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Plants provide commodities like food, fiber, fuel and chemicals. Understanding plant 

metabolism will help find genetic engineering targets that enhance production of 

these commodities. Interactions between the macronutrients – carbon (C) and 

nitrogen (N) determine growth and developmental functions in plants (Nunes-Nesi, 

Fernie, and Stitt 2010; Sakakibara, Takei, and Hirose 2006) and are regulated by 

complex mechanisms that need systems-level analyses. Metabolic fluxes, the rates of 

C flow in metabolic pathways, provide a system-wide view of metabolism and are 

quantified by steady state metabolic flux analysis (MFA) wherein isotopic tracers 

(
13

C, 
15

N) are fed to the cells and the resulting labeling patterns of biomass 

components are used to fit the fluxes. In this study we i) statistically designed isotope 

labeling experiments (ILEs) in silico to enhance accuracy of flux estimates through 

the pentose phosphate pathway (PPP) ii) conducted MFA on heterotrophic cell 

suspensions of Arabidopsis thaliana (Arabidopsis), a model plant, to investigate 

regulatory role of light in cell metabolism and iii) conducted MFA on cell 



 

suspensions of poplar (Populus tremula ˣ Populus alba; clone N 717-B4), a potential 

biofuel crop, to understand C-N interactions. In silico label design studies determined 

that accuracy of flux estimates in the PPP improves by ILEs with 1,2-
13

C glucose and 

measuring labeling patterns of sugars, especially ribose. Metabolic fluxes, estimated 

by the designed ILEs on Arabidopsis cells, under continuous light or dark, showed 

negligible changes between treatments indicating that light does not regulate central 

carbon metabolism in heterotrophic Arabidopsis cells. The designed ILEs improved 

confidences of non-oxidative PPP flux estimates by 40-80% from previous studies 

(Masakapalli et al. 2009a). ILEs on poplar cell suspensions, grown in batch cultures, 

displayed unexpected back-mixing between unlabeled seed biomass and newly 

synthesized labeled biomass. Novel metabolic network models were developed that 

successfully account for observed back-mixing. ILEs on poplar cells, subjected to 

different C-N supply treatments to understand C-N interactions show significant 

differences in labeling patterns. Design of ILEs and subsequent improvement in flux 

estimates and the improvements in modeling metabolic networks are the novel 

contributions of this work. 
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1. Chapter 1a: Introduction 

Plants are important sources of food, fiber, chemicals, pharmaceutical products and 

fuels. They are living chemical factories whose potential remains fairly untapped. 

There has been increasing interest in plants as biofuels and biomaterials. The 

desirable traits of a biofuel or biomaterial crop are i) high growth rate ii) low fertilizer 

utilization iii) high biomass per unit land area and iv) growth round the year. Not all 

traits are present in one plant species and it is desirable to genetically tailor potential 

plants so that they are more economical as biomaterial crops (Sticklen 2006). 

Understanding plant metabolism is key to the success of such endeavors.  

Plant metabolism is regulated to a great extent by the availability of water, light, 

carbon and nitrogen (Nunes-Nesi, Fernie, and Stitt 2010). We are particularly 

interested in studying the carbon-nitrogen (C-N) interactions and nitrogen (N) storage 

and cycling in plant metabolism. C-N interactions are important because N is required 

for production of amino acids which are building blocks for proteins, nucleotides and 

several other metabolites all of which have C backbones.  Thus uptake and 

assimilation of C and N occur mutually and drive the accumulation of biomass in 

plants. To improve crop biomass it is important to understand these interactions that 

are regulated at various levels. In this work, we study plant metabolism at the 

fluxomic level using the tool metabolic flux analysis. 

Metabolic fluxes represent rates of carbon flow through metabolic pathways and are 

important indicators of cell physiology (Stephanopoulos and Stafford 2002a). While 

certain metabolic fluxes (e.g. fluxes leading to accumulation of biomass) can be 
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directly measured, others can only be measured by indirect techniques such as 

isotope-assisted metabolic flux analysis (isotope MFA). This technique involves 

conducting isotope labeling experiments (ILEs) wherein isotopically labeled (e.g. 
13

C, 

15
N, 

17
O) substrates are fed to the plant cell culture or tissue and the isotopomer 

(isotope isomer) abundances of intracellular metabolites such as proteins, lipids, 

sugars and nucleotides, are measured using nuclear magnetic resonance (NMR) or 

mass spectrometry (MS). For a given metabolite, the isotopomers formed depend on 

the atom rearrangements that occur during reactions involving the metabolite whereas 

the relative abundances of these isotopomers depend on the relative fluxes of the 

reactions. Since knowledge of atom rearrangements and reaction networks is fairly 

well documented, the fluxes can be estimated by fitting the measured isotopomer 

abundances (Iexp) to isotopomer abundances (Isim) that are obtained by simulated 

the ILE on a mathematical model of the metabolic network. This chapter illustrates 

the steps involved in i) building a mathematical model of the metabolic network ii) 

simulating an ILE and iii) fitting Iexp to Isim.  
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Chapter 1b: Methods in metabolic flux analysis 

1.1 Mathematical modeling of metabolism in plant cells 

A metabolic network is an interconnected web of several metabolic reactions. The 

following steps are required to build a model of the metabolic network 

1.1.1 Cataloging reactions, their atom rearrangements and reversibilities 

Freely available resources such as Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Masoudi-Nejad et al. 2008a), MetaCyc Encyclopedia of metabolic 

pathways (Zhang et al. 2005) and plant biochemistry textbooks provide information 

on reactions present in metabolic networks of particular organisms and their atom 

rearrangements. Reversibility of a reaction depends on the accompanying change in 

Gibbs free energy (ΔG). A negative ΔG implies that the reaction is irreversible. ΔG 

values can also be obtained from the above mentioned sources. The catalog should 

also include influx and efflux reactions such as uptake of nutrients and efflux of 

metabolites into sink components such as cell wall, protein, lipid, starch and 

nucleotides to model the flow of material in and out of the cell.  

1.1.2 Modeling compartmentalization of reactions in subcellular organelles 

Plant metabolic networks are unique in that they compartmentalize certain metabolic 

pathways within specific subcellular organelles such as the mitochondria, plastids, 

glyoxysome, etc with some degree of duplication between the organelles. For 

example, the glycolysis pathway and pentose phosphate pathway (PPP) are present 
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both in the cytosol and the plastid whereas the tricarboxylic acid cycle is primarily 

located in the mitochondrion. Compartmentalization information can be found in 

literature (Singh 1998a). Metabolite pools in duplicated pathways that are separated 

by organelle membranes may or may not be in isotopic equilibrium with each other 

depending on fluxes through the duplicated pathways and the rates of their transport 

across membranes. To model duplicated pathways in different compartments, include 

two pools of the common metabolites and transport reactions between the 

corresponding pools (see Sec. 4. for an example).  

1.1.3 Simplifying the model 

Each reaction is associated with a flux and of the thousands of reactions in plant 

metabolism; the model usually includes only those that participate in the primary 

carbon metabolism. This is because i) isotopomers of secondary metabolism are not 

easily measured ii) computational load increases with number of metabolites. 

Additionally, in steady state MFA, to simplify the model further, metabolites that do 

not undergo carbon atom rearrangements during sequential reactions are lumped 

together (Winden et al. 2001a).  

1.1.4 Modeling the above features mathematically 

Flux balance equations help mathematically model metabolic reactions and their 

stoichiometries. Flux balancing is based on the principle of conservation of mass.  For 

a given metabolite,   

vgeneration – vconsumption = vaccumulation 

Where vgeneration: sum of fluxes that generate the metabolite, 
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vconsumption: sum of fluxes that consume the metabolite 

vaccumulation: accumulation of the metabolite 

At metabolic steady state there is no accumulation of intracellular metabolites in the 

network i.e.   

vgeneration – vconsumption = 0 

 

 

Fig. 1.1 Metabolic fluxes in a cell. Arrows represent fluxes and metabolites are represented 

by capital letters. The feed substrate A enters the cell via the flux vin and E leaves to form 

biomass via the flux vout. The dashed lines indicate that there are multiple reaction steps are 

required to generate these metabolites. The fluxes v1, v2 and v3 are intracellular fluxes that can 

be estimated by fitting the measured data to a mathematical model of the metabolic network. 

Flux balance equations for metabolites A, B, C, D and E in the example network (Fig. 

1.1) are shown below 

A: vin – v1 = 0; 

B: vb – v1 = 0; 

C: v1 + v3 – v2 = 0 

D: vd – v3 = 0 

E: v2 – vout = 0 

These equations can be represented in matrix format as follows 

 

1

2

3

1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 1 1 1 0 0

0 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0
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 

    
    
    
     
        
        

 
 

in

b

d

out

v

v

v

v

v

v
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Further, the matrices are denoted as  

. 0S v   

where S is the stoichiometric matrix and v is a vector containing the flux values. 

Measuring any 2 fluxes will satisfy the degree of freedom of this system of equations 

and thus enable us to calculate the other fluxes.  

1.1.5 Choosing free fluxes 

Oftentimes in larger metabolic networks, it is not possible to measure enough number 

of fluxes to satisfy the degree of freedom and hence to estimate these additional 

fluxes, isotopomer measurements (Iexp) are used. The fluxes estimated using Iexp 

are called “free fluxes”. All other fluxes, called dependent fluxes, can be expressed as 

linear combinations of the free and measured fluxes. 

The number of free fluxes f in a metabolic network with m metabolites and n net 

fluxes is given by f = n - rank (S).  Alternately f = n - m - p where p is the number of 

measured fluxes.  Several sets of free fluxes exist and they can be linearly 

transformed into each other. For small metabolic networks (like the example network) 

it is possible to figure out the free fluxes manually (by writing flux balances on paper) 

but the same is not true for large networks as the number of combinations increase. 

We can make use of the constraints placed on fluxes by the stoichiometric matrix to 

find a set of fluxes that are independent of each other. The stoichiometric matrix can 

be expressed as 

. . 0c c m mS v S v  , 

where vm and vc are the measured and estimated fluxes respectively leading to 
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-1

c c m mv =(S ).S .v  

One method of determining free fluxes in a metabolic network is by ensuring that the 

matrix Sc is invertible. There are other methods documented in literature for finding 

free fluxes as well (Quek et al. 2009). 

1.2 Simulating an ILE in the metabolic network model 

To estimate the free fluxes, the Iexp obtained by conducting an ILE is fitted to Isim 

which is obtained by simulating the ILE on the metabolic network model in silico. To 

simulate an ILE in the model, the paths of the isotopes through the reactions in the 

model need to be tracked. This can be done if the atom rearrangements during 

reactions are known. Isotopomer balances, similar to flux balances, help simulate 

ILEs. Fig. 1.2b illustrates isotopomer balances for the metabolite C in the example 

network in Fig. 1.1.  

The isotopomers of the metabolites E and C are identical at steady state. Given 

guessed values of the free fluxes, the Isim of metabolite E can be computed. Thus the 

Iexp of E can be fitted to the Isim of E by varying the guess values of free flux within 

the stoichiometrically feasible flux space.  
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Isotopomer balances on metabolite C 
v3 ( ) = v2 ( ))v1   ( . +:

v3 ( ) = v2 ( ))v1 ( . +:

v3 ( ) = v2 ( ))v1 ( . +:

v3 ( ) = v2 ( ))v1  ( . +:

v3 ( ) = v2 ( ))v1  ( . +:

v3 ( ) = v2 ( ))v1 ( . +:

v3 ( ) = v2 ( ))v1 ( . +:

v3 ( ) = v2 ( ))v1 ( . +:

A + B C

D

E
v1 v2

v3

21 3 21 3

3 2 1D

C EA B v1 v2

v3

21 3+

Flux balance on metabolite C 
v1 + v3 = v2

(a)

(b)

 

Fig. 1.2. Isotopomer balancing for simulating an ILE mathematically. The intracellular 

fluxes in the example network (Fig. 1) can be estimated by fitting experimentally measured 

isotopomer abundances to simulated abundances. The ILEs are simulated in the mathematical 

model by conducting isotopomer balancing. To balance the isotopomers of the metabolite C, 

the (a) flux balance equation and atom rearrangements of the reactions involving C are 

required.  The number of carbon atoms in a metabolite are represented by the number of 

circles. The atom rearrangements that occur in the three reaction v1, v2 and v3 are depicted 

with respect to the metabolite C. For instance the 1
st
 carbon atom of C can come from the 1

st
 

carbon atom of A or 3
rd

 carbon atom of D. (b) The isotopomers of the metabolite C are 

balanced in this example network. C is a three carbon atom metabolite and therefore has 2
3
 

isotopomers and 2
3
 isotopomer balance equations. Empty circles represent 

12
C whereas filled 
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circles represent 
13

C.  The isotopomer which is being balanced is listed at the left before its 

equation. It is clear that the isotopomer equations are nonlinear owing to the presence of the 

condensation reaction v1.  

 

 A metabolite with n carbon atoms has 2
n
 isotopomers and correspondingly 2

n
 

isotopomer balance equations. These equations can be non-linear if condensation 

reactions are involved. In Fig. 1.2b, the 1
st
 term involving the flux v1 renders the 

equations non-linear. The number of isotopomer balance equations can be reduced by 

lumping metabolites in the network and restricting the model to as few reactions as 

possible. To solve the non-linear equations analytically, several techniques such as 

cumomer, bondomer, elementary metabolite unit (EMU) and fluxomer balancing 

have been developed. The cumomer and EMU balancing techniques decompose the 

non-linear isotopomer equations to cascades of linear equations that can be solved 

analytically in sequence (Wiechert et al. 1997a; Antoniewicz, Kelleher, and 

Stephanopoulos 2007a). Both these techniques are equivalent in simulating ILEs and 

are most commonly used currently. The bondomer technique keeps track of intact and 

broken bonds to simulate the ILE using probability equations. This technique has 

primarily been used in ILEs that employ uniformly labeled feed substrates in order to 

avoid dealing with complex probability equations (van Winden, Heijnen, and 

Verheijen 2002; Sriram and Shanks 2004). Fluxomer balancing is the most recently 

developed technique and it accomplishes decoupling the non-linear terms by using a 

single variable for both the fluxes and isotopomers (Srour, Young, and Eldar 2011).  
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1.3 Statistical methods to estimate fluxes and their errors  

Optimization algorithms are used to intelligently search the flux space iteratively and 

find the points that best explain the experimental observations i.e. the isotopomer 

abundances. The optimizations are repeated several times starting at different points 

in the flux space to ensure that the global optimum is reached. To ensure statistical 

significance, the errors in experimental measurements are projected onto flux 

estimates via techniques such as Monte Carlo simulations or other non-linear 

approaches (Antoniewicz, Kelleher, and Stephanopoulos 2006a; Möllney et al. 

1999a). 

1.4 Processing MS and NMR data  

Raw MS and NMR data need to be processed in order to obtain isotopomer 

abundances. MS data has to be corrected for the presence of naturally abundant 

isotopes of all elements in the metabolites and the areas under the NMR peaks need to 

be determined to obtain isotopomer abundances. MS and NMR are capable of 

measuring only linear combinations of abundances of isotopomers of a metabolite 

(Fig. 1.3). 

It is sometimes possible to obtain all 2
n
 isotopomer abundances for certain 

metabolites. For instance, three distinct fragments of the three carbon atom amino 

acid serine (when derivatized by TBDMS) can be measured by MS and from these all 

8 isotopomers can be computed. These linear combinations of isotopomer abundances 

can easily be simulated during simulation of an ILE.  
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singlet = +

doublet 1 = +

doublet 2 = +

double doublet  = +

NMR HSQC peak for Asp α α β γ

m+0 = +

m+1 = + + +

m+2 = +

Mass isotopomers of Ala 2 3

m+0 =

+ +m+1 =

m+3 =

Mass isotopomers of Ala 1 2 3

m+2 = + +

 

Fig. 1.3. Linear combinations of isotopomer abundances are measured by NMR and 

MS.  Filled circles represent 
13

C atoms and empty 
12

C (a) The 2D-NMR peak corresponding 

to Asp α carbon atom can split into 4 peaklets, the relative areas under which represent the 

relative abundances of the linear combinations of isotopomers illustrated. The singlet is 

obtained when the α carbon atom is 
13

C and its immediate neighbors are 
12

C. Doublet 1 and 

doublet 2 are obtained when the α carbon atom and one of its immediate neighbors are 
13

C. 

The double doublet is obtained when the α carbon and both its neighbors are 
13

C. The isotope 

label on the γ position does not affect the peak splitting. (b) Mass spectrometry fragments 

metabolites and measures their masses. If m is the molecular weight of the fragment with n 

carbon atoms then its mass can range from m+0 to m+n depending on the isotope labeling of 

the carbon atoms. These mass isotopomers represent linear combinations of positional 

isotopomers. 

1.5 Software available for MFA 

It is imperative to automate parts or all of the above mathematical techniques using 
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programming languages to obtain accurate results in a reasonable timeframe. Various 

software have been developed over the years that can simulate ILEs on mathematical 

models of metabolic networks, estimate fluxes using optimization algorithms and find 

flux confidence intervals using statistical methods. Depending on the capabilities of 

the software, additional computational tools maybe required to determine free fluxes 

and process MS or NMR data. The various software viz. 13CFLUX2, FiatFlux, 

NMR2Flux, Metran, and OpenFLUX differ mainly in their ILE simulation technique, 

optimization algorithm and statistical method used for estimating flux standard 

deviations. 

NMR2Flux, developed by Sriram et al. (Sriram et al. 2004a), is capable of simulating 

ILEs using cumomer or bondomer balancing. This is the software used in this work. 

NMR2Flux is in C language and is currently not available publically. The user needs 

to input the metabolic reactions and their atom rearrangements in a comma separated 

value (csv) file that can be read by the software. The user also needs to determine and 

specify the free fluxes. Corrected MS or NMR data is read from csv files. The 

software is capable of conducting sensitivity analysis thus allowing design of 

experiments.  It uses the optimization algorithm simulated annealing to search the 

flux space and Monte Carlo simulations to compute standard deviations of fluxes. 

Outline of the work done in this study 

Chapter 2 describes the statistical design study conducted to identify the best isotopic 

labels and information rich measurements to accurately identify fluxes in two 

important plant pathways. This chapter is an accepted manuscript in the journal – 
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Molecular Biosystems.  

Chapter 3 describes the MFA study on Arabidopsis cell suspensions subjected to two 

contrasting light treatments. This chapter is the draft of a manuscript that will be 

submitted for publication to the journal – Plant physiology. 

Chapter 4 describes the MFA study on poplar cell suspensions grown under different 

carbon – nitrogen supply treatments. This chapter is an early draft of two manuscripts 

that will be submitted to the journals – Metabolic Engineering and Plant Physiology. 

This work was mainly done by myself, Dr. Ashish Misra and Mr. Xiaofeng Zhang 

and is part of a broader study on poplar via collaboration with Dr. Gary Coleman at 

the Plant science and landscape architecture department.   
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Abstract  

Metabolic fluxes are powerful indicators of cell physiology and can be estimated by 

isotope-assisted metabolic flux analysis (MFA). The complexity of the 

compartmented metabolic networks of plants has constrained the application of 

isotope-assisted MFA to them, principally because of poor identifiability of fluxes 

from the measured isotope labeling patterns. However, flux identifiability can be 

significantly improved by a priori design of isotope labeling experiments (ILEs). This 

computational design involves evaluating the effect of different isotope label and 

isotopomer measurement combinations on flux identifiability, and thereby identifying 

optimal labels and measurements toward evaluating the fluxes of interest with the 

highest confidence. This article reports ILE designs for two major, compartmented 

plant metabolic pathways – the pentose phosphate pathway (PPP) and γ-aminobutyric 

(GABA) shunt. Together, these pathways represent common motifs in plant 

metabolism including duplication of pathways in different subcellular compartments, 

reversible reactions and cyclic carbon flow. To compare various ILE designs, we 

employed statistical A- and D- optimality criteria. Our computations showed that 1,2-

13
C Glc is a powerful and robust label for the plant PPPs, given currently popular 

isotopomer measurement techniques (single quadrupole mass spectrometry [MS] and 

2-D nuclear magnetic resonance [NMR]). Further analysis revealed that this label can 

estimate several PPP fluxes better than the popular label 1-
13

C Glc. Furthermore, the 

concurrent measurement of the isotopomers of hexose and pentose moieties 

synthesized exclusively in the cytosol or the plastid compartments (measurable 
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through intracellular glucose or sucrose, starch, RNA ribose and histidine) 

considerably improves the identifiability of PPP fluxes in the individual 

compartments. Additionally, MS-derived isotopomer measurements outperform 

NMR-derived measurements in identifying PPP fluxes. The potency of 1,2-
13

C Glc 

can be improved substantially by combining it with other labels (e.g. 3-
13

C Glc, 1-
13

C 

Glc and U-
13

C Glc) in parallel ILEs. For the GABA shunt, we calculated that 100% 

2-
13

C Ala and 100% U-
13

C Gln constitute the best labels. We anticipate that the ILE 

designs presented in this article can enhance the quality of flux estimates in these two 

complex plant pathways. In the future, these ILE designs can be further improved by 

leveraging recent analytical and computational developments in isotope-assisted 

MFA. 

2.1. Introduction 

Metabolic flux analysis (MFA), a powerful technique to quantify cellular physiology 

(Stephanopoulos and Stafford 2002b), involves the systemwide quantification of 

carbon traffic through cellular biochemical reactions. Metabolic fluxes represent a 

substantial portion of the “action” occurring in a cell or tissue (Stephanopoulos 2002). 

Therefore, they are as important as other indicators of phenotype such as transcript 

levels, protein levels and enzyme activities (L. J. Sweetlove, Last, and Fernie 2003). 

Metabolic flux maps are instrumental toward a comprehensive understanding of 

metabolism (L. Sweetlove, Fell, and Fernie 2008; L. J. Sweetlove, Last, and Fernie 

2003; Schwender, Ohlrogge, and Shachar-Hill 2003a; Schwender, Ohlrogge, and 

Shachar-Hill 2004; Fernie, Geigenberger, and Stitt 2005; Schwender 2008). By 
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enabling visualization of carbon traffic in metabolic pathways (Sriram et al. 2004b; 

Sriram, Fulton, and Shanks 2007; Rontein et al. 2002; Schwender, Shachar-Hill, and 

Ohlrogge 2006; Libourel and Shachar-Hill 2008; Baxter et al. 2007; Alonso et al. 

2007; Williams et al. 2008a; Allen, Libourel, and Shachar-Hill 2009; Allen, 

Ohlrogge, and Shachar-Hill 2009), these maps can suggest strategic metabolic 

engineering targets (Schwender 2008; Stephanopoulos 1999), identify unknown 

(Schwender et al. 1996; Schwender et al. 2004) or apparently futile metabolic 

pathways(Sriram et al. 2008) and potentially contribute toward building predictive 

models of metabolism (L. J. Sweetlove, Last, and Fernie 2003; Minorsky 2003; 

Ratcliffe and Shachar-Hill 2006; Rios-Estepa and Lange 2007). 

Isotope-assisted MFA is a powerful method of quantifying fluxes, especially in 

sophisticated metabolic networks such as those of plants. In this method the 

biological system of interest is fed a designed mixture of labeled (e.g. 
13

C) and 

unlabeled (e.g. 
12

C) stable isotopes in an isotope labeling experiment (ILE). Fluxes 

are iteratively evaluated from the ensuing isotopic labeling patterns (such as isotope 

isomers [isotopomers]) of metabolites and biomass components by computational 

techniques such as metabolic network modeling, isotopomer balancing, and global 

optimization (Stephanopoulos and Stafford 2002b; Libourel and Shachar-Hill 2008; 

Wiechert 2001). This task is nontrivial because flux evaluation is a challenging 

parameter estimation problem in an extensive parameter space (Antoniewicz, 

Kelleher, and Stephanopoulos 2006b), wherein the fluxes are parameters that have to 

be estimated from isotopomer abundances and other measurements.  

Flux identifiability, the confidence with which a flux can be estimated from the 
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information contained in isotope labeling patterns, is a valuable measure of the 

quality of information obtained from an ILE. Flux identifiability depends on 

properties of the ILE, and this dependence can be examined on two levels. On one 

level (structural identifiability), flux identifiability depends on (a) the layout or 

topology (stoichiometry and carbon atom rearrangements) of the metabolic network 

under investigation, (b) which labeled carbon sources are supplied and which atoms 

of these carbon sources are labeled and (c) which metabolites are analyzed and which 

isotopomers of these metabolites are measured. On another level (statistical 

identifiability), flux identifiability also depends on (d) the values of the fluxes in the 

network, (e) the relative proportions of the supplied labeled carbon sources and (f) the 

measurement errors of the labeling patterns(Möllney et al. 1999b). Whereas the 

metabolic network layout and flux values (a and d) are beyond the control of the 

investigator, all the other factors (b, c, e, f) can be chosen judiciously to enhance flux 

identifiability. However, doing so is a difficult task because the optimal choices are 

usually not obvious and have to be determined by sophisticated mathematical 

procedures that compare different ILE designs on the basis of their statistical quality. 

Insufficient flux identifiability is an acute problem in plant metabolic networks due to 

their complexity, which arises due to the duplication of pathways in multiple 

intracellular compartments with different fluxes in each compartment, the existence 

of many bypasses and cyclic pathways, myriad interconnections between metabolic 

subnetworks and incompletely known biochemistries. 

This work is motivated by the success of previous investigations on microorganisms 

as well as in silico work on mammalian cell and plant embryo metabolism (Möllney 
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et al. 1999b; Libourel, Gehan, and Shachar-Hill 2007a; Araúzo-Bravo and Shimizu 

2003; Metallo, Walther, and Stephanopoulos 2009; Crown, Ahn, and Antoniewicz 

2012; Walther et al. 2012), which showed that the a priori design of ILEs can lead to 

a multifold increase in the information obtained from the ILEs (Williams et al. 2008a; 

Möllney et al. 1999b; Libourel, Gehan, and Shachar-Hill 2007a; Wiechert et al. 

2001). In this article, we report the a priori design of ILEs for quantifying fluxes in 

two important plant metabolic pathways: the pentose phosphate pathway (PPP) and 

the γ-aminobutyric acid (GABA) shunt. The PPP (Fig. 2.1a) is a central pathway in 

plant metabolism and carries substantial carbon flux (Kruger and von Schaewen 

2003a). Although the PPP wastes a sixth of the carbon that passes through it as CO2 

(Heldt 2004), it regenerates the reductant NADPH (which is necessary for 

synthesizing fatty acids and certain amino acids) and provides carbon skeletons for 

the synthesis of nucleotides, phenylpropanoids, lignin and some amino acids (Kruger 

and von Schaewen 2003a).  

Furthermore, the complexity of the PPPs also raises several open questions: (i) 

whether the compartmentation of the PPPs is standard across plants, (ii) how the 

distribution of carbon traffic in the PPPs varies with environmental conditions such as 

light, temperature and nitrogen source availability, and (iii) how plants regulate 

carbon traffic through the PPPs at the level of gene expression. These questions 

necessitate the development of a tool to precisely quantify carbon traffic in the PPPs.  
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Fig. 2.1 (a) PPP metabolic model. Glycolysis and PPP duplicated in cytosol and plastid 

contain 13 metabolites and 32 fluxes (19 net fluxes and 13 reversibility extents). Flux 

balances allow dependent fluxes to be expressed as linear combinations of directly 

measurable (vInp and vgapp) and free fluxes (vg6pdh, vtktAf, vg6pdhp and vg6pt). Dashed 

arrows indicate metabolites leaving the system. The plastidic compartment is enclosed by a 

dashed box; suffix ‘p’ indicates metabolites in the plastidic compartment. Abbreviations: 

E4P, erythrose-4-phophate; F6P, fructose-6-phosphate; Glc, glucose; G6P, glucose-6-
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phosphate; P5P, pentose phosphates; S7P, sedoheptulose-7-phosphate; T3P, triose 

phosphates. (b) GABA shunt model. The TCA cycle in the mitochondrion, the glyoxylate 

shunt in the glyoxysome, the GOGAT cycle in the plastid and the GABA shunt across the 

mitochondrion and the cytosol together comprise a network with 31 metabolites and 34 net 

fluxes. The measured fluxes are vInp1, vInp2 and vPyr; the free fluxes are vPdh, vCitdh, 

vaKgdh, vMgdh, vMef, vPyrc, vGABAtk and vGogat. The intracellular compartments are 

separated from each by dash lined regions. Dashed arrows indicate metabolites leaving the 

system. Suffixes ‘m’, ‘p’, ‘c’ and ‘g’ indicate metabolites in the mitochondrial, plastidic, 

cytosolic and glyoxysome compartments respectively.  Abbreviations: AcCoA, acetyl CoA; 

Ala, alanine; Asp, aspartate; GABA, γ-aminobutyric acid; Gln, glutamine; Gly, glycine; Glu, 

glutamate; Glyox, glyoxylate; αKG, alpha-ketoglutarate; Mal, malate; OAA, oxaloacetate; 

Pep, phosphoenolpyruvate; Pyr, pyruvate; Succ, succinate. 

 

Although previous investigations have addressed these questions to an extent, there 

are gaps in knowledge and a clear picture of PPP flux distribution across 

compartments is lacking. In the pioneering MFA work of Dieuaide-Noubhani et al. 

(Dieuaide-Noubhani et al. 1995), the metabolic redistribution of 1-
14

C and 2-
14

C 

glucose (Glc) into sucrose, free Glc and starch in maize root tip cells suggested that 

the PPP was mostly active in the plastid. Subsequent work by Shachar-Hill and co-

workers (Paula Alonso, Dale, and Shachar-Hill 2010; Schwender, Ohlrogge, and 

Shachar-Hill 2003a; Alonso, Val, and Shachar-Hill 2011) as well as Schwender and 

co-workers on Brassica napus embryos, maize embryos and maize endosperm used 

models in which the oxidative branch of PPP (from glucose-6-phosphate [G6P] to the 

pentose phosphates) was present in both the cytosol and the plastid, whereas the non-
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oxidative branch (the rest of the PPP) was present only in the plastid. However, other 

evidence points to the possibility that the PPP operates in both compartments. For 

example, Krook et al. (Krook et al. 1998) fed 1-
13

C Glc to carrot suspension cells and 

compared the labeling in sucrose (synthesized from cytosolic hexose phosphates 

(Usuda and Edwards 1980)) and starch (synthesized from plastidic hexose phosphates 

(Streb et al. 2009)). From this, they qualitatively inferred that the PPP is present in 

both the cytosol and the plastid. Sriram et al. (Sriram et al. 2004b), in their work on 

soybean embryos, observed substantially different isotopomer abundances in 

hydrolysis products of sugars associated with glycosylated protein (derived from 

cytosolic hexose phosphates) and starch, and fitted their labeling data to a model that 

contained the oxidative and non-oxidative PPPs in both the cytosol and the plastid. 

Allen and co-workers conducted ILEs on soybean embryos and analyzed the labeling 

patterns of amino acids belonging to the large and small subunits of ribulose-1,5-

bisphosphate carboxylase/oxygenase, which are synthesized in the plastid and cytosol 

respectively. This novel method revealed isotopic differences between amino acids 

originating in the cytosol and the plastid and also found evidence of flux through the 

PPP. Together, these results suggest that the allocation of flux to the PPPs in the 

different compartments may vary(Allen et al. 2012). In a recent, elaborate study, 

Masakapalli et al. (Masakapalli et al. 2009b) fed 1-
13

C, 2-
13

C and U-
13

C Glc to 

Arabidopsis thaliana suspension cells and examined three metabolic models that 

could best account for the concomitant labeling patterns. These three models differed 

in the subcellular localization of the PPP – one model contained the oxidative and 

non-oxidative reactions of PPP only in the plastid, another model contained the 
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oxidative reactions in cytosol and plastid with the non-oxidative reactions restricted 

to the plastid and the third model contained the oxidative and non-oxidative reactions 

of PPP in both the plastid and the cytosol. Surprisingly, Masakapalli et al. observed 

that all three models explained the data equally well. This illustrates the difficulty in 

identifying PPP fluxes accurately in plant metabolic networks. Our study aims to 

address these issues by determining the best isotopic labels and critical isotopomer 

measurements that can help obtain additional information that will help quantify the 

PPP fluxes more accurately. Although elaborate and comprehensive MFA studies on 

PPP in plants exist (Sriram et al. 2004b; Sriram, Fulton, and Shanks 2007; 

Masakapalli et al. 2009b; Roscher, Kruger, and Ratcliffe 2000; Alonso, Val, and 

Shachar-Hill 2011; Allen, Ohlrogge, and Shachar-Hill 2009), there has been little 

focus on the design of ILEs involving non-trivial isotope labels, especially for the 

PPP. We anticipate that the PPP flux estimates of previous studies can be 

significantly improved by employing the isotope labeling strategies proposed in this 

article.  

The GABA shunt (Fig. 2.1b) is a highly interconnected pathway that acts as a 

crosslink between carbon and nitrogen metabolism (Fait et al. 2008). This pathway 

involves the conversion of glutamate to succinate via the non-protein amino acid 

GABA instead of via the tricarboxylic acid (TCA) cycle; therefore, the GABA shunt 

is a bypass of the TCA cycle. Although GABA is known to play various crucial roles 

in plants (integration of carbon and nitrogen metabolism (Bouche and Fromm 2004), 

defense against insect attack (Bown, Hall, and MacGregor 2002) and pollen tube 

development (Palanivelu et al. 2003)) and animals (neurotransmitter (Fait et al. 2008; 
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Shelp, Bown, and Faure 2006; Shelp, Bown, and McLean 1999)) little is known about 

carbon flow through the GABA shunt (Fait et al. 2008) relative to that through the 

TCA cycle. Researchers have hypothesized that the GABA shunt is a metabolic 

highway that carries significant carbon flux during normal conditions and even 

greater flux when a plant faces stress (Fait et al. 2008). If this hypothesis is true, then 

the GABA shunt is one of the first major pathways taken by nitrogen after it enters 

primary metabolism. This article also reports the design of judicious combinations of 

labeled carbon sources fed in ILEs that will help test this hypothesis through MFA. 

Previous isotope-assisted MFA studies of plant metabolic networks (Sriram et al. 

2004b; Sriram, Fulton, and Shanks 2007; Schwender, Shachar-Hill, and Ohlrogge 

2006; Alonso et al. 2007; Allen, Ohlrogge, and Shachar-Hill 2009; Iyer et al. 2008) 

were designed to investigate most central carbon metabolic pathways but did not 

focus on the GABA shunt. 

In the article we identify isotope labels and label combinations that improve the 

identifiabilities of important fluxes in PPP and GABA shunt pathways. We also 

identify the biomass components that contribute maximum labeling information 

toward flux identifiability. Additionally, we compare the usefulness of labeling 

information obtained from the two commonly used isotopomer measurement 

techniques – mass spectrometry (MS) and nuclear magnetic resonance (NMR). 
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2.2. Methods 

2.2.1. Metabolic network models for the PPP and the GABA shunt 

We modeled metabolic networks by using steady state flux balance equations of the 

form: 

S.v 0 

where v is a vector containing all fluxes and S is a stoichiometric matrix that 

represents metabolite balances in terms of the fluxes. An outcome of this relationship 

is that several fluxes in the network (“dependent” fluxes) are expressible as linear 

combinations of a smaller set of parameters, which includes: (i) a set of fluxes termed 

“free” fluxes(Wiechert and Graaf 1997), (ii) the few fluxes that are directly 

measureable (e.g. carbon source uptake), (iii) reversibility extents, relevant to pairs of 

reversible reactions and (iv) “scrambling extents” which, for pairs of reactions that 

have identical stoichiometries but different carbon atom rearrangements, are ratios 

indicating how the net flux is split across the two carbon atom rearrangements.  

Our model of the PPP (Fig. 2.1a) is based on reaction stoichiometries and carbon 

atom rearrangements from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Masoudi-Nejad et al. 2008b) as well as previous studies of the PPP (Kruger and von 

Schaewen 2003a). This model comprises glycolysis and the PPP, each duplicated in 

the cytosol and the plastid compartments. The sole carbon source in the model is Glc 

(taken up through the flux vInp). Carbon exits the network either as triose phosphates 

from the plastid (flux vgapp) or as CO2 (flux vco2x). We lumped the three carbon 

atom-metabolites dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, 
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phosphoenolpyruvate and pyruvate into a single metabolite named triose-3-

phosphates (T3P) (Winden et al. 2001b); we also lumped the five-carbon atom 

metabolites ribose 5-phosphate, ribulose-5-phosphate and xylulose 5-phoshpate into a 

single metabolite named pentose-5-phosphates (P5P). The absence of carbon atom 

rearrangements between these metabolites and their relatively rapid equilibration 

(Winden et al. 2001b) justifies this lumping. We modeled the intercompartmental 

transport of metabolites, such as the reversible transport of G6P, P5P and T3P 

between the cytosol to the plastid, as bidirectional fluxes. Overall, the metabolic 

model contains 13 metabolites and 32 fluxes. Of these, two fluxes (vInp and vgapp) 

are measurable, and four (vg6pdh, vtktAf, vg6pdhp, vg6pt) are free fluxes. 

Additionally the model contains 13 reversibility extents. Our model of the GABA 

shunt (Fig. 2.1b) is also based on reaction stoichiometries and carbon atom 

rearrangements from KEGG and on previous studies on this pathway(Fait et al. 2008; 

Clark et al. 2009). The model comprises the TCA cycle in the mitochondrion, the 

glutamine (Gln)-α-ketoglutarate aminotransferase (GOGAT) cycle in the plastid, the 

glyoxylate shunt in the glyoxysome and the GABA shunt that spans the 

mitochondrion and the cytosol. We lumped the metabolites fumarate and malate into 

a single pool (Winden et al. 2001b) and modeled the intercompartmental transport of 

metabolites as bidirectional fluxes. The network has 31 metabolites and 65 fluxes of 

which three fluxes (vInp1, vInp2 and vPyr) are measurable; eight (vpdh, vcitdh, vpyrc, 

vmef, vGOGAt, vGABAtk, vmgdh, vaKgdh) are free fluxes. Additionally the model 

contains 22 reversibility extents and one scrambling extent. The only carbon sources 

in the model are Ala and Gln (taken up through the fluxes vInp1 and vInp2 



 

27 

 

respectively). The metabolites pyruvate, CO2, plastidic glutamate, mitochondrial 

oxaloacetate and mitochondrial glycine exit the metabolic network. 

2.2.2. Simulations of ILEs by cumomer balancing 

We simulated the isotopomer abundances of metabolites that are measurable by MS 

and NMR by using cumomer balancing (Wiechert et al. 1999) with stoichiometrically 

feasible flux values. Cumomers (cumulative isotopomers) are defined as sums of 

specific isotopomers. This transformation enables conversion of nonlinear isotopomer 

balance equations to cascades of linear cumomer balance equations. Cumomers can 

be easily transformed back into isotopomers(Wiechert et al. 1999). Cumomer 

balancing provides identical results as the more recent technique of elementary 

metabolite unit (EMU) balancing, but may require longer simulation times. 

2.2.3. Isotopomer measurements simulated during ILE design 

For the identifiability analysis we simulated a comprehensive list of isotopomers 

(Isim) of metabolites that are known to be measureable by MS and NMR (Table 2.1 

and Table 2.2 list the corresponding metabolites). Usually researchers use either MS 

or NMR to measure isotopomers; however, since these techniques often provide 

complementary labeling information for a given metabolite (Christensen and Nielsen 

1999), we simulated measurements from both techniques. To differentiate between 

the fluxes of pathways duplicated in the cytosol and plastid, our PPP model 

incorporated several metabolites that are known to be synthesized exclusively in one 

of these two compartments. 
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Analytical 

technique 
Metabolites measured 

MS  
Alam, Glc, Glym, Hism, Phem, ribose, 

Serm, starch, Tyrm, Valm 

1-D or 2-D 

NMR 

Alan, Glyn, Hisn, LVAgc,  LVAgp, 

LVArc, Phen, Sern, Tyrn, Valn 

 

Table 2.1.  Isotopomer measurements in Isim in the PPP model. The isotopomer 

abundances of amino acids and carbohydrates whose metabolic precursors are known to be 

exclusively or predominantly synthesized in the cytosol and the plastid were included in Isim. 

Subscripts ‘m’ and ‘n’ indicate isotopomer measurements by MS and NMR respectively for 

the same metabolite. Abbreviations: Glc, glucose; LVAgc, levulinic acid obtained by 

hydrolysis of cytosolic glucose, LVAgp, levulinic acid obtained by hydrolysis of plastidic 

glucose; LVArc, levulinic acid obtained by hydrolysis of cytosolic (RNA) ribose.  

 

Analytical 

technique 

Metabolites measured 

MS  Alam, Argm, Aspm, Glym, Glum, Ilem, 

Leum, Lysm, Prom, Serm, Thrm, Valm  

1-D or 2-D 

NMR  

Alan, Argn, Aspn, Glun, Ilen, Leun, Lysn, 

Metn, Pron, Sern, Thrn, Valn 

 

Table 2.2. Isotopomer measurements in Isim in the GABA model. The isotopomer 

abundances of amino acids whose metabolic precursors are known to be synthesized in 

specific compartments were included in Isim. Subscripts ‘m’ and ‘n’ indicate isotopomer 

measurements by MS and NMR respectively for the same metabolite.
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 The subcellular compartmental origins of particular metabolites are well established 

(Singh 1998b) whereas those of others may be determined by finding the localizations 

of the enzymes that catalyze their formation reactions (Huang et al. 2010; Wu, Xiao, 

and Chou 2011; Chou and Shen 2010; Briesemeister, Rahnenführer, and Kohlbacher 

2010; Emanuelsson et al. 2000; Chi and Nam 2012). Metabolites predominantly or 

exclusively synthesized in the cytosol include soluble Glc, ribose (from RNA) and 

Ala, whereas those with a plastidic origin include Val, His, Phe and Tyr, starch (Heldt 

2004; Singh 1998b) as well as Gly and Ser. Our GABA shunt included the 

compartment-specific metabolites Ala, Gly, Ser Val, Ile, Pro, Thr, Asp, Glu, Lys and 

Arg.  

2.2.4. Statistical flux identifiability  

The mathematical techniques of quantifying identifiability of fluxes in a metabolic 

network have been established previously (Möllney et al. 1999b; Libourel, Gehan, 

and Shachar-Hill 2007a; Wiechert et al. 1997b) and are discussed briefly here. The 

covariance of fluxes with respect to noisy isotopomer measurements is an indicator of 

flux identifiability, and the diagonal elements of the covariance matrix (Cov) 

represent variances of the corresponding fluxes (Press et al. 1992). The premise of 

identifiability analysis is that the Cov can be computed without prior knowledge of 

the true flux values. A priori identifiability analysis thus necessitates use of guessed 

values of free fluxes required to compute the matrix Cov which is given by the 

inverse of the Hessian (H) of the chi-square function (χ
2
) between Isim and 

experimentally measured isotopomers (Imeas, this term vanishes thus allowing a priori 
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analysis), (Press et al. 1992)    

2 1
)]( , ) [ (Cov f m H  

2 2

2
( )

k l

H
f f

, 

where k and l are counters that go over all free fluxes. Comparing covariance 

matrices obtained under different ILE designs amounts to comparing their statistical 

flux identifiabilities. Previous studies have used scalar statistical criteria such as A- 

and D- optimality criteria to compare covariance matrices (Möllney et al. 1999b; 

Libourel, Gehan, and Shachar-Hill 2007a). The A-optimality criterion is defined as 

the trace of the covariance matrix and the D-optimality criterion is the determinant of 

the covariance matrix. 

critD det( )Cov  

crit

tr( )
A

n

Cov
 , 

where n is the number of rows or columns in Cov. 

Acrit signifies the arithmetic mean of the variances whereas Dcrit
1/n

 signifies the 

geometric mean of the variances. Since the criteria are proportional to flux variances, 

high identifiability corresponds to small A- and D- criteria. This work uses the A-

criterion as a measure of identifiability since it has certain advantages over the D- 

criterion that were highlighted by Libourel et. al. (Libourel, Gehan, and Shachar-Hill 

2007a). Briefly, the difference between the arithmetic mean (AM) and the geometric 

mean (GM) of the variances of fluxes is greater for the D-optimal ILE designs 

(Libourel, Gehan, and Shachar-Hill 2007a). This follows from the AM-GM 

inequality. This means that D-optimality criterion may lead to a needle shaped 
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confidence region of fluxes, i.e. a D-optimal ILE design may resolve all but one flux 

with acceptable confidence interval. In this work we verified this claim for 5 pairs of 

optimal A- and D- designs (data not shown). 

Because the A-criterion is inversely proportional to flux identifiability, we use the 

term “information yield” (IY), the square root of inverse of A-criterion, as a metric to 

compare different ILE designs:  

crit

1
IY

A  

We implemented all isotopomer simulations and IY calculations on our flux 

evaluation computer program NMR2Flux+ (Sriram et al. 2004b; Sriram et al. 2008). 

NMR2Flux+ uses cumomer balancing (Wiechert et al. 1999) (Sec. 2.2) to simulate 

isotopomer abundances from a given set of fluxes, and uses the global optimization 

algorithm simulated annealing (Pardalos and Romeijn 2002) to evaluate fluxes from a 

given set of isotopomer abundances.  

2.3. Results and Discussion 

2.3.1. Plant PPP fluxes are best identified with 100% 1,2-13C Glc (with 

our set of isotopomer measurements)  

The choice of an appropriately labeled carbon source is paramount in ILE design 

because it crucially determines both the amount of information obtainable from the 

experiment and the cost of the experiment. Therefore, our first objective was to 

determine which of the commercially available labels of glucose provides the 

maximal information toward identifying fluxes in the plant PPPs. Toward this we 
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computed IY for ILEs that employ each of the eight commercially available Glc 

labels and naturally abundant Glc, mixed in different proportions. This analysis (Fig. 

2.2a) revealed that the PPP fluxes are best identified with 100% 1,2-
13

C Glc (IY = 

21.9 [arbitrary units]), followed by 100% 3-
13

C Glc (IY = 19.6) and the popularly 

used(Williams et al. 2008a; Sriram et al. 2008; Masakapalli et al. 2009b) label 100% 

1-
13

C Glc (IY = 18.2).  

(a) 

 

Fig. 2.2 100% 1,2-
13

C Glc outperforms other commercially available Glc labels in 

estimating PPP fluxes. This plot depicts simulated IY against extents of labeling of Glc. The 

values on the horizontal axis indicate the percentage of the label in the supplied Glc; the rest 

of the supplied Glc is naturally abundant. 

 

For all labels except U-
13

C Glc, IY increases with the proportion of labeled Glc, 

implying that dilution of these labels with naturally abundant glucose reduces the 

information available from them. The exception, U-
13

C glucose, is explained by the 

fact that 100% U-
13

C Glc completely labels all carbon atoms of intracellular 

metabolites with 
13

C, thus resulting in no differential distribution of label by different 
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pathways. Therefore, it is essential to dilute this label with naturally abundant 

glucose. Additionally, U-
13

C Glc generates isotopomers that are suitable for 

measurement by NMR(Sriram, Fulton, and Shanks 2007; Szyperski 1998); therefore, 

it is not surprising that this label is often employed at proportion as low as 

5%(Sriram, Fulton, and Shanks 2007) and 10%(Szyperski 1995). 

Furthermore, we analyzed the performances of 55 Glc labels that, to our knowledge, 

are commercially unavailable except through custom synthesis (all isotopomers of 

Glc except those listed in. Nine of these 56 Glc labels performed better than 1,2-
13

C 

Glc, of which the three best labels were 100% 3,4,5,6-
13

C Glc (IY = 23.7), closely 

followed by 100% 1,2,4-
13

C (IY = 23.3) and 3,5,6-
13

C Glc (IY = 22.9) (Table 2.3).  

Atom(s) of Glc labeled 
13

C IY 

3,4,5,6 23.7 

1,2,4 23.3 

3,5,6 23.2 

1,4,5,6 22.9 

2,3 22.6 

3,4,6 22.6 

1,2,5 22.3 

2,4,5,6 22.0 

2,3,6 21.9 

1,2,4,5,6 21.7 

 

Table 2.3. Performances of commercially unavailable Glc labels for the plant PPP 

network. This list contains the top 10 best-performing Glc labels. All labels are at 100% of 

total Glc. Nine Glc labels perform better than 1,2-
13

C Glc, which is the best performing 

amongst the commercially available Glc labels. 
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2.3.2. In silico ILEs corroborate the superiority of 1,2-13C Glc over 1-13C 

Glc in identifying PPP fluxes 

The results presented above lead to the question: how does an IY value translate to 

actual flux identifiability – does the slightly higher IY of the best commercial label 

1,2-
13

C Glc (IY = 21.9) over the popularly used label 1-
13

C Glc (IY = 18.24) imply 

that 1,2-
13

C Glc is significantly better in identifying PPP fluxes? To answer this 

question, we performed in silico ILEs as follows. From arbitrarily chosen values of 

the four free fluxes in the PPP model, we simulated isotopomer abundances resulting 

from ILEs employing either 100% 1,2-
13

C Glc or 100% 1-
13

C Glc. We then treated 

these simulated isotopomer abundances as surrogate experimental measurements and 

allowed NMR2Flux+ to evaluate, by minimizing χ
2
 through global optimization, a set 

of fluxes that best accounted for these surrogate measurements. Repeating this flux 

evaluation several (478) times from random initial points, we selected the evaluations 

that converged to χ
2
 values less than 20 (corresponding to a confidence level of 

99.96% for four degrees of freedom). This resulted in distributions for each flux 

(Figs. 2.3-2.4), which we compared to the initially chosen (“true”) flux values from 

which we had simulated the isotopomer abundances. Interestingly, some fluxes had 

bimodal distributions, e.g. vt3pt (Fig. 2.3a), vpfk, vpgifp, vpfkp, vg6pdhp and vg6pt 

(not shown), whereas other fluxes had unimodal distributions, e.g. vtktAf (Fig. 2.4b). 

The bimodal distributions exhibited a major peak close to the true flux value and a 

minor peak far away from it. 
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Peak 

vanishes for 

Δχ2<7

(b)

(a)

 

Fig. 2.3 Enforcing stricter criteria for the χ
2
 goodness-of-fit function can improve flux 

estimates and eliminate bimodal distributions. We simulated isotopomer abundances for 

ILEs employing 100% 1,2-
13

C Glc, treated these simulated isotopomer abundances as 

surrogate experimental measurements and then, by minimizing χ
2
 through global 

optimization, evaluated a set of fluxes that best accounted for these surrogate measurements. 

We repeated this flux evaluation 478 times from random initial points to obtain a flux 

distribution. Enforcing a goodness-of-fit criterion of χ
2
 = 20 (corresponding to a confidence 

level of 99.96% for four degrees of freedom) gave bimodal distributions for some fluxes (the 

distribution of the flux vt3pt is shown here); enforcing the stricter criterion of χ
2
 = 7 

eliminated the minor peak and retained the major peak around the “true” flux value from 

which we had originally simulated the isotopomer abundances. Therefore, enforcing a stricter 

goodness-of-fit fitting criterion can significantly improve flux estimates.  
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    a)                                     b)                                      c)  

 
Fig. 2.4 In silico ILEs with 100% 1,2-

13
C Glc estimate several fluxes better than 100% 1-

13
C Glc. We obtained flux distributions as explained in the caption of Fig. 3 and the text. The 

flux (a) vtktAf is more identifiable by the in silico ILE with 100% 1,2-
13

C Glc (red symbols 

and line) than with 100% 1-
13

C Glc (blue symbols and line), as the distribution corresponding 

to 1,2-
13

C Glc clusters closer to the true flux (dotted line). Both labels identify the flux (b) 

vg6pdh to nearly the same extent. The flux (c) vt3pt is identifiable only with 100% 1,2-
13

C 

Glc. This illustrates the superiority of 1,2-
13

C Glc over 1-
13

C Glc in estimating fluxes  in the 

compartmented plant PPPs.    

 

For instance, the major peak in the distribution of the flux vt3pt represented 385 out 

of 478 (~81%) flux evaluations and was centered around the true flux value of 0.2, 

whereas the minor peak that represented the remaining 19% of the flux evaluations 

was centered away from the true flux value (Fig. 2.3a). However, the points on the 

minor peak corresponded to χ
2
 values between 7 and 20; therefore, using a stringent 

cutoff of χ
2
 < 7 completely eliminated the minor peak (Fig. 2.3b). Applying a χ

2
 < 7 

cutoff to eight other fluxes that initially showed a bimodal distribution eliminated 

their minor peaks and retained the major peaks centered around the true flux values. 

This suggests that accurate identification of PPP fluxes requires a stringent χ
2
 cutoff 

value heuristically learned from a priori simulations. In the distributions discussed in 



 

37 

 

the rest of Sec. 3.2 (Fig. 2.4), we only consider flux sets corresponding to χ
2
 < 7. 

These flux distributions showed that while both 1,2-
13

C Glc and 1-
13

C Glc identified 

certain fluxes equally well (e.g. the cytosolic oxidative PPP flux vg6pdh), 1,2-
13

C Glc 

identified certain fluxes significantly better than 1-
13

C Glc (e.g. the non-oxidative 

PPP flux vtktAf) (Fig. 2.4a,b). Furthermore, 1,2-
13

C Glc was able to reasonably 

identify certain fluxes that were not at all identified by 1-
13

C Glc (e.g. the 

intercompartmental T3P transport flux vt3pt) (Fig. 2.4c). Apart from corroborating 

the identifiability results of Sec. 3.1, this outcome demonstrates that relatively small 

increases in IY could translate to significant differences in flux identifiability. 

Overall, 1,2-
13

C Glc identified as many as 10 out of the 19 fluxes in the model very 

close to their “true” values, including glycolytic fluxes in the cytosol (vpgif, vpfk) and 

the plastid (vpgifb) and the oxidative PPP flux in the cytosol (vg6pdh). However, 1,2-

13
C Glc does not identify all fluxes satisfactorily – certain fluxes, including glycolytic 

fluxes in the plastid (vpfkp), the oxidative PPP fluxes in the plastid (vg6pdhp) and the 

fluxes of the intercompartmental G6P and P5P transporters (vg6pt, vp5pt) were not 

well identified by this label. Therefore we examined if combining this label with 

other labels would increase flux identifiability (Sec. 3.7).  

2.3.3. Is 1,2-13C Glc always the best choice for the plant PPPs? 

Two recent investigations that have focused on designing labels for mammalian PPPs 

serve as a benchmark for our work. In a study that focused on the mammalian PPP 

(unicompartmental model, reactions of the PPP assumed irreversible)(Crown and 

Antoniewicz 2012), Crown and Antoniewicz identified 100% 2,3,4,5,6-
13

C Glc and 
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its complement 100% 1-
13

C Glc as the best Glc labels for this pathway. In another 

study focused on mammalian primary metabolic pathways including the PPP 

(unicompartmental model, reversible reactions included)(Metallo, Walther, and 

Stephanopoulos 2009), Metallo et al. identified 1,2-
13

C Glc as the best among 11 Glc 

labels for estimating PPP and glycolysis fluxes. Interestingly, our work converged on 

the result of Metallo et al. – we identified 1,2-
13

C Glc as the best commercially 

available label and its complement 3,4,5,6-
13

C Glc as the best commercially 

unavailable label for the plant PPPs. This similarity is despite several major 

differences between the metabolic network models and isotopomer measurements 

considered by Metallo et al. and our study – our PPP model contains 

compartmentalized duplicates of the PPP and glycolysis as well as 

intercompartmental transport reactions, a hallmark of plant cells. Additionally, we 

have considered a larger number and variety of readout metabolites, including 

essential amino acids not synthesized by mammalian cells, sugars and nucleic acids 

as well as two complementary isotopomer measurement techniques (NMR and MS). 

Metallo et al. rationalized the superiority of 1,2-
13

C Glc by showing that if Glc were 

labeled at the C-2 atom, it can enrich a larger number of carbon atoms of PPP 

metabolites than if it were labeled at other carbon atoms (e.g. C-4). This is due the 

repeated breakage and re-formation the C-1–C-2, C-2–C-3 and C-3–C-4 bonds of Glc 

in the reversible reactions of the PPP; conversely, the bonds between C-4–C-5 and C-

5–C-6 remain largely intact(Kruger and von Schaewen 2003a; Metallo, Walther, and 

Stephanopoulos 2009). To advance this line of reasoning, we examined how many 

isotopomer abundances change significantly (by > 0.01 units on a scale ranging from 
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0 to 1 units) when the two most important fluxes in the PPP network – the oxidative 

PPP fluxes in the cytosol (vg6pdh) and the plastid (vg6pdhp) – are each perturbed by 

20%. This calculation showed that 100% 1,2-
13

C Glc surpasses both 100% 1-
13

C Glc 

and 30% U-
13

C Glc in both the sum of isotopomer abundance changes (Fig. 2.5a) and 

the number of altered isotopomers (Fig. 2.5b).  

1.2 6 16 0 8 22 52 

1.0 9 24 42 - - - 

1.2 0.28 1.16 1.27 0.30 1.27 1.84 

1.0 0.31 1.53 2.20 - - - 

1.2 0.84 1.26 0.36 1.40 2.09 0.67 

1.0 0.93 1.52 0.52 - - - 

1.2 35 53 6 32 68 25 

1.0 40 69 0 - - - 

a)  

c)  

b)  

d)  

Fig. 6 MS- and NMR- derived isotopomer abundances are most sensitive to flux changes in the ILE with 100% 

1,2-13C Glc. To examine the sensitivities of isotopomers to flux changes, we simulated ILEs employing 100% 1 -13C, 

100% 1,2-13C and 30% U-13C Glc, and specifically examined how the perturbation of the cytosolic oxidative PPP flux 

vg6pdh (1.0à  0.8) and the plastidic oxidative PPP flux vg6pdhp (1.0à  1.2) alters isotopomer abundances. (a) the sum 

of changes and (b) the number of changes > 0.01 in the MS- and NMR- derived subset of isotopomer abundances 

indicates that 100% 1,2-13C Glc renders the isotopomer abundances most sensitive to the given flux changes. 

Interestingly, (c) the sum of changes and the (d) number of changes >0.01 in all 2 n isotopomers of all PPP metabolites 

indicates that 30% U-13C Glc renders isotopomer abundances most sensitive to the given flux changes.  
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1-13C 1,2-13C U-13C 1-13C 1,2-13C U-13C 1-13C 1,2-13C U-13C 1-13C 1,2-13C U-13C 

 

Fig. 2.5 MS- and NMR- derived isotopomer abundances are most sensitive to flux 

changes in the ILE with 100% 1,2-
13

C Glc. To examine the sensitivities of isotopomers to 

flux changes, we simulated ILEs employing 100% 1-
13

C, 100% 1,2-
13

C and 30% U-
13

C Glc, 

and specifically examined how the perturbation of the cytosolic oxidative PPP flux vg6pdh 

(1.0 0.8) and the plastidic oxidative PPP flux vg6pdhp (1.0 1.2) alters isotopomer 

abundances. (a) the sum of changes and (b) the number of changes > 0.01 in the MS- and 

NMR- derived subset of isotopomer abundances indicates that 100% 1,2-
13

C Glc renders the 

isotopomer abundances most sensitive to the given flux changes. Interestingly, (c) the sum of 

changes and the (d) number of changes >0.01 in all 2
n
 isotopomers of all PPP metabolites 

indicates that 30% U-
13

C Glc renders isotopomer abundances most sensitive to the given flux 

changes.  



 

40 

 

However, this result applies to the set of isotopomer MS- and NMR- derived 

isotopomer measurements considered in our model. Although this is a large set of 

isotopomers, MS and NMR can only measure a subset of all 2
n
 isotopomers of an n-

carbon metabolite. Unexpectedly, we found that if all 2
n
 isotopomers of each biomass 

component could be measured (instead of our subset of MS- or NMR- derived 

measurements), 30% U-
13

C Glc surpasses the other two labels in both the  um of 

isotopomer abundance changes (Fig. 2.5c) and the number of altered isotopomers 

(Fig. 2.5d). Therefore, 1,2-
13

C Glc is the best label for the plant PPPs with respect to 

the subset of isotopomers that can be measured by the currently poplar versions of 

MS (single quadrupole) and NMR (2-D [
13

C, 
1
H] HSQC(Iyer et al. 2008; Sriram et al. 

2007) or [
1
H, 

1
H] TOCSY(Iyer et al. 2008)). However, the measurement of all 

possible isotopomers of all PPP metabolites may potentially result in a new 

experimental design. Quantifying the abundances of all isotopomers of the five-, six- 

and seven- carbon metabolites of the PPP may require significant advancement of the 

measurement techniques. However, recent developments such as tandem MS can 

measure all 2
n
 isotopomers of four-carbon metabolites such as Asp (Choi and 

Antoniewicz 2011; Choi, Grossbach, and Antoniewicz 2012). Therefore, it is 

reasonable to expect that further improvements may make it possible to measure a 

large fraction of the 2
n
 isotopomers of each PPP metabolite. 

2.3.4. Superior performance of 1,2-13C Glc is largely independent of 

PPP flux values 

A central premise of statistical flux identifiability analysis is that the information 
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contained in an ILE is generally independent of the values of the fluxes. Therefore, 

the best labels determined by assuming one set of flux values should also be the best 

labels for any stoichiometrically feasible set of flux values. To examine if this was the 

case, we repeated the analysis described in Sec. 2.3.1 and Fig. 2.2 for 36 randomly 

chosen combinations of free flux values that spanned the stoichiometric range of the 

metabolic network. This analysis (Fig. 2.6) revealed that 100% 1,2-
13

C Glc was the 

best-performing label in 32 of the 36 (89%) combinations of flux values and that 

100% 3-
13

C was the second best Glc label in 20 out of 36 (56%) combinations. The 

consistent performance of 1,2-
13

C Glc over a range of feasible flux values validates 

the premise stated above and suggests that this label should provide significant 

information for most plant PPP networks.  

1,2-
13C

3-
13C

1-
13C 1,2-

13C

3-
13C

1-
13C

2-
13C

4-
13C

(b)(a)

 

Fig. 2.6 Superior performance of 1,2-
13

C Glc label is consistent across different sets of 

free flux values. Calculation of IY for 36 ILEs with different sets of free flux values shows 

that (a) 100% 1,2-
13

C Glc performs the best for 89% of the free flux combinations and (b) 

100% 3-
13

C Glc performs second-best for 56% of free flux combinations, thus validating the 

premise that the identifiability analysis is fairly independent of free flux values. Some of the 

isotopomer abundances in Isim were absent in these simulations; nonetheless, this does not 

affect the performance of the Glc labels(Libourel, Gehan, and Shachar-Hill 2007a).  
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2.3.5. Labeling information contained in hexose and pentose sugars is 

critical in elucidating PPP compartmentation 

Traditionally, isotope-assisted MFA has involved the measurement of labeling in 

proteinogenic amino acids derived from acid hydrolysis of a cell pellet or a protein 

extract (Szyperski 1995; Szyperski 1998; Schmidt, Nielsen, and Villadsen 1999). 

This experimentally straightforward technique provides metabolic information from 

various parts of the central carbon metabolic network because the biosynthetic 

precursors of the amino acids are distributed throughout this network. However, this 

may be inadequate for the plant PPPs. The complex carbon rearrangements and 

intercompartmental transfers of sugars in the plant PPPs may not be reflected in the 

few amino acids that originate from PPP metabolites. The measurement of labeling in 

hexose and pentose sugars of the PPP may perhaps reveal more information, 

especially on compartmentation. For example, carbohydrates such as intracellular 

sucrose or glucose and sugars in glycosylated protein (mannose, glucosamine) reflect 

cytosolic hexose phosphates, whereas starch reflects plastidic G6P. Therefore, a 

comparative analysis of the isotopomers of these compounds can potentially reveal 

differences between cytosolic and plastidic G6P pools, as conceptualized by Roscher 

et al.(Roscher, Kruger, and Ratcliffe 2000) and experimentally demonstrated by 

Sriram et al.(Sriram et al. 2004b) Similarly, ribose in nucleic acids likely has a 

predominantly cytosolic origin; hence its isotope labeling may contrast with the 

pentose backbone of histidine, which has a plastidic origin. Consequently, comparing 

the isotopomers of ribose from nucleic acids and histidine from protein will reveal 
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differences in the P5P pools of the cytosol and the plastid.  

However, the extraction, processing and analysis of many of the aforementioned 

compounds is laborious and not surprisingly, their concurrent measurement for 

isotope-assisted MFA is rare and has not been reported for plants. Therefore, it is 

worthwhile to computationally analyze the incremental benefit of measuring the 

labeling in hexose and pentose sugars. Toward this, we simulated IY for ILEs with 

varying proportions of 1,2-
13

C Glc by sequentially including in Isim labeling 

measurements from the following biomass components: (i) only proteinogenic amino 

acids, (ii) intracellular glucose, (iii) starch and (iv) RNA ribose. Clearly, each 

successive labeling measurement substantially increases IY, the highest incremental 

benefit being in the case of RNA ribose (Fig 2.8a). Further, to examine whether 

metabolic information from hexose and pentose sugars is more pronounced in MS or 

NMR measurements, we calculated IY for exclusively MS measurements (Fig. 2.7a) 

and exclusively NMR measurements (Fig. 2.7b). With NMR, one can measure hexose 

and pentose sugars through their five-carbon acid hydrolysis product levulinic acid 

(LVA)(Sriram et al. 2007): LVA resulting from hydrolysis of glycosylated protein is 

LVAgc, that resulting from starch hydrolysis is LVAgp and that resulting from ribose 

hydrolysis is LVArc. Again, each successive labeling measurement provides 

significant additional information with the highest incremental benefit being in the 

case of ribose-derived LVA (Fig. 2.7a,b). 

 



 

44 

 

Fig 3; 

H=4.2,L=5 (a) (b)

(c) (d)

 

Fig. 2.7 Measurement of isotopomers of hexose and pentose metabolites with cytosolic 

and plastidic origins substantially improves identifiability. IYs of ILEs with different 

percents of 1,2-
13

C Glc and including isotopomer measurements of different biomass 

components by (a) MS and (b) NMR show measuring that ribose isotopomers contributes 

substantially to improving identifiabilities of compartmented PPP fluxes. Additionally, for 

the same metabolites and measurement errors, the ability of the (c) MS to accurately identify 

the PPP fluxes is greater than that of the (d) NMR. Abbreviations: LVAgc, cytosolic glucose-

derived levulinic acid, LVAgp, plastidic glucose (starch)-derived levulinic acid; LVArc, 

cytosolic ribose-derived levulinic acid.  

 

The concurrent measurement of hexose and pentose phosphate pools from the cytosol 

and the plastid increases IY likely because it disentangles the effects of the oxidative 
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and the non-oxidative PPPs in the two compartments. In both the cytosol and the 

plastid, G6P loses its C-1 carbon atom to form P5P in the oxidative PPP. Therefore, 

reduced labeling of cytosolic or plastidic G6P in an ILE employing 1-
13

C Glc or 1,2-

13
C Glc can reveal the presence of the oxidative PPP in the corresponding 

compartment. However, the complex carbon rearrangements in the downstream non-

oxidative PPP in both compartments can confuse this interpretation. For example, 

high fluxes through the cytosolic oxidative PPP and the plastidic non-oxidative PPP 

can superimpose over each other, making the compartmentation unidentifiable. 

However, many of the rearrangements in the non-oxidative PPP are captured in the 

pentose phosphates synthesized in the respective compartments. Therefore the 

addition of pentose phosphate isotopomer measurements from the cytosol and the 

plastid can provide information orthogonal to that contained in the hexose 

phosphates. This explains the superior performance of the combination of isotopomer 

measurements from intracellular glucose, starch, RNA and histidine. 

2.3.6. MS outperforms NMR in identifying PPP fluxes 

The simulations presented above also shed light on the relative efficacies of MS- and 

NMR- derived isotopomers in estimating PPP fluxes. MS and NMR measure different 

linear combinations of the isotopomers of a particular metabolite(Christensen and 

Nielsen 1999): MS measures the mass isotopomer abundances of metabolite 

fragments, whereas 1-D NMR measures positional 
13

C enrichments and 2-D NMR 

measures populations of isotopomers containing different sequences of 
13

C
 
-
13

C or 

12
C-

13
C bonds. As per the results in Fig. 2.7, MS measurements yield substantially 
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higher IY values than NMR measurements; therefore, MS is clearly better than NMR 

in measuring fluxes through the plant PPPs. It could be argued that this is due to the 

higher analytical sensitivity of MS –  based on our previous experience and the 

literature(Sriram et al. 2004b; Christensen and Nielsen 1999), errors in MS-derived 

isotopomer abundances are typically less than 0.005 (or 0.5%), whereas errors in 

NMR-derived abundances are of the order of 0.01 (or 1%). To examine whether MS 

measurements were superior solely due to their higher precision, we compared the 

MS and NMR measurements of the same metabolites at the same precision level. Fig. 

2.7c and 2.7d depict that even if MS- and NMR- derived isotopomers had identical 

precision; MS gives higher IY values than NMR. This implies that, for the given 

metabolites whose labeling was measured, MS performs better than NMR in 

identifying plant PPP fluxes because the types of isotopomers it measures are more 

sensitive to PPP fluxes, and not only because it is a more precise technique. In other 

words, the MS measurements confer higher structural identifiability due to their 

increased sensitivity to PPP fluxes as well as higher statistical identifiability due to 

their higher precision. The superiority of MS over NMR is specific to the PPPs; the 

relative strengths of these techniques may compare differently for a network with a 

different topology.  

2.3.7. Performance of Glc labels in pairs and triads of ILEs in estimating 

PPP fluxes 

We quantified the performance of ILEs that simultaneously employed pairs of 

commercially available Glc labels at different proportions (data not shown). This 
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analysis revealed that there was no merit in using mixtures of Glc labels, because in 

general, an ILE employing a mixture of two labels had a lower IY than ILEs that 

individually employed each label constituting the mixture. For instance, an ILE 

employing a mixture of 50% 1,2-
13

C Glc and 50% 1-
13

C Glc (IY = 17.5) had a lower 

IY than one employing 100% 1,2-
13

C (IY = 21.9; Fig. 2.2a) or 100% 1-
13

C Glc (IY = 

18.2; Fig. 2.2a). This is because a mixture of two labels suffers from the dilution 

effect that occurs when a single label is diluted with a naturally abundant version of 

the carbon source (Fig.  2.2a). Isotopomers resulting from one of the two labels mask 

those of the other, thus diminishing the information obtained from the label mixture. 

Nevertheless, the deployment of two Glc labels in two or more parallel ILEs followed 

by flux evaluation from the combined measurements of both the ILEs should enhance 

flux identifiability. This will leverage the unique information offered by the two 

labels without allowing one to mask the other (Schwender, Shachar-Hill, and 

Ohlrogge 2006; Libourel, Gehan, and Shachar-Hill 2007a). To explore this 

possibility, we examined the performance of pairs and triads of commercially 

available Glc labels when used in parallel ILEs. All labels performed relatively better 

when paired with 100% 1,2-
13

C Glc and relatively worse when paired with 50% U-

13
C Glc performed (Fig. 2.8a). The pair {1,2-

13
C, 3-

13
C Glc} performed the best (Fig. 

2.8a), the performance of each label increasing with increase in its proportion and 

reaching a maximum at 100% proportions of both labels (Fig. 2.8b). The IY of the 

combination {100% 1,2-
13

C, 100% 3-
13

C Glc} was 29.5 (Fig. 2.8a), significantly 

higher than that of just 100% 1,2-
13

C Glc (IY = 21.9; Fig. 2.2a). 
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Fig. 2.8 Identifiabilities of PPP fluxes improve upon pooling isotopomer abundances 

from two parallel ILEs are pooled. (a)The axes list the 100% Glc labels (50% in case of U-

13
C) in two parallel ILEs – ILE1 and ILE2. Each bubble represents a pair of parallel ILEs 

whose IY was obtained by pooling the isotopomer measurements from these ILEs. Both the 

sizes of the bubbles and their color (as indicated in the color bar) are independently 

proportional to IY. Pooling isotopomer measurements from ILEs with 100% 1,2-
13

C Glc and 

3-
13

C Glc (IY = 29.5, highlighted by red arrow) is the most advantageous and better than the 

single ILE with 100% 1,2-
13

C Glc (IY=21.9). (b) IY (lighter shades of gray correspond to 
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increased IY as shown in the color bar) of pooled isotopomer measurements from ILEs with 

1,2-
13

C and 3-
13

C increases with increase in their proportions, i.e. dilution of any of the two 

labels with naturally abundant Glc is undesirable. 

  

 

Fig. 2.9 Performances of Glc labels for triads of ILEs. This bubble plot is similar to the 

one in Fig. 8a. After locking 100% 1,2-
13

C Glc as one label, we determined IYs for triads of 

ILEs employing this label and two other Glc labels. Pooling measurements from ILEs using 

100% 1,2-
13

C Glc, 100% 3-13C Glc and 100% 1-13C Glc respectively is the most 

advantageous, with IY = 34.8.  

 

Identifying optimal triads of ILEs was a more difficult problem due to the large 

number of possible triads. To circumvent this difficulty, we locked 100% 1,2-
13

C Glc 

as one of the labels in the triad (due to its superior performance established in Sec. 

3.1-3.4). Then we explored two other labels that could be used with 1,2-
13

C Glc in 

parallel experiments. The triad {100% 1,2-
13

C Glc, 100% 1-
13

C, 100% 3-
13

C Glc} 
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performed the best with IY = 34.8 (Fig. 2.9), significantly higher than the best 

pair{1,2-
13

C, 3-
13

C Glc} (IY = 29.5; Fig. 2.8a) or single label 1,2-
13

C (IY = 21.9; Fig. 

2.1). We investigated the best labels or label combinations for the plant PPPs when 

exclusively MS-derived or exclusively NMR-derived isotopomer measurements are 

available (Table 2.4; all labels at 100% proportion).  

Measured 
by 

 Best five 
single ILEs 

 Best five  
paired ILEs 

 Best five  
triads of ILEs 

  Label IY  Label 
1 

Label 
2 

IY  Label 
1 

Label 
2 

Label 
3 

IY 

MS  1,2 20.3  1,2 1 27.3  1,2 1 3 32.6 

MS  1 17.7  1,2 3 27.0  1,2 1 2 32.5 

MS  3 17.7  1,2 2 26.6  1,2 1 4 32.3 

MS  2 16.8  1,2 4 26.4  1,2 3 2 32.0 

MS  6 13.7  1,2 6 25.5  1,2 3 4 32.0 

NMR  3 7.5  3 1,2 10.6  1,2 3 4 11.9 

NMR  1,2 7.1  3 4 9.4  1,2 3 2 11.8 

NMR  2 5.2  3 2 9.3  1,2 3 6 11.5 

NMR  4 4.0  4 1,2 9.0  1,2 3 1 11.0 

NMR  5 3.7  3 6 8.9  1,2 3 5 10.9 

 1 

Table 2.4. Performance of Glc labels when Isim comprised solely MS- or solely NMR- 

derived isotopomer measurements. This list contains five of the best performing Glc labels 

and their IYs for single, pairs and triads of ILEs. MS measurements have higher IYs when 

compared to corresponding NMR measurements.   

1,2-
13

C, 3-
13

C and 1-
13

C Glc consistently featured amongst the top labels, 1,2-
13

C Glc 

being more prominent when MS measurements are available and 3-
13

C Glc being 

more prominent when NMR measurements are available. This suggests that more or 
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less the same set of labels is optimal when either MS or NMR measurements are 

available, although the use of MS leads to substantially greater flux identifiability. 

2.3.8. Performance of labeled carbon sources for GABA shunt 

We chose Ala and Gln as the carbon sources for the GABA shunt network because 

they enter this network via completely different routes – Ala enters through the 

mitochondrial TCA cycle and Gln through the plastidic GOGAT cycle. Therefore, 

their differential labeling can potentially provide significant flux information for this 

network. We evaluated IY for commonly available Ala and Gln labels at different 

proportions. Table 2.5 lists the five best performing labels of Ala and Gln, of which 

the combination {100% 2-
13

C Ala, 100% U-
13

C Gln} has the highest IY (= 71.8)  

toward estimating GABA shunt fluxes.  

 

 

 

 

 

Table 2.5. Five best-performing Ala and Gln labels for GABA shunt network. An ILE 

with 100% 2-
13

C Ala and 100% U-
13

C Gln corresponds to the best IY.  

 

The combination {100% 2-
13

C Ala, 75% U-
13

C Gln} has nearly the same IY (=70.3) 

75% 3-
13

C Gln and may serve as a good substitute especially as it offers high 

identifiability at less than 100% proportion, i.e. at reduced experimental cost. 

The fluxes in the GABA network are more interlinked than those in the PPP network 

Ala label Percent 

Ala 

Gln label Percent 

Gln 

IY 

2 100 U 100 71.8 

2 100 U 75 70.3 

2 100 U 50 68.1 

2 100 3 75 65.8 

2 100 3 100 65.6 
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due to the presence of many cyclic pathways. This makes it difficult to track the fates 

of different carbon atoms. Additionally, the fates of labeled carbon atoms originating 

from Ala and Gln cannot be distinguished from each other once they are assimilated 

into succinate (Succm). Thus speculating on the reasons for the relative merits of 

different Ala and Gln labels is not easy. Nevertheless, simulations showed that an ILE 

employing 100% 2-
13

C Ala and 100% U-
13

C Gln generated a greater number of 

isotopomers in the GABA network than other ILEs (data not shown), which partially 

explains the superior performance of this label combination.    

2.4. Summary and outlook 

This article explores in substantial detail the design of ILEs toward quantifying fluxes 

through two important, complex, compartmented plant metabolic pathways. We 

determined optimal combinations of commercially available Glc labels for the PPP as 

well as Ala and Gln labels for the GABA shunt. In particular, we established that 

given currently popular isotopomer measurement techniques (single quadrupole MS 

and 1-D or 2-D NMR), 1,2-
13

C Glc is a powerful and robust label for the plant PPPs. 

We also calculated that its potency can substantially be improved by combining it 

with other labels (e.g. 3-
13

C Glc, 1-
13

C Glc and U-
13

C Glc) in parallel ILEs. We 

showed that measuring the labeling patterns of hexose and pentose moieties 

synthesized exclusively in the cytosol or the plastid is important toward evaluating 

fluxes in the individual compartments. Specifically, the concurrent measurement of 

RNA ribose, intracellular glucose or sucrose and starch, although laborious, adds 

critically to the information obtained from the ILE. Additionally, we showed that MS 
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outperforms NMR in identifying fluxes in the PPPs. The label designs and 

measurements proposed in this study have not been simultaneously employed for 

plant MFA. End-users of this work should bear in mind that although our metabolic 

models are representative of typical scenarios in plant cells, our optimal ILE designs 

obtained are most directly applicable to the ILEs employing the carbon sources and 

isotopomer measurements that we have considered. Researchers employing other 

labeled carbon sources (e.g. sucrose instead of glucose for the PPP), significantly 

different isotopomer measurements (e.g. certain intracellular metabolites not 

considered by us) or techniques (e.g. tandem MS) should repeat our analyses with 

appropriate changes to the model. Furthermore, the choice of labeled substrates, 

usually the largest contributing factor to flux identifiability, is heavily influenced by 

the costs of the substrates. The results in our study are not cost-sensitive since 

changes in prices are dependent on factors beyond the control of investigators. 

Therefore, we have examined ILE designs involving both commercially available 

“catalog” labels and exotic, expensive labels that may be available only through 

custom synthesis. Ultimately, a balance of the aforementioned factors will enable an 

end-user to select an appropriate ILE. Currently, we are employing the label designs 

proposed in this study to investigate metabolic fluxes in Arabidopsis thaliana and 

poplar cell suspensions. 

Designing ILEs is a rigorous computational process due to the variety of available 

label and measurement possibilities that need to be optimized. Nevertheless, it offers 

valuable insights toward performing an efficient ILE and ensures that maximum 

information if gained from the ILE. In the future, this work can be advanced by 
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making use of recently reported improvements in isotope MFA on the analytical and 

computational fronts. On the analytical front, it is necessary to expand the spectrum 

of intracellular metabolites whose labeling is analyzed as well as to use high 

resolution instruments such as liquid chromatography-MS (Kleijn et al. 2007).  In this 

context, Antoniewicz and co-workers’ tandem MS methodology (Choi and 

Antoniewicz 2011; Antoniewicz, Kelleher, and Stephanopoulos 2007b) and novel 

NMR methods are likely to enable the measurement of a much larger subset of 

isotopomers than is currently possible. On the computational front, it is essential to 

use optimization algorithms to efficiently probe the multidimensional space of all 

available isotope labels for a given ILE. Recently, Stephanopoulos and co-workers 

applied a genetic algorithm (Metallo, Walther, and Stephanopoulos 2009), while 

Palsson and co-workers applied Monte Carlo sampling toward this purpose 

(Schellenberger et al. 2012). Furthermore, Antoniewicz and co-workers have 

pioneered an EMU-based technique that rationally deduces the optimal labels for an 

ILE by tracing the number of different ways a product isotopomer can be synthesized 

from given substrate isotopomers. Current implementations of this technique (Crown 

and Antoniewicz 2012; Crown, Ahn, and Antoniewicz 2012) have focused on 

illustrative or irreversible networks; in the future this technique may provide 

significant insights on complex networks such as the ones explored in this article. 

Finally, methods that integrate other omics studies such as transcriptomics and 

proteomics with MFA can augment and enhance the flux information available from 

isotope MFA.  
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Abstract 

To gain a system-wide perspective on the effects of light on metabolism in 

heterotrophic plant cells, we performed isotope-assisted metabolic flux analysis 

(isotope MFA) on Arabidopsis thaliana (Arabidopsis) cell suspensions grown in 

continuous light or dark. Isotope MFA uses isotopic tracers to map carbon traffic 

(fluxes) through metabolic pathways and thus provides valuable information toward 

understanding cell physiology. We used statistical design methods to judiciously 

choose the isotopic tracers (in this study, differently 
13

C-labeled isomers of glucose), 

and determined the isotopically labeled metabolite measurements that can provide the 

most information on primary metabolic fluxes. On the basis of these results, we 

performed three parallel tracer experiments that used [1-
13

C], [1,2-
13

C] and 30% [U-

13
C] glucose on Arabidopsis cells grown under continuous light or dark. After 

attainment of isotopic and metabolic steady state, we analyzed the 
13

C labeling 

patterns of several biomass components using both gas chromatography-mass 

spectrometry (GC-MS) and 2-D [
13

C, 
1
H] nuclear magnetic resonance (NMR). 

Together, the three isotope labeling analyses provided over 1300 distinct data points 

under each light treatment which was collectively fitted to a multicompartmental, 

central carbon metabolic network model. Isotope MFA revealed that light does not 

affect flux distributions at intracellular branch-points despite differences in biomass 

accumulation and protein content between the two light treatments. The similar 

metabolic fluxes between the two conditions indicate that light plays no role in 

regulating metabolism of heterotrophic Arabidopsis cells 
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3.1. Introduction  

Light plays dual roles in plant metabolism – the provision of energy for CO2 fixation 

and the regulation of a wide spectrum of metabolic. Consequently,  light affects 

various facets of plant metabolism including carbon and nitrogen fixation, the 

accumulation of various metabolites as well as growth and development, at the 

systems level (Bläsing et al. 2005). Multiple metabolic pathways such as the Calvin 

cycle, glycolysis, TCA and phenylpropanoid biosynthesis pathway are regulated by 

light as shown by gene expression studies on Arabidopsis thaliana (Arabidopsis) 

leaves (Ma et al. 2001). Particularly, the Calvin cycle enzymes glyceraldehyde 3-

phosphate dehydrogenase, fructose-1,6-bisphosphatase, sedoheptulose-1,7-

bisposphatase and phophoribulokinase show increased activity in light (Bukhov 

2004). Light also induces glutamine synthetase, an essential enzyme in nitrogen 

assimilation (Peterman and Goodman 1991) and represses glucose-6-phosphate 

dehydrogenase which catalyzes the first, NADPH-providing step of the oxidative 

pentose phosphate pathway (PPP) (Scheibe, Geissler, and Fickenscher 1989; 

Hutchings, Rawsthorne, and Emes 2005). Furthermore, the absence of light causes 

accumulation of vegetative storage proteins (Berger et al. 1995), whereas its presence 

causes accumulation of starch (Hendriks et al. 2003). Employing metabolic flux 

analysis to investigate the role of light in plant metabolism will enable a systems-

level analysis and complement similar transcriptomic studies on Arabidopsis plants 

(K. Thum et al. 2008). Metabolic fluxes, the rates of carbon flow through the 

metabolic pathways, can be quantified by isotope-assisted metabolic flux analysis 
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(MFA). It involves conducting isotope labeling experiments wherein isotopically 

labeled (e.g. 
13

C, 
15

N, 
17

O) substrates are fed to the plant cell culture or tissue and the 

isotopomer (isotope isomer) abundances of biomass components such as proteins, 

lipids, sugars and nucleotides, are measured using nuclear magnetic resonance 

(NMR) or mass spectrometry (MS). The fluxes are estimated by fitting these 

isotopomer abundances to a model of the metabolic network.  

Investigators have only recently begun exploring the metabolic flux landscape in 

Arabidopsis. In a pioneering metabolic flux analysis study on Arabidopsis cell 

suspensions, Williams et al. (2008). quantified fluxes in cell suspensions grown under 

two oxygenic conditions using [1-
13

C] glucose to conclude that increased oxygen 

supply increases biomass accumulation but does not affect the flux distribution 

(Williams et al. 2008b). In 2009, Lonien et al., mapped the fluxes in wild type, and 

low seed oil phenotype mutant embryos – regulatory mutant wrinkled1 and a double 

mutant in plastidic pyruvate kinase (pkpβ1pkpα). The flux through the pyruvate kinase 

reaction, which contributes precursors to lipid synthesis, surprisingly, was 

significantly lower in the wrinkled1 mutant, than in pkpβ1pkpα despite having higher 

enzyme levels.  They concluded that the single reaction step mutation in pkpβ1pkpα  

was compensated by other glycolytic reactions, but the transcription factor mutation 

in  wrinkled1 affects multiple reactions to effectively lower the flux through pyruvate 

kinase (Lonien and Schwender 2009a). To query the role of the duplicate PPPs in the 

cytosol and plastid of plant cells, Masakapalli et al., in 2010, performed MFA on 

Arabidopsis suspension cells with three parallel isotope labeling experiments (ILEs; 
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[1-
13

C], [2-
13

C] and 10% [U-
13

C] glucose). Based on their flux estimates and 

biochemical evidences from other studies, they concluded that the cytosol contained 

only the oxidative steps of the PPP while the plastid contained both the oxidative and 

non-oxidative reactions of the PPP (Masakapalli et al. 2010). Williams et al., in 2010 

verified that the genome scale metabolic network model developed by Poolman et al., 

((Poolman et al. 2009) can predict the flux estimates obtained by MFA on  

Arabidopsis cell suspensions subjected to high temperature or hyperosmolarity 

(Williams et al. 2010).  

Previously, researchers have studied the effect of light on gene and protein 

expressions in Arabidopsis plants (K. E. Thum et al. 2003; Phee et al. 2004). 

However, the effect of light on the fluxome of Arabidopsis plant cells is not known. 

Knowledge of fluxomic changes in heterotrophic plant cells due to light regulation 

will enhance our understanding of the role of light and may bridge the gaps between 

the transcriptomic and proteomic studies.  

In this study, the metabolic fluxes in Arabidopsis cell suspensions, subjected to 

continuous light or dark, were quantified by robustly designed ILEs which employed 

[1-
13

C], [1,2-
13

C] and 30% [U-
13

C] glucose. Over 1300 mass isotopomers (the largest 

data set measured for MFA on Arabidopsis) obtained under each light treatment were 

fitted to a multicompartmental model of primary carbon metabolic pathways in plant 

cells. Distinct biomass accumulation and protein contents observed under the two 

light treatments lead to negligible difference in flux distribution in the primary carbon 

metabolism of Arabidopsis cell suspensions.  
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3.2. Results 

3.2.1. Biomass accumulation and protein content differs between the 

two light treatments 

Dark grown cell suspensions accumulated lesser biomass (239±12 mg) than light 

grown cell suspensions (271±11mg) in light (two sample t-test, p-value = 0.0001;Fig. 

3.1a) despite consuming the same amount of glucose (1.12±0.04 mmol 

glucose/day/mg biomass in dark and 1.13±0.05 mmol glucose/day/mg biomass in 

light (two sample t-test, p-value = 0.98)). The partitioning of carbon into protein also 

differed between the two light treatments (Fig.3.1b).                    

3.2.2. Isotopic steady state attained between day 5 and 6 

Proteinogenic amino acids from Arabidopsis cells grown on 50% U-
13

C glucose for 4, 

5 and 6 days after subculture show negligible difference in 
13

C enrichments between 

day 5 and 6 (Fig. 3.2). This indicates that isotopic steady state is attained during this 

period. Therefore the MFA was carried out on day 6.    

3.2.3. Serine and glycine labeling show that light-grown do not fix CO2 

photosynthetically but undergo serine hydroxymethyltransferase 

reaction 

Photosynthetic fixation of CO2, if present, affects the mass isotopomer distributions 

(MIDs) of metabolites and consequently the flux estimation. Therefore it is important 

to verify the occurrence of CO2 fixation in plant cells. Photosynthetic fixation of CO2 

leaves an isotopomeric signature in the labeling of amino acids serine and glycine 
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during ILEs. Carbon from CO2 is preferentially fixed to the 1
st
 position of 3-

phosphoglycerate and subsequently to the 1
st
 position of serine and glycine.  
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Cell wall 34.6  2.9 47.6  2.9 
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Starch 1.9  0.3 1.9  0.5
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Fig. 3.1. Consistent growth characteristic differences between continuous light and dark 

treatments. (a) Difference in biomass accumulation between the two light treatments was 

observed reproducibly (n=3 under each treatment) and consistently over multiple subculture 

cycles (the errors bars are small and therefore hidden by the symbols). (b) The protein 

content was also different between the two light treatments. *Means are different with p-

values < 0.05.   
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Fig. 3.2. Isotopic steady state. The constant 
13

C enrichments of proteinogenic amino acids 

glycine, alanine, glutamate and serine between day 5 and 6 demonstrate attainment of 

isotopic steady state.  

 

The labeling on the 1
st
 C atom on glycine and serine extracted from light-grown 

suspension cells under 30% [U-
13

C] glucose do not exhibit these signatures and are 

very similar to those extracted from dark grown cell suspensions indicating that CO2 

is not fixed in the light grown cell suspensions. 

Interestingly, the 3
rd

 carbon atom of serine is differently labeled in cells under light  

than dark (Fig. 3.3c) which may be due to the reversibility of serine 

hydroxymethyltransferase reaction (Ser ↔ Gly + CO2) which causes bond breakage 

and formation and is known to be induced by light (Turner et al. 1993; McClung et al. 

2000). 
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Fig. 3.3. Photosynthetic fixation of CO2 absent in light-grown Arabidopsis cells. The 

MIDs of (a) glycine and (b) fragment of serine containing only the 1
st
 two C atoms (serine 

[12]) from the light-grown suspensions cells under 30% U-
13

C glucose ILE are similar in both 

light and dark-grown cells. (c) the 3
rd

 carbon atom of serine is differently labeled between the 

light treatments * Means are different with p-value < 0.05.  
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3.2.4. In silico design of isotope labeling experiments predicts that 1,2-

13C glucose estimates fluxes in pentose phosphate pathway the 

best  

In a previous in silico design study (Nargund and Sriram 2012), we found that the 

label 100% [1,2-
13

C] glucose performed the best in identifying plant PPP fluxes. We 

are particularly interested in the flux changes in the PPP since this pathway shares 

several of the light sensitive enzymes with the Calvin cycle pathway (Bukhov 2004). 

Thus three parallel ILEs were conducted with i) 100% [1,2-
13

C] glucose – the label 

that best identifies PPP fluxes ii) 100% [1-
13

C] glucose – a label popularly used to 

estimate PPP fluxes and iii) 30% [U-
13

C] glucose – an economic label suitable for 

estimating tricarboxylic acid cycle (TCA) fluxes. The above combination of ILEs was 

computationally predicted to reveal more flux information than any single or paired 

ILEs as shown in our previous study (Nargund and Sriram 2012). The design study 

also predicted that the labeling information in hexose and pentose sugars, especially 

ribose, improved PPP flux estimates significantly. Accordingly, we measured the 

isotopomer abundances of ribose (from RNA) and intracellular glucose.  

3.2.5. Metabolic network model 

Construction of the metabolic network model is influenced by i) the organism being 

probed, ii) the range of readout metabolites measured and iii) their mass isotopomer 

distributions (MIDs). In this MFA study, the readout metabolites measured – 

proteinogenic amino acids, organic acids, ribose and intracellular glucose, allow 

estimation of fluxes in the glycolysis, PPP and TCA cycle. The carbon atom 
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rearrangements and reversibilities of the reactions in these pathways were obtained 

from the Kyoto Encyclopedia of Genes and Genomes (KEGG), plant biochemistry 

textbooks and previous literature (Singh 1998a; Kruger and von Schaewen 2003b).  

Plant metabolic networks are complicated due to duplication of the glycolysis and 

PPP in the cytosolic and plastidic compartments. Generally, the compartmentalized 

duplicate pathways are included in the model if i) the duplicate pathways have 

distinct fluxes and ii) the duplicate metabolite pools are isotopically distinguishable. 

It is not possible to determine the former a priori but the latter can be verified by 

comparing the MIDs of corresponding readout metabolites from the two 

compartments. It may also happen that the duplicate pathways have different fluxes 

but the duplicate metabolite pools are in isotopic equilibrium due to rapid exchange 

by intercompartmental transport reactions in which case a single compartmental 

model should be used.  

Table 3.1 lists the biosynthetic precursor(s) and compartment of origin of metabolites, 

as recorded in literature and as modeled in our metabolic network. Several 

corresponding readout metabolites that originate from the duplicate pools in the 

cytosol and plastid are not in isotopic equilibrium under both the light treatments and 

across the three ILEs (Fig. 3.4). 

Glycerol originates from cytosolic triose phosphates (T3P) and has a distinct MID 

from that of serine which arguably originates from plastidic T3P; therefore two pools 

of T3P are included in the model (although serine participates in the serine 

hydroxymethyltransferase reaction (serine ↔ glycine) and may originate in the 

cytosol or mitovhondrion it is fairly similar to phenylalanine and tyrosine which are 
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also made from plastidic T3P and therefore a valid comparison with the cytosolic 

glycerol). Similarly, alanine, synthesized arguably from cytosolic pyruvate is 

distinguishable from valine that is synthesized from plastidic pyruvate and therefore 

two separate pools of pyruvate are included. The three carbon atom metabolites T3P 

and pyruvate can also rapidly exchange with each other to attain isotopic equilibrium.  

Readout 
metabolite 

Biosynthetic 
precursor 

Compartment of origin 
according to literature 

Reference Compartment 
of origin in 
our model 

Alanine Pyr Cytosol/mitochondrion 

(Singh 1998b) 

Cytosol 

Glycine T3P Cytosol, 
mitochondrion, plastid 

Plastid 

Valine Pyr Plastid Plastid 

Leucine Pyr, AcCoA Plastid Plastid 

Isoleucien OAA, Pyr Plastid Cytosol, 
plastid 

Proline α-KG Cytosol (Funck et al. 2008) Cytosol 

Serine T3P Cytosol, 
mitochondrion, plastid 

(Singh 1998b) 
Plastid 

Threonine OAA Plastid (Fait et al. 2008) Cytosol  

Pheylalanine T3P, E4P Plastid (Singh 1998b; 
Heldt 2004) 

Plastid 

Aspartate OAA Plastid (Fait et al. 2008) Cytosol 

Glutamate α-KG Mitochondria, plastid 

(Singh 1998b) 

Cytosol 

Histidine P5P Plastid Plastid 

Tyrosine T3P, E4P Plastid Plastid 

Glycerol T3P Cytosol (Saha et al. 2006; 
Ohlrogge & 
Jaworski 1997) 

Cytosol 

Malic acid Malic acid Mitochondria  Cytosol 

Ribose P5P Cytosol  Cytosol 

glucose G6P Cytosol  Cytosol 

  

Table 3.1. Compartment of origin of readout metabolites. To estimate the fluxes in the 

duplicate pathways in separate compartments, labeling information of readout metabolites 

originating in these compartments is crucial. The compartments of readout metabolites as 

recorded in literature and as modeled in this work are listed below. Abbreviations: α-KG, α-

ketoglutarate; AcCoA, acetyl coenzyme A; E4P, erythrose-4-phosphate; G6P, glucose-6-

phosphate; OAA, oxaloacetic aicd; P5P, pentose-5-phosphate; Pyr, pyruvate; T3P, triose 



 

68 

 

phosphate. 

 

We found that, in the cytosol, glycerol (from T3P) and alanine (from pyruvate) are 

isotopically different and in the plastid, serine (from T3P) and valine (from pyruvate) 

are distinguishable, thus warranting inclusion of separate pools. 

Separate pools of pentose-5-phosphate (P5P) were included in the model despite the 

fact that comparison between the readout metabolites, histidine from the plastid and 

ribose from the cytosol, was inconclusive (the MIDs of histidine and ribose are not 

comparable because histidine contains an additional carbon atom that it acquires from 

C1 metabolism). Duplicate pools of E4P and S7P were also included to allow 

completion of the PPP pathways in both compartments. 

Based on the above observations, we constructed a model that has both the cytosolic 

and the plastidic glycolysis and PPPs (Fig. 3.5). The metabolites glucose-6-phosphate 

(G6P), P5P, T3P and pyruvate can be transported across the intercompartmental 

membranes between the cytosolic and plastidic pools (Schwender, Ohlrogge, and 

Shachar-Hill 2003b). The cytosol and mitochondrion are treated as a single 

compartment due to lack of labeling data to distinguish between the two. The 

reactions of the γ-aminobutyric acid (GABA) shunt and the reactions of the TCA 

cycle that it bypasses undergo the same carbon atom rearrangements and therefore the 

fluxes through the two competing pathways cannot be distinguished with the labels 

used in this study. Indeed, the similarity of the MIDs of GABA and glutamate support 

this assumption (data not shown).  

The metabolic network model has 23 metabolites and 48 net fluxes of which 17 were 
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measured and 7 independent fluxes. Additionally, there were 20 reversibility extents 

for the reactions that are reversible and 1 scrambling extent which indicates the extent 

to which the reaction catalyzed by succinate dehydrogenase (succinate  fumarate) 

undergoes one of the two possible carbon atom rearrangements.   
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Fig. 3.4. Metabolite pools are not in isotopic equilibrium between the cytosolic and 

plastidic compartments. The MIDs of (a,c) serine and glycerol and (b, d) alanine and valine 

are distinguishable from each other under both the light treatments. The MIDs were obtained 

from the [1,2-
13

C] glucose ILE. Similar trends were seen under the other two ILEs as well. * 
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Means are different with p-values < 0.05 
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Fig. 3.5. Metabolic network model.  The model consists of the glycolysis and PPP 

duplicated in cytosol and plastid and the TCA cycle in the cytosol. There are 23 metabolites 

and 69 fluxes (48 net fluxes and 20 reversibility extents). The free fluxes g6pdh, tktA, pgi, 

pyr, pyrc, αkgdh and pyrp (marked in red) are fitted to the model whereas the other fluxes, 

which are linear combinations of the free fluxes, are calculated. The plastidic compartment is 

enclosed by a dashed box; suffix ‘p’ indicates metabolites in the plastidic compartment. 

Abbreviations: αKG, α-ketoglutarate; ACA, acetyl coenzyme A; E4P, erythrose-4-phophate; 

F6P, fructose-6-phosphate; Glc, glucose; G6P, glucose-6-phosphate; Gly, glycine; Mal, malic 

acid; OaA, oxaloacetic acid; P5P, pentose phosphates; Pyr, pyruvate; S7P, sedoheptulose-7-
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phosphate; Scn, succinate; Ser, serine; T3P, triose phosphates. 

3.2.6. Difference in growth between the light treatments affects 

isotopomer abundances 

The 
13

C enrichments of proteinogenic amino acids extracted from cells grown on 29% 

U-
13

C glucose were significantly lower than the expected 29% (between 26-29%) 

(Fig. 3.6). Since the cells cannot distinguish between 
12

C and 
13

C isotopes (Kruger et 

al. 2007a) the dilution of the label can only be due to the presence of the seed biomass 

added during subculture. Every week during subculture, aliquots of the culture with 

known mass of cells, are transferred to new shake flasks with fresh media. This seed 

biomass takes up the fresh media to synthesize new biomass. During an ILE, the 

naturally labeled (1.13% 
13

C) seed biomass is transferred to labeled media (containing 

100% [1-
13

C] or 100% [1,2-
13

C] or 30% [U-
13

C] glucose) and it contributes a 

substantial proportion (10-12%) to the total biomass. To account for the seed 

biomass, we adjusted the isotopomer abundances of all amino acids based on the 

extent of dilution estimated from the 30% [U-
13

C] glucose ILE data (data not shown). 

3.2.7. Flux distributions in central carbon metabolism in the two light 

treatments are similar 

The MIDs of proteinogenic amino acids, soluble organic acids, ribose and glucose 

were measured by GC-MS whereas NMR was used to measure labeling only in the 

proteinogenic amino acids from the 30% [U-
13

C] glucose ILE. On combining the data 

from the two biological replicates, under each light treatment, we obtained 458, 424 

and 474 mass isotopomers from the [1-
13

C], [1,2-
13

C] and 30% [U-
13

C] glucose ILEs 
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respectively.  
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Fig. 3.6. Dilution of the 
13

C label observed. The 
13

C enrichments of amino acids extracted 

from cells grown on 30% U-
13

C glucose are consistently lower than the expected 30%. This 

dilution is attributed to the presence of the initial unlabeled seed biomass.  

 

The biological standard deviations of amino acid mass isotopomers were within 0.01-

0.8% whereas those of soluble organic acids were between 0.02-3.5%. The amino 

acids measured by NMR did not have biological replicates and were assigned 5% 

errors uniformly. The biological averages of the mass isotopomers from all three ILEs 

were pooled to obtain 678 mass isotopomers that were fit to the model using the 

program NMR2Flux+. For given stoichiometrically feasible guess values of free 

fluxes, NMR2Flux+ simulates the three ILEs consecutively to calculate the chi-

square function (χ2
) between corresponding simulated and measured MIDs of 

metabolites (listed in Table 3.1). This χ2
 function is minimized by the global 
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optimization algorithm - simulated annealing followed by the local optimization 

algorithm - Powell’s method. The data points with biological standard deviations 

lower than 1% (most amino acid MIDs) led to very high χ2
 and therefore these errors 

were increased to 1% artificially. 

Preliminary data fittings were used to i) ascertain that the global minimum was 

reached i.e. all fluxes had unimodal distributions and ii) refine the metabolic network 

model. Although all of the free fluxes had unimodal distributions, the free fluxes tktf, 

pyrf, akgdh, clustered far away from one of their constraints at higher χ2
 and therefore 

these constraints were tightened. The serine and glycine MIDs fit poorly and the 

inclusion of the serine hydroxymethyltransferase reaction improved their fits. The 

methionine MIDs were eliminated from the data set because they did not fit 

satisfactorily. We suspect that its MIDs were not accurately measured because it had 

very low abundance.   

The fluxes estimated by using the model described above, explains the measured data 

satisfactorily (Fig. 3.7). Despite significant differences in growth rates and biomass 

compositions, the metabolic fluxes in the central carbon metabolism between the two 

light treatments remain unaltered (Fig. 3.8).  

The poorly identified net fluxes (Table 3.2) were the anaplerotic fluxes (me, pyrc and 

pepck), through which 19±7% of the carbon enters the TCA cycle and the transport 

fluxes (g6pt, t3pt, p5pt). The reversibility extents of the reactions tktA, tal, tktap, talp, 

pyrt, me and ser and the scrambling extent of sdh were also not well identified, but 

reversibility and scrambling extents are usually not very identifiable (Wiechert et al. 

1997a; Nargund and Sriram 2012).  
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Fig. 3.7. Estimated fluxes account for measured MIDs. The measured and simulated MIDs 

when plotted against each other lie close to the diagonal line and within 5% error under both 

(a) continuous light and (b) continuous dark treatments.  

 

Monte Carlo simulations, carried out ~400 times for each light treatment, were used 

to obtain confidence intervals of fluxes and most of the net fluxes are remarkably well 

identified (Table 3.2).  

3.2.8. Metabolic network model validation 

The assumption that two separate P5P pools are present in the cytosol and plastid, 

even though the isotopic equilibrium between histidine and ribose could not be 

ascertained, was validated posteriori. The MID of plastidic P5P was calculated from 

the MIDs of histidine (measured) and CO2 (simulated using the flux estimates 

obtained). We found that the MIDs of the plastidic and cytosolic P5P (measured as 
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ribose) were distinct under [1-
13

C] and [1,2-
13

C] glucose ILE (data not shown) thus 

validating our model. Furthermore it shows that [1-
13

C] and [1,2-
13

C] glucose ILEs 

are more sensitive to PPP carbon rearrangements than the 30% [U-
13

C] glucose ILE.  
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Fig. 3.8. Carbon redistribution is identical between the two light treatments. The fluxes 

relative to glucose uptake between both the (a) continuous light and (b) continuous dark 
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treatments are nearly identical. 

Mean SD Mean SD Mean SD Mean SD

glci G6P 0.804 0.007 irrev. 0.806 0.009 irrev.

pgi G6P F6P 0.321 0.023 0.990 0.017 0.359 0.030 0.986 0.031

pfk F6P T3P T3P 0.552 0.028 0.218 0.050 0.540 0.031 0.229 0.064

pyr T3P pyr 0.758 0.025 irrev. 0.749 0.017 irrev.

g6pdh G6P P5P CO2 0.216 0.016 irrev. 0.214 0.017 irrev.

tktA P5P + P5P S7P + T3P 0.117 0.012 0.029 0.062 0.092 0.016 0.088 0.132

tal S7P + T3P F6P + E4P 0.117 0.012 0.019 0.054 0.092 0.016 0.054 0.090

tktB P5P + E4P F6P + T3P 0.117 0.012 0.625 0.033 0.092 0.016 0.680 0.045

pgip G6Pp F6Pp -0.811 0.097 0.990 0.027 -0.738 0.095 0.972 0.113

pfkp F6Pp T3Pp + T3Pp -0.269 0.040 0.240 0.052 -0.212 0.036 0.332 0.062

pyrp T3Pp pyrp 0.062 0.017 irrev. 0.094 0.018 irrev.

pdhp pyrp ACAp + CO2 0.175 0.001 irrev. 0.223 0.001 irrev.

g6pdhp G6Pp P5Pp CO2 0.952 0.098 irrev. 0.858 0.093 irrev.

tktAp P5Pp + P5Pp S7Pp + T3Pp 0.274 0.035 0.039 0.100 0.268 0.039 0.023 0.059

talp S7Pp + T3Pp F6Pp + E4Pp 0.274 0.035 0.016 0.049 0.268 0.039 0.013 0.042

tktBp P5Pp + E4Pp F6Pp + T3Pp 0.268 0.035 0.684 0.057 0.259 0.039 0.541 0.113

pdh pyr ACA + CO2 0.687 0.029 irrev. 0.661 0.020 irrev.

citdh ACA + OaA αKG + CO2 0.687 0.029 irrev. 0.661 0.020 irrev.

akgdh αKG Scn + CO2 0.669 0.029 irrev. 0.630 0.020 irrev.

sdh Scn Mal 0.669 0.029 0.980 0.034 0.630 0.020 0.972 0.039

scrambling Scn Mal 0.689 0.321 0.534 0.357

mdh Mal OaA 0.565 0.025 0.992 0.019 0.518 0.024 0.963 0.045

me Mal pyr + CO2 0.104 0.036 0.276 0.240 0.113 0.028 0.221 0.194
pyrc pyr + CO2 OaA 0.020 0.018 0.019 0.019 irrev

pepck OaA T3P + CO2 -0.110 0.039 0.576 0.101 -0.137 0.031 0.474 0.077

Net fluxNet flux Reversibility Reversibility 
Reaction 

name
Stoichiometry

Continuous dark Continuous light

Cytosolic glycolysis 

Cytosolic PPP

Plastidic glycolysis

Plastidic PPP

TCA cycle

Anaplerotic reactions

 

Table 3.2. Metabolic fluxes in Arabidopsis cells suspensions under continuous 

light or dark. The fluxes (mol/day/flask) estimated by fitting the biomass effluxes 

and MIDs of readout metabolites to the model (Fig. 3.8) are listed below. 

Table. 3.2 is continued on next page. 
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Mean SD Mean SD Mean SD Mean SD

Ser T3Pp Ser 0.007 0.000 0.373 0.229 0.010 0.000 0.357 0.230

Gly Ser Gly + CO2 0.005 0.000 0.726 0.078 0.006 0.000 0.674 0.084

t3pt T3Pp T3P -0.350 0.072 0.438 0.127 -0.285 0.075 0.536 0.154

P5Pt P5P P5Pp -0.133 0.037 0.621 0.135 -0.061 0.048 0.875 0.083

pyrtp pyr pyrp 0.148 0.017 0.431 0.250 0.170 0.018 0.502 0.202

g6pt G6P G6Pp 0.145 0.026 0.398 0.112 0.124 0.031 0.475 0.145

T3Ppout T3Pp 0.012 0.000 0.017 0.001

T3Pout T3P 0.002 0.000 0.001 0.000

Serout Ser 0.002 0.000 0.004 0.000

glyout Gly 0.005 0.000 0.006 0.000

E4Ppout E4Pp 0.006 0.000 0.009 0.000

Pyrout pyr 0.007 0.000 0.011 0.000

Pyrpout pyrp 0.034 0.000 0.040 0.001

ACApout ACAp 0.175 0.001 0.223 0.001

OaAout OaA 0.009 0.000 0.013 0.000

αKGout αKG 0.018 0.001 0.030 0.003

G6Pout G6P 0.121 0.002 0.109 0.003

G6Ppout G6Pp 0.004 0.001 0.004 0.000

P5Ppout P5Pp 0.002 0.000 0.003 0.000

Malout Mal 0.003 0.000 0.003 0.000

F6Pout F6P 0.003 0.000 0.003 0.000

CO2out CO2 3.364 0.048 3.211 0.064

Reversibility 

Serine hydroxymethlytransferase reactions

Intercompartmental transport 

Biosynthetic effluxes

Reaction 

name
Stoichiometry

Continuous dark Continuous light

Net flux Reversibility Net flux

 

Abbreviations: αKG, α-ketoglutarate; ACA, acetyl coenzyme A; E4P, erythrose-4-phophate; 

F6P, fructose-6-phosphate; Glc, glucose; G6P, glucose-6-phosphate; Gly, glycine; Mal, malic 

acid; OaA, oxaloacetic acid; P5P, pentose phosphates; Pyr, pyruvate; S7P, sedoheptulose-7-

phosphate; Scn, succinate; Ser, serine; T3P, triose phosphates. 

3.3. Discussion 

Metabolic fluxes in heterotrophic Arabidopsis cell suspensions acclimated to 

continuous dark and light were quantified using MFA. The fluxes estimated in this 

work are very well identified in comparison to previous such studies (Williams et al. 
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2008b; Masakapalli et al. 2010) and this may be attributed to i) robustly designed 

ILEs employing [1-
13

C], [1,2-
13

C] and [U-
13

C] glucose ii) fitting a large dataset (678 

data points) that included mass isotopomers of critical readout metabolites such as 

ribose and iii) the high degree of agreement between the biological replicates. We 

found that the light treatments affect the biomass accumulation and protein 

production, but leave the carbon flux distribution in the primary carbon metabolism 

relatively unaltered. 

3.3.1. Central carbon metabolism fluxes minimally affected by light 

treatments 

Light is a major regulatory factor in plant cells. It regulates photosynthesis, 

development, flowering and growth (Eckardt 2007; Horvath 2009). How do light 

grown cells escape light’s regulatory control? This can happen because the regulatory 

signals of light can be substituted by the regulatory signals of carbon (K. E. Thum et 

al. 2003; Krouk et al. 2009). The regulatory pathways of light and carbon are highly 

intertwined. Gutierrez and co-workers studied gene expressions in hydroponically 

grown Arabidopsis leaves and roots under combinations of stimuli by carbon, light 

and nitrogen. They found that external sugars and photosynthate sugars, both affect 

gene expressions similarly in roots and concluded that the heterotrophic roots sense 

light in the form of carbon (Krouk et al. 2009). Another study by Strasser et al., found 

that the arrested development of quintuple phytochrome mutants of Arabidopsis could 

be partially rescued in certain cases by introduction of sucrose in the growth media, 

which implies that carbon can substitute for light signaling (Strasser et al. 2010). 
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These evidences from previous literature suggest that, the similarity in the metabolic 

fluxes in cells between the two light treatments observed in this study may be because 

carbon signaling masks the signaling of light to render the metabolism of the cells 

identical under both treatments. Furthermore, in another study, Arellano and co-

workers used Arabidopsis cell suspensions that harvested light energy, to study gene 

expressions when subjected to short periods of dark or high light (González-Pérez et 

al. 2011) and on mining their gene expression data (GEO accession #: GSE22671), 

we found that the expressions of the glycolytic and PPP genes do not differ between 

the two treatments (data not shown). We observe a similar response under the two 

treatments at the fluxomic level despite differences in the exposure times to dark and 

light.  

Although counterintuitive, the differences in protein content can be attained with 

negligible changes in the central metabolic fluxes. Indeed, this has been observed in 

many MFA studies (Williams et al. 2008b). Because the precursors to the amino acids 

are acquired from several nodes of the primary metabolic pathways, significant 

changes in protein content can be achieved with insignificant changes in intracellular 

fluxes. For example, the protein content increases from 16.6% in the dark to 20.8% in 

light whereas the percentage of flux from plastidic pyruvate (a precursor to 4 amino 

acids) to protein only increases from 15% in the dark to 16% in the light. Therefore 

the growth and protein content differences between the two light treatments can be 

achieved with negligible changes in the intracellular metabolic fluxes.  
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3.3.2. Limitations and criticisms 

The pooled data from multiple ILEs improves the accuracy of flux estimates 

(Libourel, Gehan, and Shachar-Hill 2007b; Nargund and Sriram 2012), but it may be 

difficult to fit data from multiple ILEs if the cells behavior differ. For instance, the 

glucose uptake rate of the cell suspension grown on [1,2-
13

C] glucose was 

significantly lower than under [1-
13

C] and [30% U-
13

C] glucose ILEs. Consequently 

the constraints on the glucose uptake had to be relaxed to accommodate the difference 

and this may have increased the confidence intervals of the flux estimates.  

The confidence intervals of flux estimates, when obtained by Monte Carlo 

simulations, are affected by the standard deviations of the isotopomer abundances. 

But since the χ2
 of fits are inversely proportional to standard deviations it is common 

practice to assign, on an ad hoc basis, higher standard deviations (1-5% in this study) 

than observed. The effect of the χ2
 values on the accuracy of flux estimation should 

perhaps be analyzed to enable better statistical treatment of the flux estimation 

problem.  

The compartmental PPP flux estimates obtained in this study can be further improved 

by measuring the MIDs of additional metabolites from the cytosolic and plastidic 

compartments such as E4P, F6P and S7P. These metabolites can currently be 

measured by liquid chromatography – mass spectrometry (Huck et al. 2003) but their 

compartment of origin is difficult to determine. Use of extraction techniques that help 

obtain metabolite pools from specific subcellular compartments may solve the above 

problem.  
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3.4. Conclusion 

This study advances the use of MFA in plant systems by implementing carefully 

designed ILEs on Arabidopsis cell suspensions under two light treatments. The 

improvements in flux estimates made in this study advocate designing ILEs for the 

specific pathways of interest and also measuring the MIDs of large number of varied 

metabolites. The growth and biomass composition differences between the two 

treatments suggest that light affects metabolism whereas the nearly identical 

metabolic flux maps suggest that light’s role is limited only to providing energy via 

photophosphorylation. The regulatory signaling of light is ceded to that of carbon 

which is identical between the two light treatments and therefore leads to negligible 

changes in flux distributions. The fluxomic evidence of carbon signaling substituting 

light signaling in this study, corroborates previous gene expression studies (K. E. 

Thum et al. 2003; Krouk et al. 2009; Strasser et al. 2010; González-Pérez et al. 2011) 

to fortify our understanding of carbon and light signaling interactions in heterotrophic 

plant cells. The theme emerging from these systems level analyses is that light and 

carbon signaling are highly integrated, especially in heterotrophic plants cells. We 

believe that further systems level studies will shed more light on the regulatory 

networks of plant metabolism.   
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3.5. Materials and methods 

3.5.1. Arabidopsis suspension cell cultures 

Arabidopsis Columbia-0 suspension cell cultures were grown in 125ml Erlenmeyer 

flasks on an orbital shaker (New Brunswick 44R) at 125rpm under 24.5 °C and were 

subjected to continuous light or dark. The suspensions were subcultured every 7d by 

transferring 600mg of cells into 45ml of Murashige and Skoog media containing 3% 

(w/v) glucose, 1 mg/l 1-naphthaleneacetic acid and 0.05 mg/l kinetin. Three parallel 

ILEs with 100% 1-
13

C, 100% 1,2-
13

C and 30% U-
13

C Glucose (Cambridge Isotopes) 

were conducted under both the treatments. The difference in the glucose 

concentration between the fresh and spent media helped estimate the glucose uptake 

rates.  

3.5.2. Extraction and quantification of biomass components for 

estimation of biomass effluxes 

Arabidopsis cells, harvested by vacuum filtration through glass microfiber filter 

paper, were immediately frozen in liquid nitrogen to arrest metabolism. The samples 

were then freeze-dried and stored at -80 °C until further analysis. 

3.5.2.1. Protein quantification 

20 mg of ground, freeze dried cells were contacted with 600 µl of phosphate buffer 

saline for 15 min on ice, centrifuged and the supernatant containing the protein 

collected. The above steps were repeated twice. The supernatants from each contact 

were pooled and the protein content quantified by a Bradford assay (Biorad, Hercules, 
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CA). 

3.5.2.2. RNA quantification 

RNA was extracted using the RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) 

and quantified spectrophotometrically by measuring the absorbance at the wavelength 

of 260 nm. 

3.5.2.3. Soluble metabolite quantification 

Soluble metabolites were extracted and quantified as described by Fiehn et al. (Fiehn 

et al. 2000). Briefly, 70 mg of ground, freeze dried cells were contacted with 1.4 ml 

methanol and 50 µl water, heated at 75 °C for 15 min, centrifuged and the supernatant 

containing the soluble metabolites collected. The above steps were repeated once. 

The supernatant was dried, redissolved in 100 µl solution of methoxyamine 

hydrochloride in pyridine (20mg/ml) and heated at 30 °C for 90 min. Next the soluble 

metabolites were derivatized by adding 100 µl N-(tert-butyldimethylsilyl)-N-methyl 

trifluoroacetamide (MTBSTFA ) and heating at 70 °C for 1 h. Soluble metabolites 

were quantified by GC with Norleucine as an internal standard.  

3.5.2.4. Lipid quantification   

On extraction of soluble metabolites, the cells were dried, contacted with 1ml hexane, 

subjected to 40 °C for 30 min, centrifuged and supernatant collected.  The above 

process was repeated twice. The supernatants were pooled, dried, redissolved in 1ml 

methanolic HCl (3N) and heated at 70 °C for 1h to produce fatty acid methyl esters 

(FAME). On cooling, the methanolic HCl was contacted with hexane three times. The 
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FAMEs in the hexane layer were quantified by GC with octanoic acid as the internal 

standard.  

3.5.2.5. Starch quantification 

Starch was extracted as described in (Foster, Martin, and Pauly 2010) .The cell 

biomass, stripped of lipids and soluble metabolites, was dried, redissolved in 1.5 ml 

of 0.1 M sodium acetate buffer (pH 5.0), heated at 70 °C for 20 min and cooled on 

ice. 35 µl of 0.01% sodium azide, 35 µl of amylase (50 µg/ml H2O) and 18.7 units of 

pullulanase were added to the solution and it was incubated overnight at 37 °C to 

hydrolyze the starch to glucose. The supernatant was collected and the glucose 

concentration in it measured by a glucose analyzer (YSI 2700).  

3.5.2.6. Cell wall quantification 

The cell biomass remaining on extraction of all the above components contains cell 

wall and mineral ash predominantly.  

3.5.3. Growth rates 

The Arabidopsis cells were subcultured and 3 biological replicates were harvested 

every day for seven days by vacuum filtration through glass microfiber filter paper 

(Whatman). The cells were weighed before and after freeze drying overnight. The 

biomass effluxes were estimated using the biomass compositions and growth rates. 
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3.5.4. Extraction and measurement of isotopomer abundances of 

biomass components by GC-MS 

A Varian 450-GC in line with a Varian 300 MS was used to measure mass 

isotopomer distributions of various biomass components. The GC had aVF-5ms 

column (30 m x 0.25 mm x 0.25 µm; Varian, Inc) with helium as the carrier gas. The 

MS was acquired in electron ionization mode with the ion source at 280 °C. The 

Varian MS workstation (version 6.9.3) software was used in tandem with the NIST 

mass spectral library (National Institute of Standards and Technology, Gaithersburg, 

MD) to identify and quantify the MS data. An in-house MATALB program was used 

to correct the mass isotopomer distributions (MIDs) for the naturally abundant 

isotopes of non metabolic C, H, N, O, S and Si.   

3.5.4.1. Amino acids and soluble metabolites 

20 mg of ground, freeze dried cells were vacuum hydrolyzed with 6N HCl for 5 h at 

160 °C in hydrolysis tubes (Pierce Endogen, Rockford, IL). The hydrolysate was 

dried overnight in a RapidVap (Labconco, Kansas City, MO), reconstituted in 1 ml 

water, filtered, freeze dried and stored in -80 °C until further analysis.  Soluble 

metabolites were extracted as mentioned above. To improve volatility in the GC, the 

amino acid and soluble metabolites were derivatized with 100 µl of N-(tert-

butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) in 100 µl 

dimethylformamide by heating at 70 °C for 1 h. A sample volume of 1 µl and split 

ratio 50 was injected into the GC column with the carrier gas flow rate at 1.0 ml/min. 

The oven temperature started at 150 °C for 2 min, ramped to 230 °C at 3 °C /min, to 
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240 °C at 2 °C/min and then to 275 °C at 10 °C/min where it was held constant for 6 

min.  

3.5.4.2. Glucose from soluble metabolites 

The glucose in the soluble metabolites was extracted as described above. To improve 

volatility in the GC, the sample was dried and derivatized by heating with 50 µl 

hydroxylamine hydrochloride (20mg/ml in pyridine) at 90 °C for 1h and then on 

adding 100 µl propionic anhydride at 60 °C for 30 min. It was dried under a stream of 

N2 and reconstituted in 100 µl ethyl acetate. A sample volume of 1 µl at split ratio 75 

was injected into the GC column with the carrier gas flow rate at 0.9 ml/min. The 

oven temperature was held at 180 °C for 2 min and ramped up to 300 °C at 5 °C/min 

and held constant for 4 min.  

3.5.4.3. Ribose from RNA 

The RNA, extracted as described above, was hydrolyzed to ribose with 1 ml of 2N 

HCl at 100 °C for 2. To improve volatility in the GC, ribose was derivatized with the 

same procedure as glucose. A sample volume of 9 µl at split ratio 10 was injected into 

the GC column with the carrier gas flow rate at 1.5 ml/min. The oven temperature 

was held at 180 °C for 2 min and ramped up to 300 °C at 20 °C/min and held constant 

for 2 min.  

3.5.5. Extraction and measurement of isotopomer abundances of 

biomass components by NMR 

Protein was extracted from 60 mg of dried, ground cells as described above. Protein 



 

87 

 

extracted in phosphate buffer saline was dialyzed to eliminate the phosphate salts as 

they affect NMR acquisition. The protein was then freeze dried and reconstituted in 

500 µl D2O. The 2-D [
13

C, 
1
H] HSQC spectra was acquired with the following 

parameters at 25 °C: 
 13

C (F1) resonance frequency, 150 MHz; 
1
H (F2) resonance 

frequency, 600 MHz; spectral width along 
13

C (F1) dimension, 6039 Hz; spectral 

width along 
1
H (F2) dimension, 8371 Hz; number of complex data points, 4096 (

13
C) 

× 1024 (
1
H); number of scans, 4. The software Bruker Topspin 2.1 was used to 

program the acquisition, view and phase the spectra. The software NMRviewJ (One 

Moon Scientific, Inc.; available free of charge at http://www.onemoonscientific.com) 

was used to extract the peaks and an in-house MATLAB package NMRisotopomer 

(to be made freely available at http://openwetware.org/wiki/Sriram_Lab) was used to 

quantify the areas under the peaks. The 
13

C enrichments of amino acids needed for 

computing isotopomer abundances were calculated from their respective MIDs.       
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4.1. Introduction 

Plants produce a host of primary and secondary metabolites that are of prime 

economic interest. C and N metabolism are intimately intertwined and to a large 

extent dictate the fate of the nutrients entering plants (Sakakibara, Takei, and Hirose 

2006). The availability of N affects not only photosynthesis (CO2 fixation) but also 

photorespiration (undesirable O2 fixation) and respiration which are important 

cellular functions in plants (Nunes-Nesi, Fernie, and Stitt 2010). The balance between 

C and N also affects the partitioning of biomass into sugars, starch and organic acids, 

flowering time and root architecture (Sakakibara, Takei, and Hirose 2006; Gutierrez 

et al. 2007). The interactions between C and N themselves respond to a multitude of 

factors: light and water availability, adenosine triphosphate (ATP), reducing factors 

(required for assimilation of inorganic N), and pH balance and consequently they are 

regulated by various signaling molecules such as nitrate, ammonium, sugars, amino 

acids (especially glutamine, glutamate and aspartate), and organic acids (Nunes-Nesi, 

Fernie, and Stitt 2010). Understanding the intricacies of C-N interactions will help us 

modulate plants for desired purposes. 

Poplar is a potential cellulosic biofuel source and hence there is tremendous interest 

in understanding N cycling and C-N interaction in this tree. Woody perennial trees 

have evolved mechanisms to recycle N considerably from senescing leaves during 

fall and winter (Zhu and Coleman 2001; Cantón, Suárez, and Cánovas 2005). Uptake 

and assimilation of N needs energy in the form of ATP and reducing power (Nunes-

Nesi, Fernie, and Stitt 2010). N recycling results in more efficient use of N saving the 
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tree precious resources. Studying the existing metabolic machinery that helps recycle 

N and genetically eliminating possible bottle necks in this process will help trees 

utilize N more efficiently and make them better biomaterial crops. Poplars are 

capable of recycling up to 80% of the N in leaves to perennial tissues during leaf 

senescence (Pregitzer et al. 1990). Poplars produce bark storage proteins (BSPs) 

which serve as nitrogen sinks when the N from senescing leaves is remobilized. 

Probing the intracellular fluxes in poplar cell suspensions under various N conditions 

will help understand the N cycling and C-N interactions.  

4.2. Results 

To study the C-N interactions in poplar, we subjected poplar cell suspensions to four 

different C-N supply treatments (Fig. 4.1) – optimal C, N (C++,N++++++), optimal 

C, low N (C++, N+), low C, optimal N (C+, N++++++), and low C, low N (C+, N+). 

ILEs were carried out on all these treatments.   

C++
N++++++

C++
N+

C+
N++++++

C+
N+

C++

C+

20g/L glucose

10g/L glucose

N++++++

N+

1900 mg/L KNO3, 1650 mg/L NH4NO3

316 mg/L KNO3, 275 mg/L NH4NO3
 

Fig. 4.1. Poplar cell suspensions acclimated to different C-N supply treatments.  The 

different C-N supply treatments allow us to study the C-N interactions especially under C or 
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N deficient conditions. The treatments were chosen by trial and error.  

4.2.1. Growth and nutrient uptake rates differ between the C-N supply 

treatments 

The change in biomass and consumption of glucose and nitrogen sources were 

measured for 7 days after subculture. The cell suspensions under the different 

treatments show different growth characteristics. The cell suspensions under C++, 

N++++++ treatment show the highest growth rate whereas those under the N+ 

treatments grow slower (Fig. 4.2).  The biomass yield/mg C uptake (Fig. 4.3) for all 

treatments is similar suggesting that irrespective of the status of C or N, the uptake of 

C is constant. Contrary to this, the biomass yield/mg N uptake is higher for the low N 

treatments (Fig. 4.4).  

4.2.2. The 13C label is diluted by the initial seed biomass in batch 

cultures 

We conducted ILEs with 100% 1-
13

C, and 30% U-
13

C glucose on all four C-N 

treatments. The 
13

C enrichments of proteinogenic amino acids extracted from cells 

grown on 27% U-
13

C glucose were significantly lower than the expected 27% 

(between 22-28%) (Fig.4.5). This is a surprising result because the cells cannot 

distinguish between 
12

C and 
13

C isotopes (Kruger et al. 2007b). To explain this, we 

hypothesized that the dilution could be due to one of the following reasons – i) 

photosynthetic fixation of unlabeled CO2 or ii) initial seed biomass. To test 

photosynthetic fixation of CO2, the cells were grown on 100% U-
13

C glucose under 

continuous light and dark. 
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Fig. 4.2 Growth rates between cells under the four treatments are different. 
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Fig. 4.3 Biomass yield per mg carbon consumed is similar across all C-N treatments. 
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Fig. 4.4 Biomass yield per mg N consumed is higher in cells grown under low N. 
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Fig. 4.5. 
13

C enrichments of amino acids from cells grown on 30% U-
13

C glucose are 

lower than the expected 30%. Dilution of the 
13

C label observed is different between the 

various amino acids. 
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Absence of dilution of the 
13

C label in the dark grown cell metabolites would 

implicate the role of photosynthetic CO2 fixation. Similar extents of dilutions of 
13

C 

label in amino acids were observed under both light and dark (Fig. 4.6) suggesting 

that photosynthetic fixation of CO2 is not responsible for the dilution. Evidence of 

anaplerotic fixation of CO2 (data not shown) was detected but this alone could not 

explain the extensive dilution observed.  

The poplar cell suspensions are grown in batch cultures. Every week aliquots of the 

culture, with known mass of cells, are transferred to new shake flasks with fresh 

media. This seed biomass takes up the fresh media to synthesize new biomass. During 

an ILE, the naturally labeled (1.13% 
13

C) seed biomass is transferred to labeled media 

(containing 30% U-
13

C or 100% U-
13

C or 100% 1-
13

C glucose) and it contributes a 

substantial proportion (10-12%) to the total biomass. This can readily explain the 

extensive dilution of 
13

C label that occurs in amino acids.  

4.2.3. Seed biomass backmixes with the newly synthesized biomass 

In a 100% U-
13

C glucose ILE, we expect to obtain only unlabeled (from the seed 

biomass) and fully 
13

C labeled (from the newly synthesized biomass) metabolites i.e. 

the mass spectra of metabolites should show only the smallest and the largest mass 

isotopomers. Contrary to this, several intermediate mass isotopomers were detected in 

all amino acid mass isotopomer distributions (MIDs) (Fig. 4.7). These can occur only 

if the seed biomass backmixes with the newly synthesized biomass to produce 

combinations of 
12

C and 
13

C.  
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Fig. 4.6. The dilution of 
13

C enrichments of amino acids is not due to photosynthetic 

fixation of unlabeled CO2. ILEs with 100% U-
13

C glucose were conducted in light and dark. 

Since photosynthesis can occur only in light, the similar dilution of 
13

C label under both light 

treatments suggests that photosynthetic fixation of unlabeled CO2 is not the cause of dilution. 

 

Backmixing also explains the differences in the 
13

C enrichments among amino 

acids.We hypothesize that the metabolites, that show signatures of backmixing, are 

biosynthesized from the labeled media as well as from the seed culture by 

degradation pathways. Since the metabolites undergo several cycles of biosynthesis 

and degradation, the 
12

C and 
13

C combinations are formed.  

4.2.4. Modeling the backmixing of seed biomass with newly synthesized 

biomass 

The metabolic network model consists of the glycolysis and the PPP both in the 
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cytosol and the plastidic compartments and the tricarboxylic acid cycle (TCA) in the 

cytosol. Glucose is the carbon source and the various biomass components leave the 

system. 
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Fig. 4.7. Mass isotopomer distributions of metabolites from a 100% U-
13

C glucose ILE. 

Presence of mass isotopomers between the lowest and highest mass isotopomers indicate that 

backmixing between the seed biomass and newly synthesized biomass occurs.  

 

In this network, to depict the dilution the amino acids that show signatures of 

backmixing (the 100% U-
13

C glucose ILE provides the most prominent signatures) 

enter the metabolic network as unlabeled metabolites (Fig. 4.8). The unlabeled amino 

acid influxes are constrained to 12% of their biomass effluxes (calculated using the 

biomass composition) since the seed biomass contributes up to 12% of the total 

biomass. Biosynthesis and degradation pathways model the backmixing by allowing 
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the unlabeled amino acids to mix with their biosynthetic labeled versions and degrade 

and reform to attain combinations of 
12

C and 
13

C. Except His, Leu, Ile, Lys, Pro and 

Thr all other amino acids showed signatures of backmixing. The amino acid influxes 

and the parameters that belong to the biosynthesis and degradation reactions are 

called backmixing parameters.  
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Fig. 4.8. Backmixing model. In this model the metabolites that show signatures of 

backmixing enter the metabolic networks along with labeled glucose to model the dilution. 

Additionally the biosynthetic and degradation pathways help model the backmixing by 

allowing the metabolites to be synthesized by labeled glucose and from their incoming 

streams.  

4.2.5. The backmixing model performs better than previously used 
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models 

Previously, investigators have observed similar dilution effects in cells 

suspensions/embryos due to the presence of seed biomass/embryo material (Lonien 

and Schwender 2009b) and have accounted for it by i) adjusting the labeling of the 

feed substrate (Glc labeling adjusted model) or ii) correcting the MIDs by a factor 

based on the seed biomass/total biomass (MIDs adjusted model). In this study, we 

compare the above models to the backmixing model described above by fitting the 

MIDs obtained from the 1-
13

C, 30% U-
13

C and 100% U-
13

C ILEs simultaneously.  
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Fig. 4.9. The fluxes estimated by the backmixing model explain the measured MIDs the 

best. The isotopomer abundances simulated by the backmixing model match the measured 

isotopomer abundances better than the other two models and consistently lie within the 5% 

error boundaries. 
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The MIDs from the 1-
13

C and 30% U-
13

C glucose ILEs constrain the intracellular 

fluxes and the backmixing fluxes whereas those from the 100% U-
13

C glucose ILE 

constrain only the backmixing fluxes. The backmixing model explains the isotopomer 

abundances to a greater extent than the other models. The measured data is matched 

best by the simulated data obtained from the backmixing model (Fig. 4.9).  

A preliminary flux map produced using the backmixing model shows that the 

significant improvement of the fits is achieved with very little flux through the 

backmixing reactions (Fig. 4.10).  
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Fig. 4.10. Metabolic flux map created using flux estimates obtained from the 

backmixing model  
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4.2.6. ILEs carried out for three subculture cycles reduce the dilution of 

13C label by seed biomass 

 To eliminate the unlabeled seed biomass altogether, we conducted ILEs with 100% 

1-
13

C, 30% U-
13

C and 100% U-
13

C glucose for three subculture cycles instead of one. 

Despite, the longer labeling duration, the 
13

C enrichments of metabolites, although 

higher, are not all enriched up to the expected values (Fig. 4.11). Therefore we will be 

using the backmixing model to fit the labeling data from all poplar cell suspension 

ILEs. 
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Fig. 4.11. Conducting ILEs for three subculture cycles does not eliminate the unlabeled 

seed biomass completely. The metabolites from cells grown on 30% U-
13

C or 100% U-
13

C 

glucose for three subculture cycles do not attain the expected 
13

C enrichments suggesting that 

the unlabled seed biomass is not completely eliminated 
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4.3. Discussion 

The growth and nutrient uptake characteristics between the C-N treatments indicate 

that the decrease in the C supply has negligible effect on metabolism whereas the 

decrease in N supply does. The cells grown under low N exhibit higher biomass 

accumulation per mg N consumed thus suggesting that the cells are making fewer N 

containing metabolites. Flux maps will help us understand the pathways regulation 

under different C-N treatments.  

Flux estimates are obtained by carefully balancing the 
12

C and 
13

C atoms in the 

metabolites of the metabolic network. Therefore it is paramount to identify all sources 

of 
12

C and 
13

C for accurate book-keeping. This is especially important in plant 

systems because MFA is often carried out on batch cultures or embryos. The effect of 

label dilution by seed biomass material on flux estimates has not been examined 

before. We found that we have to account not only for the dilution sources but also 

the backmixing of the seed biomass with the newly synthesized biomass. The 

backmixing model proposed performs better than previous models used to explain 

dilution effects. The backmixing model was made primarily based on the MIDs of 

metabolites obtained under the 100% U-
13

C Glc ILE. Therefore ILEs with 100% U-

13C Glc should be conducted to determine the backmixing extents in the various 

metabolites. Significant improvements were achieved in the fits with only small 

fluxes through the backmixing reactions. This shows the potency of careful modeling 

of the metabolic network.  
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4.4. Material and methods 

4.4.1. Poplar suspension cell cultures 

Poplar (Populus deltoides) suspension cell cultures were grown in 125ml Erlenmeyer 

flasks on an orbital shaker at 125rpm under 21 °C. The suspensions were subcultured 

every 7d by transferring 600mg of cells into 30ml of Murashige and Skoog media 

containing 2% (w/v) glucose, 0.1% of 1mg/ml vitamins, 0.1% of 1mg/ml 2,4-

Dicholorophenoxyacetic acid, 0.01% of 1mg/ml 1-naphthaleneacetic acid, 0.001% of 

1mg/ml 6-Benzylaminopurine and 0.0008% BASTA at pH 5.7. Three parallel ILEs 

with 100% 1-
13

C, 100% 1,2-
13

C and 30% U-
13

C Glucose (Cambridge Isotopes) were 

conducted under all C-N supply treatments. 

The other methods used in this study are similar to those mentioned in Section 3.5. 
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5. Chapter 5:  Conclusions 

The fluxome is the phenotypic culmination of interactions between all other 

components such as the genome, transcriptome, proteome and metabolome. 

Fluxomics is an important ‘omics’ field that has not yet been fully exploited in plant 

studies. We have developed and engaged fluxomic tools, especially metabolic flux 

analysis (MFA), to probe metabolism in two plant cell suspensions – Arabidopsis 

thaliana (Arabidopsis), a model plant and poplar, a model tree and potential biofuel 

crop. Although flux maps have been generated for Arabidopsis prior to this study, we 

have generated the first flux map for poplar cell suspensions.  

The isotope labeling experiment (ILE) design study carried out in this work (Chapter 

2) successfully identified isotopic labels (1,2-
13

C glucose) and information rich 

metabolites (ribose) that helped estimate the fluxes in the pentose phosphate 

pathways (PPP) in the Arabidopsis cell suspensions with much greater accuracy than 

reported in literature previously (Chapter 3). We showed that use of multiple parallel 

ILEs improves the flux estimates further and that in the case of PPP flux estimation, 

the measurement of isotopomers by mass spectrometry measurement outperforms that 

by nuclear magnetic resonance.  

The flux maps obtained by carrying out MFA on Arabidopsis cell suspensions grown 

under continuous light and dark showed that the light and dark grown cells are 

regulated only by carbon signaling and not light signaling. This study provides 

fluxomic evidence that light and carbon signaling are highly intertwined and adds to 

other systems level studies that have found similar responses in plant cells under light 
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and carbon stimuli (Chapter 3). 

MFA was conducted on poplar that is known to perform distinctive nitrogen storage 

and recycling. Poplar cell suspensions acclimated to different carbon – nitrogen (C-N) 

supply treatments displayed different growth rates and biomass yield/ mg nitrogen 

uptake but very similar biomass yield/ mg carbon uptake. This suggests that cells can 

direct nitrogen allocation with more flexibility than carbon allocation. Poplar cell 

suspensions, grown in batch cultures, demonstrated via ILEs, that the seed biomass 

dilutes 
13

C label and affects the mass isotopomer distributions of metabolites to a 

great extent. This phenomenon was also observed in Arabidopsis cell suspensions but 

to a lesser extent.  The ILEs carried out for three subculture cycles instead of one 

were unable to eliminate the seed biomass completely. The dilution and 

accompanying backmixing of the seed biomass and newly synthesized biomass was 

successfully modeled to obtain satisfactory fits of the mass isotopomer distributions 

of metabolites (Chapter 4).  

The work done in this study advances the use of MFA in studying plant physiology 

by enhancing both computational and experimental approaches in flux estimation. 

The insights obtained from this work, at once showcase the robustness of the MFA 

technique and the challenges in improving it further for application to plant systems.  

Future directions 

Metabolic flux maps of poplar cell suspensions under the different C-N supply 

treatments will shed new light on the mechanisms by which nitrogen metabolism is 

tuned. Integration of information from the flux maps with information obtained by 
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proteomic and transcriptomic studies on poplar, that are being carried out in our 

collaborator, Dr. Gary Coleman’s lab, can potentially help discover more details on 

the nitrogen storage and recycling mechanisms of poplars.  
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