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tionWe 
onsider the following problem: Given a matrixW 2 Rn�n and an n-ve
toru > 0, �nd a diagonal matrixX so that the s
aled matrixXWX has row-sumsequal to the elements of u. In other words, given W and u, solve the nonlinearequationXWXe = u ;where e is an n-ve
tor with all entries equal to one.S
aling problems have been a topi
 of intense investigation. Brualdi [1℄ gavene
essary and suÆ
ient 
onditions for the existen
e of su
h a diagonal s
alingwhen W is symmetri
 with nonnegative elements. Other authors have 
onsid-ered s
alings of nonsymmetri
 matri
es, allowing di�erent diagonal matri
esTe
hni
al report 7 September 2001



on the left and the right; see, for example, [2{4℄ and the referen
es therein.The inverse problem of �nding matri
es of given sign patterns with given rowand 
olumn sums has also been investigated, for example, in [5,6℄.In this paper, we prove that if W is symmetri
 and positive de�nite, then asolution X exists. In fa
t, there are 2n solutions, one for ea
h sign pattern forX.2 A Constru
tive Existen
e ProofSuppose we are given a symmetri
 positive de�nite matrix W 2 Rn�n and ann-ve
tor u > 0. We want to show that there exists a positive diagonal matrixX so that the s
aled matrix XWX has row-sums equal to the elements of u.We will prove this result by 
onsidering the matrixV (t) = (1� t)I + tW :Then V (0) = I, and V (1) = W . The notation k:k will denote the 2-norm forve
tors and matri
es.We will study the mappingH(t; x) = X(t)V (t)X(t)e� u = 0 ;where X(t) is a positive diagonal matrix with entries xi. For t = 0, we have aunique positive solution x(0) = x̂ with x̂i = pui.If we 
an �nd a positive solution ve
tor x for t = 1, then the solution to ours
aling problem is the 
orresponding matrix X(1).Di�erentiating our mapping, we obtain�xH(t; x)x0(t) + �tH(t; x) = 0 ; x(0) = x̂ ; (1)where�xH(t; x)=X(t)V (t) + diag(V(t)X(t)e) ;�tH(t; x)=X(t)(W � I)X(t)e : 2



The matrix V (t) is positive de�nite on some interval (��; �) where � > 0 and� > 1. Let 2� = min(�; � � 1). Then V (t) is uniformly positive de�nite on theinterval (��; 1 + �), with eigenvalues (1 � t) + t times the eigenvalues of W ,and we de�ne the bounds on its eigenvalues to be �min > 0 and �max <1.The proof of our theorem relies on three lemmas, one establishing the bounded-ness ofX(t), one showing Lips
hitz 
ontinuity of f(t; x) = �xH(t; x)�1�tH(t; x),and one rather standard result 
on
erning existen
e of solutions to initial valueproblems.Lemma 1: There exist s
alars �` > 0 and �u < 1, independent of t, su
hthat if x(t) > 0 satis�es (1) for some value of t 2 [��; 1 + �℄, then�` � mini xi(t) � maxi xi(t) � �u :Proof: The matrix X(t) satis�es X(t)V (t)X(t)e� u = 0, soeTX(t)V (t)X(t)e = eTu > 0 :Sin
e Xe = x, we know thateTu � �min(V )kxk2 � �min x2i ; i = 1; : : : ; n;so x2i � eTu�min � �2u:This means that the elements of X(t) are uniformly bounded above for t 2[��; 1 + �℄.Now sin
e xi(t)(V (t)X(t)e)i = ui, i = 1; : : : ; n, we havexi(t) = ui(V (t)X(t)e)i � uikV (t)kkX(t)kpn ;so we 
an de�ne�` = mini ui�max�upn :[℄ 3



Lemma 2: Let
 = f(t; x) : �� < t < 1 + �; 12�`e < x(t) < 2�ue; V (t)x(t) > 0; g :For a �xed value of t, the fun
tion f(t; x) is Lips
hitz 
ontinuous on 
, wheref is de�ned by�xH(t; x)f(x) = ��tH(t; x) : (2)Proof: The matrix �xH(t; x)X(t) is symmetri
 and positive de�nite on 
, sothe inverse of �xH(t; x) must exist, and it is a 
ontinuous fun
tion of x and t.The right-hand side �X(t)(W � I)X(t)e is 
ontinuous on 
, Therefore, f(x)is 
ontinuous.Now, for a �xed t 2 [��; 1 + �℄, we show that f(t; x) satis�es a Lips
hitz
ondition in x.Let (t; x) and (t; x̂) be two points in 
. Let Y = X(W � I)Xe and Z =XVX + diag(XVx), and de�ne Ŷ and Ẑ by substituting X̂ for X in theseexpressions. Then we have these bounds:kX̂k ; kXk� �u ;kŶ k ; kY k �pnkW � Ik�2u ;kẐ�1k ; kZ�1k � 1�2̀�min :We 
omputekf(t; x̂)� f(t; x)k= kX̂Ẑ�1Ŷ �XZ�1Y= k(X̂ �X)Ẑ�1Ŷ +XẐ�1(Ŷ � Y ) +X(Ẑ�1 � Z�1)Y k�k(X̂ �X)k kẐ�1k kŶ k+ kXk kẐ�1k kŶ � Y k+kXk kẐ�1 � Z�1k kY k :We already have bounds on many of these norms, so to 
on
lude that f isLips
hitz 
ontinuous, it suÆ
es to bound kŶ � Y k and kẐ�1�Z�1k in termsof kX̂ �Xk, sin
e kX̂ �Xk � kx̂� xk.We 
ompute the Y bound by noting thatŶ � Y = X̂(W � I)X̂e�X(W � I)Xe = (X̂ �X)(W � I)X̂e+X(W � I)(X̂ �X)e ;4



so kŶ � Y k � 2kW � Ik�upnkX̂ �Xk :Now we bound the Z term. Let D = diag(XVx), and similarly for D̂, and notethat Ẑ�1 � Z�1=(X̂V X̂ + D̂)�1 � (XVX +D)�1=(X̂V X̂ + D̂)�1[�X̂V (X̂ �X) + (X̂ �X)V X � D̂ +D℄(XVX +D)�1The norms of the �rst and last fa
tors are bounded, so we just need to boundthe norm of the middle expression:k � X̂V (X̂ �X) + (X̂ �X)V X � D̂ +Dk � 2�u�maxkX̂ �Xk+ kD̂ �Dk :Fo
using on the last term gives(D̂ �D)i= x̂iXj wijx̂j � xiXj wijxj=(x̂i � xi)Xj wijx̂j + xiXj wij(x̂j � xj)so j(D̂ �D)ij � �max�ujx̂i � xij+ �u�maxkx̂j � xjkand thus we have a bound on every term in terms of kx̂ � xk, yielding a
on
lusion of Lips
hitz 
ontinuity for f . [℄Lemma 3: Let 
 be a bounded domain in Rn+1 with (0; x0) 2 
. If f is
ontinuous in 
 and lo
ally satis�es a Lips
hitz 
ondition in the x variables,then there exists a solution of the initial value problemx0(t) = f(t; x) ; x(0) = x0that 
an be uniquely extended arbitrarily 
lose to the boundary of 
.Proof: See, for example, Hurewi
z [7, Theorem 11℄. [℄Now we use our three lemmas to prove that the s
aling matrix exists.5



Theorem: Given a symmetri
 positive de�nite matrix W 2 Rn�n and ann-ve
tor u > 0, there exists a positive diagonal matrix X so that the s
aledmatrix XWX has row-sums equal to the elements of u.Proof: To 
onstru
t our s
aling X, we use Lemma 3 to show that (1) has asolution at t = 1.It is 
lear that (0; x0) 2 
, and Lemma 2 assures us that the fun
tion f de�nedby (2) is Lips
hitz 
ontinuous on 
. Thus, the assumptions of Lemma 3 aresatis�ed, so a solution to (1) 
an be extended to the boundary of 
.Now, 
onsider any solution point (t; x(t)) for t 2 [��; 1 + �℄ with x > 0. ByLemma 1, �`e � x � �ue, and thus, sin
e XV (t)x = u > 0, we must haveV (t)x � 1�uu > 0 :Therefore, any solution point (t; x(t)) with t 2 [��; 1+ �℄ has x bounded awayfrom the 
onstraints12�`e < x(t) < 2�ue; V (t)x(t) > 0that de�ne 
. Therefore, we must be able to extend the solution from t = 0to the boundary t = 1 + �, and thus the solution exists for t = 1. [℄By repla
ing V (t) by the positive de�nite matrix EV (t)E, where E is a di-agonal matrix with entries �1, we 
an see that there are a
tually 2n s
alingmatri
es, one for ea
h quadrant, that give the pres
ribed row sums. For t = 1,the equation XVXe = u is a polynomial system of degree 2n, so this a

ountsfor all possible solutions.Corollary: The equation XWXe = u, with W symmetri
 positive de�niteand X a diagonal matrix, has 2n solutions, one per quadrant, so we 
an s
alethe matrix W by a diagonal matrix with arbitrary signs, so that it has pre-s
ribed row sums.3 Con
lusions and RemarksWe have presented an existen
e proof showing that any symmetri
 positivede�nite matrix 
an be s
aled by a positive diagonal matrix, or by a diagonalmatrix with arbitrary signs, to have arbitrary positive row sums.6



The proof is 
onstru
tive in that it leads to algorithms for 
omputing su
ha s
aling: apply an ordinary di�erential equation solver to (1). This is oneparti
ular homotopy method applied to the solution of the nonlinear equationXWXe� u = 0; other methods for solution of nonlinear equations 
ould alsobe applied.If the matrix is not positive de�nite, then the homotopy breaks down at valuest for whi
h (1� t)I + tW is singular.4 A
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