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ABSTRACT

We propose a dual-state systolic structure to perform joint up/down-dating operations en-
countered in windowed recursive least squares (RLS) estimation problems. It is derived by
successively performing Givens rotations for updating and hyperbolic rotations for down-
dating. Due to the data independency, a series of Givens and hyperbolic rotations can be
interleaved and parallel processing can be achieved by alternatively performing updating
and downdating both in time and space. This flip-flop nature of up/down-dating char-
acterizes the feature of dual-state systolic triarray. To further reduce the complexity and
increase the throughput rate, Cordic cells can be used to mimic the operations of row-
broadcasting and only one control bit is required along each row of processors. Efficient
implementation to obtain optimal residuals and a transformation of the hyperbolic rotation
to an algebraically equivalent orthogonal operation to provide a more stable implementation
are also considered. This systolic architecture is very promising in VLST implementation of
the sliding-window recursive least squares estimations.






1 Introduction

Consider a least squares (LS) problem at time n,

X (n)w(n) = y(n), (1)

where X(n) is an £ X p fixed-windowed data matrix,

Tp—e4+1,0 Tp—+1,2 *° Tn—t41,p an;e.}.l
T
Tp—t4+2,1 Tn—i+2,2 *°° Tp—i42p Xp—t42
X(n)= = € R, (2)
T
Tn,1 Tn,2 tee Tn,p Xn

and y(n) is the desired response vector,

y(n) = . € R (3)

- yn -
We denote £ as the window size, p as the order of the system (i.e., number of sensors in a
multichannel filtering case) and n is the time index(n > £ is assumed). The LS problem

is to find an optimum coefficient vector @(n) € ®?, such that the Euclidean norm of its

associated residual

e(n) = X(n)w(n) - y(n) (4)
is minimized. If X(n) has full column rank, then it is well known that from the normal
equation (NE) approach @(n) is given by

b(n) = (XT(n)X (n)) " X7 (n)y(n). (5)

But the increased dynamic range (because the condition number [1] is squared) precludes

the NE method for applications in modern digital signal processing. Therefore, in order to



achieve the same computational precision, direct matrix factorization methods employing
orthogonalization to preserve the condition number, like the QR decomposition (QRD),
are preferred especially when it is likely that the numerical instability may arise due to
ill-conditioning.

In adaptive signal processing, we are not only interested in w(n) for any specific time
n, but also all the subsequent (), > n. QRD has been proved to be an effective tool in
performing this recursive LS problem[2, 3]. However, under time-varying conditions, much
attention has been focused on schemes employing exponential forgetting factors, while less
on fixed-windowed ones. This is partially due to the difficulty of downdating obsolete data
encountered in the windowed RLS model. But, fixed-window scheme should not be pre-
cluded simply because its computational burden. Other factors, especially fast parameters
tracking ability, actually favors this method under some nonstationary conditions. To mo-
tivate the need for fixed-window under nonstationary condition, a computer experiment is
given to demonstrate the advantage of its faster convergence of the fixed-window method
over the method using an exponential forgetting factor.

A second order autoregressive (AR) process {u(7)} is given as follows [9, pp. 204-6].
u(t) + a1u(i — 1) + aqu(i — 2) = v(3),i = 1,...,100 with a; = —0.9750 and a2 = 0.9500 and
u(2) + bru(i — 1) + bou(e — 2) = v(7),: = 101,...,250 with b; = —1.5955 and b = 0.9500.
v(+) is a white Gaussian noise with standard deviation equal to 0.1, except that from 7 = 20
to 30 v(7)’s are intentionally increased by a factor of 20 to account for temporary noisy
perturbation. This is equivalent to lower down the SNR to —6 dB. There is also a step
change at iteration 100 in the parameters of the AR model, i.e., (a1,a2) is changed from
(—0.9750,0.9500) to (by, by) = (—1.5955,0.9500).

To make a fair comparison between the fixed-window scheme with a window size ¢
and an exponentially weighting scheme with a forgetting factor A in the sense that both

schemes have the same self noise(fluctuation of the estimated parameters with respect to



the optimum AR parameters)[10], we choose that £ = 50 and A = /(€ —1)/(¢ + 1). 100
simulations with different noise realizations have been performed. Fig. 1 depicts the mean
bias versus number of iterations in estimating the first AR parameter a; and by, before and
after the step change at iteration 100 respectively. For fixed-window scheme, convergence
is reached after £ = 50 more iterations following the step change at iteration 100, while for
exponentially weighting method, 150 more iterations are required.

This comparison shows that a fixed-window scheme is indeed necessary and important
in speedy tracking parameters under some nonstationary conditions.

Until recently, efficient downdating algorithms have been proposed [4, 5]. But efficient
implementations and architectures of fixed-windowed RLS filtering are still rarely consid-
ered. Therefore we propose two systolic arrays, which is suitable for VLSI design, to perform
fixed-windowed RLS estimation. The first one is denoted as the dual-state systolic triarray,
which resembles Gentleman and Kung’s triarray [2] with the same hardware complexity, ex-
cept the clock rate of the processor is two times higher. The second one is realized by using
Cordic cells to reduce the hardware complexity. Also, efficient scheme to obtain optimal
residual has not yet been addressed for the windowed RLS estimation. We will show what
can and cannot be obtained by using the systolic implementation. A transformation of the
hyberbolic rotation to a more stable orthogonal operation is also considered in this paper.

In section 2, the basic up/downdating RLS estimation is considered, follewed by the dual-
state systolic architecture in Section 3 and Cordic processors implementation in Section
4. In Section 5, we consider the recursive estimation of optimal residual from systolic
implementation. Finally, in Section 6, a transformation of hyperbolic rotation to a more

stable orthogonal operation is derived. Conclusions are then given in Section 7.



2 Windowed RLS Estimation
Suppose at time n, the QRD of [X(n) : y(n)] is available, i.e.,

: R(n) : u(n)
Q(m)[X (nYiy(n)] = | , (6)
0 : wv(n)
where Q(n) € R*¢ is orthogonal and R(n) € RP*P is upper triangular. Then the optimum
w(n) is given [1] by
R(n)(n) = u(n). (7)
R(n) is called the Cholesky factor of X7(n)X(n) in that RT(n)R(n) = XT(n)X(n).
The Cholesky factor can be obtained by computing the p X p sample covariance matriz
XT(n)X (n) first, followed by Cholesky decomposition. But, this method will have the con-
dition number squared while forming the covariance matrix. A numerical stable approach
is to perform QRD directly on the data matrix X(n) and in this way the condition number
of the LS problem can be maintained.

Now at time n + 1, how do we obtain R(n + 1),u(n + 1) and hence w(n + 1) with the
minimum effort? If the window size is growing, then we can simply update R(n) by p Givens
orthogonal transformations to zero out x,7 ; and obtain R(n4-1) [3]. But with a fixed sliding
window scheme, in addition to zeroing out the new data row x,%, by orthogonalization,
it is still necessary to downdate the obsolete data row, x,”, i1 We define updating as a
series of operations (Givens rotations) such that an additive rank-one modification of the
Cholesky factor is accomplished, and downdating as operations (hyperbolic rotations) such

that a subtractive rank-one modification is made. It is noticed that at time n + 1, the data



matrix

X(n+1)= | (8)

T
| Xn+1
is obtained by adding a new row data x,5; and removing an old row data x,”, , from

X(n). Since RT(n + 1)R(n+1) = XT(n+ 1)X(n + 1), we have
R (n+ DR(n+1) = BT (m)R(n) + Xns1%, 1 = Xncer1 41 (9)

Rader and Steinhardt [5] proposed hyperbolic Householder transformation to update
multiple new data rows and downdate multiple undesired ones simultaneously. Alexander
et al. [4] suggested performing orthogonal rotations for updating followed by hyperbolic ro-
tations for downdating. It can be shown that hyperbolic rotation is merely a degenerate case
of hyperbolic Householder transformation, if we do not distinguish a rotation matrix from
a reflection matrix [1]. This is just like that Givens rotation can be considered as a special
case of Householder transformation. To facilitate systolic array processing, we will adopt

the latter approach for windowed RLS filtering which involves only scalar computations.

2.1 Up/down-dating Cholesky factor

The basic up/downdating of the Cholesky factor is considered in this section. Given

[R(n):u(n)], we can obtain [R(n 4 1)iu(n + 1)] by first updating

R(n) : u(n)
an+1 : Yn+1 (10)
| Xn7;3+1 Yn—t+1



via p Givens rotations, i.e.,

R(n) : u(n)

Gopt1° - Grpt1Gipt1 | 57 1 Yupa

T :

Rin+1) | a(n+1)
= 0 vl(n + 1) ’ (11)
xnij—l—}-l Yn—t+1

then downdating the right-hand-side via p hyperbolic rotations, i.e.,

R(n+1) | d(n+1)

Hppto---HyproHipro 0 : vi(n+1)

| X 41 D Yneti |
R(n+1) i wu(n+1)
= 0 : vn(n+1) |- (12)
0 : vo(n + 1)
Here a (p + 2) x (p + 2) Givens rotation matrix G; 41 is used to zero out the (p + 1,7)

element of the matrix in (10), i.e.,

- - _ ; - or 4 - -
o; ¢ S o; ,/a? + a,2,+1
Gi,p+1 = I = s (13)
Olp 1 —8 G Op+1 0
L . L 1 4 L. 4 L o

where

c; :ai/\/a?-*-a;zﬁl and sizap+1/,/a?+a§+1. (14)



Similarly a (p+2) x (p+2) hyperbolic rotation matrix H; 42 is used to zero out the (p+2, 1)

element of the matrix in (11),

~ o /2 2
a; C; —38; o; a Ozp+2
Hipio = = ; (15)

ap+2 —gi 61' ap+2 0

where

6i:ai/\/az2_a;2)+2 and §,-:ap+2/\/a?—az2,+2- (16)

Since Gjpy1 only affects the it* and p+ 1" rows of the matrix in (10), and H; 4o affects

the i** and p + 2!* rows, we can combine (11) and (12) in the following manner,

R(n) i u(n)
Hypyo- - HypioHipraGppyr- - Gipia | x5, Ynt1
an:.[+1 Yn—t41
-R(n—}—l) u(n+ 1) —
0 vy(n+ 1) (17)
0 : va(n+1)

3 Dual-State Systolic Triarray

Similar to the systolic QRD triarray proposed by Gentleman and Kung [2], which only
performs updating, a dual-state systolic triarray performing both updating and downdating
is given in Fig. 2. For every sensor (column of the data matrix) there is a delay buffer of
window size £ to queue up data. Therefore each data will be first fetched and processed
(updated) and then stays in the queue buffer for £ data clocks and finally will be reprocessed
(downdated) by the triarray. Before the skewed data rows enter the arrays, there is an

array of selection switches to alternatively take in new data and old data. The clock rate



for the processors should be two times higher than the data input rate so that both new
and old data can be processed within one data clock. We use a black circle o to denote a
processor working on a Givens rotation(updating) and a white circle o to denote a hyperbolic
rotation(downdating). We also note that only one control bit is required in determining
whether updating or downdating operation needs to be performed.

To this dual-state systolic triarray, data rows are skewed with updating and downdating
data interleaved to form a sequence of up/down-dating wavefronts which will then hit upon
this triarray sequentially. All of the wavefronts are consistent, i.e., the involved processors
will all perform updating or downdating according to the underlying wavefront. As one
updating wavefront finds its way along the triarray, one downdating wavefront follows next
to it, which is then followed by another updating wavefront, and so forth.

Every processor, after experiencing one updating wavefront, will switch from updating to
downdating operation as the next downdating wavefront will pass through it immediately
following the previous updating wavefront. Therefore, all processors perform updating
and downdating successively. This is just like they are doing flip-flops in time, which
characterizes the temporal duality of this systolic triarray.

A spatial duality can be also observed as follows. While a processor is performing up-
dating, all its adjacent processors, either vertical or horizontal , but not diagonal neighbors,
are performing downdating. To see this, let us take the (2,3) processor in Fig. 2 for an ex-
ample. When this internal cell is performing updating, its right neighbor, the (2,4) internal
cell, and its lower neighbor, the (3,3) boundary cell, are being hit by the downdating wave-
front just before the updating wavefront that hit upon this very (2,3) internal cell (recall
that up/downdating wavefronts occur consecutively). Similarly, its left neighbor, the (2,2)
boundary cell, and its upper neighbor, the (1,3) internal cell, must be performing down-
dating, too, as these two neighbor cells are confronting the downdating wavefront which

follows right after the updating wavefront associated with this (2, 3) cell. We therefore say



that this triarray also functions like doing flip-flops in space.

In all, for every snapshot, we can see all processors are doing updating and downdating
evenly distributed over the entire triarray, and for the very next snapshot, they change
their roles. The phenomenon of flip-flops both in time and space characterizes the dual-
state systolic triarrays. The wavefronts for the updating and downdating also propagate

pairwise toward the lower-right direction in the triarray.

4 Cordic Processors

Cordic (coordinate rotation digital computation) processors [6, 7, 8] have been shown to
be able to efficiently perform Givens and hyperbolic rotations with simple operations like

add, subtract and shift, and one fixed-number multiplication.

4.1 Givens rotations

First consider the determination of the rotation angle 6, such that a vector [a,b] 7 is rotated

into []%[\/zﬂ +62,0] 7, ie.,

“va? + b2 cosf siné a
o - . (18)

0 —sinf cosé b
We can approximately split 6 into N predetermined minirotation angles with the proper

choice of the directions of these angles, such that each minirotation only involves additions

and shift registers. To see this, a recurrence of minirotations can be written as

ait1 cosf; sind; a;
bi+1 —sinf; cosb; b;
1 tang; a;
= coséb;
—tané, 1 b;



a; + pi27'b;

= cosé; ,1=0,1,--- N — 1, (19)
—pi27ai + b;
where
ap a
= (20)
bo b
and
tan6; = p;27". (21)

The planar sign bit p; is determined by

1, ifa;b; >0,
pi = (22)
—1, otherwise,
and the intentional choice of the minirotaion angle 6; in (21) renders the shift-by-: bits

(multiplied by 27%) operations.

If the number of minirotation stages N is large enough, it can be shown that

an N-1 N-1 1 tan 6; a
(H cos Hi) 1T (23)
=0

by i=0 | —tané; 1 b

Il

]%P /a? + b2
0

(24)

K. = Hﬁgl cosf; ~ 0.60725 is called a planar rotation correction factor and is usually
independent of N when N is large enough. The rotation angle is thus uniquely determined
by the planar sign bits p’s,

N-1 )
O~ > pitan™' 27", (25)

=0

In our updating scheme, it is necessary to apply the same rotation to all the subsequent
data on the two data rows involved (i.e, with one being in the triarray and the other the
new data row being updated). In fact, it is not necessary to wait until all the minirotation

planar sign bits p’s are generated from the boundary cell. In order to take advantages of

10



the fact that all the subsequent data on these two rows of data are to be rotated in the
same manner as that in the boundary cell, we can pipeline these minirotaion angles to the
internal cells as soon as they become available. Therefore every time a planar sign bit is
generated by the boundary cell, it can propagate to the rest of its right-hand-side internal
cells such that the others can start doing minirotations as soon as possible. Thus along
the horizontal direction, the clock rate is the same as a mini-clock of the Cordic cells, and
the vertical direction has the rate of (N + 1) times the mini-clock rate, which can be set
equal to the external data rate. Because of the systolic miniclock along the horizontal data
rows is much smaller then the data clock rate, we can consider that the Givens rotation is
almost simultaneously applied to every data on these data rows, or, the rotation angles are

broadcast along the rest of the internal cells in the same row.

4.2 Hyperbolic rotations

For the same reason, a sequence of mini-hyperbolic rotations can be found to accomplish a

hyperbolic rotation as follows:

I%[\/ a? — b2 _ cosh¢ —sinh ¢ a . (26)
0 —sinh¢  cosh ¢ b
Now, a recurrence of mini-hyperbolic rotations are given as
@it1 cosh ¢; —sinh ¢; a;
bit1 — sinh ¢; cosh ¢; b;
1 — tanh ¢; a;
= cosh ¢;
— tanh ¢; 1 b;
a; — 0;27%b; )
= COSh¢i ) N i:l’---’N’ ‘\27)
—0i27'a; + b

11



where

ay a

= (28)
by b
and
tanh ¢; = 0,277, (29)
and the hyperbolic sign bit o; is determined by
1, if a;b; > 0, )
g = (30)
—~1, otherwise.
If N is large enough, it can be shown that
aN+1 N N 1 — tanh ¢; a ,
= (H cosh qS,) H (31)
bnt1 i=1 =1 —tanh ¢; 1 b
a a2 _ b2
Ve =t (32)

0

We call Kj, = [T, cosh ¢; ~ 1.2051 the hyperbolic rotation correction factor.

4.3 Cordic cells

The Cordic implementation of dual-state systolic array has the same structure as in Fig.
2. Since we have splitted a rotation into N minirotations, a system block used in Fig. 2
will be divided into N miniclocks, too. We notice that rotating two rows of data needs
not take place sequentially from one column to another, which is the case used in Fig. 2.
In fact we can broadcast the rotation data ((c,s)/(é,$) from the boundary cell to all its
right-hand-side internal cells such that their rotations can be completed simultaneously.
Unfortunately, while implementing a VLSI circuit, the routing difficulty incurred due to
non-local connections prohibits such broadcast. This is the reason why systolic array pro-

cessing is much favored from the VLSI viewpoints in addition to its massive parallelism

12



and regularity. However, by using Cordic cells, we are able to minic the row broadcast of
rotation data with only local connections.

Cordic rotations distinguish themselves by performing minirotations sequentially. The
minirotations data are carried merely by a stream of one sign bit data. These minirotation
bits can be sequentially passed along without waiting until the whole stream is available.
Therefore, the right-hand-side internal cells can start doing minirotations as soon as every
bit of minirotation data becomes available. The stream of sign bits are propagate horizon-
tally along the right internal cells. By doing this, new data are skewed with only minicloak
in between, instead of one system block. We also observe that the Cordic implementation
reduces the wavefronts of skewed data from an tilting slope of 1 to 1/N. If N is big enough,
we can say the data is almost not skewed and a rotation is taking place simultaneously on
each row of the triarray.

Fig. 4 depicts the boundary and internal Cordic processing cells. To differentiate be-
tween updating and downdating operations, all the parameters in the parentheses represent
a downdating computation. We use a solid arrow | to represent a data movement in a
system clock rate and a dashed arrow ——> in a miniclock rate. Along the horizontal direc-
tion, instead of passing the rotation parameters ¢, s and ¢, 3 in a system clock rate (which
is the same as the clock rate along the vertical direction), the minirotation sign bits p and
o moves towards the right in a miniclock rate.

The boundary cell is responsible for determining the sign bits p’s and o’s. It has an
internal memory to store the diagonal element r in the upper triangular matrix. In the first
miniclock, ¢ = 0 (¢ denoted the miniclock index of a complete rotation cycle), it fetches data
y from above. In the following miniclocks (0 < ¢ < N), r and y are cyclically fedback to
the minirotator to successively generate the minirotation sign bits p(o) and propagate them
to the right-hand-side internal cells. In the last minirotation stage, the internal data r is

multiplied by a correction factor K.(K}) and restored to its local memory. This completes

13



a rotation cycle of the boundary Cordic cell.

As to the internal Cordic cell, it also takes in external data from above in the first
miniclock, then successively feedbacks data and rotates according to incoming sign bits.
In the meantime, these sign bits are also propagated to the right. In the last miniclock,
both data r and y on two feedback arms are multiplied by the correction factors, with one
restored to its local memory and the other output downward for further processing.

Both boundary and internal Cordic cells share many architectural similarities. The
differences between updating and downdating are: (1). the correction factors; (2). the
downdating skips the first minirotation; (3). sign in the lower left adder input of the

minirotators.

5 Recursive Estimation of Optimal Residuals

We have considered the recursive evaluation of coefficient vector w(n) in Section 2. In many
applications such as beamformation, array processing and filtering, and communication, the
optimal weight coefficient vector is not of direct interest. Instead, we are interested in the
newest optimal residual é, which is the last element of é(n) in (4). Information is then
extracted from the optimal residual. In this section, we consider an efficient implementation
to obtain the newest residuals under the up/downdating operations.

;From (6), we can separate Q(n) into two terms as

om=| 9™, (33)
Q2(n)

where Q1(n) € RP*!, Qa(n) € RU-PIX! such that
Q1(n)X(n) = R(n),

Q2(n)X(n) = 0.

14



Also from (4), (6), and (17), we can rewrite the optimal residual vector as

én+1)= —Qg(n +1) mie+1)

ve(n+1)

Now, the question is how to obtain Qg(n 4 1) recursively and efficiently? Define

[ 01(n)

Qn+1)= 1 ;
1
then - ~
R(n)  u(n)
Qe+ ) =[X(n+1)iyn+ D= | xT ., ' 4.4
X2_1 0 Ynetgt

;From (17) and discussions in Section 2, denote
H(n+1)= Hypya-- Hypyo2Hypyo,
G(n+1) = Gppa- - G2p2G1p42,
we have
Qn+1)= Hn+ 1)G(n+ 1)Q(n +1)
if updating is performed first and
Qn+1)=G(n+ DH(n+1)Q(n+1)
if downdating is performed first. Suppose updating is performed first, we have

Q(n+1)=H(n+1)Qu(n + 1),

(34)

(35)

(36)

(38)

(39)

where Qu(n + 1) = G(n + 1)Q(n + 1) is defined as the Q matrix associated with updating

only. It can be shown that G is of the form
Z(n+1) h(n+1) 0
Gin+1)=| kT(n+1) [T, 0>

0 0 1

15
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where Z(n + 1) is a p X p matrix, and therefore @, is of the form

Z(n+1)Qi1(n) h(n+1) 1
Quin+1)= | kT(n+ 1)Q1(n) [I’yc O |- (41)
0 0 1

It can also be shown that H is of the form

Z(n+1) 0 h(n+1) -
H(n+1)= 0 1 0 ) (42)

]}T(n +1) 0 Hf:l Ci

and therefore @}(n + 1) is of the form

Z(n+ 1DZ(n+1)Qi(n) Z(n+Dh(n+1) h(n+1)

Q(n+1)= K (n +1)Qy(n) e, c 0 . (43)

F(n+ 1)Z(n+1)@u(n) F(n+ Dh(n+1) T &
;From (34) and (41), we can obtain the residual vector when the updating wavefront passes

through the array and which is

e+ D) || QT mkat D+ )
G(nt )= | e, (n+1) | =| -, -vn+1) |> (44)
I ey, (n + 1) 11 —vg(n+1)

where e,, and e,, are the newest residuals associated with the updating and downdating
respectively at time n 4+ 1. Since at this point the downdating has not yet been performed,
eu,(n + 1) is not considered as residual.

;From (34) and (43), we can obtain the residual vector when the downdating wavefront
passes through the triarray. Again, we are only interested in the newest residuals (the last

two elements) and which are

er(n+1) _| - Ty ci-vi(n+ 1) = BT (n + Dk(n + vg(n + 1) (45)

ez(n+1) ~TI%., & - va(n + 1)

16



where e, and ey are the residuals associated with updating and downdating respectively.
From (17), it can be seen that v;(n 4+ 1) and vz(n + 1) can be obtained naturally from the
up/downdating operations in the triarray. If the updating parameters ¢;’s are propagated
down to the diagonal boundary cells and are cumulatively multiplied as in [3], when the
updating wavefront passes through the triarray, the term [J¢; in (44) has been obtained.
A multiplier call is then used to obtained e,,(n + 1) = —=[[¥,; ¢ -vi(n + 1) asin [3]. In
fact, although the window size is I as described in (2), the residual ey, (n + 1) is estimated
from an [ 4 1 window [Xn—i41,"*»Xny Xng1]T and [gp_i41,° " *»Yns Yn+1)7 since downdating

of x,_141 has not yet been done. That is

ey (n+1) = x£+1w[n—-l+l,n+1] — Yn+1, (46)

where W, _;11 n41] denotes the optimal coefficient vector estimated from data [x,—i41, - 5 Xn, Xnp1)T
and [Yn—t41, 5 Yns Ynga]”-

Also, when the downdating wavefront passes through the triarray, if é;’s are propagated
down to the diagonal boundary cells and are cumulatively multiplied, from (45), the down-

dating residual can be obtained easily. It is estimated from a ! window [X,_i42, -+, Xp, Xnt1]” -

That is,

ea(n+1) = xX_ 11 Bpir2,np1] — Ynot41- (47)
Obviously, the residual of time n — [ + 1 is post estimated by data from n — [ + 2 to
n + 1 and appears at time n + 1. This kind of property may or may not be of practical
interest in real-life applications. As to the updating residual e;(n 4 1), due to the term
BT (n + 1k(n 4 1)vy(n 4 1) which is not available from the systolic implementation, we are

unable to extract e;(n + 1) from the triarray. However, (45) provides a simple relation for

this updating residual before and after the downdating. That is,

ex(n+1) = ey, (n+1) = L (n+ Dk(n + 1vy(n + 1). (48)

17



If downdating is performed first, then by the same analysis it shows that we can obtained

/4
eq(n+1)=- H & v(n+1)= X£—1+1@[n—1+2,n] — Yn—i+1, (49)
=1
and
p
ei(n+1)=—[[ei-v(n+1) =xL B _r42n41) = Ynt1- (50)
=1

;From (4) and (8), it is obvious that this e;(n + 1) is the exact residual we are looking
for. However, a drawback for this scheme is that downdating first before the updating may
incur numerical stability problem [4]. A dual-state up/downdating systolic array for the

recursive residual estimation is shown in Fig. 2.

6 Operations Transformations

;From numerical stability consideration, the hyperbolic rotation for the downdating is not
of practical interest, even though it has been proven to be forward (weakly) stable in [11}.
One of the reasons is that, from Fig. 3, ¢ and 3 generalized by the boundary cell could be
very larger. Once these ¢ and § are sent to the internal cells for further processing, the
computations involve two more parameters r and z which are not scaled (:.e. they could be
very large, too.). Therefore, 2z’ and the updated r may suffer large amount of roundoff error,
or even overflow. To stabilize this problem, we are looking for an algebraically equivalent
orthogonal parameters to replace ¢ and 5. To do so, let us first consider the relation between
updating and downdating.

Suppose we have known an p X p upper triangular matrix R and want to downdate a

vector X to obtain an upper triangular matrix R. That is,

RTR = RTR — xxT. (51)
If we know R instead of R, then

RTR+xxT = RTR (52)
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becomes an updating problem.
To downdate R, we use a sequence of hyperbolic rotations to zero out x as

R R ,
= Hppi1--Hypr1Hipna (53)
0 xT
On the other hand, to update R, we use a sequence of Givens rotations to zero out x as
R R ,
Gppi1 Gap1Gipia = (54)
xT 0

Suppose now, for this updating problem, we know R instead of R, and k — 1 updating has

been done, i.e.
_ i -
R 3 ,
Gr-1p4+1 Grph = Rp i1 ; (55)
T
X
I 0,...’0’ w;ck—l)’...,x]()k—l) |

where R*¥~1 denotes the first kK — 1 rows of R, Rp_k+1 denotes the last p — k + 1 rows of R,

and z(®) denotes an element of the k™" updated vector x. At the k** rotation, let us focus

only on the k** and the last rows, we have
Ck Sk 0, tt Ty Oa fk,kv tt fk,p 07 Y 0’ Tk,k s Tkp
k-1 k1) | k k
-8k Ck 0, SR 0, $§c ), . xg ) 07 cee 0, 0 x§c-217 mg)
(56)
where 7; ; and r;; are the (7, j) elements of R and R respectively,
_ /52 (k=1)? ,
Tk,k = Tk’k + wk 5 (57)
- k-1
_ Tk k _ :1)2: )
Cp = 8 = ’
Tk k Tk,k
andforj=k+1,---,p,
o k-1
Tk = CkTk,j + Skwg ), ,
(58)
2% = —SkTk,j + ckwgk_l).

J
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;From (57) and (58), we can solve 7 and z(*) easily and the downdating can now be achieved

by using Givens rotation parameters as

. k-1)2 p
Frg = r,%,k — :L‘§C ) , (59)
- k-1
Thk m}c )
Ck = y S = 3
Tk,k Tkk

forforj=k+1,---,p,
kg = (Thj — Sk$§~k—1))/ Chy

(k) _ 7 (k-1)
T; 7 = = SkThkj + CkT; .

(60)

As we can see that c; and s are bounded parameters (< 1). Even 7 ; could be very large,

(k)

when computing z;", it is only multiplied with s which is bounded. That is to say,  ; will
never be magnified during the computing. Thus, this scheme is more stable than hyperbolic
rotation. The operations of the processing cells for the systolic implementation are shown
in Fig. 5.

With this transformation, the operations of the downdating part are different from
that of the updating part. However, both provide stable numerical property especially
under finite precision computation. If we want to make both operations the same for some

implementation consideration, a transformation on ¢ and s in Fig. 3 can be performed such

that a new é and 3§ are obtained as

(w33
I
[ ]

S
§ = — (61
o oa=l (61)
and therefore,
r = (r+3y)/é
yl - —.§T’+éy, (62)

which share the same forms as that of the downdating part. However, it loses the numerical
property of an orthogonal transformation. The operations of this transformed updating are

shown in Fig. 5.
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7 Conclusions

A dual-state systolic triarray performing up/down-dating operations to facilitate fixed-
window RLS filtering has been proposed. While previous researches have been centered on
QRD-based systolic triarray with exponentially forgetting factors to perform updating, no
VLSI-suitable structure, like systolic array, is yet known to perform fixed-window RLS filter-
ing. We also provide a computer simulation to substantiate the necessity of fixed-window
scheme under some nonstationary conditions despite its two-times higher computational
load than that of exponentially forgetting methods.

Due to the inherent similarity between updating and downdating, they can use the same
hardware and alternatively pipelined in parallelism in this dual-state systolic triarray. A flip-
flop systolic behavior of this array is observed both in temporal and spatial domain. We also
propose Cordic cells to mimic a broadcast along the rows in the triarray and also reduce the
propagation of rotation data (word-level) alongs rows down to minirotation sign bit stream.
The hardware complexity using Cordic cells is simpler and the involved computations simply
comprise of simple arithmetics, and square root and division operations are not required.
As to the optimal residuals, we have also shown what can and cannot be obtained by using
the systolic implementation.

To remedy potential round-off errors associated with downdating, transformed opera-
tions are also considered. By providing these stabilized operations, the issues of numerical
stability and pipelined computation are addressed.

We have investigated efficient and symmetric algorithms and architecture to perform
fixed-window RLS filtering problems. We also extend previous results from updating to
up/down-dating operations. The proposed new dual-state systolic triarray is very promising

for VLSI implementation.
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Figure 1: Mean bias of estimating nonstationary AR parameter for fixed and exponentially
weighted windows.
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