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This thesis studies two independent topics in symbolic dynamics, the positive
rational strong shift equivalence and the mapping class group of a shift of finite
type.

In the first chapter, we give several results involving strong shift equivalence
of positive matrices over the rational or real numbers, within the path component
framework of Kim and Roush. Given a real matrix B with spectral radius less than
1, we consider the number of connected components of the space 7, (B) of positive
invariant tetrahedra of B. We show that 7. (B) has finitely many components. For
many cases of B, we show that 7, (B) is path connected. We also give examples of
B for which 7, (B) has 2 components. If S is a subring of R containing Q we show
that every primitive matrix over S with positive trace is strong shift equivalent to
a positive doubly stochastic matrix over S; (and consequently the nonzero spectra
of primitive stochastic positive trace matrices are all achieved by positive doubly

stochastic matrices). We also exhibit a family of 2 x 2 similar positive stochastic



matrices which are strong shift equivalent over R, ; but for which there is no uniform
bound on the lag and matrix sizes of the strong shift equivalences required.

For an SFT (X4,04), let M 4 denote the mapping class group of o4. M is
the group of flow equivalences of the mapping torus Yy, (i.e., self homeomorphisms
of Y4 which respect the direction of the suspension flow) modulo the subgroup of
flow equivalences of Y, isotopic to the identity. In the second chapter, we prove
several results for the mapping class group M4 of a nontrivial irreducible SF'T
(X4,04) as follows. For every n € N, M4 acts n-transitively on the set of circles
in the mapping torus Y4 of (X4,04). The center of M, is trivial. M, contains
an embedded copy of Aut(op)/ < op > for any SFT (Xg,0p) flow equivalent to
(Xa,04). A flow equivalence F : Y4 — Y, has an invariant cross section if and only
if Fis induced by an automorphism of the first return map to some cross section of
Y4 (such a return map is an irreducible SFT flow equivalent to o). However, there
exist elements of M 4 containing no flow equivalence with an invariant cross section.
Finally, we define the groupoid PE7z(A) of positive equivalences from A. There
is an associated surjective group homomorphism 74 : PEz(A) — M4/Sa (where
S4 is the normal subgroup of M, generated by Nasu’s simple automorphisms of
return maps to cross sections). In the case of trivial Bowen-Franks group, there
is another group homomorphism, p4 : PEz(A) — SL(Z). We show that for every
[F] € M4/Sa and V in SL(Z) there exists g in PEz(A) such that m4(g) = [F] and

pa(g) =V.
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List of Abbreviations

N The set of positive integers

Y/ The set of integers

Q The set of rational numbers

R The set of real numbers

Zy The set of nonnegative integers

Q4 The set of nonnegative rational numbers
R, The set of nonnegative real numbers

Conv(T) The convex hull of T
) The set of all fixed points of 4
Per(c4)  The set of all periodic points of o4
T.(B) The set of positive invariant tetrahedra of B
S.(B) The set of positive stochastic matrices similar to B @ 1
GL,(R)  The set of n x n invertible matrices over R

Sn(R) The set of invertible n x n matrices over R with equal row sum
SL(Z) The stable special linear group over Z

St The unit circle

0, The n X n zero matrix

I, The n x n identity matrix

A" The standard n-simplex, {(l1, ..., lye1) E R il + -+ 1, = 1}
SFT Shift of finite type

ISFT Irreducible shift of finite type
MSFEFT Mixing shift of finite type



Chapter 1
Strong Shift Equivalence of Positive Matrices

1.1 Introduction

Symbolic dynamics has roots in the study of geodesic flows and general dy-
namical systems by the discretization of space and time. Applications of symbolic
dynamics can be found in hyperbolic dynamics [Bow73], data storage and trans-
mission [ACHS83|, and linear algebra [BoH91]. The fundamental objects we study
in symbolic dynamics are shifts of finite type (SFTs). Shifts of finite type can be
represented by nonnegative matrices. Let A be an n X n nonnegative matrix. We
consider A as an adjacency matrix of a finite directed graph G4 with n ordered ver-
tices and a finite edge set &/ and A;; = the number of edges from vertex 7 to vertex
j. Let E be the set of all edges in G4 and X4 be the set of bi-infinite sequences
(x;) such that for all i € Z, the terminal vertex of x; is the initial vertex of x4, i.e.
Xa = {(x;)iez| each z;x;41 is a path in G4}. Define the shift map o : X4 — X4 by
the rule (0x); = x;41. Then (X4, 0) is called an edge shift of finite type defined by
A. Given two matrices A and B, one naturally ask: do they present topologically
conjugate SFTs?

The conjugacy problem for shifts of finite type gives rise to strong shift equiva-
lence theory. In 1973, R.F. Williams introduced strong shift equivalence and showed

that two shifts of finite type are topologically conjugate if and only if their presenting



matrices are strong shift equivalent over Z,. Let A and B be nonnegative integral
matrices. A and B are elementary strong shift equivalent over Z, if there are non-
negative integral matrices U,V such that A = UV and B = VU. A and B are
strong shift equivalent over Z., if there is a chain of nonnegative integral matrices
A= Ay, Ay, ..., Ay = B such that A; and A;,, are elementary strong shift equivalent
over Z, for all i = 0,1,...,] — 1. The number [ is the lag of the given strong shift
equivalence. Despite its good-looking definition, strong shift equivalence is still very
difficult to fully understand. Williams also introduced a more tractable equivalence
relation called shift equivalence and conjectured that shift equivalence and strong
shift equivalence over Z, are the same. A and B are shift equivalent over Z. if

there are nonnegative integral matrices U,V and a positive integer [ such that

A'=UV,B' = VU, AU = UB,BV =V A.

The conjecture was proved false by K.H. Kim and F.W. Roush in 1992 (reducible
case) and 1997 (irreducible case). Although Williams’ Conjecture is false in general,
the gap between shift equivalence and strong shift equivalence over Z, remains
mysterious.

In this chapter, we study Williams’ Conjecture by relaxing the problem to the
level of positive rational and real matrices. The definition of elementary strong shift
equivalence, strong shift equivalence, and shift equivalence over QQ; and R, can be
defined analogously. We expect that the Williams’ conjecture is true for positive
rational (or real) matrices. This is the conjecture posed by Mike Boyle in [Bo02a].

The key ingredients we use are geometric objects called positive invariant tetrahedra



within the path component method introduced by Kim and Roush. We summarize
the essential features of their method now (providing more detail later).

For the summary we need some definitions. If A is an irreducible matrix,
then its stochasticization P(A) is the stochastic matrix defined as P(A) = $D*AD
where A > 0 is the Perron eigenvalue of A and D is the diagonal matrix whose vector
of diagonal entries is the stochastic right eigenvector of A. Given an (n—1) x (n—1)
real matrix B with spectral radius < 1, a positive invariant ordered tetrahedron for
B is an n-tuple (v, ..., v,) of vectors in R"~! such that the convex hull of {vy, ..., v,}
is an (n — 1)—dimensional simplex and the convex hull of {vy,...,v,} is sent to
its interior under B. Let 7/"%(B) denote the space of positive invariant ordered
tetrahedra of B.

Now we can summarize essential features of the path component method of
Kim and Roush for positive matrices A and C.

(1) A, C are SSE-R, to positive matrices A’, C’ respectively, which in addition
are similar matrices.

(2) If there is a path A;,0 <t < 1, of positive similar matrices from A = A,
to C'= Ay, then A and C are SSE-R,. If A and C' have rational entries, then they
are SSE-Q, .

(3) For T' = (vy, ..., v,) € T™(B) let Pr denote the stochastic matrix P such
that v; B = Y i, p;jv;. Then Pr is similar to B®1. A path T, in 77%(B),0 < ¢ < 1,
produces a path of positive similar stochastic matrices Pr,,0 <t < 1.

The main point is that conditions (1) — (3) provide sufficient conditions for

strong shift equivalence over R, (or Q). In this framework, Kim and Roush proved



that matrices over R, (Q, ) with equal spectral radius, a simple root of the charac-
teristic polynomial, and with no other nonzero eigenvalue, are SSE-R (Q,.). This is
the unique general sufficient condition for SSE-R (Q, ). The corresponding problem
over Z is open. They did this in the end by proving 774(B) is path connected when
B is nilpotent. Consequently we are motivated to study the structure of connected
components of 7"%(B) for more general B.

In section 1.2, we give general background. In section 1.3, we develop basic
ideas about (ordered) tetrahedra, (ordered) positive tetrahedra, and (ordered) pos-
itive invariant tetrahedra. In section 1.4, we show that 77"%(B) has only finitely
many connected components (and therefore there are only finitely many SSE-R.
classes for positive matrices of a given size).

Section 1.5 gives some basic moves to produce positive invariant ordered tetra-
hedra which stay in the same connected component. In section 1.6, we give a class
of examples for which the space of positive invariant tetrahedra is disconnected: if

a 0
B = ya, B €(0,1)
0 —p
and o+ 5 > 1 then 7, (B) is disconnected (an element of 7, (B) is a set {vy, ..., v, }

such that (vy,...,v,) € T2"(B)). Unfortunately, we have no example for which we
can prove the space of positive stochastic matrices in the same similarity class is
disconnected.

In section 1.7, we focus on the space of positive invariant tetrahedra for 1 x 1

and 2 x 2 matrices. We show the following

1. T.(B) is path connected if B has one of the Jordan forms
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(a) (M), A e (=1,1),

a 0
(b> 7a7/8 6 [07 1)7
0 p
a 0
(c) ya,€[0,1) and a+ 8 < 1,
0 —p
—a 0
(d) ,a €0, 3),
0 —«a
a 1
(e) ,a € [0,1).
0 «

2. T+(B) has exactly 2 connected components when B has the Jordan form

a 0
ya,€(0,1) and a4+ 5 > 1.
0 —p
Whether 7, (B) is path connected is still unknown when B has one of the

remaining Jordan forms which are compatible with B @& 1 being similar to a positive

stochastic matrix:

—a 0
() Ja,8€(0,1) and a+ B < 1,
0 =5
—a 1
(b) ,ae(0,3),
0 —«a
o B
(c) , (a, B8) € int(Conv(T)) where T' = {(1, 0), (_%’ \/75)7 (_%’ _\/75)}
8 «a

The failure in understanding the number of components of 7, (B) in the above



3 unknown cases is that we still do not know the geometry of 7, (B) when B has no
nonnegative eigenvalue.

In section 1.8, we show that every positive stochastic matrix over any subsemir-
ing of R, containing Q. is strong shift equivalent to a positive doubly stochastic
matrix. As a consequence, we show that the set of nonzero spectra of doubly stochas-
tic matrices and positive-trace primitive stochastic matrices are the same. In section
1.9, we give an example of a class of 2 x 2 positive, similar, SSE-R, matrices for
which there is no uniform bound on the lag and matrix size required for a SSE-R .

The examples are the stochastic matrices

L 3+t 11—t
P = 1 ,0<t< 1.
1+t 3—-1

Finally, in section 1.10 we collect some miscellaneous results involving the space
T+ (B). For any n € N, we show that 7, (B) is path connected if B has the following
Jordan form:

(a) B = 0,.

(b) B = Al, where — < XA < 1.

(c) B is nilpotent (this is a reproof of the Kim-Roush result).

(d) B = AI,, + N where N is nilpotent.

(e) B=(A\)®0, where —1 < X < 1.



1.2 Definitions and Background

1.2.1 Nonnegative Matrices

Let A = (a;j) be a real n x n matrix. A is nonnegative if a;; > 0 for all ¢, j. A
is positive if a;; > 0 for all 4, 5. A is irreducible it A is nonnegative, square, and for
any (7,7) there is some n such that (A");; > 0. A is primitive if A is nonnegative,
square, and there is some n € N such that A" is positive. The period per(i) of a
state 7 is the greatest common divisor of all integers n € N for which (A™); > 0. We
define per(i) = oo if no such integers exist. The period of A, denoted by per(A), is
the greatest common divisor of per(7) that are finite, or is oo if per(i) = oo for all
i=1,...,n. Ais aperiodic if per(A) = 1. A is primitive if and only if it is irreducible
and aperiodic. A is quasi-stochastic if every row sum of A is 1. A is stochastic if
it is nonnegative and quasi-stochastic. A is doubly stochastic if it is stochastic and

every column sum of A is 1.

We will use the following properties of nonnegative matrices.

Theorem 1.2.1. (Perron) Let A be a primitive matrix. Then there exists an eigen-
value X of A, called the Perron eigenvalue, with the following properties:

(a) A >0,

(b) A is a simple root of the characteristic polynomial of A,

(c) A has a positive eigenvector v,

(d) If « is any other eigenvalue of A then |a| < A,

(e) any nonnegative eigenvector of A is a positive multiple of v.



A vector [ = (I3, ..., 1,,) is called the left Perron eigenvector of an nxn stochastic
matrix P if [ is positive, I; +--- 4+, = 1, and [P = [. For any square matrix A,
the Jordan form away from zero of A, J*(A) , is the matrix obtained by removing

from the Jordan form of A all rows and columns with zeros on the main diagonal.

1.2.2  Shift Spaces and Shifts of Finite Type

Let A be a finite set of symbols, called the alphabet, and let AZ = {z =
(2)iez : x; € Afor all i € Z} denote the set of all bi-infinite sequences of elements
in A. A” is called the full A-shift. The shift map o on the full shift A% is given
by the rule (o(z)); = z;41. We topologize A with the discrete topology. Then the
topology of AZ is given by the product topology. The metric defined by d(z,z) = 0
and for z # vy, d(z,y) = k:+r1 where k£ = min{|i| : z; # y;} induces the product
topology on A%. A word in the full shift A% is a finite sequence a,as - - - a,, where
a; € Aforalli € {1,2,....,n}. A subshift or a shift space of AZ is a compact, shift
invariant subspace of the full shift A% together with the restriction of the shift map.
A shift of finite type is a shift space X with the property that there is a finite list
of words such that X consists of precisely the sequences in the full shift that do not
contain any of these words. For a word w of length n and & € N, we define the
cylinder set X® as X*¥ = {z € X : z[k,k +n — 1] = w}. For k = 0, we denote X,
for the cylinder set X?.

Suppose (X, o0x) and (Y, 0y ) are shift spaces. A map f: X — Y is called a

code if it is continuous and f ooy = oy o f. f is a block code if there is a number



n and a function F' from the set of words of length 2n 4+ 1 in X to a finite set of
alphabets in Y such that (f(x)); = F(2;—n - - Tis+n). The Curtis - Hedlund - Lyndon
Theorem asserts that every code is a block code. If f is surjective, it is called a
factor map. If f is injective, then it is called an embedding. If it is bijective then it
is called a conjugacy of subshifts. We say that (X, o0x) and (Y, oy) are topologically
conjugate if there is a conjugacy f: X — Y.

Let A be an nxn nonnegative integral matrix. A can be viewed as an adjacency
matrix of a finite directed graph G with n ordered vertices and a finite edge set
and A;; = the number of edges from vertex 7 to vertex j. Let E be the set of
alphabet and X4 be the set of bi-infinite sequences (x;) such that for all i € Z,
the terminal vertex of z; is the initial vertex of z;;1. Then X4 as a subset of the
full E shift with the restriction of the shift map o4 on X4 is a shift of finite type,
called the edge shift defined by A. Let (X4,04) denote the edge shift defined by
A. Every shift of finite type is topologically conjugate to an edge shift (X4, 04) for
some nonnegative integral matrix A. A shift space (X, o) is irreducible if for every
ordered paired of words u,v there is a word w such that uwv is also a word in X.
(X,0x) is mizing if for every ordered pair of words u,v there is an N such that
for each n > N there is a word w of length n such that uwwv is also a word in X.
An edge shift of finite type defined by A (X4, 04) is irreducible if and only if A is
irreducible and it is mixing if and only if A is primitive. The class of mixing shifts
of finite type are the basic class of SFTs. Often, problems involving SF'Ts can be

reduced to MSFTs.



1.2.3 Strong Shift Equivalence and Shift Equivalence

Let A and B be square matrices over a semiring R containing 0 and 1 as the
additive and multiplicative identities.

1. Ais elementary strong shift equivalent over R(ESSE-R) to B if there exist
matrices U,V over R with A=UV, B =VU.

2. A is strong shift equivalent over R(SSE-R) to B if there exists a finite
sequence of matrices over R A = Ay, Ay, ..., A; = B such that A; is ESSE-R to A; 1
for all « = 0,...,l — 1. Such a finite sequence is a strong shift equivalence over R.
The number [ is the lag of the strong shift equivalence. By the size of the strong
shift equivalence, we mean max{n; : 0 <1i <[, A; is n; X n;}.

3. A s shift equivalent over R(SE-R) to B if there exist matrices U, V over R
and [ € N such that A' = UV,B' = VU and AU =UB,VA= BV

For any semiring R, SSE-R and SE-R are equivalence relations whereas ESSE-
R is not transitive. In fact, SSE-R is the transitive closure of ESSE-R. It is obvious
that ESSE-R implies SSE-R for any semiring R. For all the semiring R under our
consideration the implication cannot be reversed. It is not difficult to show that

SSE-R implies SE-R. For example, suppose that
A =T,
Ay =WVl = Ui Vi,
Ay = Vil = oV,
B =VW,Us,.

Then A3 = U()UlUQ‘/Q‘/l‘/O and BS = ‘/QW%U()UlUQ Thus we choose U = UoUlUQ, V =

10



VoViVp and | = 3. It is known that if the semiring R has nice algebraic structure then
SE-R implies SSE-R. For example, if R is a Dedekind domain then SE-R implies
SSE-R [BoH93]. Thus SE-R implies SSE-R for R = Z,Q,R. The main interest in
SSE-R and SE-R is when R = Z, and R = Q.. Strong shift equivalence and shift
equivalence were introduced in a seminal paper of R. F. Williams in [Wi73]. The
following theorem of Williams gives the meaning of strong shift equivalence over Z

for symbolic dynamics.

Theorem 1.2.2. [Wi73] (X4,04) and (Xp,0p) are topologically conjugate if and

only if A is SSE-Z, to B.

Shift equivalence over Z, also has a meaning in symbolic dynamics. We say
that (X4,04) and (Xp,0p) are eventually conjugate if there is an N € N such that

(Xa,0%) and (Xp, 0}) are topologically conjugate for all n > N.

Theorem 1.2.3. [LM95, Theorem 7.5.15] (X4,04) and (Xp,0p) are eventually

conjugate if and only if A is SE-Z, to B.

The advantages of using SE-Z, rather than SSE-Z, is that SE-Z, deals with
equations of 4 matrices (not an unknown chain as SSE-Z, does). SE-Z, is decid-
able [KR88] whereas it is still unknown if SSE-Z, is decidable. In 1974, Williams
conjectured that SE-Z, implies SSE-Z,. The conjecture was refuted by Kim and

Roush in the reducible case [KR92a] and then the irreducible case [KR99].

11



1.2.4 Rational Strong Shift Equivalence

Our main interest in this chapter is the rational strong shift equivalence of pos-
itive matrices. Understanding this relation is a natural step toward understanding
SSE-Z. , and a natural matrix problem independently. SSE-Q, can also be given a
description in symbolic dynamics. Two shifts of finite type (Xa,04) and (Xp,0p)
are rationally isomorphic if there is some k € N such that (X7, x X4, 0p X 04) and
(X x Xp,op % op) are topologically conjugate, or equivalently, if there is some
k € N such that (Xga,0r4) and (Xyp, 0xp) are topologically conjugate. Then it is
easy to see that (X4,04) and (Xp,0p) are rationally isomorphic if and only if A is
SSE-Q. to B.

The basic elementary strong shift equivalences are conjugations by permuta-
tion matrices and state splitting and amalgamations. If A and B are matrices over
a semiring R with B = PAP~! where P is a permutation matrix then A and B
are ESSE-R because A = UV and B = VU where U = AP~ and V = P. State
splitting and amalgamations are basic elementary strong shift equivalence which
connect matrices from different dimensions. They were first introduced in [Wi73]
for matrices over Z,. In this thesis, we extend the same idea to matrices over sub-
semirings of R,. Let A be an n X n nonnegative matrix over a subsemiring of R .
Let A’ be an (n + 1) x n matrix obtained by splitting row i of A into rows i and
i+ 1 and the other rows of A and A’ are the same. We duplicate column ¢ of A" and
form an (n + 1) x (n + 1) matrix B. Let U be an n x (n + 1) matrix obtained by

duplicating column ¢ of the identity matrix I, and set V = A’. Then A = UV and

12



B =VU. We say that B is obtained from A by a row splitting and A is obtained

from B by a row amalgamation.

1
2 11
Ezample 1.2.4. Let A = 113 . We split the second row of A to obtain
14 1
1
2 11
11
L L g
O ~V.
12
s 3 1
1
1 4 ;

Then we duplicate the second column of A" and obtain

1 1

2 11

1 1 1
5 6 3 3 2
1 2 2

6 3 3 1

1

1441

We get the matrix U by duplicating the second column of I3:

1000
U=(0110
000 1

Then A=UV and B=VU.

Column splitting and column amalgamations are defined similarly by switching
the role of rows to columns. it is well-known that every strong shift equivalence can
be factored as a series of row splitting followed by a conjugacy and then by column

13



amalgamations [KR91a]. The study of rational strong shift equivalence for primitive

rational matrices can be reduced to the positive case by the following result.

Theorem 1.2.5. [KR86] Any primitive rational square matrix with a positive trace

is strong shift equivalent over Q, to a positive matrix.

Mike Boyle also stated the following conjecture in [Bo02a]

Conjecture 1.2.6. (Positive Rational Shift Equivalence Conjecture) Suppose A, B
are square positive matrices which are shift equivalent over Q.. Then A, B are

strong shift equivalent over Q. .

The following is the only known theorem which asserts for some unital subring

R of R, that all matrices in some nontrivial SE-R, class are SSE-R ;.

Theorem 1.2.7. [KR90| Let R be Q. or R,. Suppose A and B are square matrices
over R similar to (A\) @ N with A\ > 0 and N is nilpotent. If A and B are SE-R,

then A and B are SSE-R.

To prove this theorem, Kim and Roush built up a more general structure
for approaching the problem geometrically. First, they move the shift equivalence

classes to similarity classes by proving the following theorem.

Theorem 1.2.8. [KR90] Let S be Q or R. Let A, B be positive matrices. If A is
SE-S, to B then there are positive matrices C, D over S such that A is SSE-S, to

C, B is SSE-S, to D, and C, D are similar over S.

Then they establish the path component method.

14



Theorem 1.2.9. [KR91a] Let A, B be positive real matrices such that there is a
path P, of positive real similar matrices joining Py = A and P, = B. Then A and

B are strong shift equivalent over R, . If in addition A and B are rational matrices,

then A and B are SSE-Q, .

Consequently we are motivated to study the path connected components of
positive real matrices in the same similarity class over R. We recall a standard

fundamental construction.

Definition 1.2.10. If A is an irreducible matrix with spectral radius A, then the

stochasticization of A is the stochastic matrix P(A) = $D*AD, where D is the

diagonal matrix whose vector of diagonal entries is the stochastic right eigenvector

of A.
10 3 3.0
Erample 1.2.11. Let A = . Then A\ = 11 and D = , SO
3 2 0 %‘
|30 10 3 2.0 | 1001
0 4 3 2 0 %1 9 2

Given ¢ > 0, A; is a path of positive similar matrices from Ay to A; if and
only if cA; is a path of positive similar matrices from cAy to cA;. So, without loss of
generality, we may study the path components of positive real matrices of spectral
radius 1 in the same similarity class. For such a matrix A, let P(A) = D7'AD be
its stochasticization as above. Now (tD 4 (1 —¢)I)*A(tD + (1 — t)I),0 < t < 1,
gives a path of positive similar matrices from A to P(A). On the other hand, if
A, 0 <t <1, is a path of positive similar matrices from A to B, and P, = D, LA, D,
is the stochasticization as above, then P,,0 < ¢t < 1, is a path of positive similar
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stochastic matrices from P(A) to P(B). So, there is a path of positive similar
matrices from A to B if and only if there is a path of positive similar stochastic
matrices from P(A) to P(B). Paths of positive stochastic matrices can be studied

geometrically as paths of positive invariant tetrahedra.

1.3 Positive Invariant Tetrahedra

Positive invariant tetrahedra are basic tools in the path component method
developed by Kim and Roush. They play an important role in the proof of Theo-
rem 1.2.7. In this section we study basic properties of tetrahedra, positive tetrahe-

dra, and positive invariant tetrahedra which will be used throughout this chapter.

1.3.1 Tetrahedra and Positive Tetrahedra

Definition 1.3.1. Let T be a set of n vectors in R"™1. T is a tetrahedron if the
convex hull of T, Conv(T'), is an (n — 1)— dimensional (geometric) simplex. 7T is
a positive tetrahedron when in addition the interior of its convex hull contains the
origin. An ordered (positive) tetrahedron is a tuple of vectors whose the set of all
vectors in the tuple forms a (positive) tetrahedron. We denote T' = {vy, ..., v, } for

a tetrahedron and T' = (vy, ..., v,) for an ordered tetrahedron.

Ezample 1.3.2. Ty = {(1,0),(0,1),(—1,0)} is a tetrahedron but not a positive tetra-
hedron. T} = {(1,0),(0,0), (—1,0)} is not a tetrahedron. T» = {(1,0), (0,1),(=1,—-1)}
is a positive tetrahedron.

We recall some basic facts in the next two propositions. The results hold for
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both tetrahedra and ordered tetrahedra.

Proposition 1.3.3. Let T = {vy,...,v,} € R"!. The following statements are
equivalent

(a) T is a tetrahedron.

(b) For every i, the set {v; — vy, ..., v;_1 — Vs, Viy1 — Vi ..., Uy — U; } s & basis of
R~

(c) There exists 7 such that the set {vy — vy, ..., v;_1 — V3, Vg1 — V4, ooy U — V; }
is a basis of R~

(d) If > rv = >0 s;v; where > = Y " s; then r; = s; for all
1=1,...,n.

(e) D" jcuy;=0and Y ;¢ =0then¢ =0forali=1,..n

(f) For every v € R"!, there is a unique representation v = Y i | ¢;v; where
ceRi=1..,nand > ¢ =1

(g) Conv(T) has nonempty interior in R"!.

Proof. (a) = (b) Fix ¢« € {1,...,n}. If T is a tetrahedron, then Conv(T) is an
(n — 1)—dimensional simplex. Thus {vy — vj, ..., v;_1 — V3, Vit1 — Viy .oy Uy — 03} 1S &
linearly independent set, hence a basis of R~

(b) = (c) This is obvious.

(c) = (d) Without loss of generality, assume that {vy — vq,...,v, —v1} is a
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basis of R"™'. Suppose that Y . rv; = > 1 | s;v; where > 7, = >+ 1 s;. Then

Z(Tz' - Sz’)(vi - Ul) = Z(Tz - Sz‘)(Uz' - U1)
i=2 i=1
= irivi - isivi - (iﬂ - i&')vl
i=1 i=1 i=1 i=1
=0.

Thus r; = s; for all i = 2, ...,n. Since Y 1", r; = Y 1, s;, 11 = s1. Therefore, r; =s;
forall e =1,...,n.

(d) = (e) Suppose that > 1" c¢v; = 0and > ¢ = 0. Then > cv; =
Yor0-vand Yo ¢ =>" 0. Thus¢; =0foralli=1,..n

(e) = (a) Suppose that >, ¢;(v; —v1) = 0. Then

( — ici)vl + icﬂh‘ = i ¢i(vi —v1)
=2 i=2 =1

=0.

By assumption, we have ¢; = 0 for all i = 2, ..., n. This shows that {ve—vy, ..., v,—v;}
is a linear independent set of m — 1 vectors in R™!, hence a basis. Thus 7T is a
tetrahedron.

(a)-(e) = (f) Suppose v € R"*. Then v — vy = Y 1, ¢;(v; — v1) for some
scalar ¢;, so v = (1 = >0 yc)vr + Y pcv; = > dyv; where dy = 1— 37" ¢
and d; = ¢; for all i = 2,...,n. Note that > "  d; = 1. Then (d) implies that the
representation is unique.

(f) = (e) Suppose that >  c¢v; = 0 and >, ¢; = 0. Suppose there is

an ¢ such that ¢; # 0. Then ¢; = —Zk# ¢; and v; = —% Zk# crvp. Note that
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Zk# _C—C’“ =1 Butv, =1 -v; + Zk#O - vg. Since the representation is unique,
¢, = 0 for all & # 4. This implies ¢; = 0 which is a contradiction. Therefore,
c=0,1<7<n.

(f) = (g) For any v € R, define f(v) = (cy,...,¢,) where v =37 | ¢;v; and
>, c = 1. Since the representation is unique, f is well-defined and continuous.
Let 9 = = > " ;. Then zo € Conv(T). Since f(z9) = (,..., =) has positive
coordinates in R", there exists an open ball B(xg,¢) C R" ! for some € > 0 such
that f(x) has positive coordinates for all z € B(x, €) by continuity of f. This shows
that B(xg,e) C Conv(T) and hence xg is in the interior of Conv (7).

(g) = (f) Let v € R*'. Choose zg € int(Conv(T)). Then the origin is in
the interior of the convex hull of {v; — xq,...,v, — xo}. There is ¢ > 0 such that
t(v — xp) is in the convex hull of {v; — =, ...,v, — x0}. Thus there is a unique
representation 0 = Y " | r;(v; — o) and t(v — x) = >, si(v; — x9) where 75,5, >
0,1 <i<mnmand ) r=>",5 =1 Let ¢ =r; + %1 < i <n. Then

Z?ﬂ G = Z?:l T+ % Z?:1(3z‘ —r;) =1 and

Z Civ; — To = Z ci(v; — xp)
i=1 i=1
= Zn:n(vl xg) + E Zn:si(vl xg) — E ” ri(v; — xq))
t 4 t
=1 =1 =1
=V — X
Hence v =Y | civ;. O

Proposition 1.3.4. Let T = {v,...,v,} € R"! be a tetrahedron. Then the

following statements are equivalent.
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(a) T is a positive tetrahedron.
(b) There are positive scalars ¢; such that >  ¢;v; =0and > . ¢ =1.

(c) There are positive scalars ¢; such that > " | ¢;v; = 0.

Proof. (a) = (b) Since T is a positive tetrahedron, the origin must be in the interior
of Conv(T'). Thus 0 =37, ¢v; for some ¢; > 0,1 <i<nand ) ¢ =1
(b) = (c) This is obvious.

(c) = (a) Suppose that Y | ¢; = 0 for some ¢; > 0,1 < i < n. For each i, let

di = -2 Then > ¢; =0and > ", d; = 1. Thus the origin is in the interior

of Conv(7T") and hence T is a positive tetrahedron. O

In many situations, it is convenient to represent a (ordered) tetrahedron with
a matrix. We may represent an ordered tetrahedron 7" = (vy, ...,v,) by an nx (n—1)

matrix whose row i is the vector v;,i.e.

U1

Un
For a lighter notation, we will use T for both the ordered tetrahedron and its associ-
ated matrix. For a tetrahedron S = {wy, ..., w,}, we may represent S by the matrix
of the ordered tetrahedron (wy, ..., w,). Also, sometimes we will choose an order for

S tacitly.
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1.3.2 New Tetrahedra from Old

In this section, we develop several ways to construct a new tetrahedron and

positive tetrahedron from the given one. These results will be used in later sections.

Proposition 1.3.5. Let T' = {vy,...,v,} € R""! be a positive tetrahedron.
(a) If A € GL,—1(R), then TA = {v A, ...,v,A} is a positive tetrahedron.

(b) If A € S,(R), then AT is a positive tetrahedron.

Proof. (a) Since T is a tetrahedron and A is invertible, the set {vo A —v1A4, ..., v, A—
v A} is a basis of R"™!. Thus T'A is a tetrahedron by Proposition 1.3.3 (c).

(b) Let AT = {wy, ..., w, }. Suppose that ciw; +- -+ cw, =0 with ¢; + - -+
¢, = 0. Let (dy,...,dn) = (c1, ..., ¢n)A. Then we have (dy, ..., d,)T = (c1, ..., cn) AT =

0. Let r be the row sum of A. Then

di+ -+ dy = (di, ..., dn)(L, ..., 1)
— (c1, s ) A(L ..., 1)
=r(cr, ., en)(1, ., 1)
=r(ci+ -+ cp)

=0.

We have that (dy,...,d,) = 0 since T is a tetrahedron. This implies (cy,...,c,) =0

since A is invertible. Thus AT is a tetrahedron by Proposition 1.3.3 (e). O

Proposition 1.3.6. Let Ty = {vy,...,v,-1,0,}, 11 = {v1, ..., vp_1,w,} be positive

tetrahedra. Then Conv(7,) N Conv(T}) is the convex hull of a positive tetrahedron.
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Proof. Clearly, Conv(Ty)NConv(Tp) contains a neighborhood of the origin. The issue
is to show there is a single vector u such that this intersection equals Conv(vy, ..., v,_1,u).
Fori=1,...n—1, let

G; be the supporting hyperplane of Ty containing Ty — {v;},

H; be the supporting hyperplane of T} containing 7} — {v;},

H,, be the supporting hyperplane of Ty and T; containing {vy, ..., v,_1},

G be the half space containing T, and having G; as its boundary, and

H;" be the half space containing T and having H; as its boundary.
Then Conv(Ty) = Gf NG5 N---N HF and Conv(Ty) = Hf N HS N---N HF. Let
Tl(i) =GINGH,n---NnGf NnTi. We will show that Tl(i) is a simplex for any
i=1,..,n—1 ITY =G NT, = Conv(Ty) then for i = 1 we are done. Suppose

that Tl(l) # Conv(T}). Note that

UlezmHgm"‘ﬂHn,

vnglﬂHgﬂ---ﬁHn,

Un_lzGlﬂHgﬂ"'ﬂHn_QﬂHn

and HoN---NH,_; is a line passing through v; and w,, say L. Thus GyNHyN---N
H,,_, is empty, a point, or the line L. If GyNHyN---NH,_; is empty then GT NT} =
T, which contradicts the assumption. Since vy € G, Gy NV HyN--- N H, 1 # L.
Thus GyNHyN---NH,_4is apoint. Let u, =G N HyN---NH,_1. We will show
that

GINHyN---NH = Conv(vy, ..., 0p_1, Uy).
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Because u,, is the convex combination of v; and w,,, both of which are in Gy NH,", we
have Gf N Hy N---N H,;" D Conv(vy, ..., v,_1,uy,). To show the other containment,
suppose that x € G7 N Hy N---N H}. Determine a; in R"! by the conditions
Gi={reR"':z.aq=1}and H;={z € R 1 z-q; =1} fori = 2,..,n.
Then Gf = {z e R : z-aq; < 1} and HY = {z € R" : 2 .q; < 1} for
i =2,...,n. Because {vy, ..., v,_1,u,} is a tetrahedron, there are scalars ¢; such that

r=cv1+ -+ Cr1Vp_1+ Cuu, and ¢; + - -+ + ¢, = 1. Then

T-Qy =CU1 A1+ + Cp_1Up—1 * Q1 + CrUy - A7
=cvr-art+c+--+cy
:clvl-al—i—l—cl.

fori =2,...,n—1and ¢, = 1229 Since

1—up-an

1—x-a;

Thus ¢; = -=2% Similarly, ¢; = i
K T

= 1Tvrar
r € G,z -a; <1 (the denominators are positive; e.g., since v; € G} \ Gy,v; -
a; < 1). Since v; € Gy \ Gy, we have v; - a; < 1, and thus ¢; = f_ﬁfﬁ > 0.
Similarly, ¢; > 0 for all ¢ = 2,...,n. Hence x € Conv(vy,...,vu_1,uy). This proves

the claim. Consequently, Tl(l) is a tetrahedron. By using the same argument, Tl(i)

is a tetrahedron for any ¢ = 2,...,n — 1. Thus

Conv(Ty) N Conv(Ty) = H N Tl(n_l)

n

_ Tl(n—l)

is a tetrahedron since Tl(n_l) C Conv(Ty) € H,r. This completes the proof. O

Theorem 1.3.7. Let Ty = {vy, ..., v, } be a positive tetrahedron. Then the following
statements hold.
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(a) f Ty = {wy, ..., w, } C R" and Conv(Ty) C Conv(T}), then T} is a positive
tetrahedron.

(b) If ¢1,c¢o,...,cn, are positive then T) = {cjvy, covy, ..., ¢y, } 1S a positive
tetrahedron.

(c) If Ty = {vy,...,v_1, w, } is a positive tetrahedron then T; = {vy, ..., v,_1, (1—

t)v, + tw, },0 <t <1 are positive tetrahedra.

Proof. (a) Since Conv(7y) has nonempty interior, Conv(77) has nonempty interior.
Clearly, the origin is in the interior of Conv(7}). Thus T} is a positive tetrahedron.
(b) Let ¢ = min{ecy, ..., ¢, }. Then Ty = {cvy, ..., cv, } is clearly a positive tetra-
hedron. Moreover, Conv(7;) C Conv(7}). Consequently, 7} is a positive tetrahedron
by part (a).
(¢) By Proposition 1.3.6, Conv(7y) N Conv(7}) is the convex hull of a tetrahe-

dron. Let v € Conv(Ty)NConv(T}). Suppose that v = cjv1++ - -+¢,_10,_1+¢,v, and

_1t
v =dyvi+- - +dy_ 10,1 +d,w, for some ¢, d;. Then Z—” = %tvl—l—- =R, oy,
n n n

and (1;§)U — dl(dln_t) v+ d71+53_t)vn_1 + (1 — t)wn. Thus

[i + 16;25}1; = [%f + —dl(iln_ t)}vl ot [C"C‘nlt + d”‘lc(li_ t)]vnl + v, (1)
Ol B o CRE (e o el

Ccndn
dnt + ¢ (1 — 1)

+

}vn(t).

Hence v € Conv(T}) for all ¢ € [0,1]. By part (a), 73,0 < t < n are positive

tetrahedra. O
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1.3.3 Invariant Tetrahedra and Positive Invariant Tetrahedra

Let B be an (n — 1) x (n — 1) real matrix. For the rest of this chapter, we

always assume that B has all eigenvalues less than 1 in absolute value.

Definition 1.3.8. Let 7' = {vy,...,v,} be a (ordered) tetrahedron. T is called an
(ordered) invariant tetrahedron for B if the convex hull of T is sent to itself under
B. T is called a (ordered) positive invariant tetrahedron of B if the convex hull of

T is sent to its interior under B.

Proposition 1.3.9. Let T be an invariant tetrahedron of a matrix B. Then the
origin must be in the convex hull of T'. If T" is a positive invariant tetrahedron of B

then T is also a positive tetrahedron.

Proof. Note that TB C Conv(T). Then TB™ C Conv(T)) for all n € N. But
lim, oo TB™ = {0}, so {0} C Conv(T). If T is a positive invariant tetrahedron
of B then the origin must be in the interior of Conv(7T"). Thus T is a positive

tetrahedron. O

Theorem 1.3.10. Let T' = {vy,...,v,} be a tetrahedron. Then T is a (positive)
invariant tetrahedron of B if and only if there is a (positive) stochastic matrix P

such that T'B = PT.

Proof. Suppose that T' = {v,...,v,} is an invariant tetrahedron of B. For each
i € {1,..,n} we have v;B = } 7| pjv; for some p;; > 0 such that 37, pi; = 1
since v;B is in Conv(T'). Put P = (p;;). Then P is stochastic and satisfies the

equation T'B = PT.
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Suppose conversely that TB = PT for some (positive)stochastic matrix P.

Let v =", ¢;v; where ¢; > 0 and >, ¢; = 1. Then

vB = 2”: c;v; B
=1
= Z Ci ( Zpijvj)
i=1 j=1
= Zn: d,”Ui
=1

where d; = Z?Zl ¢;pji- Note that d; > 0 and

> di=2_ D i
=1

i=1 j=1

- an

j=1 i=1
n n
= Z Cj ( iji)
j=1 i=1
n
-3¢
j=1
=1

Thus vB is in the convex hull of T'. Note that T' is positive invariant if and only if

pi; > 0 for all 7, j. O]

Let 7;(B) denote the set of all positive invariant tetrahedra of B, 7"%(B)
denote the space of ordered positive invariant tetrahedra of B, and S, (B) denote
the space of positive stochastic matrices similar to B @ 1. We topologize T, (B)
by using the Hausdorff metric and topologize T"%(B) and S, (B) by using the

subspace topology of the Euclidean space. The space of positive invariant tetrahedra
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has proved its worth in the study of rational strong shift equivalence by Kim and

Roush.

Remark 1.3.11. There is a natural continuous function 7"%(B) — T,(B) defined
by (v1, ..., vn) = {v1, ..., v, }. Thus a path in 77%(B) induces a path in 7, (B).
Theorem 1.3.12. Let T be an ordered positive tetrahedron and denote 1 =
(1,1,..,1)" . Then T € T2%B) if and only if the matrix (7' 1)(B & 1)(T 1)
is positive.

Proof. It T € T, (B) then there is a positive stochastic matrix P such that T'B =
PT. This implies that (T 1)(B® 1) = P(T' 1), so (T 1)(B® 1)(T'1)™! = P is
positive. Conversely, suppose that P = (T 1)(B & 1)(T 1)7! is positive. We will

show that P has row sum 1. Note that (T 1)(0,0,...,1)" = (1,1,...,1)". Thus

P(1,1,... 1) =(T 1)(Be 1)(T 1)7'(1,1,...,1)*
= (T 1)(B®1)(0,0,...,1)"

= (T 1)(0,0, ..., 1)"

Hence P is positive and stochastic. Then we have (T'1)(B& 1) = P(T 1) and it

can be reduced to T'B = PT. Therefore, T € T, (B). O

Definition 1.3.13. For an ordered tetrahedron T' = (vy, ..., v,) in R"™1 let Pr be

the quasi-stochastic matrix P such that v;B = > p;;v;,1 <i <n.

Remark 1.3.14. If T is an ordered invariant tetrahedron of B then Py is stochastic.
If in addition T is positive then Pr is positive and stochastic.
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For any T' € T"(B), define w5(T") = Pr. We recall the following theorem in

[KR90].
Theorem 1.3.15. [KRI0] 75 : T7"4(B) — S4(B) is continuous and surjective.

Proof. By Theorem 1.3.12, we have Pr = (T 1)(B® 1)(T 1)~!. Thus 7p is contin-
wous. Let P € S§;(B). Suppose that P = C(B & 1)C~! for some C € GL,(R). Let
C,, denote the last column of C. Then PC = C(B @ 1) implies PC,, = C,,. Thus
C,, is a right eigenvector of P corresponding to 1, so C,, = k(1,1,...,1)" for some
k > 0. Let R; be the i'" row of C. Then R; = (v;, k) for some v; € R*11 < i < n.
Define T' = (vy,...,v,). We will show that T is an ordered tetrahedron. Since
C is invertible, {Ry,...,R,} is a basis of R". Suppose that Y ", ¢;(v; — v1) = 0.
Then Y71, iR — (D yci) R = Yy ci( R — Ry) = >0, ¢i(vi — v1,0) = 0. Thus
¢; =0 for all i = 2,...,n. By Proposition 1.3.3 (c¢), T is an ordered tetrahedron as
claimed. Note that PC' = (PT,C,) and C(B& 1) = (I'B,(C,), so TB = PT. By

Theorem 1.3.10, T € T"4(B) and Pr = P. Thus 75 is surjective. O

The following proposition suggests us to study the space of positive invariant
tetrahedra for some simple matrix B, e.g. B may be chosen as the real Jordan

canonical form.

Proposition 1.3.16. Let A and B be similar matrices over R. Then
(a) T"%(A) is homeomorphic to T"(B).

(b) T+ (A) is homeomorphic to 7, (B).

Proof. Suppose that A = CBC~!. For any T € 71’”(14), there is a positive stochas-
tic matrix Pr such that TA = PrT. Then we have (T'C')B = TAC = Pr(TC). Thus
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TC € Te4(B). The map T — T'C defines a homeomorphism between 77%(A)

and 77"(B). The same argument can be applied for 7 (A) and T, (B). O

Proposition 1.3.17. Let T = (vy, ..., v,) € T2 B) and | = (I1, ..., 1,) € int(A™ ).
Then the following statements are equivalent.
(a) oy + -+ + Lv, =0,

(b) 1 is the left Perron eigenvector of Pr.

Proof. (a) Suppose that ljv; + -+ + [,v, = 0. Then

(lhoy+ -+ lv,)B=0

(Lipir + -+ lopn)vr + -+ (L1 + -+ + lnPun) s = Livg + -+ - + L0y,

Applying Proposition 1.3.3 (d), we get > i, lip;; = I; for all j = 1,2, ...,n. Conse-
quently, we have [ Pr = [ and hence [ is the left Perron eigenvector of Pr.

(b) Suppose that {Pr = {. Then

(117)1 + 4 lnvn)B = llle -+ lQ'UQB + 4 annB
= ll(pllvl + - +p1nvn) +--+ ln(pnlvl + - +pnnvn)
== (llpll + -+ lnpnl)vl + -+ (llpln + -+ lnpnn)vn

= ll’Ul + - +ann.

Since B has all eigenvalues less than 1 in absolute value, l;v1+- - -+[,v,, can not be an

eigenvector of B corresponding to an eigenvalue 1. Therefore lyv1+- - -+l,v, = 0. O

Proposition 1.3.18. Let S = (v1,...,v,),T = (wy,...,w,) € T(B). Then the
following are equivalent.
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(a) PS = PT.
(b) There exists an invertible matrix A such that w; = v;A for 1 <i < n and

AB = BA.
Proof. (b) = (a) Suppose that v; B = pjv1 + -+ - + pinv, for all i = 1,...;n. Then

= UZBA
= (pnv1 + -+ + pinvn)A

=PpaWwi + -+ PinWn.

Thus Ps = Pr.

(a) = (b) Suppose that v;B = pjv1 +- - -+ Pty and w; B = pjywy +- - -+ piny,
for all « = 1,...,n. Then lyu; +--- 4+ l,v, = 0 and lyw, + - -+ + l,w,, = 0 for some
l=(ly,...,1,) € int(A™). By Proposition 1.3.3 (g), {v1, ..., vn—1} and {wy, ..., w,_1}
are bases of R"™'. Define a linear transformation L : R"™! — R"™! by L(v;) = w;

forall2=1,...,n — 1. Then

1
— l—(llvl +---+ ln—wn—l))

n

L(v,) = L(
— —% (llL(vl) +- 4 ln71L(Unfl))

1
= _Z_(llwl + -+ ln—lwn—l)

:wn

Thus there is an invertible matrix A such that w; = v; A for all i = 1,...,n. For any
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i €{l,...,n}, we have
v;AB = w; B
= PiW1 + -+ + Piny
= (pav1 + -+ + pinvn) A
= y;BA.

Therefore, AB = BA. O]

1.4 T.(B) Has Only Finitely Many Connected Components

Definition 1.4.1. A semialgebraic subset of R™ is a subset of points in R™ which is
the solution set of a boolean combination of polynomial equations and inequalities

with real coefficients.

It is well-known that a semialgebraic set has finitely many connected compo-

nents. See e.g. [BCRI8, Theorem 2.4.4] for more details.

Theorem 1.4.2. 72"%(B) has finitely many connected components.

Proof. Tt suffices to show that 77%(B) is a semialgebraic set. Let T' € T™(B).

Then T satisfies the matrix inequality
(T1)(Bo1)(T 1) >0
which is equivalent to the system of polynomial inequalities in n(n + 1) variables
{det (T'1) > 0,(T 1)(B® 1)adj(T" 1) > 0} or
{det (T"1) < 0,(T 1)(B® 1)adj(T 1) < 0}.
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Thus 77%(B) is a semialgebraic set. O

Corollary 1.4.3. The following statements hold.
(a) T, (B) has finitely many connected components.
(b) 84 (B) has finitely many connected components.

(c) There are finitely many SSE-R, classes in the same similarity class.

Proof. (a) The map (v1, ..., v,) — {v1,...,v,} induces a fewer number of connected
components in 75 (B) than the number of connected components in 77(B).

(b) This follows from Theorem 1.3.15 and Theorem 1.4.2.

(c) By Theorem 1.2.9, the number of SSE-R, classes is at most the number

of connected components of S, (B). O

Remark 1.4.4. We can show directly that Sy (B) has finitely many connected compo-
nents by noticing that Sy (B) is a semialgebraic set. Let pg(t) be the characteristic
polynomial of B @ 1. Let pg(t) = [~ (qx(t))"* where the ¢; are irreducible and
distinct, and j, € N. Then P € S, (B) if and only if

° Z?leij =1,1<i<n,

ep;;>0fori,j=1,..n,

o rank(qx(P)) = rank(qx(B® 1))/, 1 <k <m,1 < j < jp.

That a matrix M has a given rank r is equivalent to r x r being the size of the
largest submatrix of M with nonzero determinant. This is a semialgebraic condition

on M.

32



1.5 Same Connected Component Criteria

The purpose of this section is to prove the following theorems.

Theorem 1.5.1. Suppose Ty, T; € ’Tﬁd(B). For0 <t <1,set Ty = (1—1t)Ty+t1i.
If T; is a positive tetrahedron for each t € [0,1] then Ty and 7} are in the same

connected component.

Proof. Suppose z € T;. Then there exist x € Ty and y € T} such that z = (1 —t)z +
ty, and zB = (1—t)xB+tyB. There exist 2’ € int(Conv(7j)) and ¢’ € int(Conv(7}))
such that B = 2’ and yB = ¢/ and then for 0 < ¢t < 1, 2B = (1 —t)a’ + ty’ €
int(Conv((1 — ¢)Tp)) + int(Conv(¢71)) C Conv(T;). This shows that T; € T2"%(B)

for all t € [0,1]. So Ty and T are in the same connected component of 777%(B). [

Theorem 1.5.2. Each of the following pairs of positive invariant tetrahedra of B
are in the same connected component of 77"%(B).

(a) Ty = (v1, ..., ), Th = (cq01, ..., CuU,) Where ¢y, ..., ¢, are positive.

(b) To = (V1 ooy U1, V0), T1 = (V1 eoey V1, Wy

(c) To = (v1y ey Vp_1,0p), Th = (W1, ..., wy_1,v,) Where v;, w;, v, are colinear

foralle=1,....,.n—1.

Proof. (a) For 0 < t < 1, define T; = ((1 —t + c1t)vy, ..., (1 — t + cut)vy,). By
Theorem 1.3.7 (b), T} is a positive tetrahedron for all ¢ € [0,1]. Therefore, Ty and
T; are in the same connected component of 7"%(B) by Theorem 1.5.1.

(b) For 0 <t <1, define T; = (v1, ..., Vp_1, (1 = t)v,, + tw,,). By Theorem 1.3.7

(c), T; is a positive tetrahedron for all ¢ € [0, 1]. Therefore, Ty and T} are in the
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same connected component of 77"%(B) by Theorem 1.5.1.

(c) Let u; € {v;, w;} be such that
lu; — wy|| = max{||v; — wy]|, [Jw; — wy]||} for i =1,2,....,n — 1.

Define T% = (uy, Uz, ..., Up_1, wy). Note that v; and w; lie between w; and w,, for all
i=1,2,...,n— 1. Thus Conv(T%) = Conv(7p) U Conv(7}). This implies that T,
T2r4(B). For 0 <t <1, define T: = (1 —-t)Ty + tTy. Then Conv(Tp) C COI’IV(T%)
for all ¢ € [0,1]. Thus T is a positive tetrahedron for all ¢ € [0,1]. So Ty and

T% are in the same connected component of 7"%(B) by Theorem 1.5.1. Similarly,

Tt

(1-— t)T% + tT) is a positive tetrahedron for any ¢ € [0, 1]. Thus, Ty and Ty
are in the same connected component of 7"%(B) and hence Ty and T} are in the

same connected component of 77"%(B). O

1.6 Some Cases in Which 7, (B) Is Disconnected

In this section, we show that the space 7, (B) can be disconnected. In the
next section we will show that 7, (B) has exactly 2 connected components when

B = diag(a, —f) with o, > 0 and o + § > 1.
a 0
Lemma 1.6.1. Let B = where —1 < f < a < 1. Suppose that

0 p
T = {(0,1),(=b,y), (c,z)} where b,c > 0 is a positive tetrahedron. If T" € T, (B)

then o — 8 < 1.

Proof. If @ = [ then we are done. Suppose that § < «. The corresponding matrix
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for T is

—(bz +cy) + B(b+c) (1= p)c (1—=p)b
1
PZB —(bz +cy) +ab(z —y) + By(b+c¢) ab(l —2)—PBey+c ably—1)— Bby+b

—(bz+cy)+acly—z)+6z(b+c) ac(z—1)—Pez+c ac(l —y)—Lbz+b

where D = —(bz + cy) + b+ ¢. Note that | = (I1,1s,13) where |; = —bzgcy,b =

c

;I3 = 5 is the left Perron eigenvector of P. Thus D > 0. Since po3 > 0, we have

Sl

bz+cy > a—1

y > g—:é Since p3o > 0, we have z > zf_é Since p11 > 0, we have § > = prcE

Thus S(a— ) >a—1,(1—p)(a—p—1) <0, and hence o — § < 1. ]

a 0
Proposition 1.6.2. If B = where a — 8 > 1 then 7, (B) is not path

0 p

connected.

Proof. Let Ty = {(—a,0),(1,1),(1,-1)} and T} = {(a,0),(—1,—1),(—1,1)} where

a > —%“g. Because T, = —T}, both Ty and T} correspond to the same positive

stochastic matrix

(1-a)a (1-a)a
1+ aa 5 3
1
— a+B+(1+B)a a—p+(1-PB)a
P l+a| 170 2 2

a—f+(1-BFa atp+(1+p)a
11—« 5

2
Thus To,T1 € T (B). Suppose that there is a path T; connecting Ty and T;. Then
there is some ¢y € (0,1) such that T;, = {(0,z), (=b,y), (¢, 2)} for some x # 0 and
b,c > 0. Thus %Tto € T+(B). From Lemma 1.6.1, we get « — 5 < 1 which is a

contradiction. O

Remark 1.6.3. Let Ty, Ty be as in the last proof. Given P in S (B), we have
P = Pr for some T' € T (B). There is a path in 7, (B) to Ty or T, and thus a path
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of similar positive stochastic matrices from P to Pp = Pp,. Therefore, although

7. (B) is disconnected, the space S;(B) is connected.

1.7 Connected Components of T, (B) When Bis 1 x 1 and 2 x 2

In this section, we determine the number of connected components of T (B)
when B is a 1 x 1 and 2 X 2 matrix. It is easy to find the number of connected
components of 7, (B) when B is 1 x 1. Unfortunately, we do not have a complete
characterization of the number of connected components of 7, (B) when B is 2 x 2.

We summarize the results as follows.
1. 7:(B) is path connected when B has the Jordan form

(a) (), A € (=1,1),

a 0
(b) o, B €10,1),
0 p
a 0
(c) ,a,f€[0,1) and o+ 8 < 1,
0 —§
—a 0
(d) ,a€l0,4),
0 -«
a 1
(e) yae(0,1)
0 «
a 0
2. T+(B) has 2 connected components when B has the Jordan form
0 —p

(0,1) and o+ 5 > 1.
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Whether 7, (B) is path connected is still unknown when B has one of the
remaining Jordan forms which are compatible with B @1 being similar to a positive

stochastic matrix:

—a 0
(a) ,a, € (0,1) and a+ 8 < 1,
0 -5
—a 1
(b) ,a€(0,4),
0 -«
o B
(c) , (a, B) € int(Conv(T)) where T = {(1,0), (—3, \/75)7 (—3, _\/73)}
8 a

We begin with the easy 1 x 1 case.

Proposition 1.7.1. [KR90] Let B = (A),—1 < A < 1. Then 7T, (B) is path con-

nected.

Proof. Let Ty = {a,z},Ty = {b,y} be positive invariant tetrahedra of B. We can
assume that <0 <z and b<0<y. Let a; = (1 —t)a+tband z; = (1 —t)x + ty.
Define T; = {a;, z;}. Note that a; < 0 < x;. Thus T} is a positive tetrahedron for

any t € [0,1]. The corresponding stochastic matrix for T; is

1 )\.Z’t — Q¢ (1 — >\)fL’t

()\ — ]_)Clt Tt — )\Cbt
It is easy to check that P, is positive for any ¢ € [0, 1]. Thus T; is positive invariant

under B for any ¢ € [0, 1]. Therefore 7, (B) is path connected. O

The spectra of 3 x 3 stochastic matrices are completely characterized by Loewy

and London(see e.g. [ELN04]). We give special cases for positive stochastic matrices.
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Theorem 1.7.2. Let o, 5 € (—1,1). A = {1, a, 5} is a spectrum of a 3 x 3 positive

stochastic matrix if and only if a« + > —1.

Theorem 1.7.3. Let o, § € R with a®+8% < 1. Let T = {(1,0), (-1, %), (=3, = %) }.

N

Y

A ={l,a+ pi,a — pi} is a spectrum of a 3 x 3 positive stochastic matrix if and

only if (o, ) € int(Conv(T)).

These results give all possible Jordan forms of a 2 x 2 matrix B for which B&1

is similar to a 3 x 3 positive stochastic matrix.

a 0
Theorem 1.7.4. Let B = where a > |3].

0 p
(a) If a — 8 < 1 then T, (B) is path connected.

(b) If &« — 8 > 1 then T, (B) contains exactly 2 path connected components.

Proof. Let Ty = {v1,v2,v3} € To(B), L;; be the line segment connecting v; and v;
for all 1 <14 < j <3, and W;; be the convex hull of 0,v;,v; for all 1 <1¢ < j < 3.
Then one of W;; intersects the z-axis at the origin only, say Wia. If Ly is parallel to
the z-axis then we can perturb L5 so that L5 is not parallel to the z-axis. Suppose
without loss of generality that Li5 has positive slope or a vertical line. Let u; be
the intersection between the line connecting v; and vy and the x-axis. We can also
assume that vy is on a line segment connecting u; and vy. Let T = {uq, vq, v3}.
Then Conv(7y) € Conv(T}). Since u; is on the z-axis, u1 B = cuy which is in the
interior of 77 and hence T} € T.(B). Thus every positive invariant tetrahedron of B
is in the same connected component as an invariant tetrahedron whose one vertex

is on the z-axis. Next, suppose that 75, = {(a,0), (b,y), (¢,z)} where a # 0. We
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consider 2 cases.
Case 1: a < 0. We can assume without loss of generality that b < c¢. Then

¢>0. Let T3 = {(—1,0), (=2, =), (=&, —2)}. The positive tetrahedron of the form

a

{(-1,0), (d,w), (d, —w)},d > 0 is in T (B) because it corresponds to the matrix

2(a+d) -« 11—«

1
2(1 +d) 20 —a)d (1-8)+(a—pB)d (1+8)+ (a+p)d

20—a)d 1+8)+(a+p)d (1—-08)+(a—p)d
Then T3 is in the same connected component as Ty = {(—1,0), (=%, —2), (=%, 2)}.

Thus 7} is in the same connected component as 75 = {(—1,0), (1,1),(1,—1)} via

the path

Ty = {(—1,0), (at — <61L _ t)C’ at — (1 — t)|Z|)7 (at - (1- t)c’ at + (1 —t)|z|

a a a

)}-

Case 2: a > 0. By using similar arguments as in case 1, Ty is in the same
connected component as T = {(1,0),(—1,1),(—1,—1)}. Therefore every positive
invariant tetrahedron of B is in the same connected component as either 75 or Tg.

(a) If a— B < 1 then a positive tetrahedron 77 = {(0,1), (—1,a—1),(1l,a—1)}
is in 7T, (B). Let L be the line segment connecting (—1,a«—1) and (1, —1). We can
perturb L so that it has positive or negative slope after perturbation. We denote
L’ and T7 as the line segment L and the positive tetrahedron 77 after perturbation
respectively. By continuity, 77 is still in 7 (B) and in the same connected component
as Ty. If L’ has positive slope then 77 is in the same connected component as Tg. If
L’ has negative slope then 77 is in the same connected component as 75. Thus T
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and T are in the same connected component. Therefore T, (B) is path connected.
(b) If a — 5 > 1 then Proposition 1.6.2 implies that 75 an