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ABSTRACT

Recent work of Flajolet, Regnier and Sotteau has presented a system-
atic approach to the analysis of tries through generating functions.
We extend their approach to a probabilistic model that, unlike other
models used for the analysis of tries, takes into account sample sets
containing keys that are prefixes of other keys in the set. As the main
application of this extension, we find the exact average running time
of two algorithms for computing set intersections. These algorithms
are based on the representation of a set of binary string keys as a full

endmarker trie and also as a compact endmarker trie.



1. Introduction

Since Knuth’s original analysis [Knu73|, the average case performance
of trie data structures has receiveda good deal of attention (see, for example,
[Knu73, Fra77, Tra78, Reg8l, Dev82, Fla83, Pla83, Gon84, Fla84, FRS85,
FS86, delaT87a,b]). Recently, Flajolet, Regnier, and Sotteau have presented
a systematic approach to the analysis of tries through generating functions
[FRS85]. The approach consists of setting up a translation mechanism based
on rules that translate trie cost functions into their generating functions
of normalized expectations. The translation rules, which depend on the :
particular underlying probabilistic model for sets of string keys, have been
obtained in [FRS85] for the Bernoulli model of infinitely long keys, a biased bit
model of infinitely long keys, and for two other models also studied by Trabb
Pardo in [Tra78]. These are the uniform finite identical length keys model ¥
and its corresponding binary set—intersection model. The probability space
of the model ¥ consists of the n element sets of keys of length h over a fixed
finite alphabet, wherein all sets are assumed to be equally probable. The

probability space of the corresponding binary set-intersection model is

{(&n) | &n C{O, 1}, [¢]=m, |n| =n, [€nn| =k},

where all pairs (&,7n) are assumed equally to be equally probable. Among
other applications, [FRS85] contains the computation of the exact average
time needed to intersect pairs of sets £,7 C {0,1}", when ¢ and 7 are
represented by compact binary tries. The sets of keys within all the above
mentioned models satisfy the n(;—preﬁﬁ:ing key restriction. That is, no key in »
a sample set is a prefix of é.nother. :

The desién of tries for storing sets of keys that may contain prefizing

keys (that is, keys that are preﬁxes of other keys in the set), was taken up in
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recent work of Knott [Kno86). The first analysis of tries that store prefixing
keys was done in [delaT87a], where we computed the exact average space and
time complexities of the retrieval algorithms of several trie varieties by two
approaches: recurrences and direct counting. The underlying probabilistic
model used was the prefiz model, whose sample space consists of all n ele-
ment sets of keys of length not greater than h composed from a fixed finite
alphabet; all the sets are assumed to be equally prt;bable.

The work in [delaT87a] raises the question of the applicability of the
generating function approach of [FRS85] to the prefix model, and also to its -

corresponding binary set-tntersection prefix model, whose sample space is
{(&n) | &n C {O,I}OU{O, l}lu"-u{oal}h’ €l =m, |n| =n,|{nn| =k}

all set pairs (¢,n) are assumed to be equally probable. This paper provides
affirmative answers to both questions by developing the appropriate generat-
ing function tools along the lines of the work presented by Flajolet, Regnier,
and Sotteau in [FRS85]. As the main application, we find the exact average
running time of two algorithms that compute set intersections. These algo-
rithms are based on the representation of a set of binary string keys as a full
endmarker trie and also as a compact endmarker trie.
Section §2 derives the generating function translation rules correspond-
ing to the prefix model. Section §3 illustrates the use of these rules by apply-
-ing them to compute the ai.verage space and time requirqments of the retrieval
algprithms of two trie varieties anai&zed in>[delaT87l‘)]:’ full endmarker tries
B ar.rndrgompa,'ct end(narker tries. Section 84 ‘cl‘erivesr the translation rules for the
.set——intersgcrtio'n prefix model. Applying these rules, Bt;ction §5 cglculate; the -

exact average running time of the algorithms for computing set intersections.



2. The prefix model

Let A be a totally ordered alphabet of m (> 2) symbols that we will
identify with 4 = {1,...,m}, where 1 < 2 < ... < m. Let A"l := 4%y
AlU... A® be the set of all strings of length < h composed from A. The set
of finite length strings composed from A will be denoted by A*, the set of
infinitely long strings by A°°, and A®:= A* U A°°. For a finite set B, Ry, (B)
will denote the set of n element subsets of B, and R(B) := U,,>0 Rn(B)-

For the integer-valued parameters h, n, m, with k,n > 0 and m > 2,
the probability space for the prefix model consists of the n element subsets

of A*, which are assumed to be equally probable. We have

ht1 _ (h]
mltl = |4lh]| = mT 1 and IR (AM)] = (m >
n

m—-1 "

Throughout this section X will denote a real-valued function of finite
subsets £ C A", The expected value of X (&) over the n element subsets
¢ C Al will be denoted by E[X], and also by Eun[X] when we wish to
emphasize its dependence on h and n. The sum

Nma[X]:= ) X(¢)
EERA (AIM)
is related to the expectation of X by Npn[X] = (m:’)Ehn[X], and will be
called the normalized ezxpectation of X.
2.1 Translation rules

To each real-valued function X of subsets A(*l we associate its generating

function of the normalized ezpectations X (z),

XM(z):= > NulX]z"= > X(€&)xzl¢l

OZn<mitl ¢er (4]

Our intention is to establish rules that often help in translating a function X

into its generating function X (z). These translation rules will be formu- -

lated as properties of the operator Fx[X] := X* (z), which maps real-valued - ~

functions of subsets Ag:l to polynomials in z.
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We introduce the family of auxiliary functions P,, with z € A*. The
value of P on a subset £ C A®is P;(§) := &z, where §; := {y | zy € &} (i.e.,
¢, is the set of tails of the strings of £ that begin with z). For each ¢ € A, P,
maps R(AM) onto R(AF=1). We also define the function Py (¢) := £N{e},

which maps R(A*) onto R({e}).

LEMMA 1. [Additive-multiplicative rule] Let X, Y, Yo, Y1,...,.Yym be real-
valued functions of subsets of AM. Then,

(1) Fr[r.X] = AFr[X];

(i) Fal[X + Y] = Fa[X] + FalY];

(¢57) For h > 1,
Fi[(YioP1)...(Ym o Pp)] = (L +2) Fa_1[Y1] ... Fra1[Vml;
(iv) For h > 1,

Fh[(Yo@ P_L)(Yl o Pl) [P (Ym o Pm)] = Fo[Yo] Fh—l{Yll . .Fh_l[Ym].

Proof: Properties (¢) and (i) follow directly from the definition of the op-
erator Fj. Since Fo[I] = 1 + z, relation (137) can be obtained from (iv)
by taking Yo = I, with I(¢) := 1. To verify (1v), we first observe that the

partition AW = APy 14— U ... UumAlr=U K> 1, implies

R(AMY = U {e V16V U...Ume"™}
o{®er({e}) :
ol er(alb—1ly -

“I=l.,m

Hence,rtr;he mapping P(§) := (P_L(f),Pl(E),. yPm(£)) defines a bijection
P : R(AM) - R({e}) x R(AP=1) x ... x R(AlP—1]). Using this bijection;
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the value of Fj, at X := (Yoo P )(Y1 0Py)...(Y o P,;) can be written as

follows,

FalX]= Y X(&al¢

gER(AIR)

= E X(O'(u) U U ].U(j)> m|0(n)|+|o'“)|+...+ia(m)|

(0 e R ({e}) 1<;<m
e er(alb—1l

J=1,....m

[ X ¥ele)al]

oD ER({e})
Z Yl(o'(l))...Ym(a(m))zla(x)|+...+la(m)l.

(N er(ath—1})
Ij=1l,....m

Noting that the second factor can be expressed as a product, and also

> Yo(o)a” = Yo(0) + Yo({e}) © = FolYol,
cER({e})

we deduce

Fr|X] = Fa[Yo) H Z Yi(oW) e

1<5<m o) ER(Ah-11)
=Y () YV () ... Y, ().

The verification of the lemma is now complete. ]

LEMMA 2. V[Initt;alizdtion rule] Let I(§) := l,nand C(&) := |€|. Then

(n)

() Falll = (@ +2)";
(i) FalCl = mM 2 (1 + )1,

(553) I X(€) = 8¢, then Fa[X] = ("3 )aP.
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Proof: These relations can be established by direct counting. Relation (1),

for instance, results by noticing that the number of n element subsets of A"l

mlk]
n

Fr[C] = }: €] zlél = Z n (m[h]> z" = mlt z(1+ z)mm_l.

gER(AlM]) n>0 n

£

is equal to ( ), whereby

THEOREM 3. Let X and Y be real-valued functions of subsets of AlM,
(5) ¥ X(€) = Y (£ {e}) then XP(z) = (1 +z)™" ~1 Y ) (3);

(i5) If X =Y oP,, with ¢ € 4, then XM (z) = (1 + z)™ Y *=9(z);

(¢9%) Let rx (&) := X(€) — X(&1) + -+ X(&m). Then,

XM (2) = 1) (2) +m (L +2)™ X*(a). (1)

Proof: Property (z) can be verified by applying (iv) of Lemma 1 to
X=(oPy) [ IoP;,
JEA
and then property () of Lemma 2. In order to prove (i1), we write
XoP,=(IoP)) o [] 1oP;,
c;éJEA
and from Lemma 1, Lemma 2, and property (i) we deduce

Fp[XoP c]_Fh[(I Pl (YoP;) [[ IoPj,
c#EJEA

—FO[I]F,. Y] JI Faald]
cH#JEAR

et yeen ()
=+ 7)™ Y (g,
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To prove (ii7), we first apply Lemma 1 to X = rx +)_ . 4(XoP,), and then

with the help of (ii) we deduce

£

Fiu[X] = Filrx] ++ ) _Fn[XoP,]
cEA

= Fi[rx] + m (1 +2)™ Froa[X],

which completes the proof of the theorem. O

The following lemma, the steration lemma for the model ¥, was given
in [FRS85] for solving the recurrences satisfied by the generating functions
of normalized expectations with respect to the model ¥. This lemma also
provides the general solution to the recurrences (compare recurrence (1))

emerging in connection with the prefix model.

LEMMA 4. (Flajolet-Regnier-Sotteau) [Iteration rule] Let Ay,...,An and

Bo,..., By be polynomials. The solution to the recurrence 29 = By,

2n = Apzp_1 + By, (h > 0), (2)

s zp = Zog,‘gh [Bj H,-+1gkgh Ag].
Proof: The standard procedure for solving linear recurrences of this type

yields the claimed solution. -

THEOREM 5. Let X be a real-valued function of subsets of AR and let

rx(8) = X(€) = X(&1) = ... = X(ém). Then,

X®(@) =3 mP (1+2)"" - (a). (3)
0<5<k
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Proof: By (#1i) of Theorem 3, X*(z) satisfies recurrence (1). We solve

(1) with the help of Lemma 4, wherein we take By = r’(z) and A; =
’ . ;

m(1 + z)™". Since [T,y <ckcn m(1 + 2)™ = mr=7(1 + )™= the

theorem follows. (I

Remark. An ‘average values’ version of identity (3) was proved in [de-

1aT87a,b] by an approach based on recurrence equations.

3. Analysis of endmarker tries

This section presents the data structures used by the set intersection
algorithms that will be presented later in §5. Endmarker tries, which are
natural adaptations of the original tries of de la Brandais [delaB59] and
Fredkin [Fred60] for the purpose of storing sets of keys that may contain
prefixing keys, have been analyzed in [delaT87a,b]. Applying the generating
function tools of §2, we shall now rederive the exact average space and time
requirements of the retrieval algorithms of full endmarker tries and compact
endmarker tries.

Tries are implementations of the prefix tree. Let £ be a finite set of
strings composed from the totally ordered alphabet 4 = {ay,...,am}, whose
characters are ranked by rank(a;) =1, 1 < ¢ < m. The set pref(§) == {z |
iz € &} of prefixes of the élefnen_ts of € has a natﬁ;al trgé structure. i’i‘he set
of nodes of _tfh,isr t@_e is pref(£), wherein the lengfh zer;> sitrin’gr (denotea by
€) is the root; node; the;ir#th,subtree anode z € prcf (), 1<i< fn-, ;:onsists 7
of those ;trings of pref (€) that begin with za;, i.e. {za;w | za;w € £}. This
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Figure 1. Prefix tree built from the set of keys s = {00100,0101,011}.

m-—ary tree is called the prefiz tree of £ with respect to the alphabet A and
will be denoted by t(¢).

The paths on the prefix tree t({) can be naturally mapped into the
strings composed of symbols from A. An empty path is mapped to the length
zero string €. A (possibly infinitely long) path p = v;,vs,..., where v;4; is
the l;-th son of v,, is mapped to a;,ai, ... € €. This correspondence defines
an injective mapping between the maximal paths of ¢(¢) and the keys of &.
This mapping is bijective precisely when no key in £ is a prefix of another.
The subset of all prefixing keys of £ (that is, keys that are prefixes of other
keys of £) will be denoted by prcﬁz;'ngkcys({) ={ke¢ I k € pref(6—{k}}.

| A finite set of keys £ C A®, which may include prefixing keys, can be
easily encoded to yield a suitable represeﬁtﬁtion of £ as the set of maximal
paths of an (m + 1)-ary tree. This can be attained by attaching a symbol R
1 ¢ A4, the endmarlsgr, to the end of the prefixing ke);s of £. In the resulti;lg

set of keys, £[1] := (;6 — prefizingkeys(€)) U {zL | z € prefizingkeys(£)}, no
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key is a prefix of another. The endmarker prefiz tree of £ is the (m + 1)-ary
prefix tree, t(£[1]), of £[L] with respect to the alphabet At = {1} U 4,

where the ranking in A has been extended by rank(L) = 0 (compare Figure
£

2).

Figure 2. Endmarker prefix tree built from s = {00100,0101,011,0010, 0}.

Let r1,...,7rn be a collection of items where each item consists of a key

part (which uniquely identifies the item) and a data part. For the rerhainder
i of this section, let £ be the set of keys of these items and let us assume that
the keys are strihgs composed from the ordered alphabet 4 = {1,...,m}. We
shall consider two data structures for the storage of such collections of items;

both structures are'implemehtations of the endmarker prefix tree t({[1]).
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(a) full (b) compact
Figure 3. Endmarker tries for items ry,...,rs with respective keys k; =

00100, k; = 0101, k3 = 011, k4 = 0010, ks = O, and alphabet {1,0,1}

with 1 <0< 1.

3.1 Full endmarker tries

The construction of the full endmarker trie of £ requires that all the keys
in £ have finite length, i.e. £ C A*. In this case, the maximal paths of the
endmarker prefix tree t(£[L]) end at terminal nodes. We thus have a bijective
correspondence between the terminal nodes of ¢(¢[1]) and the keys of £. The
following implementation of t(£[1]) will be called the full endmarker trie
built from £, and will be denoted by tf°(£) In tfe(¢€), a"nonter'minal node% :
of t(¢[1]) is represented by an array. of pointers to its chxldren, a termmalr
node v of t(£[1]), correspondmg to a key k € &, is represented by a pomter "

"to the data of the item whose key is k (compare Figure 3(a))
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In order to search for a key k, we traverse t/¢(£) starting at the root and
proceed recursively as follows. If the root is a nonterminal, we search for k
in the first subtree when k£ = ¢ and, when k = 12 with ¢ € A, we search for
z in the (¢ + 1)—th subtree. Otherwise, the search ends: it succeeds precisely
when the root is a terminal node and k = ¢.

The space required by this algorithm is thus proportional to the number
Sf (€) of nonterminal nodes in t/¢(¢) and its running time is proportional to
the total leaf node path length Tf(¢) = tpl (tf‘(E)), where

tpl(g) := > depth(l)
all leaf nodes l of ¢

and depth(l) denotes the edge length of the path that connects the root and
l.

For computing the expectations of Sf and Tf with respect to the prefix
model, it is convenient to cast the idea of full endmarker trie into a recursive
definition.

DEFINITION : The full endmarker trie built with a finite set of keys ¢ C A*
is the (m + 1)-ary tree, denoted by tf¢(¢), which is recursively defined as
follows:
(2) If € is empty, t/¢(¢) is the empty tree.
(13) If € = {e}, t/°(¢) is the tree whose root is a leaf node (i.e. all its
subtrees are empty).
(i) Otherwise, t/¢(¢) is the (m + 1)-ary tree having an ‘internal’ root
node whose subtrees are t/¢(¢ N {e}), t7¢(&1),...,t/%(&m) in order.
This definition yields recursive expressions for Sf(¢), the number of internal

nodes of tf¢(£), and for its the total leaf node path length Tf(¢):

Sf(6) =1 - Gig0 — be, ey + ) ST(£5), (4)
- t€A
T/ (€) = [€](1 = ergey) + 3 TF(&2). )
1€ A

12



THEOREM 6. The ezpectations of Sf and Tf over the n element subsets of

Al gre

£
E[Sf] = Z m?7 [1 — 7(m!*, ml) n,0) — r(m!F, mb], n,1)],
1<5<h

E[Tf] = Z m _j[m[h] ml] —-'r(m[h] mll n 1)]

1<5<h

a—b
where 7(a,b,c,d) = lﬁl.
b

Proof: Let rss(§) = Sf(€) — 2°;c4 5 (&) By (4), we can write rs¢(¢) =, |
I(&) — Z(€) — W (€), where I(£) =1, Z(£) = bj¢),0 and W(£) = jenieyi,lel-
To compute the generating function Sf *’(z), we will first compute the gen-
erating function rg‘}(:z;) and then apply Theorem 5. By properties (7) and
(i45) of Lemma 2 we have F4[I] = (1 + z)™" and F4[Z] = 1. By direct

counting we find

Fp[W] = Z ¢l = z.
ter(alhl)
€‘=(')
Thus, rgj(z) = (1 + :z:)'”lh] — 1 —z. Since r{} (z) = 0, Theorem 5 applied to

Sf gives

Falf]= 3 mt (L™ T ()

0<j<h
= Z mh7 (1 4 )™ Z mh )m[h’—mlj]+l.
1<5<h 1<y<h
(h] (Rl — gl
_ h—j m m mUil +1
- 2 e (()- ( )

1<5<h .. n20
Extra:c,ting" the coefficient of z" from the above expression yields -
O B\ /il — pli]
(") 1= 3 ()< ()
n/l 1SG<h A T

The value of E[Tf]| can computed in a similar manner. (|
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3.2 Compact endmarker tries

For an arbitrary finite subset ¢ C A® (£ may contain infinitely long
keys) the following implementation of the endmarker prefix tree t(£[1]) gives
rise to the compact endmarker trie, which will be denoted by t°¢(¢). The
construction of $°¢(&) is analogous as for full endmarker tries, except that
the branching of ¢(s[L]) is stopped at subtrees T' consisting of nodes of out-
degree less than 2 (i.e. T is a path). Such a subtree T is collapsed into a
single terminal node and the string corresponding to the unique maximal
path of T becomes the label of this terminal node.

The search algorithm for t°¢(£) is analogous as for full endmarkers tries
except that, on reaching a terminal node, the label of this terminal node
must be compared with the unexamined part of the search key; only when

these two are equal is the search successful.

The storage required by this algorithm is proportional to the the number
Sc(&) of internal nodes of ¢°¢(¢); its running time is proportional to the total
leaf node path length Te¢(€) := tpl(t°¢(&)).

A recursive definition of the compact endmarker trie t°*(¢) can be ob-
tained from the recursive definition of the full endmarker trie given in §3.1 by
considering finite sets £ C A® and replacing condition (¢7) by the following

‘compaction’ condition:

(1e%) If € = {z}, t¢(€) is equal to a single leaf node with a label equal

to z.

This recursive definition of t°¢(¢) yields the following recursive expressions

of Sc(f) and Tc(§):

Sc(€) = rse(€) + Z sc(f. - (6). :
) tGA -

Te(¢) = rrc(f + > Tc(e. | (1)
ToieA ) ' .

with rg.(§) =1 — 5|5|,o - 5|e|,1 and rrc(§) = [€[(1 — 6j¢),1)-

14



THEOREM 7. The ezpectations of Se¢ and Te over the n element subsets of

AR gre

£
E|S¢c] = Z mh=I [1- r(m[h],m[j],n,O) - m[’.]r(m[h],m[’.],n, 1)],
1<5<h

E[T= Y mtiml] [E';h_]-_f(m[hl,mm,n,l)],
1<j<h

a—-b
where 7(a,b,c,d) = 58
b

Proof: For a set £ C A*, let M(¢) be the number of nodes of the full end- 1 .

marker trie t/°(¢) having exactly one terminal node among its descendants.

Relations (4), (5), (6), (7) imply
M (&) = 5f(£) — Se(&) = Tf(£) — Te(§). (8)

Also, rar(€) = M(&) —M (&) —...— M(&m) = (1= [EN{e}])dj¢,1- By direct

counting we find Fo[ras] =0,

Frlrm] = Z € = (mlH — 1),

eer(alhly
[&1=1,¢# {e}

and from Theorem 5 we deduce

FalM]= Y m* (1 +2)™" " 10)(q)
0<5<kh

= Z m* I (mll — 1)z (1 + :r:)'"m_'"“l .
1<5<h

Extracting the coefficient z™ from this expression yields

(h] ' . : (A} — 0]
(m > EM]= 5 mh [(mb] ~1) <m m )]

" 1<5<h ' n-l
The claimed expectations E[Sc] and E[T¢| now follow from (8) and Theorem
6. ]
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Remark. This generating function approach can be also used for calcu-
lating the expectations of other tries cost functions of interest considered in

[delaT87b] . ¢

4. The binary set—intersection prefix model

The sample space of the binary set-intersection prefix model consists of a
class of ordered pairs (€,%) of sets of binary string keys. This class depends
on four parameters: the size [ of the first component £, the size n of the
second component 7, the size k of the intersection £ N7, and the maximum
length A of the of the binary string keys. For nonnegative integers h, [, n,

and k, the probability space of the binary set—intersection prefix model is

Ih,l,n,k = {(5’77) ‘ f:') - {0’1}[h] ’ |£| = la l'l| =n, |fﬂ nl = k},

where {0,1}{* = {0,1}[% U {0,1}!"U...{0,1}!*], and all set pairs (¢,7) are
assumed to be equally probable. The expectation of a real-valued mapping

X(&,n) over the pairs (§,7) € Ip,1n,x Will be denoted by E[X]. The sum

N,k X] = Y. T X(&n)

¢.nc{o,1}!hl
1&l=1, Inl=n, |ENni=k

is related to the expectation of X by Np i n i[X] = |In,1,n k| E[X] and will be
called the normalized ezpectation of X.
4.1 Translation rules

Throughout this section X will denote a real-valued mapping of ordered
pairs (§,n) of sets ¢&,n C {0,1}!*. To each such mapping X we associate
the generating function of normalized ezpectations X* (z,y,t),

X® (z,y,t) = Z X (&,1n) !¢l ylnl glennl
€nC{0,1}14! )

= Z th,z,,,,k[X] ™ y" k.
I,n,k>0 oo
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We shall now establish translation rules, between X and its generating

function X*)(z,y,t), similar to those derived for the prefix model in §2.1.
£

As earlier, the translation rules will be formulated as properties of the op-

erator Fp which maps a functions X into its generating function Fp[X] :=

X™(z,y,t). Some of these properties can be conveniently expressed in terms

of the mappings P.(¢,7) := (&,nc) (where & = {z l cx € £}) for each

¢ € {0,1}, and also FJ_(f,n) = (¢ N {e},nn {e}).

LEMMA 8. [Additive-multiplicative rule] Let X, Y, and Z be real-valued
mappings of ordered pairs (&,7) of sets £,n C {0,1}1A],
(1) Fr[A.X] = AF,[X];
(72) Fr|X + Y] =Fp[X] +FpY];
(158) Fa[(Y o Po).(ZoPy)] = (1 +z+y+ zyt) Froy[Y|Fru[Z], h > 1;

(#v) Fa[(X o PL).(Y 0 Po).(Z 0 P1)] = Fo[X|Fa_1[Y]|Fa_1[Z],h > 1.

Proof: Properties (¢) and (i7) follow immediately from the definitions of F),
and P.. Property (ii?) can be deduced from (iv) (taking X(s) := I(s) = 1)

and

X(O)(x’ Y, t) = E $1€| yl'l‘ tlfﬁnl o
=1+z+y+zyt.

In order to prove (iv), we first observe the mapping £ — (£ N {e}, &0, &1) is
a bijection between R({c}) x {0,1}!4~1 x {0,1}!*~1] and {0,1}!*. Taking

17



W= (XoP,)(YoPo)(Z o P,), we have

K]
Fp[W] = Z W(f,n)mm ylnl ¢lenn|
¢,ncR({0,1}Inl1)

= Y x(en{e}, nn{e}) Y(éo,n0)Z (€1, m)
€nER({0,1}1r])
gléol+H&ul+1€n{e} ylnoi+lm I+|nn{e}|

¢1€oNmol+i&1 O] +[ENnn{e}|

=Y" (@) 25 (@y,t) ), X(uw) sl yMdenv
;I.,VGR({C})
= Y(h—l) (x, y’ t) Z(h_l) (Z! y’t) X(O) (m’ y’t)’

which is as claimed in (zv). L

LEMMA 9. [Initialization rule]. If I(€,n) := 1 then

I"(z,y,t) =(1+z+y+ :cyt)zm .

Proof: The case h = 0 follows from (9). For h > 1 we write I = (I o
Po).(I o Py) and applying (i77) of Lemma 8 deduce I'™(z,y,t) = (1 + z +
y + zyt)[I*V(z,y,t)]?, h > 1. Solving this recurrence yields the desired

expression of I (z,y,t). ]

THEOREM 10. Let X and Y be real-valued functions of pairs (£,n) of subsets

¢,n € {0,1}% and let us assume that h > 1. _
() T X(&n) = Y(én{e}, nn{e}) then XM (z,y,8) = (142)2"' = Y O)(,y,1).
(¢1) If X =Y o P, with c € {0,1}, then

X (z,y,8) = (1 +z+y+zyt)? Y (z,p,1).

18



(¢43) If rx (&) == X(&,1) — X(€o,m0) — X(€1,m1)) then

XM(z)=rP(z) +2(1+z+y+ zyt)? X+ (z). (10)

Proof: These properties can be proved with the help of Lemma 8 and Lemma

9 proceeding in a similar manner as in the proof of Theorem 3. ]

Note that recurrence (10) can be solved by means of Lemama 4, which
also works as the iteration rule for the set—intersection prefix model.
The following Theorem 11 reduces the calculation of the generating func-

tion X®(z,y,t) to the determination of the generating function r$’ (¢, 7) of

rx(&,n) == X(&n)—X(€o0,m0) — X(&1,m1). In §5, we will apply this theorem

to compute the average running time of the set intersection algorithms.

THEOREM 11. If Let X be a real-valued function of pairs (£,n) of subsets

&1 C {0,1}*), and let rx(€,n) = X(&n) — X(€o,m0) = X(é1,m). Then,

XP(z,y,t) = 3 247 (L4 z+y+ap) 2 10 (z,,0).
0<s<h

Proof: This expression of the generating function X*'(z,y,t) can be obtained

by solving the recurrence equation (10) with the help of Lemma 4. ([

5. Analysis of algorithms fc;)rrset inferﬂection
* We now present two algorithms for computing the intersection of sets
—of binary string keys. For each of them we will compute the exact average

running time with respect to the binary set—intersectioh prefix model.
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5.1 Average set—intersection time using full endmarker tries
The set intersection Intersectf (€,7n) := € N7y, with &, C {0,1}*, can

be computed by the following algaqrithm:

ol

. If |¢| = 0 or |n| = O then Intersectf(&,n) «— 0;

N

. If ¢ = {e} then Intersectf(&,n) « &;
3. If n = {€} then Intersectf(&,n) « n;

4. Otherwise,

Intersectf (€,m) «— (6N nN{e}) UOIntersectf§ (£o,m0) U LIntersectf (£y,1m1). *

Let tf¢(¢) and t7°(n) be the full endmarker tries built from ¢ and 7 respec-
tively. The following observations lead to an implementation of the above
algorithm. The root node of t/¢(¢) (respectively t/¢(n)) is a terminal node
if and only if £ = {e} (respectively n = {€}). If £,n € {e}, the zero length
string € € £ N5 exactly when both of the first sons of t/¢(£) and tf¢(5) are
nonempty. The sets £y and &; are represented by the second and third sub-
trees of tfe(f); no and n, are represented by the second and third subtrees
of tf¢(n).

The function Intersectf(£,n) can be realized as the following simul-
taneous traversal of the trees t/¢(¢) and tf°(n). We start at the roots
of the tries. Step 1 is implemented by testing whether one of the two
trees is empty, and Step 2 and Step 3 by testing whether the root node
of the appropriate trie is a terminal node. In Step 4, we can compute;
§nnn{e} by exé.n;ining the first sul;trees tfe(s) and'tfe(s); the recursive
call to Intersectf (£o,n0) (respectively Intersectf(&l,rmr)-) is then realized byA
simultaneousl& visiting the sgéond (respectively third) subtrees of ¢/¢(£) and

“t7¢(n); these subtrees represent the sets £o and 1o (respectively £; and n,).
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The total time necessary to compute the intersection is thus proportional
to the number, Ife(&,n), of pairs of nodes that are simultaneously visited in

tfe(¢) and t/¢(n) (i.e., Ife(&,n) equals the total number of times that Step
4 is executed). The function rrs.(&,n) := Ife(€,n) — Ife(€o,n0) — Ife(€1,11)

can be written as ryz.(&,n) = 1 — 8y(¢,q) Where
b(&,m) = (€ = {e}) or (|¢| = 0) or (n = {€}) or (|n| = 0). (11)
The results of the following lemma will be helpful in extracting coeffi-
cients from the generating functions that will emerge from our computations.

The coefficient of the term z'y™t* in a polynomial P(z,y,t) will be denoted
by [l,n,k]|P(z,y,t).

LEMMA 12. The coefficient
K kla,B) :=[l,n, k] {[(1 +z)*+ (1 +y)* - 1](1 +zrz+y+ :z:yt)ﬂ}
equals
Kinkl0, B) = Dinkle, B] + In ke, B] — In k[0, B]. (12)
where I} ,, k|o, 8] 1= (i) (ﬁ:’,:) (ﬁf‘_";") Also, K, £[0,2"] = I . x[0,2!H] =
ILIh:I!"':k|'
Proof: The identity

I kle, B) = [2'y™t*[{(1 + 2)* (1 + = + y + zyt)’}

_(B\(B-k\(Bt+ta—-n

T\ \n-kJ\ 1k )
was established in [FRS85] by expanding (1 + z)* (1 + = + y + zyt)? first in
t, and then in z and in y. By the symmetry of (1 + z)* (1 + = + y + zyt)?
with respect to z and y, we deduce [zly™t*|(1 + y)* (1 +z +y + xyt)ﬁ =
In k(e B], and I 1,k(0, B] = Iin k[0, B]. Thus relation (12) follows, and. also
Kink[0,8] = L1 n k[0,8] = |Tntn k] S

‘With the help of Theorem 11, we shall now calculate the average time
necessary to compute the intersection of a pair of sets (£,17) € Ixnx by

‘means of the implementation of Intersectf (£,n) described above.
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THEOREM 13. The ezpected value of Ife(&€,n) over the pairs of sets (£,n) €

Inin,k 18

£

1 Z Zh—jKl,n,k[ZIj] —1, 2t 2l 4 1],

E[Ife] = (2[h] - 1) - m
¥y 1<5<h

where |In 1 n x|l = Kinkl0, 2(r).

Proof: From Lemma 8 and Lemma 9 we deduce ri{j.(z,y,t) = (1 +z+y +
a:yz)zm — Z®)(z,y,t), with Z(s) = by(¢,q) and b(&,7n) as in (11). By direct
counting we find

7™M (z,y,t) = Z zl€l ylnl glénni

&,nc (0,1}
(1&1=0) or (¢={e}) or ({n|=0) or (n={(s})

(o +y ) [+ @)™ o).
Since r‘,‘?e (z,y,t) = 0, Theorem 11 yields

Ife™ (z,y,t) = (2["] -1)(1+z+y+ a:yz)zlh]

- Z 2P (1+z+y+ zyz)?" -2 Z9 (z,y,t).
1<7<h

Extracting the coefficient of z'y"t* from this expression with the help of

Lemma 12, we arrive at the desired expectation of E[Ife]. ]

Remark. It may be nqted that | = n = k implies Ife(¢, &) = S7¢(¢), the
number of internal nodes in the full endmarker trie of £. This is reflected by
ou'r#(:a,l,culatio-ns. When we set | = nf:—.- k, the expreésion Of, the expectation
,E[Ifé],g’i\'(en— in Theorem 13 reduces (after some él_g’ebraic cancellations) to
ﬁhe expecta.tfoxi.Ehnr[Sf ] with réspect to the prefix rhodel computed eax:lie'r

in Theorem 6 (with the alphabet size m = 2).
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5.2 Average set—intersection time using compact endmarker tries

We shall now consider another algorithm for set intersection, which is
based on compact endmarker triess Let Part(e,8) be the function of a, 8 C
{0, 1}!* that has the value @ when a C 3, and the value @ otherwise. The set
intersection Intersectc(£,n) := £€Nn, with £,7 C {0,1}/*], can be computed

by the following algorithm:

1. If |¢] = 0 or |n| = O then Intersectc(&,n) «— 0;

2. If |¢] = 1 then Intersectc(€,n) «— Part(&,n);
3. If |n| = 1 then Intersectc(é,n) « Part(n, £);
4, Otherwise,

Intersectc(&,n) — (€N n N {s}) UOIntersectc(€o,n0) U 1Intersectc(&y,n1).

Let t°¢(&) and t°¢(&) be the respective compact endmarker tries of £ and 7,
and let us assume that ||, |n| > 2. Then, € € £ N n precisely when the first
sons of t°¢(&) and t°¢(n) are nonempty. The sets & and 7o are represented by
the respective second subtrees of t°¢(£¢) and t°¢(n); &1 and 7, are represented
by the third subtrees of t°¢(¢) and t°¢(n).

The algorithm Intersectc(&,n) can thus be implemented by the simulta-
neous traversal of the compact endmarker tries t°*({) and t°¢(n). We start at
the root nodes of the tries, and implement Step 1 by testing whether one of
the trees is empty. Step 2 (respectively Step 3) is realized by testing whether

the root node of t°¢(£) (respectively t°¢(n)) is a terminal node. If it is, i.e.

¢ = {z} (repectively n = {y}), Part({z},n) (respectively Part(¢,{y})) is
implemented by searching for the key z in t"re (n) (respectively searching for
y in ¢°°(£)). If this search is successful, we return the value {z} (respectively
{y}); otherwise, we return the value @. Since Step 4 is executed precisely

when [&|,|n| > 2, we can then compute £ N n N {€} by simply examining
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the first subtrees of t°¢(§) and t°°(n) (these subtrees are terminal nodes
precisely when € € £ N ). The recursive call Intersectc(o,n0) (respectively
Intersectc(£1,71)) can be impleménted by simultaneously visiting the second
sons (respectively third sons) of ¢°¢(¢) and t°¢(n), which are the root nodes
of compact endmarker tries representing the sets £, and no (respectively &,
and n;).

‘The time required to compute £ N n by the above algorithm is propor-
tional to Ice(¢,n), which is defined as the number of pairs of internal nodes
simultaneously visited in tries t°¢(¢) and ¢°¢(n) (i.e., the number of times
that Step 4 is executed) plus the number of internal nodes visited in only
one of the tries after a terminal node has been reached in the other (i.e., the
number of nodes visited while executing the calls to Part).

We shall calculate the expectation of Ice in two ways. Our first calcu-
lation makes use of the relation between full and compact endmarker tries.
That is, the compact endmarker trie t°¢(£) results from the full endmarker
trie t7¢(¢) by pruning every internal node that has only one terminal node
among its descendants. Hence, M(&,n) := Ife(€&,n) — Ice(&,n) is equal to
the number of pairs of internal nodes of ¢/¢(¢) and t/¢(n) simultaneously vis-
ited, in the implementation of Intersectf(£,n) given in §5.1y such that each .

internal node in the pair has only one terminal among its descendants. Thus

the function ras(€,n) := M(&,n) — M(&o,m0) — M(&1,7n1) has the expresion

ram (€M) = 8(j¢1=1) and (e#{e}) O (In|=1) and (n#{e}) -

THEOREM 14. The ezpectation of M(&,n) over the pairs (£,1) € Innk 15

1

2h_j 2[11 —1){ Ki- n; -110, 2["'] - 2[1']
| Th,1,m,k| Z (_ ){ I-1,n—1,k—1] ]

E[M] =
oo 1<5<h

+ (24! — 2) Ki_y no1,if0, 21— 2m]}a

where |In ink| = K,,n,k[o, 2("]].
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Proof: Direct counting yields

¢faco,1)irl
(181=1) and (¢£{s}) and (Inj=1) and (n#{e})

= (2™ —1)zy[t+2 -2].
Applying Theorem 11 to M gives

M®(z,y,t) = 3 227 @0 1) (1 +z+y+ay2)? 2 zy [t 4200 - 2],
1<5<h

and the desired expectation E[M]| results by extracting the coefficient of 1 .

z'y™tk with the help of Lemma 12. 1

THEOREM 15. The average total time E[Ice] requsred to compute the inter-
section using compact endmarker tries s
EllIce] = (21 — 1)
1 . . .
B —{ Z 2h-JK1,n,k[2[J] —1, 2" — 2l 4 1]

|Ihnl;n)kl 1<j<h
+ 3 z"—f(zb'l—1)[K,_1,n_1,k_1[o,2l"1—zlfl]
1<5<h

+ (2V] - 2)Ki_1,n—1,k[0, 2" — 2[]‘}]] },

where |In1n k| = Kin k[0, 2(%).

Proof: This expression of the expectation can be obtained from the relation
E|Ice] = E|Ife] — E[M], and the values of E[Ife] and E[M] provided by
Theorem 13 and Theorem 14. : ]

The followix_lig alternative way of computing E [Ice] yields additional in-
formation of _inte'r'e_s_t to the cost analysis. We break up the values of the
function Ice iﬁto two components, ' .

Ice(&,n) = A(&,n) + B(&,n). (13)
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The first component, A(£,7), is the number of pairs internal nodes of t°¢(¢)
and t°¢(n) that are simultaneously visited in the implementation of of the
above algorithm for Intersectc(é.4) (i.e., the number of times Step 4 is is
executed). This quantity is of interest in its own right since, as remarked
by Trabb Pardo in [Tra78], A(£,n) measures the risk of computing the in-
tersection £ N n to find that it is empty. The second component, B(&,n), is
the number of internal nodes visited in only one of the tries after an internal
node has been encountered in the other (i.e., the number of nodes visited in
the execution of the calls to Part(¢,n)).

Since Step 4 is executed precisely when [£|, |n] > 2, r4(&,n) := A(&,n) —

A(&o,7m0) — A(€1,71) can be written as
TA(f,ﬂ) =1~ Z(sa 77)’ (14)

with Z(&,n) = 6(¢|<1) or (In|<1)- We further observe that an internal node v
of t°¢(¢) (respectively t°¢(n)) is visited in the process of executing the func-
tion Part(&,n) (respectively Part(n,¢)) precisely when the string z, cor-
responding to the path that connects the root and v, satisfies |£,] > 2
and |n;| = 1 (respectively |n;| > 2 and |¢;| = 1). Thus, rg(&,7) =
B(&,n) — B(&o0,m0) — B(£&1,n1) has the expression

rB(£,m) = bje=16¢{e} Bini>2 + Ojnj=1 6nst (e} Sle1>2- (15)
THEOREM 16. The ezpectation of A(&,n) over the pairs (£,n) € Inink 15

E[4] = (2 - 1)

1 .y . .
—_— 2h=Ioil Ky k2l — 1, 2lhl ol 4 g
Tl 5,2,. [Kinrl2? | ]

— (2[1'] ~ 1) Ki_1n_1k[0, olh] _ 2[1']]]

;_ Y 2@l — 1) Ky 2V, 2l - 2‘”]},
= 1<y<h .

with |Intn k] = Kin k[0, 2[4,
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Proof: From the expression of r4 given in (14), and with the help of Lemma

8 and Lemma 9, we deduce
£ ]
r W (z,yt)=(1+z+y+ :cyt)zp" - ZM™(z,y,t),

and by direct counting we find
Z(z,y,t) = 2M (1 +z+y +oyt) [(L+ )27 7+ (L4 9)2 1]

— 2™ - D[+ 22" + @+ 9)" -1+ 2Py,
Substituting the resulting expression of r;’(z, y,t) in the expression of A™ (z,y,t)

provided by Theorem 11, and noting that rf,f) (z,y,t) = 0, we obtain i

AM (z,y.t) = @M — 1)1+ z+y+zyt)?

— Z 2h_j(1 +z+y+ xyt)zihl_zm Z9 (z,y,t).
1<7<k

Extracting the coefficient of the term z'y™t* with the aid of Lemma 12 yields

the desired expression of E[A]. ]

THEOREM 17. The ezpectation of B(€,n) over the pairs (€,1) € Inink 15

1

EBl= ——
5] | Tn,1,m, k]

> 2732 1) [Kiyef29 - 1, 2 2V 4 1)
1<5<h

- Kl,n,klz[j] , 2l 2[1.]]
— Ki_1,n-1,6-1[0, 21" — 217]]

- 2(2[i] ~1)Ki_1n-14[0, olhl _ 2[1']]] }’

where |Ih 1,n,k| = Kink[0, 2["]].
Proof: Using the expression of rp given in-(15), and by direct cbunting; we
- obtgin

(Al '
1y 14yt -]

(@ w,t) = @M 1) (1 + 2+ y + ayt)[(1 + 2)
- @M - [ +2)*™ + @)™ -]
— (2P — 1) [zyt + 2 (2 — 1) zy].
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Since furthermore r{y) (z,y,t) = 0, the expression of B™*(z,y,t) furnished

by Theorem 11 is

K

1<5<h
7] _ 7
(L +2)" 7+ (1 +9)* 7t~ 1]
— N (@) 1) (L 42+ y oz
1<5<h
[+ 22 + (1 +9)® =142yt + 22V — 1) zy].

Extracting the coefficient of the term z'y"™t* by means of Lemma 12 yields

the sought value of E[B]. ]

Since E[Ice] = E[A] + E[B], adding the values of E[A] and E[B] pro-

vided by Theorem 16 and Theorem 17 gives an independent derivation of

the expression of E[Ice| computed earlier in Theorem 15.

delaB59

delaTB7a

delaT87b

Dev82
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