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Phytophagous insects dominate the terrestrial earth. While many are external plant
feeders, a large diversity of insects specialize on feeding internally within plants. This

study constructs one of the first phylogenies of the diverse leaf-mining moth

superfamily Gracillarioidea, and examines broad patterns of life history evolution.

This dissertation begins with a short introduction (Chapter 1), before a molecular
phylogenetic analysis of the Gracillarioidea utilizing over 14,800 nucleotides
(Chapter 2). Results indicate that 1) Douglasiidae probably does not belong in
Gracillarioidea; 2) the phylogenetic position of Bucculatricidae in Gracillarioidea is
generally weak, but strong when non-synonymous changes are analyzed alone; 3)
deep divergences in the superfamily are difficult to resolve even with 21 genes; and
4) four strongly supported clades, roughly corresponding to Kumata’s classifications

were recovered in the Gracillariidae.



Chapter 3 is a preliminary examination of life-history evolution in Gracillariidae,
focusing on the “top down” effects from parasitoids that may have shaped the life
histories of gracillariids. Results include: 1) larval traits (larval habit, cocoon
ornamentation) is conserved on phylogeny, but traits associated with hosts are less so;
2) that host shifts in gracillariids are more common among closely related plants, and
that closely related insects feed on closely related hosts; 3) blotch mining is the
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modification of the simple blotch mine, may be an evolutionary innovation against
parasitoids. The final three chapters focus on the taxonomy, life-history, and
morphology of several gracillariids, including the description of three new species.
The central theme is Phyllocnistis, a diverse, yet poorly studied serpentine mining

gracillariid genus.
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Foreword

Three of the six chapters in this dissertation were previous published:

Chapter 4: De Prins, J. and A. Y. Kawahara. 2009. On the taxonomic history of
Phyllocnistis Zeller 1848 (Lepidoptera: Gracillariidae). Nota
Lepidopterologica 32(2): 113-121.

Chapter 5: Kawahara, A. Y., Nishida, K., and D. R. Davis. 2009. Systematics,
host plants, and life histories of three new Phyllocnistis species from
the highlands of Costa Rica (Lepidoptera, Gracillariidae,
Phyllocnistinae). Zookeys 27: 7-30.

Chapter 6: Kawahara, A. Y., Sohn, J.-C., De Prins, J., and S. Cho. 2010. Five
species of Gracillariidae (Lepidoptera) new to Korea. Entomological
Research 40: 131-135.

The student, Akito Kawahara, made substantial contributions to all aspects of these

publications, justifying their inclusion in this dissertation.
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Chapter 1: Introduction

Insect herbivores and their host plants dominate terrestrial biomes and may
constitute nearly half of the earth’s biodiversity (excluding microorganisms, Strong et al.,
1984). As herbivores and pollinators, Lepidoptera are one of the primary insect groups
responsible for the radiation of flowering plants (Powell et al., 1998; Scoble, 1992). Since
the pioneering work of Ehrlich and Raven (1964) on the co-evolution of butterflies and
their hosts, there has been great interest in trying to detect and understand
macroevolutionary patterns in insect-plant associations (e.g., Farrell, 1998b; 2001;
Kergoat et al., 2005; Mitter et al., 1988; Percy et al., 2004; Sequeira and Farrell, 2001).
Most macroevolutionary studies on herbivorous insects have focused on external plant
feeders (e.g., Ehrlich and Raven, 1964; Janz and Nylin, 1998; McKenna et al., 2009), and
few have examined patterns of life history evolution for internal herbivores such as leaf

miners.

Moths in the superfamily Gracillarioidea constitute the primary group of plant
mining Lepidoptera. Gracillariidae, the most diverse family in the superfamily, feed on a
wide range of different host plant families, and the larva typically consumes the soft
tissue between the outer leaf surfaces (Davis, 1987). Physical and spatial features of their
mines differ markedly across taxa within the family (Hering, 1951; Vari, 1961), and the
variation provides a unique opportunity to utilize phylogeny to test ecological and

evolutionary hypotheses that led to broad host use and diverse larval habits.



The current accepted classification of the Gracillarioidea, set by Davis and
Robinson (1998), recognizes putative morphological characters for the superfamily and
four families within: Bucculatricidae, Douglasiidae, Gracillariidae, and
Roeslerstammiidae. However, monophyly of these families, and relationships among and
within them, has not been adequately tested. A molecular phylogenetic analysis sampling
across the Gracillarioidea lays the foundation necessary to conduct studies on the
Gracillariidae, the most diverse family that exhibits the greatest variation in life history

traits.

Gracillariidae currently includes approximately 2,000 species in 100 genera (De
Prins and De Prins, 2010), but a huge fraction of its diversity still remains undescribed,
especially from Central and South America. Many gracillariid species are economically
important (Abu-Yaman, 1966; Heppner and Dixon, 1995; Shapiro et al., 2008) and new,
undescribed gracillariid pests are regularly being discovered from tropical agricultural
plantations (Davis and Wagner, in prep.). Despite such large numbers of unknown
species and the need to describe them, little progress is being made on the taxonomy of
Neotropical Gracillariidae. While constructing a molecular phylogeny of the
Gracillarioidea and examining life history evolution are the primary goals for this
dissertation, a portion is devoted to morphological descriptions, life-history observations,
and revealing the complex taxonomic history of a diverse, poorly studied genus,

Phyllocnistis.



This dissertation begins with a test of the phylogenetic hypotheses of
Gracillarioidea (Chapter 2). The goal for the chapter is to present one of the first
phylogenies of the superfamily based on molecular data. Next, the emphasis is on
applying phylogeny to uncover some of the broad patterns of life-history evolution in
Gracillariidae (Chapter 3). Gracillariids have a plethora of unique life-history traits, and
numerous untested hypotheses on life history evolution in the family exist. I take an
exploratory approach and examine life history patterns with an exemplar sampling of 68
gracillariid species. The last three chapters focus on adding more observational and
descriptive data to the accumulating knowledge of gracillariids life histories. Generation
of novel morphological, taxonomic, and life-history data allows the application of
powerful methods to synthesize the different sources of information. I conducted three
separate studies, each examining a different aspect of gracillariid systematics: the
taxonomic history of one of the most diverse, and morphologically challenging genera,
Phyllocnistis (Chapter 4), life-history studies of three new Neotropical Phyllocnistis
species (Chapter 5), and a morphological description of several new Korean gracillariids

(Chapter 6).



CHAPTER 2
Molecular phylogeny of leaf-mining moths (Lepidoptera:

Gracillarioidea): Initial evidence from 21 nuclear protein-coding genes

Abstract

Gracillarioidea (approximately 2,000 described species) is the most diverse group
of leaf-mining moths, with many economically important agricultural pests. While the
majority of species are leaf miners, the superfamily shows a diversity of other life-history
strategies, such as fruit mining, stem mining, leaf rolling, boring, and galling. Despite
their economic importance and wealth of life-history strategies, relationships among
gracillarioid families and subfamilies remain uncertain. Fifty-seven taxa, including
twelve outgroups, were initially sequenced for ten nuclear protein-coding genes (8,436
bp). An additional 11 genes (6,375 bp) were sequenced for 27 taxa and combined with
the original ten to create a data set of 14,811 bp. The concatenated, all taxa, all-gene data
set and three other data sets of different taxa and gene sampling design were analyzed
with maximum-likelihood, and statistical significance of non-monophyly examined with
the Approximately Unbiased (AU) test. Partially or fully augmenting a data set with more
characters tended to increase bootstrap support for particular deep nodes, and this
increase was dramatic when non-synonymous changes were analyzed alone. Supporting a
recent study, we find strong evidence for the exclusion of Douglasiidae from
Gracillarioidea, as monophyly of the superfamily was statistically rejected in eight of
nine analyses (P < 0.009). Our results strongly support the monophyly of Gracillariidae,

Lithocolletinae + Leucanthiza, and the Acrocercops and Parectopa groups. There was



strong support for the ‘G.B.R.Y.’ clade, a group comprising of the Gracillariidae +
Bucculatricidae + Roeslerstammiidae + Yponomeutidae, when analyzed with non-
synonymous changes only, but this group was frequently split when synonymous and
non-synonymous changes were analyzed together. Base compositional heterogeneity at
the third nucleotide position may explain the spurious position of Bucculatricidae when
synonymous changes are included. The limited resolution among the major lineages
within the Gracillarioidea reinforces the idea that estimating deep relationships in

Lepidoptera can be very challenging.

Introduction

Gracillarioidea, one of the largest groups of plant mining Lepidoptera, includes
over 2,000 described species (Davis and Robinson, 1998; De Prins and De Prins, 2010).
Most Gracillarioidea create serpentine or blotch mines in plant leaves, and some have
caused substantial agricultural and economic damage as introduced pests (Gilbert et al.,
2005; Heppner, 1993; Shapiro et al., 2008). Gracillarioids, while primarily leaf miners,
show a diversity of other life-history strategies, such as fruit mining, stem mining, leaf
rolling, boring, and galling (Davis, 1987; De Prins and De Prins, 2010). Gracillariid
larvae are also known to undergo spectacular ontogenetic changes in feeding behavior,
and the number of larval instars can vary from 4 to 11 depending on species (Davis,
1987). The larva may transition from a sap feeding form (with a flattened head, sap-
feeding mouthparts), to a dramatically different, tissue-feeding form that resembles a
typical lepidopteran larva (with a cylindrical body, a round head, chewing mouthparts

and a functional spinneret), and some are also known to have a transitional quiescent



instar in which the larva does not feed (Davis, 1987; Kumata, 1978; Wagner et al., 2000).
Numerous hypotheses exist on the evolution of gracillarioid life histories. For example, it
has been thought that the most ancestral lineages within Gracillarioidea are bark miners,
while the more derived groups are mine in leaves (Kuznetzov and Stekol'nikov, 1987).
Davis (1987) postulated that the most ancestral lineages within Gracillariidae, the most
diverse family within Gracillarioidea, produce folded or rolled leaves while derived
lineages mine in leaves. Gracillarioid phylogeny will offer the initial framework to test

and examine the evolution of many life-history strategies.

Despite the economic and ecological importance of Gracillarioidea, monophyly of
the superfamily remains putative. The current accepted classification by Davis and
Robinson (1998) includes four families, Bucculatricidae, Douglasiidae, Gracillariidae,
and Roeslerstammiidae, but others have previously included only the Bucculatricidae and
Gracillariidae (Gerasimov, 1948), Bucculatricidae, Gracillariidae, and Lyonetiidae
(Heppner, 1984; Zimmerman, 1978), or Bucculatricidae, Gracillariidae and
Roeslerstammiidae (Robinson, 1988). Recent molecular studies on the higher phylogeny
of Lepidoptera have included several Gracillarioidea, and strongly support a close
relationship of Gracillarioidea to Yponomeutoidea (Mutanen et al., 2010; Regier et al.,
2009). Phylogenetic studies within Gracillarioidea have focused at the genus level or
below (e.g., Epicephala [Kawakita and Kato, 2009; Kawakita et al., 2004];
Phyllonorycter [Lopez-Vaamonde et al., 2003; 2006], Acrocercops transecta species-
group [Ohshima, 2008; 2010]), and there have been no broad analyses of relationships

among families, subfamilies and genera.



Of particular difficulty in the systematics of Gracillarioidea has been the
Bucculatricidae and Douglasiidae. The Bucculatricidae includes approximately 250
species, mostly in the genus Bucculatrix, that are morphologically very similar (Braun,
1963; Heppner, 1991). Douglasiidae includes only about 25 species, which are leaf
miners and stem borrers (Common, 1990; Gaedike, 1974; Gaedike, 1990). They were
putatively included in the Gracillarioidea based on nine morphological features that they
share with Gracillariidae and Roeslerstammiidae, including two from the larva, two from
the pupa, and five from the adult (Davis and Robinson, 1998). These afore-mentioned
two families also have striking unique morphological features, such as the presence of a
broad antennal scape (Bucculatricidae) and ocelli (Douglasiidae) (Davis and Robinson,
1998). A recent study directed at the broader relationships of Lepidoptera included
fourteen Gracillarioidea species, and suggested that the Gracillarioidea may not include

the Bucculatricidae or Douglasiidae (Mutanen et al., 2010).

The purpose of this paper is to utilize multiple nuclear genes to tackle the problem
of gracillarioid phylogeny. Fifty-seven taxa, including exemplars representing the major
lineages of Gracillarioidea plus outgroups, were sampled. Because recent phylogenetic
analyses of ditrysian Lepidoptera based on 6,157 bp (Mutanen et al., 2010), and 6,759 bp
(Regier et al., 2009) have revealed the difficulty of resolving deep splits within Ditrysia,
we first sequenced ten genes (8,436 bp) for 57 taxa, and then an additional 11 genes
(6,375 bp) for 27 taxa representing the major lineages of Gracillarioidea (21 genes total,

14,811 bp). This approach was taken as it has been shown that deep node resolution can



sometimes be increased with greater gene sampling for only a subset of exemplar taxa
(Cho et al., 2010; Cummings and Meyer, 2005; Graybeal, 1998; Mitchell et al., 2000;

Wiens, 2003; Wiens, 2005).

However, with few taxa come additional problems, mainly pertaining to
phylogeny estimation. Sampling only a few taxa but more characters can lead to artifacts
such as long-branch attraction in the case for parsimony (Felsenstein, 1978), and while
probabilistic methods tend to do better, they still can be subject to such artifacts under
particular conditions (Philippe et al., 2005). Following Cho et al. (2010), we examined
whether sampling design has an effect on estimated relationships of Gracillarioidea. We
constructed four different data sets, which we have termed data sets A — D: (A) 10 genes
(8,436 bp) and 27 taxa; (B) 21 genes (14,811 bp) and 27 taxa (11 genes added to data set
A); (C) 10 genes and 57 taxa (30 taxa added to data set A), and (D) an all-sequence, all-
taxa data set formed by combining data sets B and C, and containing a large block of
missing data (Fig. 2.1). We also examined the effect of including and excluding
synonymous change, as base compositional bias can result in misleading relationships
when synonymous substitutions are present (Foster and Hickey, 1999; Lockhart et al.,

1994).

Methods

Taxon sampling

Forty-five species of Gracillarioidea were included in the present study. Taxa

were chosen to represent the major lineages as defined by the classification of Davis and



Robinson (1998). Whenever possible, we included the type species or genus. Twelve
outgroups were chosen based on the availability of sequence data and their phylogenetic
proximity to Gracillarioidea in recent molecular phylogenetic studies of ditrysian
Lepidoptera (Cho et al., 2010; Regier et al., 2009). GenBank sequence numbers for each

species are listed in Table 2.6.

Gene sampling

Ten genes, totalling 8,436 bp, were initially sequenced for 27 taxa (data set A).

An additional 11 genes, totaling 6,375 bp, were then sequenced and added to create data
set B (27 taxa, 21 genes; 14811 bp). The eleven additional genes are a subset of 68 gene
regions developed for Arthropoda, specifically, those with the highest rates of non-
synonymous change (Regier et al., 2008b), and were chosen specifically for estimating a
“backbone” phylogeny of Lepidoptera (see http://www.leptree.net/). We also created data
set C (57 taxa, 10 genes) and combined data sets B and C to create data set D (57 taxa, 27
gene). Gene and amplicon names, their lengths, and their inclusion into data sets A-D are

listed in Table 2.1, and GenBank accession numbers for each gene is listed in Table 2.6.

For nearly all genes, nucleic acid sequences were generated from mRNAs
amplified with RT-PCR following the laboratory protocols, primer sequences, and
amplification strategies of (Regier, 2008). For elongation factor-1 alpha (Cho et al., 1995)
and Histone 3 (Ogden and Whiting, 2003), we followed methods outlined in Kawakita et
al. (2006; 2004) and Ogden and Whiting (2003), respectively. Sequences were first

checked for contamination and sample-switching error, before being assembled, edited,



and concatenated with the software Geneious 4.6.4 (Drummond et al., 2009). The final
data set was aligned using MAFFT 6.703 (Katoh, 2009a), implementing the E-INS-i
function. The entire edited sequence data set is deposited as a Nexus file in TreeBASE

(http://www .treebase.org), study accession number xxx.

Phylogenetic analysis

Phylogenetic analyses were conducted with maximum likelihood (ML) as
implemented in GARLI 1.0 (Genetic Algorithm for Rapid Likelihood Inference, Zwickl,
2006) and GARLI-PART 0.97 (Zwickl, unpublished). All settings were kept as default
except where indicated below. We used jModelTest (Posada, 2008) to determine the best
substitution model for data set, which in each case was chosen as the General-Time-
Reversible (GTR) model (Lanave et al., 1984; Tavar¢, 1986), with among-site rate
heterogeneity modeled according to a gamma (I") distribution (Yang, 1994) while
allowing for a proportion of invariable sites (I) (Gu et al., 1995). Two thousand ML and
bootstrap tree searches were conducted for analyses that applied a nuclear substitution
model. We also applied the Goldman and Yang (1994) codon model, running four ML
searches with 1 to 4 rate categories for each data set, and then choosing the appropriate
parameters based on the tree with the highest likelihood score. We ran 100 ML tree
searches and 100 bootstrap replicates for all codon model analyses. To expedite tree
searches, we used Grid computing (Cummings and Huskamp, 2005) through The Lattice
Project (Bazinet and Cummings, 2009). For consistency in the characterization of results,

we will refer to bootstrap support of 70-79% as “moderate” and support > 80% as
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“strong.” We use the arbitrary cutoff of 80% bootstrap support as a measure to compare

the number of nodes with strong support across individual genes.

Base compositional heterogeneity

Base compositional bias can lead to independent lineages incorrectly grouping
together (Foster and Hickey, 1999; Lockhart et al., 1994). While models for phylogenetic
analysis assume compositional homogeneity, strong compositional heterogeneity is
common at sites capable of undergoing synonymous substitution (Regier et al., 2008a;
Regier et al., 2008b; Regier et al., 2009). For this reason, we examined four different
character partitions, with and without synonymous change: (a) “nt123”: all nucleotides
and all changes; (b) “codon”: all nucleotides and changes, but implementing a codon
model to down-weight the synonymous sites; (c) “degenl” (Regier et al., 2010; Zwick,
2010): all synonymous changes degenerated, an extension of the RY coding scheme of
Phillips et al. (2004); and (d) “partitioned”: all nucleotides, synonymous and non-
synonymous sites treated with different model parameters, which correspond to the

partitions, “noLRalll + nt2” and “LRalll + nt3” of Regier et al. (2010).

To further investigate the potential influence of compositional heterogeneity, we
conducted chi-square tests of among-taxon heterogeneity on data set B. We chose data set
B because it includes the largest number of characters (14,811 bp) with the lowest
percentage of missing data (13.96%) out of the four data sets. Chi-square tests were
conducted on a character set undergoing mostly synonymous change, nt3, and one

undergoing mostly non-synonymous change, degenl. We conducted the test for various
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groups in the Gracillariidae and outgroups on both the entire character set, and after
eliminating invariable sites in the degenl data set. To gauge the possible effect of
compositional heterogeneity on phylogeny inference, we compared Neghibor-Joining
trees using two different distances: ML distances based on the GTR model, which can be
influenced by compositional heterogeneity; and Euclidean distances calculated on the
proportions of the four nucleotide states treated as independent characters, which will
reflect only compositional heterogeneity. Euclidean distances were generated using a Perl
script that was written with modification of the MBE Toolbox (Cai et al., 2005), and the

calculations conducted with PAUP* 4b10 (Swofford, 2002).

Testing alternative hypotheses

Morphological evidence supports the monophyly of Gracillarioidea,
Gracillariidae, Gracillariinae (Davis and Robinson, 1998), Gracillariinae +
Lithocolletinae (Kuznetzov and Stekol'nikov, 1987), and Oecophyllembiinae +
Phyllocnistinae (Kumata, 1998), but some of these proposed higher-level groups were not
recovered. To ascertain whether these differences between morphological and molecular
inferences were “real,” i.e. not attributable to sampling error in the molecular data, we
used the Approximately Unbiased (AU) test of Shimodaira (2002). With that test, we
determined whether the best tree possible under the constraint of monophyly of the
morphology-based group is a significantly worse fit to the molecular data than the best
tree without that constraint. For each combination of one character set and one group of
uncertain monophyly, we performed an ML analysis under the constraint of monophyly

for the group in question, and an unconstrained analysis. Each analysis applied the same
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number of ML runs determined to be appropriate for that character set as described
above. Site likelihoods were estimated with PAUP* (Swofford, 2002) and the CONSEL
package (Shimodaira and Hasegawa, 2001). In CONSEL, the AU test statistic of
Shimodaira (2002) was used to determine the difference in fit to data of the constrained

and unconstrained trees.

Results

Relationships of Gracillarioidea and Gracillariidae

All analyses resulted in a paraphyletic Gracillarioidea, and monophyly of the
superfamily can be confidently rejected at P < 0.009 by the Approximately Unbiased Test
in eight of nine analyses (Table 2.2). Support for the monophyly of Gracillariidae was
high for nt123, codon and partitioned analyses, and also for degenl with 27 taxa (Table
2.3). In general, nt123, codon and partitioned results were similar in topology and branch
support, while degenl results differed in topology and generally provided lower branch
support, except that support for some deep relationships was strikingly high. For data set
B, degenl resulted in a monophyletic ‘G.B.R.Y.’ clade (Gracillariidae + Bucculatricidae
+ Roeslerstammiidae + Yponomeutidae), with strong support (BP = 90%), while this
group was typically not recovered in nt123, codon and partitioned ML trees. Instead, the
latter three methods resulted in the Bucculatricidae diverging before all taxa except the
designated outgroup, Tineidae (e.g., Figs. 2.5, 2.6), and support for monophyly of the

G.B.R.Y. clade, for data sets A — D was weak (BP < 62%; Table 2.3).
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Within Gracillariidae, monophyly clearly cannot be conclusively rejected for the
sister-group relationship of the Oecophyllembiinae + Phyllocnistinae, as P > 0.1 under
the Approximately Unbiased test in all cases (Table 2.2). Monophyly of Gracillariinae +
Lithocolletinae is rejected by nt123 and codon model analyses (P < 0.05), but not for
degenl results from data set C and D (degenl, P = 0.471 and 0.138). Monophyly of
Lithocolletinae (including Leucanthiza) was strongly supported in trees generated from
ntl123, codon, and partitioned analyses (Table 2.3). Monophyly of the Gracillariinae is
rejected significantly by data sets C and D, but not by data set B. Within Gracillariinae,
postulated relationships such as Kumata’s (1982; 1988) Acrocercops and Parectopa
groups were monophyletic with strong support in all analyses conducted. The Gracillaria
group was monophyletic, but strongly supported only in analyses of the degenl data set.
Morphology also corroborates the monophyly of several of these groups: at least two
morphological synapomorphies support Gracillariidae (Robinson, 1988); hindwing
venation and larval chaetotaxy characterizes the Lithocolletinae; unique features of the
male eighth abdominal segment define the Acrocercops and Gracillaria groups (Kumata,
1982; Kumata et al., 1988); and all species in the Parectopa group share an antrum that
opens at the 7th sternum, an unusual character state for female Lepidoptera (Toshio

Kumata pers. comm.).

Agreement and conflict among individual genes

There were no strongly supported groups that conflicted with each other across
genes, and few nodes above the subfamily level were moderately or strongly supported

by any one gene alone. Nodes strongly supported by only one gene were: CAD (BP =
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83% for Gracillariidae, BP = 96% for the Acrocercops group), and Period (BP = 82% for

Oecophyllembiinae + Phyllocnistinae; Table 2.5).

Gene versus taxon sampling

The addition of ~6.4 kb of sequence data to data set A increased bootstrap values
for some deep nodes, most notably when analyzed with degenl. For instance, bootstrap
support rose 16% (from 74% to 90%) for the G.B.R.Y. clade. An increase was also seen
when we analyzed the complementary 11 gene, 27 taxa data set (data set B minus A),
which had a BP = 84% for that clade. Bootstrap support for the Acrocercops group
decreased 10-20% when 11 genes supplemented the original ten. This effect however, is
probably due to the fact that Acrocercops brongniardella is missing 8,966 (60.1%) of the
14,811 characters. Indeed, when 30 additional taxa (including four additional
Acrocercops group species) were added to data set B, bootstrap values rose above 97%

for the Acrocercops group (data set D, Table 2.3).

The addition of 30 taxa (sampled for 10 genes) to data set A did not have a very
strong effect on bootstrap support values for most nodes that could be compared.
However, two nodes, the G.B.R.Y. clade and Gracillariidae, had strikingly higher
bootstrap values under degenl coding with fewer taxa (data set A) than more taxa (data

set C), rising from < 50% to 74% and from 68% to 100% respectively.
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Base compositional heterogeneity

Results of the chi-square tests for compositional heterogeneity are shown in Table
2.4. Homogeneity could not be rejected for any groups in the degenl character set. When
invariable sites were removed, only the Gracillariidae became significantly heterogenous.
In contrast, nt3 showed highly significant heterogeneity across all taxa and the five taxon
subsets. As a gauge of the possible misleading signal produced by compositional
heterogeneity, we calculated Neighbor-Joining trees on distances reflecting only
composition for nt123 and nt3. In these trees, Bucculatricidae is clustered with five other
taxa that are together separated by long internal branches from the Tineidae and the

remaining species in the tree (Fig. 2.4).

Degenl ML trees from data sets A, B, and D recovered a monophyletic G.B.R.Y.
clade (Figs. 2, 3A, 3B). As an alternative means to filter synonymous signal, we also
created a noLRalll + nt2 data set and calculated branch support, following the same
methods outlined for nt123. This data set, which removes all nt3 sites and all nt1 sites
that contain at least one sequence that codes for either argenine or leucine, also provided
strong support for the G.B.R.Y. clade (BP = 88%, results not shown). These results
support our previous findings (e.g., Regier et al., 2009) that filtering synonymous signal
(and thereby compositional heterogeneity) can result in robust phylogenetic inference at

deep levels.
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Discussion

Phylogenetic relationships of Gracillarioidea

Our results provide one of the first molecular estimates of relationships within
Gracillarioidea. Some previous hypotheses about those relationships were confirmed, as
well as several novel ones. We focus our discussion on the degenl ML tree for data set D
(Fig. 2.2) unless otherwise noted. Gracillarioidea was paraphyletic in all analyses
conducted, a result that is not in agreement with Davis and Robinson (1998). Davis and
Robinson included Douglasiidae in Gracillarioidea, but monophyly of the superfamily so
defined was rejected significantly in eight of nine AU tests (Table 2.2). Recently,
Mutanen et al. (2010) reached the same conclusions based on fewer genes and taxa. In
their analyses, Gracillarioidea were never monophyletic, and Douglasiidae was
consistently placed in Apoditrysia. Mutanen et al. (2010) also had difficulty in placing
the Bucculatricidae, which, in their analyses, was paraphyletic with respect to 7Tritymba
(Plutellidae), and this group (Bucculatricidae + Tritymba) was sister to the Gracillariidae
with weak (< 50%) ML bootstrap support. The close relationship of Yponomeutidae to
Gracillarioidea (excluding Douglasiidae) is also consistent with previous molecular
studies (Cho et al., 2010; Mutanen et al., 2010; Regier et al., 2009). These reports
suggest, at least tentatively, that the putative morphological apomorphies proposed for
Gracillarioidea by Davis and Robinson (1998) may be homoplasies. In order to restore
monophyly of the superfamily, we would need to exclude Douglasiidae from
Gracillarioidea and include Yponomeutidae. However, more convincing resolution of

inter-family relationships is desirable before any formal taxonomic changes are made.
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Monophyly of Gracillariidae was strongly supported in nearly all analyses, but
relationships among subfamilies were not strongly resolved. The grouping of
Oecophyllembinae + Phyllocnistinae, which share unique serpentine mine morphology
(Davis, 1994) and a highly specialized spinning instar (Davis, 1987), was supported
weakly or not at all in our multi-gene analyses. However, this pairing could not be
rejected by any of the nine AU tests (Table 2.2), and was strongly supported (BP = 82%)
by the only individual gene, Period, that provided strong evidence for or against that
grouping (Table 2.5). The sister group relationship of Gracillariinae to Lithocolletinae
proposed by Kuznetzov and Stekolnikov (1987) was rejected by seven AU tests (Table
2.2). Our results strongly support the inclusion of Leucanthiza in Lithocolletinae,
suggesting that that this genus should be transferred here from the Gracillariinae.
Monophyly of Gracillariinae (both with and without Leucanthiza) was rejected by the AU
test in more than half of the data sets, suggesting that this subfamily needs to be
redefined. However, we did identify two genus-level groups with strong support within
Gracillariinae, the Acrocercops and Parectopa groups, closely corroborating prior

morphological hypotheses (Kumata, 1982; 1988).

Phylogenetic contribution of adding genes versus taxa

Our results are consistent with Cho et al. (2010) and support the general
observation that partial augmentation of gene sampling can improve estimates of deep
relationships. When analysis is restricted to 27 species, full-augmentation to 21 genes
also increased bootstrap support for some deep nodes, a result consistent with other

empirical studies (e.g., Cummings et al., 1995; 1999; Mitchell et al., 2000; Otto et al.,
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1996; Poe and Swofford, 1999; Regier et al., 2008b; Rokas et al., 2003; Zwick et al.,
submitted). While partial or full augmentation of genes improved branch support for deep
nodes, especially for degenl, many nodes below the family level were still challenging

even with > 14 kb of sequence data.

Increasing taxon sampling from 27 to 57 did not have a major impact on branch
support for higher groups, except when non-synonymous sites were analyzed alone
(degenl). Under degenl coding, support for deep nodes dropped sharply when 30 taxa
were added. A similar result was observed when comparing more genes (data set B) to
more taxa (data set C). Bootstrap support for the G.B.R.Y. clade and the Gracillariidae
was dramatically higher for data set B than for data set C. The difference appears to be
due to the combination of both greater gene sampling and lesser taxon sampling, but the

difference was greater when more genes were sequenced (Table 2.3).

The large block of missing data in data set D, amounting to roughly a fourth of
the total possible sequence for a complete matrix of these dimensions, does not appear to
induce the phylogenetic artifacts of missing data (Lemmon et al., 2009). The partially
augmented data set D pulls the Bucculatricidae, a problematic group in the present study,
into the G.B.R.Y. clade, from which it is left out in the ML tree from non-augmented data
set C (Figs. 2, 3C). Previous support for a close relationship of Bucculatricidae to the
Gracillariidae, from morphology (Gerasimov, 1948; Heppner, 1984; Kuznetzov and

Stekol'nikov, 1987; Robinson, 1988; Zimmerman, 1978) and molecules (Mutanen et al.,
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2010), allows us to favor the topology from the partially augmented data set D over the

non-augmented data set C.

While our study is concordant with the results of Cho et al. (2010) and the
simulation results of Wiens (2003; 2006), it is plausible that our results are biased as our
sampling design was restricted to blocks of pre-determined number of genes and taxa. It
would ideally be best to test these conclusions with different empirical data sets and with

different blocks of genes within our present data set.

Base compositional heterogeneity

Compositional heterogeneity may account for the difference in placement of
Bucculatrix (Bucculatricidae) between the nt123 and degenl trees. Because strong non-
synonymous signal supports the monophyly of the G.B.R.Y. clade, synonymous signal,
mostly at nt3, must be accountable for the less decisive placement of Bucculatricidae in

nearly all nt123 trees.

Strong compositional bias can incorrectly group unrelated taxa together (Foster
and Hickey, 1999), or equivalently, widely separate a taxon with strong bias from its true
relatives. In nearly all analyses that included synonymous signal, Bucculatrix was placed
along a long internal branch between the Tineidae and the remaining taxa. Non-
synonymous signal as reflected in both degenl and noLRalll + nt2 resulted in a
monophyletic G.B.R.Y. clade, for which support from some analyses was very robust.

Only weak signal remains for this clade when synonymous sites are added (ML bootstrap
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consensus trees in all but two cases provided 50-60% branch support for this clade). We
speculate that analyses that include synonymous signal, regardless of whether they down-
weight or model parameters for synonymous and non-synonymous changes separately,
do not effectively correct for the strong compositional heterogeneity found at nt3.
Instead, synonymous signal appears to be obscuring true underlying phylogenetic signal

of non-synonymous characters.

A comparison of the ML topology with the Neighbor-Joining GTR ML distance,
and Euclidean compositional distance trees for nt123 and nt3 suggests that the uncertain
placement of Bucculatricidae in the nt123 data set is largely due to nt3 (Fig. 2.4). In the
compositional distance trees, six taxa (Bucculatrix sp., Atteva punctella, Eumetriochroa
hederae, Hemerophila felis, Phyllocnistis citrella, and P. magnoliaeela) fall between the
Tineidae and the remaining taxa along a long internal branch. In the nt123 ML tree, in
contrast, all taxa but Bucculatrix move to parts of the ML nt123 tree that are generally
well supported and expected based on morphology (e.g., Eumetriochroa with

Phyllocnistis, and Atteva with Eucalantica).

Results of the ML nt3 analysis are very different, providing further evidence that
compositional heterogeneity can affect trees based on nt3 alone. Despite providing about
90% of the total character change, the nt3 character set alone yields bootstrap support >
50% for only 6 nodes as compared to the full data set (nt123; 14 supported nodes), fewer

even than the degenl character set (12 supported nodes). Some unexpected relationships
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are found, such as Bucculatrix + Eumetriochroa, which break up well-supported groups,

in this case the monophyletic Gracillariidae (Fig. 2.4F).

Conclusions

Our results demonstrate the difficulty of resolving deep level relationships in
Lepidoptera. The phylogeny obtained in this study largely corroborates the results of
Mutanen et al. (2010), in that 1) the Douglasiidae do not appear to belong in the
Gracillarioidea and 2) that the Bucculatricidae are difficult to place when both non-
synonymous and synonymous characters are analyzed together. While Mutanen et al.
(2010) did not propose a solution to the “bucculatricid problem” in their ML analysis, we
believe the problem with Bucculatricidae (and possibly other lepidopterans that are
difficult to place) is that base compositional heterogeneity at nt3 may be obscuring true
underlying phylogenetic signal. Based on the tests for compositional heterogeneity and
stronger bootstrap values obtained when synonymous changes are excluded, we
tentatively conclude that the Bucculatricidae is closely related to Gracillarioidea +
Roeslerstammiidae + Yponomeutidae. Since the majority of phylogenetic models assume
compositional homogeneity, molecular phylogenetic studies, especially those focusing on
deep-level questions, would do well to systematically examine the effect of synonymous

versus non-synonymous change.
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Table 2.3. Bootstrap support values across data sets for selected clades. Square brackets
indicate support values for clades that were not present in the ML tree. “G.B.R.Y. clade”
refers to Gracillariidae + Bucculatricidae + Roeslerstammiidae + Yponomeutidae.
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22252 38 § § ¢ EZ=2%%

A < Sag> 3 43 <= © & ®&mOo=AQ
A ntl23 <50 99 N/A 87 N/A 100 N/A
codon <50 99 N/A 8 N/A 100 N/A
degen 74 100 N/A 99 N/A 100 N/A
partitioned <50 99 N/A 8 N/A 100 N/A
B ntl23 [58] 98 N/A 77 N/A 100 N/A
codon [54] 100 N/A 73 N/A 100 N/A
degen 90 100 N/A 82 N/A 100 N/A
partitioned [62] 100 N/A 74 N/A 100 N/A
C ntl23 <50 94 96 95 68 100 <50
codon <50 96 96 99 <50 100 <50
degen <50 68 68 99 &9 100 <50
partitioned <50 99 100 97 77 100 <50

D ntl23 [54] 95 97 97 63 100 52
codon [53] 88 89 98 65 100 <50
degen 57 68 67 99 &9 100 <50
partitioned [59] 99 100 97 67 100 51
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21 genes
10 genes | 10 genes (14811bp) 11 genes |

A) (8,436 bp) B) —— @8436bp) ——I—— (6,375bp) —

A

27 taxa
27 taxa

L%/

D) 21 genes
10 genes | 10 genes (14811bp) 11 genes |
—

(8,436 bp) (8,436bp) ———— (6,375bp) —

C

missing data

57 taxa

— 30 taxa—— 27 taxa —
57 taxa

— 30 taxa—-ir— 27 taxa —

Fig. 2.1. Four data sets with different sampling strategies. A. 27 taxa and 10 genes, B. 27
taxa and 21 genes, C. 57 taxa and 10 genes, D. combination of B and C into a single data

set with a large block of missing data.
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Cameraria_gaultheriella™
Cameraria_guttiinitella

BP: nt123/codon

d egen Cameraria_sp._n.
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931100 Tt':ﬁiy//omryoter_ sp n*
[ Z . .
Data set D T e ommmmieasns pcoiinee

= TT 76/98,__100/99 Lithocolletiinae_gen_n + Leucanthiza
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c 100/100 Hyloconis_wisteriae
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- 97 Leucanthiza_amphicarpeasioliella

Forphyrosela sp n

Phyllocnistinae 490100 [ Phyllocnistis_citrella*
100 e Pyiiccnistis magnoliaesiia* b

Acrocercaps_brongniardel/a* 7]

Deaptifia_heptadela

g = Amblyptia_sp_n

i Gibbovalva_quactifasciata

Leucospilgpteryx_venustelia U

Spulerina_dissotoma* Acrocercops

Dialectica_sp group

Denadrorycter_marmaroides

Marmara_serotinella

57 taxa

FW curved An,

red final instar 100/100

50/

Fumetriochroa _hederae™
Caloptilia_bimacuiatella*
Caloptilia_sapporelia
Caloptilia_obliquatella Gracillaria
Fucalybites_aureola group
Aristaea_sp n
Callisto_denticulelia* ] Parornix group
4 abd. scales, 00/100 Liocrobyla lobata T
leaf folding TEPans&';/qoa_fob/'n/le’//a %
Micrurapteryx_salicifoliella .
Leurocephala sp n Parectopa b
Conopomorpha_sp group /A
Stomphastis_sp ‘\ i
‘G.B.RY’ e 100 ljﬁ Neurobathra_strigifintella

CI a d e Epicephala_relictella*

Affeva_punctelia*
\54/53 =g = IYponomeutidae
571

Gracillariidae
e

’ FW apical dot,
= Q2 antrum [

100/100

=

Eucalantica_sp_n*
| 100/100 : Agriothera_elaeocarpophaga™
100 Roeslerstammia_pronubelia*
- 100/100 [ Bucculatrix_staintonella o
0.2 substitutions/site 100 e Buccuiatriv_sp* Bucculatricidae

Ethmia eypostica™
FEuclemensia bassettella*

IGeIechioidea

Emmelina_monodactyla* Pterophoridae
Alucita sp*  Alucitidae
100/100 [ Klimeschia_transversella* | Douglasiidae

100 L 7inagma_gaedikei
Hemerophila_felis* Choreutidae

B2

Argyrotacnia_alisellana® L.
Platynota jdeausalis* | Tortricidae
i Uroaus_cecens*  Urodidae
7inea_colu ieffa* .
— e |T|ne|dae
Tineola b

Fig. 2.2. Maximum likelihood degenl tree of data set D. Taxa sequenced for 21 genes are
indicated with asterisks. Hyphens indicate support values < 50%, square brackets indicate
relationships that were not present in the ML tree of that analysis. Square brackets are
only shown for nodes where there is a relationships > 50% in one of the analyses that
conflict with the degenl ML tree.
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CHAPTER 3

Larval habits, host use, and life-history evolution in leaf-mining moths

(Lepidoptera: Gracillariidae): An initial exploration

Introduction

Ecological opportunity, such as an adoption of a new “adaptive zone”, is thought
to be fundamental in accelerating diversification rates (Simpson, 1953). Key innovations,
such as the ability to overcome plant chemical defenses (Ehrlich and Raven, 1964), or the
development of new morphological or behavioral traits, may allow a lineage to enter a
new adaptive zone (Futuyma, 1991). The adaptive zone concept has played a central role
in evolutionary biology for more than half a century, and is thought to explain many
broad diversification patterns in insects (Berenbaum, 1983; Mitter et al., 1988; Winkler
and Mitter, 2008). Theoretical advances, coupled with the recent availability of molecular
sequence data and phylogenetic dating methods, have made it increasingly easier to study

the evolutionary mechanisms that led to adaptive radiations.

In phytophagous insects, host chemistry is often attributed as the main factor
leading to radiations (Berenbaum, 1983; Ehrlich and Raven, 1964; Feeny, 1975; 1976;
Scriber and Slansky, 1981; Zangerl and Berenbaum, 1993). In their seminal paper,
Ehrlich and Raven (1964) described the “escape-and radiation” scenario, where insects
and their hosts are in an arms race and each side develops new innovations to counter the

opponent’s strategy. An insect species that has successfully colonized a host and
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overcame its chemical defense could enter a new adaptive zone and shift to closely
related groups of plants that may also have similar defenses, and trigger a rapid radiation.
Ehrlich and Raven argued that such processes led to the general pattern that closely
related insects feed on closely related plants. Several empirical studies of external feeding
phytophagous insects have corroborated that pattern (e.g., Farrell, 1998a; Farrell, 2001;

Janz and Nylin, 1998).

While host chemistry has been viewed as one of the primary factors influencing
the evolution of phytophagous insects, other aspects of host-plant variation, such as host
growth form, are also thought to play an important role in the evolution of insect-plant
interactions (Janz and Nylin, 1998; Powell, 1980). Plants of different growth forms
dominate different habitats and typically bear different chemical defenses (Janz and
Nylin, 1998). Feeny (1976) postulated that herbs have diverse “qualitative” toxins that
require numerous specialized adaptations by the herbivore, while trees are characterized
by relatively few widespread “quantitative” defenses such as the presence of tannins, a
generalized digestion-reducing agent. If Feeny’s postulate is correct, we would expect
more host shifts among trees than herbs, as it would be easier for the herbivore to switch
hosts in a group of relatively homogenous plants. This trend has been observed in
butterflies (Janz and Nylin, 1998), but few other empirical studies have examined
whether host shifts are more common in trees than herbs (but see Lopez-Vaamonde et al.,

2003; Menken et al., 2009).
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Although most attention has focused on aspects of the host plant, strong pressures
from predators or parasitoids could also be important mediators of evolution and
diversification patterns in phytophagous insects (Singer and Stireman, 2005). Such “top-
down” effects on phytophage diversification might be especially pronounced for internal
feeders. Endophages, especially leaf miners, often experience strikingly high (> 80%)
mortality from parasitoids (Askew, 1980; Askew and Shaw, 1979; Hawkins et al., 1997
Kato, 1984), and therefore should experience strong diversifying selection to prevent
parasitoid attack (Djemai et al., 2000; Kato, 1985). Lepidopteran leaf miners are thought
to be approximately 100 Mya old (Labandeira et al., 1994) and parasitoids specializing
on leaf miners may date back to more than 50 Mya (Labandeira, 2002; Murphy et al.,
2008; Zaldivar-Riveron et al., 2008). If parasitoid lineages have been applying pressure
throughout leaf miner evolution, the development of morphological, behavioral, and
physiological innovations by both parasitoids and hosts may have led to arms races in
certain lineages. For instance, it has been postulated that tentiform miners have
progressively deepened their mine depths in order to counter the increasing longer
parasitoid ovipositor (Brandl and Vidal, 1987). Furthermore, leaf miners that have
developed innovations against parasitoids might be expected to be more diverse than their
sister-groups that lack the trait. While these hypotheses are plausible, there have as yet
been few rigorous analyses of the evolution and evolutionary consequences of endo-
phytophage life history evolution, including the relative importance of “top-down” versus

“bottom up” influences.
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In this study we present an exploratory study of patterns of life history evolution
and their possible effects on diversification in an exceptionally species-rich group of
internal-feeding Lepidoptera, the family Gracillariidae. Gracillariid leaf-mining moths are
an excellent group for testing hypotheses on life-history evolution of internal feeders
because of their host specificity, diversity, and many specialized life history traits. Unlike
most internal feeding microlepidoptera, the Gracillariidae are every diverse, and life
history records for gracillariids are extraordinarily well documented (De Prins and De
Prins, 2010). Specialized life history innovations include, among many others, switches
between external and internal feeding (Davis, 1987), changes in mine form (Davis and
Robinson, 1998), and larval hypermetamorphic development (De Gryse, 1916; Fitzgerald
and Simeone, 1971; Kumata, 1978; Wagner et al., 2000). The disproportionate number of
particular mine forms in gracillariids may signify an innovation that freed these moths at

least in part from parasitoids.

We focus first on four potential on anti-parasitoid defense strategies that may
explain the unequal diversity of particular gracillariid groups. These are: (1) complex
serpentine mines that can increase parasitoid search time, and in turn, increase miner
survival (Ayabe et al., 2008; Kato, 1984; Kato, 1985); (2) tentiform mines that prevent
parasitoid ovipositors from reaching the leaf miner (Brandl and Vidal, 1987); (3)
decorative bubbles on the cocoon that may act as a barrier against parasitoids (Wagner et
al., 2000) and (4) the presence of dense frass that may attract parasitoids (Heinrich,
1976). As a contrast to these traits reflecting “top-down” evolutionary pressures, we

examine phylogenetic patterns in leaf miner traits reflecting “bottom-up,” host-plant-
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related evolutionary pressures, namely, host plant phylogeny and growth form. While the
timing of parasitism attack may be important in determining mine morphology, we did

not examine parasitoid timing in this initial study.

As a first step in assessing the potential significance of all these traits in
gracillariid evolution, we examined their phylogenetic histories using a new, expanded
molecular phylogeny of Gracillariidae. The taxon sample, while representing less than
10% of gracillariid species diversity, is chosen to represent most of the obvious
morphological and life history variation across the family. The overall aim of the study is
to provide an overview and catalog of evolutionary hypotheses about life history traits
related to host plant use in gracillariids, as well as an initial assessment as to which of
these are the most promising for further study and at what scale of evolutionary

divergence.

Methods

Taxon and gene sampling

Eighty-six species, expanded from the preliminary taxon set of Chapter 2, were
included in the present study. Taxa were chosen based on a broad sampling of genera and
the goal to capture the greatest life-history variation from the limited number of samples
available. We included multiple species from genera that were known to be diverse, such
as Caloptila, Cameraria, and Phyllonorycter. Table 3.3 lists the percentage of known

species in each genus and the number of species sampled for each.
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Eight protein-coding nuclear genes, totalling 7,626 bp, were chosen from a set of
26 genes that are currently being sampled to establish a backbone molecular phylogeny
of Lepidoptera (see http://www.leptree.net). Gene names and the total length of the
sequence included in this study are: CAD (2,886 bp), the 1.7sF—4sR region of DDC (708
bp), enolase (1,135 bp), acc2 4 (501 bp), 109finl_2 (561 bp), 265fin2_3 (447 nt),
268finl_2 (768 bp), and 3007finl_2 (620 bp). GenBank numbers for each sequence is

listed in Table 3.3.

Sequencing, alignment, and validation

PCR primers, amplification strategies, and laboratory protocols followed Regier
(2008). Nucleic acid sequences were generated from mRNAs amplified with RT-PCR.
Sequences were gel-isolated, purified, and nested amplifications conducted whenever
necessary. Sequences were first checked for error, before being assembled, edited, and
concatenated with the software Geneious 4.8.4 (Drummond et al., 2009). The final data
set was aligned using MAFFT 6.717 (Katoh, 2009b), implementing the E-INS-i function
(mafft —genafpair maxiterate 1000). The entire aligned sequence data set is deposited as a
Nexus file in TreeBASE (http://www.treebase.org), study accession number Xxx.
Because seven extracts were made from larvae, and three from the pupae (Table 3.4), we
conducted NCBI-BLASTn and tBLASTx searches (Altschul et al., 1997) in the nr
database on all sequences to assure there were no contaminants. We discounted matches
with other Lepidoptera, but recorded the hits that had the highest percentage identity with

parasitoid sequences.
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Phylogenetic analysis

Phylogenetic analyses were conducted with maximum likelihood (ML) and
Bayesian Inference. We first used jModelTest (Posada, 2008) to determine the best
nucleotide substitution model for the aligned data set and also for a data set that excluded
synonymous change (degenl, Regier et al., 2010; Zwick, 2010). We conducted degenl
analyses because previous studies have revealed stronger signal for some deep-level
nodes when only non-synonymous changes are included (e.g., Cho et al., 2010; Regier et

al., 2010; Zwick et al., submitted).

The ML analysis was conducted with GARLI 1.0 (Genetic Algorithm for Rapid
Likelihood Inference, Zwickl, 2006), and the Bayesian analysis with MrBayes 3.2
(Ronquist and Huelsenbeck, 2003). For the ML analysis, we conducted 1000 ML tree
searches and 2000 bootstrap replicates, utilizing the parallel nature of grid computing
(Cummings and Huskamp, 2005) through The Lattice Project (Bazinet and Cummings,
2009). Bayesian analyses were conducted locally with two parallel runs of four chains
each with a temperature of 0.15, employing default priors and a random starting tree.
Trees were sampled every 1000 generations for 10 generations. Convergence of the two
runs was assessed by examining whether the standard deviation of split frequencies fell
below the 0.01 threshold (Ronquist and Huelsenbeck, 2003), and by checking the
stability of clade splits with the “Cumulative” option in AWTY online (Wilgenbusch et
al., 2004). Seventy percent of the post-burnin trees were discarded, and the remaining
trees used to calculate the Bayesian consensus. Since Bayesian posterior probability

values can be excessively high (Cummings et al., 2003; Suzuki et al., 2002), we
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interpreted the Bayesian posterior probabilities on groups supported only if a value of 1.0
was achieved. Because ML and Bayesian analyses resulted in near identical results, we

conducted PTP tests (Faith and Cranston, 1991) of life history traits on the ML tree.

Life history coding and ancestral state reconstruction

Data on the life history traits described in subsequent sections were compiled
from the literature (Davis and Wagner, 2005; De Prins and De Prins, 2005; Kumata,
1961; 1963; 1977; 1978, 1982; 1985; 1993; 1998; Kumata et al., 1988; Wagner et al.,
2000), online resources (De Prins and Steeman, 2010; Edmunds, 2009; Harrison, 2010;
Suzuki, 2010) and also personal observations. Because erroneous host plant records are
known to exist, we tried to be conservative and excluded anecdotal host plant records.
For each moth species, plant records were included only if there was more than one
report of the moth feeding on the host plant family. However, if there was only a single
known host record, then the record was included. Life history data were scored only for
the species that were sequenced. Life histories and their character state codings used in

this study are listed in Table 3.

All life history characters were coded as standard, unordered, binary or multistate
characters and optimized with both parsimony and ML ancestral state mapping in
Mesquite ver 2.72 (Maddison and Maddison, 2009). For parsimony mapping, we applied
accelerated (ACCTRAN) and delayed (DELTRAN) optimization, and the Mk1 model

(Lewis, 2001) for the ML ancestral state analysis.
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Because outgroup choice for Gracillariidae is problematic, we scored life history
characters only within gracillariids. The present study placed Roeslerstammiidae +
Yponomeutidae as the sister-group to gracillariids, but with very weak support (Fig. 3.5).
Bucculatricidae may also be closely related to the Gracillariidae, as shown by additional
molecular data (Chapter 2) and shared morphological structures (Davis and Robinson,
1998; Kuznetzov and Stekol'nikov, 1987). Since relationships among these families
remain unclear, the ancestral condition of Gracillariidae, inferred here only from
observations within that family, will be further explored in a future study with greater

ingroup and outgroup sampling.

Phylogenetic conservatism of life history traits

We assessed the degree of phylogenetic conservatism of each life history
character over different scales of comparison using the permutation tail probability (PTP)
test of Faith and Cranston (1991). For each character, PTP tests were carried out for
Gracillariidae as a whole, and separately for four strongly supported sub-clades thereof
(bootstrap values > 98% and a posterior probabilities = 1.0). Outgroups were omitted
from these tests. In the PTP test, the observed character states are repeatedly and
randomly redistributed across taxa to generate an expected frequency distribution of the
minimum number of trait shifts under the null hypothesis that the observed distribution of
states is independent of the phylogeny. The number of changes inferred from the
observed data is then compared to the null distribution. These calculations were carried
out using PAUP* 4b10 (Swofford, 2002). We also calculated the retention index (RI,

Farris, 1989a; Farris, 1989b) for each trait to assess the level of homoplasy.
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Larval feeding habit, bubble ornamentation, and frass deposition

To test the postulate that the less common types of gracillariid larval feeding
habits exhibited in later instars — serpentine mining, tentiform mining, leaf rolling and
leaf galling — could be later stages in “arms races” with parasitoids, we created and
reconstructed the evolution of a “larval habit” character with five states: “blotch miner”,
“serpentine miner”, “tentiform miner”, “galler” and “roller”. Because nearly all miners
build a serpentine mine during their first several instars, we restricted our categories to
reflect the habit of the final instar. We also coded the presence and absence of “bubbles”
on the cocoon, and the presence of dense frass in the final instar mine, both of which may
be related to parasitoid pressure. Bubbles are created from the abdomen of the larva and
individually placed on the outer surface of the cocoon. They are filled with air and trace
amounts of an unknown whitish or yellowish substance. They are wrapped with silk and
individually positioned (Wagner et al., 2000). Because bubble density differs among
gracillariid species (Wagner et al., 2000), we scored bubble density into two states, sparse
(< 10 bubbles) and dense (> 10 bubbles). We coded frass as “dense” if more than a
quarter of the width of the mine was covered in thick, dark frass. We scored as many

mines possible for each species. When characterization of a particular trait was difficult,

we scored the trait for that species as ambiguous.
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Host plant use and host growth form

To examine the rate of host plant shifts, we first compiled a list of known hosts
for the gracillariid species sampled in the present study. Hosts were scored at two
taxonomic levels, order and subclass; to determine the level at which host associations
might be most strongly conserved. Host plant records were compiled from the Global
Taxonomic Database of Gracillariidae (De Prins and De Prins, 2010), and arranged
according to current classification of the Angiosperm Phylogeny Group (APG _III, 2009;
Chase and Reveal, 2009). Moth species typically only had one host family, but those that
had more than one were coded as having two or more. Host growth form was determined
via the Flowering Plants Gateway website (Watson and Dallwitz, 1992 onwards), and

moth taxa scored as feeding on “herbs”, “shrubs”, “trees”, or “vines”.

Results

Parasitoids and sequence validation

All amplified sequences were first compared to sequences of the same locus in the
NCBI GenBank database. Sequences generated from adult moth extracts did not result in
any BLAST hits that suggest contamination from parasitoids. However, four sequences,
one from Parornix angicella and three from Telamoptilia sp. nov. recorded GenBank
sequence similarity scores that were closest to chalcidoid sequences (Table 3.4). Based
on BLAST searches and suspiciously long branches for these taxa, we concluded that

these larvae were probably parasitized. Thus, they were excluded from the final data set.
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Gracillariid phylogeny

The appropriate substitution model for the fully aligned dataset was determined as
the general-time-reversible substitution model (Lanave et al., 1984; Tavaré, 1986), with
among-site-rate-heterogeneity modeled according to a gamma (I") distribution (Yang,
1994) while allowing for a proportion of invariable sites (I) (Gu et al., 1995). Our nt123
and degen] results led to very similar topologies, but our discussion focuses on the nt123
data set because it yielded stronger phylogenetic signal within Gracillariidae. The ML
tree, with branch lengths and outgroups, is available as a supplementary file (included

here in this dissertation as Fig. 3.5).

Our results were very similar to those based on the nt123 data set with more genes
but fewer taxa (Chapter 2). The Gracillariidae, Lithocolletinae + Leucanthiza, and three
groups within Gracillariinae that roughly correspond to Kumata’s (1988) Acrocercops,
Gracillaria, and Parectopa groups were monophyletic with strong support (> 98%
bootstrap, posterior probability = 1, Fig. 3.1). We refer to these four well-supported

groups as the “core gracillariid clades” throughout the remainder of this chapter.

Ancestral state reconstruction

Both parsimony and ML mapping suggest that the ancestral larval feeding
condition in gracillariids is blotch mining (Fig. 3.1). Serpentine mining, on the other
hand, appears to be a secondary trait that appeared in the Oecophyllembiinae,

Phyllocnistinae, and Dendrorycter + Marmara. The most parsimonious scenario is two
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independent origins of serpentine mining, but support for nodes separating the two

groups was weak.

Tentiform mining was restricted to a single well-supported clade,
Cremastobombycia + Phyllonorycter. Final instar leaf rolling was only found in the
monophyletic clade that included the Gracillaria group, Aristaea, Callisto, Macarostola,
and Parornix. A transition to gall feeding was found in a single species nested within this
clade, Caloptilia murtfeldtella (Fig. 3.1). Bubble ornamentation is present in three groups
in Gracillariinae: in the ancestral lineages within the Acrocercops group; Dendrorycter +
Marmara, and the ancestor of the Parectopa group, despite a secondary loss in
Micrurapteryx and Parectopa (Fig. 3.2A). Dense frass was absent in the Acrocercops

group and Liocrobyla + Micrurapteryx + Parectopa (Fig. 3.2B).

Host plants and growth form in the lower parts of the gracillariid tree were
equivocal. However, there was a strong tendency for the four core gracillariid groups to
feed on fabids. In Lithocolletinae + Leucanthiza, the ancestral association was Fabales.
Many host switches were observed, especially among rosids, but there were occasional
associations with distantly related to non-eurosid plants, such as Magnoliaceae and

Ranunculaceae (Fig. 3.3).

Phylogenetic conservatism of life history traits

All characters pertaining to mine form and habit were more phylogenetically

conserved, as measured by the Retention Index, than any of the characters pertaining to
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properties of the host plant (Table 3.2). However, nearly all traits showed a significant
correlation with the phylogeny across the Gracillariidae, the only exception being host
growth form. Mine form/habit characters were almost invariably also significantly
correlated with phylogeny within gracillariid subclades, the only exception being the
presence/absence of “bubbles” within the Acrocercops group. In contrast, the only half
(8/16) of the PTP tests for phylogenetic conservatism for host-plant-related traits within

gracillariid subclades were significant (Table 3.2).

Gracillariidae favored rosid hosts (69.5%, 41 of 59), especially the fabids (78.1%,
32 of 41). A total of 56 host records were on core eudicots, while only three gracillariids
utilized non-core eudicot groups. The PTP test showed significant phylogenetic
clustering (P = 0.001) of gracillariid species according to host plant order. Host shifts
across the Gracillariidae were most frequent among host plants of the same order or
subclass, as inferred from the PTP results. Parsimony optimization of larval habits on the
ML tree indicates that there were probably five changes in larval habits during the
evolutionary history of the Gracillariidae. In contrast, there were 28 shifts to different

host orders.

Discussion

Evolution of leaf-mining and related habits in gracillariids - anti-parasitoid innovations?

Both parsimony and ML reconstructions point with high confidence to blotch

mining as the ancestral form of leaf-mining in gracillariids. There were two separate
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subsequent shifts, to tentiform mining in Phyllonorycter + Cremastobombycia, and to
leaf rolling and galling in the Gracillaria group. These results contradict the prediction
that leaf rolling was ancestral to internal feeding in gracillariids (Davis, 1987); rather,
external feeding (but inside a shelter) appears to be a derived condition. The subsequent
transition from leaf rolling to galling inferred here parallels findings in willow-feeding
sawflies (Nyman et al., 1998; Nyman et al., 2000) and in thrips that induce galls on
Acacia (Crespi and Worobey, 1998). While the evidence is still limited, it may be that
leaf rolling is an evolutionary transitional state that facilitates the shift to galling from

external feeding.

Given the high mortality that leaf miners often face from parasitoids (Askew,
1980; Askew and Shaw, 1979; Godfray et al., 1999; Hawkins et al., 1997; Kato, 1984),
and the long historic association between parasitoids and their leaf-mining hosts (Murphy
et al., 2008; Zaldivar-Riveron et al., 2008), we would expect strong selection favoring
mine innovations that limit parasitoid attack. Our results identify several evolutionary
transitions within subgroups of gracillariids that might be interpreted as such innovations.
One is serpentine mining in the later instars. Studies of leaf-mining agromyzid flies show
that mine forms with complex networked serpentine forms can increase parasitoid search
time and miner survival (Ayabe et al., 2008; Kato, 1984; Kato, 1985). Our study revealed
one or two independent origins of serpentine mining, as support for nodes separating the
two origins was weak. With greater gene sampling but slightly less taxon sampling
(Chapter 2), all serpentine miners are often grouped together, but again with low support.

Thus, the number of origins of late-instar serpentine mining remains unclear.
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A second possible anti-parasitoid innovation is the production of tentiform blotch
mines, unique among gracillariids to Phyllonorycter + Cremastobombycia, in which the
leaf epidermis is folded with internal silk to produce a convex arch. The result is a mine
with greatly increased internal height within the leaf mine (Hering, 1951). Our results, in
according with the prediction of Hering (1951), show that the tentiform leaf mine is a
modification of an ancestral blotch mining habit (Fig. 3.1). Brandl and Vidal (1987)
hypothesized that the greater depth of tentiform mines may prevent parasitoids with short
ovipositors from reaching their hosts, and in consequence, result in an evolutionary arms-
race between the miner and parasitoid, where the depth of the mine increases over time in
response to the increasing length of the parasitoid ovipositor. If so, derived lineages of
the Phyllonorcyter + Cremastobombycia clade may have developed deeper tentiform

mines. Unfortunately, we could not test this hypothesis with our limited taxon sampling.

A third possible defensive innovation is exhibited by the many gracillariid larvae,
including most sampled members of the Acrocercops and Parectopa groups, which
decorate the outer surface of their cocoon with hardened bubbles (Davis et al., 1991;
Davis and Wagner, 2005; Kumata, 1978; Needham et al., 1928; Wagner et al., 2000).
Such bubble decorations, particularly when dense, may provide a physical barrier that
distances the pupa from the ovipositor of parasitoids (Wagner et al., 2000), or contain
chemicals that repel parasitoids (D. Davis, pers. comm.). While we cannot formally test
whether this trait is an anti-predatory defense, parsimony mapping reveals at least three

independent origins of bubble making behavior, and at least two secondary losses (Fig.
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3.2A). Interestingly, taxa known to have dense bubble ornamentation (Dendrorycter,
Marmara, and Neurobathra), were distantly related. This suggests that dense bubble
ornamentation has evolved near the base of the Gracillariidae (specifically the
Acrocercops group) and subsequently lost several times. Unfortunately, the number of
available observations on bubble ornamentation is still very limited. It is hoped that
bubble presence, their ecological function, and the variation in bubble number within

genera and species can be further quantified with additional life-history observations.

Although rigorous experimental evidence on their fitness consequences is needed,
for all of these potential defensive innovations there are plausible grounds for supposing
that they would provide improved protection from parasitoid attack, as compared to the
antecedent condition. Some or all might also increase leaf miner survival by making the
mine more conspicuous, thereby deterring external herbivores from feeding on mined
leaves, as recently suggested by Yamazaki (2010). Conversely, however, it is also
possible that mine conspicuousness could promote discovery by enemies, similar to the
way that feeding signs such as bite marks and frass presence are known to attract
parasitoids that use visual or chemical cues (Heinrich, 1976; Heinrich and Collins, 1983;
Roth et al., 1978; Turlings et al., 1991). For this reason, it seems plausible that the shift
from blotch mining to leaf margin rolling, in the Gracillaria group and relatives, could

represent yet another evolutionary escape from parasitism.

In addition to being interpretable as defensive innovations, the foregoing traits

show striking phylogenetic conservatism, corroborated by significant PTP tests. Each
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innovation appears to have originated once or at most twice, and to characterize most or
all the species of a substantial lineage, suggesting that it has persisted long enough to
have a marked effect on diversification rate. It is therefore of interest to ask whether the
clades bearing these innovations show elevated net diversification over near relatives
lacking the innovation. The clearest suggestion of such increased diversification is the
case of tentiform mines. Our phylogeny suggests, albeit with only moderate support, that
the sister-group of the tentiform-mining lineage Phyllonorycter + Cremastobombycia,
which numbers over 400 species, is Cameraria + Porphyrosela. The latter two genera
have a combined known diversity of approximately 80 species (De Prins and De Prins,
2010). This contrast in diversity is at least consistent with diversification spurred by

reduced natural enemy attack.

Host preference, growth form, and shifts

Our results provide support that characters of larval feeding habit appear more
conserved than host taxon association, a result that is concordant with the findings from
other insect groups (e.g., Bucheli et al., 2002; Marvalidi et al., 2002; Nyman et al., 2006;
Ronquist and Liljeblad, 2001; Winkler et al., 2009). Because the number of host switches
are likely to be major underestimates with the taxon sampling of this study, it is plausible
that major host shifts are more than ten or twenty times as frequent than changes in larval

feeding habit.

Gracillariid host shifts were most frequent among host plants of the same family

or order, but there were occasionally shifts to distantly related families such as the
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Magnoliaceae and Ranunculaceae. Many host shifts have occurred back and forth
between the Fagales, Fabales, Rosales, and the more distantly related Asterales, Ericales,
and Sapindales, suggesting that other factors, such as geographic distribution and
ecological properties of the plant taxa (e.g., host chemistry, morphology) are constraining
host shifts. It would be valuable test to examine plant chemistry, as it has been promoted
as the leading factor underlying host shifts (Feeny, 1975; Zangerl and Berenbaum, 1993).
Specific information on secondary host chemistry is limited, but we have begun to
examine how host chemistry (specifically tannin content) is correlated to gracillariid

phylogeny in a separate study.

Evolutionary conservatism of phytophagous insects can sometimes lead to co-
cladogenesis with host plants (Farrell, 1998b; Farrell and Mitter, 1990; Weiblen, 2001).
However, a comparison of gracillariid and angiosperm phylogenies does not indicate co-
cladogenesis, as repeated and convergent shifts occur among fabids and other plant taxa
(Fig. 3.3). Our results are congruent with the general consensus that strong co-
cladogenesis in phytophagous insects is rare (Nyman, 2010; Winkler and Mitter, 2008).
Discordant insect and host phylogenies have also been reported in studies on seed- and
leaf-mining moths (Bucheli et al., 2002; Kawakita et al., 2004; Lopez-Vaamonde et al.,
2003), gall-inducing hymenopterans (Nyman, 2010; Nyman et al., 2006; Ronquist and
Liljeblad, 2001), mining flies (Berlocher, 2000; Scheffer and Wiegmann, 2000; Smith
and Bush, 1997; Winkler et al., 2009), and internally feeding beetles (Farrell and

Sequeira, 2004; Jones, 2001; Morse and Farrell, 2005).
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Of the life history traits examined, host growth form was the least conserved on
phylogeny (Table 3.2, Fig. 3.4). Studies on other internal plant feeders, such as cynipid
gall wasps (Schick et al., 2003) also show a weak correlation between host growth form
and phylogeny, but some studies have demonstrated a correlation between the two,
especially those in butterflies (e.g., Janz and Nylin, 1998). Physiological features of the
plant, such as leaf width, tissue density, and sap viscosity vary across host growth forms,
and may be of more importance in leaf-mining moths. It is clear that many additional
tests, both ecological and evolutionary, will be necessary to characterize broad patterns in

Gracillariidae.

Conclusions

This exploratory study serves to examine several general patterns of life history
evolution in Gracillariidae. We conclude that characters associated with larval feeding
habit are more conserved than host taxon associations. We observed numerous host shifts
that frequently occurred within rosids, but there were also shifts to distantly related plants
such as the Magnoliaceae and Ranunculaceae. A comparison of insect and host
phylogeny reveals little indication of co-cladogenesis, supporting the trend that strong co-

cladogenesis among phytophagous insects and their hosts is rare.

While our study revealed some broad patterns, we expect many more to be
revealed with additional life history data and analysis. For instance, to further test the
hypothesis that particular larval habits led to diversification in particular lineages (e.g.,

tentiform mining in Phyllonorycter + Cremastobombycia), we plan to use the Slowinski-
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Guyer clade asymmetry statistic and conduct sister group tests for serpentine miners and
blotch miners. Alternatively, we could create a gracillariid chronogram, and measure
rates separately to examine if rates are higher for leaf rollers than for blotch miners. We
propose to do these tests as part of our ongoing attempt to capture patterns of life history

traits in Gracillariidae.
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Fig. 3.1. Larval habit mapped onto phylogeny. Bootstrap support values and posterior
probabilities are shown above branches. Pie charts of ML ancestral character state
probabilities are included for relevant nodes. Approximate species diversity for each
genus is included as a bar graph the right of the tree.
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Fig. 3.4. Host plant growth form mapped onto gracillariid phylogeny.
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CHAPTER 4
On the taxonomic history of Phyllocnistis Zeller 1848
(Gracillariidae)

Abstract

For over 150 years, the proper taxonomic placement of Phyllocnistis Zeller
has remained largely uncertain. The genus shares morphological and life history traits
with several different families of microlepidoptera, and these characteristics have
made it challenging for microlepidopterists to correctly place the genus. Phyllocnistis
includes P. citrella Stainton, a globally important economic pest of citrus. We review

the taxonomic history of Phyllocnistis and provide a comprehensive list of references.

Introduction

The leaf-mining moth genus Phyllocnistis Zeller, 1848 has been one of the
‘poster-child’ examples of a poorly studied genus whose taxonomic placement has
vacillated among many different families. Eighty-seven species of Phyllocnistis are
described worldwide (De Prins and De Prins, 2009; De Prins and De Prins, 2005), 36
species from the Oriental region, 17 from Australasia, 15 from the Palaearctic, and 12
each from the Nearctic and Neotropical regions. Only five are known to occur in the
Afrotropical region (De Prins and De Prins, 2009; De Prins and De Prins, 2005). The
distribution of most species is restricted to one biogeographical region. However, five

species cross biogeographical boundaries: P. saligna (Zeller, 1839) occurs in the
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Palaearctic, Afrotropical and Oriental regions, P. selenopa Meyrick, 1915 in the
Oriental and Australian regions, P. toparcha Meyrick, 1918 in the Palaearctic and
Oriental regions, and P. vitegenella Clemens, 1859 has a Holarctic distribution.
Phyllocnistis citrella Stainton, 1856 has a cosmopolitan distribution. There are
currently more than 800 publications on Phyllocnistis, most of which focus on the

pest species Phyllocnistis citrella (Fig. 4.1).

Phyllocnistis is very similar to the lyonetiid genus Leucoptera Hiibner, [1825]
in forewing pattern, but differs in having a smoothly scaled head. Unlike most genera
of Gracillariidae, all larval feeding instars of Phyllocnistis are sap feeding, creating a
long, slender, serpentine, subepidermal mine, that contains a dark median frass line
deposited under the leaf epidermis. There are no tissue-feeding instars, hence no
granular frass, but only three sap-feeding instars and one non-feeding, highly
specialized, spinning instar. The mine terminates in a slightly enlarged cavity, usually
near the edge of the leaf in which the last instar constructs a flimsy cocoon and
pupates (Emmet, 1985; Parenti, 2000). Phyllocnistis is very successful in its ability to
exploit a wide range of host plants as it feeds on 26 plant families (Davis, 1987; De
Prins and De Prins, 2010). Some species of Phyllocnistis (e.g., P. citrella) are
cosmopolitan, fast spreading pests, causing substantial economic damage (Causton et
al., 2006; Davis, 1994; Heppner and Dixon, 1995; Hoy, 1996; Jahnke et al., 2006;
Jahnke et al., 2007). The present paper aims to summarize the taxonomic history of

Phyllocnistis.
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Taxonomic history

Zeller (1848) described Phyllocnistis (Fig. 4.2) as a genus of “leaf-mining
moths with eye caps” placing it just after Lyonetia Hiibner, [1825]. Soon thereafter,
Herrich-Schéffer (1853-1855) placed Phyllocnistis in Tineidae, together with many
other genera of small Lepidoptera. Stainton, in his lists (1854a; 1854b; 1854c; 1859),
placed Phyllocnistis in the family Lyonetidae [sic], and this was followed by Frey
(1856) and Wocke (1861; 1871). According to Stainton (1854a) the family
Lyonetiidae contained five genera: Bucculatrix Zeller, 1839, Cemiostoma Zeller,
1848, Lyonetia Hiibner, [1825], Opostega Zeller, 1839, and Phyllocnistis Zeller,
1848. However, in his lecture of 7 January 1856 to the Entomological Society of
London, Stainton (1856) presented ‘ Phyllocnistis citrella Atkinson in litt.” as a new
species of Indian Microlepidoptera feeding on Citrus. Stainton did not place this
global economic pest into any of the then recognized lepidopteran families. He only
indicated that the new species is similar to the European Phyllocnistis saligna (Zeller,
1839) and suffusella (Zeller, 1847). Wocke (1861) added Phyllobrostis Staudinger,
1859 to the list of Lyonetidae [sic] and later (1871) added Opogona Zeller, 1853. At
about the same time, Herrich-Schéffer (1857) recognized Phyllocnistina as a separate
group, and included three genera into it: Bucculatrix, Cemiostoma, and Phyllocnistis.
On the basis of wing venation, Clemens (1859) transferred Phyllocnistis into
Lithocolletidae, together with Leucanthiza Clemens, 1859, Lithocolletis Hiibner,
[1825], and Tischeria Zeller, 1839. Clemens (1859) placed these four genera in
Lithocolletidae, but noted that his classification was in contrast to European authors

who treat Leucanthiza and Tischeria as Lyonetidae [sic]. Unfortunately, Clemens did
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not indicate who the European authors were. Clemens also stated that he did not
support the separation of these four genera into distinct families. At that time
Phyllocnistis was placed in Tineina, which included many different genera of small
moths (Chambers, 1875; Clemens, 1863; Frey and Boll, 1876; van Deventer, 1904;
Zeller, 1873; Zeller, 1877). Stainton (1863) summarized the generic characters of
twenty genera of leaf-mining Lepidoptera. He placed Phyllocnistis in a group with
Bucculatrix Zeller, 1839, Cemiostoma Zeller, 1848, Lithocolletis Hiibner, [1825],
Lyonetia Hiibner, [1825], and Nepticula Heyden, 1843. All genera except Bucculatrix
share a mining larva and Lithocolletis and Phyllocnistis pupate within the mine
(Stainton, 1863). Chambers (1871) noted that the larva of Phyllocnistis resemble the
young cylindrical larva of Lithocolletis in general appearance and compared adult
Phyllocnistis with the white species of Lithocolletis. In his work on Australian
Microlepidoptera, Meyrick (Meyrick, 1880": 136) made an attempt to classify the
species he was describing and placed Phyllocnistis into Lyonetidae [sic], and stated
“[Phyllocnistis] appears by its quite smooth head and apodal larva to be an extreme
development of [Opostega and Cemiostoma]”. Heinemann and Wocke (1877)
discriminated Phyllocnistidae as a separate family and included three genera within:

Phyllocnistis, Cemiostoma, and Bucculatrix.

Even at the turn of the century, the definition and placement of Phyllocnistis
differed among microlepidopterists. Noting similarities in early stages and habits of
the American species, Busck (1900) proposed to broaden the definition of

Phyllocnistis. He described P. intermediella from Florida, which has morphological
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features that are somewhat different from the species that had previously been
described in the genus. Rebel (1901) allocated Phyllocnistis to the subfamily
Phyllocnistinae along with Bucculatrix Zeller, 1839, Cemiostoma Zeller, 1848,
Opogona Zeller, 1853 and Opostega Zeller, 1839, but placed Phyllocnistinae into
family Lyonetiidae. Kirby (1903) divided Lyonetiidae into two subfamilies:
Lyonetiinae and Phyllocnistiinae [sic]. Meyrick (1895) transferred Phyllocnistis to
Tineidae and in 1906 he placed it along with Epicnistis Meyrick, 1906, Exorectis
Meyrick, 1906, Leucoptera Hiibner, [1825], Nepticula Heyden, 1843, and
Setomorpha Zeller, 1852. Spuler (1910) recognized three species of Phyllocnistis, P.
suffusella Zeller, 1847, P. sorhageniella Liiders, 1900 and P. saligna (Zeller, 1839)
and placed the genus in its own family Phyllocnistidae. Meyrick (1915a; 1915b)
continued to include Phyllocnistis in Lyonetiidae, which he spelled in different ways
(Meyrick, 1915a; Meyrick, 1915b; Meyrick, 1916; Meyrick, 1920; Meyrick, 1921).
Other authors followed to include Phyllocnistis in Lyonetiidae (e.g. Braun, 1925;
Turner, 1923). Braun and Meyrick independently’ transferred Phyllocnistis from
Lyonetiidae to Gracillariidae (Braun, 1927; Meyrick, 1928a; Meyrick, 1928b;
Meyrick, 1935; Meyrick, 1936), and such a placement has since been widely accepted
(Davis and Robinson, 1998; Nye and Fletcher, 1991; Turner, 1947). However, some
authors have treated Phyllocnistis as a separate family until recently (Emmet, 1985;

Kuznetzov and Stekol'nikov, 1987; Seksjaeva, 1981).
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Placement of Phyllocnistis in Phyllocnistinae

Most modern authors divide Gracillariidae into three subfamilies:
Gracillariinae, Lithocolletinae and Phyllocnistinae (Common, 1990; Dall'Asta et al.,
2001; Davis, 1983; Davis and Miller, 1984; Davis and Robinson, 1998; De Prins and
De Prins, 2005; Heppner, 2004; Kuznetsov and Baryshnikova, 1998; Parenti, 2000).
However, some other authors have proposed to erect additional subfamilies:
Oecophyllembiinae (Kumata, 1998; Réal and Balachowsky, 1966), Ornichinae
(Kuznetzov and Stekol'nikov, 1987); misspelled as ‘Orniginae’ (Kuznetsov and
Stekol'nikov, 2001; Kuznetzov and Baryshnikova, 2001)), and Ornixolinae
(Kuznetzov and Baryshnikova, 2001). In the checklist of the Moths of America North
of Mexico, Davis (Davis, 1983) included Phyllocnistis Zeller, 1848 and Metriochroa
Busck, 1900 in Phyllocnistinae, while Kuznetsov (1981) considered Metriochroa
Busck, 1900 belonging to Gracillariinae. Later Davis and Robinson (Davis and
Robinson, 1998) included Cryphiomystis Meyrick, 1922, Metriochroa Busck, 1900,
Phyllocnistis Zeller, 1848 and Prophyllocnistis Davis, 1994 in Phyllocnistinae.
Kumata (1998) then transferred all but Phyllocnistis to Oecophyllembiinae based on
hindwing venation and position of the larval thoracic spiracles. In the classification
and checklist of the Lepidoptera species recorded in southern Africa, Vari et al.
(2002) treated Oecophyllembiinae as a synonym of Phyllocnistinae and included
Cryphiomystis Meyrick, 1922, Metriochroa Busck, 1900 and Phyllocnistis Zeller,
1848 into Phyllocnistinae. De Prins & De Prins (2010; 2005) recognized seven genera
in Phyllocnistinae: Angelabella Vargas & Parra, 2005, Corythoxestis Meyrick, 1921b,

Eumetriochroa Kumata, 1998, Guttigera Diakonoff, 1955, Metriochroa Busck, 1900,
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Phyllocnistis Zeller, 1848, and Prophyllocnistis Davis, 1994. It still remains largely
uncertain whether these groups are monophyletic, and we hope that future
phylogenetic studies based on morphological and molecular characters of
Gracillariidae will shed light on the phylogenetic position of Phyllocnistis, and its

placement in the classification of Gracillariidae.

Footnote:

! Although the publication of Braun (1927) preceded the publication of Meyrick
(1928b), we consider that both authors came to the conclusion to include
Phyllocnistis into Gracillariidae independently and at the same time. Braun (1927)
published the description of Phyllocnistis finitima Braun, 1927, which she placed into
Gracillariidae. Meyrick (1928b) significantly revised his monumental monograph of
914 pages, which includes the identification keys of genera, species, illustrations of
wing venation and short species descriptions. He discriminated six genera within
Gracillariidae: Acrocercops Wallengren, 1881, Gracilaria [sic] Haworth, 1828,
Lithocolletis Hiibner, 1825, Ornix Treitschke, 1833, Parectopa Clemens, 1860, and
Phyllocnistis Zeller, 1848. The preface of his revised handbook was written on 28"
September 1927, the same year as the paper of Braun (1927) was published. We
believe both lepidopterists communicated with each other on the placement of

Phyllocnistis.
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Fig. 4.1. Phyllocnistis citrella Stainton. Italy, Piemonte, Asti, fraz. Valgera, 120 m,
2-15.11.2002, e.l. Citrus sp., leg. G. Baldizzone, coll. MHNG.
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DRUCK UND VERLAG VON EBNST SIEGFRIED MITTLER,
1848,

Fig. 4.2. The text of the original description of Phyllocnistis Zeller in Linnaea
Entomologica. Zeitschrift herausgegeben von dem Entomologischen Vereine in
Stettin 3 (1848).
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CHAPTER 5
Systematics, host plants, and life histories of three new
Phyllocnistis species from the central highlands of Costa Rica

(Lepidoptera, Gracillariidae, Phyllocnistinae)

Abstract

Three new species of Phyllocnistis Zeller are described from the central
highlands of Costa Rica: Phyllocnistis drimiphaga sp. n., P. maxberryi sp. n., and P.
tropaeolicola sp. n. Larvae of all three are serpentine leaf miners. Phyllocnistis
drimiphaga feeds on Drimys granadensis (Winteraceae), P. maxberryi on
Gaiadendron punctatum (Loranthaceae), and P. tropaeolicola on Tropaeolum
emarginatum (Tropaeolaceae). All specimens were collected as larvae or pupae in
their mines and reared in captivity. Parasitoid wasps were reared from P. drimiphaga
and P. maxberryi. Description of the adults, pupae, and life histories are

supplemented with photographs, illustrations, and scanning electron micrographs.

Introduction

Phyllocnistis Zeller includes 87 described species, many of which are very
small, with silvery vestiture, and similar in appearance (De Prins and De Prins,
2005[De Prins, 2009 #497). The genus has been generally poorly studied because of
its small size and difficulty to identify species. The precise taxonomic placement of

the genus has also remained questionable because of a lack of shared adult

79



morphological characters with other microlepidoptera (De Prins and Kawahara,

2009).

Only two species of Phyllocnistis were known to occur in Costa Rica (De Prins
and De Prins, 2009; De Prins and De Prins, 2005), one of which is citrus leaf miner,
P. citrella Stainton, 1856, and the other, the mahogany leaf miner, P. meliacella
Becker, 1974. Phyllocnistis citrella, originally from the Old World, was first reported
in the Americas in 1993 (Heppner, 1993) and has since become established in nearly
every major citrus growing region in the New World. The larva of citrella is
restricted to the plant family Rutaceae, and the larva of meliacella is known to feed

only on members of the Meliaceae.

The larva of Phyllocnistis is unusual in having three or more sap-feeding instars
and one non-feeding, highly specialized cocoon-spinning instar (Davis, 1987). The
larva creates a long, slender, subepidermal serpentine mine with a characteristic
median frass line at the terminus of which a pupal chamber (pupal cocoon fold) is
constructed, usually from the curled edge of the leaf (Davis, 1994). On the basis of its
unique mine, a phyllocnistine fossil has been identified as the oldest fossil in the
Ditrysia, dated from leaf impressions from the Cretaceous (Grimaldi and Engel, 2005;
Labandeira et al., 1994), the bedrock which was recently reevaluated to be ~ 102

million years Ma (Brenner et al., 2000).

In general, larval morphological characters poorly define species of
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Phyllocnistis. From our experience rearing North American Phyllocnistis with David
Wagner and others, pupal morphology provides the most informative characters for
distinguishing species in the genus. In particular, we have found the shape of the
frontal ridge (cocoon-cutter) and hooks on the dorsal surface of the abdominal
segments to be very useful. These structures are respectively used to cut the cocoon
and anchor it during adult emergence. We describe the adults, pupae, and life
histories of the three new species of Phyllocnistis found in the central highlands of

Costa Rica.

Methods

Study sites and habitats. Field studies were conducted at four high elevation
sites between 1950-3100 m in the central region of Costa Rica during July 2001,
April-May and November 2002, February—April 2003, December 2003—January
2004, March—April 2004, May 2005, September 2008, and July 2009. Three sites
were located on Cerro de la Muerte, in the northern to central region of Cordillera de
Talamanca (Fig. 5.1A). This region is cold and humid with 1-2 months of dry season
(Herrera and Goémez, 1993). According to Kappelle (1996), annual rainfall ranges
from 2000 to 3500 mm and average daily temperature is 11°C, with temperatures at
night occasionally falling below 0 °C during the dry season. Sleet and heavy frost has
been observed at Mills region (Oscar Abarca, pers. comm.). One of the sites on Cerro
de la Muerte was near Villa Mills, at the 95 km mark of the Pan-American Highway
(09°33'30.0"N, 083°43'25.8"W, 3100 m; Fig. 5.1, H). Another site was near the road

leading to El Paraiso del Quetzal at the 70 km mark of the Pan-American Highway
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(2774 m, 09°33'45.6"N, 083°50'50.1"W; Fig. 5.1C). This road divides Parque
Nacional Tapanti-Macizo de la Muerte and Parque Nacional Los Quetzales/Reserva
Forestal Los Santos of San José Province. The third site on Cerro de la Muerte was on
the road to the Genesis Il Cloud Forest Preserve, 4 km NE of La Cafion in Cartago

Province (09°42'23.4"N, 083°54'35.9"W, 2385 m).

The fourth site was in Cordillera Volcanica Central, 6 km ENE of Vara Blanca,
part of Volcan Barva in Parque Nacional Braulio Carrillo (10°10'51"N, 084°06'20"W,
1950-2050 m; Fig. 5.1B). This collecting site was near the edge of a swampy open
field and oak forest. The weather of this locality is consistently cool and humid
throughout the year (Herrera and Gomez, 1993). Typical weather at this site is rainy
and windy, with a few hours of daily sunshine and temperatures ranging from 5-11

°C (Nishida, 2006).

Leaf mine sampling and rearing. Leaf mines were collected and placed in
transparent plastic bags or vials and larvae were reared at Universidad de Costa Rica,
San José (1200 m elevation). Each day, mines were placed in a refrigerator (7.0-8.0
°C) and transferred to ambient temperature (~ 20 °C) to simulate natural conditions at
high elevations. Reared parasitoids and samples of the mature larva and pupa of each
species were preserved in 75-80 % EtOH. Adult moths were pinned, spread, and
doublemounted. All adult specimens in this study were obtained from reared

immatures.
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Photography and dissection. Photographs of leaf mines were taken primarily in
the field using Nikon Coolpix 4500, 8700, and Canon G7 digital cameras. Some
pupae were dried and sputter-coated with a 60:40 mixture of gold-palladium for
examination with a scanning electron microscope (SEM). SEM photographs were
taken using an Amray 1810 SEM with a lanthanum hexaboride (LaB6) source at an
accelerating voltage of 10 kV. Illustrations of the genitalia were sketched with a

camera lucida attached to a stereomicroscope.

Type deposition, nomenclature, and diagnosis. Type specimens are deposited in
the United States National Museum of Natural History, Smithsonian Institution
(USNM), Museo de Zoologia, Escuela de Biologia, Universidad de Costa Rica
(UCR), and Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa
Rica (INBio). Scientific names of plants follow Missouri Botanical Garden (2009).
Adult wing pattern nomenclature is explained in Fig. 5.3; diagnostic features of the

three species are summarized in Table 5.1.

Adult, pupa, and life history descriptions

Phyllocnistis drimiphaga Kawahara, Nishida & Davis, sp. n.

Diagnosis (Table 5.1). Phyllocnistis drimiphaga is similar to P. maxberryi, but
is larger and has slender, sharply angled costal fascia, V-shaped transverse fascia,
three costal strigulae, and dissimilar signa. Phyllocnistis drimiphaga differs from P.

tropaeolicola in having broad longitudinal fascia, genital valva that are only ~ 1.8x

&3



the length of the vinculum, and paired signa. The pupa has curved, flattened frontal

processes, which are reduced in P. maxberryi and conical in P. tropaeolicola.

Adult (Fig. 5.2A). Forewing length 2.9-3.5 mm. Head. Vestiture consisting of
smooth, broad, silvery-white scales that overlap anterior margin of eye. Antenna ~
equal to length of forewing, scape and pedicel enlarged laterally and covered with
lanceolate scales, a single row of fine short scales completely encircling each
flagellomere. Labial palpus long, slender, ~ 1.0 mm in length, covered with lustrous
white scales. Thorax. Forewing silvery white; with a long pale yellowish-orange
longitudinal fascia with dark-gray margins extending 2/3 length of forewing slightly
diagonal from base of costa to strongly oblique, costal fascia of similar color across
distal third of wing; apex of forewing with three slender, fuscous, costal strigulae;
apical to subapical pale yellowish orange bordered by gray; three apical, fuscous
strigulae arising from small black apical spot, and one tornal, fuscous strigula also
from apical spot; ventral surface mostly dark brown. Hindwing creamy white. Legs
mostly silvery white; foretibia fuscous dorsally; foreand mid-tarsomeres lightly
suffused with cream scales dorsally. Abdomen. Length ~ 2.0 mm, covered in long
silver scales. Coremata present on segment VIII of male, consisting of a pair of
elongate, inflatable tubular extensions bearing a terminal cluster of long slender
scales (Fig. 5.4A). Male genitalia (Figs 5.4A—C). Uncus absent; tegumen complex,
consisting of a narrow, sclerotized dorsal arch, continuing caudally, often slightly
beyond apex of valva, as an elongate, mostly membranous, basally spinose cylinder

that encloses the anal tube; vinculum well developed, ~ 0.6x length of valva, to V-
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shaped with relative narrow anterior end; valva (Fig. 5.4B) relatively long, ~1.8x
length of vinculum, generally slender with a moderately broad base, very slender for
most of its length, then broadening apically to form a prominent dorsal lobe and a
smaller ventral lobe (Fig. 5.4A); transtilla arising from mesal base of valva as an
elongate, acute process, and continuing mesally to articulate at midline with process
from opposite valva. Aedeagus (Fig. 5.4C) slender, weakly sclerotized, externally
finely wrinkled cylinder, ~ equal to length of valva; cornuti absent; phallobase greatly
extended as a membranous tube ~ 1.7-2.0% length of aedeagus; terminal hood of
phallobase abruptly inflated and curved at right angle to phallobase. Genitalia slide
USNM 33208. Female genitalia (Figs 5.4D, E). Oviscapt greatly reduced; posterior
apophyses very short, ~ 0.8% length of papillae anales; anterior apophyses slightly
longer, ~ 1.3x length of posterior apophyses; ostium bursae opening in membrane
between sterna 7 and 8; ductus bursae completely membranous, slender, elongate,
over 7.5% length of papillae anales and terminating near caudal fifth of corpus bursae;
corpus bursae greatly enlarged, ~ 0.7% length of ductus bursae; walls of corpus bursae
membranous except for a pair of ligulate and very dissimilar signa; longest signum ~
3% length of shorter member and with 5 short, acute to rounded, flattened spines
projecting from one side of signum; shorter signum with a single, blunt, flattened,
rounded spine projecting from middle; length of spines ~ equal to width of signa;
ductus seminalis extremely slender, elongate, ~ 2.3% length of corpus bursae and

arising from anterior end of corpus bursae. Genitalia slides USNM 33207, 33273.

Larva (Figs 5.10F, G). Mature sap-feeding larva ~ 6.5 mm long, yellowish
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white, head capsule translucent pale brown (Fig. 5.10F). Last instar (cocoon-
spinning) larva yellowish white, head capsule yellowish white; ~ 6.2 mm long (Fig.

5.10G).

Pupa (Figs 5.7, 10I). Dark brown, up to ~ 3.8 mm long, diameter ~ 0.75 mm.
Vertex with a stout, triangular frontal process (cocoon-cutter) transversed by a pair of
shorter, curved spines (Figs 5.7A—E), and single pair of long setae at base of frons
(Fig. 5.7C). Dorsum of A2—A7 with a pair of curved, large spines, arranged roughly
in the shape of a V, in between which is a concentration of smaller spines projecting
posteriorly (Figs 5.7F—H); each segment with a pair of long, lateral, sensory setae
(Fig. 5.7K). A10 prominently furcated (Figs 5.71, J, L), with a pair of slightly

divergent acute processes from caudal apex. Pupal slide USNM 34034.

Types. Holotype (Fig. 5.2A): @, COSTA RICA: Prov. Heredia, 6 km ENE Vara
Blanca, 2050 m, 10°10'34"N, 084°06'41"W, 27 Jan 2004, adult emergence, INBio-
OET-ALAS transect, col./rear Kenji Nishida, pupa collected 30 Dec 2003, host plant
Drimys granadensis. Leaf miner on underside (USNM). Paratypes: Immatures: Prov.
Cartago: Cerro de la Muerte, La Cafion, Genesis II Cloud Forest Preserve, 2422 m,
09°42'23.4"N, 83°54'36.1"W: 2 sap-feeding larvae, 1 pupa, 12 Sep 2008, Kenji
Nishida, host Drimys granadensis; Prov. San José: Cerro de la Muerte, Paraiso del
Quetzal: 2 pupae, USNM 34034. Adults: same locality as holotype: 1, 26 Jan 2004,
USNM 33208; 19, 26 Jan 2004, USNM 33207; 13, 19 (USNM 33273), 28 Jan

2004. 19 adult paratype at INBio and UCR, the remaining paratypes at USNM.
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Life history (Fig. 5.10). Mines are narrow, long, and serpentine, with a brown
median frass line (Figs 5.10A, C, D) covering most areas of the leaf on small leaves
(< 6 cm) or half the area in larger leaves. Mines were found on relatively young
leaves near the apex of branches, from branches close to the ground up to ~ 3 m on
young trees, along shaded areas of forest trails (Fig. 5.1C) or in the understory. We
observed 43 of 48 mines on the abaxial side of the leaf (Fig. 5.10A), and the
remaining mines on the adaxial side (Fig. 5.10D). Most mines were singly found on a
leaf; however seven of 38 mined leaves carried two mines, either two on the abaxial
side or one on both sides. All but one adaxial mine began near the mid-vein and
extended along it (Fig. 5.10D). Mature mines are yellowish green in color (Fig.
5.10C). Mining on small, soft, young leaves frequently caused the leaf margin to curl.

We were unable to study the upper canopy for leaf mines.

Early stage mines were typically in the shape of a whorl (Figs 5.10A—C). Flat,
oval egg shells were found attached to the leaf surface in the middle of an early mine
whorl (Fig. 5.10B). A pupal cocoon fold (~ 6.5 mm long), typical of Phyllocnistis,
was found along leaf margins (Figs 5.10A, H, J) both on the adaxial (Fig. 5.10H) and

abaxial sides (Figs 5.10A, J).

In 70 examined mines, only 20 had a live larva or pupa. Remaining mines either

were empty or contained dead, early to middle stage sap-feeding larvae. Mortality of

sap-feeding stages was most likely caused by desiccation after rupturing of the
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epidermal layer and by a cf. Ceraphron (Ceraphronidae) parasitoid wasp. In some
pupal folds, a pupal shell of an entedonine wasp (Eulophidae) was found with a
shrunken P. drimiphaga pupal shell. In others, cocoons of Ageniaspis sp. (Encyrtidae)

were found in a last instar (cocoon-spinning) larval pelt (Fig. 5.10K).

We also discovered active mines of Marmara sp. (Gracillariidae) on the abaxial
side of same host along the road to El Paraiso del Quetzal. Compared to those of P.
drimiphaga, mines were much narrower, whiter, less serpentine, and were typically

found near leaf margins.

Host. Drimys granadensis L. f. (Winteraceae) (Fig. 5.1D). Drimys Foster &
Forster is the only genus in the family Winteraceae found in the New World tropics
(Doust and Drinnan 2004). All other genera of Winteraceae are found in the Old
World southern hemisphere with a center of diversity in Southeast Asia (Gentry,
1996; Hartshorn, 1983). Drimys granadensis, commonly known as ‘chilemuelo’ or
‘quiebra muelas’, has been recorded from central Mexico (~20°N) south through
Central America to northern Peru (~ 5°S) (Missouri_Botanical Garden, 2009). Trees
grow to nearly 15 m in height and are characterized by pepper-flavored leaves with
white underside surfaces and aromatic bright, white flowers (Fig. 5.1E), found mostly
in primary forest (Alfaro-Vindas, 2003). In Costa Rica, the species has been recorded
between 1100 and 3700 m elevations on both Pacific and Atlantic slopes. Large
young leaves are pale green color, sized ~ 10—15 cm long and 2—4 cm wide (Kenji

Nishida, pers. obs.).
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Distribution. Known only from cloud forests above 2000 m in Cordillera de
Talamanca and Cordillera Volcanica Central. More specifically, specimens have been
collected from Heredia Province, 6 km ENE of Vara Blanca; San José Province,
Cerro de la Muerte, Paraiso del Quetzal; and Cartago Province, Cerro de la Muerte,
Genesis II Cloud Forest Preserve. In February 2009, several additional old leaf mines
were observed in Chirripé National Park along the main trail between 2200 and 2700

m elevation.

Etymology. The species name, drimiphaga, comes the host plant genus,

Drimys, and the Greek word phaga, meaning “to eat”.

Phyllocnistis maxberryi Kawahara, Nishida & Davis, sp. n.

Diagnosis (Table 5.1). Phyllocnistis maxberryi differs from P. drimiphaga and
P. tropaeolicola in having an oviform costal fascia with a broad margin, a C-shaped
transverse fascia, two costal strigulae, and paired signa that are similar in shape.
Unlike drimiphaga and tropaeolicola, the pupa of maxberryi has less developed
frontal processes and two parallel rows of spines on the dorsal surface of abdominal
segments. Of the three new Phyllocnistis species proposed in this paper, P. maxberryi
is morphologically most similar to P. meliacella Becker. Phyllocnistis maxberryi may
be distinguished from the latter by its broader apex of the valva and proportionately

larger signa.
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Adult (Fig. 5.2B). Forewing length 2.2—-3.7 mm. Head. Vestiture silvery white,
completely covered with smooth, broad, scales that overlap anterior margin of eye;
occipital scales cream. Antenna ~ equal or slightly longer than length of forewing,
scape and pedicel enlarged laterally and covered in long silvery scales, a single row
of slender mostly silvery-white scales completely encircling each flagellomere; dorsal
surface of antenna with a pale-golden luster. Labial palpus slender, ~ 0.5 mm in
length, with silvery-white scales. Thorax. Forewing silvery white, with a single,
broad, light-brown longitudinal fascia with a dark brown posterior margin extending
slightly diagonal from base of costa joining costal fascia at ~ midway to apex; costal
fascia oblique, pale gold, oviform, with a broad, inner dark-brown margin; transverse
fascia C-shaped, pale gold with dark margin; apical to subapical area pale yellow; two
faint, dark-brown costal strigulae present; a single, small black spot at wing apex
from which two dark-brown apical strigulae arise. Hindwing silvery white. Legs
mostly silvery white, with a faint suffusion of pale gold dorsally over most segments.
Abdomen. Length ~1.5-2.0 mm, silvery white; coremata similar to P. drimiphaga.
Male genitalia (Figs 5.5A—C). Similar to P. drimiphaga except vinculum relatively
broader and more U-shaped. Valva ~ 2x length of vinculum, nearly straight with apex
only slightly enlarged (Fig. 5.5A). Genitalia slide USNM 33279. Female genitalia
(Figs 5.5D-F). Oviscapt greatly reduced as in P. drimiphaga; ductus bursae
completely membranous, slender, elongate, over 12x length of papillae anales and
terminating near middle of corpus bursae; corpus bursae greatly enlarged, ~ 0.7%
length of ductus bursae; signa paired, closely similar in shape and size (fusiform),

with more posterior signum ~ 1.2—1.5% longer than anterior signum; each signum
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with a single, acute, flattened spine projecting from middle (Fig. 5.5F); length of
spines slightly more than width of signa; ductus seminalis extremely slender,
elongate, ~ 1.9% length of corpus bursae and arising from anterior end of corpus

bursae. Genitalia slides USNM 33280, 33286.

Larva (Figs 5.11C-F). Mature sap-feeding larva ~ 6.0 mm long, translucent
orange, head capsule brown, prothoracic shield brown (Figs 5.10C—E). Last instar

(cocoon-spinning) larva orange, head capsule orange, ~ 6.3 mm long (Fig. 5.10F).

Pupa (Figs 5.8; 11H, I). Brown, length up to ~ 4.0 mm; diameter ~ 0.85 mm.
Vertex with a long, dorsally curved, spine-like process (cocoon-cutter) (Figs 5.8A, B,
D, E), and two pairs of short setae (Fig. 5.8C). Dorsum of A2—A7 with a pair of
laterally curved, large spines in between which is a concentration of smaller spines,
projecting posteriorly that are roughly arranged in two parallel rows (Figs 5.8F—H);
each segment with a pair of long, lateral, sensory setae (Fig. 5.8K). A10 with a pair of

slightly divergent processes from caudal apex (Figs 5.81, J, L).

Types. Holotype (Fig. 5.2B): @, Costa Rica: Prov. San José, Cerro de la
Muerte, Villa Mills, 3100 m, 13 Mar 2003 (adult emergence), host Gaiadendron
punctatum, upper epidermis leaf miner, col./rear Kenji Nishida, DRD 4474 (USNM).
Paratypes: Immatures: same locality as holotype: 3 pupae (USNM 33732), 5 Mar
2003, K. Nishida; 3 larvae, 2 pupae, 2 Apr 2003, K. Nishida; 1 larva, 21 May 2002,

K. Nishida; 3 larvae, 1 pupa (USNM 34024), 10 Mar 2004, K. Nishida. One pupa,

91



Villa Mills, trail front of La Georgina, 3103 m, 12 Sep 2008, K. Nishida, host
Gaiadendron punctatum. Two larvae, 1 pupa, Prov. Heredia, 6 km ENE Vara Blanca,
10°11'N, 84°07'W, 2050 m, 10 May 2005, K. Nishida; 1 pupa, 23 Nov 2002, K.
Nishida. Adults: same locality as holotype: 14, 22 Mar 2003, K. Nishida; 2, 26 Mar
2003, K. Nishida; 23, 29, Prov. Heredia, 6 km ENE Vara Blanca, 10°11'N, 84°07'W,
1950-2050 m, 2 Feb 2003, K. Nishida; 23, 9 Apr 2002, 1900 m, emerged 22-28 Apr
2002, host Gaiadendron punctatum, D. and M. Davis. & slide USNM 33279; Q slides
USNM 33280, 33286. One paratype, unknown sex (missing abdomen) at UCR,

remaining paratypes at USNM.

Life history (Fig. 5.11). Active mines were found on fully open young leaves
near the tip of a branch. The smallest leaf with an active mining larva measured 12 x
30 mm. Mines were generally found on young plants about 30 cm to 1.5 m tall, in
open fields or along exposed dirt roads or trails. In an open swampy field at the
ALAS transect near Vara Blanca, many active mines were found on new leaves on
young plants less than 1.5 m tall (Fig. 5.11A) and very few active mines were found

on larger plants bearing flowers or fruit.

Thirty-six of 42 leaves had mines on the adaxial side and the rest had mines on
the abaxial side or on both. Up to three mines were observed on a single leaf. These
mines were relatively short, serpentine mines with a brown median frass line that

became dark brown as the mine widened (Fig. 5.11C).
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We recognize a general mining pattern for P. maxberryi: the egg is laid on the
mid-vein, near the center of the leaf (Fig. 5.11C). After hatching, the larva enters the
leaf and mines proximally towards the leaf petiole along the mid-vein and turns
toward the leaf apex near or at the leaf petiole and mines along the leaf margin.
Before reaching the midpoint along the axis of the leaf, the larva travels inward
between the mid-vein and leaf margin and travels towards the leaf apex. After nearing
the apex, the larva crosses the mid-vein and begins mining the other half of the leaf in
a relatively straight line turning back towards the petiole. Once near the petiole, the
larva constructs an oval-shaped chamber and molts within. After molting, the cocoon-
spinning instar folds the margin while spinning its cocoon. This pupal fold was
typically ~ 7.0 mm long (Figs 5.11B, G). Under rearing conditions, the pupal stage
lasts between 21-28 days (n = 7). Five female specimens of Chrysocharis sp.
(Eulophidae: Entedoninae) were reared from pupal cocoon folds collected at Villa

Mills, Cerro de la Muerte.

Host. Gaiadendron punctatum (Ruiz & Pav.) G. Don (Loranthaceae) (Fig.
5.1G). The free-standing root parasite/epiphyte tree genus Gaiadendron includes
approximately 15 species occurring in the New World (Gentry, 1996;
Missouri_Botanical Garden, 2009). Gaiadendron punctatum is distributed from
Nicaragua through southern Central America to Bolivia (~ 17°50'S) between 600 and
4100 m elevation (INBio, 2009; Missouri_Botanical Garden, 2009). Trees are
typically 2—5 m in height with bright yellow/orange flowers (Kappelle, 2008). Young

leaves are pale green to reddish brown, about 3—6 cm long and 1-3 cm wide (Kenji
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Nishida, pers. obs.). Among species in the genus, only G. punctatum is known from
Costa Rica, and it has been recorded above 1500 m in open areas and along trails in

cloud forests (INBio, 2009; Kappelle, 2008).

Distribution. This species appears to have a greater elevational range than the
other two, being found between 1950 and 3100 m. Specimens have been collected
from Heredia Province, 6 km ENE of Vara Blanca, in the Cordillera Volcanica
Central; and Cartago Province, Cerro de la Muerte, Villa Mills, in Cordillera de

Talamanca.

Etymology. Named for the Honorable Max N. Berry of Washington, D.C., an

honorary member of the Smithsonian National Board.

Phyllocnistis tropaeolicola Kawahara, Nishida & Davis, sp. n.

Diagnosis (Table 5.1). Phyllocnistis tropaeolicola differs from P. drimiphaga
and P. maxberryi in its larger size, having a slender longitudinal fascia, valva that are
~2.4x% the length of the vinculum, and a single, band-shaped signa. The pupa of P.
tropaeolicola has conical frontal processes and dorsal abdominal spines on each

segment are arranged ina V.

Adult (Fig. 5.2C). Forewing length 2.6-5.0 mm. Head. Vestiture silvery white,
completely covered with smooth, broad, scales slightly overlapping anterior margin

of eyes. Antenna ~ equal to length of forewing, scape and pedicel enlarged laterally

94



and covered in long silvery scales, a single row of fine short scales completely
encircling each flagellomere. Labial palpus long, slender, ~ 1.0 mm. Thorax.
Forewing silvery white; with a slender, dark-brown, longitudinal fascia extending 2/3
length of wing to meet distally at junction of brown, costal and transverse fasciae;
costal fascia slender and strongly oblique with dark-brown border; transverse fascia
V-shaped, with a dark-brown border; apical to subapical area pale yellowish orange
with a small black spot; three slender, dark-brown costal strigulae, three slender dark-
brown apical strigulae, and one faint brown tornal strigula arising from black apical
spot; fringe along tornal margin white with a dark-brown basal band of broad scales.
Hindwing mostly white except for a band of pale brown scales extending length of
costal margin. Legs similar to P. drimiphaga, silvery white except dark brown over
dorsal surface of femur, tibia and tarsus of foreleg. Abdomen. Length ~ 2.0 mm,
mostly brownish gray dorsally, silvery white ventrally. Coremata similar to P.
drimiphaga. Male genitalia (Figs 5.6A—C). Similar to P. drimiphaga except valva
relatively longer and more slender, ~ 2.4% the length of vinculum, nearly straight,
with ventral lobe of apex slightly re-curved dorsad (Fig. 5.6A). Genitalia slide USNM
33281. Female genitalia (Figs 5.6D, E). Oviscapt greatly reduced as in P.
drimiphaga; ductus bursae completely membranous, slender, elongate, ~ 8.5% length
of papillae anales and terminating at posterior end of corpus bursae; corpus bursae ~
0.6x length of ductus bursae; a single elongate signum present as a narrow band
partially encircling middle of corpus bursae; signum with 2 acute, flattened spines
projecting inwards from band; length of spines slightly more than width of signa;

ductus seminalis extremely slender, elongate, ~ 2.4 x length of corpus bursae and
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arising from near middle of corpus bursae. Genitalia slide USNM 33282, 33285,

33288.

Larva (Figs 5.12A, C-F). Young sap-feeding larva translucent yellow (Fig.
5.12A). Mature sap-feeding larva ~7.5 mm long, translucent yellow, head capsule
translucent pale brown, prothoracic shield dark brown (Figs 5.12C-F). Cocoon-
spinning larva whitish yellow, head capsule pale gray brown; ~ 6.5 mm long (Fig.

5.12F).

Pupa (Figs 5.10, 12H). Brown, length up to ~ 5 mm; diameter ~ 1.0 mm. Vertex
with a short, stout, process (cocoon-cutter) flanked by two, flattened, slightly longer
processes (Figs 5.9A, B, D, E) and two pairs of short setae (Fig. 5.9C). Dorsum of
A2—A7 with a pair of laterally curved, large spines in between which is a
concentration of smaller spines, arranged in a triangular, V-shaped pattern (Figs 5.9F,
G); each segment with a pair of long, lateral, sensory setae (Fig. 5.9L) that are
shortest on A9—10 (Figs 5.9J, K). A10 with a pair of slightly divergent processes from

caudal apex (Figs 5.91, J).

Types. Holotype (Fig. 5.2C): &, Costa Rica: Prov. Cartago, Cerro de la Muerte,
Villa Mills, 3100 m, 13 Mar 2003 (adult emergence), host Tropaeolum emarginatum,
col./ rear Kenji Nishida, mine with pupal fold collected 6 Mar 2003 (USNM).
Paratypes: Immatures: 1 prepupa, 1 pupa (USNM 34036), Villa Mills, Georgina,

9°33'30"N, 83°43'25.8"W, 3103 m, 12 Sep 2008, K. Nishida, host Tropaeolum
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emarginatum. Adults: same locality as holotype, 6, 42: & slide USNM 33281, @
slide USNM 33285; 24, 292 (USNM 33280, 33282) with adult emergence 11 Mar
2003; 13, with adult emergence 15 Mar 2003. 19 adult paratype at INBio and UCR,

the remaining paratypes at USNM.

Life history (Fig. 5.12). Mines of P. tropaeolicola were readily found on plants
growing along the Pan-American Highway (Fig. 5.1H). Most mines occurred on full-
grown new leaves (Figs 5.12B, C) but some were found on developing leaves (Fig.
5.12A). Thirteen had a single mine, two leaves had two, and one had three. All mines
were found on the adaxial side, and the late sap-feeding instar fed on the mesophyll

(Fig. 5.12E).

The mine characteristically begins as a narrow, irregular serpentine gallery (Fig.
5.12B) that widens as it extends along or near the leaf margin (Figs 5.12B, C). It is
relatively narrow, pale green to white with a less conspicuous dark green median frass
line. Pupal cocoon folds were ~ 5.5 mm long and were found near the leaf margin

(Figs 5.12B, G). Adults emerged 5-9 days after pupal cocoon folds were collected.

We found mines of an unidentified fungus gnat (Diptera: Mycetophilidae) at
same site on the same plant. The mines, which usually occur several on a single leaf,
are irregularly shaped blotch mines with dark-green frass scattered randomly within.
The fly larva causes curling, drying, necrosis, and yellowing of the leaves, and was

more abundant than P. tropaeolicola mines. Several leaves were infested with both
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mycetophilid and P. tropaeolicola larvae.

Host. Tropaeolum emarginatum Turcz (Tropaeolaceae) (Fig. 5.11). Tropaeolum,
the only genus recognized in Tropaeolaceae, is Neotropical and contains
approximately 90 species, many of which are found in Andean cloud forests (Gentry
1996). Four species occur in Costa Rica, and 7. emarginatum is present on both the
Atlantic and Pacific slopes between 700 and 3200 m (Alfaro-Vindas, 2003; INBio,
2009). Outside Costa Rica, 7. emarginatum has been recorded from Chiapas, Mexico
to Cotopaxi, Ecuador (Missouri_Botanical Garden, 2009). The tenuous, soft, and
succulent vines of 7. emarginatum are usually found in forest edges and disturbed
areas, and the flowers are red to yellow orange (Alfaro-Vindas, 2003; Gentry, 1996).

Most of the leaves are between 5 and 8 cm wide (Kenji Nishida, pers. obs.).

Distribution. Known only from the type locality, Cerro de la Muerte, Villa

Mills, at 3100 m elevation in the Cordillera de Talamanca.

Etymology. The species name, tropaeolicola, is formed from its host plant

genus name, Tropaeolum, and the Latin word cola, meaning “inhabitant”.
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Fig. 5.1. Adults of three new Phyllocnistis from Costa Rica. A) Phyllocnistis
drimyphaga sp. n., holotype female; B) P. maxberryi sp. n., holotype female
(abdomen removed for dissection); C) P. tropaeolicola sp. n., holotype male.
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Fig. 5.3. Phyllocnistis drimyphaga, genitalia. A) Male, ventral view; B) right valva,
mesal view; C) aedoeagus; D) female, lateral view; E) ventral view of figure D.
(Scale bar 0.5 mm except for figure B, 0.2 mm.)
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Fig. 5.4. Phyllocnistis maxberryi, genitalia. A) Male, ventral view; b right valva,
mesal view; C) aedoeagus; D) female, lateral view; E) ventral view of figure D; F)
signa. (Scale bar 0.5 mm except for figure B, 0.2 mm.)
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E) ventral view of figure D.

C) aedoeagus; D) female, lateral view;

(Scale bar 0.5 mm except for figure B, 0.25 mm.)

>

Fig. 5.5. Phyllocnistis tropaeolicola , genitalia. A) Male, ventral view; B) right valva,

mesal view;
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Fig. 5.6. Phyllocnistis drimyphaga sp. n., pupa. A) Ventral view of head; B) detailed
ventral view of cocoon cutter; C) detailed view of frons; D) lateral view of head; E)
detailed lateral view of cocoon cutter; F) fifth abdominal tergum, dorsal; G) detailed
view of spines on fifth abdominal tergum; H) detailed lateral view of spines on fifth
abdominal tergum; I) caudal view of abdominal tip; J) dorsal view of A9—10; K)
detailed view of lateral seta on seventh abdominal tergum; L) ventral view of A9—10.
Scale bar 100 pm.
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Fig. 5.7. Phyllocnistis maxberryi sp. n., pupa. A) Ventral view of head; B) detailed
ventral view of cocoon cutter; C) detailed view of frons; D) lateral view of left side
head; E) detailed lateral view of cocoon cutter; F) dorsal view of sixth abdominal
tergum; G) detailed view of spines on sixth abdominal tergum; H) detailed lateral
view of spines on seventh abdominal tergum; I) caudal view of abdominal tip; J)
dorsal view of A9—10; K) detailed view of lateral seta on sixth abdominal tergum; L)
ventral view of A9—10. Scale bar 100 um.
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Fig. 5.8. Phyllocnistis tropaeolicola sp. n., pupa. A) Ventral view of head; B)
detailed ventral view of cocoon cutter; C) detailed view of frons; D) lateral view of
head; E) detailed lateral view of cocoon cutter; F) fourth abdominal tergum, dorsal;
G) detailed view of spines on fourth abdominal tergum; H) detailed lateral view of
spines on fourth abdominal tergum; I) caudal view of abdominal tip; J) dorsal view of
A9-10; K) detailed view of lateral seta on A9-10; L) detailed view of lateral seta on
seventh abdominal tergum. Scale bar 100 pm.
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(See legend on following page).
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Fig. 5.9. Habitats and larval host plants of Phyllocnistis species. A) Cerro de la
Muerte, Villa Mills region, 3000 m and below, in Cordillera de Talamanca; B) Barva
Volcano, ALAS transect, 2000 m, in Braulio Carrillo National Park; C) habitat of P.
drimyphaga in Cerro de la Muerte, km 70 Pan-American Hwy, road to El Paraiso del
Quetzal, 2700 m, arrow pointing to host plant where mines were found; D) young
stem shoots and leaves of Drimys granadensis of figure C, growing from base of the
tree; E) flowers and leaves of D. granadensis; F) habitat of P. maxberryi in Cerro de
la Muerte, km 95 Pan-American Hwy, trail front of La Georgina in Villa Mills, 3100
m, arrow pointing to host plant where mines were found; G) young vigorous growth
of Gaiadendron punctatum in front, and mature trees with yellow fruits in behind, at
ALAS transect in Vara Blanca, 2000 m; H) habitat of P. tropaeolicola in Cerro de la
Muerte, on km 95 Pan-American Hwy, near La Georgina in Villa Mills, 3100 m,
arrow pointing to host plant where mines were found; I) Tropacolum emarginatum,
details of host plants shown in figure H.
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Fig. 5.10. (See legend on following page).
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Fig. 5.10. Life history of Phyllocnistis drimyphaga. A) Leaf mines on abaxial leaf
surface, arrow pointing to pupal cocoon fold, white square enclosing early mine; B)
close-up view of early mine, arrow pointing to remaining of egg shell; C) same as
figure B, but showing frass pattern via projecting sunlight through the leaf from
behind; D) nearly mature old mine on adaxial surface; E) nearly mature old mine on
abaxial surface seen from the underside; F) opened mine showing mature sap-feeding
larva in situ; G) opened young pupal cocoon fold showing cocoon-spinning larva in
situ; H) pupal cocoon fold on adaxial mine (arrow); I) opened pupal cocoon fold
showing pupa in situ (dorsal view); J) protruded and attached pupal shell (arrow) on
pupal cocoon fold of an abaxial leaf mine; K) opened pupal cocoon fold on adaxial
mine showing Ageniaspis cocoons in situ.
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Fig. 5.11. (See legend on following page).
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Fig. 5.11. Life history of Phyllocnistis maxberryi. A) Leaf mines (arrows) on young
growing Gaiadendron shoot; B) mature mine with pupal cocoon fold (arrow); C)
nearly mature mine and mature sap-feeding larva (left arrow), and oviposition
location (right arrow); D) close-up view of mature sap-feeding larva; E) opened mine
showing mature sap-feeding larva in situ; F) opened young pupal cocoon fold
showing cocoon-spinning larva in situ; G) pupal cocoon fold, arrow pointing at
thinner pupal exit; H) opened pupal cocoon fold showing pupa in situ, dorsal view; I)
pupa in situ, lateral view.
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Fig. 5.12. Life history of Phyllocnistis tropaeolicola . A) Leaf mines on a young leaf,
arrows pointing at young to middle instar larvae; B) mature leaf mine with pupal
cocoon fold (arrow), white square enclosing early mine; C) mature sap-feeding larva
in pre-cocoon chamber; D) detailed view of figure C; E) opened mine showing nearly
mature sap-feeding larva in situ; F) opened young pupal cocoon fold showing
cocoon-spinning instar in situ; G) pupal cocoon fold, arrow pointing to the more
slender exit; H) opened pupal cocoon fold showing pupa in situ (lateral view).
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CHAPTER 6

Five species of Gracillariidae new to Korea

Abstract

Five species of Gracillariidae: Calybites securinella (Ermolaev, 1986),
Epicephala relictella Kuznetzov, 1979, Parornix alni Kumata, 1965, P. betulae
Stainton, 1854, and Spulerina castaneae Kumata & Kuroko, 1988, are recorded as
new from Korea. Epicephala is a genus that is reported for the first time in the
country. Photographs of adults and genitalia are provided along with a brief

description of each species and a list of host plants.

Introduction

Gracillariidae include nearly 2,000 species of leaf-mining micro-moths
distributed throughout the world (De Prins and De Prins, 2010). Among
microlepidoptera, Gracillariidae include some of the most important economic pests.
Some have been reported as invasive (e.g., Cameraria ohridella, Valade et al., 2009;
Causton et al., 2006; Heppner, 1993; Phyllocnistis citrella, Heppner and Dixon,
1995), and there is a great need to document their hosts and distributions. While
there has been a recent effort to describe life history and distributions of gracillariids
within the last few years (e.g., Davis and Wagner, 2005; De Prins and De Prins, 2010;

Kawabhara et al., 2009; Vargas and Landry, 2005), many species still remain poorly
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understood. A recent effort has been set to catalog the host information, distribution,

for all gracillariid species worldwide (De Prins and De Prins, 2010).

A total of 46 species of Gracillariidae has been documented from Korea
(Kumata et al., 1983; Park, 1983; Park and Han, 1986, Park and Lee, 2001; Shin et
al., 1994; Sohn, 2007). However, we predict that this figure is far short of their true
diversity in the country, given the high diversity in neighboring Japan, ca. 242 spp.
(Jinbo, 1988). We predict that a comprehensive study of the Korean Gracillariidae
will result in many new records for the country. We report five gracillariid species
new to Korea: Calybites securinella (Ermolaev), Epicephala relictella Kuznetzov,
Parornix alni Kumata, P. betulae Stainton, and Spulerina castaneae Kumata and
Kuroko. Epicephala is a genus that is reported from Korea for the first time. Adult
specimens are pinned and stored in the Department of Plant Medicine, Chungbuk
National University and DNA tissue samples are preserved in the University of

Maryland LepTree frozen tissue collection (College Park, Maryland, USA).

Systematic account

Calybites securinella (Ermolaev)

Figs. 6.1, 6.5

Caloptilia securinella Ermolaev, 1986, Ento. Obozr. 65(4): 747-749 (type locality:
Gornotaezhnoe, South Primorye, Russia).

Calybites securinella: Noreika, 1997, Key Ins. Russ. Far East 5 (1): 395.
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Adult (Fig. 6.1). Forewing length 3.8 — 4.0 mm. Head light brown, antenna
filiform in both sexes, thorax light brown. Forewing light brown with four white
transverse bands. Hindwing slender, light brown.

Male genitalia (Fig. 6.5). Uncus absent; tegumen round distally, parallel-
sided; tuba anales with a long, sclerotized section. Valva elongate with rounded apex,
curved dorsally, with a broad lobe at the middle of ventral margin. Vinculum narrow,
elongated-triangular distally. Saccus absent. Aedeagus narrow, as long as valva, with
small coecum; cornuti absent.

Female genitalia. Not available.

Material examined. 13, Mt. Weolak-san (N36°53'16.9" E128°08'56.8"),
Jecheon, Chungbuk Province, Korea. 23.vii.2005 (coll. J.C. Sohn), geni. slide no.
SIC-791; 248, 39, Saeseulmak, Changwon-ri, Yeungwol, Gangwon Province, Korea.
28.vii.2008 (coll. J.C. Sohn), 3 samples in 100% EtOH.

Distribution. Korea (new record) and Russia (Far East).

Host plant. Euphorbiaceae: Securinega suffruticosa (Ermolaev, 1986).

Remark. Another species, Calybites phasianipennella Hiibner was recorded in
Korea (Park, 1983). C. securinella is easily distinguished from C. phasianipennella
by wing patterns: presence of transverse mid-fascia and subterminal fascia.

Korean name. Gwang-dae-ssa-ri-ga-neun-na-bang.

Epicephala relictella Kuznetzov

Figs. 6.2, 6.6, 6.8
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Epicephala relictella Kuznetzov, 1979, Ento. Obozr. 58(4): 854 (type locality:

Gornotaezhnoe, South Primorye, Russia)

Adult (Fig. 6.2). Forewing length 4.5 — 5.0 mm. Head with tuft of long white
scales, antenna filiform, long, slender and brown. Forewing brown, three narrow
white costal strigulae bending distally towards circular black dot near apex. Hindwing
narrow, light brown. Male genitalia (Fig. 6.6). Uncus absent; tegumen elongate and
subpentagonal. Valva elongate, curving before apex, uniform in width; sacculus
separated at distal end from valva. Vinculum wide, V-shaped. Aedeagus straight, as
wide a sacculus. Cornutus separated into three patches composed of one or more
spines.

Female genitalia (Fig. 6.8). Ovipositor lobes piercing; apophyses posteriores
longer than apophyses anteriores. Lamella antivaginalis sclerotized, medially
concave. Ostium bursa weakly trapezoidal. Ductus bursae sclerotized near ostium
bursa, then becoming unsclerotized and granulated before bearing longitudinal
wrinkles. Corpus bursae elongate, oval, one conical signum present.

Material examined. 13, Mt. Weolak-san (N36°53'16.9"” E128°08'56.8"),
Jecheon, Chungbuk Province, Korea. 23.vii.2005 (coll. J.C. Sohn), geni. slide no.
SJIC-789; 24, 39, Saeseulmak, Changwon-ri, Yeongwol, Gangwon Province, Korea.
28.vii.2008 (coll. J.C. Sohn), geni. slide no. SJIC-787 (%), 3 samples in 100% EtOH.

Distribution. Korea (new record) and Russia (Far East).

Korean name. Song-got-ga-neun-na-bang.
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Parornix alni Kumata

Figs. 6.3, 6.9
Parornix alni Kumata, 1965, Ins. Matsum. 28(1): 64-66 (type locality: Teine,

Hokkaido, Japan)

Adult (Fig. 6.3). Forewing length 3.6-3.9 mm. Head with long white scales,
antenna filiform, light brown. Forewing white with slender brown markings along
costal margin, black dot at apex; hindwing light brown. Throax white, abdomen light
brown.

Male genitalia. Not available in this study. See Kumata (1965) based on the
Japanese specimens.

Female genitalia (Fig. 6.9). Papillae anales short, caudal half setose.
Apophyses anteriores 2x longer than apophyses posteriores. Ductus bursae tubular,
narrow, 2x longer than corpus bursae, and granulated near base of corpus bursae.
Corpus bursae ellipsoidal with two dense patches of scobular signa. For comparison,
we have included an image of the female genitalia of P. multimaculata (Fig. 6.7).

Material examined. 49, Saeseulmak, Changwon-ri, Yeongwol, Gangwon
Province, Korea. 28.vii.2008 (coll. J.C. Sohn), 3 samples in 100% EtOH. Genitalia
slide number SJC 788.

Distribution. Korea (new record), Japan and Russia (Far East).

Host plant. Betulaceae: A/nus hirsuta (Kumata, 1965).

Remark. The species as well as P. betulae are very similar superficially to

Parornix multimaculata (Matsumura) which have been known in Korea since Park
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(1983). However, close examination of hindwing venation and genital features
reveals significant differences of P. multimaculata from them (see Kumata, 1965 for
detailed comparison). It is noteworthy that three Parornix species co-exist in a
collecting site, which may call for reexamining all previous records of P.
multimaculata in Korea.

Korean name. Mul-o-ri-ga-neun-na-bang.

Parornix betulae (Stainton, 1854)

Fig. 6.10

Ornix betulae Stainton, 1854, Insecta Britannica 3: 205-206 (type locality: [United
Kingdom)]).

Ornix scutulatella Stainton, 1854, Insecta Britannica 3: 206.

Ornix betulella: Herrich-Schéffer, 1855, Syst. Bearb. Schmett. Eur.: 297.

Ornix betulaevorella: Doubleday, 1859, Syn. List Brit. Lep. (2nd ed.): 33.

Ornix (Parornix) betulae: Spuler, 1910, Schmett. Europas 2: 44.

Parornix betulae: Pierce & Metcalfe, 1935, Genit. Tin. Brit.: 79.

Adult. Similar to Parornix alni Kumata.

Male genitalia. Not available in this study. See Kumata (1965) based on the
Japanese specimens.

Female genitalia (Fig. 6.10). Papillae anales slightly prolonged, caudal half
setose. Apophyses anteriores and posteriores short, both equal in length. Lamella

antivginalis digitate. Ductus bursae tubular, its width nearly as wide as lamella
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antivaginalis. Corpus bursae globular, signa present as dense patches of scobs.
Further details can be found in Kumata (1965).

Material examined. 13, Saeseulmak, Changwon-ri, Yeongwol, Gangwon
Province, Korea. 28.vii.2008 (coll. J.C. Sohn), geni. slide no. SJC-802, in 100%
EtOH.

Distribution. Korea (new record), Japan, Far Eastern Russia. to Europe

Host plant. Betulaceae: Betula alba, B. ermanii, B. humilis, B. lutea, B.
mandschurica, B. nana, B. pendula, B. platyphylla, B. pubescens, B. utilis, B.
verrucosa (Buhr, 1935; Buszko, 1990; Ermolaev, 1981; Hartig, 1964; Kumata, 1965;
Osthelder, 1951; Roiiast, 1884; Stainton, 1854a).

Remark. The species is distinguished from the prior species by apical segment
of labial palpus with a black ring or blotch (entirely white in P. alni).

Korean name. Bak-dal-ga-neun-na-bang.

Spulerina castaneae Kumata and Kuroko, 1988

Figs. 6.4, 6.11
Spulerina castaneae Kumata and Kuroko, 1988, Ins. Matsum. N. S. 40: 81-83 (type

locality: Morioka, Honshu, Japan)

Adult (Fig. 6.4). Forewing length 5.5-5.7 mm. Head shiny white, antenna
filiform. Forewing white with five wide, yellow-brown transverse bands. Margin of
apex dark brown. Hindwing slender, light brown. Thorax and abdomen yellow-

brown.
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Male genitalia. Not available in this study. See Kumata et al. (1988) for
description.

Female genitalia (Fig. 6.11). Papillae anales short, setose. Apophyses
anteriores and posteriores equal in length, 2x longer than antrum. Ductus bursae same
in length as ellipsoidal corpus bursae. Signum with a heavily sclerotized, sharp,
curved, and long median projection. Further details can be found in Kumata et al.
(1988).

Material examined. 29, Hwayang Valley, Mt. Sokrisan, Boeun, Chungbuk
Province, Korea. 26.v.2002 (coll. J.C. Sohn), geni. slide no. SJC-790.

Distribution. Korea (new record) and Japan.

Remark. Two congeneric species, S. astaurota (Meyrick) and S. dissotoma
(Meyrick), have been known from Korea (Park, 1983). The white fasciae as wide as
brownish interspatial bands in S. castaneae and S. astaurota are distinguished from S.
dissotoma. Discrimination of S. castaneae and S. astaurota can be done with
checking subapical area of forewings: in the former, the area broadly darkened.

Host plant. Fagaceae: Castanea crenata and Quercus sp. (Kumata et al.,
1988).

Korean name. Bam-jul-gi-ga-neun-na-bang.
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Figs. 6.1-6.4. Adults of newly recorded gracillariid species from Korea. 1) Calybites
saccurinella, 2) Epicephala relictella, 3) Parornix alni. 4) Spulerina castaneae. Scale
bar = 1.0 mm.
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Figs. 6.5-6.11. Genitalia of gracillariid species from Korea. 5-6) Male genitalia. 5) C.
saccurinella, 6) E. relictella. Scale bar = 0.1 mm. 7-11, Female genitalia. 7) Parornix
multimaculata, 8) E. relictella, 9) P. alni, 10) P. betulae, 11) S. castaneae. Scale bar
= 0.5 mm.
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