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Abstract

In this paper, we present an axiomatic formulation of Discrete Ran-
dom Sets, and extend Choquet’s uniqueness result to obtain a recursive
procedure for the computation of the underlying event-space proba-
bility law, given a consistent Discrete Random Set specification via
its generating functional. Based on this extension, we investigate the
structure of Discrete Random Set models that enjoy the properties
of independent decomposition / superposition, and present a design
methodology for deriving models that are guaranteed to be consistent
with some underlying event-space probability law. These results pave
the way for the construction of various interesting models, and the
solution of statistical inference problems for Discrete Random Sets.
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1 Introduction

Statistical inference techniques similar to maximum likelihood, or maximum
a posteriori, are practically non-existent in Random Set theory [6]. This is
due to inherent analytical difficulties, and the fact that, despite its use-
fulness, continous domain Random Set theory falls short of providing the
necessary tools needed to construct efficient inference procedures. The rich-
ness of the event space poses another fundamental constraint: it is very
difficult (if not impossible) to derive the measure on the event space, given
a constructive Random Set specification.

The transition from continous domain Random Sets to discrete domain
random sets is a troublesome one [20, 5]. For this reason, it is preferable to
define discrete domain Random Sets (or Discrete Random Sets, for brevity)
directly on the appropriate spaces, and base subsequent developments on
this axiomatic definition. Discrete Random Sets have a very strong potential
for applications in the areas of Machine Vision and Image Modeling and
Understanding 20, 5, 7, 17, 24, 18, 3, 4, 1, 21, 22].

In this paper, we consider Discrete Random Sets, and present a result
that establishes a vital link between Discrete Random Set theory and stan-
dard existing Statistical Inference techniques. Using this result as a starting
point, we examine the structure of divisible Discrete Random Set models,
which are discrete domain analogs of the popular continous domain Boolean
and Germ-Grain Random Set models [19, 20, 5, 1, 4, 3]. Finally, we propose
a procedure that yields new Discrete Random Set models, based on existing
models.

The rest of this paper is organized as follows. Section (2) presents the
axiomatic definition of a Discrete Random Set, along with a special case
of a very important result due to Choquet [2]. Section (3) extends Cho-
quet’s result, and shows that, for Discrete Random Sets, the measure on
the event space can actually be recovered from its “projections” (the col-
lection of hit (or miss) probabilities over the sample space, which, in the
case of Discrete Random Sets, is a subspace of the event space). A simple,
yet important, example of a Discrete Random Set is considered in section
(4), and its capacity functional is computed in section (5). The general
structure of Boolean Discrete Random Set models is investigated in section
(6). Section (7) presents a simple randomization process, which we call
randomized superposition, and discusses its utility in deriving new Discrete
Random Set models. Finally, section (8) contains some concluding remarks,
and guidelines for future research.



2 Discrete Random Sets

Definition 1 Let B be a bounded subset of Z2. Assume that B contains
the origin. Let 3(2) denote the o-algebra on Q. Let $(B) denote the power
set (i.e. the set of all subsets) of B, and let (X(B)) denote the power
set of ¥(B). A Discrete Random Set (DRS), X, on B C 22, is a
measurable mapping of a probability space (Q,%(Q), P) into the measurable
space (2(B), 5(5(D))).

Definition 2 The capacity functional, Tx (K), of « DRS X, on B C Z?,
is defined by
Tx(K)=Px(XnK #0), Kex(B)

The capacity functional Ty (K'), for all K € £(B), contains all the informa-
tion about the DRS X.

Theorem 1 [2, Chogquet] Given Tx (LK), VK € %(B), there exists a unique
probability measure, Py, on L(X(DB)), such that

Px(XNK #£0) =Tx(K), VK e %(B)

Proof: The theorem is valid for Random Sets defined on R2, and for
all X € K, the collection of all compact subsets of R%. Since Z% C R?,
the validity of the theorem for the discrete case follows. Briefly, Discrete
Random Sets are a special case of Random Sets, defined on the integer
coordinate grid. Therefore, by Choquet’s theorem, the probability measure
on Y(X(B)) is uniquely determined by the knowledge of hit probabilities
over the entire collection of compact subsets of R2. The hit probability
of any particular compact subset, K C R? is uniquely determined by the
hit probability of K N B C B. Thercfore, given the hit probabilities of all
subsets of B, the probability measure on X(¥%(B)) is uniquely determined.

3 Probability functionals

Let K, Kq,--+, K, be n+1 elements of ¥(B), and define the following prob-
ability functionals

Px (K, Ky, Kz, -, Kp) = Py(XNK=0AND XNKy#0 AND ---



<+« AND XN K, #0)
i.e.
Ix (K, I, Ko+, Ky) = Px(X misses K AND X hits Ky AND ---
-« AND X hits K,,)
Using Bayes rule we have

Px(X misses K AND X misses K, AND X hits Ky through K,_1) =

Px(X misses Ky, | X misses K AND X hits Ky through K,,_1)-
-Px(X misses K AND X hits Ky through K,_y) =
=[1 = Px(X hits K,, | X misses K’ AND X hits K; through K,_1)]-
Px(X misses K AND X hits Ky through K,_1) =
= Px(X misses K AND X hits Ky through K, _1)—
Px (X misses K AND X hits Iy through K,)

Therefore
Pxa (KUK, Ky, ooy Kpoq) = Tx o1 (I, Ky ooy Ky )—
Pxn(K, Ky, Ky)
and reorganizing
Pxn(K, Ky, Ky) =Ty no1 (K, Ky, oo, Kpoq)—

Pxn-1(KU LKy, Ky,- -, Kno1)

with
I'xo(K)=1-Tx(K)=Qx(I)>0

The functional
Qx(K)=1-Tx(K)=Px(XNK=0)

is known as the generating functional of the DRS X. We remark that
for all n > 0, and any collection, K, Ky, -+, Iy, of n 4+ 1 elements of X(B),
Pxn(K, Ky, -+, K,) > 0, because it is a probability which can be recursively
computed using Bayes rule.



Figure 1: Example of binary tree generated for a three point observation set

Tor reasons that will soon become apparent, the recursion obtained above
is a very interesting result. It implies that, given T'x(K'), for all K € E(B),
we can recursively compute various important probability functionals. In
particular, let
K =Ul{p}, K°=B-K

then

PX(X = I() = FX,’H(I(C> {pl}a {])2}7 Tty {pn})
= FX,n—-—l(-I(c, {pl}> {1)2}7 Tty {pn—l})_
I‘X,n—l (](C u {pn}> {pl}> {PZ}, T {pn—l})

Therefore, given any observation I € L(B), we can recursively compute the
probability of this observation. An example of a binary tree generated by the
above recursion is given in figure 1, for the case of a three point observation
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set, ' = {p1,p2,p3}. A closed-form expression can also be obtained. It is
easy to see that

K]

Px(X=K)=) (-1)) > @Qx(K°UK))

1=0 K;CK, |Ki|=i

It is interesting to note that, in order to compute Py(X = K), we only
need the miss probabilities of all possible unions of K¢ with subsets of K.
The probability of any event in %(3(B)) can then be found by summing
up the probabilities of its constituent elementary outcomes, all of which are
in £(B). Theorem 1 guarantees that, given Tx (K') for all K € %(B) there
exists a unique probability law Px on X(2(B)), but here we claim even more:
the unique probability law can be recursively obtained, i.e. we
can infer the underlying distribution on ¥(3(B)) . This is a striking
result, especially because it is valid for eny Discrete Random Set model.
Its implications are significant, because, for example, all statistical inference
problems involving Discrete Random Sets whose capacity functional can be
specified are (in principle) solved.

The cost of deriving the underlying probability law on %(Z(B)) is high.
The number of operations needed to determine the probability of any K €
2(B) is O(2!K1), To see this, let n = |K|. Let T(n) denote execution
time, and let W(n) denote workload (overall number of operations involved)
associated with the computation of P(X = K'). From the recursion for I'x ,
we have

T(n)=T(n—-1)+ 1~ T(n) = O(n)
Wi(n)=2W(n—1)+ 1+~ W(n)= 0(2") (exponential)

Therefore, the computation is very costly when implemented on a sequential
machine, because in this case the run time is given by W(n), and, hence,
it is exponential. On the other hand, if one fully exploits the inherent
parallelism of the recursion (i.e. recursively, simultaneously compute both
subexpressions) then one can come up with a run time which is linear in | K|
(this requires the use of a massively parallel machine). The power set itself,
%(B), has O(2!B!) elements. Therefore, the overall number of operations
needed to find Px(X = K), VI € (D), is 0(221B}).



4 The Boolean RS with Radial Convex Primary
Grains model

The Boolean random set is an important and relatively simple example of
a random set. Its importance stems from two principal considerations: its
analytical tractability and its power in modeling many real-life applications.
Despite its simplicity, it has many interesting properties, and, in fact, there
are many unanswered questions [24, p65]. A Boolean model is a basic model
in stereology and stochastic geometry [24, 10, 20, 5]. Typical applications
include: random clumping of dust, or powder particles, or blood cells; model-
ing of geological structures, patterns in photographic emulsion, colloids in gel
form, and structural inhomogeneities in amorphous matter [19, 20, 5, 1, 3, 4]
and [24, p68, and references therein].

Here, we consider a restricted version of the discrete case analog of the
Boolean random set, the discrete Boolean random set with radial convez pri-
mary grains. This version is still powerfull enough to model many real-life
applications, yet restricted cnough to allow for the analysis and design of
efficient algorithms for the statistical inference of various model parameters.
Recently, this version has been successfully used to model the degradation
process in an attempt to derive the “optimal” reconstruction filters for com-
munication of morphologically coded images [18]. An efficient procedure for
almost-Bayesian binary hypothesis testing for this special case of discrete
Boolean models has been devised [21]. It uses the discrete Morphological
Skeletonization algorithm and some of its variants [5, 9, 26, 12, 11, 7, 17, 18].
An exact Bayesian solution to a more general M-ary testing problem can be
found in [22].

The discrete “analog” of a planar Poisson Point Process (PPP), ¥, ob-
served through a bounded Borel window, B, is defined in what follows.

Definition 3 Let B be « bounded subset of Z%. Assume that B contains
the origin. Let £(Q) denote the o-algebra on . Let ¥(B) denote the power
set (i.e. the set of all subsets) of B, and let X(X(B)) denote the power
set of ©(B). A Discrete Point Process (DPP), ¥, on B, is a measur-
able mapping of a probability space (Q,L(Q), P) into the measurable space
(2(B), Z(2(B)))-

Observe that the DPP definition is identical to the DRS definition. In the
discrete case (at least in principle) there is no distinction between random
point processes and random sets; in fact discrete random sets are discrete



random point processes, because the regularity conditions are automatically
satisfied here (discrete random sets are locally finite and simple). Informally,
¥ can be thought of as a random pattern of points scattered over B. The
continous case PPP can be derived {rom a generalization of the continous
case Binomial Point Process [24, pp36-38], by using a limiting argument.
Alternatively, the continous case PPP can also be derived from a general-
ization of the Bernoulli Lattice Process (BLP) [24, pp40-42], again by using
a limiting argument. This, then, is the correct discrete-case analog of the
PPP.

Definition 4 A Generalized Bernoulli Lattice Process (GBLP), ¥,
on B, is a discrete point process on B which is constructively defined in
the following manner. Lach point © € B is contained in U with probability
pAs(2), independently of all others. Here, p € (0,1] and \,(z) € [0,1], Ve €
B.

Clearly, the GBLP enjoys the independent scattering property, i.e. the
number of points that fall on n disjoint subsets of B form n independent
random variables.

Definition 5 The dilation, X @ IT%, of a set X C 22, by a structuring
element II C 22, is defined as

XoH =) Xpn={z€2?3H.nX #0}
heH

In the discrete case the notion of size is formalized via the operation of set
dilation

| {0lenene---oH, (rdilaions) ,r=12,...
ril = { 0 o0 (1)

Let I be a nonempty, bounded, and convex subset of B, which contains
the origin, and H C B' C B, |H| << |B'| << |B|. We have the following
definition.

Definition 6 Let ¥ be a« GBLP on B with parameters (p, A,). Let {G1,G2," -
be a set of nonempty, bounded and convez i.i.d. discrete RS’s, on B' C B,
|B'| << |B|, each given by G; = R;H, where {Ry, Ry, - -} form an i.i.d. se-
quence of Z-valued r.v.’s which is independent of ¥, R; < R, Vi, and each



R; is distributed according to the pmf fr(r), which is compactly supported
on {0,1,...,R}. Define

X= J Gie{n}
1=1,2,...
where ¥ = {y1, 2, -}. Then X will be called a Discrete Radial Boolean
RS (DRBRS) , with parameters (p,As, H, fr), and will be denoted by
(p, As, H, fr)-DRBRS. The points {y1,ya,---} are called the germs, and the
RS’s {Gy,G4, -} are called the primary grains of the RS X.

Strictly speaking, X is not a radial random set (for example, it does not nec-
essarily contain the origin). Nevertheless, with some abuse of terminology,
we shall call the resulting discrete Boolean RS a Discrete Radial Boolean
RS (DRBRS), to emphasize the nature of the underlying grain process.
A typical realization of a DRBRS is given in figure 2.

Given the result of the previous section, one would be interested in ob-
taining the capacity functional for the model at hand. We proceed to do
this in the section that follows.

5 Capacity functional for the DRBRS model

Let K be any subset of B C Z?%. We want to compute Tx (K) = Px(XNK #
). Observe that the only points (germ locations) that can give rise to a
primary grain that hits & are the ones in the set K @ RH?, as depicted in
figure 4. Consider

Qx(I)=1-Tx(K)=Py(XNK = 0)

and define
d" (2, K) = mingerc||z — k|l

where

|z ~ kil = min{n > 0| {z}®nH)Nn{k} # 0}
Observe that for z € K, d(z,K) = 0, since H contains the origin. We
remark that d*(z, I{), as defined above, is a digital uniform step metric,
which is a generalization of the digital Ilousdorff metric. For a proof of the
fact that d¥(z, K) is indeed a metric, refer to [26]. With this notation in
place, we now have

Qx(K)= I [ =pM(2)+pA()Fr(d(z,K)=1)]  (2)
2€K@RH¢



Figure 2: Realization of a DRBRS. Here, the primary grain is a discrete
CIRCLE (see figure 3)




" wEamn = uw - - n INOOO
"N ES - ww - uw - w L LINOgo

CIRCLE SQUARE RHOMBUS BOXNE

VEC000 VECO90

Figure 3: Some commonly used discrete structuring elements

H RH °®

Figure 4: A set K C B, and its dilation K & RH®
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where
m

Fp(m) = Z fr(l)
=0

and Fr(—1) = 0, by convention. Therefore, for a (p, A, H, fr)-DRBRS X,
on B, and any K € X(B)

Tx()=1- J[ [0-phE@)+ M@ (= 5)- 1] ()
2€K@RHS

By using the closed-form solution of the recursion for computing Px (X = K)
in terms of @ x, we obtain

|K]

Px(X=K)=> (-1} >

i=0 KCK, |Kil=i

[T @ -pA() + pA(2) Fa(a (2, K€U i) - 1))
2€KUK;®RH*

6 The Structure of Boolean DRS models

We have seen that if ®(K'), I € %(D) are indeed the miss probabilities
corresponding to some probability law Px, on 5(5(B)) (ie. if ®(K) =
Px(X NnK =0), VK € £(B)), then Px(X = K) can be recovered for all
K € Z(B), by using the recursion

Px(X = K) = Tx (K% {pr} {p2}, -+ {Pa})

= PX.’H—l(I(C’ {pl}a {])2}a Ty {pn——l})_
I1X,n-—l(]yc U {pn}a {Pl}, {])2}a Y {pn—l})

with
Pxo(l) = P(K)

K =0 {p}, K°=B-K
Alternatively, Py (X = K) can be recovered using the closed-form expression

|K]

Px(X=IK)=>(-1)) >  ®HK°UKy)

1=0 KiCK, |Ki|=t
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In general, given a probability functional, ®(K), I € %(B), it may be
the case that there exists no probability law on %(¥(B)) such that the
given probability functional gives the miss probabilities corresponding to
this law. In this case, trying to recover a probability law which is consistent
with the given miss probabilities is a hopeless pursuit. Therefore, we need
to characterize miss probabilities which are consistent in the sense defined
below.

Definition 7 A probability functional, (LK), K € L(B), is consistent if
and only if there exists some probability law, Px, on L(5(B)), such that the
given probability functional gives the miss probabilities corresponding to this

law, i.e. if B(K) = Px(X N K =§), VK € S(B).

Therefore, if (LK), K € X(DB) is consistent, the underlying probability law
can be recovered. Conversely, if we blindly use the recursion (or the closed-
form expression) and come up with a valid probability law, then ®(K), K €
2(B) is consistent, because the construction of the recursion tree is based
on Bayes rule, and, therefore, traversing the tree upwards preserves the
miss probabilities. Ilence, ®(L'), K € X(B) is consistent if and only if
the recursion (or closed-form expression) results in a valid probability law.
Finally, by the definition of a DRS as a measurable mapping, ®(K), I €
Y(B) is consistent if and only if there exists a DRS X with miss probabilities
Qx(K)=Px(XNK=0)=&(K), VK € E(B) (because one such DRS is
given by the canonical space construction, i.e. the identity mapping from
(%(B), X(S(B)), Px) to (S(B), B(%(B)), Px)).

Proposition 1 Let {X;}52, be a sequence of (not necessarily independent)
DRS’s, on a bounded subset B C Z*. Then, for any finite N, Uf\;OXi s a

DRS on B, and, furthermore, the limit U2, X; always exists, and is a DRS
on B.

Proof: By definition, each X is a measurable mapping
X;
(Q, 5(Q), P) = (5(B), £(E(B)))

Let us consider all possible sample paths. TFor ecach w € 2, X;(w) is some
element of X(B) (i.e. some subset of B). Since ¥(B) is a o-algebra on B,
by definition of a o-algebra, it must contain all finite and countably infinite
unions of elements of X(B). Therefore,

N
U Xi(w) € 5(DB), YN < o0

=0
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and

U Xi(w) € 2(B)

1=0
and this is true pointwise for all w € . Therefore, we have established that
UN, X;, and U2y X; are mappings from 2 to ¥(B). Since the sample space,
Y(B), is discrete (countable), we can assume (without loss of generality) that
() is a discrete space, and that X(§) is the power set of Q. In this case any
mapping from Q to L(B) is measurable. Hence, UY, X;, and U2, X; are
measurable mappings from (2, %(Q), P) to (5(B), %(Z(B))).

Proposition 2 If ®;(K), K € %(B) is consistent, for all t = 1,2,--+, N,
then ®1(K)Po(K)---On(K), K € 5(B) is also consistent, for any (finite
or infinite) N € 2} .

Proof: It suffices to show that there exists some DRS Y, with the given
miss probabilities, i.e. Qy(K) = Pr(YNK = 0) = &1(K)Po(K)---dn(K),
VK € X(B). Since ®;(K), K € %(B) is consistent, there exists DRS X,
with @ x,(K) = Px,(XinK = 0) = &;(K), VK € E(B). Let X1,X,,---, XN
be N independent. DRS’s, with generating functionals ®1(K), ®o( L), - -,
® (L) respectively. Let

Y=X3UXU ---UXpN
According to proposition 1, Y is a DRS.
Qv(K)=Pr(YNK =0)=Pr(XiNK=0,XoNnK=0,....,XnNK =0)

=Pr(X;iNK =0)Pr(XoNK =0)---Pr(XyNK = ()
= @1(]()‘1)2(1() . . '(DN(I()

Therefore, the proposition is proved.

Remark: By Choquet’s uniqueness result, all DRS’s with generat-
ing functional ®1(K)P(K)-+-Pn(I), induce the same measure on the
event space, £(Z(B)). Therefore, they are all equivalent. According to the
proof above, one such DRS, Y, is directly given as the union of N indepen-
dent DRS’s, Xy, Xo, -, Xn, with generating functionals &, (LK), ®o(I0), -,
O (L) respectively. Modulo this equivalence, Y is unique. From now on,
whenever we write DRS X ~ DRS Y, or DRS X = DRS Y, or say that a
DRS X is a specific member, Y, of a class of DRS’s, we mean that X and YV
induce the same measure on £(X(B)), and, therefore, from a probabilistic
viewpoint they are equivalent.
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Corollary 1 If ®(K), K € S(B) is consistent, then [B(K)]N, K € %(B)
is also consistent, for any (finite or infinite) N € Z¥.

The next proposition will facilitate the exposition of subsequent results. Its
proof is simple, and will be ommited.

Proposition 3 Let {G("), z € B} be a sequence of bounded and convex
independent DRS’s on B' C B, |B'| << |B|, given by G = RO H, Vz €
B, where {R®), z € B} form an independent sequence of {-1,0,1,.. . R}-
valued r.v.’s, with R distributed according to the pmf fr(7), and it is
understood that (—1)H = {). Define

X=Je¥ea: (4)
2€B

Then X is a (p, s, H, fr)-DRBRS, with

~ . (I-pA(2)) , r=-1
f}z(z)(r) = { p/\s(z)fR(T) , TE {0, 1,...,R}

Define .
Fan() = > Frw®)
l=-1

Then

= N (1 - pAs(2)) , r=—1
Freo(r) = { (1 = pAs(2)) + pAs(2)FR(r) , r€{0,1,..., R}

Therefore, the generating functional of a (p, As, H, fr)-DRBRS X, can be
written as

Qx(K) = [] Fro(d(z,K)-1) (5)

2€B

The same result can also be obtained using propositions 2, 3, and the fact
that the generating functional of the DRS G @ 2 is

Qang,(K) = Fpn(d?(z,K) - 1) (6)

The original constructive definition of a DRBRS X is intuitive, and paral-
lels that of the continous analog of the DRBRS, namely the Boolean RS
with radial convex primary grains. On the other hand, it complicates its

14



specification, and makes notation cumbersome. For these reasons, we shall
henceforth adopt the alternative specification of proposition 3, and use the
notation (H, fr)-DRBRS.

The Poisson Point Process, and the continous Boolean RS model, share
the important property of independent decomposition/superposition. This
means that a continous Boolean RS can be decomposed into the union of
(possibly infinitely many) independent Boolean RS’s, of the same type, and
the union of N independent Boolean RS’s is a Boolean RS. This infinite
decomposition property of the continous Boolean RS model is known as the
property of infinite divisibility. The class of RS models that posses this
property is known as the class of Infinitely Divisible Random Sets. The im-
portance of this class stems from practical considerations: Infinitely Divisi-
ble Random Sets are good models for many applications, and they exhibit a
certain degree of analytical tractability. In a sense, the reasons for adopting
the class of Infinitely Divisible Random Sets to model applications, are very
much the same as the reasons that led to the proliferation of the use of Pois-
son Point Processes in queueing theory and communication networks. The
key properties are independent decomposition/superposition, memoryless
behaviour, and the ability to state and prove asymptotic results.

In light of these observations, it is clear that we should be after some
analogous properties for Discrete Boolean Random Set models.

Definition 8 Let {X1, Xo, -+, Xn} be a sequence of N nontrivial indepen-
dent DRS’s. The divisibility degree of ¢ DRS X is defined as

N
dg(X) = sup {N | X = Xi}

1=1
Here, nontrivial DRS means « DRS whose generating functional is not iden-
tically equal to 1 for all K € %(B). Equivalently, by proposition 2, dg(X)
can be defined as follows. Let ®(K), K € £(B), ¢+ = 1,2,---,N, be a
sequence of consistent probabilily functionals, none of which is identically
equal to 1 for all K € %(DB). Then

N
dg(X) = sup {N | Qx(K) = H P,(K), VK € E(B)}
i=1
It is clear that for any DRS X, dg(X) > 1.

Definition 9 A DRS X is divisible if dg(X) > 1, and it is indivisible if
dg(X)=1.



From equations 4, 5, 6, and propositions 2, 3, it is clear that a DRBRS X,
on B, is divisible into the union of any possible collection of disjoint and
collectively exhausting unions of elementary DRBRS’s of the form G2 @ z,
and that, if for all z € B, G(*) @ z is indivisible, the divisibility degree of X
is bounded above by |B|. We have the following important proposition.

Proposition 4 Let {X1,X,,--+, Xn} be a sequence of N independent DR-
BRS’s, with

X; ~ (H,79) - DRBRS, i=1,2,---,N
Then,

is a (H, f2*=)-DRBRS, with

Fmas(r) = HF;<),>< ) Vze B, Vre{-1,0,1,---,R}
=1

where Vz € B, ¥r € {-1,0,1,---, R}

R (r) = Z Fres @y

I=-1

and

R(z) ZfR(z) 1=1,2,---,N
=-1

Proof: The validity of the proposition can be proven in two ways. The
simplest way is to look at the union of the N independent elementary DRS’s
Rgf)) Ho{z}, i=1,2,---, N, corresponding to the pointwise (in z) contribu-
tion of the DRBRS’s {X;, ¢ = 1,2,---, N}, and observe that the resulting
DRS, R%BWH ® {z}, will have radius equal to the maximum of the radii
of the contributing DRS’s. It is a standard exercise to show that the cdf
of the maximum of N r.v.’s is equal to the prodact of the cdf’s of the N
r.v.’s. Therefore, the correctness of the proposition follows. Alternatively,
by proposition 2, and equation 5, the generating functional of X is given by

Qx(K) = [ Fy(d"(z, k) - 1) - FUD (@ (z, I) - 1)
z2€B

16



for all K € ¥(B). The validity of the proposition is now a direct consequence
of Choquet’s uniqueness theorem, the above result, and equation 5.

According to the above results, the DRBRS model posseses the desir-
able independent decomposition/superposition properties. A more general
model, the Discrete Boolean RS, enjoys the same properties.

Definition 10 Let {G), z € B} be a sequence of bounded and independent
DRS’s on B' C B, |B'| << |B|, with G characterized by the generating
functional Qo) (I). Define

X=G¥a- (7)
z€B
Then X will be called « Discrete Boolean RS (DBRS), and it will be
denoted by {Qq»(K), z € B, K € %(B)}-DBRS.

Based on proposmon 2, the generating functional of a {Qq=(K), z €
B, K € %(B)}-DBRS X, on B, can be shown to be

Qx(K) = [] Qaorg.(8) = [] Qoo (K @ {~2}) (8)

Z€EB z€B
for all K € (B). It is clear that a DBRS X, on B, is divisible into the
union of any possible collection of disjoint and collectively exhausting unions
of elementary DBRS’s of the form G*) @z, and that, if forall z € B, GE @z
is indivisible, the divisibility degree of X is bounded above by |B|. This is in
contrast with the continous domain case, where it is known that a Boolean

RS is infinitely divisible [6]. The following is a generalization of proposition
4.

Proposition 5 Let{Xy, X, -, Xn} be a sequence of N independent DBRSs,

with
Xi ~{QUL(K), z€ B, K € £(B)} - DBRS, i=1,2,--+,N
Then,
N
X=X
1=1

is a {Qu(K), 2 € B, K € (B)}-DBRS, with

2

Qan(K) = [[ QY. (K), Vze B, VK € 5(B")

=1
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Proof: By proposition 2, and equation 8, the generating functional of X
is given by

N
Qx () = TT TI QY (K), VK € %(B)
z€B i=1
The validity of the proposition is now a direct consequence of Choquet’s
uniqueness theorem, the above result, proposition 2, and equation 8.

7 Randomized Superpositions of DRS’s

We have seen that the generating functional plays an important role in
Random Set theory, and an even more important role in Discrete Random
Set theory. In effect, the generating functional can be used as a modeling
tool, which allows for the design of models which are consistent with some
underlying event-space probability law. In this section we elaborate on this
approach, and show that one can specify complex DRS models, by using
a simple randomization process, and the (known) generating functional of
the Boolean DRS model, or other simple models. Furthermore, some of
the resulting DRS models possess the desirable properties of independent
decomposition (divisibility) and superposition.

Proposition 8 If®(K), K € X(B) is consistent, then (1—p+p@(K))N, K €
(B) is also consistent, for all p € (0,1) and all finite N € Z%.

Proof: Since &(K), K € £(B) is consistent, there exists a DRS, X,

with generating functional Qx (LK) = Px(XNK = §) = &(K), VK € 5(B).
Let M be a Binomial r.v. with parameters p € (0,1), N € 23, N < oo, i.e.

Pr(M =m)= <1]¥a) p" (1 - ]))N"m, m=0,1,2,...,N

Let X1,X9,--+,Xp be M ii.d. and independent of M DRS’s, each with
generating functional Qx (K) = ®(K), VK € %(B). Consider the DRS

YV =XiUXU:--+UXpn

Oy(K)=Pr(YONK =0)=Pr(X;NK =0,....,XyNnK =0)

N
=S Pr(XynK=0,.. ., XynK=0 M=m)

m=0
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N
=Y PrXinNK=0,.... Xy NK =0 | M=m)Pr(M =m)

m=0

N
=Y Pr(XinK=0,.,XnNK=0)Pr(M=m)

m=0

N
=Y [Pr(Xyn K =) Pr(M = m)
m=0

N
= 3 [Qx ™ Pr(M = m)

m=0

= m%:() (Qx (L™ (”NL) pr(1-p)Nm

ctno 85 (08) [ 2sce]

m=0

From the Binomial summation formula

N
3 (7%> prl-pN =1
m=0

it is easy to show that, for any A € (0, 00), the following holds

N
) (%) A™ = (14 AN
m=0

Therefore,

N
Qv(K) = (1-p)V (1 + 1 prX(K))

= (1-p+pQx(K)Y = (1 —p+ pd(K)Y

Therefore, there exists a DRS with the given miss probabilities, and thus

(1~ p+ p®(K))V is consistent.

The construction above corresponds to the following experiment. Each
independent DRS component is independently included in the union with
probability p. Therefore, the construction involves a sequence of indepen-
dent Bernoulli trials that determine the inclusion of the component DRS’s.
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We will call this sequence the inclusion sequence. Since the inclusion se-
quence is a stochastic sequence, we will call this and subsequent construc-
tions randomized superpositions. It is important to note that finite-length
randomized superpositions are realizable, given that we have the means to
realize the component DRS’s.

A DRS, Y, with generating functional (1 — p 4+ p®(K))N, K € £(B),
where ®(K'), K € X(B) is the gencrating functional of a DRS X, p € (0,1),
and N € Z}, is clearly divisible into the union of m < N independent
DRS’s, of the same type as Y, but with N = N;, ¢ = 1,2,...,m, such
that 3>/, N; = N. If X is indivisible, then dg(Y) = N. Furthermore
(see proposition 2), if {Y;}2; is a sequence of independent DRS’s, with
generating functionals (1 — p 4 p®(K))Vi, K € %(B), where ®(K), K €
¥(B) is the generating functional of a DRS X, p € (0,1),and N; € 2}, i =
1,2,...,m, then the DRS Y = U™,Y], has generating functional (1 — p +
p®(K)N, K € X(B), where N = Y7, N;, and, therefore, it is of the same
type as its component DRS’s. Ilence, the class of DRS’s with generating
functional of the above type is closed under the operation of independent
superposition.

It is interesting to consider what happens to the above construction when
the length of the inclusion sequence goes to infinity, i.e. when N — 0.
Suppose that N — oo and p — 0, in such a way that Np — A, where
A € (0,00). Then, in the limit, the Binomial pmf becomes the Poisson pmf,
with parameter A. We have the following proposition.

Proposition 7 If 8(K), K € ©(B) is consistent, then e~ 1= K ¢
Y(B) is also consistent, for all 0 < A < co.

Proof: Since ®(K), IV € X(B) is consistent, there exists a DRS, X,
with generating functional Qx (LK) = Px(XNK =0) = ®(K), VK € X(B).
Let M be a Poisson r.v. with parameter A\. Let Xy, X5, -+, Xas be M i.i.d.
and independent of M DRS’s, each with generating functional Qx(K) =
®(K), VK € %(B). Consider the DRS

Y=X3UXoU---UXp
Qy(K)=P (Y NK =0) =Pr(XinK=0,..,XynkK = 0)

[e0]
= > Pr(XiNK=0,..,XpyNK=0, M=m)

m=0
=3 Pr(XxinK=90,. ., XynNK=0|M=m)Pr(M=m)
m=0
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=Y Pr(XynK=0,...,XnNK =§)Pr(M =m)
m=0

= i [Pr(Xin K =) Pr(M =m)

0 m/\m & DO (R
£ laatip e - 5 DS
m=0 =0 )
= AP (E) _ mA(1-Qx(K)) _ —A(1-8(K)

Therefore, there exists a DRS with the given miss probabilities, and thus
e~ M1-2(K)) ig consistent.

If a DRS, Y, has generating functional e~*1-2K) [ ¢ ¥(B), where
®(K), K € %(B) is consistent, and 0 < A < oo, then, for any positive
integer NV, Y is equivalent to the union of N i.i.d. DRS’s, of the same type
as Y, but with parameter A\(N) = A/N. Therefore, dg(Y) = o0, i.e. Y is
infinitely divisible. Furthermore (see proposition 2), if {¥;}™, is a sequence
of independent DRS’s, with generating functionals e=*(1~®(X) | [ € B(B),
where ®(K), K € E(B) is consistent, 0 < A\; < 00, ¢ =1,2,...,m, then the
DRS Y = U™,Y;, has generating functional e M1-2(K) | [ € %(B), where
A=Y, A;, and, therefore, it is of the same type as its component DRS’s.
Hence, the class of DRS’s with generating functional of the above type is
closed under the operation of independent superposition.

By the same token, if the number of inclusions (units), A, in the inclu-
sion process is modeled by the state of a continous parameter birth-death
process, with constant birth and death rates, evolving since the beginning of
time (t = ~00), then M is distributed according to the modified geometric
pmf, and the following result is obtained.

Proposition 8 If (L), K € X(DB) is consistent, then

1—p .
T 50(00) —p<I>(K)’ K e X(B)

is also consistent, for all p € (0,1).

Proof: Again,since ®(K), I € X(B) is consistent, there exists a DRS,
X, with generating functional Qx(K) = Px(X N K = 0) = &(K), VK €
Y(B). Let M be ar.v. distributed according to the modified geometric pmf,
with parameter p € (0,1), i.e.

Pr(M=m)=1-pp™, m=012,...
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Let X4,Xq, -+, Xar be M ii.d. and independent of M DRS’s, each with
generating functional Qx (K) = ®(X), VK € X(B). Consider the DRS

Y=XUXU---UXp

As before,

Qv(K) =Y [®(K)™ Pr(M = m)

m=0

= SR (1 - )y

m=0

e}
= (1) Y pH(K"
m=0
__1-»p
1 - pd(K)
Therefore, there exists a DRS with the given miss probabilities, and thus

1—p

T p0(E) K e %(B)

is consistent.

Generalizing (see proposition 1), randomized superposition always leads
to consistent probability functionals, regardless of the specific pmf of M. At
this point, some remarks on its utility are in place.

In applications, a systems designer who attempts to model the discretized
observations of a physical two-dimensional process as a DRS, has to cope
with a severe handicap: only alimited number of DRS models are completely
specified, and even less are well understood. One of the few exceptions is
the DBRS model. It is interesting to note that if ®(K) is the generating
functional of the DBRS model, then none of the randomized superpaositions
above results in a generating functional which can be written in the product
form that characterizes DBRS models. Therefore, no DBRS exists which is
equivalent to the DRS constructed using any of the above randomized su-
perpositions. Hence, randomized superposition can be used to generate new
classes of DRS models, based on simple models such as the DBRS model.
Furthermore, the resulting DRS’s are completely specified and amenable to
analysis, since their generating functional is known in advance, and, there-
fore, the induced event-space probability law corresponding to any one of
them can be found.
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Figure 5: Randomized superposition corresponds to a nonlinear deformation
of the generating functional of the component DRS’s
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Figure 6: Convergence of Binomial deformation

Randomized superposition corresponds to a nonlinear deformation of the
generating functional of the component DRS’s, as it can be clearly seen in
figure 5. Figure 5 (a) presents a plot of the values of the generating func-
tional of the DRS result of randomized superposition, when M is Binomialy
distributed with parameters N, p, versus the values of the generating func-
tional of the component DRS’s, for p = 0.3, and for various values of N.
Figure 5 (b) presents the same plot, when M is distributed according to the
Poisson pmf with parameter A, for various values of A. Similarly, figure 5 (c)
corresponds to the case where M is distributed according to the geometric
pmf with parameter p, for various possible values of p. Figure 5 (d) compares
the three deformations, for one particular choice of the parameters which
forces the left endpoints to coincide. Figure 6 presents a plot of the values
of the generating functional of the DRS result of randomized superposition,
when M is Binomialy distributed with parameters N, p, versus the values of
the generating functional of the component DRS’s, when the product Np is
fixed to unity, and for various values of N. The generating functional of the
DRS result of randomized superposition, when M is distributed according
to the Poisson pmf with parameter A = 1, is also plotted in the same fig-
ure. Clearly, when N goes to infinity, the family of generating functionals
corresponding to the Binomial pmf tends to the generating functional cor-
responding to the Poisson pmf. In fact, convergence seems to be relatively
fast. We have the following proposition.

Proposition 9 Let Yy be the DRS result of randomized superposition, with
Binomialy distributed number of components, M, with parameters N,p such
that Np =X, 0 < A< o0, A = fived, VN € Z}. Then Yy converges in
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distribution to Y, where Y is the DIRS result of randomized superposition,
with Poisson distributed number of components, M, with parameter .

Prooft As N — oo, the Binomial pmf with parameters N, p such that
Np = A, converges to the Poisson pmf with parameter A. Therefore (see the
proofs of propositions 7, 6), the generating functional of Yy converges to
the generating functional of Y. Since, by Choquet’s result, the generating
functional uniquely determines the probability law on X(X(B)), the result
follows.

Proposition 9 provides us with a means to approximate infinitely di-
visible DRS’s by using finitely divisible DRS’s, which can be realized using
randomized superpositions of finite extent.

8 Conclusions and future work

We have attempted to demonstrate the power of an axiomatic approach to
Discrete Random Set theory. This power stems from the ability to recover
the measure on the appropriate subset of the event space, given knowledge
of the generating functional, and the possibility of estimating the generating
functional from real life observations (although such an estimation proce-
dure seems plausible, no techniques have been developed so far towards this
end; therefore, the utility of this approach remains to be proven). Taken to-
gether, these imply the applicability of standard nonparametric techniques
to statistical inference problems for the case of Discrete Random Sets [13].

One way to break the complexity barrier would be to extend the range
and diversity of available Discrete Random Set models. This would give a
systems designer additional freedom and {flexibility in choosing a model for
a specific application. This, in effect, should make parametric techniques
much more attractive [21, 22]

It would be interesting to relax the independence requirements imposed
on the randomized superposition construction, and consider what happens
when the component sequence is Markovian, and /or the components depend
on the length of the sequence. This seems difficult at this point. Research
on these and other ideas is currently underway.
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