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This dissertation contains a collection of topics on the spin-orbit coupling of

cold atoms and semiconductors.

We first consider the effects of an optically induced spin-orbit interaction on

a system of Bosonic atoms. The spin-orbit term couples the emergent pseudo-

spin-1/2 degree of freedom to momentum. The single particle energy spectrum has

a low energy band characterized by two minima at non-zero momentum. At low

temperatures, a many-body system will condense into these minima. In the presence

of vanishing interactions, the ground state wavefunction is found to be a macroscopic

superposition of of “left” and “right”-moving states. An experimentally observable

signature of the condensate is predicted that can be observed using time-of-flight

imaging.

We next consider the semiclassical dynamics of a trapped spin-orbit coupled

system. We find non-linear dynamics parameterized by the value of the initial

displacement of the trap, and the anisotropy of the spin-orbit energy spectrum. We

show that the dynamics can give a Berry’s phase, and propose an experiment to



measure this phase. We then propose a generalization of the 4-level scheme that

allows for spin-orbit coupling described by a vector potential that is proportional to

the angular momentum operator.

We propose a scheme for using atom interferometry to measure weak time-

dependent accelerations. This proposal uses an ensemble of dilute trapped bosons

with two pseudo-spin states coupled to a synthetic magnetic field, but with opposite

effective charges. The synthetic field acts to couple spin to momentum continuously,

which continuously imparts the acceleration on the phase of the internal states. We

use time reversal pulses to reduce noise. The sensitivity of such a system is estimated

to be S ∼ 10−7 m/s2
√

Hz
.

Finally, we predict a bulk manifestation of the spin-Hall effect in an inhomo-

geneous spin-orbit-coupled system. The phenomena is predicted in the framework

of the spin diffusion equations generalized to include arbitrary Rashba and linear

and cubic Dresselhaus terms. This framework shows that a bulk spin-density wave

with a wavevector oriented perpendicular to an applied electric field will induce a

charge-density wave characterized by a π/2-phase shift and a non-monotonic time-

varying amplitude. The optimal values of spin-orbit coupling for observation of the

effect are determined.
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Each system will evolve and accumulate a slightly different Berry’s
phase that can then be measured in a time-of-flight experiment. . . . 118

7.7 The 4-level coupling scheme needed for a 3D spin-orbit interaction.
The additional of next-nearest-neighbor couplings Ω13 and Ω24 form a
tetrahedral coupling topology. The momentum transfer of the optical
couplings Ωij forms a tetrahedral geometry. . . . . . . . . . . . . . . 121

8.1 A potential implementation of our interferometer based upon Ref. [4].
The Raman beams Ω1,2 couple a three level atom by two parallel
Gaussian profiles with peaks that are spatially offset. The spatial
offset of the beams provides a torque on the atoms that looks like
a magnetic field. Two of the dressed states couple to a “synthetic
gauge field” with opposite charges and become degenerate in the large
detuning limit, ∆→∞. . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 The classical trajectories of a particle initially displace by r0 and the
corresponding perturbed paths for a state with positive (Fig. 8.2(a))
or negative (Fig. 8.2(b)) effective charge. In both cases, the dashed
black line is the unperturbed classical path, while the blue(red) line is
the perturbed response for a particle with positive(negative) charge.
For both plots, the ratio of the two classical frequencies is given by
ω+/ω− = 6, and the gravitational perturbation is driving at a fre-
quency of ωg = 1.07ω+. Note that the strength of the perturbation
is exaggerated for effect, and larger than the upper bound on the
measurable signal given by Eq. 8.15. . . . . . . . . . . . . . . . . . . 134

8.3 The normalized response function for
∣∣∣ ω̃F (ω)

r0t

∣∣∣2 for the pulse sequence

Up, (dashed) or UCP , the Carr-Purcell like pulse sequence (solid). For
both sequences we used t = 10π

ω++ω−
= 5π

ω̃
and ε = ω+/ω−. Note we

have scaled the response for to the CP pulse sequence by a factor of
16 to account for the factor of four increase in interrogation time. . . 136

xiii



8.4 8.4(a) The classical path a particle will follow with the CP pulse
sequence given by Eq. 8.9. The red path corresponds to the initial
free evolution for a time t. The dashed path is the time reversed
path allowed to evolve for a time 2t. Finally, the solid blue path is
the return trajectory for another t. Note that the three trajectories
will overlap in practice, and have been offset just for a visual aid.
The three arcs correspond to the direction of motion of the classical
trajectory. We have chosen ε = ω+/ω− = 22. . . . . . . . . . . . . . 141

8.5 8.5(a) The dependence of the sensitivity of the system based upon
atom number. Below Nc ∼ 106 the sensitivity grows as 1√

N/Nc
. Above

Nc the sensitivity S ∼ 10−7m/s2/
√

Hz is independent of the number
of particles. 8.5(b) The bandwidth of the system with optimal sensi-
tivity as a function of the number of particles. . . . . . . . . . . . . 146

9.1 Charge-density profile induced by the relaxation of a spin-density
wave in the presence of a uniform electric field. The initial spin
density corresponds to a sinusoidal wave with wave-vector q of the
out-of-plane Sz component, as symbolized by the blue (spin up) and
red (spin-down) arrows. The in-plane electric field is oriented perpen-
dicular to q. Notice the π

2
shift of the induced charge-density profile

relative to the spin-density wave. . . . . . . . . . . . . . . . . . . . . 151
9.2 Time dependence of the induced charge-density waveamplitude A(t)

for various values of the dimensionless spin orbit coupling parameters
(γR, γD), for an spin-orbit coupling strength Γ = .001. The wave-
vector q ‖ e+ has a fixed value, q = 0.6/Ls. The amplitude of the
induced wave varies non-monotonically and is characterized by a peak
value Amax and an exponential decay at large times. . . . . . . . . . . 154

9.3 Dependence of the absolute value of the peak amplitude Amax on
the spin-orbit parameters (γD, γR) for a fixed value of the overall
spin-orbit interaction strength, Γ = .001, and q = 0.7/Ls. Amax
vanishes for pure Dresselhaus spin-orbit coupling, γR = 0 (horizontal
axis and horizontal pair of white dots), pure Rashba coupling, (γD =
0, γR = ±2) (vertical pair of white dots), and at the symmetry points
(γD = ±

√
2, γR = ±

√
2) (green dots). The maximum of the peak

amplitude corresponds to (γD, γR) = (−1.08,−1.25) (inside the lower
left quarter of the parameter space, Amax = 7.8× 10−4), while three
other local maxima are located at (γD, γR) = (−1, 1.24) (upper left
quarter, Amax = −5.5 × 10−4), (0.80, 1.06) (upper right, Amax =
3.2 × 10−4), and (0.76,−0.98) (lower right, Amax = −2.8 × 10−4).
All these maxima involve large relative contributions of the cubic
Dresselhaus coupling, β3/Γ = 0.5÷ 0.68. . . . . . . . . . . . . . . . . 156

xiv



9.4 Dependence of the peak amplitude on the linear Dresselhaus coupling
for various values of the cubic Dresselhaus and Rashba couplings. The
arrows mark the values of β1 where the Amax changes from an absolute
minimum of A(t) to an absolute maximum (cf. Fig. 9.2). . . . . . . . 158

xv



Chapter 1

Introduction

Spin is a fundamental property of quantum particles. The ability to couple

spin and the orbital degrees of freedom gives rise to powerful tools in information

processing and simulations. For example, if the spin of an electron could be coupled

to it’s center of mass motion in a semiconductor, then transport would allow the

full SU(2) spin degree of freedom [5] to be used for information processing. This

could provide significant improvements over electron based devices and could lead

to low power devices as well as new methods of information processing.

Spin-orbit coupling is a powerful tool for manipulation of spin in semiconductor

systems. In these systems, the motion of the electrons through the electric fields

around the atomic nuclei produce effective Zeeman fields. This relativistic correction

to the motion of the electrons can be strong in some systems. Combined with

the velocity dependence of the effective magnetic field, it is feasible to use this

phenomena as a means to transport electron spin.

Simultaneously, new techniques in laser trapping and manipulation of atoms

have opened the door for powerful experiments. Laser cooling and evaporation can

be used to cool a small number of atoms into the regime where quantum effects

become dominant. These systems, known as cold atomic systems, have already

been used for metrology, quantum computation and quantum simulation. Recent
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proposals and experiments have brought spin-orbit coupling to atomic physics to

allow for simulation of solid-state systems as well as new phenomena that have no

solid-state analogue.

1.1 Overview of Dissertation

This dissertation will cover spin-orbit coupling in both cold atoms and semi-

conductors. It contains the result of several theoretical research projects as well as

the background material relevant to each project. This structure of this dissertation

is as follows. Chapter 2 through 5 contain the background, and Chapters 6 through

9 are the results of the research.

Chapter 2 contains an introduction to the interaction of light and atoms, and

provides the background material needed to understand Chapter 3 and Chapter 4.

Chapter 3 has an introduction to optically induced synthetic gauge fields in cold

atomic systems. Two proposals for synthetic gauge fields with a non-commutative

matrix structure, known as a non-Abelian field, are discussed and specialized to the

case of spin-orbit coupling. Chapter 4 has an introduction to gravimetry using atom

interference. Chapter 5 is an introduction to spin-orbit coupling in semiconductor

systems and its relation to the spin-Hall effect. The relativistic origin of spin-

orbit coupling is discussed as well as the effective magnetic field that it induces

in semiconductors. This effective magnetic field is then shown to motivate spin-

transport experiments.

Chapter 6 is a research proposal based upon work [6] done with Tudor Stanescu
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and Victor Galitski. In this chapter, a many-body system of Bosons is considered

under the influence of a synthetic spin-orbit coupling field. The spin-orbit coupling

splits the energy bands and produces a double well structure in the lower band of the

momentum-space dispersion. The minima of the double wells are exactly degenerate.

At low temperatures, and in the presence of weak density-density interactions, the

system is found to Bose-condense into a macroscopic superposition of all particles

in the left well and all particles in the right well. The Gross-Pitaevskii equations are

derived for the spin-orbit coupled condensate. Finally, an experimental signature is

given that could be detected in time-of-flight experiments.

Chapter 7 contains unpublished work relating to synthetic spin-orbit coupling.

The first section contains a semiclassical analysis of a trapped spin-orbit coupled

system where the ground state is initially displaced. The dynamics are classified

into regimes of large and small initial displacement, as well as spin-orbit couplings

that are large and small. It is shown that the system will acquire a Berry’s phase,

and an experiment is proposed to measure the Berry’s phase. In the second section,

the 4-level scheme is generalized to next-nearest-neighbor couplings to allow for a

3D spin-orbit coupling. Certain optical configurations are considered, and a 3D

spin-orbit coupling is found for which the vector potential is proportional to the

pseudo-spin angular momentum operator.

Chapter 8 is a proposal for a new type of atom gravimeter that can measure

time-dependent accelerations. The proposal uses the two pseudo-spins of an opti-

cally induced synthetic magnetic field to generate a continuous phase sensitivity of

the external field to time-dependent gravitational signals. Methods for dealing with
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noise through time reversal are discussed and the experimental feasibility is con-

sidered. It is estimated that the peak sensitivity of such a device is S ∼ 10−7 m/s2
√

Hz
.

Appendix A contains additional calculations used in Chapter 8. The phase de-

pendence on gravity is calculated in the path integral and operator formalism of

quantum mechanics.

Chapter 9 is a theoretical proposal based upon work [7] done with Tudor

Stanescu and Victor Galitski. The project predicts a bulk manifestation of the spin-

Hall effect in semiconductor heterostructures. If a spin grating is allowed to relax in

the presence of a perpendicular electric field, the system will induce a bulk charge

density wave. This phenomena is predicted in a generalized spin-charge diffusion

framework, and the diffusion equations are solved to maximize the phenomena.
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Chapter 2

Interaction of Atoms and Light

In this section we provide a brief review of the interactions of light and atoms.

Modern experimental techniques allow for the precision manipulation of atoms

through magnetic and optical fields. This section provides an introduction into

the basic physics of the coupling of light and atoms. Effects such as the AC Stark

effect and Raman transitions will be discussed under the context of the rotating

wave approximation, the dipole interaction and effective Hamiltonians.

2.1 Dipole Interaction

Neutral atoms have no net electric charge and a vanishing dipole moment.

Thus, under the application of an electric field, a neutral atom should not experience

a force. Fortunately, an interaction between light and atoms is possible since an

applied electric field can induce a dipole moment. This induced dipole moment will

then couple to the optical electric field through the dipole potential,

U = −d · E. (2.1)

In what follows we treat the electric field E as a classical, complex-valued field.

However, the dipole term is treated as a quantum mechanical operator.
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2.2 Dipole Operator and Two Level System

We approximate our atom as a two level system, with a ground state |g〉 and

an excited state |e〉. This two level system can be pictured as a spin-1/2 system

using the Bloch sphere picture, but we note that there is no requirement that the

levels |g〉 and |e〉 be part of a real spin-1/2 system. The quantum Hamiltonian for

such a system can be described by:

Hatom = ~ω0 |e〉 〈e| . (2.2)

where ω0 is the frequency splitting between the ground and excited states.

The classical dipole moment for an atom takes the form d =
∑

i qiri, where qi

is a point charge at the position ri. Using the quantum-to-classical correspondence,

the dipole operator takes the form d̂ = qr̂, where r̂ is the electron position operator

and q = −e is the charge of the electron. We can then express the dipole operator

through the matrix elements of our two level system:

d̂ =
∑
a,b

〈a| er̂ |b〉 |a〉 〈b| (2.3)

where a, b = e, g are the labels for the ground and excited states, and d̂ab = 〈a| qr̂ |b〉

are the dipole matrix elements. Consider the effect of the parity operator Π on the

dipole matrix elements. Recall that for a neutral atom the states |e〉 and |g〉 will be

states of definite parity, Π |a〉 = (−1)πa |a〉, where πa is the parity of the state a, and

the position operator has odd parity, ΠrΠ−1 = −r. Thus, under a parity inversion

dab → 〈a|Π−1Πqr̂Π−1Π |b〉 (2.4)

= (−1)πa+πb+1dab. (2.5)
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It is therefore obvious that the diagonal matrix element of the dipole operator must

vanish. However, it is possible that the off-diagonal matrix elements can be non-

vanishing if the states |e〉 and |g〉 have opposite parity, πe = −πg.

We can now express the full Hamiltonian for our Atom-Laser system as:

H = ~ω0 |e〉 〈e|+ E ·
(
degσ+ + d∗egσ−

)
(2.6)

where σ+ = |e〉 〈g| and σ− = |g〉 〈e| are raising and lowering operators in the pseudo-

spin space.

The physics that might be expected to emerge from this system is as follows.

The laser field produces an oscillating electric field. When the frequency of the

electric field is near the frequency splitting of the ground and excited state, the

electrons in the atom will oscillate resonantly. This will allow an optical field to

drive transitions between the ground to excited states.

2.2.1 Rotating Frame

We now discuss the dipole interaction in a rotating frame. The idea is to

transfer the energy splitting between the ground and excited states into a time-

dependent phase for the excited state. To do this we transform the eigenstates of

our system with the time-dependent unitary operator U = e−iω0|e〉〈e|t. This gives a

new set of states |ψ̃〉 = U(t) |ψ〉. The new Hamiltonian that describes these states

can be found by rotating the states in the time-dependent Schrödinger’s equation.

i~
d

dt
|ψ〉 = i~

d

dt
U †(t) |ψ̃〉 (2.7)
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Since the unitary transformation is time-dependent, the time derivative acts on the

unitary rotation in addition to the state |ψ̃〉.

i~U̇ †(t) |ψ̃〉+ i~U †(t)
d

dt
|ψ̃〉 = H U †(t) |ψ̃〉 . (2.8)

Rearranging the term and left multiplying by U(t) will produce the Hamiltonian in

the rotating frame,

i~
d

dt
|ψ̃〉 =

[
U(t)HU †(t)− i~U(t)U̇ †(t)

]
|ψ̃〉 (2.9)

= H̃ |ψ̃〉 (2.10)

where the new Hamiltonian is:

H̃ = U(t)HU †(t) + i~U̇(t)U †(t) (2.11)

and U̇ = d
dt
U(t). Notice also that we have used the identity U̇U † = −UU̇ †.

2.2.2 Rotating Wave Approximation

This transformation is generic and can be easily generalized to many-level

systems. For the two-level case described above the rotating Hamiltonian takes the

form:

H̃ = E ·
(
degσ−e

iω0t + d∗egσ
−iω0t
+

)
. (2.12)

In the rotating frame, the dipole interaction can be seen to consist of two terms

rotating at frequencies of opposite signs. The σ+ term rotates at a positive frequency

and corresponds to exciting the system from the ground to excited states. The σ−

term rotates with negative frequency and de-excites the system from the excited
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to ground state. It is therefore useful to decompose the dipole operator into it’s

positive and negative frequency components,

d = d(+) + d(−) (2.13)

Here we have taken d(+) = degσ−e
iω0t and d∗egσ

−iω0t
+ as the respective positive and

negative frequency terms of the dipole operator.

A useful approximation can be made if we consider the optical field E created

by a single laser beam. In this case we can assume it takes the form of

E = E ε̂(ei(k·x−ωt) + e−i(k·x−ωt)) (2.14)

where ε̂ is the polarization of the light field and k and ω are the respective wavelength

and frequency of light. We see that an electric field of this form can also be broken

into positive and negative frequency components

E = E(+) + E(−), (2.15)

where the +(−) sign refer to the positive (negative) frequency components of the

electric field.

This decomposition can be used to simplify the dipole interaction term in the

Hamiltonian:

HAF = −d · E (2.16)

= −(d(+) + d(−)) · (E(+) + E(−)) (2.17)

= −d(+) · E(+) − d(−) · E(−) − d(+) · E(−) − d(−) · E(+) (2.18)

The first two terms have a time dependence of e±i(ω0+ω)t and rotate with frequencies

ω0 + ω. However, the last two terms rotate as e±i∆t, i.e., with the frequency ∆ =
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ω0 − ω. If the frequency of of the laser is tuned near the transition frequency of

the excited state, |ω0 − ω| � ω0 + ω, we expect the motion due to the fast moving

terms to be averaged out on the time scales of the slow frequencies. This can be

made formally exact by calculating transition amplitudes in perturbation theory,

and noting that the fast time scales come with a factor of 1/(ω0 + ω), whereas slow

time scales come with a factor of 1/∆ � 1/(ω0 + ω). [8, 9] For our purposes it

suffices to assume the time average of the fast terms is zero on the relevant times

scales of atomic motion. For many cases the high frequency response of the electrons

(femtoseconds) is faster than any modern detector can observe. [8]

In a frame rotating by ω0 |e〉 〈e|, and under the regime of the rotating wave

approximation, the Hamiltonian for the atom-laser interaction system becomes

H̃RWA = −E
(
〈g| ε̂ · d |e〉σ+e

−i∆t+ik·r + 〈e| ε̂ · d |g〉σ−ei∆t−ik·r
)
. (2.19)

This Hamiltonian has the form of a raising operator rotating at frequency −∆, and a

lowering operator rotating at frequency +∆. The time dependence can be eliminated

with a transformation to a frame rotating at frequency ∆. This is analogous to the

transformation in Sec. 2.2.1, with U(t) = ei∆t|e〉〈e|. The Hamiltonian in the rotating

frame is:

HRWA = −~∆ |e〉 〈e| − ~
(
Ωσ+e

ik·r + Ω∗σ−e
−ik·r) (2.20)

where the Rabi frequency, defined as

Ω =
E 〈e| ε̂ · d |g〉

~
, (2.21)

is the characteristic frequency of an optically induced transition. The Hamiltonian
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HRWA is time-independent. Thus, the driven two level system can be transformed

to a time-independent problem at the cost of terms rotating at frequencies of ω0 +ω.

The spatial phase factor e±ik·r will be shown to correspond to the atom ab-

sorbing or emitting a single unit of momentum p = ±~k. If the center of mass

motion is not necessary, the electric dipole approximation can be applied, k · r� 1,

and this phase can be ignored. This approximation is reasonable, since the charac-

teristic size of an atom ∼ .1nm is much less than the wavelength of optical light,

∼ 1000nm. However, if the center of mass motion of the atom is considered, the

spatial dependence of the phase can result in a spatially dependent force. This force

is the optically induced gauge fields that will be discussed below.

2.3 Dynamics of the Two Level System

The dynamics of the two level system described by Eq. 2.20 can be explored

by expanding the system in terms of its basis states, |ψ̃〉 = cg(t) |g〉 + ce(t) |e〉.

Neglecting center of mass motion, the time-dependent Schrödinger’s equation

i~
d

dt
|ψ̃〉 = [~∆ |e〉 〈e|+ (~Ωσ+ + ~Ω∗σ−)] |ψ̃〉 (2.22)

can then be expressed in terms of cg(t), ce(t) by left multiplying by the bras 〈g| and

〈e| respectively. This produces the following coupled equations of motion:

ċg(t) = iΩce(t)

ċe(t) = i∆ce(t) + iΩ∗cg(t) (2.23)
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These equations can be exactly solved for time-independent Ω and ∆. However, two

experimentally relevant situations are common, that of zero detuning, ∆ = 0 and

that of large detuning, ∆ � |Ω|. The intuition in these limits will be relevant for

many experimentally relevant situations. These limits will now be discussed.

2.3.1 Rabi Oscillations

We now consider the zero detuning (∆ = 0) limit of the equations of motion

Eq. 2.23. In this limit, the equations of motion decouple

c̈a = −|Ω|2ca(t), (2.24)

where a = e, g. If the system is initially in the ground state, cg(0) = 1, ce(0) = 0,

then the solution to these equations is given by

cg(t) = cos [|Ω|t] , (2.25)

ce(t) = i
Ω

|Ω|
sin [|Ω|t] . (2.26)

These equations describe a system oscillating between the ground and excited states

with probability Pge = cos2 [|Ω|t]. These population oscillations are known as Rabi

Oscillations. [8, 9] Also notice that the excited state acquires a phase eiφL = iΩ/|Ω|.

Consider now an optical pulse applied for a time Ωt = π/2 to a state |g〉. Such

a pulse will rotate the ground state into an even superposition

|ψ〉 =
1√
2

(
|g〉+ eiφL |e〉

)
. (2.27)

Similarly, the excited state will be rotated into the orthogonal superposition. Such

a pulse is called a “π/2” pulse since it rotates a vector on the Bloch sphere by
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π/2. Similarly, a pulse for a time Ωt = π will act to interchange |g〉 → eiφL |e〉 and

|e〉 → e−iφL |g〉. Such a pulse is equivalent to a rotation of π along the Bloch sphere.

2.3.2 Adiabatic Elimination

Consider now the large detuning limit, ∆� |Ω|. It is important to note that

this limit can be consistent with the Rotating Wave Approximation, ω0 +ω � ∆�

|Ω|, and is indeed relevant for many experimental setups. [8, 9] In this limit, the

driving energy of the field is small compared to the shift from resonance. One might

therefore expect that an atom in the ground state will not be strongly excited.

If the atom is not strongly excited, the population of the excited state will

reach a steady state given by ċe = 0. This gives an excited state population of

ce = −Ω∗

∆
cg. The equation of motion for the ground state thus becomes

ċg = i
|Ω|2

∆
cg (2.28)

with the solution cg(t) = cg(0)ei
|Ω|2
∆

t. Thus, the coupling with the excited state acts

to effectively raise the ground state energy ∆E = ~ |Ω|
2

∆
. This shift is known as the

AC Stark shift, or light shift.

The intuition behind this solution can be seen by considering the equation of

motion for ce. In the large detuning limit, the evolution will be dominated by the

detuning term, which is much greater than the Rabi coupling. However, in a manner

similar to the rotating wave picture, this high frequency motion will be averaged out

on long timescales. The time evolution of the upper state will then adiabatically

follow the lower state. We have thus “adiabatically eliminated” the excited state
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from the problem.

2.3.3 Dressed State Picture

A general solution to Eq. 2.23 for arbitrary detunings is also possible. While

the limiting cases discussed above give intuition that will carry over to situations

where an exact solution cannot be found, the full solution to this problem will help

give more physical insight to the problem.

To solve the problem, express the Eq. 2.20 in matrix form:

HRWA = −~

 0 Ω

Ω∗ ∆

 (2.29)

Diagonalization of HRWA yields the two energy levels

E±/~ = −∆

2
±

√(
∆

2

)
+ |Ω|2 (2.30)

and the corresponding eigenstates given by

|+〉 = cos(θ) |e,p + ~k〉+ eiφ sin(θ) |g,p〉 (2.31)

|−〉 = sin(θ) |e,p + ~k〉 − eiφ cos(θ) |g,p〉 (2.32)

where the Stückelberg angle θ is defined by

tan(2θ) = − ∆

2Ω
, (2.33)

and eiφ = iΩ/|Ω|. The effects of the optical fields can therefore be seen as mixing the

ground and excited states. In doing so, the mixing introduces an avoided crossing

of the energy levels, as can be seen in Fig. 2.1.
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At large detuning, the energies and eigenstates can be expanded in powers of

Ω/∆. The energies are approximately given by

E+ = −∆− |Ω|
2

4∆
(2.34)

E− =
|Ω|2

4∆
(2.35)

with the approximate corresponding eigenstates

|+〉 = |e〉+
Ω

∆
|g〉 (2.36)

|−〉 = |g〉 − Ω∗

∆
|e〉 . (2.37)

The energy level E− is just the light shift. The low energy eigenstate |−〉 can be seen

to contain mostly the ground state, with only a small mixing of the excited state.

This is consistent with the picture discussed in the adiabatic elimination section.

The ∆ = 0 limit is also of note for which the dressed state are |±〉 =

1√
2

(|g〉 ± |e〉), with corresponding energies E± = ±Ω. The eigenstates are therefore

even mixtures of the ground and excited states with opposite energies. Therefore,

Rabi oscillations derive from the dressing of the uncoupled, or bare, states.

If the center of mass motion is considered, the phase iΩ/|Ω| will come with an

additional boost of eik·r. Recall from quantum mechanics that a plane wave phase

will act to boost the state by 〈p〉 → 〈p〉 + ~k. An optical pulse can therefore be

viewed as a process where an atom in the ground state is excited while gaining the

momentum of the optical field. Similarly, an excited state will decay and in the

process give a unit of momentum to the background field.
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Figure 2.1 – The avoided crossings of the dressed state energy levels due to the

mixing induced by the optical fields. The uncoupled states have energies of Eg = 0

and Ee = −~∆, and meet at ∆ = 0. With the optical coupling, the far detuned states

and energies asymptotically approach the uncoupled values. Near ∆ = 0 the crossing

of the energy levels is avoided, and the energy levels of the dressed states are split by

~Ω.

2.3.4 Two Level Atom in a Quantum Field

The semi-classical interaction is sufficient for describing the dynamics of an

atom in an intense laser field. In this picture a dipole is seen to be driven by a

classical field near resonance. However, the interaction of an atom and a quantum

field can give a different physical intuition. A full treatment of this situation is be-

yond the scope of this thesis, but a schematic treatment is given below. A complete

treatment is presented in. [10, 8, 9].

The promotion of the classical field to a quantum field can be performed by

considering the atom-light interaction Hamiltonian

H = ~ω0 |e〉 〈e|+ ~ω
(
a†a+

1

2

)
+ ~g(aσ+ + a†σ−). (2.38)
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This Hamiltonian can be rigorously derived for a two level atom using QED and the

rotating wave approximation. The operators a and a† are creation and annihilation

operators for a single mode of a quantum field of frequency ω. This situation

is a good approximation to a laser field, which is a coherent state [11] of single

mode photons. The atom-laser interaction, HAL = ~g(aσ+ + a†σ−), is the quantum

analogue of the dipole interaction for a quantum field. The classical Hamiltonian

can be reclaimed by taking the expectation value of Eq. 2.38 in the coherent state

|α〉, defined by a |α〉 = α |α〉,

H = ~ω0 |e〉 〈e|+ ~ω
(
|α|2 +

1

2

)
+ ~g(ασ+ + α∗σ−) (2.39)

This is just Eq. 2.20, up to an irrelevant constant, with Ω = gα.

The Hamiltonian in Eq. 2.38 is known as the Jaynes-Cummings model [12],

and can be solved exactly. To interpret the results, consider a quantum field in the

number state a |N〉 =
√
N |N − 1〉 with N � 1, and an atom in the state |g〉. The

application of the atom-laser interaction term on the state |N〉 |g〉 gives

HAL |N〉 |g〉 = ~g(aσ+ + a†σ−) |N〉 |g〉 (2.40)

= ~g
√
N |N − 1〉 |e〉 . (2.41)

If we consider the state |N〉 |e〉 instead, a similar picture emerges

HAL |N〉 |e〉 = ~g
√
N + 1 |N + 1〉 |e〉 . (2.42)

Thus, HAL can be interpreted as the process of an atom (emitting)absorbing a

photon with a corresponding electronic (de-)excitation with an effective coupling

of Ω ∼ g
√
N . The momentum boost discussed in the previous section can now be
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seen as the momentum kick due to the absorption or emission of the corresponding

photon.

2.3.5 Spontaneous Emission

To conclude the discussion of two level systems, we briefly discuss sponta-

neous emission, one of the primary mechanisms of decoherence in atomic systems.

Effecively, when an atom is in an excited state, the interaction with the electromag-

netic field induces a probability for the atom to decay into a dipole allowed ground

state. Note that a quantized electromagnetic field is required to describe sponta-

neous emission. If the atom is considered to interact with a classical field, then an

excited state will be an stationary state of the system, and therefore stable.

The spontaneous emission rate can be calculated using Fermi’s Gold Rule, [8, 9]

to give

Γ =
ω3|dge|2

3πε0~c3
(2.43)

where dge is the dipole matrix element between the states |g〉 and |e〉, ω is the

frequency of the transition, ε0 is the permittivity of free space, and c is the speed of

light. Notice that the spontaneous emission rate goes as the cube of the transition

frequency. This means that the rate of spontaneous emission is much higher for

higher energy transitions.

To fully describe the effects of spontaneous emission, a density matrix for-

malism is required. This treatment will not be performed here, but the schematic

effects are as follows. Spontaneous emission enters as a non-Hermitian driving term
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in the equation of motion for the density matrix. The non-unitarity will cause the

off-diagonal coherences of the density matrix to decay. Additionally, it will induce

the diagonal elements of the excited state to decay so only the ground state is left.

It can be seen that adding a large detuning from resonance will reduce the rate

of excitation. This will, therefore, reduce the rate of decoherence in two photon

transitions that will be discussed later. In the large detuning limit a two photon

transition can be thought of as a virtual transition to an excited state.

2.4 Three or More Level Systems

The extension to an atom with three or more levels is straightforward. Recall

that the two level treatment of an atom was equivalent to the Rotating Wave Ap-

proximation. More atomic levels can be considered if the driving frequency of the

Electromagnetic field is near the resonance of additional atomic transitions. A more

relevant situation is a system with multiple optical fields. When each field is near

resonance with a different dipole transition, every level must be considered.

The following discussion will assume a scheme with a three level atom and two

driving lasers. The atom will be in the “Λ”-scheme (See Fig. 2.2), where a single

excited state, |e〉 is coupled to two ground states, |g1〉, |g2〉. The transition between

the two ground states is dipole forbidden, 〈g1|d |g2〉 = 0. This means the higher

energy ground state, |g2〉, is metastable. The Hamiltonian for such a system is given

by

HA =
p2

2m
− ~ω01 |g1〉 〈g1| − ~ω02 |g2〉 〈g2| , (2.44)
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Figure 2.2 – A three level atom in the Λ scheme. Two ground states |g1〉 and |g2〉

are coupled by optical pulses Ω1 and Ω2 to a single excited state |e〉. The states are

detuned from the excited state by a detuning ∆.

where ω0i is the uncoupled energy for the state |gi〉. We assume, |ω01 − ω02| � ω0i,

i.e. that the splitting between the ground states is much smaller than the splitting

between the ground states and the excited states.

We now assume an optical field of the form

E(r, t) = ε̂1E1(r, t) cos(k1 · r− ω1t) + ε̂2E2(r, t) cos(k2 · r− ω2t), (2.45)

where ε̂i, ki and ωi are the respective polarization vector, wavevector and frequency

for the |gi〉 ↔ |e〉 transition. Additionally, the envelope Ei(r, t) is assumed to have a

slow variation in both space and time compared to the frequency and wavevector of

the beam. Note that while this is not the most general form of an optical field, or

a three level atom, most of the features necessary to understand optically induced

synthetic gauge fields are present.

The dipole operator can be decomposed in a manner analogous to the two
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level atom,

d = d(+) + d(−) (2.46)

= 〈g1|d |e〉σ1 + 〈g2|d |e〉σ2 + 〈e|d |g1〉σ†1 + 〈e|d |g2〉σ†2 (2.47)

where σi = |gi〉 〈e|. The Rotating Wave Approximation can now be applied to the

light-atom interaction Hamiltonian. Note that there are now two optical frequencies

and two dipole frequencies. We assume that the optical frequencies are such that

terms that involve a different optical field and state are still “fast” rotating terms,

e.g. |ω1 − ω01| � |ω10 − ω2|. Thus, the the atom-field interaction Hamiltonian in

the RWA is

HRWA/~ = ∆1 |g1〉 〈g1|+ ∆2 |g2〉 〈g2|+
1

2
Ω1e

ik1·r |g1〉 〈e|+
1

2
Ω2e

ik1·r |g2〉 〈e|+H.C.

(2.48)

where

Ωi = −〈gi| ε̂iEi |e〉
~

(2.49)

is the Rabi frequency for beam Ei.

The power of the Rotating Wave Approximation is now apparent. After drop-

ping counter rotating terms, the atom-laser coupling is described by exactly the same

Hamiltonian that would be written down from the state linkage diagram given. This

is true for higher level atoms as well, as long as the polarization of the optical field

is consistent with the angular momentum transferred between the dipole matrix

elements of the transition.
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2.5 Effective Hamiltonian

Consider now the case of large detuning from the excited state. Similar to

the two level system, we expect the excited state to be negligibly populated, and

to modify the dynamics of the ground states. This can be found by adiabatically

eliminating the excited state in a manner analogous to the two level system. Al-

ternatively, the dipole term can be treated as a perturbation to find an effective

Hamiltonian. This method can be easily generalized to include many levels and

allows the structure of the interaction to be visualized.

The structure of the three level atom suggests a natural starting place in

perturbation theory. The three level atom can be viewed as a manifold of two

ground states that are well separated from a excited state manifold. The treatment

of excited state as a manifold allows for a direct generalization to the case of coupling

to many excited states. Consider now the unperturbed Hamiltonian as the atomic

ground, {|gj〉}, and excited, {|ek〉} states. Furthermore, assume the dipole operator

only couples the ground and excited state manifolds, and will not couple states

inside either manifold. This implies that the relevant excited state manifold is the

set of states that have absorbed a photon. This argument can be made precise using

QED and using a quantized atom-field interaction. [10]

The effective Hamiltonian is now found perturbatively in HAL/∆, where ∆

is the detuning of a one photon excitation between the ground and excited state

manifold. The matrix elements can be found by projecting HAL into the ground
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and excited state manifolds. The resulting matrix elements are given by

〈gi|Heff |gj〉 = ω0iδij−〈gi|d ·E |gj〉+
1

2

∑
ek

〈gi|d ·E |ek〉 〈ek|d ·E |gj〉
[

1

∆ik

− 1

∆kj

]
.

(2.50)

up to second order in HAL, where ∆ij = Ek − Ei + ~ω and ∆kj = Ek − Ej − ~ω.

The first order term 〈gi|d ·E |gj〉 vanishes by the assumption that the dipole matrix

elements of the interaction Hamiltonian vanish. The sum over the excited states

in the second order term is naturally generalized to the case that there are many

excited state manifolds.

The second order term now has a natural interpretation as a two photon

transition from the ground state |gi〉 to the excited state manifold, and then back to

the state |gj〉. Such a transition, known as a two photon Raman transition between

the ground states |gi〉 and |gj〉, has an effective Rabi coupling given by

ΩR =
1

2

∑
k

ΩikΩ
∗
jk

∆ij

, (2.51)

where ∆ij is the two photon detuning. Additionally, the state |j〉 will experience an

ac Stark shift of

ωi,ac =
∑
k

|Ωik|2

4∆i

. (2.52)

Returning to the three level system, we find that our effective Hamiltonian for

the two level system is given by

Heff =

∆1 + ω1,ac ΩR/2

ΩR/2 ∆2 + ω2,ac

 (2.53)

where ΩR = Ω1Ω2

2∆
is the two photon Raman coupling. Thus, in the large detuning
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limit, the three level Λ scheme looks like an effective two level system with a one

photon Rabi coupling.

2.5.1 Dark States

We can now introduce the concept of a dark state. Consider now a three level

atom in the Λ scheme where an optical field pumps the ground state |1〉 to the

excited state |e〉. Spontaneous emission will, over time, cause the atom to decay

into both ground states. However, since the state |1〉 is continuously pumped, a

sufficiently strong pump beam will win over spontaneous emission, and the steady

state of the atom will be |2〉. Now consider the same setup, except with the pump

beam applied between |2〉 and |e〉. Such a pump scheme has a steady state of |1〉.

Consider a general optical field Ω1 connecting states |1〉 and |e〉, as well as an

optical field Ω2 connecting |2〉 and |e〉. There now must be some superposition of

state |1〉 and |2〉 that does not couple to the combined optical fields. To find this

state consider the atom-laser interaction

Hal =


0 Ω1 Ω2

Ω∗1 0 0

Ω∗2 0 0

 . (2.54)

One of the eigenvectors of Hal is given by, up to normalization,

|D〉 ∼ Ω2 |1〉 − Ω2 |1〉 (2.55)

and has eigenvalue λ = 0. The state |D〉, know as a dark state, has no matrix

element with the atom-laser interaction. It is a dressed state of the optical field,
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but it cannot absorb or emit photons from the laser, and therefore is dark. Further,

it contains no component of the excited state, and therefore will not spontaneously

emit.

More generally, a dark state state is an atomic dressed state for which there is

no component of the excited state manifold. Since a dark state is a dressed state of

the atom-laser interaction, this necessitates that there must be no projection of the

dark state into the atom-laser Hamiltonian. In other words, a dark state is an eigen-

state of the atom-laser interaction with zero eigenvalue. Recall we are considering

an atom-laser interaction in a rotating frame where any diagonal terms have been

eliminated. Thus, the requirement of zero eigenvalue is well defined. Physically,

one might interpret a dark state as a dressed state for which the optical couplings

of the ground state manifold destructively interfere completely. This destructive

interference will prevent the atom from absorbing or emitting a photon, and thus

the system remains optically dark.
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Chapter 3

Synthetic Gauge Fields in Cold Atoms

The incredible degree of tunability and control available to cold atomic physi-

cists in recent years has opened the doors to a variety of exciting physics, includ-

ing precision metrological measurements, [13, 14, 15, 16, 17] simulations of well

known problems from condensed matter and the possibility of quantum computa-

tion [18, 19, 20]. While atom-atom interactions occur naturally, all systems are

charge-neutral, and this magnetic coupling has remained elusive. The desire to sim-

ulate quantum hall physics which requires the presence of a strong magnetic field,

drove the development of optically induced synthetic magnetic fields. [21, 4, 22, 23]

That is, the use of optical and magnetic fields to induce atomic center of mass

dynamics analogous to a charged particle in a real magnetic field.

Simultaneously, the concept of a synthetic non-Abelian gauge field [24, 25,

6, 26, 27] for cold atoms was developed. Non-Abelian gauge fields were key to

the understanding of high energy physics and the standard model, but had not

taken a large role in the fields of either condensed matter or atomic physics. The

realization that optical structures could produce an effective non-Abelian gauge field

has allowed for both the simulation well known systems and the exploration of new

systems without a solid state analogue.

In this chapter we review recent work done with synthetic fields. We will
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begin with the N -level scheme [1], to demonstrate how optical coupling can induce

a vector potential and spin-orbit coupling in an atom. We then treat the general

case of the tripod scheme [24, 28] and show how more general non-Abelian synthetic

fields can be generated. Then we will discuss Abelian synthetic magnetic fields in

cold atoms from the same viewpoint. Finally we will conclude with a discussion of

how the previous gauge fields can be viewed as adiabatic potentials arising from a

Berry’s phase.

3.1 N-pod Scheme and Spin-Orbit Coupling

We will begin with an example of a so-called “N-level” scheme, as defined in

the paper [1]. This will introduce the idea of a synthetic non-Abelian gauge field

from an experimental viewpoint of a coupled dispersion relation between different

spin species. In this context, non-Abelian means the gauge potentials have a matrix

structure that connect multiple internal states, and the gauge potentials do not

commute with themselves. This is in contrast to an Abelian gauge field where the

gauge field can have a matrix structure, but all gauge potentials commute.

Consider a system with N levels that are coupled in a ring topology. This

geometry can be seen in Fig. 3.1(a) for N = 4, the state j is coupled to j+ 1 with a

coupling Ωj. To complete the loop, state N is coupled to state 1. The single particle

Hamiltonian takes the form

H =
N∑
j=1

[(
p2

2m
+ εj

)
|j〉 〈j|+ Ωj |j〉 〈j − 1|+ H.C.

]
(3.1)

where the detuning εj is the detuning for the level |j〉, and the coupling Ωj is the
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coupling between the state |j〉 and |j + 1〉, and the index j is summed mod N .

The couplings Ωj are the effective two-photon couplings that result from virtual two

photon transitions to an excited state that has been adiabatically eliminated. We

take the Raman couplings Ωj to have the form

Ωj = Ωeiφje−ikj ·r (3.2)

where Ω is an effective Rabi coupling, φj is the phase of the coupling, and ~kj is

the effective two photon momentum transfer. In general Ω and φj could have time

or spatial dependence. However, to demonstrate the emergence of a non-Abelian

gauge field in the form of spin-orbit coupling, it is only necessary to consider Ω, φj

as homogeneous and time-independent. Further, the wavevectors are assumed to

satisfy the property
∑

j kj = 0, i.e. there is no net momentum transfer for a state

as it travels the closed loop.

We now assume that the Raman coupling Ω in Hamiltonian in Eq. 3.1 is much

larger than all other energy scales, such as the kinetic energy, the detuning, and any

external potentials applied. It therefore makes sense to diagonalize the Raman, or

atom-laser coupling Hamiltonian,

HAL =
∑
j

[
Ωeiφj−ikr·r |j〉 〈j − 1|+ H.C.

]
, (3.3)

at the cost of potentially un-diagonalizing other terms. To perform this rotation,

first define the states

|j̃〉 = e−iKj ·r+i
∑j−1
l=1 (γl−γ̄) |j〉 (3.4)

which have been boosted by Kj = 1
N

∑
l lkl+j−1 and rephased so only the global

phase γ̄ appears. The cost of this transformation comes in the kinetic term, where
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(a) Coupling scheme (b) Geometry

(c) Uncoupled dispersion (d) Coupled dispersion

BEC

Figure 3.1 – (a) A four level atom connected with optical couplings through two-

photon transitions in a closed loop topology. (b) The effective momentum transfer of

each of the four optical couplings. The total momentum transfer of all four couplings

vanishes. (c) Uncoupled dispersion relation of the undressed states. The momentum

transfer from the optical beams transfers the minimum of the parabolic dispersion

from a p = 0 to p = −Kj for the state |j〉. (d) The dispersion of the dressed state

with ε = 0. Two pairs of bands, each which has a Dirac point. Graphic taken from

[1] and used with permission.
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the spatially dependent phase e−iKj ·r acts to boost the momentum operator,

e−iKj ·rpeiKj ·r = p + ~Kj. (3.5)

Thus, the kinetic term becomes

T =
N∑
j=1

[
|p + ~Kj|2

2m

]
|j̃〉 〈j̃| (3.6)

=
N∑
j=1

[
p2

2m
+

~
m

p ·Kj +
~2K2

j

2m

]
|j̃〉 〈j̃| (3.7)

The momentum boosts will eliminate the spatial dependence in HAL, as the

terms

|j + 1〉 〈j| → exp

[
i

1

N

∑
l

(kl+j − kl+j−1) · r

]
|j + 1〉 〈j| (3.8)

= exp

[
ikj · r−

1

N

∑
j

kj · r

]
|j + 1〉 〈j| (3.9)

= exp [ikj · r] |j + 1〉 〈j| (3.10)

will cancel the spatially dependent phase in Ωj. Notice that in Eq. 3.10 we have

used the fact that
∑

j kj = 0. In a similar manner, the phase φ′j =
∑j−1

l=1 (γl − γ̄)

will replace the phases φj with a single global phase. In the new basis, HAL takes

the form

HAL =
∑
j

[
Ωeiγ̄ |j〉 〈j − 1|+ H.C.

]
. (3.11)

This term can be immediately diagonalized using the unitary transformation

U =
1√
N

N∑
j=1

ei2πjk/N |j̃〉 〈k̃| , (3.12)

which can be thought of as a discrete Fourier transform of the set of cyclic atomic

levels. Applying Eq. 3.12 to Eq. 3.11, we find the four eigenvalues of Hal are given
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by El = −Ω cos
(

2πl
N
− γ̄
)
. At certain “magic” phases of γ̄ = 2π(p + 1/2)/N , the

spectrum will have a double degeneracy of the lowest energy eigenstates. Since we

have assumed ~Ω is the largest energy scale in the problem, this degenerate subspace

will be well separated compared to the rest of the remaining eigenstates of HAL. We

can therefore treat these two states as a slow, or adiabatic, ground state, and can

adiabatically eliminate the excited states.

To lowest order we can now project our system into the degenerate subspace,

and treat the two states as a “pseudo-spin-1/2” degree of freedom. The treatment

of a set of low energy states as a pseudo-spin is a general feature of synthetic gauge

fields. In this particular scheme the pseudo-spin states are taken as the low energy

degenerate eigenstates. In the following section on the tripod scheme, a degenerate

dark state manifold is used. The closed loop scheme has the advantage of using

the lowest energy eigenstates as pseudo-spin, so the system does not have a lower

energy state to decay to. This is in contrast to the dark states used in the tripod

scheme where there exists a dressed state with lower energy than the dark states,

thus making them metastable.

The behavior of the synthetic field now arises by examining the effect of the

unitary operation in Eq. 3.12 on the diagonal terms of the original Hamiltonian.

This unitary rotation will move the terms that were originally diagonal, such as the

detuning and the kinetic term
∑

j p ·Kj/m |j̃〉 〈j̃|, and move them off the diagonal.

A special case of interest is when Kj are chosen to form the edges of a regular
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N -gon. In this case, the momenta take the form

Kj = −kL sin(2πj/N)êx + kL cos(2πj/N)êy. (3.13)

The effect of the unitary rotation on cos(2πj/N) can be seen by applying

∑
j,l

ei2πjl/N cos(2πj/N) |j̃〉 〈l̃| =
1

2

∑
j,l

(
ei2πj(l+1)/N + ei2πj(l−1)/N

)
|j̃〉 〈l̃|(3.14)

=
1

2

∑
j

(
| ˜j + 1〉 〈j̃|+ | ˜j − 1〉 〈j̃|

)
. (3.15)

Similarly, the sin term becomes sin(2πj/N) = i
2

∑
j

(
| ˜j + 1〉 〈j̃| − | ˜j − 1〉 〈j̃|

)
. To

see why these states are of interest, consider the projection of the rotated states

into the 2× 2 subspace formed by the two lowest energy eigenstates:

H2×2 = kLσxqy − kLσyqx. (3.16)

This effective Hamiltonian has the form of the Rashba spin-orbit interaction seen

in semiconductor quantum wells. [29] Thus, purely through the application of op-

tical fields, a cold atomic system could be used to simulate quantum wells in a

semiconductor.

This scheme can be modified to include a linear Dresselhaus spin-orbit inter-

action through the application of a detuning from the Raman transition resonance.

We chose a detuning of the form Hε =
∑

j(−1)jε |j̃〉 〈j̃|. We specifically consider

the case of N = 4, where the rotated Hε looks like Hε = ε
∑

j |j̃〉 〈 ˜j + 2|. This can
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be expressed in matrix representation as

Hε =



0 0 ε 0

0 0 0 ε

ε 0 0 0

0 ε 0 0


=

 0 εÎ

εÎ 0

 , (3.17)

where Î in the second equality is the 2× 2 identity matrix. We compare this to the

form of the non-diagonal momentum terms and see that they take the form

Hq = q ·

σR σ∗R

σ∗R σR

 (3.18)

where σR = kL(σyêx − σxêy), and σ∗R = kL(−σyêx − σxêy). To see the effect of Hε,

we will now diagonalize

Hε +HΩ =

−~ΩÎ εÎ

εÎ ~ΩÎ

 . (3.19)

This block matrix can be diagonalized with a rotation of the super-matrixRσy⊗Î(θ) =

e−iσy⊗Îθ where tan(2θ) =
(
ε
~Ω

)
. Applying this rotation will bring the Hamiltonian

to a block diagonal form

H ′ε +H ′Ω = −
√
~2Ω2 + ε2σz ⊗ Î . (3.20)

This same rotation, when applied to to Hq will rotate the spin-orbit coupling to the

form

H ′q = kLq ·

σR − sin(2θ)σ∗R cos(2θ)σ∗R

cos(2θ)σ∗R σR + sin(2θ)σ∗R

 . (3.21)
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Note that the term q·σ∗R has the form of the linear Dresselhaus spin-orbit interaction.

Therefore, in the pseudospin subspace, a linear Dresselhaus spin orbit interaction

can be induced through the application of an alternating detuning Hε.

3.1.1 Coupled Dispersion

The origin of the spin-orbit coupling given above can be seen from a ex-

perimentally relevant standpoint as follows. Consider first the set of bare states,

{|1〉 , |2〉 , |3〉 , |4〉}. When the optical couplings are turned on, the optical fields act

to shift the dispersions of state |j〉 from a parabola centered at p = 0, to a parabola

centered at p = −kj (see Fig. 3.1(c)). The uncoupled dispersion relations are then

coupled into two sets of dispersions, each with a Dirac cone (Fig. 3.1(d)). Since the

coupled dispersions also couple spin, the energy for each value of momentum will be

spin-dependent.

This coupling of spin and momentum has a natural experimental signature.

Consider a dressed state prepared with quasimomentum q. Upon a time-of-flight

measurement, the bare spins of the system will be offset in momentum by the value

of their respective kj. This demonstrates an advantage of the ring-like coupling with

no momentum transfer where the effect of a state traversing the ring of couplings

is to acquire a phase. If the atom-light coupling were such that a net momentum

were transferred, the picture would be modified. For each momentum there would

be an infinite set of states that are coupled together, and differ by one unit of

the momentum kT =
∑

j kj. Thus, for a dressed state with quasimomentum q, a
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time-of-flight expansion will yield an infinite set of momentum values for each bare

state.

3.1.2 Adiabatic Corrections

By projecting into the low energy subspace, the dynamics of the high energy

states is completely ignored. However, recall that when a ground state is coupled

to an excited state with a far detuned optical beam, the ground state acquires an

effective energy shift from the elimination of the excited state. Similarly, we expect

that the two level effective spin-orbit Hamiltonian will acquire a correction due to

the dynamics of the excited state. This correction can be calculated in perturbation

theory in 1/Ω in a manner analogous to Eq. 2.50. For the 4-level scheme the lowest

order non-trivial, i.e., constant, correction is [1]

H(3) = − 1

2Ω2

[
σx(q

3
y − 3qyq

2
x)− σy(q3

x − 3qxq
2
y)
]
. (3.22)

This has a 4-fold rotational symmetry in q, σ, but breaks the continuous symmetry

of the Rashba spin-orbit interaction. This can be viewed as a restoration of the

symmetry of the optical fields, which themselves have a 4-fold symmetry.

3.1.3 Interpretation as a Gauge Field

The spin-orbit coupling and kinetic terms can be expressed as

(p−A)2

2m
+ Φ, (3.23)
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where

A = kLσxêy − kLσyêx (3.24)

Φ = −A2

2m
. (3.25)

The vector A has a matrix structure in spin space, and can be seen to shift the

minimum of the kinetic energy from p = 0 to p = A. In other words, for every spin

direction, the vector potential produces a new kinetic energy minimum. Thus, we

interpret A as a vector potential in a way analogous to how a vector potential in a

magnetic field generates a new minima of kinetic energy at every point in space. We

therefore say that we have induced a synthetic gauge field, with a vector potential

A and a scalar potential Φ. This interpretation will be carried father in Sec. 3.4

where it will be shown this gauge field can be interpreted as a geometric phase, and

is invariant under gauge transformations.

3.2 Tripod Scheme

Spin-orbit coupling is the most simple, non-trivial, non-Abelian gauge field

possible. However, many other gauge fields can be simulated using cold atoms. One

of the first proposals of a non-Abelian gauge field was the “tripod scheme.” [28, 24]

This scheme uses optical fields to couple three degenerate states to a single excited

state (See Fig. 3.2).

This system can be described by the Hamiltonian

HAL =
3∑
j=1

[Ωj(r) |0〉 〈j|+ H.C.] , (3.26)
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Figure 3.2 – The tripod scheme. Three ground states, |1〉, |2〉, |3〉, are connected

to a single excited state |0〉 by optical pulses Ω1, Ω2, Ω3 respectively. A detuning

from the excited state is given by ∆. Upon diagonalization two dark states |↑〉 and

|↓〉 emerge, as well as two bright states. The low energy bright state |ν2〉 is separated

from the dark states by an energy ∆2/Ω.

where Ωj(r) is the single photon Rabi frequency for a transition from the state |j〉

to a state |0〉. Unlike the N -level scheme above, we do not make any assumptions

about the form of the optical fields, except to assume they have spatial modulation.

We also assume that the Rabi frequencies are much greater than the other scales of

the problem, such as the kinetic energy, potential energy, and any detunings.

The emergence of the non-Abelian gauge field arises in a manner similar to

the N -level scheme. Since the Rabi frequencies are the largest energy scales in the

problem, it makes sense to diagonalize HAL, at the possibility of generating other

non-diagonal terms. This diagonalization is performed with the unitary rotation

matrix U(r), which can have a dependence on both space and time depending on

the form of Ωj(r). The result of this diagonalization is seen in Fig. 3.2. For an
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arbitrary set of Rabi frequencies there will be a set of two dark states with energy

between a single excited state and a single low energy state. The energies of the two

bright states can be varied relative to the dark states through the detuning ~∆.

After applying the unitary rotation, we see that the dark states acquire spatial

modulation. Therefore, when the unitary operator U(r) is used to rotate to the

dressed state basis, a new term arises from the non-commutativity of the position

operator r̂ in U(r), and the momentum operator p̂ in the kinetic energy term. The

new terms are given by

U †(r)
p̂2

2m
U(r) =

p̂2

2m
− 1

m
i~U †∇U · p̂− ~2

2m
U †∇2U (3.27)

= (p̂−A)2 + Φ (3.28)

where

A = i~U †∇U · (3.29)

is the vector potential, and

Φ = A2 − ~2

2m
U †∇2U (3.30)

has the form of a scalar potential.

We can now explicitly diagonalize HAL. To do this, first parameterize the Rabi

frequencies as

Ω1 = Ω sin(θ) cos(φ)eiS1 , (3.31)

Ω2 = Ω sin(θ) sin(φ)eiS2 , (3.32)

Ω3 = Ω cos(θ)eiS3 , (3.33)
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where Ω =
√
|Ω1|2 + |Ω2|2 + |Ω3|2. We can now construct the dark states

|↑〉 = sin(φ)eiS31 |1〉 − cos(φ)eiS32 |2〉 , (3.34)

|↓〉 = cos(θ) cos(φ)eiS31 |1〉+ cos(θ) sin(φ)eiS32 |2〉 − sin(θ) |3〉 . (3.35)

The non-Abelian gauge field can then be calculated by projecting the rotated Hamil-

tonian into the dark state subspace. Performing this projection gives the vector

potential

A↑↑ = ~
(
cos2(φ)∇S23 + sin2(φ)∇S13

)
(3.36)

A↑↓ = ~ cos(θ)

(
1

2
sin(2φ)∇S12 − i∇φ

)
(3.37)

A↓↓ = ~ cos2(θ)
(
cos2(φ)∇S13 + sin2(φ)∇S23

)
(3.38)

and the scalar potential

Φ↑↑ =
~2

2m

(
1

4
sin2(φ)

(
(∇S12)2 + (∇φ)2

))
(3.39)

Φ↑↓ =
~2

2m

(
1

2
sin(2φ)∇S12 − i∇φ

)
· (3.40)(

1

2
sin(2θ)

(
cos2 φ∇S13 + sin2 φ∇S23

)
− i∇θ

)
Φ↓↓ =

~2

2m

(
1

4
sin2(2θ)

(
cos2 φ∇S13 + sin2 φ∇S23

)2
+ (∇θ)2

)
. (3.41)

It is of note that the form of the vector and scalar potentials is entirely determined

by the dressed states formed from atom-laser coupling, and not the strength of the

coupling itself. The overall strength of the atom-laser coupling only enters in the

adiabatic corrections that come from eliminating the dynamics of the excited states.
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3.2.1 Spin-Orbit Coupling

There are now two ways we can simulate a spin-orbit coupled system using

the tripod scheme. The first is to adiabatically eliminate the single excited state,

to produce a ring-like coupling. If the Rabi frequencies are chosen to produce a

ring-like coupling with no net momentum, this model then reduces to the N = 3

case of the N level scheme discussed in Sec. 3.1.

An earlier scheme to simulate spin-orbit coupling was given in Ref. [3]. In

this scheme the optical couplings were chosen such that Ω1 is produced by two laser

beams propagating in the x − y plane, which are offset at a relative angle η. The

effect of these beams is to produce a standing wave along the x̂ direction, and a

plane wave along the ŷ direction. The optical coupling Ω2 is identical, except the

standing wave in the x̂ direction is phase shifted by π/2. The third coupling, Ω3, is

in the ŷ − ẑ plane, oriented at an angle ξ relative to the ŷ axis.

The form of these lasers naturally follow the parameterization given in Eqs. 3.32-

3.33. The relevant parameters become S1 = S2 = k1 cos (η/2)x, S3 = k3cos ξ, and

φ = k1 sin (η/2) y. We can therefore apply the machinery above to immediately find

the vector potential

A↑↑ = ~∇S, (3.42)

A↑↓ = −i~ cos θ∇φ, (3.43)

A↓↓ = ~ cos2 θ∇S, (3.44)
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which can be expressed using the Pauli matricies as

A/~ =
1

2
(1 + cos2(θ))∇S Î +

1

2
sin2(θ)∇S σz + ∇φσy (3.45)

The term proportional to the identity matrix can be transformed away with the

unitary transform U = e−i
1
2

(1+cos2(θ))∇S·r. The remaining terms we can denote as

A = mvx̂σy +mv′ŷσz, (3.46)

where v = ~k1 sin(η/2) cos θ/m and v′ = ~(k1 cos(η/2) − k3 cos ξ) sin2 θ/2m. To

match the notation in Sec. 6.2, we now redefine the σ matricies as follows σy → σ1,

σz → σ2, and σx → σ3, which defines a right handed spin system.

Upon expanding the kinetic energy, (p−A)2/2m, a spin-orbit coupling

− 1

m
p ·A = −vpxσ1 − v′pyσ2 (3.47)

arises. The tripod scheme is therefore capable of simulating spin orbit coupling.

However, there are several drawbacks to this setup as opposed to the 4-level scheme

given above. The first is that the adiabatic corrections to the spin-orbit Hamiltonian

vanish as 1/ΩR, the inverse of the two photon Raman coupling. This implies that

large laser power will be necessary to eliminate adiabatic corrections to the spin-orbit

term. This is in contrast to the 4-level scheme where adiabatic corrections converge

as 1/Ω2
R. [1] Second, there is no tripod scheme available in the alkali atoms, the

most convenient set of atoms for cold atom experiments [1]. Any singlet state, such

as a F = 1 hyperfine manifold, will not be isolated spectroscopically from a nearby

set of states. For example, in 87Rb, the 52P3/2, F = 0 manifold is only separated

from the F = 1 manifold by 75MHz, this is much smaller than the energy splitting
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between the ground state 52S1/2, F = 1 manifold of ∼ 6GHz. Therefore, in the

rotating wave approximation, a coupling between between the ground state and the

F = 0 state will also couple to states in the F = 1 manifold.

3.3 Synthetic Magnetic Fields

Synthetic fields in cold atoms can also be used to simulate magnetic fields. As

discussed above, cold atoms have no net charge, and therefore do not experience

the Lorentz force. The ability to simulate a magnetic field in cold atoms would

allow for simulations of the quantum Hall effect [30, 31] or the spin Hall effect [4].

Early experiments on the quantum Hall effect used a rotating gas to simulate a

magnetic field. However, since the effective magnetic field strength is proportional

to the rotation frequency, the scope of these experiments is limited, and are unable

to reach the quantum Hall regime. [32]

Several schemes for simulating magnetic fields using synthetic magnetic fields

have also been proposed. [22, 21] This section will discuss the scheme proposed

by [21] and extended by [4] to demonstrate the spin Hall effect. The scheme can

be seen in Fig. 3.3. Consider a three level atom in the Λ scheme where the optical

fields are counterpropagating Gaussian beams with spatially offset centers. For this

coupling, the two beams will have a relative orbital angular momentum which is

imparted on the atom under a two photon transition. Since a rotating frame is

equivalent to a uniform magnetic field, it is expected that this atom-laser coupling

will generate magnetic field like behavior.
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Figure 3.3 – The laser scheme for a synthetic magnetic field. An atom in the Λ

scheme is coupled with two counter propagating pulses Ω1 and Ω2 with Gaussian

profiles. The optical pulses have a relative angular momentum that is imparted on

the dressed states of the atoms. The angular momentum is analogous to a charged

particle in a magnetic field.

To see the origin of this field, consider the atom-laser Hamiltonian that de-

scribes the Λ-scheme

HAL = ∆ |e〉 〈e|+ Ω1(r) |e〉 〈1|+ Ω2(r) |e〉 〈2|+H.C., (3.48)

where

Ωj(r) = Ω0e
−

(x−xj)2

σ2
0 e−ikjy (3.49)

are the Rabi couplings and ∆ is the detuning from the excited state. As before,

we diagaonlize HAL at the cost of other non-diagonal terms. The eigenvalues of

HAL are λ = {0, ∆
2
±
√(

∆
2

)2
+ Ω2}, where Ω2 = |Ω1|2 + |Ω2|2. The corresponding

43



eigenstates are given by

|D〉 = − sinφeiS2 |1〉 − cosφeiS1 |2〉 , (3.50)

|−〉 = cos θ cosφe−iS1 + |1〉 cos θ sinφe−iS2 |2〉 − sin θ |3〉 , (3.51)

|+〉 = sin θ cosφe−iS1 + |1〉 sin θ sinφe−iS2 |2〉+ cos θ |3〉 , (3.52)

where S = ky, tanφ = |Ω1|/|Ω2| = e−4(x0)x/σ2
0 , tan θ = 2Ω/∆, and we have assumed

x1 = −x2 = x0 and k1 = −k2 = k/2.

The vector potential for the dark state can now be calculated in the same way

as the non-Abelian gauge fields,

AD = i~ 〈D|∇ |D〉 = ~k cos(2θ)êy, (3.53)

with a corresponding magnetic field given by

Beff = ∇×AD = −2~k sin(2θ)∇θ × êy. (3.54)

The optical coupling above gives

AD = − ~k
1 + e−x/d

êy (3.55)

where d = σ2
0/4x, with a synthetic magnetic field of

Beff =
~k

4d cosh2(x/2d)
êz. (3.56)

For quantum Hall physics, only the dark (λ = 0) state is necessary to consider.

However, as will be discussed later, we desire a synthetic magnetic field with two

states that have opposite charges. To accomodate this second state, consider as well
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the λ− = ∆
2
−
√(

∆
2

)2
+ Ω2 state. In the large detuning limit, ∆ � Ω, the vector

potential for this state becomes

A− = i~ 〈−|∇ |−〉 = − cos(2θ)kêy, (3.57)

with corrections of O(Ω/∆)2. Thus, A− = −AD.

Notice however, that while there is an off-diagonal vector potential A−D =

i~ 〈−|∇ |D〉, this term is small compared to the diagonal energy splitting of λ−/2.

This allows the off diagonal elements of the vector and scalar potential to be ignored

in the adiabatic limit. Therefore, this setup will give two degrees of freedom that

couple to a synthetic magnetic field with opposite effective charges, as is desired in

Sec. 3.1. Note however, excited state |−〉 is subject to collisional decay.

3.4 Gauge Transformations and Dynamics

It is now worth considering the effects of gauge transformations for a synthetic

gauge field. Recall that in systems with fundamental gauge fields, the scalar and

vector gauge potentials are used to describe the system in the Hamiltonian or La-

grangian formalisms. In these formalisms, the vector and scalar potentials can be

transformed through a series of gauge transformations. However, the Lagrangian

equations of motion remain invariant under the same transformations. This can be

understood as arising from a fundamental symmetry of the problem, which itself

was induced by an overparameterization of the degrees of freedom necessary for the

vector/scalar potential description.

Under a gauge transformation in classical gauge theory, the system is described
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by the two potentials, A and Φ. For an Abelian gauge field, such as electromag-

netism, these gauge fields transform according to

A → A + ∇α, (3.58)

Φ → Φ− ∂tα, (3.59)

where α(r, t) is an arbitrary function that parameterizes the change of gauge. In

quantum mechanics, such a gauge transformation is implemented through a unitary

rotation U = eiα(r,t). This operator will transform the gauge potentials accord-

ing to Eq. 3.58 and Eq. 3.59. Additionally, every quantum state will acquire the

same overall phase eiα(r,t). Consider now the effect of a gauge transformation on

the momentum operator p → U †pU . Using the coordinate representation of the

momentum operator,

e−iαpeiα = −ie−iα∇eiα = −i∇ + ∇α(r, t) = p + ∇α(r, t). (3.60)

Therefore, the momentum operator is not gauge invariant. A gauge invariant ob-

servable related to momentum can be constructed by considering the operator p−A,

which transforms as

p−A → U †(p−A)U (3.61)

= U †pU −A (3.62)

= p−∇α−A (3.63)

= p− (A + ∇α) (3.64)

= p−A′. (3.65)
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We therefore see that the observable p−A is gauge invariant for an Abelian gauge

field.

Since the electromagnetic field is Abelian, i.e. it does not have a matrix struc-

ture, there is no possibility of a rotation among the components of the field. Now

consider a gauge field with an internal degree of freedom, such as the pseudo-spin

in the synthetic non-Abelian fields above. A more complex set of gauge transforma-

tions are now allowed, such rotations between the components of A and Φ. These

additional symmetries allow the transformation α(r, t) to be promoted to a ma-

trix, α · σ, where α(r, t) is now a vector with one component for each generator

of the internal space, σ. Notice that the the gauge transformation can be local,

in the sense that every point in space be transformed independently. In quantum

mechanics this transformation is again represented by a unitary transformation,

U = exp[iα(r, t) ·σ]. Under such a gauge transformation the vector potential trans-

forms as

A→ U †AU − iU †∇U. (3.66)

We therefore see that p−A is again invariant under the transformation U .

For a physical gauge field, such as an electromagnetic field, gauge invariance

is imposed as a physical law. This means that only gauge invariant observables can

be observed. The most simple example of this is that the canonical momentum p

is not an observable quantity in the presence of an electromagnetic field. A related

observable is the mechanical momentum

mv̇ = p− eA, (3.67)
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which was shown to be invariant above.

The case of a synthetic gauge field is starkly different. The structures in such

fields arise from optical coupling of light and atoms, and have no relation to a

fundamental symmetry of nature. Therefore gauge invariance is not required for

these systems, and non-gauge invariant observables can be measured.

One way of viewing the consequence of the induced gauge is to directly con-

sider the effect of the optical couplings on the bare states, |i〉, of the atoms. As long

as the optical couplings are maintained, the dressed states are formed from superpo-

sition of boosted bare states eiki·r |i〉. The presence of the optical fields can generate

eigenstates with non-zero momentum, but vanishing mechanical momentum. This

is why the mechanical momentum of an eigenstate of a Hamiltonain with a syn-

thetic field may have zero mechanical momentum, even if it has a finite canonical

momentum. However, if the optical fields are turned off instantaneously, the bare

states will retain their boost, and each bare state will fly away with a corresponding

mechanical and canonical momentum mvi = ki.

For example, consider the momentum operator, p, for the synthetic magnetic

field in Sec. 3.3. For this scheme, the vector potential descibing the magnetic field

is given by

A =
~kêy

1 + e−x/d
, (3.68)

which is the vector potential of a uniform magnetic field in the Landau gauge, up to

a constant. Recall this field was generated in a three level system by two counter-

propagating laser fields. Thus, this effective potential is composed of the states
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eiky/2 |1〉 and e−iky/2 |2〉. The offset Gaussian profiles produces a spatially dependent

superposition of these two states. We now examine the momentum distribution

of the |1〉 component of the dark state |D〉. Ignoring the orbital wavefunction, a

measurement of the momentum in the êy-direction of this component will give

〈p̂1y〉 ∼ k/2
1

1 + e−x/d
, (3.69)

where p̂1y = p̂y |1〉 〈1| is the momentum operator projected into the subspace for |1〉.

Note the momentum in the êy has spatial dependence on x. A similar result is valid

for state |2〉.

Now consider the same setup for the synthetic magnetic field, except rotate the

lasers by π/2 about the êz axis. The induced vector potential will then be described

by A′ = −~kêx1 + e−y/d. This vector potential will have the same Lagrangian

equations of motions as A. However, an analogous momentum measurement of the

dark state will yield

〈p̂1x〉 ∼ −k/2
1

1 + e−y/d
, (3.70)

where p̂1x = p̂x |1〉 〈1| is the momentum in the êx-direction of the projection on

the state |1〉 onto the dark state |D〉. This measurement will give the same effective

profile as the previous vector potential, just rotated by π/2, according to the rotation

of the optical fields.

A more complete treatment will show that A and A′ describe a system where

all the gauge invariant observables are identical, but measurements of the bare states

will have different spatial dependence. This is a property of all synthetic gauge

fields. In these systems, gauge transformations can be performed physically, in the
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sense that different optical configurations can produce vector potentials that are

connected by gauge transformations. However, if the undressed degrees of freedom

are measured, they will be manifestly gauge invariance. Therefore, a change of gauge

can be used to calculate some observables, but care must be taken to transform to

the original gauge upon measurement of the undressed states, or any measurements

made after the synthetic fields are instantaneously turned off.

Finally, we note that synthetic gauge fields differ from gauge fields experienced

in nature in another dramatic way. Classical gauge fields are dynamic, in the sense

that the field itself is generated by its coupling to matter particles. The matter

particles can then generate their own fields, i.e., they can be sources or sinks of the

field. Synthetic gauge fields are static, in that they are generated independent of

matter particles, and are not a physical entity in and of themselves. This limits the

analogy with real gauge fields as well as the systems they can simulate. However,

other schemes for producing synthetic gauge fields may be possible. For instance,

an atom in a cavity could produce fluctuations that will generate field fluctuations.

At the time of writing, there has only been one proposal for a dynamical gauge

field. [33]

3.5 Berry’s Phase

We will now demonstrate the connection between a synthetic gauge field and

Berry’s phase in an adiabatic system. Consider a quantum Hamiltonian H(λ) that

is a function of a vector of parameters λ = (λ1, . . . , λn). For every value of the
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parameters λ the system will have a set of eigenfunctions

H(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 . (3.71)

Now, allow the parameters λ = λ(t) to vary slowly in time and consider the state

|ψn(λ(0))〉 at t = 0. If the variation is slow compared to the other time scales of

the problem, the adiabatic theorem states that the system will remain in the same

eigenstate, |ψn(λ(t))〉, up to an overall phase.

To find this phase consider the time-dependent Schrödinger equation, and

assume the state has a phase eiφ(t) |λ(t)〉.

i~
d

dt
eiφ(t) |ψn(λ(t)), t〉 = H(λ(t)) |ψn(λ(t)), t〉 . (3.72)

Using Eq. 3.71, and left multiplying by 〈ψn(λ)| gives

~
d

dt
φ(t) = i~ 〈ψn(λ)| d

dt
|ψn(λ)〉 − En(λ(t)). (3.73)

We see that the adiabatic motion resulted in not only the dynamical phase e−i
∫

dt E(λ(t))/~,

but also a new phase

φB =

∫ T

0

dt i~ 〈ψn(λ)|∇λ |ψn(λ)〉 · dλ
dt

(3.74)

known as a geometric, or Berry’s phase. The meaning of the word “geometric” can

be understood if the Berry’s phase is expressed as

φB =

∮
i~ 〈ψn(λ)|∇λ |ψn(λ)〉 · dλ , (3.75)

where we have assumed λ(t) to trace a closed path as it varies from time t = 0 to

t = T . The quantity AB = i~ 〈ψn(λ)|∇λ |ψn(λ)〉 is known as Berry’s connection,
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and can be interpreted as a vector potential. We see the phase φB depends only on

the path that λ takes, and not on the dynamics of the evolution. Thus, only the

geometry of parameter space is relevant as long as the variation is sufficiently slow.

Since the integral is around a closed curve, the Berry’s phase is unambigu-

ously defined. If |ψn(λ)〉 is rephased by eiα(λ), the Berry’s phase will gain a term

−~
∮
∇λα(λ) · dλ . However, the line integral of a gradient vanishes, so Berry’s

phase is invariant. We note that λ must be varied in a closed loop for φB to be well

defined. If it is not, such a transformation could be made to eliminate the phase.

The synthetic magnetic field of Sec. 3.3 can now be interpreted as a Berry’s

phase. Consider the dark state |D〉 = sinφ |1〉 − cosφeiS |2〉. As discussed above,

the dark state has a spatial dependence through the parameters φ and S. If the

atom is sufficiently cold so the variation in the optical fields is adiabatic compared

to the electron degrees of freedom, the atom will remain in the dark state. This is

analogous to the Born-Oppenheimer approximation. By moving through space in a

closed loop, the dark state acquires a flux ei
∮
Ab(r)·dr , which is analogous to the flux

a charge particle will experience as it moves through a real magnetic field described

by a vector potential A(r).

Synthetic non-Abelian gauge fields can be interpreted as a non-Abelian Berry’s

phase. If the Hamiltonian H(λ) has a degenerate subspace {|ψn(λ)〉} such that

H(λ) |ψn(λ)〉 = E |ψn(λ)〉, the above derivation of Berry’s phase can be repeated

for all states in the degenerate subspace. However, since the states are degenerate
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it makes sense to right multiply by |ψm(λ)〉 as well. The Berry’s connection

Amn = i~ 〈ψm(λ)|∇λ |ψn(λ)〉 (3.76)

now has a matrix structure. The generalized Berry’s phase is a unitary matrix given

by

eiφB = P exp[i

∮
i~ 〈ψm(λ)|∇λ |ψn(λ)〉 · dλ ], (3.77)

where P denotes a path ordered exponential in λ-space. A synthetic non-Abelian

gauge field thus originates in the same way a synthetic magnetic field does. As

the atom travels through slowly varying optical fields, the pseudospins follow their

eigenstates. However, the degeneracy of the eigenstates gives rise to an ambiguity

of which pseudospin is which, and the subspace can transform into itself.
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Chapter 4

Atom Interferometry

We now provide a brief review of traditional atom interferometry as is nec-

essary for Chap. 8. In recent years, atom interferometry has emerged as a power-

ful tool for precision measurements of gravity, gradiometry, gyroscopy [34, 35, 36],

metrology [37, 38, 39] and inertial sensing [40]. The ability to cool atoms to low tem-

peratures has opened up the door for experiments where interference is performed

on atoms. Recall that the de Broglie wavelength of a particle is given by

λdB = 2π~/p =
~√

2πMkbT
, (4.1)

where M is the mass of the particle and kbT is the thermal energy. The ability to

cool atoms to the µK regime has opened the doors for the ability to use the matter

wave principle as a measuring tool. For example, a 87Rb atom cooled to T ∼ 1µK

will have a de Broglie wavelength of λ ∼ .5µm, comparable to the wavelength of

light in the visible spectrum.

The general scheme for an atom interferometer is analogous to an optical

interferometer. A diffraction grating or beam splitter is used to place a beam of

atoms into a motional superposition. The beam is then allowed to propagate, and

at some future point recombined to produce an interference pattern. The period of

free evolution will undergo phase evolution that can be coupled to the environment.

Upon recombining the beam-split matter waves, an interference signal will result
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that can be used to measure the environmental coupling in the free evolution period.

If the two diffracted beams of atoms are set up so that one travels at a higher

gravitational potential than the other, the phase accumulated will depend on the

gravitational potential in the region the matter wave traverses. Such a scheme has

proven a powerful test of gravitational measurements, and recent experiments have

surpassed corner cubes [35] as the most precise measurements of gravity to date.

There are several schemes to accomplish such an interference measurement.

We will now focus on the use of Raman pulses in atom interferometry to perform a

measurement of gravity. Consider a three level atom in the Λ scheme, as discussed

in Sec. 2.4, initially polarized in the state |1,p〉. Now apply a Raman pulse using

two counter-propagating beams with wavevectors k1 ' −k2. As discussed above, a

pulse application for a time
∫

Ωdt = π/2 will place the system in the state

|ψ〉 =
1√
2

(
|1,p〉+ eiφL |2,p + ~keff〉

)
, (4.2)

where φL is the phase of the laser, and keff = k1 + k2. Additionally, a pulse for a

time Ωt = π will act to interchange the state

|1,p〉 → eiφL |2,p + ~keff〉 , (4.3)

|2,p + ~keff〉 → e−iφL |1,p〉 . (4.4)

We can now interpret a π/2-pulse as the analogue of an optical beamsplitter,

and a π pulse as mirror. It is clear that a pulse sequence of π
2
− π − π

2
, with pulses

separated by a time T , will act to split the beam and then recombine it at a future

time 2T . The spatial splitting and recombination of the beam is true only for the

case of a constant gravitational field.
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Figure 4.1 – The space-time diagram for the two spin states of an atom in the

π/2 − π − π/2 pulse sequence. The first π/2 pulse separates the beam spatially,

analogous to a beamsplitter. The π pulse acts as a mirror to ensure the atoms overlap

at a future time. The final π/2 pulse converts the phase coherence accumulated along

the two paths into a population measurement which can be used to extract information

about the gravitational potential.

This scheme can be used to make a measurement of gravity if the beam of

atoms is initially oriented parallel to the direction of gravity. (See Fig. 4.1) If the

beam of atoms is allowed to freely fall, and keff is also oriented along the direction of

gravity, the two beams will spatially separate and follow different paths. One beam

of atoms will spend more time at a higher gravitational potential than the other,

and therefore accumulate phase faster. Despite the influence of gravity, the two

beams will once again recombine so that a phase measurement can be performed.

The phase accumulated for such an interferometer has two contributions, the

phase due to free evolution, φevol, and the phase imprinted by the laser beams, φlaser.
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The free evolution phase can be calculated using the path integral formulation of

quantum mechanics. [5] In the semi-classical limit, the propagator is dominated by

the phase eiScl/~, where,

Scl =

∫ tf

ti

dt L[r(t), ṙ(t)] (4.5)

is the action of the classical path connecting the points r(ti) and r(tf ). The net

phase due to the difference in the two paths is given by

∆φevol =
Sucl − Slcl

~
=

1

~

∮
L[r(t), ṙ(t)], (4.6)

where S
u/l
cl is the classical action of the upper/lower path. For the case of a free

particle in a constant gravitational field, this phase vanishes.

The phase imprinted by the lasers has the form φi = ki · ri−ωiti, where ki, ωi

are the respective wavevector and frequency of pulse i, and ri, ti are the respective

position of the atom and time at which the laser is applied. Following the pulse

sequence in 4.1, we see that the net phase difference due to the lasers is

∆φlasers = φ1 − φ2a − φ2b + φ3, (4.7)

where

φ1 = 0 (4.8)

φ2a = keff

[
−1

2
gT 2 + v0T

]
, (4.9)

φ2b = keff

[
−1

2
gT 2 +

(
v0 +

~keff
m

)
T

]
, (4.10)

φ3 =

[
−2gT 2 +

(
2v0 +

~keff
m

)
T

]
, (4.11)

where v0 is the initial velocity of the atoms and the pulses 1, 2a/2b and 3 were applied
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at the respective times t = 0, T, 2T . Calculating the total phase shift therefore gives

∆φlasers = −keffgT 2. (4.12)

Fig. ?? shows the experimental result of such a gravitational measurement

made by the Chu group. [2] The data shows the local variation in gravity over

time, and phenomena such as the tides are clearly visible. This class of experiments

has proven to be the most precise measurements of the Earth’s surface gravity to

date, and future experiments promise measurements of General Relativity and the

gravitational constant GN [16, 17, 15, 41].
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Figure 4.2 – ??(a): Two days of experimental data of the Earth’s surface gravity

measured by Steven Chu’s group. Each data point is one minute of data. The variation

of the tides are clearly visible, and are compared to two tidal models given by solid

lines. 1µGal = 10−8m/s2. ??(b): Difference of the experimental data between two

models given by trace 1 and trace 2. [2]
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Chapter 5

Spin-Orbit Coupling and the Spin-Hall Effect

5.1 Spin-orbit Coupling in Semiconductors

The spin-orbit coupling that is discussed above is a simulation of spin-orbit

coupling in semiconductors [42, 43, 29, 44, 42, 43]. Spin-orbit coupling can lead

to a class of transport effects such as the spin-Hall effect or anomalous-Hall ef-

fect. [45, 46, 47] This chapter will provide an introduction to spin-orbit coupling in

semiconductors, and the spin-Hall effect. The material in this section will provide

the background information for the work on the bulk spin-Hall effect in Chap. 9

The phenomena of spin-orbit coupling can be qualitatively described as a rela-

tivistic correction of the Schrödinger equation. Consider a particle of charge e with

spin s = 1/2, moving in an electric field E, and moving at a velocity v. Trans-

forming the system to the particle’s rest frame, the particle sees a magnetic field

B = 1
c
E× v = 1

mc
E× p. This magnetic field has a corresponding Zeeman shift of

HSO ∼ µ ·B =
e~

2mc
σ ·B = − e~

2m2c2
σ ×∇V, (5.1)

where σ are the Pauli matricies, m is the mass of the particle, c is the speed of light,

and V is the potential of the electric field. A full treatment of spin-orbit coupling

can be derived using the Dirac equation, and reproduces Eq. 5.1 up to a factor of

2. This factor is a result of ignoring the transformation into a rotating frame. The
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full spin-orbit interaction term is given by

HSO = − e~
4m2c2

σ · (∇V × p) (5.2)

and is known as the Thomas-Pauli spin-orbit interaction.

Since the spin-orbit interaction comes with a factor of 1/c2, it is negligible

except for the cases of strong electric fields or large velocities. The first system

where the spin-orbit correction was necessary was atomic systems, where the spin-

orbit interaction is, in part, responsible for the fine structure splitting. The large

electric fields near the atomic nucleus provide a radial electric field that allows the

Pauli term to be expressed as HSO ∼ L ·S, where S is the spin of the electron, and L

is the orbital angular momentum of the electron. This is where the term spin-orbit

coupling arose.

The second example of where spin-orbit coupling is relevant is in semiconductor

structures. Due to Kramer’s theorem, the band structure in semiconductors must be

degenerate, with the state E(k, ↑) = E(−k, ↓). If additionally, the crystal structure

is inversion symmetric, i.e. invariant under r → −r, then the band structure has

the symmetry E(k, ↑) = E(−k, ↑) and E(k, ↓) = E(−k, ↓). These combine to force

the relation E(k, ↑) = E(k, ↓), and therefore, there can be no spin splitting in the

band structure.

If the structure is not inversion symmetric, then the spin-orbit coupling term

can change the band structure to split the energy of the spin structure. There

are two ways inversion symmetry can be broken. The first is the system can have

a region where the normal crystal structure is broken. This is what happens in
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semiconductor quantum wells, where two different semiconductors are placed in

contact. This symmetry breaking is known as a structural inversion asymmetry

(SIA), and leads to the Rashba spin-orbit interaction. The second situation where

inversion symmetry can be broken is when the unit cell of the crystal structure itself

lacks inversion symmetry. In this case, there can be a spin-orbit coupling in the

bulk of the semiconductor, leading to the Dresselhaus spin-orbit interaction. This

is known as bulk inversion asymmetry (BIA).

We now specialize to group III-V semiconductors, such as GaAs. This class of

materials has a tetrahedral unit cell, and therefore is not bulk inversion symmetric.

The effect of bulk inversion asymmetry was treated by Dresselhaus [44] in Zincblende

materials and later by D’yakanov and Perel [48]. The effect of the asymmetry is

to induce a momentum-dependent magnetic field H(k) = ~
2
σ · Ω(k), where the

momentum dependent Zeeman frequency is

ΩD3(k) = β3

(
kx(k

2
y − k2

z), ky(k
2
z − k2

z), kz(k
2
x − k2

y)
)
, (5.3)

where β3 is an effective coupling constant, and k = (kx, ky, kz). This is known as

the cubic Dresselhaus spin-orbit interaction. Note the functional similarity with the

adiabatic corrections for the 4-level scheme given by Eq. 3.22.

Now consider the effect of a one-dimensional confining potential so that the

semiconductor system becomes effectively two dimensional. Such a situation occurs,

for example, when a thin layer GaAs is placed between two layers of AlGaAs, known

as a heterostructure. Since AlGaAs and GaAs have nearly identical lattice constants,

but different chemical potentials, an effective one-dimensional confining potential is
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created in the middle layer.

The confining potential has two effects. First, the cubic Dresselhaus term is

modified, as the momentum oriented perpendicular to the plane of confinement is

quantized. Second, if the top and bottom layer of the heterostructure have different

doping, the trapping potential of the quantum well becomes asymmetric and a new

spin-orbit coupling can appear. This term has an effective Zeeman field of

ΩR(k) = α (k× n) (5.4)

where α is a coupling parameter and n is a vector normal to the plane of confinement.

This coupling is known as the Rashba spin-orbit interaction.

The form of the Dresselhaus spin-orbit interaction depends on the axis of

confinement of the heterostructure. We now consider only heterostructures grown

along the axis [001]. The momentum, kz, oriented perpendicular to the well can now

be replaced by by a quantum average of the lowest mode of a square well potential.

Thus, 〈kz〉 = 0, and 〈k2
z〉 = (π/a)2 where a is the width of the model quantum well.

This average gives an effective Zeeman field of

ΩD1(k) = β1(−kx, ky, 0) (5.5)

where β1 = β3〈k2
z〉 is the effective linear Dresselhaus coupling constant. We also

note that for well oriented along this axis, the Rashba term looks like

ΩR(k) = α (k× êz) . (5.6)

Therefore, the general form of the spin-orbit interaction in a semiconductor quantum

well is the sum of ΩD1 , ΩD3 and ΩR.
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5.2 Spin Relaxation Mechanisms

The presence of a momentum dependent Zeeman term has been shown to

lead to spin relaxation in semiconductors. Since the spin-orbit term in the Hamil-

tonian does not commute with any component of the spin operator, there is no

spin conservation along any spin direction. In the presence of impurities this can

lead to scattering through several mechanisms, including the Elliott-Yafet mecha-

nism, D’yakanov-Perel mechanism, Bir-Aronov-Pikus mechanism, and the nuclear

hyperfine exchange interaction. [43, 48]

In two dimensional electron systems the D’yakanov-Perel mechanism is the

dominant mechanism, so we will confine our discussion to this mechanism only.

The effective Zeeman field Ω(k) ·σ depends on the direction of momentum, k. The

scattering off an impurity will act to change the direction of k, and thus the direction

of the effective Zeeman field. Therefore, impurity scattering will act to randomize

the axis of spin precession, and cause a loss of spin information over time.

Consider the limit where the average spin precession frequency Ω(k)av is less

than the momentum relaxation time τp, i.e., Ω(k)av ≤ τp. Between scatterings the

spin will precess an angle δθ ∼ Ωavτp before rotating about a different, randomly

oriented, axis and the spin undergoes a random walk of n = t/τp steps in a time t.

For n steps of a random walk, the angle will precess as θn ∼ nδθ. Therefore if we

define the spin precession time, τs, as the time when θn ∼ 1, we can estimate a spin

relaxation rate as 1 ∼ Ωavτp
√
τs/τp to give

1

τs
= Ω2

avτp. (5.7)
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Therefore, the spin lifetime is inversely proportional to the momentum scattering

time.

5.3 Spin Currents and the Spin-Hall Effect

The spin-Hall effect is a collection of effects that are found in spin-orbit coupled

semiconductor systems. The canonical manifestation is an accumulation of spin at

the boundaries of a spin-orbit coupled system under the application of an electric

field. This can be considered analogous to the Hall effect where the application of

an electric field will induce boundary charge accumulation. This spin-Hall effect is

still not well understood, and there has been much controversy in the origin of the

effect.

To motivate the spin-Hall effect we now define the concept of a spin current.

There is no universally agreed on definition of a spin current, but we use the form

jik = C
1

2
〈{σi, vk}〉 (5.8)

where C is a constant that varies from definition to definition, {·, ·} is an anti-

commutator, and 〈·〉 is the average of single particle wavefunctions. The anti-

commutator is necessary since spin-orbit coupling modifies the velocity operator

vk = 1
i~ [H, rk], to induce an anomalous velocity that is analogous to the kinetic mo-

mentum discussed above. It is desirable for the spin current to follow a continuity

equation analogous to charge current, ∂tS + ∇ · j = 0. However, due to spin-orbit

coupling the spin operator does not commute with the Hamiltonian, and spin is

not a conserved quantity. This leads to source terms on the right hand side of the
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continuity equation for the spin current.

This definition of a spin current then allows for a spin-Hall conductivity, anal-

ogous to σxy in the Hall effect. This is defined as

σSH = −jzy/Ex (5.9)

which is the response of the Sz component of spin in the êy direction to an electric

field in the êx direction. For a time-independent electric field, the spin-Hall conduc-

tivity can be seen to vanish in the bulk for k-linear spin-orbit couplings. This can

be explained by noting that semiconductors are not spin polarized in the absence of

a magnetic field. If the bulk could support a steady state spin current then the bulk

would become spin polarized. Note that this result is in contrast to the universal

spin-Hall conductivity σSH = e/4π~ that was predicted in the absence of impurities.

The relation of spin currents to the boundary accumulation of spin is therefore

unclear. The spin-Hall effect can be treated without reference to spin currents using

the Boltzmann equation. In the dirty limit where the spin lifetime τs is much larger

than the momentum relaxation time, τ � τs, the kinetic equation can be reduced

to a diffusion equation. The general form of the diffusion equation, in the absence

of an electric field, is given by

(∂t −D∇2)ρi = (Γij − P ijk∂k + Cij ·∇)ρj, (5.10)

where ρ0 is the charge density and ρ1,2,3 ≡ ρx,y,z are spin densities. The parameters

Γij describe the Dyakonov-Perel spin relaxation [49], D = τv2
F/2 is the diffusion

constant, P ijk = −P jik characterize the precession of the spin polarization and

and Cij describe the coupling between the spin and charge degrees of freedom.
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These diffusion equations have been generalized to include a dc electric field for the

Rashba case. In Sec. 9.2 these equations are generalized to include linear and cubic

Dresselhaus terms.

The diffusion equation formalism has also yielded ambiguous predictions of

the spin-Hall effect. The appearance of spin accumulation in the presence of a dc

electric field is highly dependent on the boundary conditions of the system. [50,

51, 52, 53] These boundary conditions themselves are dependent on the microscopic

Hamiltonian of the system. For example, a reflective boundary will not see any

Sz spin accumulation. However, a boundary with a strong spin-orbit scattering

will see spatially oscillating polarizations of both Sz and Sy in a region near the

boundary. Finally, we note that the if a spin current is applied, the above spin

transport mechanisms will induce charge accumulation on the boundaries. This is

known as the inverse spin-Hall effect.
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Chapter 6

Spin-Orbit Coupled Bose-Einstein Condensates

6.1 Introduction

The single particle spin-orbit Hamiltonian described in Chapter 5 is analogous

to the spin-orbit Hamiltonian an electron sees in semiconductor quantum wells. At

low temperatures, the many-particle physics of these systems is dictated by the

Pauli exclusion principle. Since no two electrons can occupy the same state, the

electrons will occupy all the lowest energy levels up to the Fermi energy. Above the

Fermi energy, there will only be a very small electron occupation. Many important

properties of these systems, such as transport, are determined only by electrons near

the Fermi surface.

This picture is greatly contrasted to a system of Bosons. At low temperatures

the many-body ground state can condense such that there is a macroscopic occu-

pation of particles in the same quantum state. The Bose condensed phase, like the

Fermi surface, is crucially linked to the spin of the particle. Due to the spin-statistics

theorem [54], half-integer spin wavefunctions must be antisymmetric when two par-

ticles are interchanged, whereas integer spin particles must have wavefunctions that

are symmetric under the interchange of two particles.

In the previous discussion of effective spin-orbit coupling in cold atomic sys-

tems there were no underlying assumption made on the spin of the atoms in question.
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Such a scheme could be implemented in either a Bosonic or a Fermionic species of

atom. In this chapter we consider a many-body system of Bosons under the influence

of an effective spin-orbit coupling cooled to below the condensation temperature,

called the spin-orbit coupled Bose-Einstein condensate, or “SOBEC.” We show that

such a system can have a ground state that is a macroscopic superposition of the

two degenerate ground states of the problem. We consider the isotropic limit where

the double degeneracy becomes continuous, and find that a condensate is not sta-

ble. The Gross-Pitaevskii equations are derived for the anisotropic case, and the

Bogoliubov spectrum is reproduced. Finally, we find an experimental signature of a

SOBEC that can be measured through time of flight imaging. This work was done

in collaboration with Tudor Stanescu and Victor Galitski, and was published in [6].

6.2 Spin-orbit interacting Hamiltonian and single-particle physics

We start with an effective spin-orbit coupled Hamiltonian analogous to the

single particle Hamiltonian of an electron in a semiconductor quantum well. We

will consider a system of the form

Ĥ =
p2

2m
1̌− vpxσ̌1 − v′pyσ̌2, (6.1)

where p is the momentum operator, σ1,2 are the first two Pauli matricies in pseudo-

spin-1/2 space, and v,v′ are the spin-orbit coupling parameters. As discussed above,

this Hamiltonian can reproduce any combination of Rashba or linear Dresselhaus

spin-orbit interaction. Much of the physics that follows depends only on the form

of the effective Hamiltonian, and not on the scheme used, such as the tripod or
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4-level scheme. Where relevant, the following discussion will assume the tripod

scheme unless otherwise noted, and the pseudo-spin-1/2 states will be the dark

states defined in Eq. 3.35.

Now, we concentrate on the generic case characterized by anisotropic spin-

orbit interactions and assume for concreteness that v > v′ > 0. The special cases

where v = ±v′ and v′ = 0 will be discussed later. The trap potential and the inter-

particle interaction are initially disregarded and discussed in the following sections.

The single-particle spectrum of Hamiltonian (6.1) is (see Fig. 6.1):

Eλ(p) =
p2

2m
+ λ
√
v2p2

x + v′2p2
y, (6.2)

where λ = ±1 labels the bands. The corresponding eigenfunctions ~φλp(r) = eipr~Uλ(χp)

P

x

y

P

E(p)

Figure 6.1 – Schematic picture of the band structure described by Eq. (6.2) with

v/v′ = 2.5 for a constant value of pz. The inside sheet represents the λ = +1 band,

while the outside sheet corresponds to λ = −1 and has a double-well structure with

minima at px = ±mv and py = 0.
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are spinors with components

Uλ(χp) =
1√
2

 1

−iλ cos(χp)+i∆ sin(χp)√
cos2(χp)+∆2 sin2(χp)

 (6.3)

where χp is the azimuthal angle in the (px, py)-plane and ∆ = v′/v < 1. The unitary

matrix Uαλ(χp) diagonalizes the Hamiltonian (6.1) (where α =↑, ↓ corresponds to

the pseudo-spin index and λ = ±1 labels the eigenstates). It can be seen from

Eq. (6.2) that the single particle spectrum contains two minima at λ = −1 with

momenta py = pz = 0 and px = ±mv 6= 0 (see Fig. 6.1). The eigenfunctions for

these two states are given by

ψL/R =
1√
2

 1

±1

 e∓imvx (6.4)

where the top sign corresponds to the “left-movers”, and the bottom sign corre-

sponds to the “right-movers.” The left and right moving states have non-zero canon-

ical momentum, 〈p〉 = ∓mvex. However, their kinetic momentum 〈p−A〉 = 0

vanishes, so a pure left or right moving state will remain stationary as long as the

laser fields are maintained, even in the absence of a trapping potential. This is also

true for the more general ground state

Ψdw(r) =
√
wL

 1

−i

 e−imvx+iφL +
√
wR

 1

i

 eimvx+iφR , (6.5)

consisting of a superposition of left and right movers. We have taken wL, wR ≥ 0

and φL and φR as the respective weights and phases of the left and right moving

states subjected to the constraint wL + wR = 1.
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The exact degeneracy of the lowest energy states is not accidental, but is

inherited from a time-reversal-like symmetry of the effective Hamiltonian. This can

be seen by defining an anti-unitary “time-reversal” operator as T = iσ2K, where

K is the complex conjugation operator [5]. We see that the action of T is to take

p → −p and σ → −σ. This is exactly analogous to time reversal for real spins

in quantum mechanics. Applying the time-reversal operator to the Hamiltonian in

Eq. 6.2 gives:

T ĤT−1 = T

(
p2

2m
+ vpxσ1 + v′pyσ2

)
T−1 (6.6)

=

(
(TpT−1)

2

2m
+ v(TpxT

−1)(Tσ1T
−1) + v′(TpyT

−1)(Tσ2T
−1)

)
(6.7)

=
(−p)2

2m
+ v(−px)(−σ1) + v′(−py)(−σ2) (6.8)

=
p2

2pm
+ vpxσ1 + v′pyσ2 (6.9)

= Ĥ (6.10)

where we have inserted 1̂ = T T−1 where relevant to transform the p and σ operators

independently. The Hamiltonian thus has a time-reversal like symmetry, and we

can apply Kramer’s theorem [5] to show that there must be a pair of degenerate

lowest energy eigenstates. These states are related by the time reversal operator,

i.e. ψL = eiφTψr, up to an overall phase, φ.

It is worth noting that the time-reversal like symmetry depends on the absence

of effective Zeeman-like fields of the form HZ = B·σ. The presence of such a term in

the Hamiltonian will explicitly break time-reversal symmetry, and thus the two-fold

degeneracy of the ground state is not guaranteed. In the case that B = Bê1 the
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degeneracy is explicitly broken, but in the limit that B1 = 0 an accidental symmetry

can remain as long as |B| � mv2.

Note that rotations in the manifold of the double-well ground-states are dis-

tinct from rotations in the pseudo-spin Hilbert space, as real-space and pseudo-spin

coordinates are mixed up by the spin-orbit interaction. The two-fold degeneracy

of the single-particle ground state is preserved if the system is placed in a har-

monic trap. For a potential Vtrap = mω2r2/2, we can write the Schödinger equation

in momentum representation: the trap potential plays the role of “the kinetic en-

ergy” and the real kinetic term produces a double-well potential in momentum

space, see Fig. 6.1. The tunnelling processes connect the degenerate vacua in mo-

mentum space [55]. However, they do not eliminate the double-degeneracy of the

single-particle states, which is protected by the Kramers-like symmetry (see Section

6.4.2).

It is instructive to consider the limits of the effective spin-orbit Hamiltonian.

We first consider the limit where v′ = 0. In this limit we see that the spin-orbit

field only couples to the matrix σ1 corresponding to the persistent spin helix [56,

57] in semiconductors. This spin-orbit coupling can be removed via the unitary

transformation U = exp[−imvxσ1] to allow the Hamiltonian to be immediately

diagonalized. If we assume a harmonic trapping potential the eigenstates takes

the form ψn,α(r) = e−imvxσ1φn(r)χα, where φn(r) is the n-th harmonic oscillator

wavefunction and χ↑ = (1, 0)†, χ↓ = (0, 1)† are the eigenspinors of the σ3 operator.

This spin-orbit coupling can thus be viewed as two uncoupled bands where the

location of the momentum space energy minima are shifted in opposite directions in
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P

x

y

P

E(p)

Figure 6.2 – Schematic picture of the band structure described by Eq. (6.2) for the

isotropic Rashba-type case with v = v′ for pz = 0. The inside sheet represents the

λ = +1 band, while the outside sheet corresponds to λ = −1 and has minima on a

one-dimensional circle
√
p2
x + p2

y = mv.

momentum space. A weak Zeeman term of the form HZ = ∆σ3 will not commute

with the spin-orbit term, and will couple the bands. This situation is analogous to

the spin-orbit coupling of Yu et. al. [27].

In the isotropic limit ∆ = v′/v → 1, the transition temperature formally van-

ishes. Note that in the isotropic case v = v′ the spin-orbit term of the Hamiltonian

(6.1) is equivalent to the Rashba model [29] and can be reduced to the latter via

the rotation exp (iπσ̌2/4) in the pseudo-spin space. In this case, the spectrum (6.2)

has minima on a one-dimensional circle
√
p2
x + p2

y = mv (see Fig. 6.2). The single-

particle ground-state is infinitely degenerate and the most general expression for the
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corresponding wave-function is

Ψring(r) =

2π∫
0

dχ

2π

√
w(χ) ~U−(χ)eiφ(χ)e[imv(x cosχ+y sinχ)], (6.11)

where w(χ) > 0 is the angle-dependent weight of the Bose-condensate on a circle

[
∫
dχ/(2π)w(χ) = 1] and φ(χ) is the angle-dependent phase. An especially interest-

ing class of ground states corresponds to w(χ) not vanishing anywhere on the circle.

In this case, the phase φ(χ) must satisfy the constraint φ(χ+2π)−φ(χ) = 2πn, with

n ∈ Z = π1(S1) being an integer winding number. Therefore, there may exist a num-

ber of topologically distinct ground states (characterized by the winding number),

which can not be deformed into one another via any continuous transformation.

6.3 Bose-Einstein Condensation

At low temperatures, the many-body Bose system (6.1) is expected to con-

dense into the single-particle states corresponding to the double-well minima. The

transition temperature of this double-well spin-orbit coupled BEC, (“SOBEC”), can

be calculated using standard text-book procedures [58]. Let us assume that near

and below the transition the band with λ = +1 does not contribute and that we

can expand the spectrum near the minima of the λ = −1 band (6.2). We define the

momentum q in the vicinity of the left/right minima as follows: p = ±mvex + q,

with q � mv. Eq. (6.2) leads to the anisotropic spectrum:

δE(q) =
q2
x + q2

z

2m
+

[
1−

(
v′

v

)2
]
q2
y

2m
. (6.12)
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The transition temperature is

Tc =
π

2

[
4

ζ(3/2)

] 3
2

[
1−

(
v′

v

)2
] 1

3
n

2
3

m
. (6.13)

We see that if n1/3
[
1− (v′/v)2]1/6 � mv, our approximation is justified and, in

particular, the density of particles in the upper band λ = +1 is exponentially small.

In the isotropic limit we see that the condensation temperature formally van-

ishes. This is because energetically costly fluctuations only occur along the radial

and out of plane axes in momentum space. This transition into the ring SOBEC is

similar to a “weak-crystallization transition” discussed by Brazovsky [59] (see also,

Refs. [60, 61, 62]). In this case, the phase volume of fluctuations is very large, which

drives the (classical) transition first order. Even though the transition temperature

into the ring SOBEC vanishes in the thermodynamic limit, in a finite trapped sys-

tem, the energy scale for the crossover into this state will be non-zero.[63]

6.4 Effects of density-density interaction

We must now consider the effects of interactions on the spin-orbit coupled

BEC. In the absence of interactions, the many-body ground state for a system of N

particles will take the form |N − n, n〉, where N − n, n is the fraction of particles in

the left and right moving states respectively. This set of ground states are N+1-fold

degenerate and the most general many-body ground state for a SOBEC will then

take the form:

||ΨN〉 =
N∑
n=0

cn√
n!(N − n)!

(
B̂†L

)n (
B̂†R

)N−n
||vac〉, (6.14)
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where B̂†L/R are the corresponding creation operators and cn are arbitrary coefficients

satisfying
∑

n |cn|2 = 1. We expect that interactions will break the macroscopic

degeneracy of the many-body ground state and favor a single or small subset of the

non-interacting ground states. The form of the interactions are important. If the

interactions preserve time-reversal symmetry, the many-body ground state must

still maintain a two-fold degeneracy due to the Kramer’s like symmetry. On the

other hand, if interactions break time reversal symmetry even this degeneracy can

be lifted and the system is expected to pick a single ground state. In the following

we consider the effect of density-density interactions. This may be in contrast to

some experimentally relevant situations where the interactions will explicitly break

Kramer’s symmetry. [27]

Before we proceed we note that this system is distinct from the previous work

done on a two-component Bose condensates [64, 65] where it was found that the

ground state for such a system is ferromagnetic with a fully polarized pseudo-spin.

The arguments for such a ground state depend on the ability to factorize the spin

and orbital degrees of freedom. This is not true for the spin-orbit coupled system

where spin and momentum are fully coupled. However, we note that this is possible

in the persistent spin helix [56] limit, so in such a limit the systems should coincide.

To find the many-body ground state for a spin-orbit BEC we now add the

density-density interaction Hamiltonian Ĥint = 1
2

∫
d3rd3r′n̂(r)Vint(r−r′)n̂(r′), where

n̂(r) =
∑

µ ψ̂
†
µ(r)ψ̂µ(r) and ψ̂µ(r) is the field operator, which is initially defined in

terms of the creation/annihilation operators for the original hyperfine states. The

effective interaction in pseudo-spin space can be obtained by first applying the po-
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sition dependent rotation matrix Rµα(r) and then dropping terms connected to the

bright states. The effective interaction then takes the standard form:

Ĥint =
1

2V

∑
p,p′,q

Vint(q)b̂†αpb̂αp+qb̂
†
βp′ b̂βp′−q, (6.15)

where b̂†αp is the creation operator for a state with momentum p and pseudo-spin α

in the dressed state subspace.

In the limit of weak interactions, Vint � mv2/2, we expect the low temperature

physics to be dominated by the λ = −1 low energy band in Eq. 6.2. A second,

momentum-dependent rotation is then required to rotate to the eigenstates of the

effective spin-orbit coupled Hamiltonian. We perform this rotation defined by B̂λp =

U †λα(p)b̂αp and B̂†λp = b̂†αpUαλ(p), where Uαλ(p) = Uαλ(χp) is defined in Eq. 6.3

and there is an implicit sum over the pseudo-spin α. The low-energy physics can

then be captured by projecting out the λ = +1 band and considering operators

with momenta near the momentum space double wells. Thus, it is convenient to

express the Hamiltonian in terms of left/right-moving operators, defined as B̂L/R q =

B̂−1 ∓(q+mv) and the corresponding unitary matricies UL/R α(q) = U−1 α(∓(q +

mv)). This leads to the following interaction Hamiltonian

Ĥint =
1

2V

∑
p,p′,q

′∑
{σi}

Vint(qσ)B̂†σ1p
B̂σ2p+qB̂

†
σ3p′

B̂σ4p′−q

×U †σ1α
(p)Uασ2(p + q)U †σ3α′

(p′)Uα′σ4(p′ − q). (6.16)

where the prime sign in the sum over the left and right indices σi = L/R = ∓ is

restricted by the condition σ1 + σ3 = σ2 + σ4, i.e., the numbers of left- and right-

movers are conserved, and qσ = q− (σ1 − σ2)mvex. We stress that equation (6.16)
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is valid in the limit of weak interactions (relative to the spin-orbit coupling) and low

temperatures, when only single particle states with momenta in the vicinity of the

two minima are occupied.

6.4.1 Generalized Bogoliubov transformation

Next, we introduce the projection operators P̂N,n = P̂2
N,n that select the sub-

space characterized by n left-moving and (N − n) right-moving quasiparticles. The

Hamiltonian can be expressed as Ĥ =
∑N

n=0 P̂N,nĤP̂N,n =
∑N

n=0 Ĥn. An important

observation is that the Hamiltonian containing the interaction term (6.16) preserves

the number of left- and right-movers and thus we can consider different “sectors,”

Ĥn, independently. Our goal is to diagonalize each term Ĥn using a mean-field

scheme and reduce the many-body Hamiltonian to the form

Ĥ =
N∑
n=0

P̂N,n

[
E0(n) +

∑
q,σ

Ωσ(n,q)β̂†n,σ,qβ̂n,σ,q

]
P̂N,n, (6.17)

where E0(n) is the contribution of the (n,N − n) sector to the condensate energy,

while Ωσ(n,q) represents the spectrum of quasi-particle excitations. To obtain the

mean-field result, we use a Bogoliubov-type approximation in which the operators

corresponding to q = 0 are replaced within each sector (n,N − n) by c-numbers,

B̂L 0 →
√
n0 eiφ/2 and B̂R 0 →

√
N0 − n0 e−iφ/2. Next, we notice that at low

temperatures, the momenta of uncondensed bosons are q � mv. Thus, we can

expand the products of U -vectors in (6.16) in terms of the deviations q from the
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minima of the energy bands

~U †L(q1)~UL(q2) = ~U †R(q1)~UR(q2) ≈ 1− ∆2

8

(q1y − q2y)
2

(mv)2
,

~U †R(q1)~UL(q2) = ~U †L(q1)~UR(q2) ≈ ∆

2

q1y + q2y

mv
, (6.18)

with ∆ = v′/v < 1 and corrections of order O(q3
1,2) and O(q2

1,2), respectively. Conse-

quently, contributions to the mean-field Hamiltonian can be expanded in the small

parameter xq = ∆2q2
y/(mv)2. In the zero-order approximation, i.e., neglecting con-

tributions of order xq and higher, the mean-field Hamiltonian for the (n,N − n)

sector is

Ĥ(0)
n =

N

2V

∑
q

Vint(q)

 ~̂B†q
 s(q) + 1 + δ

√
1− δ2e−iφ

√
1− δ2eiφ s(q) + 1− δ

 ~̂Bq

+ ~̂BT
q

 (1 + δ)eiφ
√

1− δ2

√
1− δ2 (1− δ)e−iφ

 ~̂B−q + h.c.

 , (6.19)

where δ = 2n/N − 1, ~̂BT
q =

(
B̂Lq, B̂Rq

)
is the annihilation operator in a spinor no-

tation, s(q) = 2δE(q)/ [n0Vint(q)], and δE(q) is the anisotropic spectrum (6.12) near

the minima. We now introduce new bosonic operators B̂−,q =
√

1− n/NB̂L,qe
−iφ/2−√

n/NB̂R,qe
iφ/2 and B̂+,q =

√
n/NB̂L,qe

−iφ/2 +
√

1− n/NB̂R,qe
iφ/2. The Hamilto-

nian becomes diagonal for the B̂−-particles, which have the “free” spectrum δE(q),

and has the standard Bogoliubov form [58] for the B̂+-particles. Introducing the

new operators β̂−,q ≡ B̂−,q and β̂+,q ≡ (1 − A2
q)−1/2

(
B̂+,q + AqB̂

†
+,−q

)
, with

Aq = −s(q)− 1 +
√

[s(q) + 1]2 − 1, we get

Ĥ(0)
n = E(0)

0 +
∑
q

{
Ω−(q)β̂†−,qβ̂−,q + Ω+(q)β̂†+,qβ̂+,q

}
, (6.20)
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where E (0)
0 is the condensate energy [58] in the zero-order approximation, Ω−(q) ={

q2
x + q2

z + q2
y [1− (v′/v)2]

}
/(2m) is the anisotropic free particle quadratic spectrum

and Ω+(q) =
√

[Ω−(q) + nVint(q)]2 − n2V 2
int(q) is an anisotropic sound similar to

the conventional Bogoliubov phonon mode in a BEC. At this level of approximation

the condensate energy is n-independent (i.e., it is the same for any particular sector

characterized by n left movers and (N − n) right movers) and, consequently, the

degeneracy of the non-interacting ground state (6.14) is preserved. In the first

order approximation, the mean-field Hamiltonian (6.19) acquires sector-dependent

corrections of order xq � 1. Following the above recipe, we introduce a set of new

operators B̂±,q that diagonalize the ~̂B†q ~̂Bq term in the Hamiltonian (6.19) but not

the other terms. Next, we diagonalize the full Hamiltonian [up to terms of order

O(x2
q)] via a generalized Bogoliubov-type transformation

β̂−, q = B̂−,q + xqDqB̂
†
−,−q (6.21)

+ xqF1qB̂+,q + xqF2qB̂
†
+,−q

β̂+, q = (1− A2
q)−1/2

(
B̂+,q + AqB̂

†
+,−q (6.22)

+ xqC1qB̂−,q + xqC2qB̂
†
−,−q

)
.

In the equations (6.21) and (6.22) we already anticipated that some of the terms

are corrections of order xq. The coefficients are determined by requiring that the

β-operators obey standard commutation relations [to order O(xq)] and that the

off-diagonal contributions to the Hamiltonian vanish. Assuming for simplicity that

we have a point-like interaction, i.e., Vint(q) = Vint is momentum-independent for
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momenta in a range that is relevant for the problem, the groundstate energy in the

(n,N − n) sector is

E0(n) =
VintN

2

2V
+
VintN

2V

∑
q 6=0

1

1−A2
q

{
[2 + s(q)]A2

q + 2Aq

− xq
8

[
A2

q(cos(4ξ) + 3)−Aq(cos(4ξ)− 5)
]}

+O(x2
q), (6.23)

where cos2(ξ) = n/N . The relevant coefficient of the generalized Bogoliubov trans-

formation (6.21-6.22) has the form

Aq = −1− s

2
+

1

2

√
s(4 + s)− xq

32
√
s(4 + s)

(
2 + s

√
s(4 + s)

)
× [−4− 5s+ (4 + s) cos(4ξ)] +O(x2

q). (6.24)

Explicitly evaluating (6.23) with Aq given by Eq. (6.24) shows that, at this level

of approximation, the energy of the condensate becomes sector-dependent, E0(n) ≈

E (0)
0 + E (1)

0 (n), and is minimal for n = 0 and n = N . Thus, the density-density

interaction reduces the large (N + 1)-fold degeneracy of the ground state to a two-

fold degeneracy. Consequently, in the limit of vanishing interactions Vint → +0, the

most general expression for the many-body wave-function is

||ΨN 〉 =
1√
N !

[
√
wLe

iφL

(
B̂†L

)N
+
√
wRe

iφR

(
B̂†R

)N]
||vac〉, (6.25)

where wL/R represents the fraction of the left/right movers and φL/R are arbitrary

phases. Notice that Eq. (6.25) describes a fragmented or entangled BEC, unless

wLwR = 0. i.e., the many-body state (6.25) does not correspond to the condensation

into one single-particle state.
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We reiterate that the left- and right-movers in the condensate have non-zero

momentum, but zero velocity and do not actually move while the laser fields re-

sponsible for the spin-orbit coupling are present. We also note that equation (6.25)

describes a so-called N00N state,[66, 67] which is quantum correlated state with

properties that can be exploited in applications such as quantum sensing and quan-

tum metrology. This suggests that the possibility of using spin-orbit coupled con-

densates as qubits deserves to be further investigated.

We conclude the section by motivating the macroscopic entanglement of (6.25).

Considering the v′ → 0 limit in a harmonic trap, for which the left and right mov-

ing states can be exactly expressed by ψσ = e−iσmvxφ0(r)

 1

−iσ

, where φ0(r) is

the ground state of the harmonic oscillator. Such a state has minimum uncer-

tainty, ∆p∆x = ~/2. The presence of repulsive interactions will act to increase ∆x,

which by the uncertainty relation will act to localize the uncertainty of the state

in momentum space, assuming the overall uncertainty is unperturbed. Therefore,

position space repulsive interactions can be pictured as momentum space attractive

interactions. The existence of a macroscopically entangled state was independently

predicted in a similar system in [68], but in the limit of strong interactions. It is

therefore plausible that a macroscopically entangled state can exist for all interaction

strengths, as long as the interactions are of the density-density form.

In practice, the time-reversal-like symmetry of a system with synthetic spin-

orbit coupling will be broken by perturbations due to imperfections in the laser fields

and spin-dependent interaction terms. Due to the completeness of the pseudo-spin-
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1/2 degree of freedom, any perturbation of the optical or magnetic fields will add a

new term to the single particle Hamiltonian

H ′ = h0 + h · σ (6.26)

where h0 is a perturbation proportional to the identity matrix, and the perturbation

h is a pseudo-spin dependent magnetic field. It can be seen that the components of

h0, hy and hz will preserve the degeneracy of the ground state, but hx will produce

an energy splitting between the ground states of δE ∼ 〈hxσx〉. Furthermore, a

perturbation of hy and hz will produce off-diagonal couplings between the left and

right moving ground states. The off diagonal components will not destroy the N00N

state. However, even a small energy splitting will produce a relative energy shift

between the two degenerate ground states of ∆E = NδE, which can be large for a

macroscopic number of particles, even if the original perturbation is small. Thus,

even small time-reversal symmetry breaking perturbations can lead to a large energy

splitting, and a preference of one ground state over the other. Additionally, the

energy scale ∆E will give the time scale for the damping of the condensate. This

indicates that symmetry breaking perturbations will lead to small lifetimes of N00N

states.

6.4.2 Gross-Pitaevskii equations

In this section we derive the Gross-Pitaevskii equations for a spin-orbit coupled

BEC. Let us consider the density-density interaction potential as a contact pseudo-

potential, Vint(r − r′) = Vintδ(r − r′), where Vint = 4π~2

m
a and a is the inter-atomic
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scattering length. The full many body Hamiltonian can be written as

Ĥ =
∑
µ,ν

∫
d3r ψ̂†µ(r)hµνψ̂ν(r) (6.27)

+
Vint

2

∑
µ,ν

∫
d3r ψ̂†µ(r)ψ̂†ν(r)ψ̂ν(r)ψ̂µ(r),

in terms of field operators ψ̂µ(r) for the original hyperfine states, µ ∈ {0, 1, 2, 3}.

In Eq. (6.27) we used the notation hµν =
(

p2

2m
+ Vtrap +Ha−l

)
µν

for the single

particle Hamiltonian in the presence of a trap potential Vtrap, in addition to the

spatially varying laser fields that interact with the atom, Ha−l. In the adiabatic

approximation, after projecting onto the dressed state subspace, the first term in

Eq. (6.27) becomes
∑

p;α,β

b̂†αp
[
(p2/2m+ Vtrap) 1̌− vpxσ̌2 − v′pyσ̌3

]
αβ
b̂βp, where b̂†αp

and b̂αp are the creation and annihilation operators for bosons with pseudo-spin

α = ↑, ↓. The interaction term is given by equation (6.15). Before writing down

the Gross-Pitaevskii equations, let us summarize the three different representations

used for describing the system of bosons interacting with the spatially modulated

laser fields.

i) Hyperfine states representation: This is the most straightforward way to

describe the motion of the bosons and their interaction with the trap potential

(Vtrap) and the laser fields (Ha−l), as well as the density-density interaction (second

term in Eq. (6.27)). The field operator that creates a particle in the hyperfine

state µ ∈ {0, 1, 2, 3} at point r is ψ̂†µ(r), while the creation of a free-moving par-

ticle with momentum p is described by ĉ†µp =
∫
d3r eiprψ̂†µ(r). By performing the

position-dependent rotation Rµα which diagonalizes the atom-laser Hamiltonian and

projecting onto the dressed state subspace we switch to the pseudo-spin representa-
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tion.

ii) Pseudo-spin representation (dressed state representation): This is the nat-

ural framework for describing the low-energy physics of the atomic system inter-

acting with the laser field. The creation operator for free-moving particles with

spin α ∈ {↑, ↓} and momentum p is b̂†αp. We can define the corresponding field

operator as
ˆ̃
ψ
†

α(r) =
∑

p e
−iprb̂†αp. Note that the field operators in the hyper-

fine and pseudo-spin representations are related via the position-dependent rota-

tion, ψ̂†µ(r) =
∑

αRµα(r)
ˆ̃
ψ
†

α(r). Diagonalizing the single-particle spin-orbit coupled

Hamiltonian, H = (p2/2m+ Vtrap) 1̌− vpxσ̌2− v′pyσ̌3, generates a set of eigenstates

described by the spinor eigenfunctions ~φσn(r). The quantum number σ = ± can be

viewed as labeling right (left) moving states.

iii) Right/left moving states representation: This is the representation corre-

sponding to the eigenstates of the spin-orbit coupled single particle Hamiltonian. In

Section 6.1 we have shown that in the absence of a trap potential the single particle

spectrum for the generic case v 6= v′ is characterized by two minima at non-zero

momenta. This double-degeneracy is protected by a Kramers-like symmetry which

is not broken by the trapping potential Vtrap(r).

In the derivation below we find it convenient to use the following parametriza-

tion for the eigenfunctions:

~φσn(r) = eiσmvx

 u↑σn(r)

iσu↓σn(r)

 , (6.28)

where σ = ± and n is a set of quantum numbers. The Kramers-like symmetry
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implies that

u↑−σn(r) =
[
u↓σn(r)

]∗
,

u↓−σn(r) =
[
u↑σn(r)

]∗
, (6.29)

and the corresponding energies are degenerate, E−σn = Eσn = En. Because 〈φ−σn|φσn〉 =

0, the two states are linearly independent. The creation operator for a left/right

moving particle described by the eigenstate ~φσn is B̂†σn. The field operators in the

pseudo-spin representation can be expressed in terms of B̂σn operators as

ˆ̃
ψ↑(r) =

∑
n

[
eimvxu↑+n(r)B̂+n + e−imvxu↑−n(r)B̂−n

]
,

ˆ̃
ψ↓(r) =

∑
n

[
ieimvxu↓+n(r)B̂+n − ie−imvxu↓−n(r)B̂−n

]
, (6.30)

where the terms with σ = + and σ = − correspond to the right and left moving

modes, respectively. Finally, note that in the translation invariant case, Vtrap =

0, we introduced the eigenfunctions ~φλp(r) = eipr~Uλ(χp), with Uαλ(χp) given by

equation (6.3), and the corresponding creation operators, B̂λp. We then defined

the left/right movers for the low energy band λ = −1 and small momenta q < mv

as B̂L/R q = B̂(−1) ∓(q+mv). Alternatively, we can directly define the eigenfunctions

~φσq(r) in the left/right moving representation using the parametrization (6.28), with

no restriction for q. The correspondence between the two representations is given

by: p = σ(q + mv) and λ = −sign(qx + mv). This generalizes our definition of

the left/right moving modes to arbitrary energy. Notice however, that a left (right)

“moving” state from the high energy band λ = +1 has in fact a positive (negative)

momentum.

To write the Gross-Pitaevskii equation in the pseudo-spin representation we
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use the standard procedure and calculate the commutator [
ˆ̃
ψα(r), Ĥ], where Ĥ is the

many-body Hamiltonian expressed in terms of pseudo-spin field operators. Using

Eq. (6.27) and the relations between representations summarized above we obtain

i
∂

∂t
ψ̃α(r, t) =

∑
β

{[
−∇2

2m
+ Vtrap(r)

]
1̌ + iv

∂

∂x
σ̌2 (6.31)

+ iv′
∂

∂y
σ̌3

}
αβ

ψ̃β(r, t) + Vint

(
|ψ̃↑|2 + |ψ̃↓|2

)
ψ̃α(r, t).

Relation (6.31), which is a system of two coupled non-linear differential equations,

represents the time-dependent Gross-Pitaevskii equation for a spin-orbit coupled

Bose-Einstein condensate wave-function. Similar equations can be written in the

left/right moving states representation. For simplicity, we will address here only

the translation invariant case Vtrap = 0. The field operator for the left/right moving

modes can be written in terms of the corresponding B̂σq operators as

Φ̂σ(r) =
∑
α,q

φασq(r)B̂σq. (6.32)

The non-interacting part of the Hamiltonian is diagonal in terms of left/right moving

operators, with eigenvalues that depend on the momentum q only. At low-energies,

these eigenvalues are given by the anisotropic spectrum δE(q) = (q2
x + q2

z)/(2m) +

q2
y/(2my) with my = m [1− (v′/v)2]

−1
. In general, the interacting Hamiltonian is

given by equation (6.16), but in the low-energy limit we neglect all corrections of

order xq = ∆2q2
y/(mv)2 and higher coming from the momentum-dependent matrices
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Uασ(q). In this limit we obtain

i
∂

∂t
Φσ(r, t) =

(
(−i∂x − σmv)2

2m
−

∂2
y

2my

− ∂2
z

2m

)
Φσ(r, t)

+Vint

(
|ΦL|2 + |ΦR|2

)
Φσ(r, t), (6.33)

where ∂j = ∂/∂xj, j ∈ {x, y, z}. The time-independent Gross-Pitaevskii equa-

tions can be obtained by looking for a stationary solution of the form Φσ(r, t) =

Φ0σ(r)e−iµt, where µ is the chemical potential which determined by the condition

N =
∫
d3r (|ΦL|2 + |ΦR|2), with N being the total number of bosons. We note that

by linearizing Φσ(r, t) with respect to the deviations from the stationary solution we

obtain an excitation spectrum consisting in two modes, Ω±(q), identical with those

found using the generalized Bogoliubov treatment.

6.5 Experimental signature of spin-orbit coupled BEC: measuring a

SOBEC qubit

A straightforward way to detect experimentally the new type of BEC would be

to probe the momentum distribution of the density of the particles via time-of-flight

expansion. After removing the trap and the laser fields, the boson gas represents a

system of free particles, each characterized by a certain momentum and a hyperfine

state index. In a TOF experiment one determines the momentum distribution by

measuring the particle density at various times after the release of the boson cloud.

The operator associated with a density measurement is ρ̂(r) =
∑

µ ψ̂
†
µ(r)ψ̂µ(r), where

ψ̂†µ(r) is the creation operator for a particle in the hyperfine state µ positioned at

point r. Determining the density profile involves a simultaneous measurement of
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ρ̂(r) for all the values of r ∈ V corresponding to a ceratin region in space where

the boson cloud is located. To insure formal simplicity, we consider a coarse-grained

space, i.e., we treat r as a discrete variable. This is simply a technical trick and does

not influence the final result. Our goal is to find the most likely spatial distributions

of the particles at a given moment t after the release of the atoms. In the limit of

large particle numbers, the actual measured density profiles will involve only small

fluctuations away from these “most likely” distributions.

For a system of N bosons, the result of the measurement is a set of eigenvalues

{
∑

µ nrµ}(r∈V) that label an eigenvector of the density operator

||Φ{nrµ}〉 =
∏
µ,r∈V

1√
(nrµ)!

[
ψ̂†µ(r)

]nrµ

||vac〉, (6.34)

where the occupation numbers satisfy the constraint
∑

µ,r nrµ = N , and the factors

1/
√

(nrµ)! insure the normalization to unity. Note that nrµ is an integer representing

the number of particles located in a certain “cell” r of the coarse-grained space. At

time t after the release, the many-body state of N bosons that were initially in a

BEC groundstate described by Eq. (6.25) is

||Ψ̃N(t)〉 = N
∑
σ

√
wσ e

iφσ (6.35)

∑
{nrµ}V

{ ∏
µ,r∈V

1

(nrµ)!

[
Qσ
µ(r, t)ψ̂†µ(r)

]nrµ

||vac〉

}
,

where N is a normalization factor, σ labels the left (σ = L ≡ −1) and right

(σ = R ≡ +1) modes and ||Ψ̃N(0)〉 = ||ΨN〉. The coefficients Qσ
µ are normalized so

that
∑

r,µ |Qσ
µ(r, t)|2 = 1. The second summation in (6.35) is over all possible spatial

distributions of N particles and, in the continuous limit, it becomes a path integral.
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Equation (6.35) represent the expansion of the many-body wave-function in terms

eigenstates (6.34) of the density operator. The probability P [{nrµ}] of measuring a

certain density profile nrµ is determined by the coefficient of the corresponding term.

If we focus, for simplicity, on the case when there are only left (right) movers in

(6.25), this probability is proportional to
∏

r,µ |Qσ
µ(r, t)|2nrµ/(nrµ)!, with σ = L(R).

The probability P [{nrµ}] has a maximum for n0
rµ = N |Qσ

µ(r, t)|2 corresponding, in

the continuous limit, to a stationary point of the path integral in equation (6.35).

For large particle number, P [{nrµ}] becomes sharply peaked at n0
rµ and the actu-

ally measured density profiles will exhibit only relatively small deviations from the

stationary profile. Therefore, at time t after release, the density of the boson cloud

is

ρ(r, t) = N
∑
µ

|Qσ
µ(r, t)|2. (6.36)

If both wR and wL are non-zero, the result of a measurement will be either a “right

moving” density profile [σ = R in (6.36)] with a probability wR, or a “left moving”

profile [σ = L in (6.36)] with a probability wL, assuming that the two profiles are

spatially well separated. We are not addressing here the interesting effects of the

interference between left and right moving condensates. These effects are negligible

if the left and right moving density profiles are spatially separated, but become

important otherwise, e.g. at small times after the release.

Next we determine explicitly the coefficients Qσ
µ(r, t) for the exactly solvable

model of bosons with “Ising-type” spin-orbit coupling, v 6= v′ = 0, placed in a

harmonic trap, Vtrap(r) = mω2r2/2.[3] In this case, the operators B̂†σ from Eq.
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(6.25) are creation operators for the single particle ground states

~φσ0(r) = ϕ0(r)eiσmvx
1√
2

 1

iσ

 , (6.37)

where ϕ0(r) represents the groundstate wavefunction of the harmonic oscillator. The

spinor (6.37) is written in the dressed state basis. Performing the position-dependent

rotation Rµα [see Eq. (3.35)], we can express the operators B̂†σ in terms of creation

operators for particles in a certain hyperfine state located at point r, ψ̂†µ(r), or their

Fourier components corresponding to free moving particles, ĉ†µk =
∑

r e
ikrψ̂†µ(r). The

time evolution after the release can be easily described in terms of time evolution for

the ĉ†µk operators, ĉ†µk(t) = exp(−iεkt) ĉ†µk, where εk = k2/(2m) is the free particle

spectrum. Consequently, the many-body state ||Ψ̃N(t)〉 can be obtained by making

in Eq. (6.25) the substitution B̂†σ →
∑

r,µQ
σ
µ(r, t)ψ̂†µ(r) with

Qσ
µ(r, t) =

∑
α,k,r′

[
~φσ0

]
α

(r′)R∗µα(r′)eik(r−r′)e−iεkt. (6.38)

Finally, introducing this expression of Qσ
µ in equation (6.36) we obtain for the mea-

sured density profile the expression

ρ(r, t) = N
Γ3

[2π (1 + τ2)]
3
2

e
−Γ2(y2+z2)

1+τ2

[
sin2 θ e

− Γ2

1+τ2 (x−λmvtm )
2

+
(1− λ cos θ)2

2
e
− Γ2

1+τ2

(
x− (λmv+mva)t

m

)2

+
(1 + λ cos θ)2

2
e
− Γ2

1+τ2

(
x− (λmv−mva)t

m

)2]
, (6.39)

where Γ =
√
mω is the inverse characteristic length of the trap potential, τ = ωt is

time in units of ω−1, θ ∈ [0π/2] and va are tunable parameters characterizing the
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laser field, and v = va cos θ [see the paragraph containing Eq. (3.35)]. In equation

(6.39) the density was normalized so that
∫
d3r ρ(r, t) = N . The density profile for

a ”left moving” density distribution (σ = −1) is shown in Fig. 6.3 for three different

times after the release of the boson cloud. The parameters of the calculation are

θ = π/3 and va = 6
√
ω/m. Notice the three-peak structure of the density, corre-

sponding to the three exponential terms in equation (6.39). The relative weights of

the peaks are cos4(θ/2) (large peak), 1/2 sin2 θ = 2 sin2(θ/2) cos2(θ/2) (middle peak)

and sin4(θ/2) (small peak) and their characteristic velocities are −σva(1 − cos θ),

σva cos θ and σva(1 + cos θ), respectively. The “left” and ”right moving” distribu-

tions are symmetric with respect to a x→ −x reflection (see also Fig. 6.4). Notice

that the total momentum corresponding to a distribution described by equation

(6.39) vanishes. By analyzing the transformation (3.35) to the dressed state basis,

we observe that sin θ is the coefficient of the hyperfine state |3〉. Consequently, the

middle peak in the density distribution (6.39) consists of particles in this particular

hyperfine state. The other two peaks contain mixtures of states |1〉 and |2〉. A state-

selective measurement of particles in the hyperfine state |3〉 would reveal a single

peak structure moving to the left or to the right with a velocity v = va cos θ. The

dependence of the density profile ρ(r, t)/N on θ and on the ratio γ = va/
√
ω/m for

r = (x, 0, 0) and t = ω−1 is shown in Fig. 6.4.

93



6.6 Summary and conclusions

To summarize, in this chapter we have introduced and discussed in detail a

new type of many-body system consisting of pseudo spin-1/2 bosons with spin-

orbit interactions. We have shown that at low temperatures the system condenses

into a new type of entangled BEC, the spin-orbit coupled Bose-Einstein condensate

(SOBEC). The novelty of this state stems from the coupling of an internal degree of

freedom, the pseudo-spin created as a result of an atom interacting with a spatially

modulated laser field, to the real space motion of the particles. As a result, the

single-particle spectrum is characterized by degenerate minima at finite momenta

and, consequently, the bosons condense at low temperatures into an entangled quan-

tum state with non-zero momentum. For an arbitrary spin-orbit coupling, the single

particle spectrum has a double-well structure in momentum space (see Fig. 6.1) with

minima at non-zero momenta. In this case, a system of N non-interacting bosons

is characterized by a large (N + 1)-fold degeneracy of the many-body ground state.

Weak density-density interactions reduce this large degeneracy to a two-fold degen-

eracy. The corresponding ground state wave-function describes a superposition of

left-moving and right-moving condensates with weights wL and wR = 1 − wL, re-

spectively. Performing a time-of-flight expansion of the condensed bosons results

in a characteristic three-peak structure (see Fig. 6.4). The total momentum of the

density profile is identically zero, but the peaks are moving along the x̂-direction

with velocities proportional to the k-vector of the laser field modulation in that di-

rection. The probability of measuring a left- (right-) moving condensate is wL (wR)
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and the signature of a left- (right-) moving state consists in the middle and small

peaks moving left (right), while the large peak moves in the opposite direction.

In conclusion, the spin-orbit coupled BEC can be viewed as a state occurring at

the interface between spintronics and cold atom physics, with nontrivial properties

that have a significant potential for applications. We note here that the ground-

state of the double-well SOBEC [see Eq. (6.25)] represents a N00N state,[66, 67]

similar to those recently proposed for the construction of a gravimeter bases on atom

interferometry.[37] Therefore, the study of a SOBEC state in the context of quantum

entanglement and quantum interference is highly relevant. In addition, the double

degeneracy associated with the pseudo-spin degree of freedom makes this state a

natural candidate for a qubit. A possible way to measure such a qubit was described

in the last section. Time-dependent laser fields [similar to those, which lead to the

spin-orbit-coupled Hamiltonian (6.1)] could be used as “gates” to perform unitary

rotations in the space of degenerate ground states. Note that the coupling of the

spin to the orbital motion yields a protecting mechanism against decoherence, due

to momentum conservation, and suggest that the spin-orbit coupled condensates

are interesting candidates for fault tolerant quantum computation. Finally, we note

that for a symmetric Rashba-type spin-orbit coupling, the system is characterized

by a single-particle spectrum that has a continuous set of minima along a circle

in momentum space. This results in a huge degeneracy that may lead to possible

phases with non-trivial topological properties, making the study of the symmetric

SOBEC a potentially very interesting problem.
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Figure 6.3 – Density of particles at three different moments, t1 = 0.4ω−1, t2 =

0.6ω−1, and t3 = 0.8ω−1, after both the trap and the laser fields are removed at t = 0.

For clarity, the density distributions are shifted along the y-axis. This time-of-flight

expansion corresponds to a many-body ground state (6.25) and is obtained using the

single-particle eigenfunctions for the exactly-solvable model of trapped bosons with

Ising-type spin-orbit coupling (v 6= v′ = 0) [3] with va = 6(ω/m)1/2. This “left

moving” density distribution is measured with a probability wL, while there is a wR

probability to observe a “right moving” distribution which corresponds to a x→ −x

reflection (see also Fig. 6.4). Notice the characteristic three-peak structure. To resolve

the BEC peaks, the spin-orbit coupling energy scale should be larger than the trap

level spacing, i.e., mv2 � ω. In the opposite limit the phenomenon of real-space BEC

separation is smeared out by finite-size effects (6.25).
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Figure 6.4 – Density profiles ρ(r, t)/N for r = (x, 0, 0) and t = ω−1. The position

x is measured in units of Γ−1. Left panel: ”right moving” versus ”left moving”

distributions. Notice that the “center of mass” of the distributions is always at x = 0.

Middle panel: Dependence on the angle θ. At small angles all the weight concentrates

in the large peak which is centered near x = 0. In the limit θ → π/2 the strength of

the SO interaction vanishes v → 0 and the present analysis is not valid. Left panel:

Dependence on the relative strength of the spin-orbit coupling, γ = va/
√
ω/m. To

resolve the peak structure, the spin-orbit coupling energy scale should be larger than

the trap level spacing. In the opposite limit interference effects become important

(see main text).
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Chapter 7

Semi-classical Dynamics and Generalized Spin-Orbit Coupling

7.1 Introduction

This chapter consists of two recent results on spin-orbit coupling. The first

part considers the dynamics of the ground state of a trapped spin-orbit coupled

system where the trap minimum is instantaneously displaced. The system is consid-

ered semi-classically, and depending on the values of the initial conditions and the

anisotropy of the spin-orbit coupling, several dynamical regimes are found. Finally

an experiment is proposed to use the Berry’s phase induced in the pseudo-spin as a

signature of spin-orbit coupling.

The second section consists of a proposal for a 3D spin-orbit coupling with

a vector potential A ∼ J, where J is the angular momentum operator in pseudo-

spin space. This generalized coupling is implemented by including a next-nearest-

neighbor coupling to the 4-level ring scheme. The next-nearest coupling scheme

produces a tetrahedral coupling topology, and forces the effective momentum trans-

fer of the two-photon transitions to have a tetrahedral geometry. Two limits are

considered, and it is found that a SU(3) coupling and a generalized 3D-SU(2) cou-

pling, with all three spin matrices, is possible.

This work is unpublished and was performed independently by the author.

The author would like to thank G. Juzeliunas, I. Spielman, G. Boyd, J. Bagaipo,
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and V. Galitski for useful contributions leading to the work in this section.

7.2 Heisenberg Equations of Motion

We consider now an atom with a synthetic spin-orbit coupling in the presence

of a harmonic trap of frequency ω. We now express time in units of 1/ω, length in

units of ~/mv, and momentum in units of mv, for which the quantum Hamiltonian

has the form

H/mv2 =
p2

2
+

1

2α2
r2 + Ω(p) · σ, (7.1)

where α = mv2/~ω = 2Er/~ω is the ratio of the recoil energy to the trapping energy,

∆ = v′/v < 1 is the measurement of the anisotropy of the spin-orbit coupling and

Ω(p) = pxêx + ∆pyêy + δêz is the spin-orbit coupling field with a detuning δ. The

Heisenberg equations of the system are found in the usual way [5] to give

˙̂r = α(p̂ + σ̂xêx + ∆σ̂yêy), (7.2)

˙̂p = −r̂/α, (7.3)

˙̂σ = 2αΩ̃(p̂)× σ̂. (7.4)

For many experiments, it is reasonable to take ω ∼ 2π ∗ 10Hz, and Er = 1
2
mv2 =

(~kr)2

2m
∼ 2π~ ∗ 1kHz. [27] Thus, an experimentally relevant parameter regime might

be α ∼ 100� 1.

We now propose an experiment where a synthetic spin-orbit coupled system

is prepared in one of the ground state,

ψ(r) = φ0(r)e−ixχ(−êx), (7.5)
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and then the minimum of the harmonic trap is instantaneously displaced. Note that

for φ0(r) =
(

1
πα2

)1/4
e−x

2/2α, Eq. 7.5 is the approximate ground state of the system,

neglecting corrections of O(1/α). Assuming this approximate ground state is value

when the spin-orbit coupling is the largest energy scale in the problem, and that the

trapping potential is a small perturbation. This is precisely the condition given by

α� 1, and corrections of 1/α will be induced by the harmonic trap.

Since the approximate ground state is the product of an orbital coherent state

and a spin coherent state, we expect the system to evolve semi-classically. In what

follows we will consider only the single particle evolution. The treatment will be ap-

proximately valid for a condensate initially prepared with every particle in the state

given by Eq. 7.5. The effect of interactions will not significantly modify the treat-

ment, and the condensate will evolve analogously to the single particle wavepacket.

The approximate ground state has the average momentum, average position,

and a pseduo-spin polarization of

〈p̂〉 = −êx, (7.6)

〈r̂〉 = 0, (7.7)

〈σ̂〉 = êx, (7.8)

respectively. Since Eq. 7.5 can be expressed as the direct product of a position state

wavefunction and a spin wavefunction, taking the expectation value of Eqns.7.2 -

7.4 in the state 7.5 will be equivalent to replacing p, r and σ with the expectation

values 〈p〉, 〈r〉 and 〈σ〉. The approximate ground state wavefunction will then act
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to set the initial conditions

p(t = 0) = 〈p〉 = −êx, (7.9)

r(t = 0) = 〈r〉 = 0, (7.10)

σ(t = 0) = 〈σ〉 = −êx. (7.11)

Note that this replacement cannot be performed for a state where spin and position

are entangled, as the expectation value 〈p · σ〉 6= 〈p〉 · 〈σ〉 in general.

We now treat the Heisenberg equations of motion as semiclassical Hamiltonian

equations of motion

ṙ = α(p + σxêx + ∆σyêy), (7.12)

ṗ = −r/α, (7.13)

σ̇ = 2αΩ̃(p)× σ. (7.14)

If at time t = 0 we instantaneously shift the minimum of the trap to r(0) = r0, the

system is defined by the initial conditions p(0) = −êx, r(0) = r0, and σ = êx.

7.3 Adiabatic Dynamics

We can now consider the evolution of the semi-classical equations of motion

in the α � 1 limit. The position and momentum equations immediately decouple

to give

p̈ + p = σxêx + ∆σyêy, (7.15)

so the evolution of the position operator can be found by r(t) = −αṗ(t). The

equation for the spin sector, Eq. 7.14 is driven by a spin-orbit term O(α). Thus, we
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expect that if spin and momentum are aligned or anti-aligned, the spin sector will

adiabatically follow the momentum of the particle. This can be solved perturbatively

in 1/α to give

0 = 2Ω(p)× σ (7.16)

to O(1/α). This is an effective constraint on σ to force σ to be aligned or anti-

aligned with the effective magnetic field Ω. Considering the initial conditions and

normalization, the spin polarization vector is given by

σ(t) =
(px(t),∆py(t), δ)

T√
p2
x(t) + ∆2p2

y(t) + δ2
. (7.17)

Using the adiabatic evolution of the spin polarization, we can derive a set of adiabatic

equations for the momentum p(t):

p̈x(t) + px(t) =
px(t)√

p2
x(t) + ∆2p2

y(t) + δ2
, (7.18)

p̈y(t) + py(t) =
∆2py(t)√

p2
x(t) + ∆2p2

y(t) + δ2
, (7.19)

which are correct to O(1/α).

The adiabatic alignment of the spin polarization and momentum arises natu-

rally from the separation of the time scales of spin evolution and trapping frequency.

The spin polarization will undergo Larmor precession on the fast timescale α around

the effective magnetic field Ω(p). However, if the spin and magnetic field are aligned,

the spin polarization is constant. The momentum of the system will then evolve on

the slow timescale, which will slowly reorient the effective magnetic field Ω(p). Since

the evolution of the spin is much faster than the time dependence of Ω, the spin will

adiabatically follow the magnetic field so the spin is always anti-parallel to Ω(p). If
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the initial spin polarization is not anti-parallel to the effective magnetic field, the

spin will rapidly Larmor precess around the effective magnetic field. This can be

seen in 7.1(b), where we calculate the spin evolution for the non-adiabatic conditions

of an initial spin polarization that is offset slightly from the effective magnetic field.

The spin precesses on the fast timescale α around the adiabatic trajectory where

the initial spin and Ω(p) are anti-parallel.

7.4 Dynamics and Initial Conditions

The equations of motion are non-linear, and the motion is highly sensitive to

initial conditions. We now use Eq 7.18 and Eq. 7.19 to characterize the regimes

of motion of the system for various initial conditions and values of ∆ and δ. To

ensure adiabatic motion, we will continue to assume p(0) = −êx and σ(0) = êx.

Thus, the one initial condition we consider is is the initial axis of displacement,

which gives ṗ(0) = −r0/α. An initial displacement along êx will not result in

interesting dynamics; thus, we consider only initial displacements of the form r0 =

y0êy. Restoring units we see y0 = ỹ0mv/~ = ỹ0 ∗ kL, where ỹ0 is the dimensionful

initial displacement, and kL is the characteristic wavelength of the optical fields used

to induce the spin-orbit coupling. Taking kL ∼ 2π(800nm)−1, and assuming a trap

displacement of y0 ∼ .1 − 10µm we see that ṗ(0) ∼ .5 − 50. This value will be

relevant for later calculations.
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Figure 7.1 – A numerical check of the adiabatic approximation used to derive

Eq. 7.18. (a) The time dependence of difference the momentum p(t) =
√
p2
x + p2

y

for the exact solution pexact and the adiabatic solution padiabatic. This difference is

∼ 10−3, compared to p(t) ∼ 1, so the approximation is very good. (b) A compari-

son of the spin component σx(t) of “adiabatic” initial conditions and non-adiabatic

initial conditions. The adiabatic initial conditions (dashed black line) are such that

the initial spin and momentum vectors are aligned. (p(0) = −êx,σ(0) = êx) The

spin slowly oscillates on a timescale O(1). The evolution of the spin vector for the

non-adiabatic initial conditions (blue) see fast time oscillations O(α) superposed over

the slow time oscillation in the adiabatic setup. These initial conditions are given

by (p(0) = −êx − .1êy,σ(t) = êx). In the limit that the initial spin and momentum

vectors are perpendicular, the spin and momentum will evolve on timescales much

slower than α.
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7.4.1 Conservation Law

We can derive an approximate conservation law from the adiabatic equations

of motion by taking the dot product of p̈ + p = pxêx+∆2py êy√
p2
x(t)+∆2p2

y(t)+δ2
with ṗ:

p̈ · ṗ + p · ṗ =
pxṗx + ∆2pyṗy√

p2
x(t) + ∆2p2

y(t) + δ2
, (7.20)

d

dt

(
ṗ2

2m
+

p2

2m

)
=

d

dt

√
p2
x(t) + ∆2p2

y(t) + δ2, (7.21)

which gives

ṗ2

2
+

p2

2
−
√
p2
x(t) + ∆2p2

y(t) + δ2 = E, (7.22)

where E is a constant of integration. Eq. 7.22 has the form of an energy conservation

equation for a momentum-space harmonic oscillator, with an additional potential

due to the spin-orbit coupling.

We can now use the order of magnitude of the initial condition to classify the

motion into two regimes. The initial conditions give E = (y0/α)2/2+1/2−
√

1 + δ2.

Consider the limit ∆→ 1 and δ → 0. The conservation equation becomes

ṗ2

2
+

(p− 1)2

2
=

y2
0

2α2
. (7.23)

This limit shows that the harmonic trap is displaced around p = 1, so the state with

lowest potential energy is that with p = 1. Thus, for small
y2
0

2α2 . 1, the system will

not have enough kinetic energy to undergo large oscillations, and the momentum

will oscillate as p = |p| = 1 + δp, where δp � 1. However, if
y2
0

2α2 � 1, the system

will have enough energy to overcome the trap, and dynamics with large momenta

are possible. This divides the the dynamics of the system into two regimes, that of

small initial displacement and that of large initial displacement.
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7.4.2 Polar Coordinates

The conservation law above suggests that polar coordinates might be a useful

parameterization for finding perturbative solutions to the equations of motion. We

will transform the coordinates to

px = p cos θ, (7.24)

py = p sin θ, (7.25)

where p =
√
p2
x + p2

y and θ = arctan(px/py). The time derivative becomes [69]

p̈ = (p̈− pθ̇2)êp + (2ṗθ̇ + pθ̈)êθ, (7.26)

and the term

pxêx + ∆2pyêy√
p2
x(t) + ∆2p2

y(t) + δ2
=

p cos θ(cos θêp − sin θêθ)√
p2
x(t) + ∆2p2

y(t) + δ2

+
∆2p sin θ(sin θêp + cos θêθ)√

p2
x(t) + ∆2p2

y(t) + δ2
(7.27)

=
p(cos2 θ + ∆2 sin2 θ)√

p2(cos2 θ + ∆2 sin2 θ) + δ2
êp

− p(1−∆2) sin θ cos θ√
p2(cos2 θ + ∆2 sin2 θ) + δ2

êθ. (7.28)

Matching the components of êp and êθ we get the equations of motion in polar

coordinates

p̈+ p− pθ̇2 =
p(1− ε sin2 θ)√

p2(1− ε sin2 θ) + δ2
, (7.29)

2ṗθ̇ + pθ̈ = − εp sin θ cos θ√
p2(1− ε sin2 θ) + δ2

, (7.30)

where we have used cos2 θ = 1 − sin2 θ and defined ε = 1 − ∆2. We see that in

the isotropic limit, ε = 0, Eq. 7.30 gives a conservation of “angular momentum”,
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p2θ̇ = l.

We are now in a place to characterize the regions of dynamics of the system.

As discussed earlier, we expect two regimes depending on the magnitude of initial

displacement y0. The initial conditions for p and r transform to

p(0) = 1, (7.31)

ṗ(0) = 0, (7.32)

θ(0) = arctan(1/0) = 0, (7.33)

θ̇(0) =
d

dt
arctan

(
px
py

)∣∣∣∣
t=0

=

(
ṗxpy − ṗypx
p2
x + p2

y

)∣∣∣∣
t=0

= −y0/α ≡ ω0. (7.34)

We see that the ε = 0 angular momentum conservation becomes p2θ̇ = ω0. Thus the

regime of large or small initial displacement become the regimes of large or small

initial angular velocity respectively. In the following sections we characterize the

types of motion of the system based upon ω0.

7.5 Small Initial Displacement

We now consider the limit of small initial displacement. As discussed earlier, in

this limit the energy conservation equation forces small radial oscillations around p =

1 + δp. We can therefore linearize the equations of motion around small momentum

oscillations. The dynamics then depends on the value of the anisotropy parameter

ε. We find there are three regimes. The first is for highly anisotropic systems, where
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ε ' 1. The nearly isotropic limit, ε� 1, then divides into two sub regimes of small

initial displacement, ω2 � 3ε > 0, and ω2 & 3ε. We will demonstrate this behavior

in the following sections both analytically and numerically.

7.5.1 Anisotropic Limit, ε ∼ 1

We now consider the anisotropic limit, and linearize the system around p =

1 + δp and θ = δθ. We will neglect all corrections O(δp2, δpδθ, δθ2). In the end we

will justify the linearlization and find the regime of validity for it to remain true.

This linearization gives

δp̈+

(
1− δ2

(1 + δ2)3/2

)
δp =

1−
√

1 + δ2

√
1 + δ2

, (7.35)

and

δθ̈ +
1−∆2

√
1 + δ2

δθ = 0. (7.36)

Using the initial conditions in Eq. 7.31 to Eq. 7.34, these equations have the solutions

δp(t) =
1−
√

1 + δ2

√
1 + δ2

(1− cos(ωpt)), (7.37)

δθ(t) =
ω0

ωθ
sin(ωθt), (7.38)

where ω2
p = 1− δ2/(1 + δ2)3/2 and ω2

θ = ε/
√

1 + δ2. We can now find the regime of

validity of this approximation. We require, δ2 � 3 and ω0/ωθ � 1 which gives the

constraint ε�
√

1 + δ2ω2
0, or ∆�

√
1− ω2

0

√
1 + δ2.

Fig. 7.2 shows a numerical calculation of the full equations of motion Eq. 7.12

to Eq. 7.14 for the initial conditions above. We see that the dynamics of the system

qualitatively follow the motion described above, i.e., the momentum undergoes small
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oscillations around p = 1, and the azimuthal angle oscillates around θ = 0. We

can explain this behavior by thinking of the system in cartesian coordinates in

momentum space. In the strongly anisotropic limit, the system is effectively trapped

in momentum space in a harmonic trap centred at (px, py) = (1, 0). A small coupling

between px and py induce asymmetric and non-closed motion on the oscillations

around the center of the trap.

We conclude this analysis by looking at the dynamics of the spin-polarization

vector. Since the spin vector does not precess, but merely under goes small oscil-

lations around p(0) = −êx, the effective magnetic field will also not precess. This

implies that the spin polarization vector will remain in plane on the Bloch sphere,

and will not precess. Therefore, as will be discussed below, in this limit the system

will not acquire a Berry’s phase. However, as can be seen in Fig. 7.2(d), a detuning

will shift the spin polarization off axis, and a small solid angle will be swept out by

the spin. This makes a small Berry’s phase possible for such a system.

7.5.2 Nearly Isotropic Limit, Intermediate Displacement

In the nearly isotropic limit, ε � 1 can be used as an expansion parameter.

We solve the equations of motion in a perturbation series in ε

p(t) = p0(t) + εp1(t) + ε2p2(t) . . . (7.39)

θ(t) = θ0(t) + εθ1(t) + ε2θ2(t) . . . . (7.40)

To lowest order, the angular equation of motion is

p̈0 + p0 − p0θ̇
2
0 =

p0√
p2

0 + δ2
, (7.41)
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Figure 7.2 – The trajectory of the particle for a small initial displacement with

a large anisotropy. (ε = .31, y0 = 50/kR) (a) Time dependence of the magnitude

of momentum, p(t), and the phase θ(t). (b) A parametric plot of px, py. (c) A

parametric plot of the path the particle orbits in the trap, (x(t), y(t)). (d) The spin

vector expressed on the Bloch sphere.

and the conservation of angular momentum equation gives

p2
0θ̇0 = ω0. (7.42)
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Recall that the energy conservation term was valid to all orders, so we should still

be able to linearize these equations around p0 = 1 + δp0 and θ0 = ω0t+ δθ0. We will

assume δp0 and δθ0 to be O(ω) and O(ω2) respectively, and solve for p0 and θ0 to

first order in ω. This gives p0 = 1 and θ0 = ω0t.

The equations of motion to O(ε1, ω1
0) are

p̈1 + p1 − 2ω0θ̇1 = −1

2
sin2(ω0t), (7.43)

θ̈1 + 2ω0ṗ1 = sin(ω0t) cos(ω0t). (7.44)

We keep the driving terms on the right hand side to all orders in ω0t to look for the

solution at long times. We do not present a full solution, but note that solution to

θ1 is

θ1 =
t

4ω0

− sin(2ω0t)

8ω2
0

+O(ω2
0). (7.45)

Consider the behavior of θ(t) = θ0 + εθ1 at times t ∼ π/4ω0, so that the argument

of sin(2ω0t) ∼ 1. We now check the validity of the linearization,

θ0 + εθ1 = ω0t+ ε

(
t

4ω0

− sin(2ω0t)

8ω2
0

)
, (7.46)

∼ π

4
+ ε

(
π

16ω2
0

− 1

8ω2
0

)
(7.47)

=
π

4
+

ε

ω2
0

π − 2

16
(7.48)

We see that the linear approximation breaks down if

ε/(11ω2
0)� 1. (7.49)

We can subdivide the behavior in the nearly isotropic limit and small initial

displacement into two regimes that can be visualized as follows. The momentum
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space trapping potential has an approximate ring of minima around p = 1. However,

the small anisotropy will give two local maxima at the bottom of the ring at θ =

π/2, 3π/2. If the initial displacement is sufficiently strong, the particle has enough

energy to overcome the local minima and traverse the minima in momentum space.

On the other hand, if the initial displacement is sufficiently weak, the particle will

not be able to overcome the bumps in the ring minima, and the particle will continue

to oscillate around px = −1.

7.5.3 Small Displacement, Weak Anisotropy

We now consider the dynamics of a weakly anisotropic spin-orbit term ε �
√

1 + δ2ω2
0, but an initial displacement sufficiently strong to produce orbits in mo-

mentum space, ω2
0 & ε/11. These initial conditions allows for a linearized solution

with θ = ω0t to lowest order in ε, ω0. Fig. 7.3(a)-(c) gives a numerical solution to

the equations of motion in this regime. We see that the linear approximation is jus-

tified, with the phase evolving linearly, and the magnitude of momentum oscillation

around p = 1. Since the dynamics undergo full orbits in momentum space, the spin

vector will also undergo orbits. For δ = 0, the orbits will be in the σx-σy plane of

the Bloch sphere, and no Berry’s phase will be accumulated. However, adding a

δ 6= 0 Zeeman field will shift the precession of the spin off the σz = 0 plane, and

allow for a Berry’s phase, as is seen in Fig. 7.3(d).
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(c) Trajectory of r(t). (d) Precession of the spin vector σ

Figure 7.3 – The trajectory of the particle for a small initial displacement with

a small anisotropy. (ε = .31, y0 = 50/kR) (a) Time dependence of the magnitude

of momentum, p(t), and the phase θ(t). (b) A parametric plot of px, py. (c) A

parametric plot of the path the particle orbits in the trap, (x(t), y(t)). (d) The spin

vector expressed on the Bloch sphere.
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7.5.4 Very Small Displacement, Weak Anisotropy

We now consider the dynamics of the system in the limit of weak anisotropy

and a displacement weaker than the potential barriers due to the trap anisotropy,

ω2
0 � ε/11. In this limit the particle will oscillate along the minima of the trap as

can be seen in Fig 7.4(b). Since the momentum will not undergo full oscillations,

the spin will also not sweep out a solid angle on the Bloch sphere, and no Berry’s

phase is possible. As in the case of strong anisotropy, a Zeeman field, δ 6= 0 can

induce small oscillations off axis to induce a Berry’s phase.

7.6 Large Displacement

In the limit of large displacement, the equations of motion cannot be solved

perturbatively. An exact solution can be given in terms of inverse elliptic functions,

but is not useful for intuition or calculation. The behavior is shown in Fig. 7.5. The

phase and momentum are approximately periodic, but the momentum oscillates

between 1 and 1 + ω0 � 1.

This limit can also be divided into regimes of strong and weak anistropy.

Fig. 7.5 shows the behavior in the weakly anisotropic regime with a large initial

displacement. The orbits are strongly asymmetric in the px−py plane. As above, the

complete orbit of momentum allows the system to acquire a Berry’s phase. Note that

in Fig. 7.5(d), the small oscillations on the timescale α are visible. These oscillations

are visible because ṗ can be non-negligible on the adiabatic timescale. Thus, Ω(p)

may change enough on the Larmor precession timescale for the oscillations to be
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Figure 7.4 – The trajectory of the particle for a very small initial displacement with

a small anisotropy. (ε = .14, y0 = 10/kR) (a) Time dependence of the magnitude

of momentum, p(t), and the phase θ(t). (b) A parametric plot of px, py. (c) A

parametric plot of the path the particle orbits in the trap, (x(t), y(t)). (d) The spin

vector expressed on the Bloch sphere.

detectable.
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Figure 7.5 – The trajectory of the particle for a large initial displacement with a

small anisotropy. (ε = .31, y0 = 1000/kR) (a) Time dependence of the magnitude

of momentum, p(t), and the phase θ(t). (b) A parametric plot of px, py. (c) A

parametric plot of the path the particle orbits in the trap, (x(t), y(t)). (d) The spin

vector expressed on the Bloch sphere.
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7.7 Berry’s Phase as a Test of non-Abelian Gauge Field.

We now propose an experimental test of the non-Abelian behavior of the spin-

orbit coupling. Consider a trapped system of spin-orbit coupled condensates pre-

pared in the approximate ground state given by Eq. 7.5. Turn on a strong optical

lattice along the êz direction to produce a system of 2D pancakes. If the system is

displaced at t = 0 by r0 = y0êy, the condensate will begin to oscillate and orbit in one

of the regimes given above. As discussed above, the system can acquire a Berry’s

phase if the momentum undergoes complete orbits, so the spin also undergoes a

complete orbit.

Recall that an alternating detuning in the N -level scheme can give rise to a

Dresselhaus term, which varies ∆ < 1. Thus, by applying a spatial gradient along

to the magnetic field along êz, we can tune the anisotropy ε to be different in each

pancake. If the trap minimum is displaced, the condensate in each pancake will

orbit according to its own value of the anisotropy. If the orbit is such that the

spin precesses, that orbit will acquire a Berry’s phase. Note that the single particle

energy is degenerate to order 1/α, so the dynamical phase for each state will be

nearly degenerate. The Berry’s phase can then be measured by releasing the trap

and observing the interference fringes between the pancakes.
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Figure 7.6 – A potential experiment for measuring the Berry’s phase due to the spin-

orbit coupling. A series of 2D pancakes, each with a spin-orbit coupling induced by

the N -level scheme. A magnetic field gradient is tuned along the axis perpendicular

to plane of confinement. This modifies the two-photon detuning on each level, and

in the N -level scheme can vary the magnitude of the anisotropy, ε. The experiment

is set up so that at t = 0, each pancake is prepared in the same ground state with

psuedo-spin oriented along êx, and then displaced by y0êy. Each system will evolve

and accumulate a slightly different Berry’s phase that can then be measured in a

time-of-flight experiment.

7.7.1 Berry’s Phase

We now calculate the Berry’s phase of a particle that orbits the trap such that

the spin is adiabatically locked to momentum. The adiabatic requirement forces

〈σ〉 =
(px,∆py, δ)

T√
p2
x + ∆2p2

y + δ2
, (7.50)

which corresponds to a spinor

χ =

 sin γ

cos γeiφ

 , (7.51)
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where

arctan γ =
δ√

p2
x + ∆2p2

y

, (7.52)

eiφ =
px + i∆py√
p2
x + ∆2p2

y

. (7.53)

The Berry’s connection is

AB = i~χ†
d

dt
χdt (7.54)

= i~
(
sin γ, cos γe−iφ

) d
dt
dt

 sin γ

cos γeiφ

 dt (7.55)

= i~ cos2 γiφ̇dt, (7.56)

but

iφ̇ =
d

dt
log

(
px + i∆py√
p2
x + ∆2p2

y

)
(7.57)

= −i∆ ṗxpy − ṗypx
p2
x + ∆2p2

y

(7.58)

= i∆
1

(1− ε sin2 θ)
θ̇, (7.59)

which gives the Berry’s connection for the ground state as it orbits around the trap

center

AB = − ∆p2

p2(1− ε sin2 θ) + δ2
dθ. (7.60)

The Berry’s phase is thus

γB = −i
∫

dt

(
∆p2

p2(1− ε sin2 θ) + δ2

)
θ̇. (7.61)

This can be calculated either numerically, or by using the perturbative solutions

given above.
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Recall that the Berry’s phase is only well defined if the system precesses a

closed loop in parameter space. It is therefore important to check that this condition

is satisfied. Due to the chaotic dynamics of the equations of motion, this condition

may not be satisfied. However, if the particle’s momentum undergoes a complete

orbit around p = 0 in momentum space, it will be guaranteed to undergo a closed

loop if it is confined to a 2D plane. This then guarantees that the spin will sweep

out a closed loop on the Bloch sphere, and Berry’s phase will be well defined.

In order for the Berry’s phase to be observable it must take a value different

from 2π. Examining Eq. 7.60, it is clear that a finite Zeeman field δ is necessary

for an observable Berry’s phase. At δ = 0, the Berry connection will be Ab =

∆θ̇/(1−ε sin2 θ), which will only deviate slightly from 1 in the nearly isotropic limit,

where closed orbits exist for small initial displacements. Thus, a finite detuning is

necessary for a significant Berry’s phase. Note also that for a detuning δ > 1, the

double well structure of the single particle energy spectrum disappears.

7.8 3-D Spin-Orbit Coupling

In this section we propose a modification of the 4-level scheme to allow for

a generalized spin-orbit coupling scheme that has all three Pauli matricies, and

a vector potential in three dimensions. This coupling arises by adding additional

couplings that connect the four states in a tetrahedral topology, as opposed to the

ring topology discussed above.
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7.8.1 Initial Hamiltonian

Consider now the N -level scheme discussed in Sec. 3.1, with N = 4. To

generate a 3D coupling, consider adding two couplings

H ′al = Ω13 |1〉 〈3| eik13·r + Ω24 |2〉 〈4| eik24·r (7.62)

that connect the states |1〉 to |3〉, and |2〉 to |4〉, as seen in Fig. 7.7. These additional

couplings generate a tetrahedral topology to the atom-laser coupling, as opposed to

the ring like geometry discussed above.

È4\

È3\

È1\

È2\

W12 W34

W14

W23

W13 W24

Figure 7.7 – The 4-level coupling scheme needed for a 3D spin-orbit interaction. The

additional of next-nearest-neighbor couplings Ω13 and Ω24 form a tetrahedral coupling

topology. The momentum transfer of the optical couplings Ωij forms a tetrahedral

geometry.
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The tetrahedral topology now modifies the restriction of the effective wavevec-

tors of the two photon transitions required for the net momentum transfer of the

optical coupling to vanish. Consider the coupling between the state |j〉 and |j + 1〉

to be Ωj,j+1 = Ωeiφj,j+1−ikj,j+1·r, and assume the new couplings to have the form

Ω13 = Ωeiφ13−ik13·r, (7.63)

Ω24 = Ωeiφ24−ik24·r. (7.64)

The conditions of no net momentum transfer around any closed coupling loop there-

fore takes the form

k12 + k23 − k13 = 0, (7.65)

k13 + k34 − k14 = 0, (7.66)

k23 + k34 − k24 = 0. (7.67)

This can be immediately satisfied by assuming the wavevectors kij to have the form

kij = Ki −Kj, (7.68)

where Ki are vectors from the center to the vertex of a tetrahedron. This can be

implemented naturally using two photon transitions where the momentum of the

absorbed and emitted beam are Ki and Kj respectively.

We can now diagonalize the atom-laser Hamiltonian in a manner analogous

to above. We first boost the state |j〉 → e−iKj ·r |j̃〉. This transforms the second
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quantized Hamiltonian to the form

Ĥ =
N∑
j=1

∫
d2q

(
~2|q−Kj|2

2m
+ δ(−1)j

)
ψ̃†j(q)ψ̃j(q)

−
N∑
j=1

∫
d2q

(
~Ωeiφij ψ̃†i (q)ψ̃j(q) +H.c.

)
. (7.69)

The boosted atom-laser coupling then can be expressed in matrix representation as

Hal = Ω



0 eiφ12 eiφ13 eiφ14

e−iφ12 0 eiφ23 eiφ24

e−iφ13 e−iφ23 0 eiφ34

e−iφ14 e−iφ24 e−iφ34 0


. (7.70)

Due to the tetrahedral topology of the optical coupling, it is apparent that only

three of the six phases are relevant. This can be seen by considering loops around

states, e.g. 1→ 2→ 3, 2→ 3→ 4, etc. There are four loops in a tetrahedron, but

only three of them are independent. They can be parametrized in multiple ways,

but a suggestive way to deal with them can be seen by applying the transformation

|j̃〉 → ei
∑j−1
l=1 (γl−γ̄) |j̃〉 (7.71)

where γ̄ =
∑

j γj is the average phase around the closed loop |1〉 → |2〉 → |3〉 →

|4〉 → |1〉. The rephased atom-laser interaction then has the form

Hal = Ω



0 eiγ̄ eiφ̄ e−iγ̄

e−iγ̄ 0 eiγ̄ eiᾱ

e−iφ̄ e−iγ̄ 0 eiγ̄

eiγ̄ e−iᾱ e−iγ̄ 0


. (7.72)

where γ̄, φ̄, and ᾱ are the three phases that cannot be transformed away.
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7.8.2 Diagonalization

We now diagonalize Eq. 7.72 for two specific limits. The first limit is that

of γ̄ = φ̄ = ᾱ = 0. In this limit, the unitary transformation 3.12 will diagonalize

Eq. 7.72. The diagonalized atom-laser term has two eigenvalues, λ = −Ω, 3Ω, with a

three-fold degeneracy of the λ = −Ω eigenvalue. This gives degeneracy gives rise to

a SU(3) spin-orbit coupling. However, this is analogous to the generalized spin-orbit

coupling in Ref. [70].

Another limiting case of interest is that of γ̄ = π/4, φ̄ = π, ᾱ = 0. In this case

the effect of 3.12 will be to transform 7.72 to

H̃al = Ω



−
√

2 0 1 0

0 −
√

2 0 −1

1 0
√

2 0

0 −1 0
√

2


. (7.73)

This can be expressed as Hal = Ω(−
√

2Î ⊗ τz + σz ⊗ τx), where τi is the i-th Pauli

matrix in the supermatrix space. This suggests Hal can be diagonalized with the

matrix U ′ =
(

cos θ −σz sin θ
σz sin θ cos θ

)
, where cos θ =

√
1/2− 1/

√
6. The spectrum for this

matrix is λ = ±
√

3Ω, with both eigenvalues doubly degenerate. This gives a two-

dimensional degenerate subspace for which a 3D spin-orbit coupling can be induced.

As before, the action of the unitary matrix U ′ on the kinetic term will give a vector

potential

A =
1

2
√

3
(K3 +K1− (K4 +K2))σz +

1

2
√

6
(K3−K1)σy +

1

2
√

6
(K4−K2)σx. (7.74)

This vector potential can be made proportional to 3D angular momentum operator,

124



A ∼ J, by tuning the momenta

K4 −K2 = 2kêx, (7.75)

K3 −K1 = 2kêy, (7.76)

K3 + K1 =
k√
2
êz, (7.77)

K4 + K2 = − k√
2
êz, (7.78)

or, equivalently,

K1 = k

(
−êy +

êz√
2

)
, (7.79)

K2 = k

(
−êx −

êz√
2

)
, (7.80)

K3 = k

(
êy +

êz√
2

)
, (7.81)

K4 = k

(
êx −

êz√
2

)
. (7.82)

This simplifies to give a vector potential of

A =
~k√

6
(σx, σy, σz). (7.83)

The four vectors K1 . . .K4 can be seen to be the four vectors from the center to

the vertices of a tetrahedron. Thus, we constructed a generalized 3D spin-orbit

coupling for which the vector potential is proportional to the angular momentum

operator in psuedo-spin space. This is in contrast to the proof in Sec. III.b of

Ref. [70] that claims no 3D spin-orbit coupling is possible for which A ∼ J. Notice

there is no contradiction with this proof. In the limit of large detuning, the 4-

pod scheme of Ref. [70] reduces to the 4-level scheme with the additional couplings

added. However, the 4-pod scheme explicitly assumed all single photon phases were
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equal. This implies that the phases of the effective two-photon couplings vanish,

which reduces to the above SU(3) spin orbit scheme discussed above. Further, the

additional phase degrees of freedom allowed with the additional couplings explicitly

breaks the symmetry properties of the vector potential required in the proof, and

the proof does not apply to our set up.

7.9 Conclusion

In this chapter we propose an experimental consequence of the spin-orbit cou-

pling in a synthetic non-Abelian field. Such a system is found to undergo chaotic

dynamics that can be separated into several regimes, each defined by various values

of the anisotropy of the spin-orbit coupling and the magnitude of the initial displace-

ment of the trap. For certain regimes, such as that of large initial displacement, or

small initial displacement with a nearly isotropic trap, the spin will accumulate a

Berry’s phase. Finally, we propose an experiment on such a system to measure this

Berry’s phase that involves a series of 2D pancakes, each with their own independent

isotropy value. We then consider the effect of next-nearest-neighbor couplings on the

4-level scheme, and find that a 3D spin-orbit coupling is possible, in contradiction

to the proof in [70].
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Chapter 8

Time-dependent accelerometery with Synthetic Gauge Fields

8.1 Introduction

In this chapter we propose a new type of interferometer that uses the optically

induced spin-momentum coupling to measure ac signals. The work in this section

was done in collabortion with Jacob Taylor and Victor Galitski, and was published

in [71].

The optical coupling of the synthetic field provides a continuous coupling of

momentum and spin. This is in contrast to standard interferometry schemes where

spin and momentum coupling is generated only through a set of discrete Raman π/2

and π pulses. We use the continuous spin-momentum coupling of the gauge field to

produce an interferometer sensitive to high frequency time dependent (or ac) fields.

This is in contrast to current systems whose sensitivity to signals drops above a soft

cutoff frequency of ≤ 10Hz [72, 73]. We specifically propose using a trapped system

of cold bosons under the influence of an optically induced gauge field to measure

weak high-frequency (∼ 1kHz) ac gravity signals.

Using time-reversal-like pulses, it is shown that noise can be reduced with a

Carr-Purcell-like pulse sequence. The response function of the system is calculated

for this pulse sequence. We discuss some potential implementations and we estimate

that such a system will have a sensitivity of S ∼ 10−7 m/s2
√

Hz
. We note that since our
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Figure 8.1 – A potential implementation of our interferometer based upon Ref. [4].

The Raman beams Ω1,2 couple a three level atom by two parallel Gaussian profiles

with peaks that are spatially offset. The spatial offset of the beams provides a torque

on the atoms that looks like a magnetic field. Two of the dressed states couple to

a “synthetic gauge field” with opposite charges and become degenerate in the large

detuning limit, ∆→∞.

system is trapped it can be implemented on an atom chip [74, 75, 76].

8.2 Toy Model

To demonstrate how a synthetic gauge field could be used to make measure-

ments of gravity or acceleration we will begin with a toy model. We note that this

model is an idealization of the scheme reviewed Sec. 3.3. As our toy model, we will

consider a single particle with a pseudo-spin-1/2 degree of freedom. The pseudo-

spins, denoted |↑〉 and |↓〉, will be coupled to a synthetic magnetic field proportional

to the σ3 matrix. If there are no other pseudo-spin coupling terms the two uncou-

pled pseudo-spins will behave as if they are coupled to a magnetic field with charges
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of opposite signs. If such a system is placed in a harmonic trap and subject to an

external potential g(t), it’s Hamiltonian will be described by

H =
[p̂− σ3A(r̂)]2

2m
+

1

2
mω2

0 r̂
2 −mg(t) · r̂ (8.1)

where p̂ and r̂ are the position and momentum operators respectively, ω0 is the

trapping frequency, m is the mass of the particle, g(t) is the time dependent external

force and A(r̂) is the spin-orbit coupling field, or vector potential. We confine the

particle to a two dimensional plane and chose vector potential to have the form

of a magnetic field A(r̂) = mωcxêy, where ωc is the characteristic frequency scale

of the spin-orbit coupling and êz is the unit vector perpendicular to the plane of

confinement.

The system described by Eq. 8.1 only has psuedo-spin dependence in the form

of σ3. This means the dynamics of the two pseudo-spins can be considered inde-

pendently with σ3 replaced by a classical parameter σ = ±1. Additionally, the

Hamiltonian is quadratic in x̂ and p̂, so the Heisenberg equations of motion corre-

spond exactly to the Hamiltonian equations of motion. We can thus solve for the

dynamics of the system classically, and apply the intuition to the quantum problem.

The dynamics given in what follows were found exactly in the quantum regime using

both the path integral formalism and by using creation and annihilation operators.

The results are given in Appendix A. In what follows we will give a derivation using

semi-classical arguments, and supplement with the exact quantum solution where

relevant.

As discussed in Chapter 4, gravitational information can be extracted by cre-
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ating a superposition of two quantum states (e.g. spin) that follow distinct paths

through a gravitational potential. The difference in the potential experienced by

the two paths will imprint distinct phases upon the two spin states. Upon overlap

of the two states at a future time, a rotation and measurement in the pseudo-spin

basis will give the phase information, from which the gravitational potential can be

induced. The following discussion will show how the toy model produces two pseudo-

spin states that travel along different paths which are sensitive to gravitationally

dependent phase information.

The classical paths can be found by solving the Heisenberg equations of motion,

and is done in Appendix A. The initial conditions considered are those where a

particle starts at rest in the center of the trap, after which the trap minimum is

suddenly displaced by a vector r0. For such an initial condition the paths of the

σ = ±1 trajectories are mirrored along the axis of the initial trap displacement, as

can be seen in Fig. 8.2(a) and Fig. 8.2(b). These paths are characterized by the two

classical frequencies ω± = ω̃±ωc/2, with ω̃2 = ω2
0 +(ωc/2)2. Furthermore, switching

the sign of the psuedo-spin, i.e. taking σ → −σ, will time-reverse the paths in the

sense that they will retrace the trajectory they just followed.

8.3 Interferometry in the Toy Model

We can now see how such a toy model can be used to perform time-dependent,

or time-independent measurements of acceleration. The mirror symmetry of the two

pseudo-spin trajectories can act as the two arms of a Mach-Zehnder interferometer.
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The effect of an external force will be to perturb the paths differently. In the case

of a constant and uniform gravitational field, the physics is analogous to a normal

atom interferometer. The upper arm will be at a higher potential, and therefore

will accumulate phase faster than the lower arm. However, if the paths are allowed

to perform a full orbit around the trap center, they will interchange the role of the

upper and lower arm, and the net phase accumulated will be the same. This implies

a time-independent gravitational measurement can only be made at half-orbits.

The situation is more subtle in the presence of a time-dependent external force.

In this case, the direction of acceleration can change mid-way through an orbit, and

the pseudo-spin with the highest potential will also change. In this case the response

of the two arms will not be equal over one orbit, and the system can have a non-zero

response even after completing a full orbit. We see this response is maximum for a

periodic signal with a frequency near one of the classical frequency ω−. In this case,

one arm will stay at a higher potential for the full orbit since the sign of the driving

force will change at half-obits where the response of the two classical paths would

switch in the presence of a time-independent potential.

The relation of this behavior to phase information is detailed in the appendix.

It is shown that a Gaussian wavepacket will evolve as a coherent state around

the classical orbits, accumulating a g(t) dependent phase with time. Explicitly,

such a state evolves as ψσ(r, t) = φ0(r − rσ(t))eiSσ , where φ0(r) is the harmonic

oscillator wavefunction, and rσ(t), Sσ are the respective classical path and action

corresponding to a particle with charge σ.

We become sensitive to this phase in a manner similar to the traditional in-
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terferometry schemes discussed in Chapter 4. Begin with a particle in the initial

state |Ψ〉 = ψ↑(0) |↑〉, where |↑〉 is the σ = +1 pseudo-spin state and ψ↑(0) is the

orbital ground state for both |↑〉 and |↓〉. Through the application of a π/2 pulse in

pseudo-spin space, the pseudo-spin polarized system is placed in the superopsition

|Ψ〉 = |↑〉+|↓〉√
2
ψ↑(0). We then displace the trap center which will cause the orbital

wavefunctions to orbit around the trap center in the manner described above. The

wavefunction evolves to

|Ψ〉 =
1√
2

(
eiS↑ψ↑(r, t) |↑〉+ eiS↓ψ↓(r, t) |↓〉

)
. (8.2)

In general the spin states |↑〉, |↓〉 are entangled to the orbital states ψ↑(r, t), ψ↓(r, t)

respectively. However, a pure spin measurement is required for extracting the phase

information. This can be performed by waiting for the classical trajectory of the

orbital wavefunctions to overlap, i.e. ψ↑(r, tf ) = ψ↓(r, tf ). At this point the spin

and orbital wavefunctions factor as

|Ψ〉 =
1√
2

(
eiS↑ |↑〉+ eiS↓ |↓〉

)
ψ↑(r, tf ) (8.3)

This places the system in the pseudo-spin state 1√
2
(|↑〉 + ei∆S |↓〉) which allows us

to measure ∆S = S↑ − S↓ though a single operator measurement such as Ŝy.

As shown in the appendix, the first order phase due to the presence of an

external force g(t) is exp(iSσ) = exp
[
im~
∫ tf
ti

dt rσ(t) · g(t)
]
, which is effectively the

convolution of the particle’s path and the external force g(t). In an interferometric

measurement the phase difference between the two pseudo-spins is what is relevant.
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This takes the form

exp(iSg) = exp

[
i
m

~

∫ tf

ti

dt (r↑(t)− r↓(t)) · g(t)

]
(8.4)

Which clearly depends only on the difference in the paths r↑ and r↓. There is also

a higher order term in g/loω
2, where the harmonic oscillator length lo =

√
~/mω̃.

The mirror symmetry of the two trajectories will be broken if the π/2-pulse

imparts a large momentum to the pseudo-spin |↑〉. The effect of this symmetry

breaking can be solved by either considering a radio frequency Rabi pulse, or two

co-propagaing laser pulses. Radio frequency pulses are long wavelength, and there-

fore will transfer negligible momentum to the atom. A co-propagating two-photon

transition will have keff = k1 − k2, which can be made small if the energy splitting

of the ground states is sufficiently small.

It is of note that for g(t) = const, this phase correction is independent of σ

and the phase response is exp(iSg) = exp
[
im~ g ·

∫ tf
ti

(r↑(t)− r↓(t))
]
, which is just the

projection of the force g onto the average of the difference of the two classical paths.

A spin polarization measurement can be used to extract this phase information in

Eq. 8.3.

If the system is set up to measure weak, time-dependent, gravitational signals,

the spin matrix that is used to make the measurement is relevant. For a small

phase, a Ŝy spin measurement will be first order in the phase, whereas the phase

will enter a Ŝx measurement at second order. It is thus necessary to chose the spin

polarization measurement carefully.

To conclude this section, we can express the above set of operations, such as
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r0

(a)

r0

(b)

Figure 8.2 – The classical trajectories of a particle initially displace by r0 and the

corresponding perturbed paths for a state with positive (Fig. 8.2(a)) or negative

(Fig. 8.2(b)) effective charge. In both cases, the dashed black line is the unperturbed

classical path, while the blue(red) line is the perturbed response for a particle with

positive(negative) charge. For both plots, the ratio of the two classical frequencies is

given by ω+/ω− = 6, and the gravitational perturbation is driving at a frequency of

ωg = 1.07ω+. Note that the strength of the perturbation is exaggerated for effect,

and larger than the upper bound on the measurable signal given by Eq. 8.15.
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displacement, spin rotations, free evolution and a spin polarization measurement

as the matrix elements of a quantum mechanical operator. Although the above

process was straightforward, an operator description of the above process will make

the description and calculation of more general pulse sequences straightforward. We

can specifically represent the above pulse sequence as the unitary matrix

Up = Rŷ(−π/2)U(t)D[Rr0]Rx̂(π/2), (8.5)

where the displacement vector D[α] is defined in the appendix, and encodes the

initial conditions r(0) = r0 and ṙ = 0, and the time evolution operator U(t)

can be found exactly. The expectation value in Eq. 8.6 is then given by 〈Sz〉 =

〈0, ↑|U †pSzUp |0, ↑〉 and can be shown to reproduce Eq. 8.6.

8.4 Response

We now find the response of our interferometer to an arbitrary time varying

force. As is shown in the appendix, a spin rotation followed by a spin polarization

will give

〈Sz〉 = sin

[
2

∫ t′

0

dt (ẑ × r0) · g(t′)h⊥(t′)

]
, (8.6)

where h⊥(t) = 1
2ω̃

(ω− sin(ω+t)− ω+ sin(ω−t)) is the component of motion in the

direction perpendicular to the initial axis of displacement. For many purposes the

response of the system to certain frequencies is the quantity of interest. To find the

frequency response function, first consider the Fourier transform of the signal, g(t) =∫
dω
2π
e−iωtg̃(ω). We can then switch the order of the ω and t integrals and perform

the
∫ t

0
dt integral. This allows us to express Eq. 8.6 as 〈Sz〉 = sin

[∫
dω
2π
g̃⊥(ω)F0(ω)

]
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Figure 8.3 – The normalized response function for
∣∣∣ ω̃F (ω)

r0t

∣∣∣2 for the pulse sequence

Up, (dashed) or UCP , the Carr-Purcell like pulse sequence (solid). For both sequences

we used t = 10π
ω++ω−

= 5π
ω̃ and ε = ω+/ω−. Note we have scaled the response for to

the CP pulse sequence by a factor of 16 to account for the factor of four increase in

interrogation time.

where and

F0(ω) =
ir0t

ω̃

∑
{σ,τ=±1}

στ ω−σ f(ω + τωσ) (8.7)

is the full response function of the system. This has the form of a weighted sum

of the single frequency response f(ω), defined by f(ω) = sin(ωt/2)
ωt/2

e−iωt/2. Note that

f(ω) vanishes at t = 0, the lower limit of integration. If we started measurement at

ti 6= 0, an additional set of terms would appear in F0(ω).

The behavior of the response function can be seen in Fig. 8.3. The peak

response of the system is at the frequencies ω = ω± with relative peak amplitudes
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of ω−/ω+. The bandwidth of the system varies with the inverse of the interrogation

time, 1/t, giving a large bandwidth for small measurement times. It can also be seen

that F0(ω) will have non-zero response at ω → 0, unless the classical frequencies and

measurement time satisfy ω+t = mπ and ω−t = nπ, where n and m are integers.

This condition can be seen as the constraint that the average time spent off the

initial axis of displacement is zero. Intuitively this makes sense, as the average

potential seen by either path vanishes, and therefore so does the phase. For some

purposes this dc sensitivity is unwanted, however, chosing the classical frequencies

so that the sensitivity can vanish may be difficult. Methods for eliminating this

response will be discussed below.

8.5 Carr-Purcell and Time Reversal pulses

In order to make a measurement, it is necessary to wait until the orbital

wavefunctions overlap as completely as possible. The coherent state waveufunction

has a Gaussian profile so a measurement that occurs away from a point of classical

overlap will yield 〈Sz〉 = e−(2
r0
lo
h⊥(∆t))

2

sin
[
2
∫ ∆t

0
dt (ẑ × r0) · δg(t)h(t)

]
, which is

suppressed by a factor ofA = e−(2
r0
lo
h⊥(t))

2

. This suppression factor will be significant

if the system is measured at a time when the classical paths do not overlap. As

discussed above, the only measurement points exist on the axis of displacement, but

unless the classical frequencies are commensurate, the system will have non-zero dc

sensitivity.

This dc sensitivity can be eliminated by using a “time-reversal” pulse. As
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discussed in the appendix, a π-pulse, e.g. Rŷ(π), will act to interchange the two

pseudo-spin states. The exchange of σ → −σ applied at special points on the

classical trajectory will cause the spins to retrace their path, effectively as if the flow

of time has been reversed. For the initial conditions given by the trap displacement,

these points occur at times

t =
2πn

ω+ + ω−
=
πn

ω̃
, (8.8)

which can be seen as the cusps in the dotted lines of Figure 8.2. We see that if

a time reversal pulse is applied at a time given by Eq. 8.8, then the particle will

return to its starting position at a time 2t. Since a π pulse will interchange both

pseudo-spins, both paths will retrace their trajectory and then overlap at the origin.

It is obvious that a single π pulse applied at an arbitrary time given by Eq. 8.8

will have an average non-zero time above the origin, and therefore will have non-zero

dc sensitivity. Thus, while a single π pulse can be used to guarantee overlap of the

classical trajectories it cannot be used to cancel dc sensitivity. If dc sensitivity is

not desired, a second π pulse can be applied at a time 3t, and then a measurement

can be made at a time 4t. This pulse sequence is analogous to the Carr-Purcell

sequence commonly used in NMR [77]. A sample classical trajectory of such a pulse

can be seen in Fig. 8.4(a). It can be seen that dc signals will vanish, as the average

time spent off of the initial axis is zero.

This pulse sequence has the additional benefit of acting to cancel noise, anal-

ogous to the cancellation of inhomogenous dephasing in spin-echo. Such a pulse

sequence will act to reduce the effect of random noise, such as 1/f electronic noise.
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The pulse will cancel the strong effective Zeeman field due to the energy splitting

between the dark state and the low energy bright state used as pseudo spins. It

will also cancel the weak (compared to the Zeeman splitting), off-diagonal scalar

potential that arose in the synthetic magnetic field described in Sec. 3.3.

The operator formalism for calculating the path and classical trajectory now

has a clear advantage over the path integral approach. The time evolution operator

for a harmonic oscillator in the presence of a time-dependent force takes the form

of a time-dependent displacement operator. Thus, the application of multiple time

evolution operators sandwiched between time reversal pulses will take the form of

a single displacement operator. This is in contrast to the path integral approach,

where the propagator between time reversal pulses must be calculated and then an

integration must be performed at each step. In what follows the operator formalism

will be adopted exclusively.

In the operator language, the Carr-Purcell like pulse sequence can be expressed

as

UCP = Rŷ(−π/2)U(4t, 3t)Rŷ(π)U(3t, t)Rŷ(π)U(t, 0)D[Rr0]Rŷ(π/2). (8.9)

where t is taken to be a special point where time where Rŷ(π) will time reverse

the classical path, and U(tf , ti) is the time evolution operator that advances the

time from a time ti to a time tf , and satisfies the standard properties of the time

evolution operator [5]. In the appendix it is shown that the time evolution operator

in the presence of a driving term g(t) takes the form:

U(t, 0) = e−i(ω+a
†
+a++ω−a

†
−a−)tD[γ(t)]e−iφγ(t), (8.10)
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where D[γ(t)] is a displacement operator to account for the driving of the gravita-

tional field, and e−uφγ(t) is a phase term that is second order in g(t), and is path

independent. The time evolution between a time ti and tf can be found by using

the identity U(tf , ti) = U(tf , 0)U †(ti, 0).

The full evolution operator UCP can now be calculated. It is found that the

modified frequency response function is

F (ω) = 2i sin(ωt)
[
F0(ω)eiωt + F ∗0 (ω)e−iωt

]
ei2ωt (8.11)

where F0(ω) is the response function given in Eq. 8.7. The complex conjugate term

F ∗0 (ω) arises due to the time reversal of the paths. This response function is plotted

in Fig. 8.3. The new response function now vanishes at ω = 0 and ω = ω±, however

we still have large sensitivity in the frequency range ω = 1
8

2π
t

around ω±.

8.6 Experimental Setup

We now discuss the experimental details relevant to implement such a mea-

surement device experimentally. The physics described in the toy model can be

experimentally realized, at least approximately, in cold atom systems. As discussed

in the introduction, there are several possible implementations of synthetic magnetic

fields in cold atomic systems. Unfortunately, the only scheme to be experimentally

realized to date [23] will not be sufficient, as the effective charges of the two pseudo-

spin states do not have opposite signs. However, the scheme given in Ref. [4] does

give a set of pseudo-spin states that couple to a synthetic field with equal and op-

posite charges in the large detuning limit. The two states do have a small energy
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r0

Π-pulse

Π-pulse

(a) (b)

Figure 8.4 – 8.4(a) The classical path a particle will follow with the CP pulse sequence

given by Eq. 8.9. The red path corresponds to the initial free evolution for a time t.

The dashed path is the time reversed path allowed to evolve for a time 2t. Finally, the

solid blue path is the return trajectory for another t. Note that the three trajectories

will overlap in practice, and have been offset just for a visual aid. The three arcs

correspond to the direction of motion of the classical trajectory. We have chosen

ε = ω+/ω− = 22.

splitting that vanishes in the infinite detuning limit, ∆ → ∞, but through the use

of a Carr-Purcell pulse sequence this energy splitting and phase will average to zero.

We note that the synthetic field in this scheme is not spatially uniform, but this

only adds technical complications and does not fundamentally change the ability for

such a system to make acceleration measurements.

We now must generalize our scheme to a many-atom scheme that is found

in an atom interferometer. The many-particle system of interest is a dilute cold

atoms, as opposed to a BEC. Using such a system allows atom-atom interactions

141



to be neglected, which could considerably alter the physics in a BEC. A thermal

ensemble of cold atoms can be represented using the Glauber P representation [11],

where the density matrix

ρ =

∫
dα e−|α+|2/〈n+〉−|α−|2/〈n−〉 |α〉 〈α| (8.12)

is treated as a sum over coherent states, and 〈ni〉 = [exp[~ωi/kT ] − 1]−1 is the

average occupation for the classical mode of frequency ωi. The use of such a ther-

mal ensemble will suppress the expectation value of the Sz operator by a factor

e−〈n+〉|γ+|2−〈n−〉|γ−|2 relative to the single particle/zero temperature expectation value.

The suppression factor γ± depends on the pulse sequence used. For example, using

the pulse sequence Up given above we get

γ+ =
lo
2

∫ t

0

dt′ (gx + igy)e
iω+t′ , (8.13)

γ− =
lo
2

∫ t

0

dt′ (gy + igx)e
iω−t′ . (8.14)

The frequency response of these suppression factors can most easily be understood

by noting the fact that they form a basis for expression the phase response. In other

words, the phase term Sg ∼
∫

dt r · g can be expressed as a superposition of γ+

and γ−. For the Carr-Purcell like pulse sequence the form of the suppression factor

γ± is more complicated, but can it still forms a basis for which we can express the

phase. This implies that γ± has a similar frequency dependence to F (ω). This also

shows that a pulse sequence designed to eliminate this suppression will also result

in a suppression of the signal. Fortunately, this suppression enters quadratically in

the external field g, whereas the phase response is first order in g.
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We are now in a position to discuss the measurement capabilities of such a

system. We first estimate the maximum ac signal such a system can measure. As

discussed before, weak ac signals will perturb the classical trajectories so they do

not completely overlap. The response of the interferometer is therefore suppressed

if the signal is too strong, which fortunately is an effect second order in the external

field. It is shown in the appendix that the upper bound for the strength of an ac

signal to avoid signal suppression due to the finite temperature is given by

gmax ≤
1√
〈n〉

4π~
mr0τ

. (8.15)

Assuming this is the maximum signal strength, it is then further shown in the

appendix that the sensitivity for such a system is given by

S ∼
√

1

Nτ

2π~
mr0

, (8.16)

where the lifetime of one measurement, 1/τ = γse + γcoll is limited by spontaneous

emission, γse and collisions, γcoll.

We see now that the sensitivity of the system depends on the geometry, the

hold time, and number of repeated measurements, i.e. atoms. We desire to maxi-

mize the system’s sensitivity to accelerations (or minimize S). The system has two

competing time scales that limit the interrogation time of the atoms, the sponta-

neous emission rate, γse, and the collision rate, γcoll. The spontaneous emission

rate is independent of the number of atoms, but the collision rate depends on the

temperature and number of atoms. Our system is further constrained by the “laser

homogeneity” radius, rl, for which non-linear variations in the laser fields are sup-

pressed.
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Taking these considerations into account we can now optimize the sensitivity

of the detector. The following analysis is done for a 2D system. The effective 2D

system will use an axial trapping potential of ω‖ ≥ ln(2)kT/~ to freeze all motion

into a single transverse mode. Thus our system will have Nl = rl/d layers, where

d =
√

~/mω‖, providing for an increase in sensitivity of 1/
√
Nl. The radius rl

further constrains our sensitivity by bounding the maximum trap displacement by

r0 = rl− rt, where rt =
√
〈n〉lo ∼ 〈v〉/ω̃ is the thermal radius of a thermal ensemble

and 〈n〉 = kT/~ω and 〈v〉 =
√

3kT/m are the respective high temperature thermal

occupation number and velocity. (Fig. 8.4(b))

The lifetime of the system will be dominated by spontaneous emission at low

densities and collisions at high densities. To optimize the sensitivity we desire to

place as many atoms per layer as possible. For a 2D system, the collisional scattering

rate is given by γcoll = Na〈v〉a2

dr2
t

, where a is the interparticle scattering length. As

the number of atoms increases, the collisional lifetime will decrease until it is equal

to the spontaneous emission lifetime, with the crossover happening at Nc = 〈v〉a2

γsedr2
t
.

At low atom number the sensitivity of the system will decrease with 1/
√
Na due

to the statistical enhancement of the signal to noise ratio. However, above Nc, the

1/
√
Na gain in sensitivity will begin to counteracted by by a

√
τ loss in sensitivity

due to the shortened lifetime of the system. In this limit the sensitivity becomes

independent of the number of atoms and the sensitivity can be maximized by tuning

the trapping frequency to ωmin = 2〈v〉/rl. Note that while the sensitivity of the

detector will not be affected by adding more atoms in the large atom limit, the

decrease in interrogation time will increase the bandwidth. (See Fig. 8.5(b).) Thus,
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the bandwidth can be tuned without a loss in sensitivity in the large atom number

limit.

We now estimate the sensitivity of a potential experiment. We will consider a

cold gas of 87Rb cooled to T = 1µK with a frequency scale ω̃ = 2πkHz and an axial

confinement distance of d = 1µm. At these temperatures the gas is non-degenerate

and is described well by a classical gas. For this temperature we estimate an upper

bound of g ∼ 10−2m/s2 before exponential suppression of the signal above becomes

relevant. We take the spontaneous emission rate to be Γse = 1/70ms [26] and laser

inhomogeneity radius to be rl = 10− 25µm. In the Na � Nc limit we estimate the

sensitivity to be

S ∼ 10−7 m/s2

√
Hz

. (8.17)

A similar analysis for a 3D system gives a sensitivity drop of approximately an

order of magnitude. We note that had we instead used a fermionic species we would

obtain a similar result since we have two spin species.

8.7 Conclusion and Discussion

In conclusion, we proposed a new method of atom gravimetry that uses the

pseudo-spin states of a synthetic magnetic field to continuously couple spin and

position. The continuous coupling generates a sensitivity to time-dependent signals

on frequency scales that are much shorter than the long time scales a traditional

atom interferometer can measure. We then show that noise can be reduced by using

time-reversal-like pulses. Finally, the experimental feasibility of such a system is
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Figure 8.5 – 8.5(a) The dependence of the sensitivity of the system based upon atom

number. Below Nc ∼ 106 the sensitivity grows as 1√
N/Nc

. Above Nc the sensitivity

S ∼ 10−7m/s2/
√

Hz is independent of the number of particles. 8.5(b) The bandwidth

of the system with optimal sensitivity as a function of the number of particles.

considered and the sensitivity is estimated as S ∼ 10−7m/s2/
√

Hz. This scheme

uses trapped atoms, so it can be naturally implemented on an atom chip.

The concept of a continuous coupling of spin to momentum can also be ex-

tended to a continuous coupling of spin and position. We note that in a harmonic

trap position and momentum are dual variables, and thus a spin-dependent term in

the Hamiltonian that has spatial variation will experience a similar phase accumula-

tion to the system described above. An example would be trapped spin-1 system in

the presence of a Zeeman field with a strong spatial variation. In such a system the

Zeeman field will act to trap (anti-trap) the Sz = +1 and Sz = −1 spin states with

different trapping potentials. This will play a similar role to the opposite charge

couplings to gauge fields given above. However, such a system requires strong mag-

netic field gradients so it may be impractical. An even simpler generalization of the
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ac interferometry scheme could involve two spin states given initial opposite angular

momentum around the trap center.

Finally, we note that this system is not limited to measurements of ac signals.

Through appropriate modifications of pulse sequences, such a scheme is capable of

measurements of dc gravity, gravitational gradients and rotations. Due to electronics

noise, the sensitivity of these systems will be significantly lower than existing atom

interferometers. However, for some applications they may still be useful due to the

ability to place the system on a chip.
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Chapter 9

Bulk Spin-Hall Effect

9.1 Introduction

One of the goals of spintronics [42, 43] is to generate spin polarization and

transport in semiconducting systems using electric fields. As discussed in Chap-

ter 5, the existence of spin-orbit coupling has allowed for a class of anomalous spin

transport mechanisms such as the spin-Hall effect [45, 46, 47, 78, 79], the mani-

festation of which is spin accumulation on the boundaries of the system. Thus,

from an experimental perspective, the spin-Hall effect is a edge phenomena whose

manifestation is strongly dependent on boundary conditions. The role of the edge

is to create a strong inhomogeneity where a spin density can accumulate. However,

if a long length scale inhomogeneity was created in the bulk, by analogy with the

edge spin-Hall effect, a spin accumulation would appear. For example, a sinusoidal

charge/spin density wave would effectively create multiple boundaries in the bulk

to induce a manifestation of the bulk direct/inverse spin-Hall effect.

In this chapter we predict a new manifestation of the inverse spin-Hall effect

based upon the work of Koralek et. al. This work was done in collaboration with

Tudor Stanescu and Victor Galitski, and was motivated by discussions with Joe

Orenstein [57]. This work is similar to the previous sections in that it is driven

by spin-orbit coupling. However, the spin-orbit coupling arises as a relativistic
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correction that is a result of inversion asymmetry in the crystal structure of the

semiconductor. This is in contrast to the previous sections where the effective spin-

orbit coupling of atoms arose from an optically induced synthetic field.

The transient spin grating (TSG) technique [80, 81, 82] can be used to induce a

sinusoidal spin polarization wave in the bulk, as well as monitor time dependent spin

and charge profiles. Within the TSG method, a sinusoidal spin-polarization wave

is generated by two interfering non-collinear laser beams with orthogonal linear

polarization. This induces a modulation in the index of refraction, which can be

measured at subsequent times by the diffraction of a probe pulse. The spin grating

acts as a periodic boundary in the bulk of the system; it is expected that a spin-orbit

coupled system in the presence of an external electric field oriented perpendicular to

the spin polarization-wave-vector will develop a charge density wave with the same

wave vector (see Fig. 9.1). Alternatively, if a charge density wave were induced, a

corresponding spin modulation would develop.

We develop the theory of the bulk spin-Hall effect in the diffusion limit, in

the presence of Rashba [29] and (linear and cubic) Dresselhaus [44] spin-orbit in-

teractions. We focus on the time evolution of a charge density profile induced by

an optically generated spin-polarization wave and its dependence on the spin-orbit

couplings and on the spin-grating wave-vector. In particular, we determine the opti-

mal parameters for observing the spin-Hall effect with spin gratings. These optimal

parameters result from a balance between two competing requirements: 1) to create

slowly decaying spin-polarization waves, and 2) to have a strong spin-charge cou-

pling. The first requirement is related to the more general challenge in the field
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of spintronics of identifying mechanisms allowing for long spin relaxation times. In

the presence of disorder, spin-orbit interactions lead to spin relaxation through the

Dyakonov-Perel mechanism [49]. Recently, it was shown that an enhanced spin life

time can be realized by tuning the spin-orbit coupling so that the Rashba and the

linear Dresselhaus couplings become equal [83, 56, 57, 53, 84]. In this regime, SU(2)

spin symmetry is restored, allowing for a long lifetime helical spin density mode [83]

termed the “persistent spin helix”[56], provided that the cubic Dresselhaus con-

tribution can be minimized [85]. However, in the persistent spin helix regime the

coupling between the spin and the charge channels vanishes and the spin Hall effect

cannot be observed. Hence, the second requirement, a strong spin-charge coupling

is needed.

9.2 Spin-Charge Diffusion Equations

We consider a two-dimensional electron gas in a III-V type semiconductor

quantum well grown along the [001] axis (set as the ẑ-axis). The spin-orbit cou-

pling Hamiltonian describing the conduction band electrons is Hso = h(p) · σ̂,

where h(p) = (hx, hy) is the momentum-dependent effective “magnetic” field which

has contributions due to the Rashba [29], linear and cubic Dresselhaus [44] spin-

orbit interaction of the form hR(p) = αvF (−py, px), hD1(p) = β1vF (px,−py) and

hD3(p) = −4β3
vF
p2
F

(pxp
2
y,−pyp2

x), respectively. Here vF and pF are the Fermi velocity

and momentum, respectively, and the coupling constants α, β1 and β3 measure the

strength of the spin-orbit interaction relative to the Fermi energy.
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(induced charge−density profile)(initial spin−density profile)

ρ

Figure 9.1 – Charge-density profile induced by the relaxation of a spin-density wave

in the presence of a uniform electric field. The initial spin density corresponds to a

sinusoidal wave with wave-vector q of the out-of-plane Sz component, as symbolized

by the blue (spin up) and red (spin-down) arrows. The in-plane electric field is oriented

perpendicular to q. Notice the π
2 shift of the induced charge-density profile relative

to the spin-density wave.

In the presence of disorder, the coupled spin and charge dynamics can be

described by a generalized diffusion equation, which in the absence of an external

electric field has the form [86, 85]

(∂t −D∇2)ρi = (Γij − P ijk∂k + Cij · ∇)ρj, (9.1)

where ρ0 is the charge density and ρ1,2,3 ≡ ρx,y,z are spin densities. The parameters

Γij describe the Dyakanov-Perel spin relaxation [49], D = τv2
F/2 is the diffusion

constant, with τ the mean scattering time, P ijk = −P jik characterize the preces-

sion of the spin polarization and Cij describe the coupling between the spin and

charge degrees of freedom. In momentum space, the diffusion equation becomes
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[
δij − Π̂ij(ω,k)

]
ρj = 0, where Π̂ij have coefficients given by Γij, P ijk and Cij [85].

The formal solution of the diffusion equation is ρi(r, t) =
∫
dr′Dij(r, r

′, t)ρj(r
′, 0),

where ρi(r, 0) is the initial spin-charge distribution and D̂ = [1̂− Π̂]−1 is the Green’s

function of the diffusion equation.

The generalization of the spin-charge diffusion formalism developed in Ref.

[85] for the case of a uniform electric field amounts to the formal substitution

∇→∇ + µE/2D, (9.2)

where E is a uniform electric field and µ is the mobility of the two-dimensional elec-

tron gas. Note that, neglecting the spin-charge coupling, this substitution generates

the standard drift-diffusion equation for the charge channel, while the description of

the spin sector is in agreement with a semi-classical kinetic theory of electron spin

transport derived using the Keldysh Green’s function formalism [87, 88]. The sub-

stitution (9.2) is valid as long as non-linear contributions of order O(E2) are small

and assuming that the effects of the electron-electron Coulomb interaction can be

neglected. Without loss of generality, we focus on the geometry corresponding to

Fig. 9.1 and consider a system with an initial out of plane spin-density wave (SDW),

ρz(r, 0) = n0cos(qr+), oriented along the [110] direction (e+) and a weak constant

electric field, E = E0e−, oriented along [11̄0] (e−). In momentum space, the sub-

stitution (9.2) becomes k → k − iµE/D and the inverse of the Green’s function
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is

1̂− Π̂(ω, q) =



s− 1 iλ−Ẽ λ+q 0

iλ−Ẽ s− γRγD
2

0 −iγ+q

λ+q 0 s+ γRγD
2

−γ−Ẽ

0 iγ+q γ−Ẽ s+ 1


, (9.3)

where Ẽ = µELs/2D is a dimensionless measure of the electric field strength and

s = −iω(q) + q2 + 1. All lengths are measured in units of spin relaxation length,

Ls = 1/2pF∆ and times in units of spin relaxation time, τs = 2τ/g2∆, where

∆ = (α2 + (β1 − β3)2 + β2
3)

1/2
and g = 2vFpF τ is a dimensionless conductance. The

spin-spin coupling parameters [85], γ± = γR ± γD, with γR = 2α/∆ and γD =

2(β1 − β3)/∆, are independent of the overall strength of the spin-orbit interaction

Γ = (α2 + β2
1 + β2

3)
1/2

and lie within a disc of radius 2. The spin-charge coupling

parameters [85], λ± = λ1 ± λ2, with λ1 = [(3β3 − β1)(α2 − β2
1 + β2

3)− β1β
2
3 ]/∆ and

λ2 = α(α2 − β2
1 + 6β2

3)/∆, are quadratic in the spin-orbit interaction strength.

9.3 Charge Density Wave

The induced charge density ρ0(r, t) is determined by the matrix element D03 =∑3
l=0Al(q)e−iωl(q)t of the inverse Green’s function. Here iωl(q) are the relaxation

modes obtained from the equation det
[
1̂− Π̂(ω,q)

]
= 0 and Al(q) are momentum-

dependent amplitudes. To order O(Ẽ2) the relaxation times are independent of the

electric field, while the amplitudes have a linear dependence, Al(q) = i(µE/vF )qÃl(q),

with Ãl(q) being an even function of momentum and q = q · e+. Note that, if one

initially generates a charge density profile, the external electric field induces a spin
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Figure 9.2 – Time dependence of the induced charge-density waveamplitude A(t)

for various values of the dimensionless spin orbit coupling parameters (γR, γD), for

an spin-orbit coupling strength Γ = .001. The wave-vector q ‖ e+ has a fixed value,

q = 0.6/Ls. The amplitude of the induced wave varies non-monotonically and is

characterized by a peak value Amax and an exponential decay at large times.

wave with a spatial and time dependence determined by D̂30 = −D̂03. Hence the

present analysis applies to both the direct and the inverse spin Hall effect. Ex-

plicitly, an initial out-of-plane spin density wave ρz(r, 0) = n0cos(qr+) induces a

time-dependent charge density wave

ρ(r, t) = n0 sin(qr+)
µE

vf

3∑
l=0

qÃl(q)e
−iωl(q2)t (9.4)

Note that the induced charge density wave (CDW) is phase shifted by π/2 relative to

the initial SDW (see Fig. 9.1) and has a time dependent amplitude n0(µE/vF )A(t)

where A(t) =
∑3

l=0 qÃl(q)e
−iωl(q2)t. The general behavior of the induced CDW

amplitude A(t) is shown in Fig. 9.2. At t = 0 the amplitude of the CDW vanishes,

as the system is initially uniform, while at long times A(t) decays exponentially with
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a characteristic lifetime 1/(iωl(q)) given by the lowest frequency relaxation mode.

At intermediate times of order τs the CDW amplitude has one maximum and/or

one minimum. The largest absolute value defines the peak amplitude Amax.

The strength of the Rashba and Dresselhaus spin-orbit interaction in GaAs

quantum wells can be adjusted by varying the doping asymmetry or the width of

the quantum wells. Values in the range of α = 0.5 × 10−3 to α = 1.5 × 10−3 and

β1 = 1 × 10−3 to β = 3 × 10−3 with β3 = 0.3 × 10−3 [57] can be experimentally

achieved, thus most of region in the vicinity of the boundary of the radius 2 disc in

the (γR, γD) parameter space can be probed. Scaling α, β1 and β3 equally will not

change the spin-spin couplings γR or γD, but it will change the spin-charge couplings

λ+ and λ− which are quadratic in the overall spin-orbit coupling strength Γ. The

amplitudes Ãl(q) depend linearly on λ+ and λ− with higher order corrections of

order λ3
±. Thus for experimentally realizable two-dimensional spin-orbit interacting

electron systems characterized by Γ � 1, the higher order corrections due to the

spin-charge couplings are negligible and the amplitude A(t) is approximately linear

in the spin-charge couplings. Since the factor of q in A(t) gives a contribution of 1/Γ,

as the wave-vector is measured in units of 1/Ls, we conclude that the amplitude A(t)

of the induced CDW depends linearly on the overall spin-orbit interaction strength

Γ. This proportionality relation holds as long as we express the wave-vector in

units of 1/Ls. Furthermore, we find that the induced CDW amplitude A(t) is

independent of the dimensionless conductance g, provided time is measured in units

of 1/τs. Consequently, the bulk manifestation of the spin-Hall effect proposed here,

can be enhanced by reducing the carrier density of system, which will increase the
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Figure 9.3 – Dependence of the absolute value of the peak amplitude Amax on the

spin-orbit parameters (γD, γR) for a fixed value of the overall spin-orbit interaction

strength, Γ = .001, and q = 0.7/Ls. Amax vanishes for pure Dresselhaus spin-orbit

coupling, γR = 0 (horizontal axis and horizontal pair of white dots), pure Rashba

coupling, (γD = 0, γR = ±2) (vertical pair of white dots), and at the symmetry

points (γD = ±
√

2, γR = ±
√

2) (green dots). The maximum of the peak amplitude

corresponds to (γD, γR) = (−1.08,−1.25) (inside the lower left quarter of the pa-

rameter space, Amax = 7.8 × 10−4), while three other local maxima are located at

(γD, γR) = (−1, 1.24) (upper left quarter, Amax = −5.5 × 10−4), (0.80, 1.06) (upper

right, Amax = 3.2× 10−4), and (0.76,−0.98) (lower right, Amax = −2.8× 10−4). All

these maxima involve large relative contributions of the cubic Dresselhaus coupling,

β3/Γ = 0.5÷ 0.68.
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ratio between the strength of the spin-orbit interaction and the Fermi energy.

Next, we study the dependence of the induced charge density wave ampli-

tude on the ratio between various components of the spin-orbit interaction for

a fixed value of the overall spin-orbit coupling strength Γ. Fig. 9.3 shows the

maximum amplitude of the CDW, Amax, for the experimentally relevant spin-orbit

coupling strength Γ = 0.001 and wave-vector q = 0.7/Ls. The peak amplitude

vanishes for pure Dresselhaus spin-orbit coupling, γR = 0, pure Rashba coupling,

(γD = 0, γR = ±2), and at the symmetry points (γD = ±
√

2, γR = ±
√

2) which

support the persistent spin helix modes (see Fig. 9.3). This is consistent with pre-

vious results showing that, at least in uniform and stationary conditions, the spin

Hall conductivity in systems with pure Rashba or pure linear Dresselhaus spin-orbit

interaction vanishes [89, 90, 91, 92]. Our analysis reveals the absence of any manifes-

tation of the spin-Hall effect for these types of spin-orbit interactions in non-uniform

systems and under time-dependent conditions. The absolute maximum of the peak

amplitude, Amax = 7.8 × 10−4, is realized for (γD, γR) = (−1.08,−1.25). The

corresponding original spin-orbit couplings are (α, β1, β3) = (−7.4, 0.3, 6.7) × 10−4.

Several other local maxima (minima) can be identified throughout the parameter

space (see Fig. 9.3). To enhance the peak amplitude of the induced charge profile,

one has to consider systems with strong cubic Dresselhaus spin-orbit coupling. This

condition is opposite to that required for the realization of the persistent spin helix

mode [85, 57]. Note that the diagram in Fig. 9.3 has no particular symmetry, as

a result of the nontrivial dependence of the spin-charge coupling parameters λ± on

the spin-orbit couplings.
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Figure 9.4 – Dependence of the peak amplitude on the linear Dresselhaus coupling

for various values of the cubic Dresselhaus and Rashba couplings. The arrows mark

the values of β1 where the Amax changes from an absolute minimum of A(t) to an

absolute maximum (cf. Fig. 9.2).

We consider now the case of a fixed cubic Dresselhaus coupling in the range

β3 = 2 × 10−4 ÷ 4 × 10−4, which is experimentally relevant for GaAs quantum

wells. The dependence of the peak amplitude on the tunable parameters α and β1 is

shown in Fig. 9.4. We stress that both the absolute value and the sign of the spin-

orbit coupling constants are important in determining the strength of the spin-Hall

effect. Finally, we note that the peak amplitude also depends on the wave-vector

q. Amax vanishes in the limits q → 0 and q → ∞ and is maximized in the range

0.5 ≤ qLs ≤ 0.7. Increasing the spin-orbit interaction strength enhances the bulk

spin-Hall effect, provided it is observed at larger wave-vector values.
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For completeness we note that, if the initial spin-density waves have an ar-

bitrary orientation of the q-vector, a CDW is induced even in the absence of an

external electric field. However, this wave is in-phase with the initial spin wave.

Adding an external electric field perpendicular to the wave-vector induces an ad-

ditional charge density component characterized by a π/2 phase shift, as described

above, and causes the spin and charge profiles to drift along a direction parallel to

the q-vector, i.e., perpendicular to the electric field. The induced CDW has the

form

ρ(r, t) = n0

3∑
l=0

e−iωl(q)t
{
al(q) cos

[
q · r +

(
q× Ẽ

)
z

Ω̃l(q)t
]

+
(
q× Ẽ

)
z
Ãl(q) sin

[
q · r +

(
q× Ẽ

)
z

Ω̃l(q)t
]}

, (9.5)

where al(q) are the amplitudes of the in-phase charge component and ωl(q) are

the corresponding frequencies. The electric field induces out-of-phase waves with

amplitudes Ãl(q) and generates oscillatory components of the relaxation modes

proportional to Ω̃l(q).

9.4 Conclusion

In summary, we show that a non-homogeneous spin-orbit interacting system

supports bulk manifestations of the spin-Hall effect. By extending the spin-charge

diffusion equations to the case of a constant electric field we find that a spin-density

wave allowed to relax in the presence of an external electric field induces a charge

density wave that is characterized by the same wave-vector as the spin-density wave

but has a phase shift of ±π/2. The amplitude of the induced charge-density wave
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varies non-monotonically in time and is characterized by a peak value and an ex-

ponential decay at large times. We show how to maximize the effect by tuning the

relative strengths of the spin-orbit interactions. Finally, we mention that similar

non-homogeneous perturbations may lead to bulk manifestations of the topological

quantum spin-Hall effect [93, 94] in spin-orbit interacting insulators [95].
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Chapter 10

Conclusion

In this dissertation we have presented a series of experimental proposals re-

lated to the field of spintronics and spin-orbit coupling. In the first proposal we

considered the effects of a synthetic spin-orbit coupled pseudo-spin-1/2 degree of

freedom induced by an optically induced non-Abelian gauge field. The spin-orbit

interaction couples spin and momentum to generate a momentum space double well

structure in the single particle energy spectrum. The minima of the double wells

is degenerate due to a time-reversal-like symmetry. If the many-body Hamiltonian

preserves this symmetry the many-body ground state must also be degenerate, as

is the case for density-density interactions. We then consider the low temperature

ground state for a many-body system of Bosons, where condensation is expected

to take place. In the limit of vanishing interactions, the many body ground state

wavefunction is found to be a superposition of all particles in the left well, and all

particles in the right well. Such a state is known as a N00N state, and has potential

applications for interferometry and metrology. Finally, we give an experimental sig-

nature of a double well condensate that can be observed using time-of-flight imaging.

It is found that the different momentum components will result in different peaks

in a time-of-flight image.

We then discuss the semiclassical dynamics of a trapped spin-orbit coupled
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system. Non-linear dynamics are found for a system that is initially trapped and

displaced. We classify the dynamics of the system based on the anisotropy of the

spin-orbit dispersion, and the magnitude of the initial displacement. In the presence

of a pseudo-spin Zeeman field the system can acquire a Berry’s phase. We propose

an experiment to measure this phase using a system of pancakes formed from a

strong axial trapping lattice.

We propose a generalized spin-orbit coupling based upon the 4-level scheme.

It is found that by adding next-nearest-neighbor couplings, a 3D spin-orbit coupling

can be generated. For certain configurations of the optical fields it is found that a

full 3D spin-orbit coupling can be induced. This spin-orbit coupling can be shown

to be described by a vector potential that is proportional to the angular momentum

operator in pseudo-spin space.

In the third proposal, we use an optically induced synthetic magnetic field to

generate two pseudo-spin states, each of which is coupled to an effective magnetic

field, but with opposite charges. We consider a toy model for this Hamiltonian,

and demonstrate the ability of such a setup as an atom interferometer capable of

measuring time-dependent accelerations. The synthetic gauge field can be thought

of as continuously imparting an acceleration dependent phase on each of the spins.

Time reversal like pulses are used to reduce noise. The response function for the

system with and without time reversal pulses is calculated. The sensitivity of such

a system is estimated to be S ∼ 10−7 m/s2
√

Hz
.

Finally we propose a bulk manifestation of the spin-Hall effect. We first extend

the spin-charge diffusion equations to the case of arbitrary Rashba and linear and
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cubic Dresselhaus spin orbit couplings. Using the spin-charge diffusion equations it

is found that if the wavevector of the spin-density wave is oriented perpendicular to

an applied electric field, then a charge-density wave will be induced. The charge-

density wave is phase shifted by π/2 relative to the charge-density wave, and has a

time-dependent amplitude that decays at long times. The values of the spin-orbit

coupling parameters are found for which the effect will be maximized. The ability

to create bulk spin or charge densities will open the door for new spintronic devices.

163



Appendix A

Exact solutions to the Toy Model Hamiltonian from Ch. 8

A.1 Path Integral Approach

In this section we use the path integral approach [5] to derive the exact quan-

tum wave function and phase evolution in the toy model given by Eq. 8.1. Us-

ing this formalism we will show that the wavefunction evolves as ψ(r, t = 0) =

ψ(r− rcl(t), t)e
iφg(t), where rcl(t) is the classical trajectory of the quantum particle,

and φg(t) is the first order phase acquired due to the gravitational force the particle

experiences.

To begin, take the expression for the propagator written using the configura-

tion space path integral:

〈rf , tf |ri, ti〉 =

∫ r[tf ]

r[ti]

D[r[t]]e
i
~S[r(t),ṙ(t)], (A.1)

where

S[r(t), ṙ(t)] =

∫ t

0

dt

(
1

2
mṙ2(t)− 1

2
mω2

0r
2(t) +mωcxẏ +mg(t) · r

)
(A.2)

is the classical action for the path r(t) corresponding to the Hamiltonian in Eq. 8.1.

We can solve the path integral exactly by using the method of steepest descent [69,

96] and expand the action as

S = S0 +
δS

δr
· δr +

δ2S

δriδrj
δriδrj (A.3)
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where the series exactly terminates after the second order term because the action

is at most quadratic in r(t). The method of steepest descent involves setting δS
δr

= 0

which gives the classical equations of motion d
dt

(
δL
δr

)
− δL

δr
= 0 where L[r(t), ṙ(t)] =

1
2
mṙ2(t) − 1

2
mω2r2(t) + mωcxẏ + mg(t) · r is the classical Lagrangian. Explicitly,

these equations of motion take the form:

r̈ + ω2
0r + ωcẑ × ṙ = g(t). (A.4)

The propagator then becomes

〈rf , tf |ri, ti〉 = F0(tf , ti)e
iS0 , (A.5)

where

F0(tf , ti) =

∫ δr(tf )=0

δr(ti)=0

D[r[t]]e
i
~S[δr(t),δṙ(t)] (A.6)

is the fluctuation determinant [96]. The fluctuation determinant is independent of

the boundary conditions, and thus takes the form of a time-dependent normalization

coefficient. We will ignore this term and concentrate on the physics contained in

the eiS0 term. We will see later that the same physics can be found by using the

operator formalism.

The effects of the gravitation field can be treated by separating the solution

to the equations of motion into the homogeneous and particular solutions, r(t) =

rh(t) + rp(t), where rh(t) satisfies the equation of motion with g = 0, and rp(t)

satisfies the equation of motion with g 6= 0. The boundary conditions for r(t) can

be satisfied by setting rp(ti) = rp(tf ) = 0 and allowing rh(t) to satisfy the boundary

conditions rh(ti) = ri and r(tf ) = rf . Performing this separation, and applying the
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equation of motion transforms the action to the form

S0 = Sh + Sp + Sg, (A.7)

where

Sh =

∫ tf

ti

dt

(
1

2
mṙ2

h(t)−
1

2
mω2

0r
2
h(t) +mωcxhẏh

)
, (A.8)

Sp =

∫ tf

ti

dt

(
1

2
mṙ2

p(t)−
1

2
mω2

0r
2
p(t) +mωcxpẏp +mg · rp

)
, (A.9)

Sg =

∫ tf

ti

dtmg · rh. (A.10)

Note that while the actions Sh and Sp have the same form, this substitution has

allowed us to separate the effect of the driving field into a path independent term,

Sp, a term independent of gravity Sh, and coupling term Sg.

A.1.1 Evolution of a Wavepacket

We now consider the effect of the propagator on the initial state

φ(r) = N exp

[
−(r− r0)2

2σ2

]
= φ0(r− r0) (A.11)

where σ2 = mω̃
~ and φ0(r) is the quantum harmonic oscillator ground state. This

state corresponds to taking the quantum ground state of a harmonic oscillator with

frequency ω̃, and displacing it in position space by a vector r0. We expect the

system will evolve as a quantum wavepacket where the expectation value of position

and momentum corresponds to the evolution of the classical system with the same

initial conditions.
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To demonstrate this behavior, evolve the state in Eq. A.11 using the propaga-

tor in the path integral formulation:

ψ(rf , tf ) =

∫
dri 〈rf , tf |ri, ti〉φ(ri, ti). (A.12)

A change of variables substitution in the integral will move the initial displacement

of the ground state wavefunction to the evolution of the propagator

ψ(rf , tf ) =

∫
dri 〈rf , tf |ri + r0, ti〉φ0(ri, ti). (A.13)

It is now desirable to express the propagator 〈rf , tf |ri + r0, ti〉 in terms of the propa-

gator calculated in the previous section, 〈rf , tf |ri, ti〉. To do this, take the expression

for the propagator in the path integral formalism:

〈rf , tf |ri + r0, ti〉 =

∫ r(tf )=rf

r(ti)=ri−r0

D[r(t)] exp

[
i

∫
dt L[r(r), ṙ(t)]

]
. (A.14)

A change of variables of r(t)→ r(t)−rc(t) will leave the measure of the path integral

unchanged. We will chose rc(t) to be a solution to the g = 0 equation of motion

with the intial conditions rc(ti) = r0 and ṙc(ti) = 0. Thus, rc(t) is the classical

trajectory that a particle will follow if it is initially at the origin at rest, and then

instantaneously displaced to a position rc(ti) = r0 at a time ti.

It is important to make a distinction between two “classical” paths. The path

r(t) = rh(t) + rp(t) of the previous section is the path that minimizes the action

of the path integral. It satisfies the classical equation of motion, but is defined by

the boundary conditions of the propagator. The path rc(t) is the classical path a

particle will travel if it is initially held at rc(0) = r0 and ṙc(0) = 0, and then allowed

to freely evolve along the classical equations of motion.
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The action can then be separated into different contributions corresponding to

the paths r(t) and rc(t). The net result of the change of variables will be to modify

the homogeneous and gravitational actions Sh and Sg. The gravitational coupling

action becomes

Sg[rh(t)− rc(t)] =

∫ tf

ti

dtmg · (rg − rc) = Sg + Sgc (A.15)

where the rc(t) term is just a new phase factor. The homogenous action can be

separated in a similar way (dropping the h subscript on rh(t))

Sh [r(t)− rc(t), ṙ(t)− ṙc(t)] =

∫
dt L [r(t)− rc(t), ṙ(t)− ṙc(t)] (A.16)

=

∫
dt

[
1

2
m(ṙ− ṙc)

2 − 1

2
mω2

0(r− rc)
2 +mωc(x− xc)(ẏ − ẏc)

]
=

∫
dt

[(
1

2
mṙ2

c −
1

2
mω2

0r
2
c +mωcxcẏc

)
+(

1

2
mṙ2 − 1

2
mω2

0r
2 +mωcxẏ

)
+

(−mṙ · ṙc +mωcr · rc −mωcxcẏ − xẏc)] (A.17)

The last term can be simplified using integration by parts

∫ tf

ti

dt [−mṙ · ṙc +mωcr · rc −mωc(xcẏ + xẏc)] = m

∫ tf

ti

dt
[
r ·
(
r̈c + ω2

0rc + ωcẑ × rc
)]

+

[−mr · ṙc −mωcxcy|
tf
ti (A.18)

= [−mr · ṙc −mωcxcy|
tf
ti (A.19)

= r(tf ) · pc(tf )− r(ti) · pc(ti) (A.20)

where the term under the integral vanished due to the equations of motion for rc(t).

The momentum pc(t) = mṙc + mωcxcêy is the classical momentum of the system

in the Hamiltonian formalism. Note that pc is not a gauge invariant quantity, even
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though ṙc is. We therefore desire a choice of gauge where pc(ti) = 0. Under this

gauge transformation, denoted by the function Λ(r, t), the propagator transforms

as 〈rf , tf |ri, ti〉 → ei(Λ(rf ,tf )−Λ(ri,ti))〈rf , tf |ri, ti〉 and the wavefunction transforms

as ψ(r, t) → eiΛ(r,t)ψ(r, t). Thus, a wavefunction propagated forward in time will

transform as

ψ(rf , tf ) =

∫
dri 〈rf , tf |ri, ti〉ψ(ri, ti) (A.21)

→
∫

dri e
i(Λ(rf ,tf )−Λ(ri,ti))〈rf , tf |ri, ti〉eiΛ(ri,ti)ψ(ri, ti) (A.22)

= ei(Λ(rf ,tf ))
∫

dri 〈rf , tf |ri, ti〉ψ(ri, ti) (A.23)

= ei(Λ(rf ,tf ))ψ(rf , tf ) (A.24)

which is consistent with the transformation of a wavefunction under a change of

gauge. Is is therefore possible to calculate the propagator in a gauge for which the

canonical momentum pc(ti) = 0 vanishes on the lower limit of Eq. A.20. This gauge

is always possible for a spatially uniform magnetic field, and would correspond to a

gauge with the vector potential A(r) ∝ êz × r0 is perpendicular to the axis of initial

displacement, r0.

Using these simplifications, the homogenous part of the action can be expressed

as

S0[r− rc, ṙ− ṙc] = Sh0 + Sc + r(tf ) · pc(tf ) + Sg0 + Sgc. (A.25)

The term S0[r, ṙ] is the action of a path not shifted by rc(t). The action Sc[rc, ṙc]

is a phase that arises due to the motion around the classical trajectory rc. The

term r(tf ) · pc(tf ) will be shown to correspond to the classical momentum of the

wavepacket. It is key to note that of these contributions to the action, only Sh0
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and Sg0 depend on the on the path r(t) at more than the boundary point r(tf ).

Therefore these terms can be factored out of the path integral. This factorization

can be used to convert the initial displacement into a final displacement along the

classical trajectory

〈rf , tf |ri + r0, ti〉 = eiSgceiSceirf (tf )·pc(tf )

∫ r(tf )=rf−rc(tf )

r(ti)=ri

D[r(t)] exp

[
i

∫
dt L[r(r), ṙ(t)]

]
= eiSgceiSceirf (tf )·pc(tf )〈rf − rc(tf ), tf |ri, ti〉. (A.26)

Where the propagator 〈rf − rc(tf ), tf |ri, ti〉 is expressed as the wavefunction

shifted around the classical trajectory rc(t). For the purposes of this section, we

desire to simply show that the time evolution of the wavepacket φ(r) has the form

ψ(rf , tf ) =

∫
dri 〈rf , tf |ri, ti〉φ(ri) (A.27)

=

∫
dri 〈rf , tf |ri − r0, ti〉φ0(ri) (A.28)

= eiSgceiSceirf ·pc(tf )

∫
drf 〈rf − rc(tf ), tf |ri, ti〉φ0(ri) (A.29)

= eiSgceiSceirf ·pc(tf )φ0(rf − rc(tf ), tf ) (A.30)

where φ0(r, t) is the evolution of the undisplaced harmonic oscillator ground state.

Using the properties of the harmonic oscillator ground state, we immediately see

that at a time t, this wavepacket has the average value of momentum of 〈p̂〉 =

pc(t), and the average position of 〈r̂〉 = rc(t). Therefore, the effect of the initial

displacement of the harmonic oscillator ground state is to evolve the system as a

Gaussian wavepacket around the classical trajectory with the phase factor eiSc . The

first order phase response of the system to a gravitational field around the classical
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trajectory is given by

eiSgc/~ = e−i
m
~
∫

dtg·rc . (A.31)

This behavior will be derived using coherent states in the following section.

A.2 Operators and Coherent States

The physics in the proceeding section can also be derived using coherent states

and quantum mechanical operators. We reiterate that since the Hamiltonian is

quadratic in the operators r̂ and p̂, we can explicitly diagonalize the system using

creation and annihilation operators. To diagonalize our system, we consider the toy

Hamiltonian given by 8.1 in the symmetric gauge:

H =

(
p− 1

2
σ3mωcêz × r

)2

2m
+

1

2
mω2

0r
2 (A.32)

where we have set g(t) = 0, and will restore it later. The change in gauge will not be

relevant for the quantities of interest, and if necessary we can return to the Landau

gauge at any time with the gauge transformation defined by U = exp[imωcxy/2].

The advantage of using the symmetric gauge is that the Hamiltonian can be ex-

pressed as:

H =
1

2m

∑
j

[
p2 +m2

(
ω2

0 +
(ωc

2

)2
)

r2 − σ3ωcp× r

]
. (A.33)

We now define the creation and annihilation operators c† = 1√
2mω̃

(mω̃r− ip) and

c = 1√
2mω̃

(mω̃r + ip) where ω̃2 = ω2
0 +

(
ωc
2

)2
. These operators satisfy the standard
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commutation relations for creation and annihilation operators [5]

[ci, c
†
j] = δij (A.34)

[ci, cj] = 0 (A.35)

[c†i , c
†
j] = 0. (A.36)

Inverting these operators gives ri =
√

~
2mω̃

(c†i + ci) and pi = i
√

~mω̃
2

(c†i − ci) which

can be used to express Eq. A.33 as

H/~ = ω̃(c† · c + 1)− iσ3
ωc
2

(c† − c)× (c† + c) · êz) (A.37)

= ω̃(c† · c + 1)− iσ3ωcc
† × c · êz. (A.38)

We can diagonalize the term last term of Eq. A.38 by noting c† × c · êz = iτ yijc
†
icj

where τ y is the second Pauli matrix in the êx − êy space. We then see that a π/2-

rotation about τx will bring Eq. A.38 to a diagonal form. Explicitly, this rotation

takes the form R = e−i
π
4
τx = 1√

2
(1− iτx), and the diagonal Hamiltonain is

H = ω+a
†
+a+ + ω−a

†
−a− + ω̃ (A.39)

where we have set ~ = 1 and the operators a†λ = R†λ,ic
†
i and aλ = Rλ,ici are the re-

spective creation and annihilation operators for a for a mode with classical frequency

ωλ. It is clear that this unitary rotation will preserve the canonical commutation

relations. Also of note is that the classical frequencies discussed in the previous

section arise naturally through diagonalization of the quantum Hamiltonian.

Finally, it is important to note that Eq. A.39 has implicit spin dependence

in the frequencies ω±. For example, the frequency ω+ for the state |↓〉 is the same

172



as the frequency ω− for the state |↑〉. Note however, the creation and annihilation

operators a± have no spin dependence. This indicates that the mode corresponding

to a± will rotate with frequency ω↑, ω↓ for the respective state |↑〉,|↓〉. Therefore,

a π-pulse, which will invert |↑〉 → |↓〉 and |↓〉 → |↑〉, will act to interchange the

frequencies at which the classical modes rotate.

A.2.1 Effect of Gravity

We now restore the external force applied in the original Hamiltonian given

by Eq. 8.1. In term of the operators cj, the external force takes the form:

Hg = mg(t) ·
√

~
2mω̃

(c† + c) (A.40)

=

√
m~
2ω̃

g(t) ·
(
a†R† +Ra

)
(A.41)

=
(
η̃(t) · a† + η̃∗(t) · a

)
(A.42)

where η̃(t) =
√

m~
2ω̃
Rg(t). The total Hamiltonian of the system in the presence of

gravity is therefore

H = ω+a
†
+a+ + ω−a

†
−a− + η̃(t) · a† + η̃∗(t) · a. (A.43)

We would like to find the time evolution operator for this Hamiltonian. This can

be done by moving to a frame rotating by Uω(t) = e−i(ω+a
†
+a++ω−a

†
−a−)t. In the new

frame, the Hamiltonian takes the form

H ′ = η(t) · a† + η∗(t) · a (A.44)
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where the rotating η(t) are given byη+

η−

 =

η̃+e
−iω+t

η̃−e
−iω−t

 . (A.45)

The time evolution operator, U(t) = Uω(t)Ud(t), can thus be found by solving

the equation of motion

iU̇d(t) =
(
η(t) · a† + η∗(t) · a

)
Ud(t). (A.46)

subject to the initial conditions Ud(0) = Î. Since the commutator of the creation

operators, [aλ, a
†
µ] = δλ,µ, are constants, the commutators will themselves commute

with any of the operators {aλ, a†µ}. Therefore, Eq. A.46 can be integrated exactly

to give Ud(t). We claim that

Ud(t) = exp

[
−i
∫

dt
(
η(t) · a† + η∗(t) · a

)]
e−iφη(t) (A.47)

satisfies this equation of motion, where φη(t) is just an overall phase factor. The

phase can be found by substituting this solution into Eq. A.46. Using the identity

d

dt
eX(t) =

∫ 1

0

esX(t) dX(t)

dt
e(1−s)X(t)ds (A.48)

gives

i
d

dt
Ud(t) = φ̇ηUd(t) +

(
η(t) · a† + η∗(t) · a

)
Ud(t) +∫ t

0

dt′ (η(t) · η∗(t′) + η∗(t) · η(t′))Ud(t) (A.49)

In arriving at the last equation we exploited the fact that exp
[
−i
∫

dt
(
η(t) · a† + η∗(t) · a

)]
is a displacement operator [11]. The action of a displacement operator D[α] =
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exp
(
αa† − α∗a

)
is to displace an annihilation operator D[α]aD[α] = a + α. We

therefore can express the time evolution operator as Ud(t) = D[γ(t)]e−iφγ(t), where

γ(t) = −i
∫ t

0
dt′ η(t). We see by comparing Eq. A.49 and Eq. A.46 that the phase

φγ(t) is given by

φγ(t) =

∫ t

0

dτ

∫ τ

0

dτ ′ (η(τ) · η∗(τ ′) + η∗(τ) · η(τ ′)) . (A.50)

The overall time evolution operator therefore takes the form

U(t) = e−i(ω+a
†
+a++ω−a

†
−a−)tD[γ(t)]e−iφγ(t). (A.51)

The form of the time evolution can be interpreted as follows. The external force

displaces the evolution away from the classical trajectory that is defined by the

evolution of the free system. The overall phase has an implicit dependence on the

frequencies ω±, and therefore can be relevant for spin-dependent measurements.

A.2.2 Single Pulse and Measurement

We can now replicate the result given in the path integral section. Consider the

sequence of operations given to perform an interferometric measurement as discussed

in Chapter 8. Such a measurement sequence is schematically given by:

1. Prepare a spin-polarized ground state defined by |ψ〉 = |↑〉 |0〉, where |0〉 is the

orbital ground state.

2. Apply a spin-rotation, Uπ/2(ŷ).

3. Displace the trap minimum by a vector r0. This is equivalent to applying the
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displacement matrix D[α] where

α =

√
m

4~ω̃

(ω̃ − ωc/2)x0 − i(ω̃ − ωc/2)y0

(ω̃ + ωc/2)y0 − i(ω̃ + ωc/2)x0

 (A.52)

encodes the initial conditions that r(0) = r0 and ṙ(0) = 0.

4. Allow the system to freely evolve under the evolution of U(t).

5. At a future time, t, when the particles overlap, make a Sz, spin polarization

measurement.

The application of steps 1 to 4 act to prepare the time evolved states

|ψf〉 = U(t)D[α]Uπ/2(ŷ) |↑〉 |0〉 . (A.53)

The step 5 amounts to taking the expectation value

〈Sx〉 = 〈ψf |Sx |ψf〉 . (A.54)

This can also be expressed as the |↑〉 |0〉 matrix element of the operator

U = U †π/2(ŷ)D†[α]U †(t)SxU(t)D[α]Uπ/2(ŷ). (A.55)

We will now calculate this matrix element. Recall that U(t) has an implicit

σz dependence in the classical frequencies ω±. This dependence can be rotated

by expressing Sz = Uπ/2(ŷ)SxU
†
π/2(ŷ). The rotation operators can then be used to

rotate the implicit σz operators in U(t) to −σx operators. The rotation π/2 rotation

around êy can then be regrouped to rotate U(t). After inserting Î = D[α]D†[α]

after the Sx operator, and associating the unitary transformations D[α] and Uπ/2(ŷ)

with U(t), we obtain

U = U †ŷ(t)SxUŷ(t) (A.56)
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where

Uŷ(t) = D†[α]U †π/2(ŷ)U(t)U †π/2(ŷ)D[α] (A.57)

is the rotated and displaced time evolution operator. This operator can be explic-

itly calculated at all times, but a solution is only relevant at times when the two

trajectories overlap. Consider the special case where the ratio of the classical fre-

quencies is rational, i.e. ω+ = p
q
ω− with p and q integers. In this case the paths of

the two spins will overlap at time intervals of t = 2π q
ω−

. Using the operator identity

ei2πa
†a = Î, the time evolution operator becomes U(t) = D[γ(t)]e−iφγ(t). The dis-

placement term of the time evolution operator then becomes D†[α]D[γ(t)]D[α] =

eα
∗·γ(t)−α·γ∗(t)D[γ(t)]. Using the original definition of γ(t), the phase factor can be

expressed as

α∗ · γ(t)−α · γ∗(t) = −i
∫ tf

ti

dt (α∗ · η(t) +α · η∗(t)) (A.58)

= −i
∫ tf

ti

dt (r(t) · g(t)) (A.59)

where the last relation can be seen since α contains the initial conditions of the

classical system, and η(t) has a factor that corresponds to the time evolution of a

coherent state.

These operators reduce Uŷ(t) to

Uŷ(t) = e−i
∫

dt (r′(t)·g(t))e−iφ
′
γ(t)D[γ ′] (A.60)

where the primes represent an internal rotation of the spin operator from σz to σx.

At this point the only dependence on the orbital degrees of freedom are contained

in the operator D[γ ′]. This can be treated by commuting the term D†[γ ′] through
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the Sz operator at the cost of a negative sign in the coefficients of σx. The orbital

components can then be calculated by taking the matrix element 〈0|D[γ ′−γ ′′] |0〉 =

e−|γ
′′−γ′|2 , which gives an overall a spin-independent suppression factor. This factor

is a result of the incomplete overlap of the two spin states that overlap across different

spin trajectories.

Finally, the |↑〉 matrix element can be taken to find the expectation value of a

spin measurement. The remaining spin-dependent terms are the phase e−i
m
~
∫

dtg·rc

and e−iφγ . The expectation value to first order in g then becomes

〈Sz〉 = sin

[
2
m

~

∫
dtg · rc

]
. (A.61)

Terms second order in g will result in both a correction to the phase, and an expo-

nential suppression factor e−|γ
′′−γ′|2 due to the driving field.

A.2.3 Carr-Purcell Sequence and Measurement

The methods in the preceding section can be naturally extended to include the

effect of time reversal pulses. Consider the Carr-Purcell pulse sequence discussed in

Sec. 8.5. The pulse sequence

1. Apply a Uŷ(π/2) spin rotation;

2. Displace by D[α];

3. Evolve for a time t;

4. Apply a Uŷ(π) spin rotation;

5. Evolve for a time 2t;
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6. Apply a Uŷ(π) spin rotation;

7. Evolve for a time t;

can be described by the operator

UCP = Ufk(t)Uŷ(π)Ukj(t)Uŷ(π)Uji(t)D[α]Uŷ(π/2), (A.62)

where Uij = U(tj, ti) is the time evolution operator from the time ti to tj. This

operator can be simplified in a manner similar to the case without time reversal. We

express the first and second operator Uŷ(π) in Eq. A.62 as Uŷ(π) = Uŷ(π/2)Uŷ(π/2)

and Uŷ(π) = −Uŷ(−π/2)Uŷ(−π/2). The rotations can then be applied to the time

evolution operators to give

UCP = Uŷ(π/2)Ũfk(t)Ũ
′
kj(t)Ũji(t)D[α] (A.63)

where Ũ ,(Ũ ′) represents an evolution operator that was rotated by −π/2, (π/2)

around the ŷ-axis. This can be further simplified if the free evolution parts of the

time evolution operator, Ũω(tj, ti), are separated from the displacement operators,

D̃[γ(tj, ti)]. This can be done by commuting the operators Ũω through the operators

D̃. Doing this gives

UC−P = −Uŷ(−π/2)Ũω(tf , tk)Ũ
′
ω(tk, tj)Ũω(tj, ti)D̃[γfk]D̃[γ ′kj]D̃[γji]D[α]e−iφ.

(A.64)
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The displacement vectors are defined by

γji = −i
∫ j

i

dt′

η+e
−iω+t′

η−e
−iω−t′

 , (A.65)

γkj = −i
∫ k

j

dt′

η+e
−iω−t′eiω+(tj−ti)

η−e
−iω+t′eiω−(tj−ti)

 , (A.66)

γfk = −i
∫ k

j

dt′

η+e
−iω+t′eiω+(tj−ti)−iω−(tk−tj)

η−e
−iω−t′eiω−(tj−ti)−iω+(tk−tj)

 , (A.67)

and the phase φ = φ̃γ(tf , tk) + φ̃′γ(tk, tj) + φ̃γ(tj, ti) is the sum of the phases second

order in g for each of the time evolution operators. We will ignore this phase as a

second order correction, but note it can be calculated exactly if necessary. Assuming

the time intervals take the form tj− ti = tf− tk = ∆t and tk− tj = 2∆t, the product

of the three free evolution operators gives

Uω,total = Ũω(tf , tk)Ũ
′
ω(tk, tj)Ũω(tj, ti) = exp

[
2 (ω+ + ω−)

(
a†+a+ + a†−a−

)
∆t
]
.

(A.68)

Therefore, if the π-pulses are applied at time intervals of ∆t = 2π
ω++ω−

, corresponding

to cusps in the cyclotron motion, the factor Uω,total = Î.

The phase e−i
m
~
∫ tf
ti

dtg·rc then arises in a manner similar to the single pulse case.

When the operator D[α] is commuted through the operator D̃[γ ′ij], an additional

phase of eα·γ
∗
ji−α∗·γji appears. The three terms defined by Eq. A.65 - Eq. A.67 will

combine to give a total phase of

e−i
m
~
∫ tf
ti

dtg·rCP , (A.69)
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where the path rCP is the classical path a particle would undertake after the Carr-

Purcell time reversal sequences are applied. It is defined by

rCP =


rc(t) 0 ≤ t ≤ ∆t

rc(2∆t− t) ∆t ≤ t ≤ 3∆t

rc(t− 4∆t) 3∆t ≤ t ≤ 4∆t

(A.70)

and is shown in Fig. 8.4(a). The expectation value of Sz can then be found in a

manner similar to the above section. The result is analogous

〈Sz〉 = sin

[
2
m

~

∫
dtg · rCP

]
. (A.71)

As above, there is an additional factor that results in the suppression of the signal,

as well as an additional phase. Both of these effects are second order in g, and are

therefore ignored. They can be calculated exactly if necessary.
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[21] G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A 73,

025602 (2006).

[22] I. B. Spielman, Phys. Rev. A 79, 063613 (2009).

[23] Y. J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B. Spielman,

Nature 462, 628 (2009).

183
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