) For every i, the set {v1 − vi, ..., vi−1 − vi, vi+1 − vi, ..., vn − vi} is a basis of

Rn−1.

(c) There exists i such that the set {v1 − vi, ..., vi−1 − vi, vi+1 − vi, ..., vn − vi}

is a basis of Rn−1.

(d) If
∑n

i=1 rivi =
∑n

i=1 sivi where
∑n

i=1 ri =
∑n

i=1 si then ri = si for all

i = 1, ..., n.

(e) If
∑n

i=1 civi = 0 and
∑n

i=1 ci = 0 then ci = 0 for all i = 1, ..., n.

(f) For every v ∈ Rn−1, there is a unique representation v =
∑n

i=1 civi where

ci ∈ R, i = 1, ..., n and
∑n

i=1 ci = 1.

(g) Conv(T ) has nonempty interior in Rn−1.

Proof. (a) ⇒ (b) Fix i ∈ {1, ..., n}. If T is a tetrahedron, then Conv(T ) is an

(n− 1)−dimensional simplex. Thus {v1 − vi, ..., vi−1 − vi, vi+1 − vi, ..., vn − vi} is a

linearly independent set, hence a basis of Rn−1.

(b) ⇒ (c) This is obvious.

(c) ⇒ (d) Without loss of generality, assume that {v2 − v1, ..., vn − v1} is a
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basis of Rn−1. Suppose that
∑n

i=1 rivi =
∑n

i=1 sivi where
∑n

i=1 ri =
∑n

i=1 si. Then

n∑
i=2

(ri − si)(vi − v1) =
n∑
i=1

(ri − si)(vi − v1)

=
n∑
i=1

rivi −
n∑
i=1

sivi −
( n∑
i=1

ri −
n∑
i=1

si

)
v1

= 0.

Thus ri = si for all i = 2, ..., n. Since
∑n

i=1 ri =
∑n

i=1 si, r1 = s1. Therefore, ri = si

for all i = 1, ..., n.

(d) ⇒ (e) Suppose that
∑n

i=1 civi = 0 and
∑n

i=1 ci = 0. Then
∑n

i=1 civi =∑n
i=1 0 · vi and

∑n
i=1 ci =

∑n
i=1 0. Thus ci = 0 for all i = 1, ..., n.

(e) ⇒ (a) Suppose that
∑n

i=1 ci(vi − v1) = 0. Then

(
−

n∑
i=2

ci

)
v1 +

n∑
i=2

civi =
n∑
i=1

ci(vi − v1)

= 0.

By assumption, we have ci = 0 for all i = 2, ..., n. This shows that {v2−v1, ..., vn−v1}

is a linear independent set of n − 1 vectors in Rn−1, hence a basis. Thus T is a

tetrahedron.

(a)-(e) ⇒ (f) Suppose v ∈ Rn−1. Then v − v1 =
∑n

i=2 ci(vi − v1) for some

scalar ci, so v = (1 −
∑n

i=2 ci)v1 +
∑n

i=2 civi =
∑n

i=1 divi where d1 = 1 −
∑n

i=2 ci

and di = ci for all i = 2, ..., n. Note that
∑n

i=1 di = 1. Then (d) implies that the

representation is unique.

(f) ⇒ (e) Suppose that
∑n

i=1 civi = 0 and
∑n

i=1 ci = 0. Suppose there is

an i such that ci 6= 0. Then ci = −
∑

k 6=i ci and vi = − 1
ci

∑
k 6=i ckvk. Note that
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∑
k 6=i

−ck
ci

= 1. But vi = 1 · vi +
∑

k 6=i 0 · vk. Since the representation is unique,

ck = 0 for all k 6= i. This implies ci = 0 which is a contradiction. Therefore,

ci = 0, 1 ≤ i ≤ n.

(f) ⇒ (g) For any v ∈ Rn−1, define f(v) = (c1, ..., cn) where v =
∑n

i=1 civi and∑n
i=1 ci = 1. Since the representation is unique, f is well-defined and continuous.

Let x0 = 1
n

∑n
i=1 vi. Then x0 ∈ Conv(T ). Since f(x0) = ( 1

n
, ..., 1

n
) has positive

coordinates in Rn, there exists an open ball B(x0, ε) ⊂ Rn−1 for some ε > 0 such

that f(x) has positive coordinates for all x ∈ B(x0, ε) by continuity of f . This shows

that B(x0, ε) ⊂ Conv(T ) and hence x0 is in the interior of Conv(T ).

(g) ⇒ (f) Let v ∈ Rn−1. Choose x0 ∈ int(Conv(T )). Then the origin is in

the interior of the convex hull of {v1 − x0, ..., vn − x0}. There is t > 0 such that

t(v − x0) is in the convex hull of {v1 − x0, ..., vn − x0}. Thus there is a unique

representation 0 =
∑n

i=1 ri(vi − x0) and t(v − x0) =
∑n

i=1 si(vi − x0) where ri, si >

0, 1 ≤ i ≤ n and
∑n

i=1 ri =
∑n

i=1 si = 1. Let ci = ri + si−ri
t
, 1 ≤ i ≤ n. Then∑n

i=1 ci =
∑n

i=1 ri + 1
t

∑n
i=1(si − ri) = 1 and

n∑
i=1

civi − x0 =
n∑
i=1

ci(vi − x0)

=
n∑
i=1

ri(vi − x0) +
1

t

n∑
i=1

si(vi − x0)−
1

t

n∑
i=1

ri(vi − x0))

= v − x0

Hence v =
∑n

i=1 civi.

Proposition 1.3.4. Let T = {v1, ..., vn} ⊆ Rn−1 be a tetrahedron. Then the

following statements are equivalent.
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(a) T is a positive tetrahedron.

(b) There are positive scalars ci such that
∑n

i=1 civi = 0 and
∑n

i=1 ci = 1.

(c) There are positive scalars ci such that
∑n

i=1 civi = 0.

Proof. (a)⇒ (b) Since T is a positive tetrahedron, the origin must be in the interior

of Conv(T ). Thus 0 =
∑n

i=1 civi for some ci > 0, 1 ≤ i ≤ n and
∑n

i=1 ci = 1.

(b) ⇒ (c) This is obvious.

(c) ⇒ (a) Suppose that
∑n

i=1 ci = 0 for some ci > 0, 1 ≤ i ≤ n. For each i, let

di = ci
c1+···+cn . Then

∑n
i=1 ci = 0 and

∑n
i=1 di = 1. Thus the origin is in the interior

of Conv(T ) and hence T is a positive tetrahedron.

In many situations, it is convenient to represent a (ordered) tetrahedron with

a matrix. We may represent an ordered tetrahedron T = (v1, ..., vn) by an n×(n−1)

matrix whose row i is the vector vi,i.e.

T =


v1

...

vn

 .

For a lighter notation, we will use T for both the ordered tetrahedron and its associ-

ated matrix. For a tetrahedron S = {w1, ..., wn}, we may represent S by the matrix

of the ordered tetrahedron (w1, ..., wn). Also, sometimes we will choose an order for

S tacitly.
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1.3.2 New Tetrahedra from Old

In this section, we develop several ways to construct a new tetrahedron and

positive tetrahedron from the given one. These results will be used in later sections.

Proposition 1.3.5. Let T = {v1, ..., vn} ⊆ Rn−1 be a positive tetrahedron.

(a) If A ∈ GLn−1(R), then TA = {v1A, ..., vnA} is a positive tetrahedron.

(b) If A ∈ Sn(R), then AT is a positive tetrahedron.

Proof. (a) Since T is a tetrahedron and A is invertible, the set {v2A−v1A, ..., vnA−

v1A} is a basis of Rn−1. Thus TA is a tetrahedron by Proposition 1.3.3 (c).

(b) Let AT = {w1, ..., wn}. Suppose that c1w1 + · · ·+ cnwn = 0 with c1 + · · ·+

cn = 0. Let (d1, ..., dn) = (c1, ..., cn)A. Then we have (d1, ..., dn)T = (c1, ..., cn)AT =

0. Let r be the row sum of A. Then

d1 + · · ·+ dn = (d1, ..., dn)(1, ..., 1)t

= (c1, ..., cn)A(1, ..., 1)t

= r(c1, ..., cn)(1, ..., 1)t

= r(c1 + · · ·+ cn)

= 0.

We have that (d1, ..., dn) = 0 since T is a tetrahedron. This implies (c1, ..., cn) = 0

since A is invertible. Thus AT is a tetrahedron by Proposition 1.3.3 (e).

Proposition 1.3.6. Let T0 = {v1, ..., vn−1, vn}, T1 = {v1, ..., vn−1, wn} be positive

tetrahedra. Then Conv(T0)∩Conv(T1) is the convex hull of a positive tetrahedron.
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Proof. Clearly, Conv(T0)∩Conv(T0) contains a neighborhood of the origin. The issue

is to show there is a single vector u such that this intersection equals Conv(v1, ..., vn−1, u).

For i = 1, ..., n− 1, let

Gi be the supporting hyperplane of T0 containing T0 − {vi},

Hi be the supporting hyperplane of T1 containing T1 − {vi},

Hn be the supporting hyperplane of T0 and T1 containing {v1, ..., vn−1},

G+
i be the half space containing T0 and having Gi as its boundary, and

H+
i be the half space containing T1 and having Hi as its boundary.

Then Conv(T0) = G+
1 ∩ G+

2 ∩ · · · ∩H+
n and Conv(T1) = H+

1 ∩H+
2 ∩ · · · ∩H+

n . Let

T
(i)
1 = G+

i ∩ G+
i−1 ∩ · · · ∩ G+

1 ∩ T1. We will show that T
(i)
1 is a simplex for any

i = 1, ..., n− 1. If T
(1)
1 = G+

1 ∩ T1 = Conv(T1) then for i = 1 we are done. Suppose

that T
(1)
1 6= Conv(T1). Note that

v1 = H2 ∩H3 ∩ · · · ∩Hn,

v2 = G1 ∩H3 ∩ · · · ∩Hn,

...

vn−1 = G1 ∩H2 ∩ · · · ∩Hn−2 ∩Hn

and H2∩· · ·∩Hn−1 is a line passing through v1 and wn, say L. Thus G1∩H2∩· · ·∩

Hn−1 is empty, a point, or the line L. If G1∩H2∩· · ·∩Hn−1 is empty then G+
1 ∩T1 =

T1 which contradicts the assumption. Since v1 6∈ G1, G1 ∩ H2 ∩ · · · ∩ Hn−1 6= L.

Thus G1 ∩H2 ∩ · · · ∩Hn−1 is a point. Let un = G1 ∩H2 ∩ · · · ∩Hn−1. We will show

that

G+
1 ∩H+

2 ∩ · · · ∩H+
n = Conv(v1, ..., vn−1, un).
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Because un is the convex combination of v1 and wn, both of which are in G+
1 ∩H+

n , we

have G+
1 ∩H+

2 ∩ · · · ∩H+
n ⊃ Conv(v1, ..., vn−1, un). To show the other containment,

suppose that x ∈ G+
1 ∩ H+

2 ∩ · · · ∩ H+
n . Determine ai in Rn−1 by the conditions

G1 = {x ∈ Rn−1 : x · a1 = 1} and Hi = {x ∈ Rn−1 : x · ai = 1} for i = 2, ..., n.

Then G+
1 = {x ∈ Rn−1 : x · a1 ≤ 1} and H+

i = {x ∈ Rn−1 : x · ai ≤ 1} for

i = 2, ..., n. Because {v1, ..., vn−1, un} is a tetrahedron, there are scalars ci such that

x = c1v1 + · · ·+ cn−1vn−1 + cnun and c1 + · · ·+ cn = 1. Then

x · a1 = c1v1 · a1 + · · ·+ cn−1vn−1 · a1 + cnun · a1

= c1v1 · a1 + c2 + · · ·+ cn

= c1v1 · a1 + 1− c1.

Thus c1 = 1−x·a1
1−v1·a1 . Similarly, ci = 1−x·ai

1−vi·ai for i = 2, ..., n− 1 and cn = 1−x·an
1−un·an . Since

x ∈ G+
1 , x · a1 ≤ 1 (the denominators are positive; e.g., since v1 ∈ G+

1 \ G1, v1 ·

a1 < 1 ). Since v1 ∈ G+
1 \ G1, we have v1 · a1 < 1, and thus c1 = 1−x·a1

1−v1·a1 ≥ 0.

Similarly, ci ≥ 0 for all i = 2, ..., n. Hence x ∈ Conv(v1, ..., vn−1, un). This proves

the claim. Consequently, T
(1)
1 is a tetrahedron. By using the same argument, T

(i)
1

is a tetrahedron for any i = 2, ..., n− 1. Thus

Conv(T0) ∩ Conv(T1) = H+
n ∩ T

(n−1)
1

= T
(n−1)
1

is a tetrahedron since T
(n−1)
1 ⊆ Conv(T1) ⊆ H+

n . This completes the proof.

Theorem 1.3.7. Let T0 = {v1, ..., vn} be a positive tetrahedron. Then the following

statements hold.
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(a) If T1 = {w1, ..., wn} ⊂ Rn−1 and Conv(T0) ⊆ Conv(T1), then T1 is a positive

tetrahedron.

(b) If c1, c2, ..., cn are positive then T1 = {c1v1, c2v2, ..., cnvn} is a positive

tetrahedron.

(c) If T1 = {v1, ..., vn−1, wn} is a positive tetrahedron then Tt = {v1, ..., vn−1, (1−

t)vn + twn}, 0 ≤ t ≤ 1 are positive tetrahedra.

Proof. (a) Since Conv(T0) has nonempty interior, Conv(T1) has nonempty interior.

Clearly, the origin is in the interior of Conv(T1). Thus T1 is a positive tetrahedron.

(b) Let c = min{c1, ..., cn}. Then T2 = {cv1, ..., cvn} is clearly a positive tetra-

hedron. Moreover, Conv(T2) ⊆ Conv(T1). Consequently, T1 is a positive tetrahedron

by part (a).

(c) By Proposition 1.3.6, Conv(T0)∩Conv(T1) is the convex hull of a tetrahe-

dron. Let v ∈ Conv(T0)∩Conv(T1). Suppose that v = c1v1+· · ·+cn−1vn−1+cnvn and

v = d1v1+· · ·+dn−1vn−1+dnwn for some cj, dj. Then tv
cn

= c1t
cn
v1+· · ·+ cn−1t

cn
vn−1+tvn

and (1−t)v
dn

= d1(1−t)
dn

v1 + · · ·+ dn−1(1−t)
dn

vn−1 + (1− t)wn. Thus

[ t
cn

+
1− t
dn

]
v =

[c1t
cn

+
d1(1− t)

dn

]
v1 + · · ·+

[cn−1t
cn

+
dn−1(1− t)

dn

]
vn−1 + vn(t)

v =
[c1dnt+ d1cn(1− t)

dnt+ cn(1− t)

]
v1 + · · ·+

[cn−1dnt+ dn−1cn(1− t)
dnt+ cn(1− t)

]
vn−1

+
[ cndn
dnt+ cn(1− t)

]
vn(t).

Hence v ∈ Conv(Tt) for all t ∈ [0, 1]. By part (a), Tt, 0 ≤ t ≤ n are positive

tetrahedra.
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1.3.3 Invariant Tetrahedra and Positive Invariant Tetrahedra

Let B be an (n − 1) × (n − 1) real matrix. For the rest of this chapter, we

always assume that B has all eigenvalues less than 1 in absolute value.

Definition 1.3.8. Let T = {v1, ..., vn} be a (ordered) tetrahedron. T is called an

(ordered) invariant tetrahedron for B if the convex hull of T is sent to itself under

B. T is called a (ordered) positive invariant tetrahedron of B if the convex hull of

T is sent to its interior under B.

Proposition 1.3.9. Let T be an invariant tetrahedron of a matrix B. Then the

origin must be in the convex hull of T . If T is a positive invariant tetrahedron of B

then T is also a positive tetrahedron.

Proof. Note that TB ⊆ Conv(T ). Then TBn ⊆ Conv(T )) for all n ∈ N. But

limn→∞ TB
n = {0}, so {0} ⊆ Conv(T ). If T is a positive invariant tetrahedron

of B then the origin must be in the interior of Conv(T ). Thus T is a positive

tetrahedron.

Theorem 1.3.10. Let T = {v1, ..., vn} be a tetrahedron. Then T is a (positive)

invariant tetrahedron of B if and only if there is a (positive) stochastic matrix P

such that TB = PT .

Proof. Suppose that T = {v1, ..., vn} is an invariant tetrahedron of B. For each

i ∈ {1, ..., n} we have viB =
∑n

j=1 pijvi for some pij ≥ 0 such that
∑n

j=1 pij = 1

since viB is in Conv(T ). Put P = (pij). Then P is stochastic and satisfies the

equation TB = PT .
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Suppose conversely that TB = PT for some (positive)stochastic matrix P .

Let v =
∑n

i=1 civi where ci ≥ 0 and
∑n

i=1 ci = 1. Then

vB =
n∑
i=1

civiB

=
n∑
i=1

ci

( n∑
j=1

pijvj

)
=

n∑
i=1

divi

where di =
∑n

j=1 cjpji. Note that di ≥ 0 and

n∑
i=1

di =
n∑
i=1

n∑
j=1

cjpji

=
n∑
j=1

n∑
i=1

cjpji

=
n∑
j=1

cj

( n∑
i=1

pji

)
=

n∑
j=1

cj

= 1.

Thus vB is in the convex hull of T . Note that T is positive invariant if and only if

pij > 0 for all i, j.

Let T+(B) denote the set of all positive invariant tetrahedra of B, T ord+ (B)

denote the space of ordered positive invariant tetrahedra of B, and S+(B) denote

the space of positive stochastic matrices similar to B ⊕ 1. We topologize T+(B)

by using the Hausdorff metric and topologize T ord+ (B) and S+(B) by using the

subspace topology of the Euclidean space. The space of positive invariant tetrahedra
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has proved its worth in the study of rational strong shift equivalence by Kim and

Roush.

Remark 1.3.11. There is a natural continuous function T ord+ (B) → T+(B) defined

by (v1, ..., vn) 7→ {v1, ..., vn}. Thus a path in T ord+ (B) induces a path in T+(B).

Theorem 1.3.12. Let T be an ordered positive tetrahedron and denote 1 =

(1, 1, ..., 1)t . Then T ∈ T ord+ (B) if and only if the matrix (T 1)(B ⊕ 1)(T 1)−1

is positive.

Proof. If T ∈ T+(B) then there is a positive stochastic matrix P such that TB =

PT . This implies that (T 1)(B ⊕ 1) = P (T 1), so (T 1)(B ⊕ 1)(T 1)−1 = P is

positive. Conversely, suppose that P = (T 1)(B ⊕ 1)(T 1)−1 is positive. We will

show that P has row sum 1. Note that (T 1)(0, 0, ..., 1)t = (1, 1, ..., 1)t. Thus

P (1, 1, ..., 1)t = (T 1)(B ⊕ 1)(T 1)−1(1, 1, ..., 1)t

= (T 1)(B ⊕ 1)(0, 0, ..., 1)t

= (T 1)(0, 0, ..., 1)t

= (1, 1, ..., 1)t.

Hence P is positive and stochastic. Then we have (T 1)(B ⊕ 1) = P (T 1) and it

can be reduced to TB = PT . Therefore, T ∈ T+(B).

Definition 1.3.13. For an ordered tetrahedron T = (v1, ..., vn) in Rn−1, let PT be

the quasi-stochastic matrix P such that viB =
∑n

i=1 pijvj, 1 ≤ i ≤ n.

Remark 1.3.14. If T is an ordered invariant tetrahedron of B then PT is stochastic.

If in addition T is positive then PT is positive and stochastic.
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For any T ∈ T ord+ (B), define πB(T ) = PT . We recall the following theorem in

[KR90].

Theorem 1.3.15. [KR90] πB : T ord+ (B)→ S+(B) is continuous and surjective.

Proof. By Theorem 1.3.12, we have PT = (T 1)(B ⊕ 1)(T 1)−1. Thus πB is contin-

uous. Let P ∈ S+(B). Suppose that P = C(B ⊕ 1)C−1 for some C ∈ GLn(R). Let

Cn denote the last column of C. Then PC = C(B ⊕ 1) implies PCn = Cn. Thus

Cn is a right eigenvector of P corresponding to 1, so Cn = k(1, 1, ..., 1)t for some

k > 0. Let Ri be the ith row of C. Then Ri = (vi, k) for some vi ∈ Rn−1, 1 ≤ i ≤ n.

Define T = (v1, ..., vn). We will show that T is an ordered tetrahedron. Since

C is invertible, {R1, ..., Rn} is a basis of Rn. Suppose that
∑n

i=2 ci(vi − v1) = 0.

Then
∑n

i=2 ciRi − (
∑n

i=2 ci)R1 =
∑n

i=2 ci(Ri − R1) =
∑n

i=2 ci(vi − v1, 0) = 0. Thus

ci = 0 for all i = 2, ..., n. By Proposition 1.3.3 (c), T is an ordered tetrahedron as

claimed. Note that PC = (PT,Cn) and C(B ⊕ 1) = (TB,Cn), so TB = PT . By

Theorem 1.3.10, T ∈ T ord+ (B) and PT = P . Thus πB is surjective.

The following proposition suggests us to study the space of positive invariant

tetrahedra for some simple matrix B, e.g. B may be chosen as the real Jordan

canonical form.

Proposition 1.3.16. Let A and B be similar matrices over R. Then

(a) T ord+ (A) is homeomorphic to T ord+ (B).

(b) T+(A) is homeomorphic to T+(B).

Proof. Suppose that A = CBC−1. For any T ∈ T ord+ (A), there is a positive stochas-

tic matrix PT such that TA = PTT . Then we have (TC)B = TAC = PT (TC). Thus
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TC ∈ T ord+ (B). The map T 7−→ TC defines a homeomorphism between T ord+ (A)

and T ord+ (B). The same argument can be applied for T+(A) and T+(B).

Proposition 1.3.17. Let T = (v1, ..., vn) ∈ T ord+ (B) and l = (l1, ..., ln) ∈ int(∆n−1).

Then the following statements are equivalent.

(a) l1v1 + · · ·+ lnvn = 0.

(b) l is the left Perron eigenvector of PT .

Proof. (a) Suppose that l1v1 + · · ·+ lnvn = 0. Then

(l1v1 + · · ·+ lnvn)B = 0

(l1p11 + · · ·+ lnpn1)v1 + · · ·+ (l1p1n + · · ·+ lnpnn)vn = l1v1 + · · ·+ lnvn.

Applying Proposition 1.3.3 (d), we get
∑n

i=1 lipij = lj for all j = 1, 2, ..., n. Conse-

quently, we have lPT = l and hence l is the left Perron eigenvector of PT .

(b) Suppose that lPT = l. Then

(l1v1 + · · ·+ lnvn)B = l1v1B + l2v2B + · · ·+ lnvnB

= l1(p11v1 + · · ·+ p1nvn) + · · ·+ ln(pn1v1 + · · ·+ pnnvn)

= (l1p11 + · · ·+ lnpn1)v1 + · · ·+ (l1p1n + · · ·+ lnpnn)vn

= l1v1 + · · ·+ lnvn.

Since B has all eigenvalues less than 1 in absolute value, l1v1+· · ·+lnvn can not be an

eigenvector of B corresponding to an eigenvalue 1. Therefore l1v1+· · ·+lnvn = 0.

Proposition 1.3.18. Let S = (v1, ..., vn), T = (w1, ..., wn) ∈ T ord+ (B). Then the

following are equivalent.
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(a) PS = PT .

(b) There exists an invertible matrix A such that wi = viA for 1 ≤ i ≤ n and

AB = BA.

Proof. (b)⇒ (a) Suppose that viB = pi1v1 + · · ·+ pinvn for all i = 1, ..., n. Then

wiB = viAB

= viBA

= (pi1v1 + · · ·+ pinvn)A

= pi1w1 + · · ·+ pinwn.

Thus PS = PT .

(a)⇒ (b) Suppose that viB = pi1v1+ · · ·+pinvn and wiB = pi1w1+ · · ·+pinwn

for all i = 1, ..., n. Then l1v1 + · · · + lnvn = 0 and l1w1 + · · · + lnwn = 0 for some

l = (l1, ..., ln) ∈ int(∆n). By Proposition 1.3.3 (g), {v1, ..., vn−1} and {w1, ..., wn−1}

are bases of Rn−1. Define a linear transformation L : Rn−1 → Rn−1 by L(vi) = wi

for all i = 1, ..., n− 1. Then

L(vn) = L
(
− 1

ln
(l1v1 + · · ·+ ln−1vn−1)

)
= − 1

ln

(
l1L(v1) + · · ·+ ln−1L(vn−1)

)
= − 1

ln
(l1w1 + · · ·+ ln−1wn−1)

= wn

Thus there is an invertible matrix A such that wi = viA for all i = 1, ..., n. For any
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i ∈ {1, ..., n}, we have

viAB = wiB

= pi1w1 + · · ·+ pinwn

= (pi1v1 + · · ·+ pinvn)A

= viBA.

Therefore, AB = BA.

1.4 T+(B) Has Only Finitely Many Connected Components

Definition 1.4.1. A semialgebraic subset of Rn is a subset of points in Rn which is

the solution set of a boolean combination of polynomial equations and inequalities

with real coefficients.

It is well-known that a semialgebraic set has finitely many connected compo-

nents. See e.g. [BCR98, Theorem 2.4.4] for more details.

Theorem 1.4.2. T ord+ (B) has finitely many connected components.

Proof. It suffices to show that T ord+ (B) is a semialgebraic set. Let T ∈ T ord+ (B).

Then T satisfies the matrix inequality

(T 1)(B ⊕ 1)(T 1)−1 > 0

which is equivalent to the system of polynomial inequalities in n(n+ 1) variables

{det (T 1) > 0, (T 1)(B ⊕ 1)adj(T 1) > 0} or

{det (T 1) < 0, (T 1)(B ⊕ 1)adj(T 1) < 0}.
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Thus T ord+ (B) is a semialgebraic set.

Corollary 1.4.3. The following statements hold.

(a) T+(B) has finitely many connected components.

(b) S+(B) has finitely many connected components.

(c) There are finitely many SSE-R+ classes in the same similarity class.

Proof. (a) The map (v1, ..., vn) 7→ {v1, ..., vn} induces a fewer number of connected

components in T+(B) than the number of connected components in T ord+ (B).

(b) This follows from Theorem 1.3.15 and Theorem 1.4.2.

(c) By Theorem 1.2.9, the number of SSE-R+ classes is at most the number

of connected components of S+(B).

Remark 1.4.4. We can show directly that S+(B) has finitely many connected compo-

nents by noticing that S+(B) is a semialgebraic set. Let pB(t) be the characteristic

polynomial of B ⊕ 1. Let pB(t) =
∏m

k=1(qk(t))
jk where the qi are irreducible and

distinct, and jk ∈ N. Then P ∈ S+(B) if and only if

•
∑n

j=1 pij = 1, 1 ≤ i ≤ n,

• pij > 0 for i, j = 1, ..., n,

• rank(qk(P ))j = rank(qk(B ⊕ 1))j, 1 ≤ k ≤ m, 1 ≤ j ≤ jk.

That a matrix M has a given rank r is equivalent to r× r being the size of the

largest submatrix of M with nonzero determinant. This is a semialgebraic condition

on M .
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1.5 Same Connected Component Criteria

The purpose of this section is to prove the following theorems.

Theorem 1.5.1. Suppose T0, T1 ∈ T ord+ (B). For 0 ≤ t ≤ 1, set Tt = (1− t)T0 + tT1.

If Tt is a positive tetrahedron for each t ∈ [0, 1] then T0 and T1 are in the same

connected component.

Proof. Suppose z ∈ Tt. Then there exist x ∈ T0 and y ∈ T1 such that z = (1− t)x+

ty, and zB = (1−t)xB+tyB. There exist x′ ∈ int(Conv(T0)) and y′ ∈ int(Conv(T1))

such that xB = x′ and yB = y′ and then for 0 < t < 1, zB = (1 − t)x′ + ty′ ∈

int(Conv((1 − t)T0)) + int(Conv(tT1)) ⊂ Conv(Tt). This shows that Tt ∈ T ord+ (B)

for all t ∈ [0, 1]. So T0 and T1 are in the same connected component of T ord+ (B).

Theorem 1.5.2. Each of the following pairs of positive invariant tetrahedra of B

are in the same connected component of T ord+ (B).

(a) T0 = (v1, ..., vn), T1 = (c1v1, ..., cnvn) where c1, ..., cn are positive.

(b) T0 = (v1, ..., vn−1, vn), T1 = (v1, ..., vn−1, wn)

(c) T0 = (v1, ..., vn−1, vn), T1 = (w1, ..., wn−1, vn) where vi, wi, vn are colinear

for all i = 1, ..., n− 1.

Proof. (a) For 0 ≤ t ≤ 1, define Tt = ((1 − t + c1t)v1, ..., (1 − t + cnt)vn). By

Theorem 1.3.7 (b), Tt is a positive tetrahedron for all t ∈ [0, 1]. Therefore, T0 and

T1 are in the same connected component of T ord+ (B) by Theorem 1.5.1.

(b) For 0 ≤ t ≤ 1, define Tt = (v1, ..., vn−1, (1− t)vn + twn). By Theorem 1.3.7

(c), Tt is a positive tetrahedron for all t ∈ [0, 1]. Therefore, T0 and T1 are in the
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same connected component of T ord+ (B) by Theorem 1.5.1.

(c) Let ui ∈ {vi, wi} be such that

‖ui − wn‖ = max{‖vi − wn‖, ‖wi − wn‖} for i = 1, 2, ..., n− 1.

Define T 1
2

= (u1, u2, ..., un−1, wn). Note that vi and wi lie between ui and wn for all

i = 1, 2, ..., n − 1. Thus Conv(T 1
2
) = Conv(T0) ∪ Conv(T1). This implies that T 1

2
∈

T ord+ (B). For 0 ≤ t ≤ 1, define T t
2

= (1 − t)T0 + tT 1
2
. Then Conv(T0) ⊆ Conv(T t

2
)

for all t ∈ [0, 1]. Thus T t
2

is a positive tetrahedron for all t ∈ [0, 1]. So T0 and

T 1
2

are in the same connected component of T ord+ (B) by Theorem 1.5.1. Similarly,

T 1+t
2

= (1− t)T 1
2

+ tT1 is a positive tetrahedron for any t ∈ [0, 1]. Thus, T 1
2

and T1

are in the same connected component of T ord+ (B) and hence T0 and T1 are in the

same connected component of T ord+ (B).

1.6 Some Cases in Which T+(B) Is Disconnected

In this section, we show that the space T+(B) can be disconnected. In the

next section we will show that T+(B) has exactly 2 connected components when

B = diag(α,−β) with α, β > 0 and α + β ≥ 1.

Lemma 1.6.1. Let B =

 α 0

0 β

 where −1 < β ≤ α < 1. Suppose that

T = {(0, 1), (−b, y), (c, z)} where b, c > 0 is a positive tetrahedron. If T ∈ T+(B)

then α− β < 1.

Proof. If α = β then we are done. Suppose that β < α. The corresponding matrix
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for T is

P =
1

D


−(bz + cy) + β(b+ c) (1− β)c (1− β)b

−(bz + cy) + αb(z − y) + βy(b+ c) αb(1− z)− βcy + c αb(y − 1)− βby + b

−(bz + cy) + αc(y − z) + βz(b+ c) αc(z − 1)− βcz + c αc(1− y)− βbz + b


where D = −(bz + cy) + b + c. Note that l = (l1, l2, l3) where l1 = − bz+cy

D
, l2 =

b
D
, l3 = c

D
is the left Perron eigenvector of P . Thus D > 0. Since p23 > 0, we have

y > α−1
α−β . Since p32 > 0, we have z > α−1

α−β . Since p11 > 0, we have β > bz+cy
b+c

> α−1
α−β .

Thus β(α− β) > α− 1, (1− β)(α− β − 1) < 0, and hence α− β < 1.

Proposition 1.6.2. If B =

 α 0

0 β

 where α − β ≥ 1 then T+(B) is not path

connected.

Proof. Let T0 = {(−a, 0), (1, 1), (1,−1)} and T1 = {(a, 0), (−1,−1), (−1, 1)} where

a > −α+β
1+β

. Because T0 = −T1, both T0 and T1 correspond to the same positive

stochastic matrix

P =
1

1 + a


1 + αa (1−α)a

2
(1−α)a

2

1− α α+β+(1+β)a
2

α−β+(1−β)a
2

1− α α−β+(1−β)a
2

α+β+(1+β)a
2

 .

Thus T0, T1 ∈ T+(B). Suppose that there is a path Tt connecting T0 and T1. Then

there is some t0 ∈ (0, 1) such that Tt0 = {(0, x), (−b, y), (c, z)} for some x 6= 0 and

b, c > 0. Thus 1
x
Tt0 ∈ T+(B). From Lemma 1.6.1, we get α − β < 1 which is a

contradiction.

Remark 1.6.3. Let T0, T1 be as in the last proof. Given P in S+(B), we have

P = PT for some T ∈ T+(B). There is a path in T+(B) to T0 or T1, and thus a path
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of similar positive stochastic matrices from P to PT0 = PT1 . Therefore, although

T+(B) is disconnected, the space S+(B) is connected.

1.7 Connected Components of T+(B) When B is 1× 1 and 2× 2

In this section, we determine the number of connected components of T+(B)

when B is a 1 × 1 and 2 × 2 matrix. It is easy to find the number of connected

components of T+(B) when B is 1 × 1. Unfortunately, we do not have a complete

characterization of the number of connected components of T+(B) when B is 2× 2.

We summarize the results as follows.

1. T+(B) is path connected when B has the Jordan form

(a) (λ), λ ∈ (−1, 1),

(b)

 α 0

0 β

 , α, β ∈ [0, 1),

(c)

 α 0

0 −β

 , α, β ∈ [0, 1) and α + β < 1,

(d)

 −α 0

0 −α

 , α ∈ [0, 1
2
),

(e)

 α 1

0 α

 , α ∈ [0, 1).

2. T+(B) has 2 connected components whenB has the Jordan form

 α 0

0 −β

 , α, β ∈

(0, 1) and α + β ≥ 1.
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Whether T+(B) is path connected is still unknown when B has one of the

remaining Jordan forms which are compatible with B⊕1 being similar to a positive

stochastic matrix:

(a)

 −α 0

0 −β

 , α, β ∈ (0, 1) and α + β < 1,

(b)

 −α 1

0 −α

 , α ∈ (0, 1
2
),

(c)

 α β

−β α

 , (α, β) ∈ int(Conv(T )) where T = {(1, 0), (−1
2
,
√
3
2

), (−1
2
,−
√
3
2

)}.

We begin with the easy 1× 1 case.

Proposition 1.7.1. [KR90] Let B = (λ),−1 < λ < 1. Then T+(B) is path con-

nected.

Proof. Let T0 = {a, x}, T1 = {b, y} be positive invariant tetrahedra of B. We can

assume that a < 0 < x and b < 0 < y. Let at = (1− t)a+ tb and xt = (1− t)x+ ty.

Define Tt = {at, xt}. Note that at < 0 < xt. Thus Tt is a positive tetrahedron for

any t ∈ [0, 1]. The corresponding stochastic matrix for Tt is

Pt =
1

at − xt

 λxt − at (1− λ)xt

(λ− 1)at xt − λat

 .

It is easy to check that Pt is positive for any t ∈ [0, 1]. Thus Tt is positive invariant

under B for any t ∈ [0, 1]. Therefore T+(B) is path connected.

The spectra of 3×3 stochastic matrices are completely characterized by Loewy

and London(see e.g. [ELN04]). We give special cases for positive stochastic matrices.
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Theorem 1.7.2. Let α, β ∈ (−1, 1). Λ = {1, α, β} is a spectrum of a 3× 3 positive

stochastic matrix if and only if α + β > −1.

Theorem 1.7.3. Let α, β ∈ R with α2+β2 < 1. Let T = {(1, 0), (−1
2
,
√
3
2

), (−1
2
,−
√
3
2

)}.

Λ = {1, α + βi, α − βi} is a spectrum of a 3 × 3 positive stochastic matrix if and

only if (α, β) ∈ int(Conv(T )).

These results give all possible Jordan forms of a 2×2 matrix B for which B⊕1

is similar to a 3× 3 positive stochastic matrix.

Theorem 1.7.4. Let B =

 α 0

0 β

 where α ≥ |β|.

(a) If α− β < 1 then T+(B) is path connected.

(b) If α− β ≥ 1 then T+(B) contains exactly 2 path connected components.

Proof. Let T0 = {v1, v2, v3} ∈ T+(B), Lij be the line segment connecting vi and vj

for all 1 ≤ i < j ≤ 3, and Wij be the convex hull of 0, vi, vj for all 1 ≤ i < j ≤ 3.

Then one of Wij intersects the x-axis at the origin only, say W12. If L12 is parallel to

the x-axis then we can perturb L12 so that L12 is not parallel to the x-axis. Suppose

without loss of generality that L12 has positive slope or a vertical line. Let u1 be

the intersection between the line connecting v1 and v2 and the x-axis. We can also

assume that v1 is on a line segment connecting u1 and v2. Let T1 = {u1, v2, v3}.

Then Conv(T0) ⊆ Conv(T1). Since u1 is on the x-axis, u1B = αu1 which is in the

interior of T1 and hence T1 ∈ T+(B). Thus every positive invariant tetrahedron of B

is in the same connected component as an invariant tetrahedron whose one vertex

is on the x-axis. Next, suppose that T2 = {(a, 0), (b, y), (c, z)} where a 6= 0. We
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consider 2 cases.

Case 1: a < 0. We can assume without loss of generality that b ≤ c. Then

c > 0. Let T3 = {(−1, 0), (− b
a
,−y

a
), (− c

a
,− z

a
)}. The positive tetrahedron of the form

{(−1, 0), (d, w), (d,−w)}, d > 0 is in T+(B) because it corresponds to the matrix

1

2(1 + d)


2(α + d) 1− α 1− α

2(1− α)d (1− β) + (α− β)d (1 + β) + (α + β)d

2(1− α)d (1 + β) + (α + β)d (1− β) + (α− β)d

 .

Then T3 is in the same connected component as T4 = {(−1, 0), (− c
a
,− z

a
), (− c

a
, z
a
)}.

Thus T4 is in the same connected component as T5 = {(−1, 0), (1, 1), (1,−1)} via

the path

T4+t = {(−1, 0), (
at− (1− t)c

a
,
at− (1− t)|z|

a
), (

at− (1− t)c
a

,
at+ (1− t)|z|

a
)}.

Case 2: a > 0. By using similar arguments as in case 1, T2 is in the same

connected component as T6 = {(1, 0), (−1, 1), (−1,−1)}. Therefore every positive

invariant tetrahedron of B is in the same connected component as either T5 or T6.

(a) If α−β < 1 then a positive tetrahedron T7 = {(0, 1), (−1, α−1), (1, α−1)}

is in T+(B). Let L be the line segment connecting (−1, α−1) and (1, α−1). We can

perturb L so that it has positive or negative slope after perturbation. We denote

L′ and T ′7 as the line segment L and the positive tetrahedron T7 after perturbation

respectively. By continuity, T ′7 is still in T+(B) and in the same connected component

as T7. If L′ has positive slope then T ′7 is in the same connected component as T6. If

L′ has negative slope then T ′7 is in the same connected component as T5. Thus T5
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and T6 are in the same connected component. Therefore T+(B) is path connected.

(b) If α − β ≥ 1 then Proposition 1.6.2 implies that T5 and T6 are not in the

same connected component. Thus T+(B) has exactly 2 path connected components.

Lemma 1.7.5. Let B =

 α 0

0 −β

 where 0 < α < β < 1 and a, b, c, x, y > 0.

(a) If T0 = {(1, 0), (a, x), (−b,−y)} ∈ T+(B) then

T1 = {(1, 0), (0, x), (−b,−y)} ∈ T+(B).

(b) If T = {(1, 0), (−a, x), (−b,−y)} ∈ T+(B) then a < 1−β2

β2−α2 .

(c) If 0 < a < 1−β2

β2−α2 and 1 < c < 1
β2+(β2−α2)a

then

T = {(1, 0), (−a, x), c(−αa,−βx)} ∈ T+(B).

(d) If α + β < 1 and βx < y <
(

1−α
α+β

)
x then

T = {(0, x), (−a,−y), (b,−y)} ∈ T+(B).

Proof. (a) Let v1 = (1, 0), v2 = (a, x), v3 = (−b,−y) and H1, H2, H3 be lines passing

through T0−{v1}, T0−{v1}, T0−{v2} respectively. Then H1, H2, H3 can be described

by the equations

H1 :
( x+ y

ay − bx

)
X −

( a+ b

ay − bx

)
Y = 1

H2 : X −
(b+ 1

y

)
Y = 1

H3 : X +
(1− a

x

)
Y = 1.

Since v1 is an eigenvector of B corresponding to a positive eigenvalue α < 1, v1B ∈

int(Conv(T1)). The line H1 intersects the y-axis at v4 = (0, bx−ay
a+b

). Since v3B =
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(−αb, βy) which is in the second quadrant, v3B ∈ int(Conv(v1, v3, v4)). Let v5 =

(0, x). Then

Conv(v1, v3, v4) ⊆ Conv(v1, v3, v5)

= Conv(T1).

because bx−ay
a+b

< x. Thus v3B ∈ int(Conv(T1)). The line H2 intersects the y-axis at

v6 = (0,− y
b+1

). Since v2B ∈ int(Conv(T1)) ⊆ H+
2 , we have αa+ βx( b+1

y
) < 1 which

is equivalent to − y
b+1

< −βx. Thus v5B = (0,−βx) ∈ int(Conv(T1)). Therefore,

T1 ∈ T+(B).

(b) Let v1 = (1, 0), v2 = (−a, x), v3 = (−b,−y) and H1, H2, H3 be lines passing

through T0−{v1}, T0−{v1}, T0−{v2} respectively. Then H1, H2, H3 can be described

by the equations

H1 : −
( x+ y

ay + bx

)
X −

( a− b
ay + bx

)
Y = 1

H2 : X −
(b+ 1

y

)
Y = 1

H3 : X +
(a+ 1

x

)
Y = 1.

Since v2B
2 ∈ int(Conv(T )) ⊆ H+

3 , we must have −α2a + (a+1
x

)q2x < 1 which is

equivalent to

a <
1− β2

β2 − α2
.

(c) Let v1 = (1, 0), v2 = (−a, x), v3 = c(−αa,−βx) and H1, H2, H3 be lines

passing through T0 − {v1}, T0 − {v1}, T0 − {v2} respectively. Then H1, H2, H3 can
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be described by the equations

H1 : −
( βc+ 1

(α + β)ac

)
X −

( αc− 1

(α + β)cx

)
Y = 1

H2 : X −
(αac+ 1

βcx

)
Y = 1

H3 : X +
(1 + a

x

)
Y = 1.

Since v1 is an eigenvector of B corresponding to a positive eigenvalue α < 1, v1B ∈

int(Conv(T )). Since c > 1, v2B lies on the line segment between v3 and the origin.

Thus v2B ∈ int(Conv(T )). Note that v3B = c(−α2a, β2x). To show that v3B ∈

int(Conv(T )), it suffice to check that v3B ∈ H+
1 ∩H+

2 ∩H+
3 . Note that

( βc+ 1

(α + β)ac

)
(α2ac) +

( αc− 1

(α + β)cx

)
(β2cx) =

α2(βc+ 1) + β2(αc− 1)

α + β

=
αβc(α + β) + (α− β)(α + β)

α + β

= αβc+ α− β

< 1, since c <
1

β2 + (β2 − α2)a
.

Thus v3B ∈ H+
1 . We also have that

−α2ac−
(1 + αac

βcx

)
(β2cx) < 0

< 1,

−α2ac+
(1 + a

x

)
(β2cx) = −α2ac+ (1 + a)β2c

= (β2 + (β2 − α2)a)c

< 1 by assumption.

Hence v3B ∈ H+
2 ∩H+

3 . This completes the proof for 3).
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(d) Let v1 = (0, x), v2 = (−a,−y), v3 = (b,−y) and H1, H2, H3 be lines passing

through T −{v1}, T −{v1}, T −{v2} respectively. Then H1, H2, H3 can be described

by the equations

H1 : −1

y
Y = 1

H2 :
(x+ y

bx

)
X +

1

x
Y = 1

H3 : −
(x+ y

ax

)
X +

1

x
Y = 1.

The line H1 intersects the y-axis at (0,−y). Note that v1B = (0,−βx). Since

−βx > −y, (0,−βx) is on the line segment between (0,−y) and the origin. Hence

v1B ∈ int(Conv(T )). Note that v2B = (−αa, βy) is in the second quadrant. Thus

it suffices to check that v2B ∈ H+
3 . We have

−
(x+ y

ax

)
(−αa) +

1

x
(βy) = α

(
1 +

y

x

)
+ β

(y
x

)
= α + (α + β)

y

x

< α + 1− α

= 1.

Thus v2B ∈ H+
3 . For v3, we have v3B = (αb, βy) which is in the first quadrant.

Thus it suffices to check that v3B ∈ H+
2 . We have

(x+ y

bx

)
(αb) +

1

x
(βy) = α

(
1 +

y

x

)
+ β

(y
x

)
= α + (α + β)

y

x

< α + 1− α

= 1.
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Hence v3B ∈ H+
2 . Therefore, T ∈ T+(B).

Theorem 1.7.6. Let B =

 α 0

0 −β

 where 0 < α < β < 1.

(a) If α + β < 1 then T+(B) is path connected.

(b) If α + β ≥ 1 then T+(B) has exactly 2 connected components.

Proof. By using the same idea as in Theorem 1.7.4, any positive tetrahedron of B is

in the same connected component as an invariant tetrahedron whose one vertex is

on the x-axis and by scaling we can assume that the vertex is either (1, 0) or (−1, 0).

Without loss of generality, we assume that the vertex is (1, 0). Let

T0 = {(1, 0), (a, x), (b,−y)} where x, y > 0.

If a > 0 then b < 0 and T1 = {(1, 0), (0, x), (b,−y)} ∈ T+(B) and is in the same

connected component as T0. If b > 0 then a < 0 and T ′1 = {(1, 0), (a, x), (0,−y)} ∈

T+(B) and is in the same connected component as T0. By using perturbation, T1

(or T ′1) can be moved to T2 of the form

T2 = {(1, 0), (−a, x), (−b,−y)} where a, b, x, y > 0.

T2 is still in the same connected component as T0. Next, we show that if

T3 = {(1, 0), (−c, z), (−d,−w)} ∈ T+(B)

then it is in the same connected component as T2. From Lemma 1.7.5, T2 and T3

are in the same connected component as

T4 = {(1, 0), (−a, x), c1(−αa,−βx)} where c1 =
1

2

(
1 +

1

β2 + (β2 − α2)a

)
T5 = {(1, 0), (−c, z), c2(−αc,−βz)} where c2 =

1

2

(
1 +

1

β2 + (β2 − α2)c

)
,
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respectively. Let xt = (1− t)a+ tc, yt = (1− t)x+ tz, and ct = 1
2

(
1 + 1

β2+(β2−α2)xt

)
for t ∈ [0, 1]. Then T4+t = {(1, 0), (−xt, yt), ct(−αxt,−βyt)} is a path in T+(B)

connecting T4 and T5. This shows that all positive invariant tetrahedra of B which

have (1, 0) in their vertex are in the same connected component. Similarly, all

positive invariant tetrahedra of B having (−1, 0) in their vertex are in the same

connected component.

(a) If α + β < 1 then T6 = {(0, 1), (−1, α − 1), (1, α − 1)} ∈ T+(B). The line

segment connecting (−1, α−1) and (1, α−1) can be perturbed to have both positive

and negative slopes. Thus T8 connects all invariant tetrahedra of B. Therefore,

T+(B) is path connected.

(b) If α+β ≥ 1 then an invariant tetrahedron whose one vertex is (1, 0) cannot

be in the same connected component as its reflection about the y axis. Thus T+(B)

has 2 connected components.

Theorem 1.7.7. Let B =

 −λ 0

0 −λ

 , 0 ≤ λ < 1
2
. Then T+(B) is path con-

nected.

Proof. This is a special case of Theorem 1.10.5.

Theorem 1.7.8. Let B =

 λ 1

0 λ

 , λ ≥ 0. Then T+(B) is path connected.

Proof. This is a special case of Theorem 1.10.7.
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1.8 Positive Stochastic Matrices Strong Shift Equivalent to Positive

Doubly Stochastic Matrices

Throughout this section, we assume that S is a subring of R containing Q. We

will prove that every positive stochastic matrix over S is strong shift equivalent over

S+ to a positive doubly stochastic matrix. As a corollary, the nonzero spectra of

primitive doubly stochastic matrices of positive trace are the same as the nonzero

spectra of primitive stochastic matrices of positive trace.

Lemma 1.8.1. Every positive stochastic matrix over S is similar and strong shift

equivalent over to a positive stochastic matrix over S+ whose left Perron eigenvector

is rational.

Proof. Let P be an n×n positive stochastic matrix with the left Perron eigenvector

l = (l1, ..., ln). For each k, let rk ∈ Qn−1
+ be such that rkj ≤ lj for all j = 1, ..., n− 1

and limn→∞ rk = (l1, ..., ln−1). Define

Mk =



l1
rk1

0 · · · 0 1− l1
rk1

0 l2
rk2
· · · 0 1− l2

rk2

...
...

. . .
...

...

0 0 · · · ln−1

rk,n−1
1− ln−1

rk,n−1

0 0 · · · 0 1
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and Pk = MkPM
−1
k . Note that Mk → In and Pk → P as k →∞ and

M−1
k =



rk1
l1

0 · · · 0 1− rk1
l1

0 rk2
l2
· · · 0 1− rk2

l2

...
...

. . .
...

...

0 0 · · · rk,n−1

ln−1
1− rk,n−1

ln−1

0 0 · · · 0 1


≥ 0

for all k ∈ N. Choose N such that MNP > 0. Let l̂ = (l̂1, ..., l̂n) where l̂j = rNj for

j = 1, ..., n− 1 and l̂n = 1− rN1 − · · · − rN,n−1. Then l̂ is rational, l̂MN = l, and

l̂PN = l̂MNPM
−1
N

= lPM−1
N

= lM−1
N

= l̂.

Thus l̂ is the left Perron eigenvector of PN . Since MNP > 0, P is similar and strong

shift equivalent over to PN .

Theorem 1.8.2. Every positive stochastic matrix over S is strong shift equivalent

over S+ to a positive doubly stochastic matrix over S.

Proof. Let P be an n×n stochastic matrix over S. By Lemma 1.8.1, we can assume

that P has rational left Perron eigenvector l = ( r1
s1
, .., rn

sn
) where ri, si ∈ N for all

i = 1, ..., n. Let M = lcm(s1, ..., sn). Then l can be written as l = (m1

M
, ..., mn

M
) where

mi = riM
si
∈ N for all i = 1, ..., n. If m1 6= 1, we perform a column splitting on the
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first column of P as follows:

P (1) =



1
m1
p11 (1− 1

m1
)p11 p12 · · · p1n

1
m1
p11 (1− 1

m1
)p11 p12 · · · p1n

1
m1
p21 (1− 1

m1
)p21 p22 · · · p2n

...
...

...
. . .

...

1
m1
pn1 (1− 1

m1
)pn1 pn2 · · · pnn


.

The left Perron eigenvector of P (1) is l(1) = ( 1
M
, m1−1

M
, m2

M
, ..., mn

M
). If m1 − 1 6= 1

we perform a column splitting on the second column of P (1) by splitting the second

column of P (1) as 1
m1−1C

(1)
2 and (1− 1

m1−1)C
(1)
2 where C

(1)
2 is the second column of

P (1). Suppose P (2) is the matrix after splitting P (1). Then the left Perron eigenvector

of P (2) is l(2) = ( 1
M
, 1
M
, m1−2

M
, ..., mn

M
). Continuing in this manner, we finally get an

M ×M matrix P (k) whose the left Perron eigenvector l(k) is 1
M

(1, 1, ..., 1) for some

k ∈ N. Note that P (i) is stochastic for all i = 1, .., k. Therefore, P (k) is doubly

stochastic. This completes the proof.

Corollary 1.8.3. The set of nonzero spectra of positive doubly stochastic matrices

over S and the set of nonzero spectra of primitive stochastic matrices over S with

positive trace coincide.

It is not true in general that every positive stochastic matrix is strong shift

equivalent over S+ to a positive doubly stochastic matrix of the same size, because

there are positive stochastic matrices whose nonzero spectra cannot be the nonzero

spectra of doubly stochastic matrices of the same size. An example can be found in

[J81]. We will reprove it. We first reprove the following result of Johnson [J81].
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Proposition 1.8.4. [J81] There is no 3 × 3 doubly stochastic matrix with the

characteristic polynomial t(t− 1)(t+ 1).

Proof. Suppose there is such a matrix

A =


a b 1− a− b

c d 1− c− d

1− a− c 1− b− d a+ b+ c+ d− 1

 .

Observe that det(A) = 0 and Tr(A) = 0. Since A is nonnegative and Tr(A) = 0, we

have a = d = a+ b+ c+ d− 1 = 0. Thus b+ c = 1. Then A can be rewritten as

A =


0 b c

c 0 b

b c 0

 .

Hence b3 + c3 = det (A) = 0. This implies b = c = 0 which is a contradiction.

Next, we define for any n ∈ N the matrix

An =


1

n+2
n
n+2

1
n+2

n
n+2

1
n+2

1
n+2

n
n+2

1
n+2

1
n+2

 .

Suppose that there is a sequence of 3 × 3 doubly stochastic matrices {Bn} such

that Bn and An are similar for all n ∈ N. By compactness, {Bn} has a convergent

subsequence {Bnk
}. Suppose that {Bnk

} converges to a matrix B. Then B is doubly

stochastic since the set of doubly stochastic matrices is closed. For any n ∈ N,

the characteristic polynomial of An is pn(t) = t(t − 1)(t + n−1
n+2

) which converges

to t(t − 1)(t + 1) as n → ∞. Thus B must have the characteristic polynomial
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t(t− 1)(t+ 1) which is a contradiction. So there must be some matrix An0 which is

not similar to a doubly stochastic matrix. Since strong shift equivalence preserves

the Jordan form away from zero(and in this case it is the Jordan form), An0 is not

strong shift equivalent over S+ to a 3× 3 doubly stochastic matrix.

1.9 Unbounded Lag of SSE

The purpose of this section is to provide the following example.

Theorem 1.9.1. For t ∈ [0, 1], define

Pt =
1

4

 3 + t 1− t

1 + t 3− t

 .

For 0 ≤ t < 1, the matrices Pt are positive, similar, and SSE-R+. However, for any

L > 0, there exists t ∈ (0, 1) such that there is no SSE-R+ of lag less than L using

matrices with size fewer than L.

Definition 1.9.2. A (not necessarily square) nonnegative matrix P is called gen-

eralized row stochastic if every row sum of P is 1.

We recall the stochasticization of an irreducible matrix A, P (A) = 1
λ
D−1AD

where λ is the Perron eigenvalue of A and D is the diagonal matrix whose vector

of diagonal entries is the stochastic right eigenvector of A. We need the following

theorem for the proof of Theorem 1.9.1.

Theorem 1.9.3. Let A and B be respectively m×m and n×n irreducible matrices

over R. If A and B are ESSE-R+ then P (A) and P (B) are also ESSE-R+. Moreover,
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there exist generalized row stochastic matrices R, S such that P (A) = RS and

P (B) = SR.

Proof. Since A and B are elementary strong shift equivalent over R+, they have the

same Perron eigenvalue λ. Let v ∈ Rm and w ∈ Rn be such that Av = λv and Bw =

λw. Let D = diag(v1, ..., vm) and E = diag(w1, .., wn). Then P (A) = 1
λ
D−1AD and

P (B) = 1
λ
E−1BE. Suppose that A = XY and B = Y X. Then

P (A) =
(

1
λ
D−1XE

)(
E−1Y D

)
and P (B) =

(
E−1Y D

)(
1
λ
D−1XE

)
.

Thus P (A) and P (B) are elementary strong shift equivalent over R+. Next, suppose

that P (A) = UV and P (B) = V U . Let em = (1, ..., 1)t ∈ Rm and en = (1, ..., 1)t ∈

Rn. Since P (A)U = UP (B), we have P (A)Uen = UP (B)en = Uen. Thus Uen is a

right eigenvector of P (A) corresponding to an eigenvalue 1 and hence Uen = αem

for some α > 0. Similarly, V em = V P (A)em = P (B)V em, so V em = βen for some

β > 0. Let R = 1
α
U and S = 1

β
V . Then Ren = 1

α
Uen = em and Sem = 1

β
V em = en.

Thus R, S are generalized row stochastic matrices. Furthermore, we have P (A) =

UV = (αβ)RS and P (B) = V U = (αβ)SR. Note that

m = etmP (A)em

= αβetmRSem

= αβetmRen

= αβetmem

= mαβ.

Thus αβ = 1 and hence P (A) = RS and P (B) = SR.
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Proof of Theorem 1.9.1. The similarity holds because Tr(Pt) = 6, det(Pt) = 8 for

all 0 ≤ t < 1. By Theorem 1.2.9, Pt and P0 are SSE-R+ for all 0 ≤ t < 1. It is

well-known that strong shift equivalence preserves irreducibility [LM95, Proposition

7.4.1]. So P0 and P1 are not strong shift equivalent over R+ because P0 is irreducible

whereas P1 is reducible. Next, suppose that P0 and Pt are SSE over R+ via 2 × 2

matrices with lag l ≤ k and size n ≤ k for all t ∈ (0, 1). Without loss of generality,

we assume that the lag l = k for all t ∈ (0, 1). For each t ∈ (0, 1) we have a chain

of ESSEs over R+ P0, A1(t), ..., Ak−1(t), Pt together with a chain of intermediate

matrices (R1(t), S1(t)), ..., (Rk(t), Sk(t)). Since Pt is positive for 0 ≤ t < 1, each Ai

has a unique maximal irreducible submatrix, say A0
i . The given SSE restricts to

an SSE of the A0
i . So, without loss of generality, we assume A0

i = Ai. By passing

through Theorem 1.9.3, we can assume that Aj(t), Rj(t), Sj(t) are generalized row

stochastic for all j = 1, ..., k and all t ∈ (0, 1). Then all matrices are bounded (by 1),

so there is a subsequence tn → 1 such that Aj(tn) → Aj, Rj(tn) → Rj, Sj(tn) → Sj

for some Aj, Rj, Sj. But then we get a strong shift equivalence over R+ between P0

and P1 which is a contradiction.

1.10 Some Cases in Which T+(B) Is Connected

In this section, we collect some miscellaneous results which show that the space

T+(B) is path connected.

Theorem 1.10.1. Let n ∈ N. T+(B) is path connected if B has the following forms

(a) B = 0n.
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(b) B = λIn where − 1
n
< λ < 1.

(c) B is nilpotent [KR90].

(d) B = λIn +N where 0 ≤ λ < 1 and N is nilpotent.

(e) B = (λ)⊕ 0n where −1 < λ < 1.

Theorem 1.10.1 is a combination of the following theorems.

Theorem 1.10.2. For n > 1, T+(0n−1) is path connected.

Proof. Let T0 = {v1, ..., vn} be a positive tetrahedron. Suppose that

l1v1 + · · ·+ lnvn = 0. Let T1 = {v1, ..., vn−1, un} where un = −(v1 + · · ·+ vn−1).

Then T1 is a positive tetrahedron.

Define Tt = {v1, ..., vn−1, vn(t)} where vn(t) = (1 − t)vn + tun. Then Tt is a

positive tetrahedron for all t ∈ [0, 1] because l1(t)v1 + · · · + ln−1(t)vn(t) = 0 where

lj(t) =
(1−t)lj+tln
1−t+nlnt for j = 1, ..., n − 1 and ln(t) = ln

1−t+nlnt . This proves that every

positive tetrahedron is in the same connected component as a positive tetrahedron

which has zero vertex sum.

Next, suppose that T0 = {v1, ..., vn} and T1 = {w1, ..., wn} where v1+· · ·+vn =

0 and w1 + · · ·+ wn = 0. Define a linear transformation L : Rn−1 → Rn−1 by

L(vi) = wi for all i = 1, ..., n− 1.

Let A be the matrix of L with respect to the basis {v1, ..., vn−1}. If det (A) < 0, we

can define L(v1) = w2 and L(v2) = w1 so that det (A) > 0. Thus there is a path At

in GLn−1(R) such that A0 = In−1 and A1 = A. Then the path Tt = {v1At, ..., vnAt}

is a path of positive tetrahedra connecting T0 and T1. This completes the proof.
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There are other matrices whose the space of invariant tetrahedra coincide with

T+(0n−1). The following results give all such possible matrices.

Lemma 1.10.3. Let T = {v1, ..., vn} ∈ T+(B) with l1v1 + · · ·+ lnvn = 0. Then the

following statements are equivalent:

(a) T0(d) = {v1, ..., vn−1, dvn} ∈ T+(B) for all d ≥ 1

(b) vn is an eigenvector of B corresponding to an eigenvalue λ ≥ 0.

Proof. (b) ⇒ (a) This direction is obvious.

(a) ⇒ (b) Suppose that T0(d) = {v1, ..., vn−1, dvn} ∈ T+(B) for all d ≥ 1. Let

Q(d) = (qij(d) be the corresponding positive stochastic matrix of T0(d). Applying

Theorem 1.3.7 (b) with c1 = c2 = · · · = cn−1 = 1 and cn = 1
d
, we get

qnj(d) =
cj
cn

[
pnj +

lj{cn − (c1pn1 + · · ·+ cnpnn)}
c1l1 + · · ·+ cnln

]
= dcj

[
pnj +

lj{1d − (1− pnn + pnn

d
)}

1− ln + ln
d

]
= dcj

[
pnj +

(1− d)lj(1− pnn)

ln + d(1− ln)

]
for all j = 1, 2, ..., n. For j = n we have

qnn(d) = pnn +
(1− d)ln(1− pnn)

ln + d(1− ln)

=
ln + d(pnn − ln)

ln + d(1− ln)
.

For j ∈ {1, 2, ..., n− 1} we have

qnj(d) = d
[
pnj +

(1− d)lj(1− pnn)

ln + d(1− ln)

]
= d
[ lnpnj + lj(1− pnn) + d{pnj(1− ln)− lj(1− pnn)}

ln + d(1− ln)

]
.
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Letting d→∞ we have qnn(d)→ pnn−ln
1−ln . Thus pnn ≥ ln. If pnj(1− ln) 6= lj(1− pnn)

for some j ∈ {1, 2, ..., n− 1} then qnj(d)→ ±∞ as d→∞ which is a contradiction.

Thus pnj =
lj(1−pnn)

1−ln . Moreover, we have

qnj(d) =
d[pnj(1− ln) + lnpnj]

ln + d(1− ln)

=
dpnj

ln + d(1− ln)
.

Let λ = pnn−ln
1−ln ≥ 0. Then

vnB = pn1v1 + · · ·+ pn,n−1vn−1 + pnnvn

=
(1− pnn

1− ln

)
(l1v1 + · · · ln−1vn−1) + pnnvn

=
(1− pnn

1− ln

)
(−lnvn) + pnnvn

=
(pnn − ln

1− ln

)
vn

= λvn.

Thus vn is an eigenvalue of B corresponding to the eigenvalue λ ≥ 0.

Theorem 1.10.4. T+(B) = T+(0n−1) if and only if B = λIn−1 for some λ ≥ 0.

Proof. Suppose that B = λIn−1 for some 0 ≤ λ < 1. Let T = {v1, ..., vn} be a

positive tetrahedron. Then viB = λvi is in the interior of T because it is on the line

between the origin and vi. Thus T ∈ T+(B) and hence T+(B) = T+(0).

Suppose that T+(B) = T+(0). Let v1 be a nonzero vector in Rn−1. Choose a

basis of Rn−1 which has v1 as a basis element, say {v1, ..., vn−1}. Let

vn = −(v1 + · · ·+ vn−1).
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Then T = {v1, ..., vn} is a positive tetrahedron and hence T (d) = {dv1, v2, ..., vn}

are also positive tetrahedra for all d ≥ 1 by Theorem 1.3.7 (b). From assumption

T (d) ∈ T+(B) for all d ≥ 1. Lemma 1.10.3 implies that v1 is an eigenvector of B

corresponding to a nonnegative eigenvalue. This shows that every nonzero vector of

Rn−1 is an eigenvector ofB corresponding to some nonnegative eigenvalue. Therefore

B = λIn−1 for some 0 ≤ λ < 1.

Theorem 1.10.5. Let B = −λIn−1, 0 ≤ λ < 1
n−1 . Then T+(B) is path connected.

Proof. Let T0 = {v1, ..., vn} ∈ T+(B) with l1v1+ · · ·+ lnvn = 0. Then T0 corresponds

to the matrix P = (1 + λ)L − λIn where L is a positive stochastic matrix having

every row equals l = (l1, ..., ln). Thus li ∈
(

λ
1+λ

, 1
1+λ

)
for all i = 1, ..., n. Then

the set of vectors l ∈ int(∆n−1) such that T = {v1, ..., vn} ∈ T+(B) and l1v1 +

· · · + lnvn = 0 is convex. In particular, we have 1
n
∈
(

λ
1+λ

, 1
1+λ

)
. Thus T0 and

T1 = {v1, ..., vn−1,−(v1 + · · ·+ vn−1)} are in the same connected component. Next,

suppose that T2 = {u1, ..., un}, T3 = {w1, ..., wn} ∈ T+(B) where u1 + · · · + un = 0

and w1 + · · · + wn = 0. Let A1 be an invertible matrix with positive determinant

such that uiA1 = wi for all i = 1, ..., n. Then T2 and T3 are in the same connected

component via the path T2+t = {u1At, ..., unAt} where At is a path of invertible

matrices connecting A0 = In−1 and A1. Thus T+(B) is path connected.

Theorem 1.10.6. [KR90]

If B is an (n− 1)× (n− 1) nilpotent matrix then T+(B) is path connected.

Proof. The original proof of this theorem can be found in [KR90]. In this thesis, we
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give another proof. We can assume without loss of generality that B is of the form

0 ε1 0 · · · 0 0

0 0 ε2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 εn−2

0 0 0 · · · 0 0


where εi ∈ {0, 1} for all i = 1, 2, ..., n − 2. Let T0, T1 ∈ T+(B). Let Tt be a

path of positive tetrahedra connecting T0 and T1. Then there is a path Pt of

quasi-stochastic matrices corresponding to the path Tt. For θ ∈ (0, 1], define

D(θ) = diag(θ−1, θ−2, ..., θ1−n). Then D(θ)B = θBD(θ) for all θ ∈ (0, 1]. Let

lt = (l1(t), ..., ln(t)) ∈ int(∆n−1) be such that l1(t)v1(t) + · · ·+ ln(t)vn(t) = 0 and Lt

be the matrix whose every row equals lt. Then observe that LtTt = 0. Thus

TtD(θ)B = θTtBD(θ)

= θPtTtD(θ)

= [(1− θ)Lt + θPt]TtD(θ)

= [Lt + θ(Pt − Lt)]TtD(θ).

By compactness, we choose θ0 > 0 such that Lt + θ0(Pt − Lt) > 0 for all t ∈ [0, 1].

Then TtD(θ0) ∈ T+(B) for all t ∈ [0, 1] and, consequently, T0D(θ0) and T1D(θ0) are

in the same connected component. To finish the proof, we show that Ti and TiD(θ0)

are in the same connected component for i = 0, 1. Fix i ∈ {0, 1}. For t ∈ [0, 1],
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define Ti(t) = TiD(θt0). Then

Ti(t)B = TiD(θt0)B

= θt0TiBD(θt0)

= θt0PiTiD(θt0)

= θt0PiTi(t)

= [(1− θt0)Li + θt0Pi]Ti(t).

One can easily check that (1−θt0)Li+θt0Pi > 0 for all t ∈ [0, 1]. Thus Ti and TiD(θ0)

are in the same connected component. The proof is completed.

A slight generalization of Theorem 1.10.6 is the following result.

Theorem 1.10.7. Let B = λIn−1 +N where 0 ≤ λ < 1 and N is the Jordan form

of a nilpotent matrix. Then T+(B) is path connected.

Proof. Let λ < α < 1. Then B = α
(
λ
α
In−1

)
+ (1 − α)

(
1

1−αN
)

. First, we show

that T+((1 − α)−1N) ⊆ T+(B). Suppose that T ∈ T+((1 − α)−1N). Then T (1 −

α)−1N = QT for some positive stochastic matrix Q and TB = (αP + (1 − α)Q)T

where P is similar to λ
α
In−1 ⊕ 1. Observe that P is positive and stochastic since

T ∈ T+(λα−1In−1). Thus T ∈ T+(B). This proves the claim. Next, we show that

any T0 ∈ T+(B) is in the same connected component as some T1 ∈ T+((1−α)−1N).

Let T0 = {v1, ..., vn} ∈ T+(B). Then

T0B = (αP + (1− α)Q)T0

where P is positive, stochastic, and similar to (λα−1)In−1 ⊕ 1 and Q is quasi-

stochastic and similar to (1 − α)−1N ⊕ 1. Note that Q is not necessarily positive.
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For θ ∈ (0, 1], define D(θ) = diag(θ−1, θ−2, ..., θ1−n). Then D(θ)N = θND(θ) for all

θ ∈ (0, 1]. Let l = (l1, ..., ln) ∈ int(∆n−1) be such that l1v1 + · · ·+ lnvn = 0 and L be

the matrix whose every row equals l. Then LT0 = 0 and

T0D(θ)B =
[
αT0

(
λα−1In−1

)
+ (1− α)

(
T0(θ(1− α)−1N)

)]
D(θ)

=
[
αP + (1− α)

(
(1− θ)L+ θQ

)]
T0D(θ).

One can see that each entry of αP + (1−α)[(1− θ)L+ θQ] is a linear function of θ.

If θ = 0 then (αP + (1− α)((1− θ)L+ θQ)) = αP + (1− α)L > 0.

If θ = 1 then (αP + (1− α)((1− θ)L+ θQ)) = αP + (1− α)Q > 0.

Consequently, αP + (1 − α)
(

(1 − θ)L + θQ
)

is positive for all θ ∈ [0, 1]. Thus

T0D(θ) ∈ T+(B) for all θ ∈ (0, 1]. Choose θ0 sufficiently small so that (1 − θ0)L +

θ0Q > 0 and let T1 = T0D(θ0). Then T1 ∈ T+((1− α)−1N) since T1((1− α)−1N) =

[(1− θ0)L+ θ0Q]T1.

Furthermore, T0 and T1 are in the same connected component of T+(B) via

the path

Tt = T0D(θt0), t ∈ [0, 1].

Since T+((1− α)−1N) is path connected, we complete the proof.

Let λ ∈ (−1, 1) and define Bn = (λ)⊕ 0n−1.

Theorem 1.10.8. T+(Bn−1) is path connected for all n ∈ N.

Proof. We can assume without loss of generality that 0 ≤ λ < 1. Let T0 =

{v1, ..., vn} be a positive invariant tetrahedron of Bn−1. Suppose without loss of
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generality that min1≤i≤n vi1 = v11 and max1≤i≤n vi1 = vn1. We divide the proof into

5 steps.

Step 1: Since T0 ∈ T+(Bn−1), we can extend v1 along the line joining v1 and

vn to v̂1 so that v̂11 < v11 and v̂1B ⊆ int(Conv(T0)). Then T1 = {v̂1, v2, ..., vn} ∈

T+(Bn−1). By Theorem 1.5.2 (b) T1 is in the same connected component as T0.

Step 2: We extend vi along the line joining v̂1 and vi to the point v̂i which

has v̂i1 = vn1 for any i = 2, ..., n − 1. For convenience, we also define v̂n = vn. Let

T2 = {v̂1, v̂2, ..., v̂n}. Then T2 ∈ T+(Bn−1) since T2Bn−1 = T1Bn−1 and Conv(T1) ⊆

Conv(T2). T2 is in the same connected component as T1 by Theorem 1.5.2 (c).

Step 3: Define vb = 1
n

∑n
i=2 v̂i and set wi = vb+a(v̂i−vb) for i = 2, ..., n where

a ≥ 1 is large enough so that (vn1, 0, 0, ..., 0) is in the interior of the convex hull of

w2, ..., wn. Let T3 = {v̂1, w2, ..., wn} and define T2+t = {v1(t), ..., vn(t)} for t ∈ [0, 1]

where

v1(t) = v̂1 and vi(t) = v̂i + t(wi − v̂i) for i = 2, ..., n.

Observe that

v1(t) + · · ·+ vn(t)

n
=

1

n

n∑
i=1

(v̂i + t(wi − v̂i))

=
t

n

n∑
i=1

wi +
(1− t)
n

n∑
i=1

v̂i

=
t

n

n∑
i=1

(av̂i + (1− a)vb) +
(1− t)
n

n∑
i=1

v̂i

= [atvb + (1− a)tvb] + (1− t)vb

= vb.
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Then we have

v̂i =
1

1 + t(a− 1)
vi(t) +

t(a− 1)

1 + t(a− 1)
vb

=
1

1 + t(a− 1)
vi(t) +

t(a− 1)

1 + t(a− 1)

[v1(t) + · · ·+ vn(t)

n

]
for all i = 1, ..., n.

Thus Conv(T2) ⊆ Conv(T2(t)) for all t ∈ [0, 1]. Hence T2(t) is a positive tetrahedron

for any t ∈ [0, 1]. It is easy to see that

T2(t)Bn−1 = [λv̂11, λvn1]× {0} × · · · × {0}

⊆ int(Conv(T2))

⊆ int(Conv(T2(t))) for all t ∈ [0, 1].

Then T2+t ∈ T+(Bn−1) for all t ∈ [0, 1]. This shows that T2 and T3 are in the same

connected component.

Step 4: Let w1 be the point in Conv(T3) ∩ {(x, 0, ..., 0) : x < 0} which has

maximum norm. Then w1 is on the boundary of Conv(T3) and v̂11 ≤ w11 < λv̂11 ≤ 0.

Let T4 = {w1, ..., wn}. Note that {w2, ..., wn} is a basis of Rn−1. The origin is in the

interior of T4 because it is in T3B = T4B. Thus T4 is a positive tetrahedron. We

also have

T4Bn−1 = [λw11, λvn1]× {0} × · · · × {0}

⊆ (w11, vn1)× {0} × · · · × {0}

⊆ int(Conv(T4)).

Thus T4 ∈ T+(Bn−1). Theorem 1.5.2 (b) guarantees that T4 is still in the same

connected component as T3.
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Step 5: Let ui = 1
vn1
wi for any i = 1, ..., n. Define T5 = {u1, ..., un}. T5 is in

the same connected component as T4 by Theorem 1.5.2 (a). Let xi = (ui2, ..., uin)

for i = 2, ..., n and define T ′5 = {x2, ..., xn}. Let yi be the (i − 1)th standard

basis element of Rn−2 for i = 2, ..., n − 1 and yn = −(y2 + · · · + yn−1). Define

T ′6 = {y2, ..., yn}. Then T ′5 and T ′6 are positive tetrahedra. By Theorem 1.10.2 there

is a path T ′5+t = {x2(t), ..., xn(t)} connecting T ′5 and T ′6. The path

T5+t = {u1, u2(t), ..., un(t)}

where ui1(t) = 1 and uij(t) = xij(t) for all i, j = 2, ..., n is the path in T+(Bn−1)

connecting T5 and T6 = {u1, z2, ..., zn} where zi1 = 1 and zij = yij for all i, j =

2, ..., n. Therefore, T+(Bn−1) is path connected, as required.
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Chapter 2

The Mapping Class Group of a Shift of Finite Type

2.1 Introduction

One of the interesting problems in symbolic dynamics is the classification of

SFTs up to flow equivalence. Given any discrete dynamical system we can also

construct a corresponding continuous-time dynamical system by using suspension

flows defined on the mapping torus of the original discrete system. Given a dy-

namical system (X,T ) where X is a compact metric space and T : X → X is a

homeomorphism, we define the mapping torus YT of (X,T ) as

YT = {(x, t) : x ∈ X, t ∈ R}/ ∼

where (x, 1) ∼ (T (x), 0). Distinct equivalence classes may be uniquely represented

by {[x, t] : x ∈ X, 0 ≤ t < 1}. For any s ∈ R, the suspension flow α on YT is defined

by αs([x, t]) = [x, s+ t] for any [x, t] ∈ YT . Two discrete dynamical systems are flow

equivalent if the corresponding suspensions are conjugate as flows. Any conjugacy

of discrete dynamical systems induces a flow equivalence of the corresponding sus-

pension flows, but flow equivalence is a much weaker equivalence relation in general.

For shifts of finite type, Parry and Sullivan [PS75] showed that flow equivalence of

SFTs is generated by conjugacy, state stretching, and state contracting. For an SFT

(XA, σA), we define a state stretching as follows: Pick any symbol a in the alphabet
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of XA and then replace a by a word a1a2 where a1, a2 are new symbols. The inverse

of a state stretching is called a state contracting. Using a matrix interpretation of

state stretching, they also showed that det(I − A) is an invariant of flow equiv-

alence. Bowen and Franks [BowF77] then showed that the Bowen-Franks group

cok(I −A) = Zn/(I −A)Zn, if A is n× n, is also an invariant of a flow equivalence.

Then Franks [F84] completely solved the flow equivalence problem for nontrivial IS-

FTs by showing these two invariants are complete. Huang has completely character-

ized reducible SFTs up to flow equivalence [Huang94, Huang95, Bo02b, BoHuang03].

Boyle [Bo02b] also gave an alternative approach via positive equivalence.

Two discrete dynamical systems (X,T ) and (X ′, T ′) are flow equivalent if there

is a homeomorphism F : YT → YT ′ whose restriction to any orbit is an orientation

preserving homeomorphism onto some orbit of the range flow. F is called a flow

equivalence. Two flow equivalences F0, F1 : YT → YT ′ are isotopic if there is a path

φt in the space of flow equivalences YT → YT ′ such that φ0 = F0 and φ1 = F1. The

mapping class group MA of an ISFT (XA, σA) is the group of flow equivalences on

the mapping torus YA of (XA, σA) modulo the subgroup of flow equivalences which

are isotopic to the identity. It is the analogue of the automorphism group Aut(σA),

the group of homeomorphisms of (XA, σA) which commute with σA. MA is even

more complicated than Aut(σA), although it is still countable. In Section 2.3, we

show thatMA acts n-transitively and faithfully on the set of circles in YA for every

n ∈ N, and the center of MA is trivial. In Section 2.4, we show that MA contains

an embedded copy of Aut(σB)/ < σB > for any SFT (XB, σB) flow equivalent to

(XA, σA). Also, a flow equivalence F : YA → YA has an invariant cross section if and

64



only if F is induced by an automorphism of the first return map to some cross section

of YA (which is an irreducible SFT flow equivalent to (XA, σA)). However, we will

show that not every flow equivalence has an invariant cross section. In Section 2.5,

we show that every flow equivalence on YA is compatible with every right projection

of a positive equivalence to SL(Z).

Altogether, these results provide supporting evidence for the possibility that

the kernel of the Bowen-Franks representation (described below in Section 2.2.3) is

simple.

2.2 Definitions and Background

2.2.1 Suspensions, Cross Sections, and Flow Equivalences

Let X be a compact metric space. Let T : X → X be a homeomorphism and

f : X → R be continuous and positive. Define the suspension Yf,T by

Yf,T = {(x, t) : x ∈ X, 0 ≤ t ≤ f(x)}� ∼

where (x, f(x)) ∼ (T (x), 0). Distinct equivalence classes may be represented uniquely

by {[x, t] : x ∈ X, 0 ≤ t < f(x)}. For n ≥ 0, define f0 ≡ 0, fn(x) =
∑n−1

j=0 f(T j(x)),

and f−n(x) = −
∑n

j=1 f(T−j(x)) for all x ∈ X. For any s ∈ R, the suspension flow

α on Yf,T is defined by αs([x, t]) = [T n(x), s + t − fn(x)] where n ∈ Z is such that

fn(x) ≤ s + t < fn+1(x). If f ≡ 1 on X then Yf,T is called the mapping torus of

(X,T ) and is denoted by YT . The suspension flow α on YT can be simply defined

by αt([x, s]) = [x, s+ t] for any t ∈ R. X×R carries the “vertical”flow, α̃, for which
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α̃s : (x, t) 7→ (x, t + s). The rule (x, t) 7→ [x, t] defines a surjective local homeo-

morphism πT : X × R → YT which intertwines the vertical and suspension flows.

Two discrete dynamical systems (X,T ) and (X ′, T ′) are flow equivalent if there is

a homeomorphism F : YT → YT ′ whose restriction to any orbit is an orientation

preserving homeomorphism onto some orbit of the range flow. F is called a flow

equivalence. If F : YT → YT ′ is a flow equivalence, then there is a homeomorphism

F̃ such that

X × R F̃−−−→ X ′ × RyπT yπT ′
YT

F−−−→ YT ′

commutes. The lift F̃ is not unique.

A cross section C of the suspension flow α on YT is a closed set of YT such

that α : C × R → YT is a local homeomorphism onto YT . It follows that every

orbit hits C in forward time and in backward time, the first return time defined by

fc(x) = inf{s > 0 : αs(x) ∈ C} is continuous and strictly positive on C, and the first

return map Tc : C → C defined by Tc(x) = αfc(x)(x) is a homeomorphism. Discrete

systems (X,T ) and (X ′, T ′) are flow equivalent if and only if there is a flow Y with

two cross sections whose return maps are conjugate respectively to T and T ′. Two

flow equivalences F0, F1 : YT → YT ′ are isotopic if there is a path φt in the space of

flow equivalences YT → YT ′ such that φ0 = F0 and φ1 = F1.

Let (XA, σA) be a shift of finite type. The mapping torus of (XA, σA) is

denoted by YA. The mapping class group of YA, denoted by MA, is the group of

flow equivalences YA → YA modulo the subgroup of flow equivalences which are
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isotopic to the identity. Abusing notation, given a flow equivalence F : YA → YA,

we may still refer to F (rather than its equivalence class [F ]) as an element ofMA.

2.2.2 The Parry-Sullivan Theorem and Invariants for Flow Equiva-

lence

Definition 2.2.1. Let (XA, σA) be a shift of finite type. We define a state stretching

as follows: Pick any symbol a in the alphabet of XA and then replace a by a word

a1a2 where a1, a2 are new symbols. The inverse of a state stretching is called a state

contracting.

Example 2.2.2. Suppose X is the 2-shift {0, 1}Z. We replace every 0 with 01, 02, e.g.,

· · · 101011001 · · · ⇒ · · · 101021010211010201021 · · ·

We can describe the return map as the subshift obtained from the 2-shift by stretch-

ing the symbol 0 to 01 and 02. This subshift is the golden mean shift.

Theorem 2.2.3. [PS75] Let (XA, σA) be an SFT. Then F : YA → YA is a flow

equivalence if and only if there exist SFTs (X1, T1), (X2, T2) which are conjugate

to (XA, σA) and T1 becomes T2 by a finite sequence of state stretchings and state

contractings.

As a consequence of the Parry-Sullivan Theorem, we state the following fact.

Proposition 2.2.4. For any shift of finite type (XA, σA), MA is countable.

Proof. By Theorem 2.2.3, a flow equivalence (up to isotopy) can be obtained by a

conjugacy followed by a series of state stretchings or state contractings and followed
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by a conjugacy. There are only countably many ways to obtain each step. Thus

MA is a subset of the product of 3 countable sets. Therefore,MA is countable.

Given an n× n integral matrix A, we define the Bowen-Franks group of A as

cok(I − A) = Zn/(I − A)Zn. For a shift of finite type (XA, σA), it is known that

det(I − A) [PS75] and cok(I − A) [BowF77] are invariants of flow equivalence. If

(XA, σA) is irreducible and nontrivial, then they are complete invariants.

Example 2.2.5. Let A =

 1 1

1 1

 and B =

 1 1

1 0

. Then cok(I − A) ∼=

cok(I − B) ∼= 0 and det(I − A) = det(I − B) = −1. Thus the full 2-shift and the

golden mean shift are flow equivalent. However, they are not shift equivalent.

2.2.3 Positive Equivalences and the Bowen-Franks Representation

Let A and B be irreducible matrices. We embed A and B to the set of

essentially irreducible infinite matrices over Z+, those which have only one irre-

ducible component. Mike Boyle [Bo02b], building on [F84] within the “positive K-

Theory”approach to symbolic dynamics [Wa00, BoW04, Bo02a], developed a general

method to construct flow equivalences F : YA → YB given that A and B are flow

equivalent. A basic elementary matrix E is a matrix in SL(Z) which has off-diagonal

entry Eij = 1 where i 6= j and 1 on the main diagonal and 0 elsewhere, e.g.

E =


1 0 1

0 1 0

0 0 1

 .
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We define 4 basic positive equivalences as follows: suppose Aij > 0,

(E, I) : I − A→ E(I − A), (E−1, I) : E(I − A)→ I − A

(I, E) : I − A→ (I − A)E, (I, E−1) : (I − A)E → I − A.

A positive equivalence is the composition of basic positive equivalences. We will

only discuss the flow equivalence induced by the basic positive equivalence (E, I) :

I − A → E(I − A). We can apply the same idea with the others. Define A′ from

the equation E(I − A) = I − A′. Then A and A′ agree except in row i, where we

have

A′ik = Aik + Ajk if j 6= k, and

A′ij = Aij + Ajj − 1.

Let GA be a directed graph having A as the adjacency matrix with edge set EA. We

can describe a directed graph GA′ which has A′ as its adjacency matrix as follows.

Pick an edge e which runs from a vertex i to a vertex j in GA(e exists because

Aij > 0 by assumption). The edge set EA′ will be obtained from EA as follows:

a) remove e from EA.

b) For every vertex k, for every edge f in EA from j to k add a new edge

named [ef ] from i to k.

Let E∗A be the set of new edges obtained from the above construction. Define

a map γ : EA′ → E∗A by γ(f) = f and γ([ef ]) = ef . Then γ induces a map

γ̂ : XA → XA′ defined naturally by the rule

γ̂ : · · ·x′−2x′−1.x′0x′1 · · · 7→ · · · γ(x′−2)γ(x′−1).γ(x′0)γ(x′1) · · ·
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Define a flow equivalence Fγ : YA′ → YA by

F ([x, t]) =


[γ̂(x), t], if x ∈ Xe for every single edge e

[γ̂(x), 2t], if x ∈ X[ef ] for every edge of the form [ef ].

One can check that Fγ is a flow equivalence.

Example 2.2.6. Suppose

A =


2 2 0

0 1 1

1 1 0

 , A′ =


2 2 1

0 1 1

1 1 0

 , and E =


1 1 0

0 1 0

0 0 1

 .

Then E(I − A) = I − A′. Label edges on GA and write

A =


a+ b c+ d 0

0 e f

g h 0

 .

To get the graph GA′ , we pick an edge c (or d) and write

E =


1 c 0

0 1 0

0 0 1

 .

Then we have

I−A =


1− a− b −c− d 0

0 1− e −f

−g −h 1

 , so E(I−A) =


1− a− b −d− ce −cf

0 1− e −f

−g −h 1

 = I−A′.
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Thus

A′ =


a+ b d+ ce cf

0 e f

g h 0

 .

Note that this idea is compatible with the construction of GA′ described before. The

flow equivalence F : YA′ → YA is defined by

F ([x, t]) =


[γ̂(x), t], if x ∈ Xa ∪Xb ∪Xd ∪Xf ∪Xg ∪Xh

[γ̂(x), 2t], if x ∈ X[ce] ∪X[cf ].

We will be considering the following result from [Bo02b].

Theorem 2.2.7. Suppose A,B are nontrivial essentially irreducible matrices defin-

ing SFTs with more than a single orbit; U, V are in SL(Z); and U(I−A)V = I−B.

Then for some positive integer k, there are positive equivalences (Ei, Fi) from

I − Ai to I − Ai+1, 0 ≤ i ≤ k, such that A0 = A,Ak = B and (U, V ) =

(Ek · · ·E1, F1 · · ·Fk).

In other words, every SL(Z) equivalence from I −A to I −B is a composition

of basic positive equivalences.

Let (XA, σA) be a nontrivial irreducible SFT. Let (U, V ) : (I − A)→ (I − A)

be a positive equivalence and F(U,V ) be an associated flow equivalence. We define

F ∗(U,V ) : cok(I − A) → cok(I − A) by the rule [u] 7→ [uV ] (we use the action on

row vectors to define cok(I − A)). Then F ∗(U,V ) is an isomorphism. Given any

flow equivalence F : YA → YA, there is a positive equivalence (U, V ) : (I − A) →

(I − A) such that F = F(U,V ). Let F ∗ = F ∗(U,V ). Let Aut(cok(I − A)) denote
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the group of group automorphisms of cok(I − A). We define the map ρ : MA →

Aut(cok(I−A)) by the rule ρ : F 7→ F ∗. We call ρ the Bowen-Franks representation

of (XA, σA). It was proved in [Bo02b] that this rule indeed gives a well defined group

homomorphism. If YA is not a circle then ρ is surjective [Bo02b].

2.3 The Mapping Class Group, Circles, and The Center

Theorem 2.3.1. Let (XA, σA) be an irreducible shift of finite type. For F ∈ MA,

the following are equivalent

a) F is isotopic to the identity.

b) F (O) = O for all suspension flow orbits O in YA.

c) F (C) = C for all but finitely many circles C in YA.

Proof. The equivalence is obvious if XA is a single orbit (i.e., XA has a single circle).

So, we may suppose XA is nontrivial (i.e., contains more than one orbit).

a)⇒ b) Suppose there is an isotopy Ft such that F0 = F and F1 = the identity

on YA. For any x ∈ XA, Ft([x, 0]) is a path of points in YA. Thus F ([x, 0]) =

F0([x, 0]) is in the same connected component of YA as F1([x, 0]) = [x, 0]. These

components are precisely the flow orbits.

b) ⇒ a) Let F̃ : XA × R → XA × R be a lift of F (i.e., πσAF̃ = FπσA , and

F̃ is a homeomorphism). This gives a continuous function δ : (x, t) → R such

that F̃ : (x, t) 7→ α̃δ(x,t)(x, t). By the equivariance of πσA , δ(x, t) depends only on

y = [x, t]. So, for y in YA, F (y) = αδ(y)(y), where δ : YA → R is continuous. Now

for 0 ≤ t ≤ 1 define Ft(y) = αtδ(y)(y). This gives the isotopy from F to the identity.
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b) ⇒ c) This is trivial.

c) ⇒ b) Let x ∈ XA. Since σA is irreducible, Per(σA) is dense in XA. There

is a sequence of distinct points xn in Per(σA) such that xn → x as n → ∞. Then

F ([xn, 0])→ F ([x, 0]) as n→∞. Since F (C) = C for all but finitely many circles, we

have, for all but finitely many n, that there exists tn such that F ([xn, 0]) = [xn, tn].

Appealing to the lift F̃ of F , we have that there exists T > 0 such that for all n

we may require |tn| ≤ T . Taking a convergent subsequence of (tn) with limit t, we

conclude F ([x, 0]) = [x, t]. This shows that F (Ox) = Ox where Ox represents the

flow orbit containing [x, 0].

Corollary 2.3.2. The mapping class group MA of an irreducible SFT σA acts by

permutations on the set of circles of YA. This action is faithful.

Proof. This follows immediately from Theorem 2.3.1.

Remark 2.3.3. Theorem 2.3.1 also implies that the action ofMA on the (ordered) co-

homology group C(XA,Z)/(I−σA)C(XA,Z) (considered in [BoH96] and [KRW01])

is faithful.

Theorem 2.3.4. Let (XA, σA) be an irreducible shift of finite type. ThenMA acts

n-transitively on the set of circles in YA for all n ∈ N.

Proof. Let {C1, ..., Cn} and {C ′1, ..., C ′n} be sets of n distinct circles. For each i ∈

{1, 2, ..., n}, let xi, x
′
i be representatives of the circles Ci, C ′i respectively. We take a

k-block presentation of (XA, σA) where k is large enough that any point of period p

comes from a path of length p without repeated vertices except initial and terminal
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vertices and no two of these loops share a vertex. If one of these loops, say L, has

length greater than 1, then we apply a basic positive equivalence which corresponds

to cutting out an edge e on the loop L and replacing it with edges labeled [ef ], for the

edge f following e. The new loop will have length p−1 in the new graph. Continuing

in the same fashion, we get a loop of length 1. Since no two of these loops share

a vertex, we can apply the same idea to another loop without changing the former

loop. Continuing in this way, we get a graph with loops y1, ..., yn, y
′
1, ..., y

′
n of length

1, each of which comes from the loop containing x1, ..., xn, x
′
1, ..., x

′
n. If necessary we

continue to apply basic positive equivalences until we get a graph with at least one

point of least period n, for every positive integer n. Let (XB, σB) be the SFT induced

by the graph GB. (XB, σB) is flow equivalent to (XA, σA). Since y1, ..., yn, y
′
1, ..., y

′
n

are fixed points in (XB, σB) and σB is mixing with points of all least periods, there

is an inert automorphism u ∈ Aut(σB) such that u(yi) = y′i for all i = 1, ..., n

[BoF91]. Extend u to a flow equivalence û : YB → YB by û([x, t]) = [u(x), t]. Let

G : YA → YB be a flow equivalence arising from the construction. Then F = G−1ûG

is the required flow equivalence, i.e., F (Ci) = C ′i for all i = 1, ..., n.

Theorem 2.3.5. The center of MA is trivial.

Proof. Let C be a circle in YA and F be an element in the center of MA. Suppose

that F (C) 6= C. Note that F (C) is also a circle. Then there is a flow equivalence G

such that G(C) = C and G(F (C)) 6= F (C) by Theorem 2.3.4. Thus FG(C) = F (C) 6=

GF (C) which is a contradiction. Hence F (C) = C for all circles C in YA. Therefore,

F is isotopic to the identity by Theorem 2.3.1.
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2.4 The Mapping Class Group, Cross Sections, and Automorphisms

of The Shifts

Let (XA, σA) be an ISFT. For u ∈ Aut(σA), define û : YA → YA by û([x, t]) =

[ux, t]. Clearly, û ∈MA. Define φ : Aut(σA)→MA by φ(u) = û.

Theorem 2.4.1. Let φ be defined as above. Then

a) φ is a group homomorphism.

b) Ker(φ) =< σA >, the cyclic group generated by σA.

Proof. a) Let u, v ∈ Aut(σA) and [x, t] ∈ YA. Then

ûv([x, t]) = [uv(x), t]

= û([v(x), t])

= ûv̂([x, t]).

Thus ûv = ûv̂. This means that φ is a homomorphism.

b) Let u ∈ Ker(φ). Then û(O) = O for all flow orbits O in YA by The-

orem 2.3.1. Thus [u(x), 0] = û([x, 0]) = [x, h(x)] for some continuous function

h : XA → R. This shows that h(x) ∈ Z for all x ∈ XA, and [u(x), 0] = [σ
h(x)
A (x), 0].

Let x be a point with a dense orbit in XA under the shift, and set M = h(x). Since

u(x) = σMA (x), for n ∈ Z we have u(σnA(x)) = σnAu(x) = σnAσ
M
A (x) = σMA (σnA(x)).

Thus u = σMA on the shift orbit of x, and by continuity u = σMA everywhere. If

u = σnA for some n ∈ Z then û is isotopic to the identity on YA. Define isotopy by

going to lift and F̃t(x, s) = (x, s+ nt), 0 ≤ t ≤ 1. Thus Ker(φ) =< σA >.
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Theorem 2.4.2. If A and B are flow equivalent then Aut(σB)/ < σB > is embedded

to MA.

Proof. Let F : YB → YA be a flow equivalence. Then F induces an isomorphism

F̂ :MB →MA defined by F̂ (G) = FGF−1 for all G ∈MB. By Theorem 2.4.1 b),

there is an embedding of Aut(σB)/ < σB > into MB. Then we have an embedding

Aut(σB)/ < σB >→MB
F̂−→MA.

Example 2.4.3. If (XA, σA) and (XB, σB) are flow equivalent then it is not necessarily

true that their groups Aut(σA)/ < σA > and Aut(σB)/ < σB > are isomorphic as

groups. Consider

A =

 1 1

1 0

 , B = A2, and, C = [2].

By the invariants for the classification of irreducible SFTs up to flow equivalence,

they are flow equivalent (ifD = A,B, or C, then cok(I−D) is trivial and det (I −D)=-

1). But in Aut(σB), the center has a square root and in the others it does not.

Definition 2.4.4. Let F : YA → YA be a flow equivalence. A cross section C of YA

is called an invariant cross section for F if F (C) = C. When F is used to denote

the element [F ] of MA, we say F has an invariant cross section if any element of

[F ] (any equivalence isotopic to F ) has an invariant cross section.

For example, {[x, 0] : x ∈ XA} is an invariant cross section for any F induced

by an element of Aut(σA). If equivalences F, F ′ have the same invariant cross section

C, and F (y) = F ′(y) for all y in C, then F and F ′ are isotopic.
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Theorem 2.4.5. Let F : YA → YA be a flow equivalence. If F has an invariant

cross section C then F is isotopic to an equivalence induced by an automorphism

of the first return map Tc.

Proof. Let u = F |C . Then u : C → C is a homeomorphism. We will show that

uTc = Tcu. Let y ∈ C. Then uTc(y) = uαfc(y)(y) and Tcu(y) = αfc(u(y))(u(y)).

Observe that y and αfc(y)(y) are closest points of C in the same flow orbit. Also,

u(y) and αfc(u(y))(u(y)) are closest points of C in the same flow orbit. Since F is

orientation preserving and u : y 7→ u(y), u : αfc(y)(y) 7→ αfc(u(y))(u(y)). This shows

that uTc = Tcu as required. Therefore, u ∈ Aut(Tc).

Proposition 2.4.6. Let (XA, σA) be an irreducible SFT. Suppose (X ′, σ′) is an

irreducible subshift of finite type of (XA, σA), F ∈ MA, and F maps Yσ′ into itself

but not onto itself. Then F has no invariant cross section.

Proof. Suppose F : YA → YA is induced by an automorphism u of the return map

Tc to some cross section C. The restriction of Tc to C ∩ Yσ′ defines an irreducible

SFT, because it is flow equivalent to (X ′, σ′), since C ∩ Yσ′ is a cross section of Yσ′ .

Therefore the restriction of u to C ∩ Yσ′ , being an injection into C ∩ Yσ′ , must be a

surjection. But this implies û maps Yσ′ onto itself, which is a contradiction.

We can construct a flow equivalence which satisfies the conditions of Proposi-

tion 2.4.6 and therefore has no invariant cross section.

Example 2.4.7. Given a finite set F of words, let F ∗ denote the space of doubly

infinite sequences formed by all possible concatenations of those words. Let S =
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{a, b, c, d1d2}∗. Define a flow equivalence F : YS → YS to be the induced flow

equivalence of the automorphism defined by permuting a and c and permuting b

and d1d2. Let S = {c, d1d2}∗ and T = {a, b}∗. Define φ : S → T by the rule c 7→ a

and d1d2 7→ ab. Theorem 1.5 in [BoK93] states that if there exists some N such

that for all n > N , πn(S) − πn(S) ≥ 2n then φ extends to an automorphism of S

where πn(S), πn(S) represent the number of periodic points of S, S with least period

n, respectively. For any n ≥ 3, the number of periodic points of S is at least n+ 1.

Given any periodic point of S which comes from a word of length n − 1, we can

construct 2 periodic points of S with least period n by adding a or b at the end of

the word. Thus πn(S)− πn(S) ≥ 2πn−1(S) ≥ 2n for all n ≥ 4. This implies that φ

extends to an automorphism u of S by [BoK93, Theorem 1.5]. Then F̂ = ûF maps

YT properly into itself since there is no flow orbit of YT that maps to the flow orbit

containing the point [b∞, 0]. By Proposition 2.4.6, F̂ has no invariant cross section.

Proposition 2.4.8. Let (XA, σA) be an irreducible SFT. Let F ∈ MA. If there is

a circle C such that {F n(C) : n ∈ N} is an infinite collection of circles then F has

no invariant cross section.

Proof. If u ∈ Aut(σA) then any periodic orbit of σA is mapped into the finite set of

periodic orbits of equal period. Therefore the orbit of a circle under û must equal

finitely many circles.

Example 2.4.9. Let F̂ be defined as in Example 2.4.7. Let C be the circle containing

the point [b∞, 0]. For each n ∈ N, let Cn be the circle containing the point (anb)∞

in XA. Then {F̂ n(C) : n ∈ N} = {Cn : n ∈ N} which is infinite.
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We close this section with the following problem.

Problem 2.4.10. Characterize flow equivalences which have an invariant cross sec-

tion.

2.5 The Mapping Class Group and The Positive Equivalence Groupoid

Consider triples [(I −A), (U, V ), (I −B)] such that A,B, U, V have entries in

Z+, A and B define infinite irreducible SFTs, one of U, V is Id and the other is

a basic elementary matrix (at most one entry differs from I, and it can only be

off-diagonal), the matrix I is the infinite identity matrix, the matrices A,B have

only finitely many nonzero entries. We picture the triple as a directed edge labeled

(U, V ) from a vertex I −A to a vertex I −B, in a countably infinite directed graph.

Now we define a groupoid G(Z+), as a groupoid of morphisms in a category.

The objects of the category are the matrices I−A. A triple [(I−A), (U, V ), (I−B)]

as described in the previous paragraph is a morphism from I−A to I−B. Its formal

inverse [(I − A), (U, V ), (I − B)]−1 is a morphism from I − B to I − A. A general

element of the groupoid is a concatenation g1 · · · gn of such elementary morphisms,

with gi a morphism from I − Ai to I − Bi, such that I − Bi = I − Ai+1, 1 ≤ i ≤ n.

The identity morphism 1I−A from I − A to I − A is [(I − A), (I, I), (I − A)].

The description of the groupoid in the infinite directed graph is that the ele-

ments are finite concatenations of edges, where the concatenation must be legal; and

adjacent inverses may be cancelled; legal addition of edges 1I−A does not change a

group element. A path P from I − A to I − B determines a flow equivalence ρ(P )
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from YA to YB (see the construction in Section 2.2.3). Now let PEZ(A) be the sub-

groupoid of G(Z+) corresponding to elements which begin and end at I − A (we

use Z to indicate that the entries of A are not restricted to {0, 1}). This PEZ(A)

is a group. Let SA be the subgroup ofMA generated by “simple”flow equivalences,

of the form GFG−1 where G is in MA and F is induced by a basic simple auto-

morphism of a return map to a cross section. A simple automorphism of an SFT

is an automorphism which is conjugate to a code generated by a graph automor-

phism which fixes all vertices. A basic simple automorphism is an automorphism

conjugate to a 1-block code defined by a permutation of edges which exchanges two

edges (with the same initial and terminal vertices) and leaves the other fixed. Every

simple automorphism is a composition of basic simple automorphisms. The rule

ρ above defines a homomorphism ρA from PEZ(A) to MA/SA. We know that ρA

is well defined and surjective [Bo02b]. There is another homomorphism, πA, from

PEZ(A) to SL(Z). This is the homomorphism determined by sending each generator

[(I − A), (U, V ), (I −B)] to V . We will need the following background.

Definition 2.5.1. Let M ∈ GLn(Z) and I be the N × N identity matrix . By

identifying M as

 M 0

0 I

, we have an embedding of GLn(Z) into the group of

N×N invertible matrices. Then we have an ascending chain of subgroups GL1(Z) ⊂

GL2(Z) ⊂ GL2(Z) ⊂ · · · . The stable linear group over Z is defined by GL(Z) =⋃∞
n=1 GLn(Z). If A ∈ GLn(Z) and B ∈ GLm(Z) we define AB as the matrix

multiplication of the embedding of A and B in GLk(Z) for any k ≥ m,n. The

subgroup SL(Z) generated similarly by the determinant 1 matrices over Z is called
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the stable special linear group over Z, and is generated by the elementary matrices

in Z (those equal to Id except possibly in one off-diagonal entry). For each n ≥ 0

and k ≥ 1, we define the group homomorphism gnk : GLk(Z) → GLk(Z/nZ) by

gnk(M) = M . The n-congruence subgroup of GLk(Z) is defined as CLk(n,Z) =

Ker(gnk). Let Ek(n,Z) denote the group generated by all elementary matrices in

CLk(n,Z). Set CL(n,Z) =
⋃∞
k=1 CLk(n,Z) and E(n,Z) =

⋃∞
k=1 Ek(n,Z).

Theorem 2.5.2. [S76] Let H be a normal subgroup of SL(Z). Then there exists a

unique integer n ≥ 0 such that

E(n,Z) ⊆ H ⊆ CL(n,Z).

Theorem 2.5.3. Suppose that (XA, σA) is a mixing SFT with positive entropy and

cok(I − A) = 0. For every element F ∈ MA/SA, and every V in SL(Z), there is

an element g ∈ PEZ(A) such that ρA(g) = F and πA(g) = V . Equivalently, the

restriction of πA to (ρA)−1(Id) is surjective.

Proof. First, we show that πA is surjective. Since cok(I−A) = 0, I−A is invertible.

Given V ∈ SL(Z), we choose U = (I−A)V −1(I−A)−1 ∈ SL(Z). Then U(I−A)V =

I − A and is an SL(Z) equivalence of I − A to itself, and by Theorem 2.2.7 it is

induced by a positive equivalence. Thus πA is surjective. Next, we assume without

loss of generality that A has an off-diagonal entry 1. Let K = ρ−1A (Id). Then K is a

normal subgroup of PEZ(A). Since πA is surjective, πA(K) is a normal subgroup of

SL(Z). The next three equations describe positive equivalences whose composition

is the identity map.
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 I − A 0

0 I


 I 0

−A I

 =

 I − A 0

−A I


 I 0

−I I


 I − A 0

−A I

 =

 I − A 0

−I I


 I − A 0

−I I


 I 0

I I

 =

 I − A 0

0 I

 .

Thus

 I 0

−I I


 I − A 0

0 I


 I 0

I − A I

 =

 I − A 0

0 I

 . Let

U =

 I 0

−I I

 , V =

 I 0

I − A I

 .

Note that

 A 0

0 0

 represents the same infinite matrix as A. By Theorem 2.2.7,

there is a composition of basic elementary positive equivalences (Ui, Vi), 1 ≤ i ≤ n,

such that U = UnUn−1 · · ·U1 and V = V1V2 · · ·Vn. Then the concatenation of edges

[(I − Ai), (Ui, Vi), (I − Bi)], 1 ≤ i ≤ n, induces the identity on MA/SA. Since

A has off-diagonal entry 1, V is not in the n-congruence subgroup of SL(Z) for

any n 6= 1. By Theorem 2.5.2, we must have E(1,Z) ⊆ πA(K) ⊆ CL(1,Z). But

CL(1,Z) = GL(Z) and hence E(1,Z) = SL(Z). So, πA(K) = SL(Z). This completes

the proof.

We finish this section with the following question.
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Question 2.5.4. Is the kernel of the Bowen-Franks homomorphism from the map-

ping class group of a positive entropy irreducible shift of finite type simple?

The result in Theorem 2.5.3 shows that in the case the Bowen-Franks group

is trivial, we can get no more information about the normal subgroup structure of

MA/SA from the natural projection onto SL(Z) of PEZ(A). The extension of this

result to MA has not yet been established.
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