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Arbitrary Steering of Multiple Particles Independently
in an Electro-Osmotically Driven Microfluidic

System
Satej Chaudhary and Benjamin Shapiro

Abstract—We demonstrate how to use feedback control of
microflows to steer multiple particles independently in planar
microfluidic systems driven by electro-osmotic actuation. This
technique enables the handling of biological materials, such as
cells, bacteria, DNA, and drug packets, in a hand-held format
using simple and easy-to-fabricate actuators. The feedback loop
consists of a vision system which identifies the positions of the par-
ticles in real-time, a control algorithm that computes the actuator
(electrode) inputs based on information received from the vision
system, and a set of electrodes (actuators) that create the required
flow through electro-osmotic forces to steer all the particles along
their desired trajectories and correct for particle position errors
and thermal noise. Here, we focus on the development of control
algorithms to achieve the steering of particles: vision system imple-
mentation, fabrication of devices, and experimental validation is
addressed in other publications. In particular, steering of a single
(yeast cell) particle has been demonstrated experimentally in our
prior research and we have recently demonstrated experimental
steering of three particles independently. In this paper, we develop
the control algorithms for steering multiple particles indepen-
dently and we validate our control techniques using simulations
with realistic sources of initial position errors and thermal noise.
In this study, we assume perfect measurement and actuation.

Index Terms—Electro-osmotic actuation, fluid control, microflu-
idics, particle steering, robust control.

I. INTRODUCTION

M ICRO-electro-mechanical systems (MEMS) are sys-
tems whose components range in size from millimeters

down to micrometers. Since cells, bacteria, viruses, proteins,
and DNA chains have dimensions that vary from hundreds of
micrometers down to submicron scales, MEMS technologies
are built at the right length scales to directly manipulate and
handle such biological materials. Microfluidic systems refer
to the subset of microsystems that include liquid or gas flows.
Since the majority of biological entities of medical interest
operate in water or in liquid buffers (DNA, proteins, and cells
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function in aqueous environments), microfluidic systems are
a natural choice to handle biological materials. Current mi-
crofluidic applications include microarrays for rapid analysis of
DNA [1], analysis and detection of proteins [2], monitoring and
analysis of cells [3], and implantable drug injection systems
[4].

The ability to steer and position individual particles inside
microfluidic systems is a big part of creating lab-on-a-chip or
implantable miniaturized systems that can then analyze, mon-
itor, chemically treat, and inject biological materials. Specifi-
cally, there is a need to deliver particles to localized sensors,
to separate particles from each other for further testing, to steer
particles into each other to test particle-to-particle interactions,
to steer particles into regions of chemicals to test the response
of cells, bacteria, or proteins to chemical stimuli or to drugs, and
to steer particles or drug packets to external parts for drug injec-
tion and delivery.

To date, particle steering has usually been achieved in one of
two ways. Particles can be steered, sorted, mixed, or separated
by microfluidic plumbing architectures with valves, pumps,
splitters, and mixers. For example, microchannels can be used
to queue particles, the properties of these particles can then
be measured, and downstream actuators can be used to shunt
particles of type one to one chamber and type two to another
chamber [5]. Individual particles can also be steered by optical
traps or laser tweezers [6], [7]. Here, laser beams trap dielectric
particles with a refractive index greater than the surrounding
medium [8] and the particles then follow the imposed motion of
the lasers. The main difficulty with the microfluidic plumbing
method is that once the system has been built to perform a
specific task, it cannot be reconfigured to perform a different
task. The key drawbacks of laser tweezers are that they can only
steer certain types of particles, they require delicate optics, they
are expensive, and the optical system is large (about the size
of a small fridge). Different particle steering approaches are
appropriate for different applications. For example, in the cell
clinics project at the University of Maryland, College Park [9],
it is not possible to place a microfluidic plumbing architecture
on top of the moving lids that open and seal the cell vials.

In this paper, we show how it is possible to combine common
(electro-osmotic) actuation with feedback control to steer mul-
tiple particles independently in a microfluidic chamber. To steer
particles in a planar microfluidic chamber, we will find the po-
sition of the particles in real-time using a camera and a vi-
sion algorithm, these positions will be compared to the cur-
rent desired positions, a control algorithm (discussed here) will

1063-6536/$20.00 © 2006 IEEE



670 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

then compute the actuator inputs that will create a fluid flow
field that will move all the particles from where they are to
where they should be, and these inputs will be applied via the
system actuators. This will allow us to replicate the capability
of laser tweezers but with the following advantages: the entire
system can be miniaturized (the microfluidics, optics, miniatur-
ized camera, and computer processing can be squeezed into the
size of a tennis ball using miniaturized cell phone cameras or
into the size of match box using CMOS onchip cameras [10]);
we can steer particles that laser tweezers cannot capture; and we
use common electrical fluid flow actuation which means that
our system is cheap. In terms of disadvantages, we note that
our method does not have the ability to steer an arbitrarily large
number of particles with the tens of nanometer positioning ac-
curacy that can be achieved with laser tweezers [7].

Our multiple particle steering capability is enabled by feed-
back control and by the flow physics found on the microscale.
Feedback is necessary to correct for particle deviations away
from desired trajectories due to thermal noise, flow distur-
bances, and actuator errors. Microflow physics are required
for the following reason. On the macroscale, fluid momentum
effects create extremely complex fluid flows. It is not possible
to “invert” the Navier–Stokes equations to find the right actua-
tion that will lead to a flow field that will carry all the particles
from where they are to where they should be. But on the mi-
croscale, it is easier to predict the fluid behavior. Specifically,
under quasi-steady electro-osmotic actuation conditions, the
Navier–Stokes equations reduce to a linear set of equations that
can be effectively inverted. We can determine the necessary
input voltages that will steer all the particles in the desired
directions.

This paper is focused on phrasing the multiparticle steering
task as a tractable control problem, on stating the appropriate
control algorithms, and on validating the control algorithms
using simulations that include realistic sources of thermal
noise. In this study, we assume perfect measurement and actu-
ation. In Section II, we present a brief description of a sample
device, describe its mode of operation, and state the control
objective. In Section III, we state the full system equations.
We see that under quasi-steady actuation conditions, and using
the fact that the device is of micron dimensions, the equations
reduce to a simpler form which makes them amenable to
robust control using classical control theory. In Section IV, we
present a method to obtain the open-loop voltages for driving
the particles along the desired trajectories. In addition, we also
bring attention to the ill-conditioning of the open-loop voltage
solutions which increases sharply as the number of particles
increase. We then exploit this observation to project a theoret-
ical limit on the number of particles that can be steered with
this control method. In Section V, we show that having a large
number of electrodes does not necessarily enhance our ability
to control more particles and present a device with the optimal
number of electrodes for the problem under investigation. In
Section VI, we present a time-varying linear quadratic regulator
(LQR) feedback controller to stabilize the trajectory tracking
of the particles. In Section VII, we present a nonlinear feed-
back controller and see that it has better performance than the
time-varying LQR controller. The experimental challenges of

Fig. 1. Schematic of the microfluidic particle steering device. The fluid
with particles is confined between two nonconducting surfaces. The actuating
electrodes can create complex planar electric fields in the conducting liquid.
The fluid and particles then flow along the electric field due to electrokinetic
(electro-osmotic and electrophoretic) forces. Here, electrodes are shown
as inserted through inlet holes in the top material into the liquid. The two
nonconducting surfaces are parallel to the x y plane and are located at
z = �h =2. The number and position of electrodes is a design parameter.
For simulations used here, the electrodes are placed as in Fig. 4.

Fig. 2. Mechanism of electro-osmotic actuation of fluid at the microscale [13].

the particle steering system are discussed in other publications.
In particular, [11] describes the vision system used to locate
the particles in real-time and it demonstrates experimental flow
control steering of a single (yeast cell) particle. Experimental
steering of many particles independently is being demonstrated
in current work [12].

II. CONTROL TASK

The control task is to steer multiple particles independently in
an electroosmotically driven microfluidic system by creating an
underlying fluid flow that will carry the particles along the de-
sired trajectories. Fig. 1 shows a three-dimensional (3-D) view
of a sample microfluidic system. The microfluidic chamber is
enclosed by two parallel, nonconducting surfaces separated by
a distance (the star denotes dimensional variables). The two
nonconducting surfaces are parallel to the plane and are
located at . The driving electrodes are positioned
inside the channel through inlets as shown. When an electric
potential is applied to the electrodes, the fluid is transported
by the process of electroosmosis as illustrated in Fig. 2. Fig. 3
shows the feedback block diagram of the control system. The
current positions of the particles are observed by a camera and
their deviation, if any, from the desired trajectory is determined.
Corrective feedback voltages are determined and applied to
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Fig. 3. Block diagram for the feedback control of multiple particles in the
microfluidic device.

the electrodes to robustly steer the particles along the desired
trajectories.

Electro-osmotic actuation is common in microfluidic systems
[13]–[17]. When an aqueous (polar) fluid, such as water, is intro-
duced into the microfluidic chamber, an electrical double layer,
called the Debye layer, is formed at the wall/liquid interface as
shown in Fig. 2. This is due to mechanisms such as acid/base re-
actions, ionization, ion adsorption, and ion dissolution [13]. The
polarity of the charge developed depends on the material used.
When an electric field is applied parallel to the wall surface, the
charged double layer is displaced. The moving charged layer
drags the fluid adjacent to it by viscous forces, generating an
electro-osmotic flow [13]. Neutral particles are carried by this
flow.

In this paper, we consider particles that are small enough to
be treated as point particles but large enough so that Brownian
noise is small. An appropriate size of particles satisfying this
criterion is 10 m. (In our experiments we use yeast cells. These
cells range in diameter from 2 to 10 m, are readily available
from a grocery store as dry baker’s yeast, are relatively robust
and easy to work with, and they act as particles carried along by
the flow.) Neutral particles are assumed to move with the same
velocity as the surrounding fluid.

We address the following control problem: Given the desired
path for every particle (position as a function of time), design
a feedback controller to robustly steer the particles along these
trajectories. For instance, we may require that particles 1, 2,
and 5 should execute a square while particles 3 and 4 perform a
figure eight.

It is also possible to consider a path planning problem. If we
want to transport particles from specified initial to final loca-
tions, we can look for the optimal particle trajectories. We have
not yet considered this path planning problem.

III. GOVERNING FLUID AND PARTICLE EQUATIONS

In this section, we first state the governing fluid and particle
equations based on the Navier–Stokes equations for the fluid dy-
namics and Maxwell equations for the electric fields. We assume
that the particles are small enough to be treated as point particles
and they flow along with the fluid. Further, we assume that the
electrode voltages are varied slowly enough that the fluid flow
is quasi-steady. We find that under the above assumptions, and

using the fact that the device is of micron dimensions, the equa-
tions reduce to a simpler form which makes them amenable to
robust control using classical control theory.

Since the minimum device length scale is well above the
mean free path of the liquid molecules, the fluid flow can
be accurately modeled by the continuum, incompressible,
Navier–Stokes equations

(1)

(2)

where is the velocity field, is the fluid den-
sity (is constant), is the pressure, is the time,
and is the dynamic viscosity of the fluid. Here, the star de-
notes dimensional quantities. Also, as the Debye layer thick-
ness ( m in most cases) [13] is very small compared to the
chamber dimensions (length m, width
m, height m), the boundary conditions at the walls
are accurately captured by the velocity slip conditions [18]

(3)

where is the electric potential, is the permittivity of the
fluid, and is the zeta potential at the wall. The electric poten-
tial satisfies the Laplace equation [13]

(4)

with the boundary conditions of the applied voltage at the th
control electrode given by

(5)

where is the electric potential of the th electrode, and
denotes the electrode surface.

Our computational domain boundary is denoted by in
Fig. 4. This boundary extends in the vertical direction from

to . It has been shown rigorously [18]
that if the viscosity and surface properties are uniform and the
fluid velocity at this open (computational domain) boundary
is given by (6)

(6)

then the quasi-steady state solution to partial differential equa-
tions (1) and (2) in the region bounded by , is simply given by

(7)

The condition (6) is satisfied in many practical devices when the
computational domain boundary is at least a few channel widths
away from the electrodes. It follows, that (7) is true almost ev-
erywhere except right near the electrodes. For a more detailed
discussion, please refer to [18].

We shall only consider quasi-steady fluid flow. The condition
on how slowly the electrode voltages can be varied for the fluid
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Fig. 4. Velocity field r� (x; y) generated in the device (top view) when
electrode 5 is switched to 1 voltage unit and all the other electrodes are set to 0
voltage units.

flow to qualify as quasi-steady can be estimated as follows. Con-
sider a two-dimensional (2–D) straight channel filled with fluid
which can be actuated by electroosmosis. The time taken for the
electro-osmotic flow to reach 99% of steady state of (7) in re-
sponse to a step voltage is given by [19]

(8)

For our devices, which are filled with water, m,
N s m so m. It has been observed

experimentally [19] that the flow in the intersection of two such
channels may take as much as three orders of magnitude longer
to reach steady state. Hence, if we vary the electric field slowly
enough so that the time period of the highest frequency is much
greater than s, then for all practical purposes, the ve-
locity of the fluid at all times is given by (7). For the remainder,
we assume that the control actuation is sufficiently slow that (7)
holds.

Based on (7), we can determine the particle behavior. If the
particles are neutral, we can assume that they flow perfectly
along with the fluid at all times. This assumption can be jus-
tified as follows. Consider a spherical particle of radius in
the fluid. When the fluid flows at velocity relative to the par-
ticle, the particle experiences a drag force , where

(9)

is given by the classical Stokes drag law [13]. The motion of the
particle as it accelerates due to can be modeled by Newton’s
second law as

(10)

where is the mass of the particle, is the velocity of the
particle at any given instant, and is the relative ve-
locity of the fluid with respect to the particle. The time , re-
quired for the particle to accelerate to velocity , can
be achieved by rearranging (10) and integrating the variable

between limits 0 to and variable between limits 0 to
as

(11)

solving which, we get

(12)

For a particle of radius m (reflecting the size of
yeast cells used in our experiments) and assuming its density to
be approximately equal to that of water, kg m , we
have s. Hence, if the average travel time of
a particle along its trajectory is very large compared to , we
can assume that the particles move along with the fluid.

At any time , the velocity of the th particle at position
is given by

(13)

Equation (13) is stated for perfectly neutral particles; however,
most bioparticles have a charge or acquire a surface charge when
brought in contact with an aqueous medium [13]. If the parti-
cles are charged, they experience electrostatic (electrophoretic)
forces; consequently, (13) is modified to [13]

(14)

where is a numerical factor which has been introduced to ac-
count for the electrostatic (electrophoretic) velocity of the par-
ticle. The coefficient depends on the surface charge of the par-
ticle and the thickness of the particle Debye layer in a complex
way; see [13] for details. The factor must be identified in the
experiments (by observing the particle velocity) before control
implementation can proceed. Our experiments [12] verify that
the particle velocity is of the form (14).

In addition to the nominal velocity, the particles exhibit a
random walk or Brownian motion due to collisions with fluid
molecules. The total displacement of a particle in time , in-
corporating displacement due to Brownian motion [20], is given
by

(15)

where is the change in in time , is the
Boltzman constant, is the temperature of fluid, and
is a 2 1 vector whose elements are Gaussian random variables
with zero mean and covariance one.
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We now nondimensionalize (4), (5), (7), and (15) to reduce
the number of physical parameters in the model. The star no-
tation is used to discriminate between the dimensional (starred)
and nondimensional (nonstarred) variables. Since the numerical
values of , , and are of the order of , where is
the length of the device, is of the order of , and , are

of the order of ; and is of the order of , the
relations

(16)

can be used to write the equations of the system (4), (5), (7), and
(15) in dimensionless variables as

(17)

with boundary conditions

(18)

and

(19)

(20)

where

In our microfluidic experiments we use yeast cells which are
readily available and easy to work with [12]. In general, the
cell sizes range from m to m in diameter [21].
For simulations in this paper, we picked values of
m, K, V, JK ,

C N m , and V.
For these values, we find that . Hence, the term

is a small noise term. This completes our state-
ment of the governing equations.

To find the open-loop control voltage we solve the equations
for the nominal system, i.e., (17) with boundary conditions (18),
(19), and

(21)

which is obtained from (20) by neglecting the noise term, with

initial conditions , where is the initial position
of the th particle. We design feedback controllers that mitigate
the effect of the Brownian noise and nonexact starting positions
in Sections VI and VII.

We solve the PDE (17) with boundary conditions (18), using a
commercial software package called FEMLAB. FEMLAB par-
titions the 2-D domain into triangle mesh elements and uses
quadratic-Lagrangian elements to compute the solution using
the finite-element method. FEMLAB then internally computes
the gradient of the solution to give the solutions to (19) and
(21).

IV. OPEN-LOOP VOLTAGE AND A THEORETICAL LIMIT ON THE

NUMBER OF PARTICLES THAT CAN BE STEERED

In this section, we present a method to obtain the open-loop
voltages for driving the particles along desired predetermined
trajectories. In addition, we also bring attention to ill-condi-
tioning of the open-loop voltage solutions which increases
sharply as the number of particles to be steered is increased.
We then exploit this observation to project a theoretical limit
on the number of particles that can be steered with this control
method.

The nondimensionalized equations for the nominal system,

i.e., (17)–(19), are linear in , , and and they provide a
static map between the voltages on the electrodes and the re-

sulting fluid flow, so at any time , the velocity field can
be expressed as a superposition of velocity fields ,

, as follows:

(22)

where solves

(23)

with boundary conditions

for (24)

Here, is the number of electrodes and
represents the vector of electrode voltages. The velocity field

, is shown in Fig. 4 as an example. Since and

plus a constant, generate the same velocity field , we can
always choose a such that a particular electrode voltage is
always zero (in physical terms, one of the electrodes always
acts as a ground electrode). In other words, any achievable ve-
locity field can be expressed as a linear superposition of
fields which constitute a linearly inde-
pendent set; therefore, we can rewrite (22) as

(25)
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Fig. 5. Change of 2% in the particle positions (arrow origins) and desired
particle velocities (arrow directions) at 18 particle positions in the interior of
the device, leads to a completely different electrode voltage distribution when
(29) is used to obtain the solution. This demonstrates the ill-conditioning in
the voltage solution when attempting to steer a large number of particles. Here,
white represents voltage potential of positive 5�10 units and black represents
voltage potential of negative 5� 10 units.

If at time , the particles are at positions
, then the velocity of the th par-

ticle is given by

(26)

Let be the required particle veloci-
ties at time . The objective is to combine the velocity fields

in the right proportions so that the fluid velocities at
are as close to as pos-

sible. Such a voltage vector can be obtained by solving
the least squares problem

(27)

where

...
...

...
...

. . .
...

(28)

the analytical solution of which is given by

(29)

For a device with electrodes, when (29) is used di-
rectly to compute the voltage, it is observed that as the number
of particles is increased beyond nine, the system becomes
ill-conditioned, meaning smooth continuous changes in
and produce large discontinuous changes in . Fig. 5
shows an example for 18 particles where a 2% change in
and entirely changes the solution voltage distribution. More-
over, the magnitude of the voltage rises steeply with an
increase in the number of particles (the voltage is of the order of

1 for 9 particles, for 12 particles, for 16 particles, and
for 19 particles).

In order to understand this behavior of the solution of (27),
we project the system onto its dominant singular value modes.
The singular value modes provide us with an elegant framework
to analyze this problem. The velocity singular value modes can
be obtained in the following ways [22].

Step 1) Consider (25)

(30)

on a set of discrete rectangular grid points ,
, in the domain bounded by , where is

chosen such that the grid resolves the velocity field sufficiently.
We found that a grid with was adequate. Hence

(31)

where

...
...

...
...

...
...

...
...

...

...

(32)

... (33)

Step 2) Decompose the matrix using the singular value
decomposition algorithm so that

(34)

where

. . .

(35)

Step 3) The th velocity field singular value mode is given by

(36)
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Fig. 6. Velocity field singular value modes 1, 4, 7, 10, 14, and 18 for the 40
electrode device. (a) Velocity singular value mode 1. (b) Velocity singular value
mode 4. (c) Velocity singular value mode 7. (d) Velocity singular value mode
10. (e) Velocity singular value mode 14. (f) Velocity singular value mode 18.

where is the element in the th row and th column of matrix
. The SVD enforces that the column vectors of and

satisfy the following relations [23]:

(37)

(38)

(39)

These relations can be physically interpreted as: application of
a unit voltage vector produces a unit velocity field vector
amplified by . The ratio gives the strength of the th
mode of the velocity field in comparison to the 1st mode when
a voltage vector of identical strength is applied to the electrodes
in both cases. Fig. 6 shows the 1st, 4th, 7th, 10th, 14th, and 18th
singular value modes of the velocity field for the device with

electrodes. Fig. 7 shows the strength of the singular
value modes with respect to the first mode for the same device.
We see that the singular value modes beyond 25 are extremely
weak in comparison to the first few singular value modes. This

Fig. 7. Strength of the velocity field singular value modes relative to the first
mode for the 40 electrode device.

means that for lower singular value modes a small voltage pro-
duces a strong velocity field, while for higher singular value
modes even applying a high voltage has insignificant impact on
the velocity field.

If we use only the first singular value modes to actuate the
fluid, i.e., we choose a control that only includes the first sin-
gular value modes, then the velocity field at any time can be
expressed as

(40)

where is the strength of the th singular value mode
, and is

the truncated matrix with the first e columns given by
. If at time , the particles are at

positions ,
then the velocity of the th particle is given by

(41)

Let be the required particle velocities at

time . The objective is to combine the velocity fields in the
right proportions so that the fluid velocities at
are as close to as possible. Such a sin-
gular value strength vector can be obtained by solving the
transformed least squares problem

(42)

where

...
...

...
...

. . .
...

(43)
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the analytical solution of which is given by

(44)

The chosen applied voltage is then given by

(45)

When we use all the modes, i.e., modes to actuate
the fluid, we find that the solution given by (44), is stable for

particles. When is increased beyond nine, the system
becomes ill-conditioned and the magnitude of the voltage rises
steeply with increase in the number of particles as mentioned be-
fore. This behavior of the solution can be explained as follows.

When the particle degrees of freedom ( , each particle has
an and a velocity) is less than the actuator degrees of freedom
( , one electrode is ground), then (42) has multiple solu-
tions. Of all these solutions, the least squares method picks the
one with the lowest norm, i.e., the least squares method attempts
to generate the required velocities at particle positions by com-
bining the first velocity singular value modes as much as
possible. As we increase the number of particles, progressively
more velocity singular value modes are invoked. The higher sin-
gular value modes introduce large voltage components in ,
while having an insignificant impact on the velocity field, thus,
explaining the behavior of the solution of (42) mentioned earlier.

Since we can steer only particles, only 18 out of 39
actuation degrees of freedom are useful. These first 18 velocity
singular value modes are sufficient to control 9 particles.

Fig. 8 shows snapshots of 1, 4, and 8 particles being steered
using only the first 18 singular value modes. Paths of almost
any shape can be achieved; however, it is not possible to steer
particles that are very close together in opposite directions since
this requires creating dramatically opposing flows and would
require exceedingly high voltages. Fig. 9 shows the open-loop
voltages of some of the electrodes for the 8 particle steering task
shown in Fig. 8. Notice that the voltages vary smoothly and the
magnitude of the voltage is low.

To summarize, only around 18 singular value modes of the ve-
locity field are effectively useful for control, before the needed
voltage levels become impractically high and ill-conditioned,
and so we can steer up to 9 particles independently.

V. OPTIMIZING THE NUMBER OF ELECTRODES IN THE DEVICE

In the last section, we saw that for the electrode de-
vice even though we had singular value modes only
the first modes were useful for control, and we could
independently control only around particles (note that
2 modes are required per particle to control the and veloc-
ities). From a practical device implementation point of view, it
is important to know if arbitrary control of particles is
possible with a device with a fewer number of electrodes. In this
section, we show that a electrode device (5 electrodes
on each side of the square) has the same amount of control au-
thority as a electrode device. We can control 9 particles
as effectively with a 20-electrode device as with the 40-elec-
trode device.

Fig. 8. Maneuvering of 1, 4, and 8 particles successfully demonstrated in
simulation for the nominal system (without noise) of the 40-electrode device.
Here only the open-loop voltage is used to steer the particles.

Fig. 9. Open-loop voltages for electrodes 5, 12, and 20 for the 8 particle
maneuver shown in Fig. 8, subfigures c1 and c2, for the 40 electrode device.

Following similar procedures as outlined in the previous sec-
tion, we extract the singular value modes for the 20-electrode
device. The relative strength of the singular value modes of the
20-electrode device are plotted alongside that for the 40-elec-
trode device in Fig. 10. We see that up to the 19th singular value
mode, the relative strengths of the singular value modes of the
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Fig. 10. Relative strength of the velocity field singular value modes for the 20
electrode device plotted alongside that for the 40 electrode device.

20 and the 40 electrode devices are almost identical. This sug-
gests that all of the first 19 modes of the 20 electrode devices
would be available for control.

Fig. 11 shows the snapshots of some of the particle steering
tasks that were successfully demonstrated using the first 19
modes of the 20 electrode device. Fig. 12 shows the open-loop
voltage for some of the electrodes for the eight particle steering
task shown in Fig. 11. Note again, that the voltages vary
smoothly and have a low magnitude. Also, since for this device
all modes are available for control, it does not matter if we use
velocity fields , or singular value modes

, in the analysis. For the sake of keeping the
discussion general in all subsequent analysis, we will work
with the singular value modes.

Following similar procedures, we found that for devices with
number of electrodes all singular value modes
of the velocity field are available for control. Furthermore, we
could perfectly control up to particles, when was less than

.
To summarize, for electrodes uniformly distributed along the

periphery of a square, we find that we can control a maximum of
around particles with a minimum of electrodes.
To perfectly control particles, we need at least

electrodes.

VI. TIME-VARYING LQR CONTROLLER DESIGN

In an ideal situation, applying the open-loop voltage to the de-
vice will drive the particles along the corresponding trajectory.
However, actuator and sensor errors, Brownian thermal fluctua-
tions, and nonexact starting positions will cause the particles to
deviate from their paths. Hence, it is necessary to apply a cor-
rective voltage to steer the particles back to their trajectories.
We have experimented with two feedback controller designs,
a time-varying LQR controller and a nonlinear controller based
on feedback linearization. In both cases, we design the feedback
controller for the nominal system and then test its performance
on a system which has realistic values of Brownian noise and
particles that start from nonexact initial conditions. In this sec-
tion, we present the time-varying LQR controller and also see

Fig. 11. Maneuvering of 1, 4, and 8 particles successfully demonstrated in
simulation for the nominal system (without noise) for the 20 electrode device.
Here, only the open-loop voltage is used to steer the particles.

Fig. 12. Open-loop voltages for electrodes 1, 7, and 15 for the 8 particle
maneuver shown in Fig. 11, subfigures (c1) and (c2), for the 20 electrode
device.

its limitations. The nonlinear feedback controller is presented in
the next section.

For the nominal system, if denotes the actual particle
positions at time , and is the applied singular value mode
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strength control vector, then the actual particle dynamics is gov-
erned by

(46)

Let denote the desired particle trajectory and de-
note the open-loop control vector at time , then the desired par-
ticle dynamics follow:

(47)

Let denote the particle deviation and

the voltage correction. Subtracting (46)
and (47), assuming that and are small and neglecting
their higher order terms, we get the equations that govern the
deviation of particles from the desired trajectories as

(48)

where

(49)

(50)

This is a time-varying linear system. Using standard methods
we design a time-varying LQR controller [24] that minimizes
the cost function

(51)

to drive to zero. Here, and are positive definite ma-
trices and are chosen to ensure that we have acceptable levels of

and for all time.
In the simulation to test the LQR controller, the particles were

started 0.025 units away from the exact initial positions and
the Brownian noise parameter for the system (20) was set
to 0.00025, as corresponds to a particle size of 10 m

, the time step size was chosen to be 0.1 and both ma-
trices and , were chosen to be identity. We found that the
time-varying LQR controller failed to be effective for maneu-
vers involving more than two particles. This is because as we
increase the number of particles, the velocity field becomes pro-
gressively more complex and the particle dynamics fall outside
the linearization range.

VII. NONLINEAR FEEDBACK CONTROLLER DESIGN

In this section, we present a nonlinear feedback controller
based on the technique of feedback linearization. We also see the
advantages of this controller over the LQR controller presented
in the last section.

The actual particle dynamics is governed by

(52)

As in (40), we choose to apply control voltages that correspond
to the first singular value modes only, hence, in this equation
there is no singular value truncation error. We use the feedback
law [25]

(53)

where is the pseudo-
inverse of [23] and is a positive scalar. When the
number of columns of are greater than the number of its
rows (which is valid in our case, since we always keep

as mentioned in Section V), and has full rank (as is
the case if particles do not overlap) then ;
consequently, the system equations (52) are transformed to

(54)

or

(55)

and we can see that this feedback law will drive the deviation to
zero at an exponential rate. This nonlinear controller was suc-
cessfully used for robustly steering 1, 4, and 8 particle trajecto-
ries as shown in Fig. 13. In the simulation to test the nonlinear
controller, the particles were started 0.025 units away from the
exact initial positions and the Brownian noise parameter for
the system (20) was set to 0.00025, as corresponds to a particle
size of 10 m , the time step size was chosen
to be 0.1 and was chosen to be 2. Fig. 14 shows the voltages
of some of the electrodes for the eight particle maneuver. The
steady-state error in and particle positions for this case, was
found to be approximately 0.005. This means that, from (16),
for a device of size m, the error in particle positions
would be approximately 2.5 m.

The nonlinear feedback controller successfully tracks parti-
cles even in presence of significant Brownian noise. Fig. 15
shows a simulation for the four particle control task when the
Brownian noise parameter was increased to 0.03. (Note that
even if the particle is only 1 m big the smallest size
that can be seen optically then . Here, the Brownian
noise coefficient was chosen to be around 38 times higher than
this value.) In this case, the steady-state error in and particle
positions is 0.04. This means that, from (16), for a device of size

m, the error in particle positions would be approxi-
mately 20 m. We have used this controller to successfully steer
up to three particles in our experimental devices [12].

VIII. CONCLUSION

This paper shows how to combine feedback control and mi-
crofluidics to steer multiple particles independently in microflu-
idic systems: an issue that is important for the handling of bi-
ological materials in miniaturized systems. We consider planar
microfluidic devices driven by common electro-osmotic actu-
ation, and we simplify the fluid Navier–Stokes equations, the
Debye layer fluid slip boundary conditions, and the Maxwell
electrical equations to phrase the particle steering question as
a tractable control problem. The open-loop part of the control
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Fig. 13. Left-hand-side figures show the deviation of the particles from the
path when only the open-loop voltage is applied. The right-hand side shows
the trajectories of the particles when the nonlinear controller based on feedback
linearization is used. In the simulation the particles start from nonexact initial
conditions and the system has Brownian noise incorporated in it. The thick grey
lines show desired trajectories of the particles and the thin black lines indicate
the actual trajectories of the particles. The actual and the desired paths for the
nonlinear controller in the right panels are so close that the grey and black curves
overlay each other.

problem is solved using a least squares method; the closed loop
noise rejection portion is addressed either by a feedback lin-
earization technique or an LQR technique.

The steering of multiple particles independently is demon-
strated in numerical simulations that include realistic amounts
of initial position errors and thermal noise. The steering of a
single yeast cell has been demonstrated experimentally in our
prior research [11], and the experimental steering of multiple
particles independently is being addressed in a current publi-
cation [12]. We note that this application is a good example of
how control can enable new, as opposed to simply improved, ca-
pabilities in MEMS. Feedback control allows particle steering

Fig. 14. Total voltages for electrodes 1, 7, and 15 for the 8 particle maneuver
regulated by the nonlinear controller shown in Fig. 13, subfigure c2.

Fig. 15. Nonlinear feedback controller is successful in tracking multiple
particles even in presence of substantial Brownian noise. Here the Brownian
noise parameter was set to 0.03 (note the rough particle trajectories). The thick
grey lines show desired trajectories of the particles and the thin black lines
indicate the actual trajectories of the particles.

capabilities in microfluidic devices with common, easy to fab-
ricate, and miniaturized actuators. It replaces the need for bulky
and expensive laser tweezer equipment by a feedback control
system and a vision system that can be integrated on chip, hence,
permitting laser tweezer capabilities in a hand-held format.
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