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ABSTRACT

This paper presents a class of adaptive policies in the context of Markov decision processes
(MDP’s) with long-run average performance measures. Under a recurrence condition, the proposed
policy alternates between two stationary policies so as to adaptively track a sample average cost to
a desired value. Direct sample path arguments are presented for investigating the convergence of
sample average costs and the performance of the adaptive policy is discussed. The obtained results
are particularly useful in discussing constrained MDP’s with a single constraint. Applications
include a wide class of constrained MDP’s with finite state space (Beutler and Ross 1985), an
optimal flow control problem (Ma and Makowski 1987) and an optimal resource allocation problem

(Nain and Ross 1986).
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Large classes of engineering problems can be cast as Markov decision processes (MDP’s) with
long-run average performance measures and in many situations, the analysis identifies a (possibly
randomized) stationary policy f* to yield the desired performance. Unfortunately, the structural
properties of the policy f* often prevent its implementability owing to computational difficulties
inherent to its definition (Nain and Ross 1986) or to insufficient knowledge of the model parameters
(Ma 1988). In fact, in many applications (Ma, Makowski and Shwartz 1986), solving explicitly for
f* turns out to be a difficult task which is further compounded when some of the model parameters

are not exactly known.

Such difficulties naturally point to the need for an implementation theory within the context
of MDP’s. The purpose of this theory is to develop implementable strategies which yield the same
performance as the policy f*. Here, implementability is synonymous with the availability of an
algorithm which produces on-line control values, given available feedback and model information.
Such implementation issues were recently discussed in (Makowski and Shwartz 1986a), where var-

ious methods for implementation were proposed.

In this paper, the discussion is given in the context of MDP’s with countable state space,
under some recurrent structures, and the attention is focused on a class of implementable policies
called steering policies. More concretely, let V' be the (desirable) value of the long-run average cost
incurred under the policy f*, and let g and g denote two stationary policies (possibly randomized).
The policy g (resp. g) overshoots (resp. undershoots) the requisite performance level V in that the
policy g (resp. g) yields a value for the long-run average cost which is higher (resp. lower) than
V. The proposed scheme assumes only the implementability of the two stationary policies g and
g, and adaptively alternates between g and g under the assumption that some privileged state z is
visited infinitely often under both policies § and g. The decision to switch policies is taken only at
the times when the state of the system visits the privileged state z so as to adaptively track the
sample average cost to the value V. At those (random) instants, the current value of the sample
average cost is compared against the target value V. If the sample average is above (resp. below)
the value V, the policy g (resp. §) will be used until the next visit to the privileged state. Thus,

between two consecutive visits to that particular state, one and only one of the two policies is used.

This steering policy « is analyzed under the assumption that for both policies § and g, the
privileged state z is recurrent for the induced Markov chain and that there is “no escape at infinity”.
It is shown that the policy « indeed steers the sample cost averages to the desired value V', and

under additional growth conditions, that the long-run expected averages under f* and a coincide.
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Direct sample path arguments are presented. They take advantage of the very form of the steering
policy o and exploits some hidden regenerative properties of the state process under the steering
policy a. This discussion is inspired by the proof of the Ergodic Theorem for recurrent Markov

chains based on the Strong Law of Large Numbers as given by Chung (1967).

The obtained results are of interest in the context of constrained MDP’s with a single con-
straint, where an optimal stationary policy is often found by simple randomization between two
pure stationary policies g and g with the abovementioned properties. Typically, these two pure
policies are identified through Lagrangian arguments and the randomization bias is chosen so as to
meet the constraint value (Beutler and Ross 1985, Ma and Makowski 1987, Nain and Ross 1986).
The very form of this solution lends itself to an implementation via the steering policy «, which
requires no knowledge of the randomization bias value, and as such can be viewed as an indirect
adaptive policy (Ma, Makowski and Shwartz 1986). The steering policy « considered here should
also be contrasted against the so-called time-sharing implementation of f* proposed by Altman and
Shwartz (1986), whereby the decision-maker alternates between the two policies § and g accord-
ing to some deterministic (thus non-adaptive) mechanism associated with the recurrence cycles.
The instrumentation of these time-sharing policies requires the explicit evaluation of certain cost
functionals, so that the proposed steering policy « could be interpreted as providing an adaptive

version of time sharing.

The work reported here was motivated by an idea proposed by Ross (1985) in the context
of an optimal resource allocation problem with a constraint. Ross suggested a scheme whereby
the decision-maker could possibly switch between two static priority assignments at any decision
epoch so as to steer the long-run average cost to the value V. The analysis in that case seems
more involved and as of the writing this paper, the question of its performance still remains open.
However, in some specific situations, which include a class of constrained MDP’s with finite state

spaces, the results obtained here translate into results for Ross scheme.

The paper is organized as follows. The underlying MDP formulation is stated in Section 1. The
problem of steering the cost to a specific value is precisely formulated in Section 2.1, the steering
policy a is introduced in Section 2.2 and the key technical assumptions are discussed in Section 2.3.
The main results of the paper are presented in Section 3.1, and are proved in Section 3.3 using some
key intermediate results which are summarized in Section 3.2. While the proof of these intermediate
results is delayed until Section 5, Section 4 first outlines applications to constrained MDP’s. The

situation of finite state spaces and compact action space is discussed in Section 4.1, while problems
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in optimal flow control and resource allocation are considered in Sections 4.2 and 4.3, respectively.

Section 5 closes the paper with a detailed discussion of the sample path arguments.

A word on the notation: The set of real numbers is denoted by IR, and IN denotes the set of
all non-negative integers. The indicator function of any set E is simply denoted by 1[E]. Unless

stated otherwise, lim,,, lim , and lim,, are taken with n going to infinity.

1. The model

Consider a MDP with countable state space S, measurable action space U, and Borel measurable
transition kernel (pgy(u)), i.e., the mappings pgy(e) : U — IR are Borel measurable and satisfy the
standard properties 0 < pzy(u) < 1 and 37 pry(u) = 1 for all # and y in § and w in U. The
probabilistic framework for this MDP is defined on the canonical sample space  := (S x U)®™.
An element w of Q is viewed as a sequence (zg,wp,w1,...) With ¢ in § and w, in U x § for all
n=0,1,..., where each block component w, is of the form (¢, Zn4+1) With ¢, and 2,41 elements
of U and 9, respectively. The information spaces {IH,}§° are recursively generated by IH, := §
and IH, 1 :=IH, x U x S forall n =0,1,..., so that an element h,, in I, is uniquely associated
with the sample w by h, := (z¢,wo,...,wn—1) With kg := z¢. The interpretation of these quantities
is as follows: When the sample w = (zo,wo,w1,...) is realized, the system is in state z,, at time n,
and the control action u, is generated according to some prespecified mechanism on the basis of

the information vector h,.

The coordinate mappings {U(n)}§° and {X(n)}§° are defined on the sample space by setting
U(n,w) := u, and X(n,w) := z, with the information mappings {H(n)}§° given by H(n,w) :=
(2o, wo,W1y- .., wWn—1) = hy for every w in @ and for all n = 0,1,....

For every n = 0,1,..., let IF,, be the o-field generated by the mapping H(n) on the sample
space 2 and with standard notation, IF := VoL, IF, is simply the natural o-field on 2 generated
by the mappings {(U(n), X(n))}§°. On the space (£, IF), the mappings U(n), X(n) and H(n) are
random variables (RV) taking values in U, S and IH,, respectively.

Let IM denote the space of probability measures on U, when equipped with its natural Borel
o-field. Since randomization is allowed, an admissible policy 7 is defined as any collection {m, }§°
of mappings m, : IH, — IM such that the mappings IH, — [0,1] : h, — m,(A;h,) are IF,-
measurable for every Borel subset A of U. For each h, in IH,, the quantity =, (e; h,) is interpreted
as the conditional probability distribution of selecting the control value at time n, given that the
information vector h,, is available to the decision-maker. In the sequel, denote the collection of all

such admissible policies by P.



Let p(e) be a fixed probability distribution on S. Given any policy = in P, there exists a
unique probability measure P™ on IF', with corresponding expectation operator E”, satisfying the
requirements (R1)-(R3), where

(R1) For all zg in 9,
PTX(0) = zo} := p(o),

(R2) For every Borel subsets A of U,
P™U(n) € A|IF,] = n,(A; H(n)), n=0,1,...
(R3) For all y in S,
PTX(n+1) = yllFn V o(U(n))] = px(n)y(U(n)). n=01,...

When p(e) is the point mass distribution at z in 9, this notation is specialized to P} and E7,
respectively, and it is then plain that P"[A|X(0) = z] = P[[A] for every A in IF. It now follows
readily from (R2)-(R3) that

P7[X(n+ 1) = y|IFa] = /U o (du; H (n))px(myy(12) n=0,1,...(1.1)

for all y in 5.

A policy m in P is said to be a Markov policy if there exists a family {g,}§° of mappings
gn S — IM such that 7,(e; H(n)) = g,(e; X(n)) P™-a.s. for alln =0,1,.... In the event g, = ¢
forall n = 0,1,..., the Markov policy 7 is called stationary and can be identified with the mapping
g itself. It is plain from (R1)-(R3) that for each stationary policy g, the RV’s {X(n)}§° form

a time-homogeneous Markov chain under P9, with corresponding one-step transition probability

matrix P(g) = (pzy(g)) given by

Pay(g) = /U Pey(w)g(du; 2) (12)

for all z and y in §.

A policy 7 in P is said to be a pure (or non-randomized) policy if there exists a family {f,}§°
of mappings f, : IH, — U such that for every Borel subset A of U, m,,(A; H(n)) = 1[f,(H(n)) € A]
P7-as. forall n = 0,1,.... A pure Markov stationary policy « in P is thus fully characterized by
a single mapping f: 5 — U.




For any mapping ¢ : S — IR, the long-run average cost J°(7) incurred by the admissible policy

7 in P is defined by
n—1

Jo(r) = H,%E" S (X (1) (1.3)

t=0

whenever meaningful, and for future reference, introduce the corresponding sample average costs
{J°(n)}$> which are given by
1 n—1

> e(X(2)). n=1,2,...(14)

t=0

Jé(n) = —
(n) :=
2. Implementation via Steering Policies
2.1. The problem

Start with a mapping d : S — IR, and let the constant V represent the desired performance

level for the long-run average cost (1.3) associated with d. The discussion assumes the existence of

two stationary policies g and g such that
J4g) <V < J4g). (2.1)

The motivation for such an assumption can be found in the theory of constrained MDP’s (Ma,
Makowski and Shwartz 1986, Ross 1985). The problem (Py) of interest in this paper is then

formulated as

(Py): TFind apolicy a in P such that J%(a) = V.

Under the condition (2.1), several solutions to this problem are known and are briefly surveyed
in (Makowski and Shwartz 1986a). However, as pointed out there, some of these solutions may not
be readily implementable given available model and feedback information. It is the purpose of this
paper to present and analyze yet another way to solve the problem (Py), the key feature of the
proposed solution being the minimal amount of information required for its implementation.

2.2. Steering policies

The policy a proposed here is of the form

an(e; H(n)) := n(n)g(e; X (n)) + (1 —n(n))g(e; X (n)) n=0,1,...(2.2)

where {n(n)}s° is a sequence of {0,1}-valued RV’s to be specified shortly. In other words, the
policy « alternates between the two policies g and g, with the quantity 7(n) specifying which one

of these two policies is to be used in the time slot [n,n 4 1).

6



The policy a proposed and analyzed in this paper finds its origin in an idea proposed by Ross
(1985, pp. 126) in the context of an optimal constrained resource allocation problem. In order to
steer the long-run average cost to the requested value V, Ross suggested a scheme whereby the
decision-maker alternates between the policies g and g so that the sample averages {J d(n)}§° track
the value V. This policy, denoted hereafter by ag, also has the form (2.2) but uses a sequence
{nr(n)}° given by

nr(n) = 1[J%(n) < V] n=1,2,...(2.3)

with ng(0) arbitrary in {0,1}. This idea was subsequently adapted by Makowski and Shwartz
(1986a), and by Ross (1988) to a more general class of MDP’s.

The analysis of the performance of the policy ag appears quite involved, and to the authors’
knowledge, few results are available on this issue. While the general case (Makowski and Shwartz
1986a, Ross 1985) is still open, various special situations have been handled successfully. Makowski
(1987) treated the i.i.d. case by viewing the sample averages {J%(n)}{° as the output values
of a stochastic approximations algorithm of the Robbins-Monro type. Ma (1988) in his Ph.D.
dissertation solved the problem in the context of a simple flow control problem for discrete-time
M/M/1 systems. A careful examination of the analysis carried in (Ma 1988) leads very naturally
to the policy a investigated in this paper.

The definition of the policy o will require that the assumptions (A1) be enforced, namely
(A1) The Markov chain {X(n)}§° has a single recurrent class under each one of the policies
g and g. These recurrent classes have a non-empty intersection, and moreover starting
from any transient state (if any), the time to absorption in the recurrent class is a.s finite

under each policy.

Let z denote any state in S which is recurrent under both g and g. By virtue of assumption
(A1), such a state z clearly exists and has the property that the system returns to it infinitely often
under each policy. The RV’s {n(n)}§° entering the definition of & are recursively generated by the

simple relation
n(n) = 1[X(n) = 2]1[J%(n) < V] + 1[X(n) # 2]n(n — 1), n=12,...(24)

with 1(0) arbitrary in {0,1}. This policy a operates according to one of the policies § and g during
each cycle, where a cycle is defined as the time duration between two consecutive visits of the
process {X(n)}¢° to the recurrent state z. The essential difference between the policies @ and apg

is that although both track the sample cost averages {J%(n)}$° about the value V, the decision to
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switch policies may be taken at every time instant under ag while only at successive recurrence

times (to the state z) under c.
2.3. The assumptions

Let g denote any one of the policies § and g, unless otherwise specified. The first return time

to the state z is the RV T defined by
T:=inf{n>1: X(n)=z}. (2.5)

The assumption (A1) essentially amounts to saying that
(A1) Forallz in S,
PI[T < 0] = 1.
For any mapping ¢ : § — IR, it will be convenient to define the corresponding cost per cycle Z¢ by
T-1
Z° = 2 (X (1)) (2.6)

t=0

(whenever meaningful); observe that under (Al) the RV Z¢ is P%a.s well defined and finite. In

order to study the performance of the policy «, the following additional technical assumptions

(A2)-(A4) will be needed, where

(A2) The mean recurrence time to the state z is finite under P9, i.e.,
EJ[T] < oo,
(A3) The expected cost over a cycle Z% is finite under PY, i.e.,
T-1
EZZY) = BLII Y d(X ()] < oo,
t=0

(A4) The equality

1 n—1
‘(g) :=Tm,~E9 Y d(X(t)) = I*
J%(g) 1 n, 2 (X(1)) (9)
takes place, where
Eg[Zd]
d . z
I%*(g) := —f[ ] . (2.7)

The assumption (A2) implies the state z to be positive recurrent under P9, whence the Markov

chain {X(n)}§° under P9 has a unique invariant measure. Under (A1)-(A3), the renewal arguments
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given in Chung (1967) shows that the sequence {J%(n)}¢° has a P9-a.s. finite limit which is given
by

d
lim,J%(n) = %Q[[Zﬂl = I%g). P9 — a.5.(2.8)

Moreover, if the RV’s {d(X(n))}$° are uniformly integrable under P?, then (A4) is automatically
guaranteed since then the convergence (2.8) also holds in L*(, IF, PY) (Chung 1967, Thm. 4.5.4).
In that case, the quantity I%(g) also coincides with the expected value of the RV d(X) under the

invariant measure induced by P9, where X denotes a generic S-valued RV.

3. The results
3.1. Performance of the steering policy

The main results of this paper are stated in Theorems 3.1-3.3 below, and are proved in Section

3.3 using some key intermediate results which are summarized in Section 3.2. To state the results,

let the RV p(n) given by

n—1

p(n) = % S () n=1,2,...(3.1)

t=0

denote the fraction of time over [0,n) during which the policy 7 is used. Set

S i (),
p o= Jd(a —Jd_ (32)
(@) - J4g)
and observe from (2.1) that 0 < p* < 1.
Theorem 3.1 Under (Al)-(A4), the convergences
lim,p(n) = p* P* — a.5.(3.3)
and
1 n—1
'nd = lim,, — d(X = ¥ — a.s.(3.
lim,J%(n) = lim n; (X(t)=V P —a.5.(3.4)
take place.

Theorem 3.1 establishes the a.s. convergence of the sample cost averages to the desired value
V, and the policy a will indeed constitute a solution to the problem ( Py ), provided some additional

integrability conditions hold to guarantee convergence of the mean. One possible set of conditions
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is given in the next corollary which is based on standard facts on uniform integrability (Chung

1967, Thm. 4.5.4).

Corollary 3.1 Under (A1)-(A4), whenever the RV’s {d(X(n))}§° are uniformly integrable under
P, the convergence (3.4) also takes place in L*(Q, IF, P*) and consequently

n—1
J4a) = limn%E" > dX (@) =V. (3.5)

=0

The convergence (3.4) can also be established for other cost mappings ¢ : § — IR under the
assumption (A3bis) stated below which is similar to (but weaker than) (A3), provided (3.3) holds.
To state the condition, denote by ¢t and ¢~ the mappings § — IR defined by ¢*(z) := max(c(z),0)
and ¢~ (2) := max(—c(z),0) for all  in 5.

(A3bis) The cost over a cycle Z¢ has a (possibly infinite) exzpectation under P?, or equivalently,
the quantities EZQ[Z°+] and ES[Z° ] are not both infinite under PY.

Set

E91Z°]

ET]

I°(g) := (3.6)

Theorem 3.2 Assume (3.3) to hold and let the mapping ¢ : S — IR satisfy (A3bis). If the quantity
I°(g) + I°(g) is well defined (but possibly infinite), then the convergence

lim,, J°(n) = p*I°(g) + (1 - p*)I°(g) P — a.5.(3.7)

takes place.

If the assumption (A3bis) is strengthened to (A3)-(A4) (with ¢ replacing d), and if the RV’s
{e(X(n))}§° are uniformly integrable under P%, then the quantity on the righthand side of (3.7) is
finite, and the convergence (3.7) holds also in L'(Q, IF, P?).

Corollary 3.2 Assume (3.3) to hold and let the mapping ¢ : S — IR satisfy assumptions (A3)-(A4).
If the RV’s {c(X(n))}§° are uniformly integrable under P*, the convergence (3.7) also takes place
in LY(Q, IF, P%), and consequently

n—1

T(0) = lim,— B 3 d(X (1)) = 9" J(@) + (1 - 9°)7°(9). (38)
t=0

This result will be particularly useful in discussing constrained MDP’s in the next section.
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Although this paper is devoted essentially to the study of the policy «, the results obtained
here have implications for the policy ag in some special yet important cases. Such a situation is

discussed in the next proposition.

Theorem 3.3 If the policies § and g coincide in all but one state, say zo in S, which is recurrent
under each policy, then the policy ar coincides with the policy o defined by (2.2) and (2.4) with
z = xzo, and consequently Theorems 3.1-3.2 and their corollaries hold for the policy ar under

appropriate assumptions.

The situation of Theorem 3.3 occurs in a wide class of constrained MDP’s with finite state

space and in some other problems as well, as illustrated in Section 4.
3.2. Convergence along recurrence times

The intermediate results which are useful in establishing the main Theorems 3.1-3.2 are sum-
marized in this section. They are motivated by the very form of the steering policy, and represent
the main technical ingredients of the paper. A complete discussion of their analysis is delayed until

Section 5.

Recall that the very form of the steering policy a forces the decision for switching between
policies to be taken only at the times the state process visits the state z. This suggests that the
behavior of the control algorithm might be fully determined by the properties of the sample average

cost sequence taken only along these recurrence epochs.

To that end, consider the state z in S entering the definition (2.4), and recursively define the

recurrence time sequence {7(k)}§° of IV U {oc}-valued RV’s by

inf{t > (k) : X(t) = 2z} if the set is non-empty;
Tk+1) = k=0,1,...(3.9

00 otherwise

where 7(0): = 0. With this notation, the interval [r(k — 1), 7(k)) is simply the k%" cycle.

The recurrence condition (A1) and the definition of the steering policy « lead readily to the

following intuitive fact, the proof of which is omitted for sake of brevity.

Lemma 3.4 Assume the recurrence condition (A1) to hold. The RV’s 7(k) are P*-a.s. finite for all
k=1,2,..., or equivalently, the state process { X (n)}§° visits the state z infinitely often under P%.
Moreover, under the additional assumptions (A2)-(A4), the steering policy a alternates infinitely

often between the two policies § and g.
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The key intermediate results for proving Theorems 3.1-3.2 are summarized in the next propo-

sition. Set
*EAT
= G s .
Theorem 3.5 Assume (A1)-(A4) to hold. The convergence
limgp(7(k)) = p* P* — a.s.(3.11)
takes place, and for any mapping ¢ : S — IR satisfying (A3bis), the convergence
limgJ°(r(k)) = p*I°(7) + (1 — p*)I°(g) P* — a.5.(3.12)

takes place whenever the quantity 1°(g)+1°(g) is well defined. Moreover, the Law of Large Numbers

holds true in the form

k -
limy, T(k ) = ¢*E9[T) + (1 - ¢*)EZT). P — q.5.(3.13)

When applying (3.12) to the cost mapping d, simple algebraic calculations using (A4), (2.7)
and (3.2) readily yield
limg J4(r(k)) = V. P* — a.5.(3.14)

In other words, (3.11)-(3.12) yield the convergences (3.3)-(3.4) and (3.7) along the resurrence times.
Although the convergence (3.13) presents a similar version of the Law of Numbers, it should be

noted that the recurrence times {7(k)}{° do not form a renewal sequence under P°.
3.3. A proof of Theorems 3.1-3.2

The proof of Theorems 3.1-3.2 is now easily recovered from Theorem 3.5. Let
k(n) := max{k > 0: 7(k) < n} n=1,2,...(3.15)

be the number of cycles over the horizon [0, n) including the one in progress at time n. It is plain
from Lemma 3.4 that

lim,k(n) = oo. P — 4.5.(3.16)

For each n =1,2,..., 7(k(n)) < n < 7(k(n) + 1) so that for any non-negative mapping c¢: S — IR,

T(kT(Ln))JC(T(k(n))) < Jon) < :(’C_(Zli_llJC(T(k(n) L)), (3.17)
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and similarly,

D o (k) < ) <« EED (i) 41). (3.18)
By the Law of Large Numbers (3.13), it is clear that
1imk;(—;% = limy ﬁj:(gcki 5 b Z Lo P — a.5.(3.19)
Since
it is now plain from (3.16) and (3.19)-(3.20) that
i, T 702D P aofay

By virtue of (3.11)-(3.12), the inequalities (3.17)-(3.18) and the convergence (3.21) yield the con-
vergences (3.3), (3.4) and (3.7) for non-negative mappings.

For a general cost mapping c, start with the decomposition J¢(n) = J° (n) — J¢ (n) for all

n=1,2,..., and apply the result for non-negative mappings developed above, so that

lim, J" (n) = p*I¢" () + (1 — p*)I°" (9) P* — a.5.(3.22a)
and

lim,J® (n) = p*I° (7) + (1 - p*)I° (g). P — a.5.(3.22b)

It is now plain under the enforced assumptions that

lim,J%(n) = lian°+(n) —1lim,J¢ (n)

=p"I°(g) + (L - p)I*(g)

P* — 4.5.(3.23)

and the proof of Theorems 3.1-3.2 is therefore complete.

4, Applications to Constrained MDP’s

This section is devoted to various applications of Theorems 3.1-3.3 and their corollaries to
constrained MDP’s. Let ¢ and d be two mappings S — IR and for every V in IR, define the set Py
of constrained policies by

Py = {rin P: J4x) < V}. (4.1)
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The constrained MDP (C Py ) is then formulated as

(CPy): Minimize J°(m) over Py.

In the three situations discussed here, this constrained MDP is solved by Lagrangian argu-
ments: For every v > 0, define the mapping 7 : § — IR : 2 — b7(z) = ¢(z) + yd(z), and consider

the corresponding unconstrained Lagrangian problem (LP7), where
(LPY): Minimize J* () over P.

In each example, under appropriate hypotheses, there exist two pure stationary policies g and g

which both solve the same Lagrangian problem (LPV*) for some v* > 0, i.e.,
I (@ =0"(9) = it )" (), (4.2)
and which satisfy the cost inequalities
J4g) <V < J49). (4.3)

For 0 < n < 1, let the randomized policy f7 be the stationary policy defined by f” := 57+ (1-1n)g.

If the mapping  — J%(f7) is continuous, the equation
JHfM =V, 0<n<1 (4.4)

has at least one solution, say 7*, in view of (4.3). The constrained problem (CPy) is then solved
by the stationary policy f* = f , provided (i) f* solves the Lagrangian problem (LP"") and (ii)
both functionals J°(f*) and J¢(f*) exist as limits, so that

T = )+ IS = Ing 9 (). (4.5)

In that case,

JHfY=V and Jc(f*):rieng J(m) (4.6)

by standard arguments which are summarized in (Ma, Makowski and Shwartz 1986, Ross 1985).

Consider now the steering policy « defined in Section 2. Under (A1)-(A4), whenever the RV’s
{d(X (n))}§° are uniformly integrable under P?, Corollary 3.1 and (4.6) yield J%(a) = J3(f*) =V
and (3.3) holds by Theorem 3.1. Consequently, if the mapping ¢ also satisfies (A3)-(A4) (thus so

14



does the mapping b7 ) and the RV’s {¢(X(n))}§® are uniformly integrable under P® (thus so are
the RV’s {67 (X (n))}§°), then Corollary 3.2 necessarily implies the relation Je(a) = J°(f*). These
remarks are summarized in the next proposition.

Theorem 4.1 Suppose the problem (CPy) admits a solution f* as determined via (4.2)-(4.5).
Under (A1)-(A2), if (A3)-(A4) hold for both mappings ¢ and d, and if the RV’s {c(X(n))}5° and
{d(X(n))}$° are uniformly integrable under P*, then the steering policy a also solves the problem
(CPy), with J(a) = J°(f*) and J4(a) = J4(f*) = V.

4.1. MDP’s with finite state spaces

Beutler and Ross (1985) considered MDP’s under the following assumptions (H1)-(H3), where
(H1) The state space S is finite, and the action space U is a compact melric space,
(H2) For every pure stationary policy f, there exists a common state z in S which is accesible
from each state & in S under PY,
(H3) The set Py contains at least one pure stationary policy, but does not contain any pure
stationary policy which achieves the minimum cost J¢(n) over all admissible policies m in
P.
Under (H1)-(H3), an optimal policy f* was shown to be determined via (4.2)-(4.5), with the
randomization to be performed in only one particular state, i.e., the pure policies § and g coincide
in all but one state. As shown by Beutler and Ross (1985), (H2) holds for all randomized stationary
policies as well, thus implying (A1). The state space being finite, the costs are necessarily bounded,
so that the assumptions of Theorem 4.1 are immediately satisfied, and the optimality of the steering

policies a and ap easily follows.

Theorem 4.2 Under (H1)-(H3), the steering policies a and ar (coincide and) solve the constrained
problem (C Py) with J°(a) = J°(ag) = J¢(f*) and J4(a) = Je(ar) = J4(f*) = V.
4.2. Optimal flow control

Ma and Makowski (1987) considered the following flow control model for discrete-time M |M|1
queues: At the beginning of each time slot, the controller decides either to admit or reject the
potential arrival during that slot. A customer (if any) may fail to complete service in a slot with
fixed probability 1 — u, in which case it remains at the head of the line to await service in the
next slot. This scenario is repeated until successful service completion occurs, at which time the
customer leaves the system. The arrival pattern is modelled as a Bernoulli sequence with parameter
A, independent of the service process as well as of the initial queue size. Under these assumptions, a

MDP formulation with state space § = IN is readily obtained by taking the state process {X (n)}§°
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to be the queue size process.

The optimal flow control problem was formulated as the search for a policy that maximizes
the throughput subject to the constraint that the long-run average queue size does not exceed a
given value V. Here, the throughput and the average queue size incurred by the admissible policy

7 in P are given by

n—1

T(r) = lim, - 57 Y p1[X(t) # 0] (4.7
=0
and
1 n—1
N(r) = lim, ~E" > X(), (4.8)
t=0
respectively.

This constrained MDP can be cast as a problem of the form (C'Py) by taking J°(7) = —T(7)
and J%(r) = N(m). The technical assumptions enforced in (Ma and Makowski 1987) are listed
below as (H4)-(H5), where

(H4) N((00,1)) >V, where (c0,1) denotes the policy that admits every single customer,
(H5) For every policy 7 in P,

BX(0)] = Y oa(z) < o,

with p(e) denoting the initial queue size distribution.
It is a simple matter to check (Ma and Makowski 1987) that the RV’s {X(n)}§° are uniformly
integrable under P®. Under these assumptions, the constrained optimal control problem is solved
by a threshold policy f* = (L*,n*) with N(f*) = V. Here, a threshold policy (L,7n), with L in IN
and 0 < 7 < 1, is a stationary policy which at the beginning of each time slot admits (resp. rejects)
an incoming customer if the queue size is < L (resp. > L), while if the queue size is exactly L, this

new customer is accepted (resp. rejected) with probability 7 (resp. 1 — 7).

It should be pointed out that here too the optimal threshold policy f* = (L*,n*) is obtained
as a randomization with bias n* between the pure policies § = (L*,1) and g = (L*,0), which
are identical in all but one state, the state where there are L* customers in the system. The
assumptions of Theorem 4.1 now hold. The states {0,1,..., L*} are all recurrent under the policies
g and g so that any element in the set {0,1,..., L*} can be selected as the state z. The optimality

of the corresponding steering policy a now follows immediately.
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Theorem 4.3 Under (H4)-(H5), the steering policies a and agr (coincide and) solve the constrained
optimal control problem (CPy), with T(a) = T(agr) = T(f*) and N(a) = N(agr) = N(f*)=V.
4.3. Optimal resource allocation

Consider a system of K 41 infinite-capacity queues that compete in discrete-time for the service
attention of a single server. At the beginning of each time slot, the controller gives priority to one
of the queues. If the k** queue is given service attention during that slot, with probability yuj the
serviced customer (if any) completes service and leaves the system, while with probability 1 — uy,
the customer fails to complete service and remains in the queue. The arrival pattern {A(n)}§°
of INK+1_valued RV’s, with Aj(n) denoting the number of arrivals to the k" queue in the slot
[n,n + 1), is independent of the initial queue size and of the service processes, and is modelled as
a renewal process, in that the batch sizes of customers arriving into the system in each slot are
independent and identically distributed from slot to slot. Under these assumptions, the MDP of
interest is modelled by the IN¥*!.valued process {X(n)}°, where X4(n), 0 < k < K, represents

the queue sizes of the k'* queue at the beginning of the slot [n,n+1),n =0,1,....

Nain and Ross (1986) identified the service allocation policy that minimizes the long-run

average of a linear expression in the queue sizes of the K queues {1,..., K} subject to the constraint

that the long-run average queue size of the 0‘® queue does not exceed a given value V. With the

notation used here, they considered the constrained problem (CPy) with cost functionals

n—-1 K
() = Tma=E" 3 3 exXa(2), (4.9)
n t=0 k=1
and
1 n—1
J(r) = im, ~E7 > Xo(t), (4.10)
t=0

where ¢x,1 < k < K, are non-negative weights.

A work conserving static priority assignment policy is a non-idling service allocation policy
with fixed priority. With this notation, the results are given under the following assumptions
(H6)-(H8), where

(H6) The stability condition

k:Ouk

holds, where A\, := E™[Ag(n)] for all ® in P and every n = 0,1, ...,
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(H7) The set Py contains at least one work conserving static priority assignment policy that
gives the highest priority to the 0" queue, but does not contain any work conserving static
priority assignment policy which gives the lowest priority to the 0" queue,

(H8) For some r > 2, the finite moment conditions

K K
Y EIXLO) < oo and Y E"Ax(n)|" < o0
k=0 k=0

hold for all m in P and every n = 0,1,....
Under (H6)-(H7), the problem (C'Py) admits (Nain and Ross 1986) an optimal stationary

policy f* which is obtained by simple randomization between two work conserving static priority
assignment policies g and g, as determined by (4.2)-(4.5). Under (H8), Makowski and Shwartz
(1986b) have shown that the RV’s {X(n)}§° are uniformly integrable under P™ for any non-idling
policy 7 in P. Moreover, for any non-idling stationary policy ¢, the Markov chain {X(n)}§° forms
a single ergodic class under P9 over the state space IN*+1. These facts imply readily that under
(H6)-(H8), Theorem 4.1 applies to the steering policy a defined by (2.2) and (2.4), where the state

z is chosen arbitrarily in INK+1,

Theorem 4.4 Under (H6)-(H8), the steering policy o solves the constrained optimal resource allo-
cation problem (C'Py) with J°(a) = J°(f*) and J%(a) = J4(f*) = V.

For K = 1, the system is composed of two queues and the policy g (resp. g) specializes to
the work conserving static priority assignment policy giving higher priority to the 1°¢ queue (resp.
the 0‘" queue). In that case, the steering policy a constitutes an adaptive policy in the restrictive
sense understood in the literature of adaptive control of Markov chains (Kumar and Varaiya 1986)

in that no knowledge of the model parameters is needed for implementing the policy a.

5. A Proof of Theorem 3.5 by Sample Path Arguments

In this section, Theorem 3.5 is established through direct sample path arguments. The discus-
sion is carried out through a series of technical lemmas.
5.1. Regenerative properties of {X(n)}§°

To study the performance of the policy «, start with the following observation: Under the
recurrence assumption (A1), the process {X(n)}§° is regenerative under each one of the measures

P9 and PZ (Chung 1974), while it need not be so under P® owing to its non-stationarity. It

thus seems reasonable to try a decomposition of this non-stationary process into two regenerative
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processes. This is done by connecting together the cycles corresponding to the use of each one of
the policies so that results from the theory of regenerative processes may be applied. This idea is

made precise in the lemma below and the arguments that follow it.

Let #(m) (resp. t(m)) be the left boundary of the slot during which the policy g (resp. g) is
used for the m** time so that 5(#(m)) = 1 (resp. n(¢(m)) = 0). Note that the RV’s #{(m) and #(m)
are IF,-stopping times, and the RV’s X(m) and X(m) given by

X(m)=X((m)) and X(m)=X(t(m)) m=1,2,...(5.1)

are thus ]F;(m) and IFjy(,,)-measurable, respectively.

Lemma 5.1 Assume the recurrence condition (A1) to hold. Under P*, the RV’s {X(m)}$° (resp.

{X(m)}§°) form a time-homogeneous Markov chain with one-step transition probability matriz P(q)

(resp. P(g)).
Proof. The result will be established for the sequence {X(m)}$°, provided the equality
PUX(Hm + 1)) = Y| By ,)] = Px(a(m))y(9) m=1,2...(52)
can be shown to hold. In fact, it suffices to show the set equality
X(#t(m+1)=y]=[X{EHm)+1) =1y], m=1,2...(5.3)
since then
PUX(H(m+ 1)) = y| Fymy] = PIX(E(m) + 1) = y| Fym))] m=1,2...(54)
by the very definition of & and of the stopping time #(m), and the strong Markov property now

readily yields (5.2) from (5.4).

The proof of (5.3) is now given and considers two cases. If y # z, then necessarily {(m + 1) =
t(m) + 1 and (5.3) is trivially true. If on the other hand y = z, the set equality (5.3) (with y = 2)
is seen to hold by the following observations: On the event [X(¥(m + 1)) = 2], it is not possible
that X (t{(m) + 1) # z, for this would imply #{(m + 1) = #(m) + 1 by the very definition of «, thus
leading to the contradiction X (#(m + 1)) # 2! Consequently,

[(X(tH(m+1))=2] C[X(I(m)+1) = z]. m=1,2...(5.5)
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Conversely, on the event [X (#(m)+1) = 2], the epoch #(m)+1 corresponds to the end of a cycle and
the next time the policy g is used necessarily marks the beginning of a cycle, so that X (#(m+1)) = z
and

[X(#(m)+1)=2]C [X(H(m+ 1)) = 2]. m=1,2...(5.6)
The result (5.3) is now obtained by combining (5.5) and (5.6).

These arguments apply mutatis mutandis to the sequence {X(m)}i°. Details are left to the

interested reader. |
5.2. The key convergence results

For any mapping ¢ : S — IR, in order to study the convergence of {J¢(7(k))}{° as k, the
number of cycles, goes to oo, let T(I) (resp. T(1)) denote the length of the {** cycle during which
the policy g (resp. g) is used, and set

! !
7(l):= ET(S) and 7(I):= Z_fl_”(s). 1=1,2,...(5.7)

In words, 7(I) (resp. 7(l)) represents the total number of slots in the { first cycles during which g
(resp. g) is used. Moreover, let the RV’s Z°(1) and Z°(1) defined by

7(1) ()
Z() = Z (X (m)) and Z°(l):= Z c(X(m)) 1=1,2,...(5.8)

m=7(l-1)+1 m=r(l-1)+1
represent the total costs over the I** cycle during which the policies § and g are used, respectively.
In the definition of (5.8), it is convenient to set Z (I) = 0 (resp. Z°(I) = 0) if 7(I — 1) = oo (resp.
7(l — 1) = o). Thus, under Lemma 3.4, the quantities Z (/) and Z°(l) are P*-a.s. well defined
and finite for all [ = 1,2,....

The next lemma is an immediate consequence of Lemma 5.1.

Lemma 5.2 Assume the recurrence condition (Al) to hold. For any mapping ¢: S — IR, the RV’s
{Z°(D)}5° (resp. {Z°(1)}$°) form a (possibly delayed) renewal sequence under P*. Moreover, if the
mapping ¢ satisfies the condition (A3bis), then

E°[Z°()] = E9[2°] and E°[2°()] = EXZ°). 1=2,3,...(5.9)

Let the RV’s (k) and y(k) count the total number of cycles in the first k cycles that § and g

are used, respectively. It is now plain that

T(k)-1 F(k)_ v(k)
PR (OIEDIFAGED VA P® — g.5.(5.10a)
t=0 =1 =1
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for each £ = 1,2,..., and with ¢(z) = 1 for all z in 5, this last relation specializes to

(k) u(k)
=Y "T()+ Y TQ). P — a.5.(5.10b)
=1 =1

By virtue of Lemma 3.4, limy, 7(k) = limg v(k) = oo so that the next lemma is now immediate from

Lemma 5.2 and the Strong Law of Large Numbers.

Lemma 5.3 Assume (Al)-(A4) to hold. For any mapping ¢ : S — IR satisfying (A3bis), the

CoOnvergences
v(k) ~ v(k)
nmkg(—k—) > Z°(1) = EZ[Z°] and limk z Z°(l) = E&[Z°] P* — a.s5.(5.11a)
=1

take place, and in particular,

(k) v(k)
limkv(k) ZT(Z)—EQ[T] and 11mk_(k) ZT(I)— EZ{T). P% — a.5.(5.11b)
Set
q(k) ?%Q k=1,2,...(512)
and note that V(k) = 1 — ¢(k). The relations (5.10) imply that
( ) 1 v(k) v(k)
= (k)_(k ZT H+(1- q(k))_(k) ZT(I) P — 4.5.(5.13a)
a(k) 5ty Sy T(D)
T(k P — a.5.(5.13b
pr) = a(k) sty SRy T() + (1= q(k)) gy TEY T() (5:430)
and
T(k) 7¢ (k) ¢
F(r (k) = Aoty Lzt Z (D + (1 —a(k)) iy T2y 2500 PO — 0.5 (5.13¢)

v(k v(k
1) st TRY T + (1 - q(k)) oy T8 )T(l)
for all k =1,2,..., where the convention 3 = 0 is used.

For any mapping ¢ : § — IR to satisfy (A3bis) with the quantity E?[Z°] + E2[Z°] being
well defined (but possibly infinite), it is now plain from Lemma 5.3 and (5.13) that under P®,
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the sequences of RV’s {@}‘1’0, {p(r(k))}$° and {J°(7(k))}$° converge a.s. if the RV’s {q(k)}{°
converge a.s.. This key convergence result of the RV’s {g(k)}$° is taken on in the next proposition
whose proof is delayed until the next section.
Theorem 5.4 Under (A1)-(A4), the RV’s {q(k)}{° converge P*-a.s. to the constant ¢* given by
(3.10), i.e.,

limgq(k) = ¢*. P% — a.s.(5.14)

With the help of Theorem 5.4, Theorem 3.5 can now be proved easily.

A proof of Theorem 3.5. From the the remarks made earlier, it follows readily that under (5.14),
the P%-a.s. limits of the sequences of RV’s {I%C—)}‘fo, {p(7(k))}{° and {J¢(7(k))}$° are necessarily

given by
limk:(ki) = ¢*ET[T) + (1 — ¢*)ET], P* — a.s.(5.15q)
limgp(r(k)) = = ¢ B2IT] % —a.s.(5.
k(7 (k) BRI £ (1 — o B8 P (5.150)
and
limgJe(T(k)) = ¢ B2 + (1 = ¢)EAZ°] P — a.s.(5.15¢)

¢*EAT) + (1 - ¢*) EZ(T)

respectively. While (5.15a) gives (3.13), simple algebraic calculations based on (3.6) and (3.10)
easily yield (3.11)-(3.12) from (5.15b)-(5.15¢c). The proof of Theorem 3.5 is therefore complete. [

5.3. A proof of Theorem 5.4
Crucial to the proof of Theorem 5.4 is the following deterministic lemma.

Lemma 5.5 Let {a(k)}$°, {6(k)}$° and {b(k)}$° be IR-valued sequences satisfying the conditions
b(k)>0 and b(k)>0 k=1,2,...(5.16a)

and
limib(k) = 0, limgb(k) =0 and limga(k)=a (5.16b)

Jor some a in IR. If the IR-valued sequence {6(k)}{° is defined recursively by
6(k) — b(k) if 0(k) > a(k);
0k +1) = k=1,2,...(5.17)
o(k) + b(k) it 8(k) < a(k),
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with (1) arbitrary in IR, then either {6(k)}5° converges monotonically (in the tail) to some constant
6(c0) # a, orlim0(k) = a.

Proof. By assumption, given € > 0, there exists a positive integer k, such that b(k) < €, b(k) < €
and |a(k) —a| < € for all k£ > k., and define

me = inf{k > k. : 0(k) € (¢ — ¢,a +€)}. (5.18)

If m. = oo, then 6(k) is not in the interval (a — ¢,a + ¢) for all k > k.. If 8(k.) < a — ¢, then
6(k) < a— ¢ < a(k) for all k > k.. To see this, recall that b(k) < € for all £ > k., and from
(5.17) this implies 8(k. + 1) < a, whence 0(k. + 1) < a — € by the definition of m,. An induction
argument now shows that 8(k) < a — € for all k£ > k, so that by (5.17) the sequence {8(k)}{° is
monotone increasing from time k. onward, and must converge to some value 6(co0) < a — €. The

case 8(k¢) > a + € is similarly discussed.

Suppose m, < oo so that 8(m.) now lies in (¢ — €,a + €). From (5.17) again, it follows that
a—e—b(me) < O(me+ 1) < a+ e+ b(m,). (5.19)
If in (5.19), a — € < (m. + 1) < a + ¢, then the inequalities
a—e€—b(me+1)<O(me+2) < a+e+b(m,+1) (5.20a)

hold. On the other hand, if in (5.19), 6(m.+ 1) ¢ (a — €, a + ¢€), then two cases are possible: Either
(i) @ — € — b(me) < 6(m. + 1) < @ — € in which case §(m, + 1) < a(m. + 1) and therefore

a—¢€—b(me)+b(me+1) < 8(me+2) < a—e+b(me+1), (5.200)

by making use of (5.17) or (ii) a+¢€ < 6(m.+1) < a+e+b(m.) in which case §(m.+1) > a(m.+1)
and therefore

a+e—b(me+1)<8(m,+2)<a+e+b(m.)—b(m,+1). (5.20¢)
It follows easily from (5.20) that
a — € — max{b(m.),b(me + 1)} < 8(me +2) < a + € + max{b(m,),b(m. + 1)}.
An induction argument now implies that the inequalities
a —¢— max b(m + 1) < 0(m + 1) < a+ e+ max b(m, + i) (5.21)
0<i<l 0<i<!
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holds for all I = 1,2,.... Since m, > k., the definition of k. yields
a—2e<8(k)<a+2e

for all k£ > m,, and € being arbitrary, the proof is now complete. O
A proof of Theorem 5.4 is now presented.

A proof of Theorem 5.4. Define the RV’s {Y (k)}{° by

Dt (UMD Dt A(C)

Yulr
v(k) —ukRy
Y (k) = — k=1,2,...(5.22
(%) SVRZ Y ER 24 ST 2B 1) V (5-22)
( (k) - v(k) _( (k) - (k) )

and observe from (5.13c) (with d replacing ¢) that J%(r(k)) > V if and only if ¢(k) > Y (k). The
definition of & implies that the RV’s {g(k)}{° are defined recursively by

{ q(k) — z37a(k) if g(k) > Y(k);
(k+1) k=1,2,...(523)

g(k) + g (1 - q(k)) if q(k) <Y(k).
Under (A1)-(A4), it follows from Lemma 5.3 that

EZ[TV — E7|Z4]

eV 8= e ~ B2z - (B2 - BTV

P — a.s.(5.24)

so that
p*EZ{T)] .
(1 - p*)EZ[T] + p*E[T]

lim,Y (k) = P% — a.5.(5.25)

by simple algebraic manipulations based on (A4), (2.7), (3.2) and (3.10).
Pick a sample w not in the P*-null set on which (5.25) fails and set 8(k) = ¢(k,w), a(k) =
Y (k,w), b(k) = ifc-k_%)- and b(k) = (—1—1(—]“’—)) for all £ = 1,2,..., and note that @ = ¢*. Since

0 < q(k,w) < 1, the assumptions of Lemma 5.5 are immediately satisfied, and the a.s. convergence
of the RV’s {q(k)}$° follows. It is not possible for the values {g(k,w)}{° to converge monotonically
(in the tail) to some value not equal to ¢*, for this would imply that the policy o sticks to one

policy from some cycle onward, in clear contradiction with Lemma 3.4. M
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