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Abstract

We show that any symmetric positive definite matrix can be symmetrically scaled
by a positive diagonal matrix, or by a diagonal matrix with arbitrary signs, to have
arbitrary positive rows sums. The scaling can be constructed by solving an ordinary
differential equation.
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1 Introduction

We consider the following problem: Given a matrix W € R"*" and an n-vector
u > 0, find a diagonal matrix X so that the scaled matrix XWX has row-sums
equal to the elements of u. In other words, given W and wu, solve the nonlinear
equation

XWXe=u,

where e is an n-vector with all entries equal to one.

Scaling problems have been a topic of intense investigation. Brualdi [1] gave
necessary and sufficient conditions for the existence of such a diagonal scaling
when W is symmetric with nonnegative elements. Other authors have consid-
ered scalings of nonsymmetric matrices, allowing different diagonal matrices
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on the left and the right; see, for example, [2-4] and the references therein.
The inverse problem of finding matrices of given sign patterns with given row
and column sums has also been investigated, for example, in [5,6].

In this paper, we prove that if W is symmetric and positive definite, then a

solution X exists. In fact, there are 2" solutions, one for each sign pattern for
X.

2 A Constructive Existence Proof

Suppose we are given a symmetric positive definite matrix W € R"*" and an
n-vector u > (. We want to show that there exists a positive diagonal matrix
X so that the scaled matrix XWX has row-sums equal to the elements of w.

We will prove this result by considering the matrix

V(t)=(1—-t)] +tW.
Then V(0) = I, and V(1) = W. The notation ||.| will denote the 2-norm for
vectors and matrices.
We will study the mapping

H(t,z) = Xt)V(t)X(t)e—u=0,
where X (t) is a positive diagonal matrix with entries x;. For t = 0, we have a
unique positive solution x(0) = & with @; = \/u;.

If we can find a positive solution vector x for ¢t = 1, then the solution to our
scaling problem is the corresponding matrix X (1).

Differentiating our mapping, we obtain

0. H(t, z)a'(t) + O, H(t,z) =0, z(0) =2z, (1)

where

0, H(t, z) = X ()V(t) + diag(V(t)X(t)e),
O,H (t,z) =X ()(W — )X (t)e.



The matrix V'(¢) is positive definite on some interval (—o, 7) where o > 0 and
7 > 1. Let 2¢ = min(o, 7 — 1). Then V(¢) is uniformly positive definite on the
interval (—e¢, 1 + €), with eigenvalues (1 — t) + ¢ times the eigenvalues of W,
and we define the bounds on its eigenvalues to be A,,;, > 0 and A < 00.

The proof of our theorem relies on three lemmas, one establishing the bounded-
ness of X (t), one showing Lipschitz continuity of f(¢,z) = 0, H (t, ) '0,H (¢, x),
and one rather standard result concerning existence of solutions to initial value

problems.

Lemma 1: There exist scalars & > 0 and &, < oo, independent of ¢, such
that if z(¢) > 0 satisfies (1) for some value of t € [—¢, 1 + €|, then

& < minw;(t) < maxa;(t) < &, .
1 1

Proof: The matrix X (¢) satisfies X (¢)V (t)X (t)e —u = 0, so

XV X(t)e=e"u>0.

Since Xe = x, we know that

e"u > Mpin |2 > Apin 23,0 =1,...,n,

SO

>
E
s

This means that the elements of X (¢) are uniformly bounded above for t €
[—€, 1+ €.

Now since z;(t)(V(¢) X (t)e); = u;, i = 1,...,n, we have

Uy U;

VOX @) = VOIXOIV

z;(t) =

so we can define

mini U;

= Nl

[



Lemma 2: Let

Q= {(ta): —c<t<lte %gge < 2(t) < 2600, V(B)2(t) > 0, }

For a fixed value of ¢, the function f(¢,x) is Lipschitz continuous on €2, where
f is defined by

0. H(t,x)f(z) = —0,H(t,z) . (2)

Proof: The matrix 0, H (t,2) X (t) is symmetric and positive definite on €2, so
the inverse of 0, H (¢, x) must exist, and it is a continuous function of x and t.
The right-hand side —X (¢)(W — I) X (¢)e is continuous on €2, Therefore, f(x)
1s continuous.

Now, for a fixed t € [—¢€,1 + €], we show that f(t,z) satisfies a Lipschitz
condition in z.

Let (t,z) and (t,2) be two points in . Let Y = X(W — [)Xe and Z =
XVX + diag(XVx), and define Y and Z by substituting X for X in these
expressions. Then we have these bounds:

X1, X1 <&,

Y1 YT < v/allw = Igz,
N 1
Z7H, 1Z27Y) < :

We compute

£t 2) = f(t,0)[| = | XZ7Y = XZ27Y
—[((X - X)ZW+XZ'(Y -Y)+ X(Z7' - Zz7YYY|
<X =XNIZ YT+ IX 2 My -y
HIXNZ = Z MY

We already have bounds on many of these norms, so to conclude that fis
Lipschitz continuous, it suffices to bound [|Y — Y| and ||Z~" — Z~'|| in terms
of | X — X||, since [| X — X|| < ||z — ]|

We compute the Y bound by noting that

Y—Y=X(W-DXe—X(W-DNXe=(X-X)W-DI)Xe+X(W —I)(X - X)e,



SO
1Y = Y[ < 2[W = I[[§uv/n]| X = X]|.

Now we bound the Z term. Let D = diag(XVx), and similarly for D, and note
that

~

Z ' Z'=(XVX+D)'—(XVX+D)?
—(XVX 4+ D) [-XV(X - X)+ (X -X)VX —D+D|(XVX + D)™

The norms of the first and last factors are bounded, so we just need to bound
the norm of the middle expression:

|=XV(X = X)+ (X = X)VX = D+ D|| < 26Mmae| X = X[+ |D = D

Focusing on the last term gives

(D= D)i=& Y wijd; — z; Y wijz;
; :

J
= (:i’z — LL’z) Zwi]’i‘j + €T; sz](i’] — Jl‘j)
J J

SO
|(b — D)z| S )\maa:gu|§7z - a"l| + gu)\maa:“i‘j - .CU]H

and thus we have a bound on every term in terms of || — z||, yielding a

conclusion of Lipschitz continuity for f. [|

Lemma 3: Let 2 be a bounded domain in R"*! with (0,z) € Q. If f is
continuous in §2 and locally satisfies a Lipschitz condition in the x variables,
then there exists a solution of the initial value problem

v'(t) = f(t,x), @(0) = wy

that can be uniquely extended arbitrarily close to the boundary of €2.
Proof: See, for example, Hurewicz [7, Theorem 11]. []

Now we use our three lemmas to prove that the scaling matrix exists.



Theorem: Given a symmetric positive definite matrix W € R"™ " and an
n-vector u > 0, there exists a positive diagonal matrix X so that the scaled
matrix XWX has row-sums equal to the elements of u.

Proof: To construct our scaling X, we use Lemma 3 to show that (1) has a
solution at ¢ = 1.

It is clear that (0,z¢) € €2, and Lemma 2 assures us that the function f defined
by (2) is Lipschitz continuous on 2. Thus, the assumptions of Lemma 3 are
satisfied, so a solution to (1) can be extended to the boundary of €.

Now, consider any solution point (¢,z(t)) for t € [—€,1 + €] with z > 0. By
Lemma 1, e < x < €,e, and thus, since XV (¢)z = u > 0, we must have

1

Therefore, any solution point (¢, x(t)) with ¢ € [—¢, 1+ €] has x bounded away
from the constraints

%&e < 2(t) < 26,0, V(Bz(t) >0

that define 2. Therefore, we must be able to extend the solution from ¢ = 0
to the boundary ¢t = 1 + ¢, and thus the solution exists for ¢t = 1. []

By replacing V' (t) by the positive definite matrix EV (¢)E, where E is a di-
agonal matrix with entries +1, we can see that there are actually 2" scaling
matrices, one for each quadrant, that give the prescribed row sums. For ¢t = 1,
the equation XV Xe = u is a polynomial system of degree 2", so this accounts
for all possible solutions.

Corollary: The equation XW Xe = u, with W symmetric positive definite
and X a diagonal matrix, has 2" solutions, one per quadrant, so we can scale
the matrix W by a diagonal matrix with arbitrary signs, so that it has pre-
scribed row sums.

3 Conclusions and Remarks

We have presented an existence proof showing that any symmetric positive
definite matrix can be scaled by a positive diagonal matrix, or by a diagonal
matrix with arbitrary signs, to have arbitrary positive row sums.



The proof is constructive in that it leads to algorithms for computing such
a scaling: apply an ordinary differential equation solver to (1). This is one
particular homotopy method applied to the solution of the nonlinear equation
XW Xe —u = 0; other methods for solution of nonlinear equations could also
be applied.

If the matrix is not positive definite, then the homotopy breaks down at values
t for which (1 —t)I + tW is singular.
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