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ABSTRACT

There have been many studies on the use of laser induced fluorescence mea-
surements to monitor the concentrations of aromatic compounds. The emission
spectra of binary and ternary mixtures of simple aromatic amino acids (tyrosine,
tryptophan, and phenylalanine) are analyzed based on a rigorous model that has
been previously developed by us to relate the detected signal level to the fluorophore
concentration. The fluorescence signals are generally noisy, and the contributions
from each fluorophore in a mixture are not at all additive due to the secondary op-
tical effects such as the re-absorption of the fluorescence signal and the re-emission
of photons at lower frequencies. Fourier transform methods are employed for noise
reduction, and a range of algorithms are proposed to extract information in an op-
timal manner from the strongly nonlinear system. Much improved concentration
estimates are obtainable over those calculated directly from the linear additivity
assumption when confounding effects are considered explicitly. Our results to date
show that it is most difficult to detect a small amount of one component either
in the presence of larger concentrations of other fluorophores or in the presence of
an unknown fluorophore. The application of on-line fluorescence measurements in

bioprocessing will be discussed.






BACKGROUND

Armiger and Humphrey wrote in 1979:“One of the major problems in devel-
oping mathematical models and control strategies, lies in the inability to measure
on-line many of the important process parameters. Significant improvement in ex-
isting sensors and the development of new sensors is needed.”? No solution has
been found yet and the challenge of on-line measurements is now a crucial one for

industry. To face this challenge, optical techniques seem to be a powerful tool.

The expression “optical techniques” covers a wide variety of techniques that
chemists and biologists have been using for concentration or identification measure-
ments for years. Absorption, scattering and fluorescence are some examples of

optical techniques that we employ

Optical techniques have particular advantages which make them well-suited for
on-line measurements in fermentation and a wide range of complex chemical pro-
cesses. These advantages include instantaneous response, selectivity of response,
sensitivity, and nondestructiveness. The recent progresses in fiber optics, lasers,
and photodetectors have further increased their domain of use as well as their
convenience. Among all the optical techniques available, fluorescence is the most
sensitive and selective for molecular measurements. Because many biological com-
pounds fluoresce, fluorescence is a powerful method for measuring compositions in
a biological system. This is especially important in fermentation systems which
contain many fluorescent compounds, including amino acids, cofactors, vitamins,
and antibiotics. Fluorescence has been widely used in chemistry as well as in bi-
ology. Although fluorescence measurement requires a more sensitive and expensive
setup than absorption measurement does, it is now a popular technique due to its
sensitivity and selectivity. The power of fluorescence also lies in the wide variety

of measurements one can make with a fluorescence setup. Changing the excitation
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and detection wavelengths and measuring the fluorescence decay in time or phase
provides another dimension from which the parameters of interest can be estimated.
The use of a laser, as a light source, enhances the properties of fluorescence. The
high intensity as well as the narrow bandwidth of the laser light increases the quality

of the measurements.

Despite all the advantages and power, fluorescence is not widely used in indus-
try. The main reason for this lack of use is the great complexity of the information
given by molecular fluorescence techniques. Interactions between components and
sensitivity to environmental conditions have thus far limited its use to systems con-
taining only one pure fluorescent component. For the fluorescence technique to be
useful, one must be able to sort out the interactions before the composition of a

sample can be estimated.
“SMART SENSING” USING LASER-INDUCED FLUORESCENCE

However, lack of linearity and specificity should not prevent one from obtain-
ing interesting information from fluorescence measurements. Today, with the use of
computers in data processing, valid information can be extracted from very nonlin-
ear and modulated measurements. The requirement of linearity and specificity that
a sensor traditionally had to meet is no longer needed. Selectivity is not required,
but what is important is “selective sensitivity,” which means that the parameter
to be estimated should influence the set of sensors in some way. Today’s sensor
must be “smart.” A sensor is no longer restricted to a device that gives a signal
proportional to a physical/chemical parameter. Rather, it is a system which uses
a great deal of data and takes advantage of our knowledge on the sensing process.
This approach, called “smart sensing,” is the one that will give the capability to
fully use fluorescence measurements. The realization of a “smart sensing” system

requires interdisciplinary knowledge. Knowledge in spectroscopy, biotechnology as
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well as in data processing should be combined in the study of a fluorescence sensor

for fermentation monitoring.

The project described here was developed in collaboration with the National
Bureau of Standards (NBS) in Gaithersburg, Maryland, USA. This work attempts

to develop a general numerical technique for signal deconvolution.

COMMERCIAL PROBE CHARACTERIZATION

Optical
sensor

Filters

PlucroMeasure® Detector
fcusing i

<
2 9N Yedia and Cells

Figure 1. Schematic of the NADH probe. Reproduced from
[MacBride et al. 1986].1°

A sterilizable probe which can monitor the fluorescence of a microbial fer-
mentation has recently become commercially available from two manufacturers:
Ingold, Inc.” and BioChem Technology, Inc.!® A schematic of the probe produced
by BioChem Technology, Inc. is shown in Figure 1. The probe has already been
used in many applications, which have been reviewed elsewhere.® * 7 The operation

of the probe is based on fluorescence of microbial cells within the fermentor. The
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probe was designed so that it could detect the fluorescence of the reduced cofactor,
NADH, which is an electron carrier central to all cells’ energy metabolism. The
fluorescence signal, however, is influenced by a number of factors. The manner in
which these factors affect the fluorescence signal has not been well characterized. In
this study, the response of this probe was modeled in order to account for some of
these factors. The model developed by one of the authors earlier'! can be used as a
basis for analyzing the fluorescence signal measured by the probe. Similar analysis

can be extended to general fluorescence measurements in other configurations.
THEORY
FLUORESCENCE

Fluorescence results when a molecule, excited by absorption of light, emits light
at a lower frequency when returning to its ground state. There are usually many
closely spaced energy levels in both the excited and ground electronic states due to
vibrational energy levels and interactions with surrounding molecules. The molecule
is usually excited from the lowest energy level of the ground state. Radiationless
decay also occurs along with fluorescence as the excited molecules climb down closely
spaced energy levels. The time constant for this radiationless decay is on the order of
10~ 155, whereas the time constant for fluorescence is on the order of 10~4-10710s.
Thus, the excited molecules lose some energy via radiationless decay before and
after emitting radiation. In addition, although the majority of the molecules that
absorb the excitation light are in the lowest energy level, the emission of fluorescence
returns the excited molecule to any of the available energy levels in the ground state.
For these two reasons the emission wavelength is always statistically longer than
the excitation wavelength. In general, not all of the excited molecules emit light
because they may also relax via radiationless decay or undergo a photochemical

reaction to return to the ground state. Often there is a metastable triplet state
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that causes the emitted light to be long-lived, on the order of seconds or minutes.

This type of radiation is called phosphorescence.
FLUORESCENCE MEASUREMENT MODEL

We will start with a model that is independent of the geometric configuration
of the measurement and absorbance of the sample. First, we will assume that the
intensity of excitation light at a point within the sample is proportional to the
intensity of excitation light at the source. The proportionality constant is assumed

to be a function of position and absorbance at excitation wavelength:
I = Ihg(z,y,z, A e=). (1)

The amount of light at wavelength, A.,,, emitted by a fluorophore within a differ-
ential volume is proportional to the amount of light absorbed by the fluorophore,

which is, in turn, proportional to the fluorophore concentration:

dF-'\.i!'(‘)TAL (z,y,2) = qb’-\"“a,z\“c;Iog(x, y, z, Ae=) dv. (2)

3, )

The fraction of this emitted light that is actually measured by the detector is also
assumed to be a function of position within the sample and absorbance of the sample

at the emission wavelength, A.,,:
dFi'\em (z,9,2) = k(z,y, 2, Al\am) ) dFé’i‘%TAL (2,9, 2). (3)

Integrating over the volume of the sample and summing over all fluorescent species,

gives the total amount of emitted light measured by the detector:

n

P = SR = S gmalads [ olovns AN (o A do. (4
1=1

=1

A new function, I', can be defined as:

I‘(A'\",A'\em) :[/g(x,y,z,AA”)h(:z;,y,z,AAe"‘)dv. (5)
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This function depends only on the geometry of the system. One can now express

the fluorescence divided by I' as a linear function of the fluorophore concentrations:

F;\em n
T (A%es, Adem) To Z (¢E\e'"a?") Ciy (6)

=1
where, the factors, (qu‘”"a;\“), can be found from the fluorescence spectra of the

pure components.
APPLICATION OF MEASUREMENT MODEL

By considering the geometric configuration of a given system, we approximate

the functional form of T'(AXe=, Arem),
1. NADH Probe

First, we will consider the NADH probe, shown in Figure 1. We will use the
Beer-Lambert law and an idealized model of the light-source/detector configura-
tion. We will consider a one-dimensional model, in which we can assume that the
excitation light is a collimated beam perpendicular to the probe surface, that the
intensity of the excitation light depends only on the distance from the probe tip,
and that the emission light must travel this same distance to reach the detector.
According to the Beer-Lambert law, this one-dimensional model gives:

n
I= Iyexp (—xz a;\"c,-) . (7)
i=1
Thus, noting that A*es = Yo L a?“c,- and comparing the above equation to equa-

tion (1), we can express the function g as:

9(z,v, 2, A’\") = exp (—:z:A)‘“) . (8)

The intensity of the emitted fluorescent light is proportional to amount of light
emitted, according to the Beer-Lambert law. However, not all of the light is aimed

back at the probe, where the detector is. As shown in Figure 2, the cone angle, ¢,
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Figure 2. Amount of total light emitted that is aimed back at the
detector surface as defined by the cone angle, % or the distance
from the probe, z, and the radius, R, of the effective detector sur-
face.
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defines the “monitoring efficiency” at a given point within the fermentor. This cone
angle is a function of the distance from the probe tip, z. Assuming the direction of
the emitted light is completely random, the “monitoring efficiency” is equal to the
fractional area of a sphere of arbitrary radius, r, that is bounded by the cone angle,
4, where @}, ranges from @) = 0 as £ — oo to ¢4 = /2 when z = 0. This area
is equal to 27r?(1 — cosh). Since the area of the entire sphere is equal to 4772,
the fractional area is equal to: %(1 — cos ph). Noting that cosph = (——ﬁ—)

Vz2 + R2/’

where R is the radius of the probe tip, the “monitoring efficiency” is given by:

flz.R) = [1 - \,—;‘”—Jr—?} : ()

Thus, the amount of light resulting from the fluorescence of species ¢ in the differ-

ential slice that reaches the detector is given by:

1
d-Fi’\em = 5 |:1 - \/—_122] exp (—xz '\em ) dﬁr\’i‘"(‘)TAL (10)

Comparing this equation to equation (3) and noting that A*em = EkN____l(ak""ck),

we can express the function h as:

h(z,y, 2, A’\e"‘) =

[1 - ﬁ] exp (—zArem) (11)

DN | -
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Now, we can express the function I', as defined in equation (5), as:

Ly T
Aez kem —_— —_— —_— —— —_— Xez Aem
T(A%res, Atem) = /(; 5 [1 = 2] exp( T [A + A ]) dz, (12)

where L is the path length of the sample. In order to evaluate this integral analyt-
ically, we will approximate the factor, [1 — \/_j;-_?] , with an exponential factor,
exp(—zS), in which S is an adjustable parameter. After substituting this approxi-

mation, the integral is evaluated as:

1> 1—exp (——L [A"“ + Alem 4 S])

T(Ahe=, 4%em) = <— AXez  Adem £+ S

- (13)

For a mixture of fluorescent compounds, the function I'(A4*¢=, A*<m) can be
expressed as a function of concentrations:

1 [1 — e—L[E;'Lx(“?"“"a?em)cﬂ-b‘]]

M) = ¢ . (14)
SN CERRE PR

Substituting this expression into equation (6), we can predict the following depen-
dence of fluorescence on fluorophore concentrations:
" [1 - e’L[EL(a?”+a?‘"")c-'+31]

1
FAem — __IO E ¢‘_Aema‘_xezci ] (15)
24 Y, (a,’t“ + a,’t"") ¢k + S :

2. Laser-Induced Fluorescence — Absorbance Correction

Now, we will consider the laser induced fluorescence setup, shown in Figure 3.
In this case, since our samples were not highly absorbent at the emission wave-
lengths, we can neglect the absorption of this light. In addition, since the path
length of the sample was only 1 ¢m, we can assume that the monitoring efficiency is

a constant value, k. In this case, the function, I‘(A’\“, A*em) | can be expressed as:

1 — __ AXez
[(A*e=, A*em) = / k-exp (—zAr*) dz = k1~ exp (-A%)] .

i e (16)
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Figure 3. Laser induced fluorescence experimental setup.

MULTIVARIATE ANALYSIS TECHNIQUES

In order to resolve a mixture, many multivariate analysis techniques have been
considered. Two of them are presented below. The problem addressed by these

methods can be stated as follows:

* Estimate the concentration of the main fluorescent compounds in a mixture.

We can assume the following:
* All the fluorescent compounds are known.

* The spectra of the pure components are known as well as the spectra of some

reference mixtures if needed.

These assumptions are reasonable for the analysis of fluorescence in fermentation

processes. The important fluorophores are known and often well studied. It is not a
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problem to get the spectra of the pure components as well as some mixtures spectra.
MULTIPLE LINEAR REGRESSION

Multiple linear regression is the most classical way to analyze experiments when

one variable y is related to a number of x variables. The model is written as follows

y=Xb+e. (17)

In the present study, y is a column vector of length n representing the spectrum
of the mixture, X is a n X m matrix which columns represent the pure components
spectra. b is a column vector of m coefficients. These coefficients are the ones of

the linear combination of pure components spectra:
Yi = biziy +bazia + - - + b Tin + €50 (18)

e is a residual vector. Using the hypothesis of linearity for the mixture spectrum,
the b; should be equal to the concentration of the component j in the mixture
divided by its concentration in the pure sample z;;. Since the spectra are defined
with up to 3000 points and only 2 or 3 components are considered, m < n and
there is no exact solution. But one can get a solution by minimizing the norm of

the residual vector e. The problem is then an optimization problem:
n
min > el (19)
=1
e =y — Xb. (20)
The solution of this least squares problem is well known:

b= (X'X)"X'y. (21)

The limitations of this method are the assumption that the matrix X is exact
and the inversion of X'X. Indeed as soon as m gets large some collinearity prob-

lems appear and the matrix inversion is impossible. To overcome the collinearity
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problem, some rank reducing methods such as principal component regression or
partial least squares regression are needed. The two methods presented below are
slightly different from multiple linear regression in the way they use the data. They
use a set of reference measurements rather than only the pure components spectra.
These reference measurements are done with mixtures of known concentration of
each component. The pure components spectra were the reference measurements
of multiple linear regression but no mixture spectra could be used in this method
due to collinearity problems which would appear. Since the other methods do not
have this problem, the use of mixtures data to build the model is possible. Some
nonlinear effects can be taken into account by these two methods due to the use of

mixture data.
PARTIAL LEAST SQUARES REGRESSION

New notations are used for the partial least squares method. Now Y is a
matrix n X p, each line of which is a vector of fluorophore concentrations in a
reference mixture. X is a n X m matrix which lines are the fluorescence spectra of
reference mixtures. For this method, the variables are usually mean-centered and

scaled to unit variance before processing.

Mean-centered variables are obtained by subtracting to every data point z;; or
y;; the mean of its column. The unit variance scaling is obtained by dividing every
data point by the standard deviation of its column. These two processes improve
the conditioning of the data. If some variables are less important or significant than
the others, one can reduce the variance of the corresponding column by multiplying

it by a weighting factor.

Partial least squares modeling, which has been developed by H. Wold et al.,'?
is a rank reducing technique like principal component analysis. The difference

between part’ial least squares regression and principal component regression is that
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the Y data are used to determine a decomposition of X in lower rank matrices
which is optimal for prediction. The complete model uses three equations, two for
the decompositions of X and Y called outer relations, and a relation between the
two preceding decompositions called inner relation. The three equations are the

following :

X=TP +E (22)
Y=UQ+F (23)
U = TB. (24)
X = | T|o “ €
n o F“o 0 n .
Lo ]
Y ={Ula "+ | F*

Figure 4. The two outer relations of partial least squares model.

Where B is a diagonal a X a matrix and the others are represented in Figure 4.
In this model, the matrix T is a projection of X as in principal component regression
but is calculated both to approximate X and to predict Y. The algorithm is given

in Figure 5. The properties of the partial least squares factors are the following:
* p;, and qj have unit length
* t; and uj are centered around zero for each h

* wy, and t, are orthogonal
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The PLS algorithm
It is assumed that X and Y-are mean-centered and gcaled:

For each component: (1) take uy,; = some y;.

In the X block: (2) w' = u'X/u'u
(3) Whew = Wout/twoiall (normalization)
(4)t=Xw/w'w

In the Y block: (5)q =t Y/t't

(6) Qnew ™ Qow/liquiglt (normalization)
(7)u=Yq/q'q
Check convergence: (8) compare the t instep 4 with the one from the preceding iteration.

If they are equal (within a certain rounding error) go to step 9, else go to step 2. (If the

Y block has only one variable, steps 5—8 can be omitted by putting ¢ = 1, and no more
iteration is necessary.)

Calculate the X loadings and rescale the scores and weights accordingly:
(9)p =t'X/tt
(10) Ppew ™ Powd/lIpoitt (normalization)
(11) tpew = towlPowul
(12) Whew = Woulpowlt

(p’, @' and w’ should be saved for prediction; t and u can be saved for diagnostic and/or
classification purposes).

Find the regression coefficient b for the inner relation:
(13) b= u't/t't

Calculation of the residuals. The general outer relation for the X block (for component
h)is

Ep= Ep—1—thPhi X = E,

The mixed relation for the Y block (for component k) is

Fp = Fp—y— bptaui Y = F,

From here, one goes to Step 1 to implement the procedure for the next component.

(Not.e:_After the first component; X insteps 2,4 and 9 and Y in steps S and 7 are replaced
by their corresponding residual matrices E, and Fy.)
-

Figure 5. The partial least squares algorithm. Reproduced from
[Geladi and Kowalski, 1986].¢

The algorithm was developed upon more or less intuitive arguments and its
theoretical interpretation is not completely clear yet. Many papers try to clarify
the theory of this algorithm.® The main part of the algorithm (steps 2 to 7) consists
of a powerful method to find the eigenvectors of XYY'X and therefore it proves a
relation with the singular value decomposition of X'Y. The method used to com-

pute the eigenvectors is not completely safe. Indeed the algorithm can diverge in
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case of very close eigenvalues. However it converges fast for almost all the matrices.
The use of Y in the computation of the eigenvectors gives to the method a higher
predictive power than principal component regression.®® The number of compo-
nents to take into account in the model is computed by using a cross validation
technique. The prediction step is very easy. p, q, w and b from the calibration

step have been saved for this purpose. The algorithm for prediction is:
1. Eg=X Y=0
2. for h=1to a:
t, = Ep1wp.
Ep = Ep-1 — tapj.
Y =Y + batng),

where a is the number of components to be included in the model. Applications have
shown the power of partial least squares and its wide range of application. Lind-
berg used it to analyze spectrofluorometric data from mixtures of humic acid and
ligninsulfonate,® and Frank and Kowalski applied partial least squares modeling to

the prediction of wine quality and geographic origin from chemical measurements.®
EXPERIMENTAL METHODS

All the experiments presented in this study were made at the National Bureau
of Standards facilities in Gaithersburg, Maryland, under the direction of Hratch

G. Semerjian and John J. Horvath.

The experimental setup, used in this research, is designed to measure fluores-
cence spectra in the ultraviolet and visible region. A front surface detection geome-
try was used. In this configuration, the fluorescence is measured on the illuminated
surface, in the opposite direction of -the excitation beam. This configuration allows

measurement in very opaque or turbid solutions. Furthermore, the design of a probe
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with fiber optics is very simple, so this geometry is likely to be the one selected in

any industrial device.

The ultraviolet light beam, generated by a laser, hits the surface of the cuvette
with less than 10° of incidence. The fluorescent light emitted by the sample is
then collected perpendicularly to the illuminated surface by a set of lenses, and
directed into the slit of a monochromator. The monochromatic light is measured
by a photomultiplier tube. The excitation light intensity is also measured by a

photodiode.
Light Source

The light source is composed of two lasers. The first one, a Nd:YAG laser
(Quantel YG581C), generates pulsed light at 1064 nm. After frequency doubling,
the light at 532 nm excites a dye laser (Quantel TDL) with a Rhodamine dye which
produces light at a tunable wavelength between 552 and 584 nm. Another frequency

doubling gives the ultraviolet light usually tuned at 280 nm.

Sample [llumination

The beam which leaves the laser, crosses a quartz plate, which reflects 4% of
the light to a photodiode used to record the laser power. The light is then directed
to a 1cm X 1¢em quartz cuvette which contains the sample. A high quality quartz
cuvette is indispensable because ordinary glass absorbs the light at 280 nm and even
quartz may absorb a little and fluoresce at the wavelengths used in the experiments
if it contains any impurity. The fluorescence is collected by a set of lenses. The
first lens collimates the light coming from the cuvette in a parallel beam. The focal
point of the first lens is the middle of the cuvette. A 14 mm diaphragm is placed
in the beam path before a set of neutral density filters used to reduce the intensity
of the light to a value acceptable to the electronics. Another lens focuses the beam

on the slit of the monochromator. The monitoring efficiency is about 0.03%.
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Measurement Devices

The measurement of the fluorescence is made by a monochromator and a photo-
multiplier, and the laser intensity is recorded through a photodiode. The monochro-
mator (GCA /McPherson EU-700) is composed of two parabolic mirrors, one for col-
limating and the other for focusing. The wavelength dispersing element is a plane
diffraction grating. The photomultiplier tube (Hamamatsu R955) has multialkali
(Na-K-Sb-Cs) photocathode which, combined with a fused-silica window, gives a
very wide spectral response from the ultraviolet to the near infrared region with
a quantum efficiency varying between 15-25% and a sensitivity of 60-70 mA/W in
our range of measurement. The electron multiplier is a 9 stage circular-cage, giving

an amplification of 107 for a rise time of 2.2 ns.

Electronic Processing

The photomultiplier tube and the photodiode described earlier, are connected
to a boxcar integrator. This electronic system performs an integration of the two
signals over the time period of a pulsel, approximately 30ns. A photodiode, installed
in the Nd:YAG laser, triggers this integration. The boxcar also allows to make an
averaging of 3, 5, 10 or 30 measurements. The averaging reduces the noise on the
measurements but has some drawbacks. Indeed, since the monochromator keeps
scanning, the averaging is made with measurements taken at different wavelengths
all shorter than the one the average value is affected at. This method of averaging
results in a shift of the measurements towards longer wavelengths. If v is the
scanning speed of the monochromator in nm/s, the step between two flashes of
the laser is (v/10)nm . Therefore if the boxcar averages N measurements, the
computer can take a sample every (Nv/10) nm. This rate of measurement allows
that every pulse of the laser is used for one and only one measurement, preserving

the independence of the measurements and taking advantage of all the information
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available. When this averaging procedure of the boxcar is used, one should take
care to shift all the measurements by —(Nv/20) nm in order to get an unbiased
spectrum. The amount of noise is then reduced by v/N. This reduction of noise
is only obtained by a reduction of information (the number of measurements is
divided by N) and is with this respect similar to smoothing techniques described

below, even if it is directly accomplished by the electronics.

An IBM AT controls all the measurement process. The user can choose the
scanning speed of the monochromator and the rate of data acquisition through a
program written by researchers at the National Bureau of Standards. The data
acquisition rate is limited to 10 readings per second since the measurements are

integrated over one pulse and there are 10 pulses per second.

The fluorescence was recorded between 260 and 460 nm. This range contains
all the interesting peaks (tryptophan at 340 nm, tyrosine at 305nm, etc.). The
scanning speed was usually 10 A/s. Sometimes the internal averaging of the boxcar
was used. In this configuration 30 measurements were averaged and 2 readings per
second were taken. More often the maximum rate of data acquisition of 10 readings

per second was selected. Naturally no averaging was made at this rate.

Data Smoothing

In order to get a signal that is easier to analyze, the signal was smoothed
using a low pass filter. The filtering is done by using a Fourier transform. Fast
Fourier transform is performed on the spectrum, and the high frequencies are set to
zero. An inverse transform gives the smoothed spectrum. Many experiments were
recorded with 2000 points. The scattering peak was removed from the spectrum,

and then a 2048-point fast Fourier transform was used.

RESULTS AND DISCUSSION
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MULTIPLE LINEAR REGRESSION

The first attempt at resolving a multiple components mixture has been made
using a simple multiple linear regression. Table O shows the results. The results are
almost all reproducible to within 10% for duplicate samples. However, the estimates
are all wrong, the errors varying between 10% and 300%. The direction of the errors
is clearly the same for all the measurements. Therefore the errors are systematic,
and it should be possible to figure out the cause of this very poor analysis. The
tyrosine peak is higher than the tryptophan one in pure solution but in a mixture
the tyrosine peak is much smaller than the tryptophan peak. What can produce

this effect

Real Estimated

Sample Tryptophan Tyrosine Tryptophan Tyrosine

Mixla 0.50 0.50 0.778 0.239
Mix2a 0.50 0.50 0.747 0.217
Mix3a 0.75 0.25 0.798 0.071
Mix4a 0.75 0.256 0.851 0.097
Mix5a 0.25 0.75 0.517 0.459
Mix6a 0.25 0.75 0.502 0.461
Mix7a 0.10 0.90 0.297 0.698
Mix8a 0.10 0.90 0.273 0.836

Table 1. Multilinear estimation of the composition of some
tryptophan-tyrosine mixtures. All the concentrations are given in
mM. The pure components reference spectra used in the regression
are 1073 M.

The reabsorption of tyrosine fluorescence by tryptophan is a possibility. But,

in fact, the absorption by tryptophan in the 300 nm range is too low for this, only
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a tenth of its absorbance at 280 nm. Also, if tryptophan would absorb the tyrosine
fluorescence, then it should reemit approximately 20% of the absorbed light; this
would give a tryptophan peak only slightly higher than the one predicted by the
linear combination. Therefore a reason other than reabsorption should be found.

For this purpose, let us consider the model derived earlier in this paper.
CORRECTION FOR ABSORPTION

The mixture spectrum can be written as a function of the pure component

spectra as follows:
F Cc1 F 10 %) F: 20

F(—f—ﬁ B Z;_O-I'(Am) aF(Azo)

. (25)

The concentrations ¢; and ¢, can then be deduced by a simple linear regression.
As a matter of fact, this is the same regression that was done in the multiple linear

regression. The multiple linear regression gives the two coefficients a« and 8 such

that:
F = aFyo + BFs. (26)
Therefore :
e1 = acro Fr(‘(‘j‘;). (27)
€ = ﬁczo%(—(%()ﬁ- (28)

In order to estimate the performance of this model on the mixture measurements

presented before, an estimation of I' is needed.

The estimation of I' given earlier was:
k
(4) = ~(1 - exp(~4). (29)

For the pure components and mixtures measurements presented before, an estima-

tion of the absorbance is possible from the known concentrations and therefore an
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estimation of I' is possible. The absorptivities of the pure components were ob-

tained from the literature. The absorptivities of the mixtures were calculated by
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Tryptophan Tyrosine Absorbance T'(A)
(1073 mol/1) (1073 mol/1)

1.00 0.00 11.50 0.087
0.00 1.00 3.45 0.280
0.75 0.25 9.49 0.105
0.50 0.50 7.47 0.134
0.25 0.75 5.46 0.182
0.10 0.90 4.26 0.231

Table 2. Estimation of the absorbance of some mixtures of trypto-
phan and tyrosine.

Real Estimated

Sample Tryptophan Tyrosine Tryptophan Tyrosine

Mixla 0.50 0.50 0.51 0.50
Mix2a 0.50 0.50 0.49 0.45
Mix3a 0.75 0.25 0.66 0.19
Mix4a 0.75 0.25 0.71 0.26
Mixba 0.25 0.75 0.25 0.71
Mix6a 0.25 0.75 0.24 0.71
Mix7a 0.10 0.90 0.11 0.85
Mix8a 0.10 0.90 0.10 1.01

Table 3. Multilinear estimation of the composition of some
tryptophan-tyrosine mixtures corrected for absorption. The con-
centrations are given in mM. The pure components reference spec-
tra used in the regression are 10~3 M.

linear combination.



Table 2 presents these estimations. Using these values of T, it is possible to
compute the concentrations of the mixtures from the results of the multiple linear
regression given in Table 1. Table 3 presents the new results. The quality of
the results is surprising when one considers the numerous approximations made
in the computation of I' and in the estimation of the absorbances. The estimates
of the concentration are as good as they can be considering the precision of the
measurements. The errors are almost all under 10% and seem random. It proves
that, in these amino acids mixtures, the nonlinearity is mainly introduced by the
variation of absorbance at the excitation wavelength. The simple model developed
can eliminate this nonlinearity if a measurement of the absorption at the excitation

wavelength is provided.
PARTIAL LEAST SQUARES REGRESSION

A partial least squares regression program has been written using the algorithm
presented by Geladi and Kowalski.® It was used to estimate the concentrations of the
mixtures already studied in the preceding section. From each smoothed spectrum
thirty values are taken, one every 5nm from 285 up to 430nm. The reference
spectra set needed for partial least squares is composed of the two pure component
spectra, a mixture 0.5 mM tryptophan and 0.5 mM tyrosine, a mixture 0.75 mM
tryptophan and 0.25 mM tyrosine and a mixture 0.25 mM tryptophan and 0.75
mM tyrosine. The five spectra are stored in a 5x30 matrix and the corresponding
concentrations in a 5x2 matrix. Each variable is mean-centered and scaled to unit
variance. The partial least squares algorithm is then used to determine a model at

the maximum order 5. The p, q and w vectors are saved for the prediction.

The tables 4shows the estimates of concentration of the five spectra included
in the model as the order of the model increases. The last line of Table 4 shows the

sum of the squares of the errors of prediction as the number of components included
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Real Order1 Order2 Order3 Order4 Order5
Tryptophan 1.00 0.868 0.957 0.993 1.0 1.0

Tyrosine 0.00 0.132 0.043 0.007 1016 1016

Tryptophan 0.00  -0.090 -0.006 0.004 0.0 0.00
Tyrosine 1.00 1.090 1.006 0.996 1.0 1.00
Tryptophan 0.50 0.630 0.501 0.515 0.5 0.50
Tyrosine 0.50 0.370 0.499 0.485 0.5 0.50
Tryptophan 0.75 0.723 0.802 0.754 0.75 0.75
Tyrosine 0.25 0.277 0.198 0.246 0.25 0.25
Tryptophan 0.25 0.368 0.246 0.234 0.25 0.25
Tyrosine 0.75 0.631 0.754 0.766 0.75 0.75
Y Error 0.114 0.0092 0.0011 0.000 0.000

Table 4. Partial Least Squares estimation of the composition of a
tryptophan and tyrosine solution. The concentrations are given in
mM. The last row lists the sum of the squares of the estimation
errors at different orders.

in the model increases. As expected, the accuracy of the estimates increases with
the order of the model and the exact values are obtained when the order is equal to
the size of the reference set. The model can be used to estimate the concentration

of mixtures not included in the reference set.
Table 6shows the results of this estimation.

The prediction with 3 components is the best one. The errors in prediction
are in the order of 0.03 mM and are within the measurement errors. Therefore the

result can be considered as very satisfactory.

The algorithm performed very well on this example. The computation of the

model was very fast. The convergence in the loop (steps 2 to 8 of the algorithm) was
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Real Order1 Order2 Order3 Order4 Order5
Tryptophan 0.50 0.621 0.536 0.509 0.496 0.502
Tyrosine 0.50 0.379 0.464 0.491 0.504 0.498
Tryptophan 0.75 0.720 0.727 0.732 0.743 0.742
Tyrosine 0.25 0.280 0.273 0.268 0.257 0.258
Tryptophan 0.25 0.351 0.292 0.294 0.297 0.313
Tyrosine 0.75 0.649 0.708 0.706 0.703 0.687
Tryptophan 0.10 0.152 0.128 0.149 0.151 0.148
Tyrosine 0.90 0.848 0.872 0.851 0.849 0.852
Tryptophan 0.10 0.116 0.039 0.094 0.089 0.076
Tyrosine 0.90 0.884 0.961 0.906 0911 0.923

> Error 0.057 0.0162 0.0096 0.010 0.0137

Table 5. Partial Least Squares estimation of the composition of a
binary mixture of tryptophan and tyrosine. The last row lists the

sum of the squares of the estimation errors at different orders.

generally obtained in 2 iterations. The prediction requires only vector and matrix

multiplications which are almost instantaneous on a personal computer.

CONCLUSIONS

The purpose of this study is an estimation of the capabilities of fluorescence in
fermentation monitoring. Through rigorous sensor modeling and the use of numer-
ical methodé, digital data analysis techniques are developed to deconvolute mul-
ticomponent laser fluorescence data to estimate composition. The mathematical
technique of simple multiple linear regression, model-based multiple linear regres-

sion, and partial least squares are employed, and their performance is compared.

The use of neural net techniques are currently under investigation.
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We have shown that sensor models and proper numerical methods can both be
used to vastly improve the estimate of composition. However, there remain many
problems to be solved. The choice of a calibration set, the number of calibration
points, the number of wavelengths, the optimum wavelengths, and the estimation
of nonfluorescent species are some of them. We are currently planning to apply
the technique to real-time fermentation systems. economically. The goal in the
fermentation study is to estimate the state of the culture so that intelligent control

can be applied.

Lack of sensor specificity is a generic problem that is common to many of the
new composition sensing techniques. The data processing technique in our smart
sensor development is quite general in the sense that it can be easily adopted to other
types of spectral analysis or array sensors. These include FTIR and NMR spectra
in addition to fluorescence spectra. There are many chemical, clinical, and medical
monitoring processes where fast, reliable techniques are indispensable, especially in

taxing on-line applications.
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