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Speech intelligibility in adverse situations, such as reverberation and noise, is conserved 

until the degradations reach certain thresholds.  Psychoacoustic studies have described 

the properties of speech that lead to the conservation of its intelligibility under those 

circumstances.  The neural mechanisms that underlie the robustness of intelligibility in 

these situations, however, are not yet well understood.  Here, the cortical representations 

of speech in reverberation and speech plus noise in reverberation are studied by 

measuring the cortical responses of human subjects using magnetoencephalography 

(MEG) while they listened to continuous speech narratives.  It was hypothesized that the 

neural processing of speech in reverberation and speech plus noise in reverberation would 

follow a lack of cortical synchronization as function of the degradations.  Encoding 

models show, however, that the neural encoding of speech in reverberation follow a 

different mechanism than that of speech in noise.  On the other hand, in the absence of 

noise, it is possible to reconstruct with high accuracy the envelope of reverberant speech, 

thus demonstrating that the reverberant speech is well encoded by the brain.  
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Chapter 1 

Background 

 

1.1 Speech in Adverse Conditions 

 

Everyday listeners are challenged by interferences in the environment that degrade 

speech before it reaches them.  Common examples of distortion are background noise 

from electromechanical equipment or other speakers, and reverberant reflections of the 

speech from the boundaries of a room.  Regardless these acoustic interferences, under 

certain circumstances listeners are able to understand the degraded speech.  From 

psychoacoustic studies it is well known which properties of speech are most susceptible 

to degradation of intelligibility.  The neural mechanisms involved in the robustness of 

speech intelligibility in adverse conditions, however, are not yet well understood.  

Understanding the neural mechanisms involved in the robustness of the speech 

intelligibility in these situations is crucial, in particular for the development of aids for 

people with listening disabilities and for the enhancement of artificial speech recognition 

and speaker identification systems.  This thesis emphasizes on the study of the cortical 

representations of speech in reverberation and speech distorted by noise in reverberant 

environments.  Furthermore, taking into account reverb and noise together is 

indispensable since it reflects, in a more realistic manner, the daily experiences of the 

listeners. 
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Speech can be described in terms of its main temporal features: the envelope, periodicity 

and fine-structure (Rosen, 1992).  Robustness of the speech intelligibility has been related 

to the integrity of the signal’s slow temporal components, which constitute the speech 

envelope (Houtgast & Steeneken, 1985; Rosen, 1992).  Essentially, the slow temporal 

modulations denote the syllabic rate of the speech (Greenberg, Carvey, Hitchcock, & 

Chang, 2003; Rosen, 1992).  The modulation spectrum, or the Fourier transform of the 

speech envelope, serves to characterize the intelligibility of speech.  Specifically, speech 

intelligibility is sustained when the critical bands from 1-7 Hz of the modulation 

spectrum are not severely degraded (Elliott & Theunissen, 2009). 

 

1.2 Reverberation 

 

In a room, speech can be severely degraded when it is mixed with its reflections coming 

from the room’s boundaries. Thus, the message arriving to the listener is the result of the 

direct speech in addition to its often-undesired reflections (Figure 1).  In the time domain 

reflections fill the temporal gaps of the speech envelope, increasing the energy of low-

frequency components.  Figure 2(a) illustrates this effect and how the clean speech can be 

distorted in a severe reverberant scenario.  This increases the difficulty to segregate 

words and syllables (Drullman, Festen, & Plomp, 1994).  In terms of the time-frequency 

domain reverb causes a spectral blur degrading the formant’s transitions, as seen in 

Figure 2(b).  In reverberation, the peak of the modulation spectrum is shifted from 5 Hz 

to the low frequency bands, around 1-2 Hz (Greenberg et al., 2003).  In addition, 

reverberation distorts interaural time differences and interaural level differences (Shinn-
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Cunningham, 2002), distorting not only the information in the message but also its 

directionality.  

 

Figure 1. Room reflections with speaker and listener.  Solid arrow represents the direct signal, 

dashed arrows represent the early reflections and the light gray (also dashed) represents the 

diffuse late reflections. 

 
 

 

 
 

   (a)                                                                 (b) 

 

Figure 2.  Effects of severe reverberation in the time and time-frequency domain.  a) Upper figure 

shows two seconds of clean speech.  Lower figure illustrates how reverb distorts the speech 

envelope when energy spreads after offsets, distorting thus the onsets of subsequent segments.  

Blue signal corresponds to the clean speech, red signal is speech degraded by reverberation. b) In 

time-frequency domain the effects of reverberation are seen as spectro-temporal smear. 
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Reverberation is attributed to two types of masking: overlap masking and self-masking 

(Nábělek, Letowski, & Tucker, 1989). Overlap masking occurs when a preceding 

phoneme overlaps with a subsequent segment (Arai, Murakami, Hayashi, Hodoshima, & 

Kurisu, 2007). This effect is worsened when the preceding segment ends in a vowel and 

the subsequent segment starts with a consonant, because vowels tend to contain higher 

energy than consonants (Arai et al., 2007).  On the other hand, self-masking refers to cues 

within consonants that have time-varying characteristics (Watkins, 2005).  In terms of 

speech intelligibility, (Greenberg, 2006) determined that syllables contain three main 

components: onset, nucleus, coda and from these, onsets are considered more informative 

than codas since the later can be lost without affecting intelligibility.  Since onsets are 

more relevant for intelligibility than codas, overlap masking has significant consequences 

in the speech intelligibility.  By the nature of the masking types characterizing 

reverberation, maintaining the speech intelligibility in reverberant conditions might 

involve different mechanisms than those required when extracting the target speech from 

noise or multiple speakers.  In this regard, speech in noise and simultaneous speakers is 

affected by energetic masking and informational masking, respectively.  

 

Reverberation introduced by a room is characterized by its room impulse response (RIR).  

When the room is viewed as a linear system the RIR characterizes the reverberations 

between source(s) and receiver(s) located in a room.  Thus, sounds can be simulated as 

played in a room with particular acoustic characteristics by the linear convolution of the 

sound with the RIR.  The reverberant impulse response (Figure 3) contains three main 

components: direct response, the early reflections and the late reflections.  The early 
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reflections, occurring in the first 80-100 ms (Gold, Morgan, & Ellis, 2011), are sparse 

and contribute positively to the speech intelligibility. Late reflections, in the other hand, 

degrade the speech intelligibility (Haas, 1972; Nabelek & Pickett, 1974).   

 
 

Figure 3.  Room impulse response in intermediate reverberation 

 

As time goes by, reflections are absorbed by the room’s surfaces.  Thus, surfaces 

composed of less absorptive materials lead to higher reverberation and longer RIRs.  The 

reverberation time, expressed in seconds, is denoted as RT60 and provides a measure of 

how long does it take for the reflections‘ energy to decay 60 dB below its original level.  

Comfortable reverberation times vary per room, since it is dependent on the room’s 

surface materials, size, and localization of the speaker(s) and receiver(s).  It is worth 

mentioning that the RT60 should not be taken as a measure for speech intelligibility since 

two rooms with the same RT60 may lead to different intelligibility (Arai et al., 2007).  The 

most popular equation for the RT60 was provided by Sabine (Sabine, 1922) and is given 

by  
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where   is the speed of sound in the room in m/s,   is the volume of the room in m
3
,   is 

the total surface area of the room in m
3
, and   is the average absorption coefficient of the 

room surfaces. 

 

From psychoacoustics, one proposed explanation for the mechanisms involved in the 

robustness of speech intelligibility in reverberant environments is based on perceptual 

compensation (Watkins & Makin, 2007; Watkins, 2005).  Under this idea it is 

hypothesized that the additional energy at spectral transitions provide valuable 

information to the compensation mechanism about how much energy in the signal 

belongs to reflections (Watkins, 2005).  Neurophysiological studies in reverberation have 

mostly focused in the study of sound localization.  Studies in animals have reported 

directional sensitivity of single neurons in the auditory midbrain (Devore & Delgutte, 

2010; Devore, Ihlefeld, Hancock, Shinn-Cunningham, & Delgutte, 2009).  In humans, 

magnetoencephalography (MEG) studies while subjects listen to noise have shown 

hemispheric lateralization and directional tuning to sound localization (Palomäki, 

Tiitinen, Mäkinen, May, & Alku, 2005) and a neural code formed by two groups of 

neural populations corresponding to each hemifield (Salminen, Tiitinen, Yrttiaho, & 

May, 2010).  This study is emphasized in the neural mechanisms of continuous speech 

reverberation rather than the processing of localization cues.   

 

Here it is hypothesized that reverberation causes the loss of synchronization to the slow 

temporal modulations of speech as function of the degradation.  Furthermore, it is 
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expected to observe that in the presence of reverberation the neural processing of speech 

in noise is worsen.  

 

1.3 Spectrally matched noise 

 

Spectrally matched noise provides maximum acoustical overlap with speech, reduces its 

intensity contrast and distorts its spectro-temporal modulations (Ding & Simon, 2013).  

The modulation spectrum is attenuated by noise uniformly.  Insensitivity to the intensity 

contrast of speech is suggested by psychoacoustic studies as a mechanism for the 

robustness of speech intelligibility (Stone, Füllgrabe, Mackinnon, & Moore, 2011).  The 

theories for noise-robust speech encoding rely on  the stable neural synchronization to the 

speech envelope, insensitivity to the intensity contrast of speech and selectively 

processing temporal modulations less corrupted by noise.  The cortical representations of 

speech in noise have been previously studied (Ding & Simon, 2013).   They found that 

intensity contrast grain control and adaptive processing of temporal modulations in the 

delta and theta band serve as mechanism for sustained neural synchronization to the slow 

temporal modulations of speech. 

 

Psychoacoustic studies of speech in reverberation and noise combined have found that 

noise degrades the intelligibility further than reverb alone (Harris & Swenson, 1990).  In 

cochlear implant users it has been observed that the effect of both combined degraded the 

intelligibility more than any alone  (Hazrati & Loizou, 2012). 
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1.4 The Human Auditory System  

 

In this section, aspects of the human auditory system critical for this work will be 

discussed.  In particular, emphasis will be placed on the peripheral auditory system and 

the spectro-temporal representation that describe how sounds are transformed through it.  

Also, although not in detail, it will be discussed how phase-locking to the temporal 

modulations decays through the central auditory system until the auditory cortex only 

follow the slow components. 

 

The auditory system is composed of two main areas: the peripheral auditory system and 

the central auditory system.  The peripheral auditory system consists of the outer ear, 

middle ear and inner ear.  The outer ear is composed by the pinna and the ear canal, 

where the pinna is responsible for collecting sounds, amplifying frequencies relevant for 

human speech and it also provides information about the directionality of the sound.  

Once collected, sounds travel through the ear canal until they reach the tympanic 

membrane in the middle ear.  At the middle ear, the ossicles serve as pressure 

transformers.  The later stage in the peripheral auditory system is the inner ear.  In the 

inner ear, the cochlea acts as transducer by converting mechanical vibrations produced by 

changes in pressure pattern into neural information to the auditory nerve.  The basilar 

membrane performs spectral analysis by the cochlear filter bank.  At the hair cell stages, 

phase-locking decreases beyond 2 kHz.  At the end, there is a lateral inhibitory network, 

which detects discontinuities in the responses across the tonotopic axis and also performs 

a frequency selectivity enhancement of cochlear filter bank.  The auditory spectrogram 
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(Figure 4) models the transformation of the acoustic signal into an internal representation 

performed by the early stage (Yang X, Wang K & Shamma SA., 1992).  As opposed to 

the most common spectrogram, computed by the Short-Time Fourier transform, the 

auditory spectrogram does not follow the speech formant transitions explicitly.  

 

 
 

Figure 4. Auditory Spectrogram 

 

 

The central auditory system receives neural patterns from the auditory nerve carrying 

information about the sound.  It is formed by a series of sub-cortical nuclei that extract 

information regarding to the directionality (Masterton, 1992) and reduce the 

synchronization to temporal modulations.  At the level of the auditory cortex most 

neurons in general synchronize to modulations around 10 Hz. 

 

1.5 Magnetoencephalography 

 

The cortical processing of speech in reverberant conditions is studied via MEG.  MEG is 

a noninvasive neuroimaging technique that measures the magnetic fields of neural 

currents generated by populations of neurons synchronously active in the cerebral cortex.    
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Specifically, pyramidal neurons in the cortex are responsible of the generation of 

magnetic fields measured by MEG when they are activated synchronously (Hansen, 

Kringelbach, & Salmelin, 2010).  The exact amount of synchronously active neurons to 

generate the magnetic fields measured by MEG is unknown, but as suggested by 

(Hämäläinen, 1993) the weakest measurable cortical signals are in the order of 10nAm, 

which can be generated by about 50,000 neurons synchronously active. 

 

Neural currents generate weak magnetic fields in the order of femtoTeslas (fT), which are 

several orders of magnitude weaker than the Earth’s magnetic field (~ 10
-4

 T).  

Superconducting Quantum Interference Device (SQUID) sensors are employed in the 

recording of these magnetic fields. SQUID sensors are sensitive amplifiers that can detect 

and amplify relatively small changes in magnetic flux (Baillet, Mosher, & Leahy, 2001).  

Typical MEG whole-head sensor arrays consist from 100 to 300 sensors distributed 

around the head. In order to reduce the interference of external magnetic fields the MEG 

system is located in a magnetically shielded room.  

 

MEG presents great advantages for recording neural activity in the auditory cortex.  It 

provides a good temporal resolution (~1 ms), performs silent recordings and does not 

require major time for preparation.  In particular, MEG sensors are sensitive to currents 

tangential to the skull or those generated in the cortical sulci.  Thus, due to the 

localization of the auditory cortex, MEG is well suited for studies in auditory 

neuroscience.  It has been shown that MEG is well suited for the study of cortical 

processing of speech (Ding & Simon, 2012b).  
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Chapter 2 

Cortical Representations of Speech in Reverberant Conditions 

 

2.1 Introduction 

 

Despite the acoustic interference encountered by speech in daily environments its 

intelligibility is preserved until degradations reach certain thresholds.  Among the 

different temporal scales of the speech signal, those encompassing the slow temporal 

modulations are critical for the robustness of speech intelligibility (Houtgast & 

Steeneken, 1985; Rosen, 1992).  In terms of the modulation spectrum, the integrity of 

bands from 1-7 Hz guarantees high intelligibility (Elliott & Theunissen, 2009).  It has 

been suggest that the brain can decode degraded speech as long as the structure of these 

modulations is preserved (Ghitza & Greenberg, 2009).  Studies have demonstrated, 

through MEG, that populations of neurons synchronize to the slow modulations of 

continuous speech (Ding & Simon, 2012b).  Furthermore, in (Ding & Simon, 2013) it 

was demonstrated that cortical modulations are robustly synchronized to the slow 

temporal modulations of speech until noise is 9 dB stronger than speech. 

 

This study emphasizes on the analysis of the cortical representations of speech in 

reverberation and speech distorted by noise in reverberant environments.  Reverberation 

is characterized by overlap masking, as opposed to the multiple speakers and the 

background noise scenarios, which are described by informational and energetic masking, 

respectively.  Here, MEG is used to study the neural synchronization to the slow temporal 
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modulations of speech in these adverse conditions.   Subjects listened to spoken 

narratives in reverberation and noise in reverberation while their cortical responses to 

these stimuli were recorded. 

 

2.2 Materials and Methods 

 

Subjects 

Thirteen subjects (eight females) between 20-30 years old (mean age = 23.8) participated 

in the study. One subject was not included in the analysis due to problems with the 

equipment while the experiment was performed.   Experimental procedures were 

approved by the University of Maryland Institutional Review Board.  Written informed 

consent was obtained from all subjects prior their participation, after the experiment was 

fully explained.  All subjects were right-handed (Oldfield, 1971) native English speakers, 

reported normal hearing, and were paid for their participation.   

 

Stimuli 

The stimuli were retrieved from a single speaker narration of the story The Light Princess 

by George MacDonald, from (“The Light Princess,” n.d.).  Speech in reverberant 

conditions was generated by the convolution of the clean speech with the corresponding 

RIR for the desired reverberation level.  The RIRs were generated using the image-source 

method  (Allen, Berkley, & Hill, 1979) as implemented in a fast manner by (Lehmann & 

Johansson, 2010).  The MATLAB package was retrieved from (http://www.eric-

lehmann.com/) under the GNU general public license.  This implementation is based on 

http://www.eric-lehmann.com/
http://www.eric-lehmann.com/
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the fact that late reflections of the room impulse response have a decaying noise-like 

behavior and a decaying random noise model can generate it adequately (Lehmann & 

Johansson, 2008).  The early reflections of the room impulse response are modeled as the 

original image-source method implemented as described by (Lehmann, 2007).  

 

The simulated room has dimensions 7 x 5 x 3 m (x, y, z).  The source is placed at the 

point 3 m x 2.5 m x 1.7 m, at 1.5 m from the receiver.  The receiver is also placed to a 

height of 1.7 m and is simulated by two microphones placed 0.1 m apart (Figure 5). The 

absorption coefficients are uniform for all walls, ceiling and floor, and were adjusted to 

achieve the desired reverberation time for each room impulse response accordingly. 

Reverberation times were characterized by means of the RT60.  A total of 4 reverberation 

conditions are considered: anechoic, low reverb, intermediate reverb and severe reverb.  

Anechoic reverb was simulated by setting the RT60 equal to 0 s (Ruggles & Shinn-

Cunningham, 2010) 

 

Figure 5. Simulated room. Dimensions of the room and location of the source (red 

square) and receiver (two ears).  
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Reverberation time for a RIR  ( ) was measured by computing the energy decay  ( ) 

via the Schroeder’s integration method as given by  

 

 ( )         (
∫   ( )  
 
 

∫   ( )  
 
 

). 

 

 

Measured RT60 values found are 0.01 s, 0.29 s, 1.23 s, and 2.15 s for the anechoic, low, 

intermediate and severe reverb, respectively.  The corresponding Schroeder’s energy 

decay plots are shown in Figure 6. 

 

Figure 6. Energy decay plots. Four reverb conditions are considered.  Notice the difference in the 

time scale for the anechoic condition. 
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In order to simulate the head at the receiver and provide binaural sound, the room 

impulse response was convolved with a head-related impulse response (HRIR), 

generating thus a binaural room impulse response (BRIR).  HRIRs database was retrieved 

from  (“NSL software: HRTF,” n.d.).  HRIR are more commonly referred to as Head-

Related Transfer function (HRTF) which is the Fourier transform of the HRIR.  A total of 

7 different HRTF (Grassi, Tulsi, & Shamma, 2003) were considered for this study. 

 

Spectrally matched noise was added in order to study the reverberant noise conditions 

(Figure 7).  Three signal-to-noise ratios were considered: infinite (no noise), -3 dB and -6 

dB.  Spectrally matched noise was generated by randomizing the phase of the reverberant 

speech signal and was normalized to have the same energy as the speech.  All stimuli 

were low-pass at 4 kHz and the duration was 60 seconds, each presented for three times.   

 

 

 

 

 

 

 

Figure 7. Block diagram for stimulus generation 

Procedure 

Before the experiment 100 repetitions of a 500 Hz tone pip were presented.   Each tone 

produces a neural response ~100 ms after the stimulus onset, referred to as the M100, and 

is an indicator of good auditory response.  During the experiment, subjects were required 

BRIR 

Noise 

Clean Speech 
Reverberant  
Speech 

Reverberant  and 
Noisy Speech 
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to close their eyes.  In order to assure they were paying attention to the excerpts subjects 

were required to answer comprehensive questions and rate the intelligibility of the 

passage.  The stimuli consisted of three blocks corresponding to each noise condition and 

within each noise condition the four reverberation conditions were presented.  A total of 

12 conditions were presented (4 reverb x 3 noise).  Before the experiments subjects were 

asked to test 7 versions of the same stimuli computed by different HRTFs.  During a pre-

experiment training, subjects also listened to sample stimuli in order to provide an insight 

of the intelligibility at each condition. 

 

The order in which the stimulus degradations were presented was different for half of the 

subjects.  For one group of subjects the degradations were presented in ascending order.  

That is, the no noise block was presented first and the -6 dB was the last block.  In this 

scenario the anechoic reverb condition was presented first and the severe reverb condition 

was the last.  For the remaining group, the -6 dB noise block was presented first and the 

no noise block at the end.  Within each noise condition, the severe reverb was presented 

first and the reverb was decreasing until the last condition was the anechoic reverb.  

 

MEG recordings and data processing 

All the experiments were conducted at the University of Maryland, College Park and the 

MEG recordings were performed on the University of Maryland – Kanazawa Institute of 

Technology (UMD-KIT) MEG system.  This system is placed in a magnetically shielded 

room and has 157 sensors for recording neural activity.  Signals were acquired at 1 kHz 

sampling rate.  A 200 Hz low-pass filter and a 60 Hz band-reject were applied online.  

Environmental and biological noise was removed offline.   Three reference sensors 
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measured the environmental noise and it was suppressed by Time-Shifted Principal 

Components Analysis (TS-PCA) (De Cheveigné & Simon, 2007).  Biological noise arises 

from stimulus-irrelevant neural activity and, as opposed to responses directly related to 

the stimulus, these responses are not consistent across trials.  Based on this principle, a 

blind-source separation technique known as Denoise Source Separation (DSS) (De 

Cheveigné & Simon, 2008) extract the stimulus-relevant components from the neural 

responses that are consistent across trials.  As result, this technique projects the 

multidimensional neural time series acquired by the MEG system (157) into uncorrelated 

time series in descending order of reliability.  For purposes of this work, only the first 

component, the most reliable, is considered for all analysis.  All responses were down-

sampled to 100 Hz and filtered between 1-10 Hz. 

 

Stimulus characterization 

Stimuli were characterized by means of the auditory spectrogram.  The auditory 

spectrogram is based on a subcortical model, is computed with 5 ms windows and the 

frequency is logarithmically spaced.  The broadband envelope is defined as the sum of 

the auditory spectrogram over frequency. 

 

Temporal Response Function 

The cortical representations of speech in adverse conditions are modeled by a temporal 

response function (TRF).  The TRF is a model that describes the relationship between the 

sub-cortical representation of speech and the evoked neural response ( 

Figure 8).  It is obtained by the de-convolution of the cortical response with the speech 

narrative.   
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Figure 8. Systems approach of auditory processing 

 

When seen as a linear time-invariant system, the input-output relationship of a system is 

characterized by the linear convolution.  Let  ( )               denote the temporal 

modulations of the stimulus,  ( )               be the neural response to that stimulus, 

 ( )               be the impulse response of the system or TRF, where L < T, and 

 ( ) is the residual error not explained by the linear model.  By linear convolution,  ( ) 

and  ( ) are related as  

 

 ( )   ∑  (   ) ( )    ( )

 

     

 

 

In this work, the TRF is estimated by boosting with 10-fold cross validation (David, 

Mesgarani, & Shamma, 2007).  To avoid overfitting, the best model is the one that 

provides the global minimum for the validation error (Duda, Hart, & Stork, 2001).  

 

The encoding of continuous speech in noise has been previously studied via boosting 

(Ding & Simon, 2013). In this work the TRF is estimated from the first DSS component.  

Speech Signal 
Broadband Envelope 

(from Sub-Cortical Model) 
TRF 

(Cortical Model) 

Neural Response 
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In general, the TRF for speech contains two dominant peaks at around 50 ms and 100 ms, 

denoted as M50TRF and M100TRF respectively.  The M50TRF is determined by the peak 

between 0 to 80 ms and M100TRF is found from 80 to 180 ms.   

 

Neural Decoding 

The broadband envelope is reconstructed linearly from the neural responses based on the 

first DSS component.  The estimated envelope computed as 

 

 ̂( )   ∑ (    ) ( )

   

   

 

 

where  ( ) is the cortical response acquired by MEG and  ( ) is the linear decoder.  

The decoder is optimized via boosting, using an integration window of 300 ms. 

 

Coherence Analysis 

Inter-trial correlation 

The inter-trial correlation is computed as a measure of phase-locking of the neural 

activity across trials.  Here, within each condition, the cross correlation between the 

neural responses in 1 Hz bands for each trial is computed for the first DSS component.  

The phase-locking spectrum was also computed for the delta (1-4 Hz), theta (4-8 Hz) and 

alpha (8-12 Hz) bands. 
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Phase-coherence 

The phase coherence was computed to investigate if it tracked the amplitude-based 

phase-locking spectrum in different bands (delta, theta and alpha).  The first DSS 

component was band-pass filtered in the frequency band of interest and was converted 

into its analytical form by the Hilbert transform.  The instantaneous phase  ( )  is 

extracted by the modulus-argument decomposition. Thus, the phase coherence was 

computed as 

 

     
 

 
 ∑[(

 

 
∑     (    )

 

   

)

 

  (
 

 
∑     (    )

 

   

)

 

]

 

   

  

 

where      is the phase for the frequency bin  , time bin   and trial   (Luo & Poeppel, 

2012).   

 

 

2.3. Results 

 

All subjects showed auditory response as measured by the M100 response.  Ten subjects 

selected the HRTF #1 (ITD = 4.3 ms); two subjects selected HRTF #2 (ITD = 4.3 ms) 

and one subject chose HRTF#3 (ITD = 4.2 ms).     

 

Intelligibility Assessment 

During the experiment subjects were asked to rate the intelligibility under each condition.  

Figure 9 shows the subjective intelligibility scores, where each plot corresponds to a 
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noise level and each group of bars belong to a reverberation degree. It was found that, 

regardless the order in which the degradations were presented, the intelligibility 

decreased monotonically as function of the degradation.  In general, subjects for whom 

degradations were presented in descending order reported higher scores.  In order to 

investigate if the order in which the degradations were presented affected the 

intelligibility scores significantly, 3-way ANOVA tests were performed (SNR x Reverb x 

Intelligibility).  Results showed no interaction between intelligibility and noise level nor 

reverb degree. 

 
 

Figure 9. Intelligibility scores reported by subjects.  Stimulus degradations were presented in 

ascending order for half of the group (filled bars) and in descending order for the remaining half.  

In general, those who listened to the degradations in descending order tend to rate intelligibility 

higher.  No statistical significance of difference between those (3-way ANOVA). As observed, in 

both cases intelligibility decreased monotonically as function of degradation. 

 

 

Neural Encoding of Speech 

The processing of the spectro-temporal features of the stimulus in the cortex is 

investigated by the estimation of the TRF.  The TRF can be seen as the characterization 

of the time course of neural activity evoked by a unit power increase of the stimulus 
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(Ding & Simon, 2013).  Here, the stimulus and the response are normalized and thus the 

estimated TRF is independent of the stimulus statistics.    

 

Only as an illustration and not intended to be considered for final conclusions, TRFs 

averaged across subjects for the clean and actual stimuli are presented in Figure 10 and 

Figure 11, respectively.  These models show two prominent peaks of opposite polarity at 

~50 ms and ~100 ms.  The latencies of these peaks provide information regarding to the 

cortical area that is involved in the processing of a given feature.  Specifically, (Ding & 

Simon, 2012a) relate the M50TRF  to be processed about 10 mm anterior to the M100TRF, 

consistent from originating from Heschl’s gyrus and planum temporale, respectively.  

 
 
Figure 10. TRFs when clean speech is considered as input. TRFs are shown for each noise level 

as function of reverb.  This is a model that relates the clean speech with the cortical response to 

the actual stimuli. 
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From Figure 10, a filter that relates the clean speech (without noise or reverb added, even 

when the speech listened to did have noise or reverb) to the measured cortical response 

evoked by the actual stimuli should have M50TRF and M100TRF peaks delayed and 

slightly attenuated as effect of reverberation and should be modulated by noise.  From the 

model relating the actual stimuli with the cortical response evoked by it (Figure 11) no 

effects of reverberation are observed (at least not until the severe level under no noise), 

whereas it is clear that noise attenuates both the M50TRF and M100TRF. 

 

 
  
Figure 11.  TRFs when actual stimuli is considered as input. TRFs for each noise level as function 

of reverb.  This model describes the relationship between the actual stimuli and the measured 

cortical response. 
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peaks from each subject’s TRF and then averaging across subjects.  From Figure 12, in 

the model for clean speech (Figure 12 (a)) it is clear that for speech, the cleaning of its 

noise and reverb delays the M50TRF, whereas this is not observed for the M50TRF in the 

model with the actual stimuli as input. Although no clear pattern is observed in delays on 

the M100TRF, it is clear that the model for the actual stimuli differs from the clean speech 

model.               



  
 

                               (a)                                                                             (b) 

 

Figure 12. Delays of the M50TRF and M100TRF. (a) clean speech model and (b) actual stimuli 

model 

 

Amplitudes of the models also suggest that there is no cortical evidence of any removal  

of reverberation, as seen for the M50TRF and M100TRF amplitude peaks (Figure 13). In the 

absence of noise, a model that relate the response to reverberation should increase the 

amplitude of the M100TRF peak as a function of reverb, but this is not observed in the 

model for actual stimuli. 
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  (a)                                                                           (b) 

 

Figure 13. Amplitudes of the M50TRF and M100TRF. (a) clean speech model and (b) actual stimuli 

model 

Cortical reconstruction of speech 

In order to study the precision with which the broadband envelope is locked to the 

synchronized cortical activity it was attempted to reconstruct the clean speech envelope 

from the neural responses to the reverberant speech.  This accuracy is described by the 

Pearson’s correlation coefficient between the clean speech and the neurally-based 

reconstruction.  As Figure 14 top shows, across all reverb conditions it is observed that 

noise degraded the reconstruction.  This is opposed to what was previously found for 

noise (without reverb) by (Ding & Simon, 2013) where the reconstruction accuracy 

remained constant until the noise was 9 dB stronger than the clean speech.  Thus, reverb 

worsens the effects of noise.  In the same figure, lower plot shows the reconstructions for 

all reverb conditions as a function of SNR.  In the absence of noise (Figure 14 bottom) 

the reconstruction accuracy remains high across all reverb conditions.  This indicates that 
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under pure reverb there must exist a mechanism compensating for the degradations 

outside the core-auditory cortex. 

   

 
 

Figure 14. Reconstruction of clean speech from the cortical responses to reverb and noise in 

reverb (left ear).  Top figure illustrates the reconstruction accuracy for each reverb condition as 

function of noise.  In lower figure the reconstruction accuracy for each noise level is presented as 

function of reverb.  In this figure it is better appreciated that in the absence of noise regardless the 

degree of reverb the reconstruction remains remarkably high. 

 

To investigate further how the cortical activity is synchronized to noise or reverb, the 

purely noisy or purely reverberant speech was reconstructed from cortical measurements.  

Figure 15 shows the reconstruction accuracy for the four models considered in this work.  

Each subplot corresponds to a reverb condition.  Reverb and clean are almost equally 

reconstructed, except at the most severe reverberant condition under no noise, where 

clean speech is better reconstructed.  Across all reverb conditions, clean speech is better 
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decoded than speech in the presence of noise, as previously reported in (Ding & Simon, 

2013).   

 

 
 

Figure 15. Reconstruction accuracy across models.  Each subplot corresponds to a reverb 

condition. 

 

Modulation sensitivity 

 

Noise and reverb affect the modulation spectrum in different ways.  For the stimuli in this 

study, noise increases the energy in higher frequencies (>3 Hz) whereas reverb increases 

the energy in low frequencies (Figure 16 and Figure 18).  To investigate if the cortical 

activity is strictly following the broadband envelope, the phase-locking spectrum is 

computed in (narrow) bands of 1 Hz width. 
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The phase-locking spectrum by means of the inter-trial coherence for each noise level as 

function of reverb is shown in Figure 17.  The ITC spectrum exhibits a band-pass like 

shape in the low frequency range (< 5Hz). The bandwidth in this region was computed, 

but it remained constant across conditions. Under no noise (Figure 17 (a)) high reverb 

conditions (intermediate and severe) contain higher energy at frequencies less than 5 Hz.  

This is not observed in the modulation spectrum (Figure 16 (a)) where under no noise in 

the band from 1Hz to 5 Hz all stimuli followed the same power distributions.  When 

noise is introduced (Figure 17 (b) and Figure 17 (c)) the coherence decreases and again 

the ITC spectrum opposes the modulation spectrum between 1 Hz and 5 Hz.  Thus, this 

trend indicate that cortical activity is not strictly following the slow temporal modulations 

of speech and there must be a neural mechanism involved in the compensation for 

reverberation. 

 

 
(a)                                        (b)                                         (c)                    

 

Figure 16. Stimulus power spectral density for each noise level as function of reverb 
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(a)                                       (b)                                          (c)                    

 

Figure 17. ITC spectrum for each noise level as function of reverb 

 

From Figure 19 as reverb is increased, the power of the ITC spectrum for no noise 

increases as opposed to the modulation spectrum.  In the presence of noise, however, the 

modulation spectrum for anechoic speech is attenuated but this component is the one 

containing higher power in the ITC spectrum. 

 

 

 
                                  (a)                                (b)                               (c)                               (d) 

 

 

Figure 18. Stimulus power spectral density for each reverb degree as function of noise 
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                                  (a)                                (b)                                (c)                               (d) 

 

Figure 19. ITC spectrum for each reverb level 

 

 

In order to investigate whether phase coherence tracks the power-based ITC, both 

measures are computed for each band: delta, theta and alpha.  Comparing ITC and phase 

coherence for each noise level as function of reverb Figure 20 and 21 it is observed that 

phase coherence tracks the power-based ITC across the three bands.  This is of interest 

since studies involving stimuli with temporal structures relevant to those encountered in 

speech have found contradictory tracking between phase coherence and power-based ITC 

suggesting a dual temporal window mechanism in the human auditory cortex (Luo & 

Poeppel, 2012). 
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                                     (a)                                  (b)                                      (c)         

 

Figure 20. ITC in Delta, Theta and Alpha bands 

 
                                  (a)                                      (b)                                      (c)         

 

Figure 21. Phase coherence in Delta, Theta and Alpha bands 
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2.4 Discussion 

Based on the cortical responses to speech in reverberant conditions acquired with MEG, 

by means of encoding models and decoding accuracy, this study suggests that the brain 

might process speech in reverberation differently than speech in noise.  By comparing 

models that characterize how the clean speech is encoded by the brain to models that 

describe the encoding of reverberant speech (reverb alone and reverb plus noise) it was 

found that the latter are insensitive to the effects of reverberation.  Thus, it can be argued 

that the brain processes reverberation and noise in a separate manner. 

 

When attempting to reconstruct the speech free from reverberation and noise from 

cortical responses to the actual stimuli, results show that across all reverb conditions 

noise degraded the reconstruction accuracy.  This result contrasts with results found in 

previous studies (Ding & Simon, 2013) where the reconstruction accuracy (for speech 

plus noise alone) was robust until the SNR was – 9dB. Thus, although reverberation is 

processed differently than noise as suggested from findings in the encoding models it 

worsens the processing of speech in noise.  Furthermore, these reconstructions track the 

reported intelligibility scores only in the presence of noise.  Comparisons of the 

reconstructions for the clean, clean in presence of noise only, reverberant and actual 

stimuli demonstrated no difference in the decoding of clean and reverb.  Reconstructions 

of clean speech and clean speech in noise alone show that the neural response represents 

the clean speech, as found by a previous study (Ding & Simon, 2013).   
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Interestingly, the ITC spectrum shows that cortical activity is not strictly following the 

slow temporal modulations of neither speech in reverberation nor speech in reverberation 

and noise.  This implies that there must be a neural mechanism involved in the processing 

of reverberation that is not perceived by the current encoding/decoding techniques. 
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