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Fire service thermal imaging cameras (TICs) are utilized to provide an image

of the environment when visibility is limited or impaired by absorbing infrared

radiation (IR) emitted from solid objects within its field of view (FOV). This image

is often accompanied by a temperature output that may mislead firefighters who

do not have proper training of the limitations associated with such quantitative

measurements.

An evaluation of TIC spot temperature measurements was conducted to de-

termine the TICs ability to quantify thermal hazards within an ambient and smoke-

filled fire environment. During ambient conditions spot temperature measurements

are a function of focal length. During fire experiments participating media (i.e.,

smoke) impact the IR received by TICs therefore affecting the temperature outputs.

This research explores the impact of participating media on solid object temperature

measurements from fire service TICs.
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Definition List

Accuracy

A measurement of trueness or a degree of closeness between the measurement
and known true value, including a description of systematic errors.

Also referred to as bias, or an amount of inaccuracy.

Ambient

Conditions similar to air at standard temperature (273 K) and pressure
(101 kPa) without the presence of combustion products.

Error

An evaluation of the execution of a statistical experiment design, further
defined into three types: human, systematic, and random.

Nonparticipating Medium

A transparent material or substances predominately in a gaseous state con-
taining symmetric molecules that emit or absorb negligible amounts of
radiation. Examples include vacuums or air at ambient conditions.

Participating Medium

A material or substance predominately in a gaseous state containing aerosolized
particulates of non symmetrical molecules that can emit, absorb, and/or
scattering radiation.

Precision

Refinement within a measurement, representing the closeness between mea-
surements, including a description of random errors.

Also referred to as variability, or an amount of imprecision.

Repeatability

A component of precision expressing the variation between measurements.
A measure of agreement of measurements on replicate specimens by the
same methodology carried out with a single instrument or person.

Reproducibility

A component of precision expressing whether a measurement or test method
can be reproduced. A measure of closeness of the agreement between
results of measurements of the same measurand carried out with the
same methodology by differing instruments or people.

Smoke
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A medium composed of a combination of solid, liquid, and gaseous particu-
lates produced when a material undergoes pyrolysis or combustion, along
with a quantity of air entrained or otherwise mixed into the medium.

Thermal Imager (TI)

An instrument that renders a thermogram of an environment by detecting
infrared radiant energy emitted, transmitted, or reflected within environ-
ment.

Thermal Imaging Camera (TIC)

An instrument that renders and records a thermogram of an environment
by detecting infrared radiant energy emitted, transmitted, or reflected
within environment.

Thermogram

A visual record of the infrared radiant energy present within an environment.

Uncertainty

A quantitative measurement of precision and accuracy representing a range
of possible values within which the true value of the measurement lies.
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Chapter 1: Introduction

The history surrounding thermal imaging technology dates back to the 19th

century when William Herschel first discovered what he called “calorific rays” of

light. These invisible rays are now known as infrared wavelengths of light and are

the basis of thermal imaging technology [1]. The development of the first thermal

imager (TI) in the 1970’s was contributed to a combination of various scientific

developments occurring across multiple centuries. This TI was intended for use in

limited visibility combat situations by militaries [2]. Since the declassification of

thermal imaging technology in the 1990’s, TIs have been incorporated into various

civilian occupations such as medical research, private security, and firefighting [2,3].

Fire service TIs typically provide three pieces of vital information to firefight-

ers. The first piece is to provide a working image of an environment during low

visibility. Smoke, a medium composed of gaseous, liquid, and solid particulates

produced during pyrolysis or combustion, lowers the ambient light levels within an

environment. When low light prohibits the human eye from perceiving informa-

tion, the working image rendered by a TI allows firefighters to distinguish between

floors and walls while interpreting environment details. The working image allows

firefighters the ability to theoretically ‘see through smoke’ [4].
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The second piece is to provide a thermal observation of the environment. TIs

depict thermal contrasts, heat signatures, and convective flows resulting from the

production of smoke. The working image presents this information as a change in

contrast or by false coloring the image. This information allows firefighters to use

a TIC for search and rescue of victims, investigate hidden fire located within walls

and / or ceilings, and monitor the environment for unsafe conditions.

The final piece is a thermal quantification of the environment. TIC spot

temperature measurements are determined by the amount of radiant energy present

within an environment. This apparent temperature allows firefighters to quantify

the heat associated with an enclosure fire and infer the perceived danger resulting

from such temperatures. Although NFPA produces two standards regarding TI,

NFPA 1408 and NFPA 1801, neither specifies a requirement for spot temperature

measurements at non-ambient conditions. Ambient conditions mimic environmental

air at standard temperature (273 K) and pressure (101 kPa) without the presence

of smoke.

The TIC has proven to be a versatile tool to the modern firefighter, aiding

firefighters on fire grounds, during hazardous materials incidents, and during motor

vehicle collisions and electrical emergencies. On a fire ground the TIC has been

used in scene size-up, interior / exterior suppression, search and rescue, ventilation,

over-haul, and rapid intervention crew (RIC) operations [5].

The National Institute for Occupational Safety and Health (NIOSH) first sug-

gested exploring the use of thermal imaging cameras (TICs) during search and rescue

operations during their investigation of the 1999 Cold-Storage and Warehouse Build-
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ing Fire in Worcester, Massachusetts [6]. Since then, NIOSH has often incorporated

TIC use, value, and limitations into their Fire Fighter Fatality Investigation and

Prevention recommendations [7–10]. A 2014 investigation report, recommends TIC

use during firefighting operations to accomplish the primary mission of saving lives.

It also recommends that personnel be properly trained in TIC use and understand

limitations [9]. A 2015 investigation report, expands on TIC limitations by warn-

ing readers of the misconception that TIC temperature measurements estimate air

temperatures [10].

Underwriters Laboratories (UL), has utilized TICs determine surface temper-

atures of floors and ceilings [11] and to document thermal conditions within oth-

erwise visually obscured environments [12]. TICs provide both a quantification of

thermal energy, an image of the environment’s configuration and hazards (furnish-

ings and / or obstacles), and a distinction between the hot and cool gas layers. TICs

continue to provide such information when ambient light levels are to low for the

human eye to perceive information [12].

1.1 Problem Statement

While the benefits of TIC use during firefighting operations is well documented,

limitations of such devices have not fully been investigated in realistic fire condi-

tions. This report aims to quantify the TIC’s ability to represent hazards within

an environment affected by heat, smoke, and flames. To establish the limitations

of this study, a preliminary evaluation comparing TIC spot temperature measure-
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ments to TC measurements was conducted utilizing data from two UL FSRI inves-

tigations [12,13]. The information and conclusions from this preliminary evaluation

were incorporated into a new series of experiments that explored TIC spot tem-

perature measurements in both an ambient and combustion environments. Data

was collected and is presented to further the understanding of spot temperature

measurements in realistic smoke environments.
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Chapter 2: Literature Review & Background Information

2.1 Literature Review

A literature review was conducted to identify current tactics and knowledge

gaps as it relates to the fire service’s use and understanding of TICs in structure

fires. This review also identifies previous research related to TIC. This section

outlines a selection of various articles found in fire service publications, governing

codes and standards, and previous research works. This is not intended to be an

all-encompassing review, only to highlight some of the current literature available

on the use and fire service understanding of TICs.

2.1.1 Fire Service Publications

Turenne states TIC usage on fire ground operations, hazardous materials inci-

dent response, and motor vehicle collision response aides company officers, incident

commanders, and incident safety officers to make more informed decisions by pro-

viding additional information about the scene despite limited visibility. Turenne

states that information obtained from the TIC in addition to a firefighter’s “under-

standing and comprehension of the conditions presented” could positively influence
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decisions made during an incident in his Fire Engineering article [5].

Jakubowski [4] states TICs detect emitted heat through “smoke and dust”, “a

door or wall”, and “reflected off water or mirrors” [4]. Turenne suggests a three-part

scan of a structure aids in accurately understanding the obvious indicators presented

by the scene. This three-part scan is composed of a high, medium, and low level

scan to identify heat extension, fire spread, viable victim locations, etc. [14].

Both authors warn firefighters of the limitations associated thermal imaging

technology. Jakubowski warns that although TICs provide valuable information,

they should not replace a firefighter’s senses [4]. Turene advises the TIC can readily

help firefighters “see through smoke” but advises to “remember that glass and shiny

objects could potentially give false readings such as reflections [14].”

Training with TICs should be conducted in environments similar to actual use

to avoid complacency and an overconfident attitude towards the TIC. Nix warns

firefighters to “never make the mistake of using the TIC in place of their basic

firefighting skills [15].” Nix stresses that a TIC can trick firefighters into forgetting

basic skills such as staying low and crawling or remaining with their team when

navigating a structure. He states, “[TICs] cannot see ... a hole in the floor or

furniture in a temperature-stable room [15].” The article also stresses the three-

pass technique of a high, middle, and low level scan of the room. It elaborates

that the high scan should focus on heat accumulation, potential vent points, and

structural integrity, the middle scan should focus on the physical layout and contents

of the room in addition to secondary egress points, and the low scan should focus

on potential victims and special hazards [15].
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2.1.2 Codes and Standards

The National Fire Protection Association (NFPA) released the first edition

of NFPA 1801 - Standard on Thermal Imagers for the Fire Service in 2010. The

standard is now in its third edition as of the time of this reports publication. This

standard specifies design and performance requirements for fire service TICs. Design

requirements include specifics regarding visual / temperature outputs and audio,

video, and data recording / transmission. The fourth edition is currently proposing

the removal of temperature outputs, including temperature bar and numeric tem-

perature measurement indicator [16]. Two performance requirements evaluate the

TICS ability to perform under super heated conditions. These requirements include

a Heat Resistance Test and a Heat and Flame Test. The Heat Resistance Test spec-

ifies the spatial resolution of the camera must be unaffected by heat. The Heat and

Flame Test specifies the housing of the camera must remain in-tact when exposed to

direct flame contact. Two additional performance requirements evaluate the TICs

ability to detect temperature differences at ambient conditions. These requirements

include an Effective Temperature Range and Thermal Sensitivity Test. The TICs

ability to detect temperatures during an immediately dangerous to life and health

(IDLH) environment is not explored [17].

NFPA released NFPA 1408 - Standard for Training Fire Service Personnel in

the Operation, Care, Use, and Maintenance of Thermal Imagers in 2015. The second

edition of this document is proposed to be released in 2020. This document outlines

the intended goals and proficiency expected from students and instructors who wish
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to train with TICs. Training should consist of lecture education as well as hands-on

education of practical evaluations in IDLH environments with proper self-contained

breathing apparatus (SCBA) use. Students should be proficient in interpreting

temperature or temperature range color output from the TIC they are using, how

the temperature gauge specific to their device measures these temperatures, as well

as understand TIC image interpretation / misinterpretation for multiple reasons

including: false readings and differences in emissivity values for two or more different

materials in the TIC field of vision [18].

2.1.3 Previous Research

Several reports, published by the National Institute of Standards and Technol-

ogy (NIST), investigate varying aspects of TICs in the fire service. In a 2008 study,

NIST proposed performance metrics for fire service TICs by conducting small- and

full- scale experiments [19]. The development of test conditions representative of

fire service operations was established. To define meaningful bounds on test condi-

tions, activities in which TICs are used by the fire service were presented as Thermal

Classes, see Table 2.1.3. It was determined that no particular detector technology or

model excelled in the performance metrics analyzed: image contrast, effective tem-

perature range, spatial resolution, image non-uniformity, and thermal sensitivity.

In a report produced in 2009, NIST investigated image quality of fire service

TICs on human perception [20]. Five fire service TICs were selected and tested

according to the requirements of NFPA 1801 for the following metrics: FOV, non-
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Table 2.1: Metrics for defining thermal class associated with the environment in
which the TIC is located [19].

Thermal Class Maximum Time (min) Maximum Temperature

I 25 100 ◦ C
II 15 160 ◦ C
III 5 260 ◦ C
IV ¡1 >260 ◦ C

uniformity, spatial resolution, effective temperature range, and thermal sensitivity.

For each metric, it was determined that fire service TICs respond differently regard-

less of sensing material and detector array size.

In another 2009 study, NIST and the University of Maryland attempted to re-

quantify if TIC display quality had an effect on firefighter task performance [21]. The

effects of thermal imaging display contrast, brightness, spatial resolution, and noise

on a firefighter’s ability to identify a fire hazard were observed. It was determined

that the combined interaction between contrast, brightness, spatial resolution, and

noise influenced human perception greater than variation in any one effect alone.

2.2 Background Information

A background investigation was conducted to understand the general theory

associated with thermal imaging technologies. This section first outlines the over-

arching theory associated with TICs, with no specificity to fire service TICs, then

outlines specific requirements associated with microbolometers, the classification of

TIC utilized by the fire service. This is not intended to be an all-encompassing

review; but, rather it is intended to provide information necessary to understand
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how TICs operate and produce temperature outputs.

2.2.1 TIC Technology

The desire to see in limited visibility environments, such as complete or partial

darkness and environments affected by dust, fog / mist, and / or smoke, has led

to the development of thermal imaging technology. Infrared radiation (IR) is less

susceptible than visible light to absorption from small particulates of matter present

within a typical environment, due to their longer wavelengths. Thermal radiation,

in the IR range, is the ideal measurable quantity when imaging an environment with

low ambient light. Thermal imaging is the process of interpreting thermal energy

emitted by solid objects to visually quantify an environment that is otherwise im-

perceivable to the human eye. To quantify a scene / room in an visually obscured

environment, IR radiation must be focused into an array of infrared detectors, pix-

els, before being processed into a thermogram, an image composed entirely from

detecting temperatures of objects within the field of view [2].

From a limited market review, most, if not all fire service TICs employ a resis-

tive microbolometer array composed of vanadium oxide or amorphous silicon sensing

materials. Resistive bolometers operate by detecting a change in electrical resistance

of the sensing material due to induced temperature increase from absorbed incident

IR. The resistance of the sensing material will either increase (metallic materials)

or decrease (semi-conducting materials) when the temperature is increased and vice

versa when the temperature is decreased. The resistance of the material is obtained
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by applying a bias voltage or current through the sensing material and measuring

the resulting current or voltage [3, 22].

2.2.2 Theoretical Overview

The exact algorithms employed by fire service TIC manufacturers to determine

temperature from received thermal radiation are considered proprietary information.

The following theoretical overview is compiled from several sources and is aimed to

give the reader a general understanding of how TICs function and approximate

spot temperatures from thermal radiation, with limited specificity to fire service

TICs. It is assumed that fire service TICs operate in a similar manner to non-fire

service TICs; with a constant value for target object emissivity as this is typically

disclosed information. The exact process for determining target object reflectivity,

atmospheric relative humidity, atmospheric temperature, atmospheric attenuation,

and propagation distance are unknown.

The Electromagnetic (EM) Spectrum encompasses all frequencies of electro-

magnetic radiation quantified by differing wavelengths and photon energy levels.

The spectrum is divided into ‘bands’, most notably for this report are visible light

and infrared radiation. Visible light, 0.40 - 0.70 µm, is the only class of the EM

spectrum that is perceivable to the human eye. The visible light spectrum contains

relatively short wavelengths; which, can be absorbed by small particulates of dust,

fog / mist, and / or smoke present in the atmosphere, creating a semi-opaque envi-

ronment to the human eye. Particulates compromised of two or more atomic species
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can absorb short wavelengths of radiation: absorption is reliant on electron energy

levels of both the particulate and the visible light wavelength. Infrared radiation,

0.7 - 30.0 µm, is located just beyond the visible spectrum with longer wavelengths;

which, allows energy to transmit through or reflect off small particulates of dust,

fog / mist, and / or smoke. IR radiation when compared to visible light is not as

affected by small particulates present in the atmosphere. The infrared spectrum

is divided into several regions, or bands, according to wavelength. The boundaries

of these regions vary by scientific discipline and therefore are not sharply defined.

For this report the infrared spectrum band of interest includes wavelengths of 8.0 -

14.0 µm, referred to as long-wavelength infrared (LWIR).

All solid objects with an absolute temperature greater than 0 K emit radia-

tion. In addition, these objects also absorb, transmit, or reflect a certain amount

of incidental radiation produced by surrounding objects and environment. Energy

transmitted within the LWIR is representative of emitted energy. The total amount

of incident radiation that is absorbed, transmitted, or reflected is wavelength de-

pendent and can be quantified by Equation 2.1, where α is the spectral absorbance,

τ is the spectral transmittance, and ρ is the spectral reflectance [23].

αλ + τλ + ρλ = 1 (2.1)

Conservation of energy dictates that the amount of radiation absorbed, trans-

mitted, and reflected has to be equal to the total amount of energy emitted, 100 %

or 1. The amount of energy emitted is dependent on object temperature and emis-
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sivity. Emissivity, ε, is the ratio of the energy radiated from an object’s surface to

that of a blackbody at the same temperature. A blackbody is theoretically a perfect

emitter of energy, ε = 1, and theoretically a perfect absorber of incidental radiant

energy, α = 1. Blackbodies are quantified in realistic scenarios by opaque, flat black

objects with a rough texture [19]. Stefan’s Law relates the excitance, emitted power

per unit area, Eb, measured in W
m2 , emitted by a black body as a function of its ther-

modynamic temperature, measured in K. Excitance is represented by Equation 2.2,

where σ is the Stefan-Boltzmann constant, 5.67 × 10−8 W
m2K4 .

Eb = σT 4 (2.2)

Most objects however are not considered to be blackbodies but rather gray

bodies. Gray bodies reflect some amount of incident radiation emitted by their sur-

roundings. Emitted radiation originates from the surfaces of the object and trans-

mits in all directions into the surrounding environment, creating a hemisphere of

radiative wavelengths. While not all objects radiate uniformly into this hemisphere,

TICs assume solid objects are Lambertian Radiators or emit constant radiant energy

in all directions; eliminating the need for solid angle corrections. TICs will perceive

a constant radiance for an object, resulting in a potential variance in temperature

dependent on viewing angle.

The intensity of this emitted radiation is wavelength dependent; therefore, a

peak emission exists at a certain wavelength. The peak wavelength for objects at a

temperature of 300 K in an ambient environment, is 10.0 µ m [3,22].
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To create a thermogram and / or a temperature readout, TICs must inter-

pret the total radiation, Etotal, received from the environment. The total radiation

received by the TIC is composed of the energy emitted by the target object, Eobj,

incidental radiation reflected by the target object, Erefl, and the emitted radia-

tion from the atmosphere, Eatm. Conservation of energy dictates the relationship

presented in Equation 2.3 [23].

Etotal = Eobj + Erefl + Eatm (2.3)

Not all of the energy emitted or reflected by a target object will be absorbed

by the TIC due to atmospheric attenuation; therefore, energy loss to the sur-

rounding atmosphere must be accounted for. Atmospheric attenuation determines

how much radiation is absorbed by the atmosphere before reaching another object.

Molecules consisting of a single elemental species do not absorb IR radiation; how-

ever, molecules consisting of compounds do absorb IR radiation. Gaseous materials

such as nitrous oxide, carbon monoxide, and methane are considered absorbers of

radiation and commonly found within earth’s atmosphere; but, are ignored as their

concentrations at ambient conditions are typically too low to affect atmospheric

attenuation. Atmospheric attenuation is dependent on wavelength; Figure 2.1 rep-

resents the atmospheric transmittance as a function of wavelength.

From Figure 2.1, atmospheric attenuation of IR is most constant for the SWIR

band, peaking around 80 % transmittance. The regions of lower percent attenuation

are dependent on the presence of two compounds within the atmosphere: water va-

14



Figure 2.1: Atmospheric transmittance over a distance of 1852 m at sea
level for an ambient environment [24].

por and carbon dioxide. Carbon dioxide is ignored in most atmospheric attenuation

calculations as its concentration is constant and its transmittance over wavelengths

between 7.5 - 14 µm is unitary for a distance less than 200 m. Relative humidity,

measurement of water vapor relative to temperature of the atmosphere, is consid-

ered in attenuation calculations and is represented by ω %. Propagation distance,

distance between the camera and the object, d, measured in meters, and the tem-

perature of the atmosphere, Tatm, measured in ◦C, are also needed to calculate the

attenuation of the propagation atmosphere. The exact formula to determine atmo-

spheric attenuation is propriety information: Equation 2.4 states that atmospheric

attenuation is a function of the aforementioned variables [25].

τatm = f(ω %, d, Tatm) (2.4)

The IR emitted by the target object is dependent on atmospheric transmit-
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tance as well as the emissivity of the object. Equation 2.5 expresses the emitted IR

produced by the target object [23].

Eobj = εobjτatmσT
4
obj (2.5)

The incidental IR reflected by the target object, originally emitted from the

surroundings, is also a function of atmospheric transmittance. The camera assumes

the object is a gray body and therefore is also dependent on the objects reflectivity.

Equation 2.6 expresses the emission reflected from the target object [23].

Erefl = ρobjτatmσT
4
refl (2.6)

The IR emitted by the atmosphere is dependent on the emissivity of the en-

vironment which can be rewritten in terms of attenuation. Equation 2.7 expresses

the emission produced from the atmosphere [23].

Eatm = (1 − εatm)σT 4
atm (2.7)

When equations 2.5 - 2.7 are substituted into 2.3 and rearranged, the temper-

ature of the object can be determined. Equation 2.8 expresses the temperature of

the target object [23].

Tobj = 4

√√√√Etotal − (1 − εobj)τatmσT 4
refl − (1 − τatm)σT 4

atm

εobjτatmσ
(2.8)

It is assumed that the following process is followed: relative humidity and
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atmospheric temperature variables are used to calculate absolute humidity of the

propagating medium (atmosphere), propagation distance is used to calculate per-

ceptible water within the propagating medium, internal transmittance of the prop-

agating medium is calculated, emissivity and temperature are used to calculate the

power radiated by the object in question, the emissivity and temperature of objects

within the environment are used to calculate the power reflected by the object in

question, finally the power received by the TIC is calculated [26].

The following variables are observed from the environment: relative humidity,

atmospheric temperature, propagation distance, emissivity of target object and sur-

roundings, and temperature of target object and surroundings. Fire service TICs

only publish emissivity values; while, the remaining variables are not mentioned in

published specifications and manuals [19,27–29].

The total emission received by the TIC is determined from the resistance

change within the sensing material. The sensing material absorbs energy emitted

from and reflected by the target object as well as emitted from the surrounding en-

vironment, this results in an increase in temperature of the material. The increase

in temperature causes a resistance change in the material; which, is measured by ap-

plying a bias voltage or current to the sensing material and observing the resultant

current or voltage. The overarching heat balance equation for thermal imagers is pre-

sented by Equation 2.9. The following variables are specific to the microbolometer:

c is thermal capacity of the sensing material measured in J
K

, T is the temperature of

the microbolometer measured in K, I is the biased current across the microbolome-

ter measured in A, V is the biased voltage across the microbolometer measured in
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V, and g is the thermal conductance measured in W
K

.

c
dT

dt
= IV + εPt + εPs − g(T − Ts) − (2A)εσT 4 (2.9)

The following variables are also present in Equation 2.9, time, t, measured

in s, Pt is the radiation from the target source measured in W, Ps is the radiation

from the reservoir measured in W, Ts is the temperature of the reservoir measured

in K, and the final term is Stefan’s Law or the power created from the bias current.

Stefan’s Law is characterized by area from the microbolometer, A, measured in m2.

As the joule heating, temperature increase from the applied bias, is considerably

greater than the thermal heating, temperature increase from received IR produced

by the target object, the first term characterized by IV must be accounted for in

Equation 2.9 [3].

2.2.3 Microbolometer Sensor and Pixel Arrays

Microbolometer sensors are only one integral part of a TIC. The exact struc-

ture is undisclosed, propriety information dependent on manufacturer: the following

information is supplied to ensure the reader has a general understanding of the struc-

ture of monolithic pixels. The sensor is encased in a vacuum package and sandwiched

between the camera lens, which will allow for penetration of IR, and the back-end

electronics, which produce the visible image, see Figure 2.2. Microbolometer sensors

are extremely complex due to the need to both thermally isolate while simultane-

ously conduct electricity between the sensing material and electrical components.
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Figure 2.2: General overview of the internal structure of a microbolome-
ter engine block [30].

The general structure of a microbolometer sensor consists of two parts: a

radiation sensing pixel array and a read-out integrated circuit (ROIC), as illustrated

in Figure 2.3. This sensor is contained within a vacuum to ensure the high thermal

isolation needed to process data. This vacuum eliminates the need for cryogenic

cooling and limits the thermal heat transfer between components. Although this

vacuum eliminates any convective heat transfer between components, the main mode

of heat loss in this small space is dominated by conduction.

The pixel component is shaped like a table top with two legs that elevate it off

the silicon substrate ROIC. These legs provide the thermal insulation necessary to

isolate the components while also completing the circuit between the sensing mate-

rial and the ROIC. The pixel is made of electrically conductive material, typically a

silicon nitride compound, encapsulating the temperature sensitive resistor material,

resistive bolometry typically uses Vanadium Oxide; although, Amorphous Silicon is

also common. It is responsible for absorbing light and consequently increasing in

temperature [32].

The ROIC consists of a silicon substrate that contains integrated electrical con-
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Figure 2.3: General overview of the internal structure of a microbolome-
ter pixel [31].

tacts. This combination of materials forms a monolithic bipolar transistor responsi-

ble for measuring the change in electrical resistance present within the temperature

sensitive pixel.

In addition to the microbolometer sensor, another important feature of a mi-

crobolometer engine block is the reflector. A reflector is located on top of the ROIC

and marks the end of the vacuumed enclosure. This layer is designed to reflect

back any light that may transmit through the absorption layer to maximize the

absorption through this layer [30,32].

The following information regarding specific specifications are published by

fire service TIC manufactures and specific to fire service TICs.
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Lens Specifications

In order for IR to be processed it must first pass through the camera lens.

The material used for these lens must be relatively durable while also allowing IR to

pass through its composition. Most lens are made of germanium (Ge). Germanium

is a high density, relatively hard, IR transmitting material. It is known to block

ultra-violet and visible wavelengths of light while transmitting up to 45 % of infrared

wavelengths between 2.0 - 14.0 µm. As this material increases in temperature its effi-

ciency in transmitting radiation decreases, rapidly decreasing above 200 ◦C. It is not

recommended to use this material in environments where the ambient temperature

exceeds 200 ◦C [33,34].

Microbolometer Specifications

After the IR has passed through the lens, it must be processed by the mi-

crobolometer detector. In order to be processed, it must first be absorbed by an

IR sensing material and the resultant increase in temperature must affect some

quantifiable physical property of the sensing material. Two materials are com-

monly used in fire service TICs, Vanadium Oxide (metallic) and Amorphous Silicon

(semi-conducting). These two materials are ideal sensing materials as their electri-

cal resistance are dependent on temperature. Vanadium Oxide (VOx) changes its

structural form around 68 ◦C, causing electrons in previously unbroken bonds to

become free increasing the electrical conductivity of the material. In addition, this

material can change from being IR transparent to nearly a perfect IR absorber. The
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resultant effect is the ability to act as a high speed shutter for use in TICs [35, 36].

Amorphous Silicon (a-Si) microbolometers surpass VOx in performance: offering

an increased temperature coefficient of resistance (TCR) and more efficient ther-

mal isolation. A-Si microbolometers can achieve a TCR in excess of 5%
◦C

, efficiently

increasing the sensitivity of the detector [37].

The resolution of the microbolometer refers to the number of pixels present

within the sensor. The higher the resolution, the more pixels are present and an

increase in clarity is achieved. This resolution is ultimately dependent on the pixel

and sensor size. Original microbolometer pixels were 50.0 µm while today most

microbolometer pixels are approximately 17.0 µm [3,19,22,38].

The spectral response of the microbolometer quantifies the range of EM wave-

lengths the sensor will operate within. This range is typically within the LWIR

band as this region of the EM spectrum maximizes the IR attenuation through the

atmosphere. Fire service TICs typically operate between 8.0 - 14.0 µm; while, some

models include the 7.0 - 8.0 µm region [3, 22].

The dynamic range of a TIC refers to two aspects: the temperature range the

camera is calibrated to detect and the maximum temperature a TIC can display.

The variance within the dynamic range allows for more contrast within the gray-scale

image, adding definition and detail to the working image produced. The maximum

temperature within the dynamic range is the maximum temperature the TIC can

display before the camera becomes saturated, creating a ‘white out’ screen. Most

TICs produced today have temperature indicating colors associated with extreme

temperature ranges so the ‘white out’ may in fact be of another color, typically red
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for extreme temperatures. This ’white out’ effect is typically associated with flash

over. There is great variance between TICs but most operate at 537 - 1093 ◦C [3,

22,38].

Back-End Electronics

The circuitry used to convert the electrical information produced by the ROIC

is not readily available from published specifications. This information is typically

considered proprietary information and not disclosed for public consumption. The

overarching theory to process IR as an image is discussed in Section 2.2.2.
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Chapter 3: Instrumentation & Equipment

Throughout the various chapters of this report measurements of temperature

(acquired from TICs and TCs) and opacity are discussed. This section is intended

to summarize the instrumentation used to collect these measurements. To avoid

repetitiveness each instrument is described in detail and the potential uncertainty

associated with each measurement is presented below. While the use of TICs and

TCs are consistent throughout Sections 4 - 5, the use of the remaining instrumen-

tation is specific to Section 5.

3.1 Fire Service TICs

The demands placed on fire service TICs by the environment and operation

require that such devices be portable, operable with a single hand, reliable, able to

determine the difference between a hot object and a cold object, and rugged enough

to withstand high working temperatures, dirty environments, and potential external

stressors. Uncooled microbolometers are best suited to fit these requirements as they

are small and lightweight, do not need to be constantly cooled or re-calibrated for

accuracy, and can be outfitted with protective measures. There are two leading types

of bolometry, pyroelectric / ferroelectric and resistive. From a brief market review
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of available fire service TICs it appears that resistive microbolometers, specifically

Vanadium Oxide, are commonly used by fire service TIC manufacturers.

NFPA 1801 - Standard on Thermal Imagers for the Fire Service dictates the

design requirements for fire service specific TICs. Specific design requirements out-

lined in this standard include the minimum working time of 120 min at 22 ◦C ± 3 ◦C,

spectral range of 8 - 14 µm, a minimum display resolution of 76,800 pixels, and a

minimum frame rate of 25 frames per second. Display specifications include a gray-

scale image display with ‘hot white’ polarity and informational indicators of power

source, overheated conditions, and power on. The location of informational indi-

cators are also specified by this standard. The standard considers heat indicating

color, temperature bar, numeric temperature indicator, and audio, visual, and data

recording / transmission capabilities optional.

While a spot temperature measurement is not a basic required functionality of

fire service TICs, requirements specific to this feature are discussed in NFPA 1801.

If a spot temperature measurement is an included feature it must be accompanied

by a measurement zone to better help firefighters aim and control the TIC, as the

temperature measurement will only be calculated for the objects located within this

area. This measurement zone is to be indicated in the center third of the viewing area

by a transparent green box or by box corners indicated by a green border. Related

to the spot measurement, the viewing area must contain a numeric temperature

indicator, a temperature bar, or both. If a numeric temperature indicator is utilized,

it must be represented in the bottom right corner in green superimposed on a black

background. If a temperature bar is utilized, it must be represented in the right
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third of the viewing area by a green range divided into at least four incremented

sections.

NFPA 1801 does not dictate the programed emissivity value for fire service

TICs. In several tests described throughout the standard, objects with an emissivity

values of 0.95 ± 0.03 are often used. To minimize set up time and ease usability the

emissivity value is typically fixed. By fixing this value, firefighters do not have to

complete an additional step prior to using the camera. These values range around

0.85 - 0.95. Typically fire service TICs are used to evaluate the temperature of

common building materials. The emissivity values associated with such materials

are within the previously stated range [39].

3.1.1 TICs Investigated

Three manufacturers of TICs were investigated in various sections of this re-

port, referred to as TIC # 1, TIC # 2, and TIC # 3. Although three manufacturers

of TICs were investigated, only one model per manufacturer was considered. Read-

ily available product specifications for these TICs are listed in Tables 3.1 - ??. While

the specifications vary dependent on the manufacturer, each TIC utilizes a resistive

microbolometer sensor.

TIC # 1 was a hand held TIC; which, allowed for external recording, capturing

video at 30 frames per second. TIC # 2 was a hand held TIC; which, allowed for

external recording, capturing video at roughly 30 frames per second. Both TIC # 1

and TIC # 2 were employed in the initial spot temperature evaluation and the
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experiments specifically conducted for this report. TIC # 3 was a hand-held TIC;

which, did not allow for real time external monitoring. Rather this TIC offered an

internal recording feature capturing video at 10 frames per second.

Product specifications of concern for this report are presented in Table 3.1.

For instances where product information was not readily available, commonly seen

for TIC # 1, a blank box is depicted.

Table 3.1: TIC Microbolometer Specifications

Attribute TIC # 1 TIC # 2 TIC # 3

Sensing Material Vanadium Oxide Vanadium Oxide Amorphous
Silicon

Emissivity 0.95 Un-published Un-published
Spectral Response 8.0 - 14.0 µm 7.0 - 14.0 µm 7.5 - 14.0 µm
Pixel Size 17.0 µm 25.0 µm
Pixel Count 320 x 240 320 x 240 384 x 288
Update Rate 60 Hz 60 Hz
NETD 50 mK

(0.05 ◦C)
>50 mK
(>0.05 ◦C)

>50 mK
(>0.05 ◦C)

Dynamic Range 1100 ◦C 593 ◦C -40 - 1100 ◦C

Fire service TICs operate under proprietary algorithms to determine tempera-

tures of solid objects. Without knowledge of these algorithms and input information,

the analysis conducted within this report was dependent on the spot temperature

measurements obtained from the TICs investigated. This output information was

not presented in a format conducive to analysis; therefore, a series of computer

programs were created to translate this information into a usable format. The con-

clusions presented within this report therefore are not definitive. A working rela-

tionship with manufacturers to provide proprietary information is needed to support
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research and claims presented within this report.

Visual Output

Two versions of the TIC # 1 type exist. The difference being in the visual

output, seen in Figure 3.1. Both TICS are white hot polarity and provide a spot

temperature measurement with a numeric readout and temperature bar.

(a) Camera Type 1 (b) Camera Type 2

Figure 3.1: TIC # 1 visual output comparison.

Figure 3.1(a) is an example of the visual output produced from the first ver-

sion of TIC # 1, referred to as Camera Type 1. This TIC has a measurement zone

indicated by a transparent set of arrows, colored in green. The numeric temper-

ature readout is colored in green superimposed onto a black background and the

temperature bar is colored in green with three defined segments. The temperature

bar provides a tricolor visual for the heat indicating colors upon initial startup.

Heat indicating colors visually depict different temperature ranges within the FOV.

Figure 3.2 represents the heat indicating color range offered by this TIC. This TIC
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does not meet the current requirements of 2018 edition of NFPA 1801.

Figure 3.2: TIC # 1 Camera Type 1 visual output including heat indi-
cating colors.

Figure 3.1(b) is an example of the visual output produced from the second

version of TIC # 2, referred to as Camera Type 2. This TIC has a measurement

zone indicated by a set of cross-hairs. The numeric temperature readout is colored in

green and is superimposed on a black background and the temperature bar is colored

in green with two defined segments. The temperature bar provides a dual color visual

for heat indicating colors upon initial startup, this changes to a tricolor visual when

temperatures within the FOV increase substantially. These heat indicating colors

are employed to visualize the temperature gradient of objects within the FOV.

Figure 3.3 represents the dual color range offered by this TIC. Figure 3.4 represents
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the tri-color color range offered by this TIC. This TIC does not meet the current

requirements of 2018 edition of NFPA 1801.

Figure 3.3: TIC # 1 Camera Type 2 visual output including dual color
heat indicating display.

Other differences in visual output are apparent between the two TICs, includ-

ing battery status and font type. It is assumed that the both TICs have a fixed

emissivity value 0.95. Both TICS have an approximate frame rate of 30 frames per

second.

TIC # 2 was used during the Fire Attack study as well as this studies exper-

imental design. Figure 3.5 depicts the visual output produced from this TIC.

The visual output of this TIC has a white hot polarity and includes a spot tem-

perature measurement accompanied by a numeric readout and temperature bar. The
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Figure 3.4: TIC # 1 Camera Type 2 visual output including tricolor
heat indicating display.

measurement zone is indicated by a transparent box, colored in green, the numeric

temperature readout is colored in green superimposed onto a black background, and

the temperature bar is colored in green with four defined segments. This TIC model

employs heat indicating colors to better visualize the thermal gradients within the

FOV: yellow for temperatures in the range of 260 - 426 ◦C (500 - 799 ◦F), orange for

temperatures in the range of 427 - 537 ◦C (800 - 999 ◦F), and red for temperatures

greater than 538 ◦C (1000 ◦F) [40]. Figure 3.8 represents the heat indicating color

range offered by this TIC. This TIC meets the current requirements of 2018 edition

of NFPA 1801.

TIC # 3 was implemented in the experiments specifically conducted for this
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Figure 3.5: TIC # 2 visual output.

report. Figure 3.7 depicts the visual output produced from this TIC.

The visual output of this TIC has a white hot polarity and includes a spot

temperature measurement accompanied by a numeric readout. The measurement

zone is indicated by transparent box corners, colored in green, while the numeric

temperature readout is colored in green superimposed onto a black background.

This TIC model offers heat indicating colors for better visualization of temperature

ranges within the FOV: yellow for temperatures in the range of 150 - 500 ◦C, orange

for temperatures in the range of 500 - 600 ◦C, and red for temperatures in the range

of 600 - 1100 ◦C [41]. Figure 3.8 represents the heat indicating color range offered by

this TIC. This TIC meets the current requirements of 2018 edition of NFPA 1801.

3.1.2 Image to Text Video Processing

The TICs evaluated by this report could not convert or export spot tempera-

ture measurements from video to text format, i.e. a data file containing only text,

characters, or digits. However, all three cameras offered video recording of the visual
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Figure 3.6: TIC # 2 visual output including heat indicating colors.

output produced during use. TIC # 1 and TIC # 2 allowed for real time moni-

toring from an external location via a BNC (Bayonet Neill-Concelman) connection;

the external location recorded data in a .mp4 format. TIC # 3 did not allow for

real time monitoring but rather recorded visual output internally in a .avi format;

which, at a later time could be downloaded from the TIC to a computer via a micro

USB connection. To obtain the spot temperature in text format, a series of process-

ing scripts were created to recognize the temperature text from each video file and

record it into a .csv (Comma Separated Values) file.

Each TIC’s visual output is unique despite the requirements specified in NFPA 1801.

The temperature text style and location within the visual output presented unique

challenges for each of the TICs investigated. This resulted in the need for multiple
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Figure 3.7: TIC # 3 visual output. An ambient environment is depicted.

techniques to covert the temperature output from a video format into a text format.

Each technique is summarized below and further detailed in Appendix A. The raw

data produced from the following scripts were manually inspected. Any outlying

temperature measurements were manually compared to TIC video and updated if

needed.

Seven-Segment

The temperature text style produced from TIC # 1 Camera Type 1 is similar

to a seven-segment display. Seven-segment displays are a type of electronic format

commonly used in light-generating or controlling displays, digital clocks and cal-

culators [42]. The script developed to read this temperature text style, evaluated

each digit within the temperature output to identify the ‘on’ or ‘off’ status of the

seven-segments. First, the video was converted into a series of images, taken at each

second or every 30 frames. Second, each image was cropped to include only the

temperature text and converted into binary color, black and white. Third, the im-
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Figure 3.8: TIC # 3 visual output including heat indicating colors.

age was further cropped to include only one numbers place within the measurement,

ones, tens, hundreds, thousands. Fourth, the color of each segment was determined

to be either white (‘on’) or black (‘off’) and recorded into an array of values specific

to that digit, 1 representing white and 0 representing black. Fifth, the array was

referenced against a master array representing the status of each of the desired digits

0 - 9 to reconstruct the individual number. Finally, the individual numbers were

combined to assemble the whole spot temperature measurement.

Figure 3.9 is a representation of the temperature text style produced by Cam-

era Type 1.

A seven-segment indicator consists of seven components (equal in size and
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Figure 3.9: Sample TIC temperature text produced from TIC # 1 Cam-
era Type 1.

shape) to represent digits or characters. To represent a digit, each of these seven

components can be considered ‘on’ or ‘off’. Many possible combinations of ‘on’

and ‘off’ segments exist; but, only 10 are desired for this code. These combinations

correspond to the digits 0 - 9. Figure 3.10 represents a seven-segment indicator with

each segment numbered.

Figure 3.10: Breakdown of each segment in a seven-segment display [42].

36



Image Comparison

The script developed to read the temperature output produced by Cam-

era Type 2, compared each digit within the temperature output to a reference

set of digits [43]. The reference set of images created manually by assessing the

TIC videos for each of the 10 digits (0 - 9) needed to reconstruct the tempera-

ture measurement. First, the video was converted into a series of images, taken at

each second or every 30 frames. Second, each image was cropped to only include

the temperature text and converted into binary color, black and white. Third, the

image was further cropped to include only one numbers place within the measure-

ment, ones, tens, hundreds, and thousands. Third, the image was compared to the

reference set analyzed. The mean squared error and structural similarly index was

calculated for each image in the reference set. The temperature output was properly

identified when the calculated values for a single reference image has simultaneously

the lowest mean squared error and the highest structural similarly index. Fourth,

the individual numbers were combined to assemble the whole spot temperature mea-

surement. Figure 3.11 is a representation of the temperature text style produced by

Camera Type 2.

Optical Character Recognition

An Optical Character Recognition (OCR) engine designed to recognize and

‘read’ text embedded in images was utilized to covert the spot temperature mea-

surements from TIC # 2 and TIC # 3 [44, 45]. The most recent version of this
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Figure 3.11: Sample text produced from the camera used only in the
combustion environment series, located inside the structure.

OCR was released June 1, 2017 and is maintained by on GitHub. First, the video

was converted into a series of images, taken at each second or every 30 frames or

10 frames, respectively. Second, each image was cropped to only include the tem-

perature text and converted into a binary color, black and white. Third, the image

was ran through the OCR engine and the temperature output was determined.

Figure 3.12 is a representation of the temperature text styles from each TICs

visual output.

(a) TIC # 2 Temperature Text Style (b) TIC # 3 Temperature Text STyle

Figure 3.12: Sample TIC temperature text from both TIC # 2 and TIC # 3.
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3.2 Thermocouples

To monitor gas temperatures, UL FSRI utilizes individual bare-bead, chromel-

alumel thermocouples (TCs). The K-Type TCs have a nominal diameter of 0.5

mm. These TCs were strung together into an array to measure temperatures at

varying elevations. There were two types of trees employed, with the difference being

the distance between each TC bead. The first TC array configuration measured

temperatures at 0.61 m intervals. The second TC array configuration measured

temperatures at 0.30 m intervals. The highest TC was placed 0.03 cm from the

ceiling resulting in two configurations: 0.30, 0.91, 1.52, and 2.13 m or 0.30, 0.61,

0.91, 1.22, 1.52, 1.83, 2.13, and 2.44 m below the ceiling, respective of interval

distance.

Due to radiation exchanges within the surrounding environment, walls, gases,

soot, and ambient environment, gas temperatures measured from bare bead TCs

are not always representative of the actual gas temperature. For TCs within the

hot gas layer, temperatures produced from TCs are typically lower than the actual

gas temperatures. Conversely, temperatures measured from TC arrays in the lower

layer are higher than actual gas temperatures. The percent error is most noticeable

for the TC located in the lower layer when true temperatures are close to ambient

temperature while, the upper layer is at an elevated temperature. An expanded

uncertainty, based on the findings from two NIST reports [46,47], has been calculated

and applied to all temperature measurements to account for these losses. Due

to the effect of radiative heat transfer to the TCs, the expanded uncertainty is
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approximately ± 15 %.

3.3 Opacity Sensors

To determine the opacity of the smoke produced during experimentation, an

ambient oil mist system was utilized. Opacity was determined using the theory of

light attenuation. Data was obtained by utilizing a ‘green laser light beam’, reflector,

and receiver. According to the manufacturers information, the relative uncertainty

of the system is ± 2 %.

The system determined opacity of the environment by employing the theory

of light attenuation. This process included focusing a light array through the semi-

or opaque environment onto a reflector. The light must then bounce off the re-

flector and travel back through the semi- or opaque environment onto the receiver.

The process calculated opacity from the amount of light received, lower attenuation

indicates higher opacity and higher attenuation indicates lower opacity. The man-

ufacturers specifications indicated that a ‘green laser light beam’ was employed for

this process to occur. The specifications indicate that this light beam has ‘special

spectral characteristics’ that allowed for particles of ‘oil, smoke, and dust’ to be

detected. The manufacturer provided additional information about these charac-

teristics, specifically the wavelength of 550 nm. This measurement therefore was

indicative of opacity as perceived by the human eye. A 0 % opacity indicated full

visibility; while, 100 % opacity indicated the saturation of the sensor.

A TIC is capable of receiving wavelengths within the IR spectrum, roughly
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8 - 14 µm for fire service TICs. The measurements from the oil mist system cannot

be employed to determine when IR was obscured within the environment, adversely

affecting the TIC spot temperature measurement. For example, 100 % opacity does

not correlate to when radiant energy was fully or partially blocked or obscured.
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Chapter 4: Initial TIC Spot Temperature Evaluation

To develop a more comprehensive understanding of the limitations associated

with TIC spot temperature measurements, experimental data obtained during Car-

diovascular and Chemical exposure Risks in Modern Firefighting [13] and Impact

of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and

Occupant Survival: Full Scale Experiments [12] were evaluated. Instrumentation

was employed during both projects to monitor hazards, conditions, and operations

associated with a fire event.

This report aims to quantify the TIC’s ability to capture hazards within a fire

environment. Instrumentation was not initially employed for this type of analysis;

therefore, was best accomplished for these two experiments by evaluating TIC spot

temperature measurements against TC temperature measurements from the TC

array closest to the location of the TIC measurement zone at appropriate heights.

This approach was fundamentally limited as TICs are designed to capture radiant

energy from solid surfaces and participating media; while, TCs are designed to

measure gas temperatures.
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4.1 Cardiovascular and Chemical Exposure Risks in Modern Fire-

fighting

UL FSRI partnered with the Illinois Fire Service Institute (IFSI) to conduct a

series of twelve experiments designed to investigate the thermal and cardiovascular

strain placed on firefighters while during forcible entry, search and rescue, and fire

attack in realistic fire environments. The effects of fire size, firefighting tactics, and

fire ground assignment on physiological responses and markers of toxic exposure of

firefighters were explored. The experiments referenced in this section are summa-

rized in the Interim Report, Cardiovascular & Chemical Exposure Risks in Modern

Firefighting [13].

Inspired by homes built during the mid-twentieth century, a ranch-style struc-

ture was built specifically for this experimental study. To maximize the use of

the structure and minimize downtime between individual experiments, two internal

configurations were designed. Interior structure walls and ceiling were finished with

Type X gypsum board. During each individual experiment, a fire was set in both

bedrooms located at the end of the hallway. Suppression tactics varied between

interior and exterior attacks. Instrumentation deployed throughout the structure

included thermocouples to monitor gas temperatures and TICs to monitor internal

conditions during combustion. TIC # 1 was employed in two locations to document

thermal gas flows within the structure. This instrumentation was used to monitor

firefighters and the progress of various fire-ground operations. A depiction of the
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structure layout and instrumentation location is presented in Figure 4.1.
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Figure 4.1: Ranch-style structure built for the IFSI Experiments [13].
Two internal configurations were created by the addition or removal of
temporary walls. Green triangles represent TC arrays which measure at
0.61 m intervals. Pink symbols represent the two TIC locations.

Experiment # 9 utilized the left internal configuration of the ranch-style struc-

ture. Both bedroom windows were framed open; however, bedroom 5’s second win-

dow was initially simulated closed with a sheet of gypsum board. A fire was ignited

in bedroom 6 followed by ignition in bedroom 5 two minutes later. Both fires were

allowed to grow and burn for five minutes. At such time the front door was opened

and interior suppression efforts began shortly after. Bedroom 5’s second window

was opened roughly a two minutes after.

At ambient conditions, TIC # 1 produced an image of both the hallway and

living room with little contrast. Figure 4.2(a) depicts the Hallway TIC’s FOV. This

location near bedroom 4 allowed for visualization the hallway and bedroom 5’s door-
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way and window. Figure 4.2(c) depicts the Living Room TIC’s FOV. This location

near the front door visualized the contents of the living room. While the general

structure and associated hazards of both spaces were distinguishable, details were

limited. This was expected as all objects within the FOV were at ambient temper-

ature. As seen in Figure 4.2(b) and 4.2(d), the visual output remained unchanged

10 s post ignition in bedroom 6.

(a) Hallway: Prior to Ignition (b) 10 s Post Ignition

(c) Living Room: Prior to Ignition (d) 10 s Post Ignition

Figure 4.2: TIC visual output during ambient conditions, obtained dur-
ing Experiment # 9.

As the fire grew, heat was transfered to the surrounding environment. This

was documented by the TIC as an overall increase in contrast. As such, more
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details of the space became apparent. As the fire entrained air from all directions,

a bi-directional flow through the windows and doors within the room enclosure was

established. Cool air was entrained through the bottom of openings; while, hot

gases were expelled through the top. Figure 4.3(a) and 4.3(c) indicate this flow an

increase in contrast from the top of bedroom 6’s doorway. As the fire continued to

grow in size, more energy was transfered to the surroundings. The TIC documented

the thermal flow by false coloring the image with various heat indicating colors,

as seen in Figure 4.3(b) and 4.3(d). Heat indicating colors are specific to certain

temperature ranges and are utilized to visualize temperature hazards within the

FOV, see Section 3.1.1 for further detail.
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(a) Hallway: 100 s Post Ignition (b) Hallway: 125 s Post Ignition

(c) Living Room: 100 s Post Ignition (d) Living Room: 125 s Post Ignition

Figure 4.3: TIC # 1 visual output 100 s after bedroom 6 ignition during
Experiment # 9.

Similar fire development was experienced from the ignition in bedroom 5. Due

to the designed two minute gap in ignition times, the flow from bedroom 6 dominated

the image produced from the TIC. The initial stages of thermal flow from bedroom

5 are not visible by the TIC. Once the flow from bedroom 5 was large enough it

began to mix with the flow from bedroom 6. This was documented by the TIC as

a larger false colored area, as seen in Figure 4.4.
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(a) Hallway: 230 s Post Ignition (b) Living Room: 230 s Post Ignition

Figure 4.4: TIC # 1 visual output of both thermal flows during Experiment # 9.

The fire grew continued to grow until suppression occurred. The TIC docu-

mented an increase in flow and maximum temperature, followed by an immediate

decrease prior to door ventilation and suppression efforts. Figure 4.5 and 4.6 repre-

sent this behavior, respectively.
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(a) Hallway: 232 s Post Ignition (b) Hallway: 242 s Post Ignition

(c) Hallway: 252 s Post Ignition (d) Hallway: 262 s Post Ignition

Figure 4.5: TIC # 1 Camera Type 2 visual output during Experi-
ment # 9 for the Hallway TIC. Images represent time of peak tempera-
ture and 10 s, 20 s, and 30 s after peak temperature occurs, respectively.
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(a) Living Room: 232 s Post Ignition (b) Living Room: 242 s Post Ignition

(c) Living Room: 252 s Post Ignition (d) Living Room: 262 s Post Ignition

Figure 4.6: TIC # 1 Camera Type 2 visual output during Experi-
ment # 9 for the Hallway TIC. Images represent time of peak tempera-
ture and 10 s, 20 s, and 30 s after peak temperature occurs, respectively.
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The structure door was opened allowing for the thermal flow within the struc-

ture to grow. This was documented by the TIC with increase in false coloring of

the thermal area, as seen in Figure 4.7.

(a) Hallway: 410 s Post Ignition (b) Hallway: 440 s Post Ignition

(c) Living Room: 410 s Post Ignition (d) Living Room: 440 s Post Ignition

Figure 4.7: TIC # 1 visual output of both thermal flows during Experiment # 9.

Shortly after ventilation, suppression efforts began to extinguish the fire. The

thermal flow depicted by the TIC decreased in size after the application of water.

The TIC depicted in Figure 4.8, portrayed details of the scene with various contrasts.
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(a) Hallway: Test Conclusion (b) Living Room: Test Conclusion

Figure 4.8: TIC # 1 visual output of both thermal flows during Experiment # 9.

To analyze the TIC’s ability to quantify the temperature hazard within the

space, a comparison between TIC spot temperature and TC measurements was con-

ducted. This required the TIC’s spot temperature measurement to be converted into

a text file. The methodology outlined in Appendix A was followed. The location

of each TIC’s measurement zone location was determined from inspection of visual

output following the methodology outlined in Appendix B. The hallway TIC’s mea-

surement zone was located on the divider wall within bedroom 5 at an elevation

of 1.52 m. The closest TC array to this location was located within bedroom 5.

The temperature output produced from the TIC was compared to the temperatures

measured from the TC array, ‘Bedroom5’. The location of the living room TIC’s

measurement zone was on the living room wall to the left of the hallway entrance

at an elevation of 2.13 m. The closest TC array was located within the hallway, be-

tween bedroom 5 and bedroom 4. The temperature output produced form this TIC

was compared to the temperatures measured from the TC array, ‘HallLeft’. Tem-
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perature measurements obtained from each TIC and associated TC is presented in

Figures 4.9 - 4.10.

Figure 4.9(a) and Figure 4.10(a) indicate that for both TIC locations, the spot

temperature measurement produced an initial ambient temperature until ignition

occurred. After which, an increase in temperature terminated into a peak maxi-

mum temperature. Before ventilation or suppression efforts began, a decrease in

temperature was observed. These temperatures remained relatively stable until the

experiment concluded. For both TC locations, the temperature measurements also

remained at a steady ambient temperature until ignition. After which, an increase

in temperature occurred which remained steady until ventilation and suppression

efforts began. Following suppression efforts, temperatures returned to ambient con-

ditions and remained throughout the conclusion of the experiment.
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(a) Hallway: Temperature Comparison
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(b) Hallway: Percent Difference

Figure 4.9: Temperature data obtained from TIC # 1 and ‘Bedroom5’
TC array obtained from Experiment # 9. TC expanded uncertainty of
± 15 % is depicted on 4.9(a) by a light blue region.
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(a) Living Room: Temperature Comparison
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(b) Living Room: Percent Difference

Figure 4.10: Temperature data obtained from TIC # 1 and ‘HallLeft’
TC array obtained from Experiment # 9. TC expanded uncertainty of
± 15 % is depicted on 4.10(a) by a light blue region and 4.10(b) as a
light green region.
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Figure 4.9(b) and Figure 4.10(b) depict the TC uncertainty, indicating when

the two temperature methods produce indistinguishable temperatures. For both

TIC locations, the comparison between TIC spot temperatures and TC measure-

ments produced similar results. It was determined that the two temperature mea-

surement methods were comparative for pre-ignition and post-suppression condi-

tions. The average percent difference was 1 % and 16 %, respectively. The post-

suppression average percent difference is higher than ± 15 %, indicating that the

two methods are not comparable. However, this is due to the increase in temper-

ature observed from the TC array after suppression. If this time is excluded, the

percent differences is less than the expanded uncertainty associated with the TC

measurement. The two temperature measurements are not comparable for combus-

tion conditions. The percent difference is 53 %.

After comparing both methods, it was established that the TIC temperature

measurements indicated a peak and decay. Simultaneously the TC indicated gas

temperatures were steady at an elevated magnitude. It was expected that wall

temperatures should continue to increase while gas temperatures are elevated. The

temperatures from the TIC suggested otherwise indicating that the radiation re-

ceived by the TIC was impacted. This was verified by visually analyzing the TIC

video feed, Figures 4.5 - 4.6. The thermal flow, indicated by yellow, orange, and

red, grew in size till a peak temperature occurred, then the flow quickly diminished.

This should indicate that the fire intensity was decaying; however, TC measure-

ments indicate the opposite, suggesting that the radiation received by the TIC was

impacted.
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After evaluating both TIC locations for each experiment within this series,

the limitations and obstacles associated with this type of analysis were determined.

The measurement zone location influenced the behavior of the TIC spot temperature

measurements. The Hallway TIC in Experiments # 2, 6, 8, and 10 had measure-

ment zone locations below 0.91 m. This height was typically below the hot gas layer

throughout the duration of the experiment. During these experiments the TIC tem-

peratures gradually increased. The remaining experiments had measurement zone

locations above 0.91 m. The measurement zone was located within the smoke layer

once ignition occurred. During these experiments the TIC temperatures increased

into a peak temperature. This emphasized the need for repeatable measurement

zone locations near TC arrays. Figure 4.11 indicates the TIC spot temperature

measurements when the measurement zone was below 0.91 m.
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(a) Experiment # 8 Temperature Comparison
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(b) Experiment # 8 Percent Difference

Figure 4.11: Temperature data obtained from TIC # 1 and Bedroom2
TC array obtained from Experiment # 8. TC expanded uncertainty of
± 15 % is depicted on 4.11(a) by a light blue region and 4.11(b) as a
light green region.
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This TIC spot temperature behavior from Figure 4.11(a) is different than from

Figures 4.9 - 4.10. The TIC spot temperature measurement minimally responded

to the increase in heat produced from the fire. The response from the TIC spot

temperature measurement was to be expected as its measurement zone was within

the lower cool thermal layer. The cool thermal layer was less affected by smoke. It

was assumed the TIC was determining the temperature of the wall without influence

from the smoke layer. As the wall was not isothermal, upper portions are hotter

than lower portions. The temperature gradient of the wall was reflected by the TIC

spot temperature measurement when the measurement zone was below the smoke

layer.

The evaluation of the measurement zone location only considered the distance

off the floor, it does not account for the distance between the TIC and the tar-

get object. This distance was not investigated by this analysis as there were not

multiple TC arrays located in series throughout the structure. However, it was

determined that at shorter distances between the TIC and target object, TIC tem-

perature outputs become more representative of true object temperatures. During

the tactical evolutions this study included, it was necessary for firefighters to en-

ter the FOV for both camera locations. Although the firefighters’ presence in the

FOV only amounted to a short duration, both TIC types were able to display the

temperature difference between the firefighters and the surrounding environment,

when firefighters were present in the foreground of the TIC FOV. See Figure 4.12

for visual representation of the TIC view with and without firefighter presence.
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Figure 4.12: Typical FOV without (left) and with (right) firefighters
present the measurement zone for the hallway Type 2 TIC. The time
difference between the two images was roughly 2 seconds.

Although the temperature of the firefighters gear was not recorded it can be

assumed to be some temperature between the firefighter’s body temperature and

the ambient (before combustion) temperature, resulting in a temperature less than

the heated environment. As seen in Figure 4.12, the TIC was able to determine this

temperature difference. This suggests that at short distances the emitted energy IR

wavelengths can penetrate the semi-opaque atmosphere to be absorbed by the TIC

measure temperatures.

The living room TIC was accompanied by a standard video camera, which al-

lowed for visual observation of the living room and hallway during experimentation.

The smoke obscuration of the environment was observed. The living room retained

visual clarity longer than the hallway, which is expected as the seat of the fire was

located in the bedroom at the end of the hall and smoke follows general physic

principles, flowing from areas of high concentration to areas of low concentration.

This additional time did not appear to have a substantial effect on the TIC spot
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temperature measurements as the data obtained from both TIC locations produced

similar results, when compared to the TC locations.

For complete documentation of experimental results, including all plots, see

Appendix B.
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4.2 Impact of Fire Attack Utilizing Interior and Exterior Streams

on Firefighter Safety and Occupant Survival: Full Scale Experi-

ments

UL FSRI conducted a series of twenty-four experiments to investigate the

effects of various ventilation configurations and suppression tactics on interior con-

ditions during a structure fire. Ventilation configurations included none, single win-

dow, or double window. Each ventilation configuration investigated the combined

effects when coupled with both interior and exterior suppression tactics. The find-

ings from this investigation are summarized in the report, Impact of Fire Attack

Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival:

Full Scale Experiments [12].

A ranch-style structure was built specifically for this series of experiments.

After each individual experiment was conducted, the structure was outfitted with

new materials to ensure repeatability. In some experiments, the turn around rate

between burns did not allow enough time for drywall mud to be completely dry.

This caused increased moisture within the gypsum walls. During these cases the TIC

produced cooler ambient temperatures than the TC. A fire was set in either bedroom

1, no or single ventilation, or simultaneously in both bedroom 1 and bedroom 2,

double ventilation. Suppression tactics varied between interior and exterior attacks

with various nozzles types and moment techniques. Instrumentation was deployed

throughout the structure to monitor interior conditions during experiments. This
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included thermocouples to monitor gas temperatures and TICs to monitor thermal

flows during combustion. TIC # 2 TIC was employed in two locations within

the structure. The structure layout and instrumentation locations are depicted by

Figure 4.13.
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Figure 4.13: Ranch-style structure built for the Fire Attack Experi-
ments [12]. Orange crosses represent TC arrays which measure at 0.30 m
intervals. Pink symbols represent the two TIC locations.

Experiment # 13 and Experiment # 15 explored the combined effects of dou-

ble ventilation with interior suppression efforts. During both experiments bedroom

1 and bedroom 2’s windows were framed open; while, all other openings were sim-

ulated closed at the beginning of the experiment. Following a similar time-line of

events and interventions, a fire was ignited in both bedroom 1 and bedroom 2 si-
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multaneously. The fire was allowed to grow and burn uninterrupted for roughly

five and half minutes until the front door was opened. At which time, firefight-

ers entered the structure and began suppression efforts. The remaining openings

within the structure were ventilated some time after: four and a half minutes later,

Experiment # 13, and four minutes later, Experiment # 15.

Before ignition of bedrooms 1 and 2 during Experiment # 13, TIC # 2 pro-

duced an image of the hallway and living room with little contrast. The lack of

varying contrast was expected, as the space and solid objects were assumed to all

be at ambient temperatures. Figure 4.14(a) depicts that although the details of

the space were difficult to determine, the length of the hallway, bedroom entrances,

and additional instrumentation were apparent. Figure 4.14(c) depicts the part of

the living room, including the back of the couch and bookcase. As heat generated

from the fire transfer to the surrounding environment, the TIC produced an image

with varying contrasts. Figure 4.14(b) and Figure 4.14(d) represents this change in

visual output, as boundaries of the space and details become more distinct.
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(a) Experiment # 13: Prior to Ignition (b) Experiment # 13: 90 s Post Ignition

(c) Experiment # 15: Prior to Ignition (d) Experiment # 15: 83 s Post Ignition

Figure 4.14: TIC # 2 visual output at ambient conditions during Ex-
periment # 13 and Experiment # 15.

As the fire continued to grow and burn, air entrainment through windows and

doors within bedroom 1 and 2 increased. This created a bi-directional flow through

these openings. Hot thermal gases exited the room from the top of these openings;

while, cool air entered the room from the bottom of these openings. Figure 4.15(a)

depicts these thermal flows by an increase in contrast at the end of the hallway.

This flow increased in temperature as the fire continued to burn. Figure 4.15(b)

indicated this growth by false coloring the image yellow, orange, and red.
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(a) Experiment # 13: 120 s Post Ignition (b) Experiment # 13: 190 s Post Ignition

(c) Experiment # 15: 113 s Post Ignition (d) Experiment # 15: 173 s Post Ignition

Figure 4.15: TIC # 2 visual output at ambient conditions during Ex-
periment # 13 and Experiment # 15.

The fire continued to grow until interior suppression efforts began. The TIC

documented this growth with increased false colored areas. Immediately following

this growth the TIC displayed a indicated a decay in fire size without ventilation or

suppression interventions. Figures 4.16 - 4.17 indicates this decay.
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(a) Experiment # 13: 198 s Post Ignition (b) Experiment # 13: 208 s Post Ignition

(c) Experiment # 13: 218 s Post Ignition (d) Experiment # 13: 228 s Post Ignition

Figure 4.16: TIC # 2 visual output during Experiment # 13 for the
Hallway TIC. Images represent time of peak temperature and 10 s, 20 s,
and 30 s after peak temperature occurs, respectively.
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(a) Experiment # 15: 285 s Post Ignition (b) Experiment # 15: 295 s Post Ignition

(c) Experiment # 15: 305 s Post Ignition (d) Experiment # 15: 315 s Post Ignition

Figure 4.17: TIC # 2 visual output during Experiment # 15 for the
Living Room TIC. Images represent time of peak temperature and 10 s,
20 s, and 30 s after peak temperature occurs, respectively.
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After the front door was opened firefighters made their way to the hallway and

began suppression efforts. A short burst of water was introduced to the hallway to

cool the environment before advancing closer to the fire. Firefighters than moved to

the end of the hallway to extinguish the fires in both rooms. Figure 4.18(a) repre-

sents the TIC visual output shortly after the front door was opened. Figure 4.18(b)

indicates the decrease in temperature after burst suppression began. After suppres-

sion efforts the environment returned to a quasi ambient conditions.

(a) Experiment # 13: 345 s Post Ignition (b) Experiment # 13: 360 s Post Ignition

(c) Experiment # 15: 339 s Post Ignition (d) Experiment # 15: 353 s Post Ignition

Figure 4.18: TIC # 2 visual output at ambient conditions during Ex-
periment # 13.
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(a) Experiment # 13: Test Conclusion (b) Experiment # 15: Text Conclusion

Figure 4.19: TIC # 2 visual output at ambient conditions during Ex-
periment # 13.

In order to evaluate the evaluate TIC # 2’s ability to quantify the thermal haz-

ards within the environment, the TIC spot temperatures were compared to TC tem-

perature measurements. The TIC’s spot temperature measurement was converted

into a text file following the methodology outlined in Appendix A. To Determine the

location of the measurement zone a two-dimensional analysis was preformed. First,

the height was determined by following the methodology presented in Appendix B.

Second the depth within the FOV was determined by correlating the distance be-

tween the TIC lens and target object to one of several TC arrays located within

the hallway. The Hallway TIC measurement zone height during Experiment # 13

was approximated to an elevation of 1.52 m and depth was determined to be far,

or residing at the end of the hallway. This depth correlated to the TC array lo-

cated at the end of the hallway, labeled ‘3TC’. The Living Room TIC measurement

zone height during Experiment # 15 was approximated to an elevation of 0.91 m.

Only one TC array was located in the living room, labeled ‘5TC’. The temperature
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measurements obtained from both instruments are presented in Figure 4.20

Figure 4.20(a) indicates that the Hallway TIC spot temperature output re-

mained at a steady ambient temperature until ignition occurred. At which time,

an increase in temperature occurred terminating into a peak temperature. Immedi-

ately afterwards, a decrease in temperature was witnessed. This lesser temperature

remained fairly constant throughout the remainder of the experiment. The TIC

spot temperatures appeared to be unaffected from ventilation and suppression tac-

tics. This behavior differs from the measurements obtained from the TC array.

Figure 4.20(a) indicates that the TC initial ambient temperature remained steady

until ignition. After which, an increase in temperature occurred terminating into

elevated temperature. This temperature remained constant until ventilation and

suppression tactics occurred. These tactics resulted in a steady lesser temperature

throughout the duration of the experiment. To visually quantify the agreement be-

tween the TIC spot temperature and the TC measurements, the percent difference

between the two methods was determined and plotted on Figure 4.20(b). When

both temperature method outputs overlap the ± 15 % TC uncertainty region, it

can be assumed that the two are producing indistinguishable results. Figure 4.20(b)

indicates that the comparison between these two methods produced similar results

during during pre-ignition and post-suppression conditions. The average percent

difference is 1 % and 5 %, respectively. The comparison produced vastly different

results during combustion conditions with an average percent difference of 34 %.
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(a) Experiment # 13: Temperature Comparison
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Figure 4.20: Temperature data obtained from TIC # 2 and 3TC TC
array during Experiment # 13. TC uncertainty of ± 15 % is depicted
on 4.20(a) as a light blue region and on 4.20(b) by a light green region.
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(a) Experiment # 15: Temperature Comparison

0 100 200 300 400 500 600
Time [s]

40

30

20

10

0

10

20

30

40

Pe
rc

en
t D

iff
er

en
ce

 [%
]

Ign
itio

n

Ven
tila

tio
n: 

Doo
r

Ventilation: Window
Suppression +/- 30 sec
TC Uncertainty +\- 15%

(b) Experiment # 15: Percent Difference

Figure 4.21: Temperature data obtained from TIC # 2 and 5TC during
Experiment # 15. TC uncertainty of ± 15 % is depicted on 4.21(a) as
a light blue region and on 4.21(b) by a light green region.
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Figure 4.21(a) indicates the Living Room TIC spot temperature measurement

remained at an initial ambient temperature until ignition. After which, an increase

in temperature gradually occurred terminating into an elevated steady tempera-

ture. These steady temperatures gradually decrease prior to suppression tactics.

Temperatures continue to decrease, with little or no impact from suppression ef-

forts, for the remainder of the experiment. The TC produces measurements of

steady ambient temperatures until ignition. After which temperates increase to a

elevated magnitude. These elevated temperatures remain steady until ventilation

and suppression tactics are introduced. After which temperatures return to a lower

magnitude for the remained of the experiment. Figure 4.21(b) depicts the percent

difference between the two temperature methods during Experiment # 14. The two

temperature methods produce indistinguishable results throughout the majority of

the experiment. The average percent difference for pre-ignition, combustion, and

post suppression are as follows: -2 %, 17 %, 2 %, respectively.

After a comparison, it was determined that the Hallway TIC indicated a de-

crease in temperature while the TC indicated a growing/constant temperature. It

is expected that wall temperatures would continue to increase as long as air tem-

peratures increase or remained at a greater magnitude than the wall. As the TIC

indicates otherwise, it was concluded that the radiation received by the TIC was

impacted. This was verified by visually analyzing the TIC video feed. The thermal

flow, indicated by areas of higher contrast, grew in size till a peak temperature was

recorded shortly afterward ‘white out’ (thermal overload, saturation of false color

or contrast) was achieved. The Living Room TIC indicated steady temperatures

74



similar to TC temperatures but at a lesser magnitude. This suggests that the ra-

diation received by the TIC was not impacted during combustion conditions as the

wall would continued to increase/hold steady.

During Experiments # 1, 12, and 17 the time to suppression was extended.

This extended time-line did not affect the comparison between the two temperature

methods, as similar observations to the above example analysis were determined.

The TIC’s with a FOV of the hallway, produced temperature outputs comparative

to TC measurements for pre-ignition, the initial temperature increase during com-

bustion, and post-suppression. During combustion the two temperature methods

suddenly diverged, without correlation to any ventilation or suppression tactic. The

TIC’s with a FOV of the living room, produced temperature outputs comparative to

TC measurements during the entire experiment. During combustion the two tem-

perature methods gradually diverged. This indicates that radiant energy absorbed

by the TIC in the Hallway locations was impacted while the TIC in the living room

was representative of the actual wall temperature.

Agreement between the two temperature methods was observed during the

initial combustion temperature growth for the TIC with a FOV of the hallway,

regardless of ventilation type. While, agreement was observed throughout the entire

combustion time-frame for the TIC with a FOV of the living room, regardless of

ventilation type. Evaluating each TIC location, it was apparent the TIC located in

the hallway produces a higher percent difference for combustion conditions than the

TIC located in the living room. It again appeared that something was impacting

the radiant energy absorption of the TIC, which affected the TIC closer to the
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fire origin more quickly and more severely than the TIC located remotely from the

fire origin. The average percent difference for each time period is represented by

Tables B.8 - B.10.

The evaluation of the measurement zone location considered the height of the

measurement zone location for both TIC locations. Specifically, the distance be-

tween the TIC and the target object was evaluated for the TIC with a hallway

FOV. During this series of experiments there were three TC arrays located through-

out the hallway, 3TC, 4TC, and 5TC. The temperature comparison for each TIC

with a hallway FOV was between the TIC and the TC closest to the measurement

zone location. The temperature behavior recorded in Experiment # 3 is different

than the remaining experiments, as its measurement zone was at the start of the

hallway. The temperatures behave more similarly to the temperatures recorded from

the TC located in the living room. During this experiment the percent difference

was low throughout all time-frames, indicating that for this location the TICs spot

temperature measurement was similar to the TC temperature measurement. The

temperatures in Experiments # 2 & 3, experience lower peak temperatures than

the remaining experiments, as their measurement zone locations were in the middle

of the hallway. The percent difference during combustion for these two experiments

were similar to the percent difference for the experiments with a measurement zone

at the end of the hallway; indicating distance did not affect TIC spot temperature

measurements.

While the evaluation of the measurement zone location did not evaluate the

distance between the TIC and target object for the TIC with a living room FOV, it
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was determined that at shorter distances the TIC spot temperature measurement

more resembles the TC temperature measurements. It was necessary for firefighters

to enter the living room FOV throughout experimentation; specifically, between

time of initial entry to time at the beginning of the hallway. Although firefighter

presence in the TIC FOV amounted to a short duration in most instances, the TIC

was able to determine the temperature difference between the firefighters and the

surrounding heated environment. Figure 4.22 depicts this temperature difference

with two images taken roughly 2 seconds apart.

Figure 4.22: Typical FOV with (left) and without (right) firefighters
present the measurement zone for the front door IR camera.

The temperature of the firefighters gear was not recorded; but, can be assumed

to be between the firefighter’s body temperature and the ambient environment tem-

perature, resulting in a temperature less than the heated environment. As seen in

Figure 4.22, the TIC was able to detect the difference in temperature between the

firefighter and the surrounding environment. This suggests that at short distances

the emitted energy IR wavelengths can penetrate the semi-opaque atmosphere.
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Chapter 5: Study Design & Methods

The second phase of this report was to design and conduct experiments with

the goal of assessing the TIC’s spot temperature measurement. These experiments

were conducted at room-scale and leveraged information and knowledge obtained

during initial evaluation summarized in Section 4. The initial evaluation compared

spot temperature measurements to gas phase TC measurements. This comparison

produced large percent differences. In an attempt to better quantify spot temper-

ature measurements, the effects of smoke opacity and distance between TIC and

target object were investigated.

To further investigate how smoke opacity affects the TIC spot temperature

measurements, each TIC was evaluated in two different environments: an ambient

environment and a combustion environment. During the baseline experiments, the

ambient environment was not altered in any way. During the room-scale fire exper-

iments, the environment was affected by heat, smoke, and flames produced by the

fuel load described in Section 5.2.1. Three manufactures of fire service TICs were

investigated by this report; Table 5.1 lists the relevant product information for these

TICs [27–29].

Each experimental series was conducted in a room-scale fire training prop
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Table 5.1: Fire Service TICs used in both series of experiments.

TIC Microbolometer
Material

Spectral
Response

Emissivity

# 1 VOx 8.0 - 14 µm 0.95
# 2 VOx 7.0 - 14 µm Un-published
# 3 A-Si 7.5 - 14 µm Un-published

located at the Delaware County Emergency Service Training Center (DelCo). The

prop was constructed from a modified metal shipping container, represented by

Figure 5.1. This specific training prop was previously used in the FEMA/DHS2014 -

Training Fires Experiment [48]. The prop consisted of a 7.0 m x 1.22 m long

hallway terminating into roughly a 2.44 m x 4.6 m room. A layer of 13.00 mm thick

cement board was installed on top of the subfloor producing a consistent height of

2.36 m. The walls of the prop consisted of 6.00 mm thick corrugated steel. The burn

room window and hallway door were framed open. To allow for the manipulation

of ventilation openings, a window and door were created from steel with latching

mechanisms. The prop was mirrored across the length of the hallway, producing

two identical configurations in one structure; the right configuration was used for

both experimental series.

The room-scale fire training prop was created out of two metal shipping con-

tainers. While this structure allowed for quick turn-around between tests, it was not

representative of typical residential or commercial structures. The training prop had

6 mm thick metal walls. Residential or commercial structure walls typically con-

sist of several layers of exterior finishing materials (siding), rigid structure framing,

insulation, and interior finishing materials (gypsum) with various air-gaps to fur-
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Figure 5.1: Schematic drawing of the modified metal shipping container
located at Deco. The structure is mirrored across the hallway to produce
two training props.

ther insulate the structure. This layering of materials results in a wall thickness

much greater than of the metal prop. This difference in thickness and material com-

position affects the heat transfer through the walls. The metal structure aides in

heat losses to the surrounding environment. Metal has a high thermal conductivity

and conducts heat in two-dimensions allowing for transfer of heat to the outside air

quickly. A typical residential or commercial structure, would prevent heat losses

to the surrounding environment. The various material and air layers leads to one-
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dimensional conduction of heat slowing the transfer of heat to the outside air. The

metal walls will not radiate as much energy back into the structure as residential

or commercial structures would. This indicates that the temperature measurements

obtained during the baseline and room-scale fire experiments would be lower than

witnessed in a residential or commercial structures.

The difference in material composition also implies a difference in material

emissivity. The measurement zone location on the wall encompassed an area that

had been scrubbed to expose a surface viable for welding and an area that had

been repeatedly exposed to flames and soot. The emissivity for the metal used in

shipping containers is roughly 0.88 when ‘new’. The emissivity of soot varies on

wavelength and thickness, but is assumed to be 0.95 [49]. The emissivity for the

metal container can be assumed between 0.88 - 0.95 at ambient conditions. Fire

service TICs emissivity values are preset to 0.95 suggesting agreement in emissivity

between the TIC and target object at ambient temperatures. At elevated temper-

atures an objects emissivity can change suggesting during combustion conditions a

disagreement between TIC and target object emissivity. It cannot be determined

how much this disagreement between TIC and target object emissivity values affects

spot temperature measurements obtained from TICs.
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5.1 Baseline Experiments

Experiments were designed to investigate TIC spot temperature measurements

under ambient conditions as a function of distance and orientation. Two TIC orien-

tations (off-plane and on-plane) and five focal lengths (1.5 m, 3.1 m, 4.6 m, 6.1 m,

and 7.2 m), distance between the TIC lens and target object, were investigated. All

locations of the TICs for both the off-plane and on-plane experiments can be seen

in Figure 5.2.
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Figure 5.2: The TICs location within the structure for both the off-plane
and on-plane experiments.

The off-plane experiments explored any potential effect shape factor might
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have on the TIC temperature outputs. The target object consisted of the corrugated

steel that composed the structure walls. Specifically the target object was the wall

at the end of the hallway. The distance between the TIC and target object was

determined from the length of the hallway, 7.0 m. This distance mimicked the

distance in the room-scale fire experiments. During these experiments each TIC

was placed in a custom stand on the hallway floor located roughly 89 cm from the

door opening. This orientation placed the measurement zone on the wall at the end

of the hallway. The measurement zone was adjusted to be 1.5 m off the floor. This

created an angled line of sight, approximately 14 ◦, between the TIC and the wall

target, see Figure 5.3. The focal length between the TIC lens and target object was

7.2 m. The off-plane experiments only explores the spot temperature measurements

at this one distance. Figure 5.4 indicates the location of the TICs.

Wall TC

6.9 m (22.8 ft)

Off-Plane

Figure 5.3: Off-Plane TIC orientation
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Figure 5.4: Typical set up for the off-plane orientation

The on-plane experiments investigated if distance has any affect on TIC spot

temperature outputs. The target object consisted of the corrugated steel that com-

posed the structure walls. Specifically the target object was the wall at the end of

the hallway. The distance between the TIC and target object varied in increments

of 1.5 m. During the on-plane experiments each TIC was placed in a tripod and

adjusted such that the TIC measurement zone was centered on the wall target at an

elevation of 1.5 m above the finished floor. This created a level line of sight between

the TIC and wall target, see Figure 5.5. Each TIC was evaluated separately for this

orientation and evaluated at distances of 1.5, 3.1, 4.6, and 6.1 m. Figure 5.6 visually

represents the on-plane TIC set-up.

For each experiment in the baseline experimental series, a TC was tack-welded

to the corrugated metal wall located at the end of the hallway. This tack-weld was

placed 1.5 m above the finished floor and was replaced after each experiment. This

location corresponded to the measurement zone location during each experiment.

The signals produced from the TC were recorded with a digital data acquisition
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Figure 5.5: On-Plane TIC orientation

system. The data acquisition system and video feed were synced to record at the

same time. The location of the wall mounted TC for both the off-plane and on-plane

experiments can be seen in Figure 5.7; while, an example of the weld can be seen in

Figure 5.8.

The weld was created with chromel-alumel TC wire. Due to the law of inter-

mediate metals the signal produced from this Type-K TC is representative of the

wall temperature [50].

In total, five experiments were conducted for each fire service TIC listed in

Table 5.1. Table 5.2 summarizes the five experiments conducted for each TIC.

To evaluate the spot temperature measurement at various temperatures, the
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Figure 5.6: Typical set up for each TIC evaluated in the baseline exper-
imental series.

target object, corrugated steel, was repeatedly heated and allowed to naturally

cool. First, the steel was exposed to high heat from a propane torch. Direct flame

impingement was ensured for 15 s. The heated area was confirmed to fill the entire

measurement zone box for each test. Second, the steel was allowed to cool for 45 s.

This process was repeated five times per experiment. Table 5.3 displays the general

time-line of events.
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0.57 m (1.88 ft)

Figure 5.7: The wall mounted TC located on the back hallway wall
within the structure for both the baseline experiments.
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Figure 5.8: Wall-Mounted TC located on the target object (metal wall).
TC was affixed to the target object by a tack-weld.

Table 5.2: Baseline Experiments: Overview
Overview of Baseline Experiments.

TIC Orientation Distance (between TIC
and target object)

# 1

Off-plane 7.0 m
On-plane 6.1 m
On-plane 4.6 m
On-plane 3.1 m
On-plane 1.5 m

# 2

Off-plane 7.0 m
On-plane 6.1 m
On-plane 4.6 m
On-plane 3.1 m
On-plane 1.5 m

# 3

Off-plane 7.0 m
On-plane 6.1 m
On-plane 4.6 m
On-plane 3.1 m
On-plane 1.5 m
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Table 5.3: Baseline Experiments: Time-line

Time [s] Associated Event

0 Experiment Begin
1 - 60 Ambient Conditions
61 - 75 Heat Applied
76 - 120 Cool Down
121 - 125 Heat Applied
126 - 180 Cool Down
181 - 195 Heat Applied
196 - 240 Cool Down
241 - 255 Heat Applied
256 - 300 Cool Down
301 - 315 Heat Applied
316 - 400 Cool Down
401 - 430 Ambient Conditions
431 Experiment End
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5.2 Room-Scale Fire Experiments

Within this series of experiments, four full scale experiments were conducted.

Each test was similar in time-line, fire-size, and TIC location / orientation. To in-

vestigate the affect of different building materials on TIC spot temperature measure-

ments, two different target object material compositions were investigated (metal

and drywall). The two materials investigated by this experimental series have similar

emissivity values. Each test is summarized in Table 5.4 [39,51,52].

Table 5.4: Room-Scale Fire Experiments: Overview

Exp. # Building Material Emissivity Value

1 Metal (Cor-Ten AZP) 0.85 *
2 Metal (Cor-Ten AZP) 0.85 *
3 Metal (Cor-Ten AZP) 0.85 *
4 Dry Wall (Gypsum Wallboard) 0.90 *

* Indicates emissivity value associated with new building materials.

The experimental time-line was designed to mimic firefighter evolutions and

typical fire growth within an enclosed structure. At time of ignition all windows

and doors to the structure were closed. The fire grew, peaked, and began to decay.

Before complete extinction was reached, the structure was ventilated. The fire then

regrew, re-peaked, and reached a quasi-steady state. Finally, the fire was suppressed.

This time-line allowed for an analysis of the TIC’s spot temperature measurement

during all fire stages (ignition, growth, steady state, and decay) as well as during

the effect of firefighter tactics, ventilation and suppression. Table 5.5 represents the

typical time-line of events for the room-scale fire experiments.
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Table 5.5: Room-Scale Fire Experiments: Time-line

Time [s] Actions Fire Stage

0 Ignition Initial growth, peak, and decay
240 Open Hallway Door Secondary growth and peak
540 Open Windows Steady State
660 Suppression Extinction

5.2.1 Fuel Load

A fire was ignited in the room portion of this structure, referred to as ‘burn

room’. Fuel loads were representative of typical fuels found in residential structures.

This included two sofas and carpet with associated padding (installed in the burn

room only). The sofa was described as having faux wood finished feet with 100 %

polyester upholstery [53]. The carpet and padding was described as 100 % Olefin

fiber with a Polypropylene backing and recycled foam, respectively [54]. Item de-

scriptions and average initial weights are listed in Table 5.6. Fuels were consistent

across the experimental series so that replicates can be compared. Figure 5.9 il-

lustrates the location of the fuel load within the structure; while, 5.10 depicts the

actual fuel load used throughout this series of experiments.

Table 5.6: Room-Scale Fire Experiments: Fuel Load

Item Quantity per
Experiment

Description Average Initial
Weight

Sofa 2 2.26 x 0.99 x 1.02 m 49.50 kg
Carpet 9.75 m2 Thickness 0.26 cm 12.90 kg
Carpet Padding 9.75 m2 Thickness 0.95 cm 8.10 kg
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Figure 5.9: Burn room fuel load configuration consisting of two sofas
and associated flooring.

5.2.1.1 Fuel Load Heat Release Characterization

UL FSRI quantified the magnitude and repeatably energy release of the fuel

load sofa in the report, Impact of Flashover Fire Conditions on Exposed Energized

Electrical Cords and Cables [55]. The sofa was quantified by oxygen consumption

calorimetry for three ignition locations by electric matchbook and allowed to burn

in the absence of a compartment. During each experiment the sofa produced similar

heat and smoke conditions. The peak heat release between the three experiments
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Figure 5.10: Burn room fuel load configuration with two sofas and floor
covering. Photo from Experiment # 4.

varied representing the natural variability of the fuel. The total energy release be-

tween the three experiments were similar, 10 % difference. Table 5.7 documents

the peak heat release rate and total energy released for each ignition location. Fig-

ure 5.11 visually represents the heat release results for each ignition location along

with a picture of the sofa during experimentation.

Table 5.7: Fuel Load Heat Release Characterization

Ignition Location Peak HRR (MW) Total Energy Released (MJ)

Left 4.2 639
Center 2.5 655
Right 4.1 649

5.2.2 Video Documentation

Two TIC locations, exterior and interior, were investigated for each TIC listed

in Table 5.1. Each TIC location was accompanied by a standard video camera.

Figure 5.12 shows the location for the thermal and standard video camera locations
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within and surrounding the structure.

The exterior location remained constant throughout experimentation, this lo-

cation was located 7.62 m away from the exterior side of the hallway door. The

TICs were placed in tripods and adjusted so the lens was 1.5 m above the ground.

The interior location remained constant throughout experimentation, this lo-

cation was located at the entry end of the hallway, roughly 89 cm inside from the

door opening. This location corresponded to a distance of 7.0 m between the TIC

and the target object. The TICs were placed approximately 15 cm above the ground

and angled upwards. This created an angled line of sight between the TIC lens and

target object, resulting in focal length of 7.2 m. To keep the TICs in this specific

location a custom metal stand was created. The interior TIC location is presented

in Figure 5.4.

The exterior FOV was oriented such that a full view of the exterior of the

structure was available and the measurement zone was aimed 0.30 m from the top

of the hallway door. For all four experiments, a propane torch was applied to the

exterior side of the metal door to verify the location of the measurement zone. The

torch was applied in the center of the door approximately 0.30 m below the top

edge. All three TICs were adjusted so the measurement zone was directly in the

center of the heated area. Figure 5.13 represents the typical FOV for the both the

interior (left) and exterior (right) TIC locations.

The interior FOV was oriented such that the entire length of the hallway was

present and the measurement zone was aimed 1.5 m above the finished floor on the

back wall. The measurement zone location was verified with heat for all three TICs.

94



For Experiments 1 - 3, a propane torch was applied to the metal container wall to

heat a location in the center of the back wall, 1.5 m above the finished floor. All

three TICs were adjusted so the measurement zone was directly in the center of the

heated area. For Experiment 4 a similar method was used; however, the hallway

target wall was covered with drywall.

The video from all three TICs was analyzed following the same procedure

outlined in Section 3.1.2.
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Figure 5.11: Figure 5.11(a) represents the heat release rate results for
each ignition location. Figure 5.11(b) was taken during experimentation,
the column of black smoke it seen above the fuel package [55]
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Figure 5.12: Schematic drawing depicting the location of the thermal
imaging and standard video cameras. TICs are depicted by green sym-
bols; while, standard video cameras are depicted by pink symbols.
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(a) Interior FOV (b) Exterior FOV

Figure 5.13: The typical FOV for the interior and exterior TIC locations.
Figure 5.13(a) indicates the length of the hallway. Within its FOV two
vertical TC arrays and one angled TC array are seen. Figure 5.13(b)
indicates the exterior of the structure. The doorway and associated
exterior of the burn room are seen.
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5.2.3 Instrumentation

The structure was outfitted with sensors to measure wall temperatures, gas

temperatures, and optical density. The instrumentation locations remained constant

throughout the four individual experiments. Figure 5.14 depicts the instrumentation

locations.
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Figure 5.14: Schematic drawing depicting the location of all instrumen-
tation. Yellow squares labeled ‘OD’ are representative of opacity sensors
(the emitter, E, or receiver, R). Green circles labeled with a number
are representative of a TC measuring gas temperatures along the TIC
line of sight. Green circle labeled ‘Wall TC’ is representative of the
wall mounted TC. Green circle labeled ‘Inconel’ is representative of the
Inconel TC.

K-type TCs were used to measure both solid object and gas temperatures.
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Wall temperatures were measured by a TC either tack-welded to the metal shipping

container wall or implanted in dry wall used to line the target wall of the structure,

see Figure 5.15. The wall TC was located on the far hallway wall roughly 1.22 m

above the finished floor. This location remained constant regardless of the wall

material. Each interior TIC was oriented such that the measurement zone was

aimed on this TC location. The TC height and location were used to calibrate the

measurement zone of the interior TICs mentioned above.

Figure 5.15: Typical set up for the wall-mounted TC. TC was implanted
in the drywall during room-scale fire experiment # 4.

Gas temperatures were measured in the upper gas layer and along the TIC

line of sight. An Inconel TC was used to measure temperatures at a single location

within the structure. The Inconel TC was located in the doorway roughly 0.30 m

from the top of the door. Each exterior TIC was oriented such that the measurement

zone was aimed at this location. The TC height and location were used to calibrate

the measurement zone of the exterior TICs mentioned above. Gas temperatures

along the TIC line of sight were measured by a TC array. This TC array measured

temperatures at a 0.3 m interval from the TIC lens to the target object. A resulting
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7.32 m array was oriented at the same angle created by the TIC lens and the wall

mounted TC, roughly 14 ◦.

Optical density was measured at two different locations in the hallway. These

two monitoring locations were placed at heights associated with the TIC measure-

ment zone path, 0.69 m and 1.12 m. Due to the thermal sensitivity of these sensors,

the receiver and emitter were placed on the exterior of the structure; therefore, holes

were drilled into the metal container to allow for the light beam to pass through the

combustion environment. Two locations were positioned at the following distances:

2.67 m and 4.44 m from the hallway door.
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Chapter 6: Experimental Results, Analysis, & Discussion

The TIC temperature outputs acquired during this process and the TC tem-

peratures acquired during the experiment were compared and analyzed statistically.

The temperatures measured by the TCs were outfitted with its expanded uncer-

tainty, to indicate if / when the TIC was calculating comparable temperatures.

For the baseline experiment analysis the experimental time-line and time pe-

riods of direct flame impingement are indicated on the temperature graph. During

flame impingement the TC was measuring flame temperatures rather than wall

temperatures. Temperatures recorded during this time period are excluded from

the following analyses.

For the room-scale fire experimental analysis, suppression and ventilation ef-

forts were indicated on the temperature graph. Temperatures recorded during this

time period are excluded from the following analyses.

6.1 Repeatability Discussion

Repeatability is regarded as the measure of closeness between results of suc-

cessive measurements of the same measured argument obtained under similar con-

ditions. The result of a measurement is only an approximation or estimate of the
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true value of the measured argument; therefore, the result is incomplete without an

accompanied quantitative statement of uncertainty [56].

The methods documented by NIST [56] were implemented in this report to

accurately quantify the associated uncertainty of measurements taken throughout

experimentation. The NIST report states there are two basic methods to evaluate

the uncertainty of a measurement: Type A and Type B. Type A evaluates measure-

ment components of uncertainty arising by statistical methods. Type B evaluates

measurement components of uncertainty arising from a systematic effect, or an eval-

uation of uncertainty based on scientific judgment utilizing all relevant information

available: including previous measurement data, experience, reference data, and

manufacturer’s specifications.

By definition, the uncertainties associated with the TC measurements dis-

cussed throughout this report were estimated using a Type B evaluation. These

measurements were expressed with an expanded uncertainty including a coverage

factor of two. This coverage factor dictates that the values within the uncertainty

interval have a confidence level of 95 %. To further clarify, if the measured tem-

perature was reported as 300 ◦C, there is a 95 % certainty that a similar measured

temperature would be within the range of 255 - 345 ◦C.

To ensure a consistent baseline between experiment it was desired to create

fires, or experimental environments, that generated repeatable smoke and tempera-

ture conditions. This allowed for data obtained over several iterations of the same

experiment to be analyzed and compared. A repeatability analysis was performed

on both the baseline and room-scale fire experiments before analysis of raw data
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was conducted.

6.1.1 Baseline Experiments

To ensure similar heating techniques between baseline experiments a repeata-

bility analysis was conducted on data obtained from the wall thermocouple. Tem-

perature data was grouped by orientation, on-plane and off-plane, and distance

between the TIC and target object: off-plane 7.0 m, on-plane - 6.1 m, on-plane -

4.6 m, on-plane - 3.0 m, and on-plane - 1.5 m. As each TIC was evaluated separately

there are three sets of TC data for each grouping mentioned above. The methodol-

ogy presented in Appendix D can only compare two sets of data. Therefore, three

analyzes

were conducted for each grouping to ensure the heating conditions were similar

between all three TIC tested. The intraclass correlation coefficient (ICC) and bias

factor (δ) was determined for each coupled group of data. The intraclass correlation

coefficient is an indication of reliability and can be used to express reproducibility

and repeatability between paired data. It represents the variance of paired data

expressed as a proportion of the total variance. The bias factor is a measure of

accuracy that describes the relationship between the paired experiential data and

idealized data.

After analyzing the results produced from the repeatability analysis, it was

determined that the TC heating was agreeable or highly agreeable between all tests.

The overall bias for each comparison was within the highly agreeable category for all
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experiments. The overall ICC for each comparison was within the highly agreeable

category for all but three comparisons. These three comparisons were within the

agreeable category. This indicates that in these three comparisons the TC temper-

atures collected presented with a higher variance than the overall variance. These

results suggest that repeatable heat exposure conditions were achieved throughout

the baseline experiments.

6.1.2 Room-Scale Fire Experiments

To definitively quantify the repeatability of the room-scale fire experiments,

the temperature measurements obtained from the wall mounted TC during each

experiment were plotted on the same graph. The wall mounted TC was chosen for

the repeatability verification because it was least affected by uncontrollable envi-

ronmental wind. Figure 6.1 visually represents the data obtained the wall mounted

TC.
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Figure 6.1: Temperature measurements for the wall mounted TC with
associated Type B expanded uncertainty for all room-scale fire experi-
ments.

From visual observation of Figure 6.1, the increase in wall temperatures for

Experiments # 1 - 3 were similar. The gypsum target object during Experiment # 4

produced different temperature behavior than the metal target object during Exper-

iments # 1 - 3. The gypsum target object produced higher wall temperatures at a

quicker rate. Metal has a high thermal conductivity causing increased heat transfer

through the wall. Gypsum has a lower thermal conductivity resulting in fewer heat

losses through the wall.

A Type A analysis was then conducted on the data presented in Figure 6.1 to

quantify the level of reproduction. The coefficient of variation (CV) is a measure of

dispersion from the mean and calculated using Equation 6.1.
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CV =
σ

µ
(6.1)

Where σ is the standard deviation and µ is the mean of the data collected

during each of the four experiments. Figure 6.2 represents this calculation at each

time-step.

Figure 6.2(a) indicates that the variation between metal wall temperatures

remained below 10 % until shortly after ventilation of the hallway door, occurring

at roughly 240 seconds. Figure 6.2(b) indicates that the variation in wall tempera-

tures between all experiments occurred after ignition, roughly 150 seconds. It was

determined that similar heating environments were created and variation occurred

due to the dissimilar nature of the target wall material.
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(b) Experiments # 1 - 4

Figure 6.2: Type A analysis, coefficient of variation, for wall tempera-
tures obtained during Experiments # 1 - 3 and Experiments # 1 - 4.
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6.2 Impact of TIC Proximity and Orientation to Target Object

To evaluate the effect of TIC proximity and orientation to the target object

on the spot temperature measurements, the baseline experiments were conducted.

This series of experiments explored the affects of optimal distance, between the TIC

and the target object, and focal length. The focal length is the minimum distance

needed between the TIC and the target object to ensure the target object’s critical

dimension subtends the required number of pixels to be detected, recognized, or

identified. The focal length was a commonly published value in fire service TIC

specifications; typically reported as 1.00 m to infinity. Fire service TIC standards

to not dictate a requirement for focal length. TIC # 3’s focal length is optimized

at 4.00 m. Focal length indicates that the target object must be at least 1.00 m,

4.00 m in the case of TIC # 3, away from the TIC for the temperature of the object

to be optimally determined.

The optimum focal length was investigated in two orientations, or two solid

angles. A solid angle is the surface area of a unit sphere covered by the surface’s

projection onto the sphere, or a measure of the surface area of the projection from

a surface onto a singular point. The solid angle, ω subtended by a surface at a

singular point is calculated from Equation 6.2.

ω =
∫ ∫

sin(φ)dθdφ (6.2)

Where φ is the colatitude and θ is the longitude. These two angles describe
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the cone created by the surfaces projection onto the point in two dimensions. Solid

angles are important when calculating the irradiance emitted from an object. TIC

temperature calculation theory assumes that objects are Lambertian emitters, or

that all objects emit radiation equally in all directions. This assumption therefore

eliminates the need for solid angles when calculating irradance. Therefore, the angle

and distance from the target object should not negatively affect the spot temperature

measurements.

The first experiment evaluated an off-plane orientation, identical to the interior

TIC location in the combustion series of events. The second experiment evaluated a

on-plane orientation at differing distances. This series of experiments aims to solidify

the assumption that TIC orientation does not affect spot temperature measurements

and to discover an optimized focal length for each model of TIC.

6.2.1 Off-Plane

A total of three off-plane experiments were conducted. Each experiment eval-

uated spot temperature measurements from single TIC with a focal distance of

7.2 m. The focal distance was determined as the angle between the TIC lens and

measurement zone location on the target wall.

The spot temperature measurements determined from an ambient tempera-

ture target object were analyzed first. The percent difference between TIC spot

temperatures and TC temperature measurements during the first 60 s of experi-

mentation is presented in Table 6.1. During ambient temperature conditions, the
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percent difference between the two temperature methods was within ± 15 %, uncer-

tainty associated with the TC measurement. This indicates that the TIC and TC

are producing statistically similar results.

Table 6.1: Baseline Off-Plane Experiments: Percent Difference during ambient con-
ditions, 0 - 60 s

TIC Focal Length Percent Difference

# 1 7.2 m -1
# 2 7.2 m 3
# 3 7.2 m -1

The TIC temperature outputs determined from a target object at elevated

temperatures was analyzed second. The percent difference between TIC temperature

measurements and TC temperatures was evaluated for each time-period without

direct flame impingement, 75 - 120, 135 - 180, 195 - 240, 255 - 300, and 315 -

360 seconds. It was determined that after the initial application of heat to the

target object, the two temperature measurement methods began to measure different

temperatures.

The TIC # 3 spot temperature measurements drop around 225 s and 300 s.

This error is caused when the TC weld becomes temporarily un-joined from the

wall. This happens when the weld at the joint becomes hot enough to melt during

direct flame impingement of the torch. The connection becomes stable once the

torch is removed and the weld cools creating the joint. TIC # 3 temperature

output responded to the increase in temperature of the shipping container wall. The

magnitude of the TIC temperature was less than recorded by the TC. Figure 6.3

represents the TC and TIC # 3’s temperature measurement.
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Figure 6.3: Temperature output from TIC # 3 and tack-welded TC for
the angled baseline experiments.

TIC # 1 and TIC # 2 TIC temperature outputs did not respond instanta-

neously to the increase in temperature of the shipping container wall; rather, they

responded gradually, as seen by the overall increase in temperature throughout the

two experiments. The increase in temperature calculated by the TICs were less

than the temperatures recorded by the TC. The TIC did not respond to the cooling

period as the temperatures did not decrease over this time-period. The tempera-

tures recorded during the cooling period were fairly stable with a decreasing trend

observed during the last cool down period, which lasted two minutes rather than the

one minute. The TC and TIC temperature measurements for TIC # 1 and TIC # 2

cameras can be seen in Figure 6.4.
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To quantify the visual trends observed from Figures 6.3 - 6.4, the percent differ-

ence between the two temperature measurements was calculated for each time-step

during experimentation. These values were then averaged together for each time-

period and each experiment as a whole. The data is presented for TIC evaluated in

Table 6.2.

Table 6.2: Baseline Off-Plane Experiments: Percent Difference during non-ambient
conditions.

TIC 75 - 120 s 135 - 180 s 195 - 240 s 255 - 300 s 315 - 360 s Avg.

# 1 -26 -27 -31 -32 -29 -29
# 2 -26 -31 -31 -33 -33 -31
# 3 -27 -28 -10 -26 -16 -24

The out-lier witnessed during 195 - 240 s during the TIC # 3 evaluation

was not included in the final averaged percent difference value. This time-period

produced inconsistent results due to a fault connection at the TC join. All three

TICs performed poorly when compared to the temperature measurements from the

wall-mounted TC, as all percent difference values were outside of the ± 15 % ex-

panded uncertainty. The TICs produced temperatures roughly 24 - 31% lower than

measured from TCs.
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(a) TIC # 1
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(b) TIC # 2

Figure 6.4: Temperature output from the TIC # 1 and TIC # 2 TICs
and tack-wielded TC for the off-plane baseline experiments.
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6.2.2 On-Plane

Each TIC was evaluated for an on-plane orientation a total of four times, vary-

ing the distance between the TIC and the target object at the following distances:

1.5, 3.0, 4.6, and 6.1 m. The TICs were placed in camera tripods that allowed for

the line of site between TIC and target object to be level with the floor, as both the

TIC and measurement zone were placed 1.5 m above the finished floor. The target

object’s temperature was monitored by a wall-mounted TC.

The spot temperature measurements with a target object at ambient condi-

tions was analyzed first. The percent difference between each TIC and TC for the

first 60 s of experimentation is presented in Table 6.3. Similarly to the off-plane ex-

periments the percent difference between the two temperature methods was within

± 15 %, expanded uncertainty of the TC temperature measurements. This indicates

that the TIC and TC are measuring similar temperatures.

The spot temperature measurements with a target object at elevated temper-

atures was analyzed second for each distance evaluated. Figure 6.5 documents the

TIC and TC temperatures for each distance for TIC # 1.
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Table 6.3: Baseline On-Plane Experiments: Percent Difference during ambient con-
ditions, 0 - 60 s

TIC Focal Length Percent Differ-
ence

# 1

6.1 m 2
4.6 m 1
3.0 m -3
1.5 m -1

# 2

6.1 m 1
4.6 m 3
3.0 m -1
1.5 m -1

# 3

6.1 m -1
4.6 m 1
3.0 m -1
1.5 m -1
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(a) TIC # 1 1.5 m

0 50 100 150 200 250 300 350 400
Time [s]

0

200

400

600

800

1000

Te
m

pe
ra

tu
re

 [K
]

Wall TC
TIC # 1
TC Uncertainty +/-15%
Heat Applied

(b) TIC # 1 3.0 m
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(c) TIC # 1 4.6 m

0 50 100 150 200 250 300 350 400
Time [s]

0

200

400

600

800

1000

Te
m

pe
ra

tu
re

 [K
]

Wall TC
TIC # 1
TC Uncertainty +/-15%
Heat Applied

(d) TIC # 1 6.1 m

Figure 6.5: Temperature output measured for each distance evaluated
for TIC # 1 during the on-plane baseline experiments.
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TIC # 1 did not recognize the increase in wall temperature during times of

direct flame impingement. Once the flame was removed the TIC responded to the

increase in wall temperature. This created a delay before TIC temperatures became

indistinguishable from the TC temperatures. TIC # 2 recognized the increase in

wall temperature during times of direct flame impingement. TIC temperature was

similar to TC temperatures but not indistinguishable. TIC # 3 responded to the

increase in wall temperature during times of direct flame impingement during the

first, second, and third heating time-period. The temperature output measured

similar temperatures as the TC only when the wall cooled to temperatures near 400

K.

The percent difference for each time-period not affected by direct flame im-

pingement was evaluated. Figure 6.6 represents the percent difference produced

from TIC # 1 for all distances evaluated.
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Figure 6.6: Percent difference evaluated for TIC # 1 during the on-plane
baseline experiments.

Figure 6.6 indicates that as the TIC is moved closer to the target object

the percent difference between the two temperature measurement methods becomes

lower. To investigate this the average percent difference was determined get a per-

cent difference associated with each TIC at each distance. This information allows

for an assessment of focal length on spot temperature measurements. These val-

ues are presented in Table 6.4, all graphical representation of data is presented in

Appendix D. TIC # 1, TIC # 2, and TIC # 3’s temperature outputs were most

representative to TC temperature measurements at a focal length of 1.5 m, deter-

mined from the experiment with the lowest average percent difference. The TIC

temperature output improved as a function of distance between TIC and target

object during ambient conditions.
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Table 6.4: Baseline On-Plane Experiments: Percent Difference during non-ambient
conditions.

TIC Distance Percent Differ-
ence

# 1

6.1 m -20
4.6 m -13
3.0 m -13
1.5 m -9

# 2

6.1 m -17
4.6 m -18
3.0 m -18
1.5 m -15

# 3

6.1 m -23
4.6 m -26
3.0 m -18
1.5 m -5

6.2.3 Conclusions

The baseline, on-plane and off-plane, experiments determined that during am-

bient conditions TIC proximity had a greater affect TIC spot temperature measure-

ments than orientation. During the off-plane orientation or distances greater than

6.1 m, the spot temperature outputs were 16 - 30 % lower than TC temperatures.

The off-plane orientation was not evaluated at various lengths (thusly at various an-

gles). It can not be determined if at closer distances the TIC temperature outputs

would become more similar to TC temperature measurements. During the on-plane

orientation at short distances, TIC temperature outputs became indistinguishable

from TC temperature measurements. It was determined that TIC temperature out-

puts are a function of distance. As the TIC and target object become closer, the

target object accounts for a greater percentage of the TICs FOV. Although the
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TIC produces a spot temperature measurement for the objects within the measure-

ment zone, the pixels within this zone are also receiving IR from all objects within

the room. Therefore the agreement between temperature measurement methods at

shorter distances can be explained by the increase in target object percentage of the

FOV or decrease of addition sources of incidental IR within the FOV.

6.3 Impact of Environmental Smoke Obscuration

To evaluate the effect of smoke obscuration on TIC spot temperature measure-

ments, the room-scale fire experiments were conducted. These experiments explored

the effects of smoke opacity on the TICs ability to accurately determine tempera-

tures.

The first TIC location was interior of the structure. The TIC and target object

were both affected by smoke and heat. The interior TIC temperature outputs were

compared to wall mounted and gas TC temperature measurements. The wall TC

was used to assess the TICs ability to measure wall temperatures through the smoke.

The gas TCs were used to determine the smoke’s, participating media’s, impact on

temperatures.

The second TIC location was exterior of the structure. The TIC was removed

to a distance where it would not be affected by smoke or heat. The target object was

affected by smoke and heat. The exterior TIC temperature outputs were compared

to wall and gas TC temperature measurements. An analysis of gas and wall TC

measurements were used to determine if a TIC could determine the temperature of
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smoke exiting the structure. For complete results from this series of experiments,

see Appendix D.

During each experiment the smoke obscuration was evaluated at two loca-

tions within the structure. The percent opacity recorded from the instrumentation

discussed in Section 3.3 is presented in Figures 6.7 - 6.8.
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(a) Experiment # 1
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(b) Experiment # 2

Figure 6.7: Percent Opacity during each room-scale fire experiment.
Opacity at 2.7 m from the front door at a height of 68.6 cm in dark blue.
Opacity at 4.4 m at a height of 111.8 cm in light blue.
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(a) Experiment # 3
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(b) Experiment # 4

Figure 6.8: Percent Opacity during each room-scale fire experiment.
Opacity at 2.7 m from the front door at a height of 68.6 cm in dark blue.
Opacity at 4.4 m at a height of 111.8 cm in light blue.
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In all experiments, the smoke opacity reached 100 % before ventilation of

the door occurred. The smoke opacity remained near 100 % till after suppression

occurred. 100 % obscuration indicated that the atmosphere was so optically thick

that the light beams of the instrumentation were unable to penetrate through the

smoke.

6.3.1 Exterior TIC Location

The exterior location was monitored by a standard camera as well as each

TIC evaluated by this report. The measurement zone for each TIC was located

0.03 m below the top of the door. This location corresponded to a TC placed inside

the structure, due the temperatures expected in the upper gas layer an Inconel

TC was employed. From the initial evaluation of prior data in Section 4, it was

determined that TIC did not capture and display the full hazard associated with

the environment. It was suggested that the radiant energy received by the TIC was

impaired by the smoke, participating media. This may indicate that the TIC was

calculating temperatures for the optically thick smoke rather than the solid objects

present within the measurement zone. To try to capture the impact of the presence

of sooty smoke during the first 240 s of experimentation, hallway door remained

closed.

The data obtained from the TICs located exterior of the structure and TC

located within the door way were graphed together and are presented in Figure 6.9.

To quantify the relationship between TIC temperature outputs and TC temper-
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ature measurements, the percent difference was calculated for three time-periods:

door ventilation to window ventilation, window ventilation to suppression, and sup-

pression to test conclusion. Similarly to previous analyses 30 s before and after

suppression efforts begin were ignored. This information is presented in Tables 6.5 -

6.10.
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(a) Experiment # 1
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(b) Experiment # 2

Figure 6.9: Exterior TIC # 1, TIC # 2, and TIC # 3 vs. Inconel TC
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(a) Experiment # 3
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(b) Experiment # 4

Figure 6.10: Exterior TIC # 1, TIC # 2, and TIC # 3 vs. Inconel TC
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Table 6.5: Room-Scale Fire Experiments - Exterior TIC vs. Inconel TC: Percent
Difference

TIC Exp. # PC
(Door -
Window)

PC
(Window -
Prior to Suppres-
sion)

PC
(Post Suppres-
sion -
End)

# 1

1 -3 -1 43
2 -2 4 57
3 -3 1 73
4 -5 -9 20

# 2

1 -6 -2 37
2 -1 6 19
3 -3 3 45
4 -6 -8 18

# 3

1 -6 -3 51
2 2 2 50
3 -2 -6 55
4 -1 -5 25

The temperature measurements from door ventilation to suppression were

within the ± 15 % expanded uncertainty of the TC. It was determined the two

temperature methods were measuring indistinguishable temperatures. This suggests

that the particulates within the smoke layer are in a sufficient enough quantity to

impact radiant energy received by the TIC. Recall Section 2.2.2, TICs are designed

to absorb IR in the LWIR range. This wavelength range is indicative of radiant

energy emitted from solid objects. There is not enough information to exclude the

contribution of the metal structure wall in this measurement. The temperatures

produced by the TIC are indicative of the contributions from both the solid object

and smoke particulate.

The third section the percent difference indicates that the two temperature
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methods were producing distinguishably different results. The TIC was produc-

ing larger temperatures than the TC. There was little to no smoke present within

the structure during this time resulting of a TIC temperature measurement of the

structure wall. The measurement zone location did not correspond directly with the

location of the wall-mounted TC. The measurement zone was located fully on the

hallway wall at a higher elevation than the TC. The hallway way was not isothermal

during experimentation; however, as multiple wall mounted TC were not installed

this analysis compares TIC data to the wall mounted TC at 1.5 m. Figure 6.6 - 6.12

visually represents the temperature outputs of the TICs and the wall-mounted TC

while Table 6.6 indicates the percent difference between each TIC and the wall-

mounted TC on the hallway back wall.
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(a) Experiment # 1
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(b) Experiment # 2

Figure 6.11: Exterior TIC # 1, TIC # 2, and TIC # 3 vs. Wall-Mounted TC
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(a) Experiment # 3
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(b) Experiment # 4

Figure 6.12: Exterior TIC # 1, TIC # 2, and TIC # 3 vs. Wall-Mounted TC
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Table 6.6: Room-Scale Fire Experiments - Exterior TIC vs. Wall TC: Percent
Difference

TIC Exp. # PC (Post Suppression-End)

# 1

1 -13
2 7
3 -8
4 29

# 2

1 -17
2 -29
3 -23
4 27

# 3

1 -9
2 -11
3 -17
4 34

The results presented in Table 6.6 are not within the expanded uncertainty of

± 15 %, indicating distinguishably different results. However, these results are are

more similar than those presented in Table 6.5. This indicates that the TIC was

reading the hallway wall rather than the gas temperatures when smoke concentration

was low. The percent differences were between 8 - 34%. This percent difference

range can be explained by the behavior of the TIC temperature outputs. The

TIC calculates temperatures at a lower magnitude than the TC for the first 60 s,

than increases in magnitude similarly to that of the TC temperatures. During

this first 60 s, the opacity of the structure is still high, low visibility, as seen in

Figure 6.7. The opacity of the structure gradually decreased, increasing visibility;

which, corresponded to more consistent temperatures between the TIC and TC.

This trend affected the average percent difference during this time-frame causing

the wide range of values witnessed.
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6.3.2 Interior TIC Location

The measurement zone associated with the interior TIC location was directed

on the far wall of the hallway, nearest the fire room. The target object was monitored

by a wall mounted TC; while, the focal length between the TIC and TC were

monitored by several gas TC arrays. This location is near the fire room and likely

to be affected by radiative energy originating flames; however, the temperatures

were not corrected for these effects. Rather the analysis includes an expanded

uncertainty of ± 15 %. The TIC temperature outputs were first analyzed against

the wall-mounted TC. The temperature outputs from both measurement methods

are visually represented by Figure 6.13 - 6.14.
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(a) Experiment # 1
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(b) Experiment # 2

Figure 6.13: Interior TIC # 1, TIC # 2, and TIC # 3 vs. Wall-Mounted TC
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(a) Experiment # 3
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(b) Experiment # 4

Figure 6.14: Interior TIC # 1, TIC # 2, and TIC # 3 vs. Wall-Mounted TC

135



The percent difference between the two measurement methods was calculated

for each time-step and averaged over the following time-periods: door to window

ventilation, window ventilation to suppression, and suppression to test end. This

information is presented in Table 6.7.

Table 6.7: Room-Scale Fire Experiments - Interior TIC vs. Wall TC: Percent Dif-
ference

TIC Exp. # PC
(Door -
Window)

PC
(Window -
Prior to Suppres-
sion)

PC
(Post Suppres-
sion -
End)

# 1

1 -1 -22 2
2 -5 -11 -17
3 -11 -31 -10
4 -20 -39 19

# 2

1 -3 -25 -5
2 -8 -12 -25
3 -15 -35 -15
4 -23 -41 14

# 3

1 3 -28 -7
2 -6 -20 -23
3 -9 -35 -20
4 -23 -43 12

Experiment # 4, shows a larger percent difference for the time-frame from

door ventilation to window ventilation. The target object material composition

varied during this experiment. There is not enough information to determine if

this solely impacts the percent difference during this time. It should be noted that

Experiment # 4 experienced considerably higher wind speeds. The difference in

temperature method outputs could be explained by a combination of effects from

both material composition and wind.

Between window ventilation to prior to suppression, the TIC produced differ-
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ent temperatures from the wall TC. During this time the radiant energy emitted

from the wall was impacted by the optically thick thermal gases. The participating

media can absorb IR radiation produced from the wall, transmit / scatter IR from

the wall, or emits its own IR energy similarly to that of a solid object. To explore

if the effects of participating media on TIC spot temperatures, the temperature

measurements obtained from the TC array representing the focal length between

the TIC and target object was graphed along with the TIC temperature outputs.

Figures 6.15 - 6.16 represents the TIC temperature output and the three TCs that

produced the most similar temperatures.
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Figure 6.15: Interior TIC # 1, TIC # 2, and TIC # 3 vs. Gas TC. The
TC labels indicate the distance between the TIC lens and the target
object, e.g. 18T was located 5.5 m (18 ft) from the TIC lens along the
focal length.
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(a) Experiment # 3
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(b) Experiment # 4

Figure 6.16: Interior TIC # 1, TIC # 2, and TIC # 3 vs. Gas TC. The
TC labels indicate the distance between the TIC lens and the target
object, e.g. 18T was located 5.5 m (18 ft) from the TIC lens along the
focal length.
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The TIC measured temperatures comparable to those obtained from gas TCs

at various distanced within the focal length. The focal lengths producing the low-

est percent difference are summarized in Table 6.8. It was determined that TIC

temperature was approximately the same as the gas TC temperature at distances

of 5.5 - 6.1 m. The affect of participating media on solid surface radiant energy

transmission influences TIC spot temperature measurements.

Table 6.8: Room-Scale Fire Experiments - Focal Length

TIC Exp. # 1 Exp. # 2 Exp. # 3 Exp. # 4

# 1 6.1 m 5.8 m 5.5 m 6.1 m
# 2 6.1 m 5.8 m 5.5 m 5.8 m
# 3 6.1 m 5.5 m 5.5 m 5.8 m

The optimal focal lengths, that of which produced the lowest percent difference

between TIC and TC temperature measurements, between the interior TIC and the

gas TC was investigated for the remaining time frames: ignition to door ventilation,

door ventilation to window ventilation, and suppression to test end. This resulted

in similar focal lengths as presented in Table 6.8, distances between 4.89 - 6.1 m for

times characterized by the presence of smoke, ignition to suppression. During the

time period of suppression to test end, there was not an optimal focal length, percent

difference below ±15 %. This suggests that during times without smoke presence,

the TIC could determine the temperature solid target objects. This suggestion is

validated by the agreement of interior TIC temperature outputs against the wall

mounted TC in Figure 6.13.
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6.3.3 Conclusions

The room-scale fire experiments determined that TICs are affected by smoke

obscuration. Radiant energy emitted from solid objects can be impacted by partic-

ipating media. The exterior TIC was able to determine the temperature of smoke

leaving the structure but there is not sufficient enough data to determine the IR

contribution from solid wall within the smoke layer. The interior TIC was able to

determine the temperature of the target object during ambient conditions. There

is not sufficient enough data to determine the affects of IR absorption, transmis-

sion/scatter, and emission from participating media. It was determined TIC spot

temperatures are most similar to gas temperatures roughly 5.5 - 6.1 m away.
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Chapter 7: Future Research

TIC spot temperature measurements were evaluated in two different environ-

ments. The effect of distance and orientation were explored during ambient con-

ditions. TIC spot temperatures were influenced by distance between the TIC and

target object. Further research is needed to determine how TICs determine tem-

peratures of solid objects. Future experiments should include an isothermal target

object with a known emissivity value, at or near the pre-defined emissivity value of

fire service TICs. These experiments should include iterations at varying distances

to investigate how the percentage of the target object within the FOV affects spot

temperature measurements.

The effect of participating media was explored during a smoke-filled envi-

ronment. Further research is needed to understand the influence of participating

media on solid object IR. Future experiments should explore how participating me-

dia absorbs, transmits/scatters, and emits IR radiation. After it is established how

participating media affects IR, a new series of experiments evaluating a TICs ability

to quantify thermal hazards should be conducted. It is suggested that an isothermal

object with known emissivity similar to a black body should be utilized. Black bod-

ies are known as perfect emitters as they absorb all radiation that comes it comes

142



in contact with. Utilizing a black body as the target object would reduce any un-

knowns associated with emissivity. It is also suggested that smoke be introduced

to the test environment without the presence of flames. This will eliminate any

interaction of IR beyond the smoke or target object.
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Chapter 8: Summary

Two sets of experiments were conducted on three fire service TICs to evalu-

ate the TICs ability to quantify hazards within an environment. The first set of

experiments evaluated the effect of distance and orientation on TIC spot temper-

ature measurements during ambient conditions. The target object was heated to

above ambient temperatures with a torch. Spot temperatures were compared to

wall mounted TC measurements for the target object. Spot temperatures were de-

termined to be a function of distance between the TIC and target object during

ambient conditions.

The second set of experiments evaluated the effect of participating media on

TIC spot temperature measurements during combustion conditions. Two sofas were

ignited in a metal training structure, creating repeatable heating conditions for

the target object. Spot temperatures were compared to gas and wall mounted TC

measurements. It was determined that participating media affects spot temperature

measurements during smoke-filled environments.
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Chapter A: Image Post Processing Techniques

Three separate scripts utilizing different image processing techniques were cre-

ated to evaluate the TIC visual outputs. While each script operates independently

of each other, all three techniques share similarities in initial endeavors to convert

video into a string of images. The overarching common structure and commands

is introduced in this section. Architecture and commands specific to each script is

summarized in the following technique specific sections.

The preamble, or introductory statement, defines the required Python pack-

ages and commands needed to properly execute the script. There are five common

packages between the three techniques. The first is Pillow, or PIL, and is a fork of

Python Image Library; which, allows for easy manipulation of images specifically

when opening, editing, and saving in different file formats. The second is OpenCV,

or cv2, and is an open source computer vision library; which, allows for computa-

tional efficiency when writing computer vision scripts. The third is Python’s Miscel-

laneous Operating System Interface, or os; which, allows the script to interface with

a computers operating system to complete various tasks. The fourth is NumPY, or

np, and is the fundamental scientific computing package with Python; which, adds

additional functionality. The fifth is Pandas, Python Data Analysis Library or pd;
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which, aids in analyzing data, in formats such as a CSV, in Python.

After the preamble is defined, the specific experiment information is defined.

This information includes an initial list of all experiments to be analyzed by the

specific code. A second list, corresponding to the first, includes information needed

to successfully define the raw videos location path.

Now that all necessary information regarding packages, functions, and exper-

iment specific information has been defined, the script can begin to compute. The

first step is to loop over the initial list of experiments, ‘Video’, to define that all

following commands be applied to each video specified. This condenses the length

of the code considerably and avoids unnecessary redundancy.

The first step within the analysis of each video is to specifically define the

input, raw videos, location path by combing the information previously specified

with general path information and video format. The second step is to specifically

define the output, .csv file, location path for the post processed information the

script is designed to produce.
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After specifying the input and output information locations, analysis of the

raw experimental data, videos, can commence. This is typically accomplished by

utilizing the cv2 python package to manipulate the video files. First, the script

opens and ‘reads’ each video. Second, the script determines the total video length,

in terms of total frames. Third, the script determines the approximate frame rate,

number of frames per second. This determination is approximate, as the frame rate

is not typically a whole number per second; but rather, the frame rate varies by a

fraction of a frame per second.

Finally, the last common step between each script is to create a data frame or

array of values, using the Pandas python package. This data frame stores the post

processed temperature output indexed to the respective frame it was determined

from. This data frame is initially specified to be empty for each experiment; this

allows the script to auto populate the data frame as it complies.
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A.1 Seven-Segment

To analyze TIC # 1 Camera Type 1 temperature text style, this script eval-

uates each digit in the TIC temperature output, ones, tens, and hundreds, sepa-

rately [42]. This scripts preamble includes one additional Python package, Imutils,

and one specific function from this package. The python package Imutils, is a series

of functions that make image editing easier. The specific function, contours, is used

to find outlines within the image. This function is defined here so it may be ‘called’

later within the code.

Lines 9 - 37 are identical to the aforementioned common commands (Lines 9

- 37). This script continues after the creation of the data frame (Line 37) for the

temperature and frame by specifying additional information. First, a second data

frame is created for each individual numbers place, ones, tens, and hundreds. The

thousands number place was not needed for these videos. Second, the location of

each numbers place (in the x direction) within visual output of the video is defined.

Third, a reference table of values 0 - 9 is created. Each value is defined according

to the corresponding ‘on’ and ‘off’ segments, assuming a seven-segment display.

The script continues by looping over every frame within the video, at an inter-
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val equal to the frame rate, and ‘reads’ or interprets the video. This specifies that

the following commands be executed for a single frame every second for the total

length of the video.

First, if the script can interpret the video, the script loops over each numbers

place. This specifies that the following commands be executed for each numbers

place within the TIC temperature output. Second, it converts the video frame to an

image, cropped to only include the TIC temperature output corresponding to the

specific numbers place. Third, the image is saved to the output location

The script again loops over each numbers place and a series of morphological

processes are applied to the image. These morphological processes utilize both CV2

and NumPY to increase the accuracy of the seven-digit post processing technique;

however, these languages are not always compatible resulting in saving and reopen-
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ing the image several times. The ideal image is in a binary, black and white, color

space with minimal noise and increased smoothness/blur.

After manipulating the image, the script determines the ‘on’ or ‘off’ status of

each of the seven-segments for each numbers place TIC temperature output.

Once the ‘on’ and ‘off’ status of each segment is determined, the reference

table is used to identify the digit. The digit is saved to the corresponding data
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frame.

Lastly the script rearranges the numbers place into a complete number and

saved to the corresponding data frame. The data frame is saved as a new entry to

the experiment specific csv file.
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A.2 Image Comparison

TIC # 1 Camera Type 2 temperature text style evaluates each digit in the

TIC temperature output, ones, tens, and hundreds, separately. This scripts pream-

ble includes an additional python package, gc, and a specific function. The Python

Package Garbage Collector interface, gc, is a strategy for memory allocation. The

specific function compare ssim, computes the mean structural similarity index be-

tween two images. This function is defined here so it may be ‘called’ into use later

within the code.

In addition, another function, mse, is defined within the preamble. This func-

tion is used to calculate the mean squared error between two images and requires

specific information to be defined before it can be ‘called’ into use [43].

Lastly to maximize the efficiency of this script, the set of 10 reference images,

which were obtained by hand, are loaded into the script. This allows the script to

reference the images throughout the analysis without the need to reload the image
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for every comparison.

Lines 23 - 51 are identical to the aforementioned common commands (Lines 9

- 37). This script continues after the creation of the data frame, (common command

Line 37) for the temperature and frame, by specifying additional information. First,

a second data frame is created for each individual numbers place, ones, tens, and

hundreds. Second, the location of each numbers place (in the x direction) within

the visual output of the video is defined.

The script continues by looping over every frame within the video, at an inter-

val equal to the frame rate, and ‘reads’ or interprets the video. This specifies that

the following commands be executed for a the first frame within every second for

the total length of the video.
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First, if the script can interpret the video for the specified frame, the script

loops over each numbers place and attempts to determine the digit, otherwise the

script records an empty data frame for temperautre for the given frame. This

specifies that the following commands be executed for each numbers place for each

frame within the length of the video. Second, it converts the video frame into an

image, cropped to only include the TIC temperature output corresponding to the

specific numbers place. Third, the image is saved to the output location.

The script again loops over each numbers place and opens the previously saved

image. A series of morphological processes are applied to the image utilizing both

CV2 and NumPY, to increase the accuracy of the image comparison post processing

technique; however, these languages are not always compatible resulting in saving

and reopening the image several times. The ideal image is in a binary, black and

white, color space with minimal noise and increased smoothness.

After manipulating the image, the script determines the relative similarity and

relative difference of each numbers place to all 10 reference images.

Once the similarities and differences for each reference number is determined,

the script identifies which reference number is most similar and least different from

the numbers place image.
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Once each numbers place value is determined, the script complies the three

digits into a single number. The post processed temperature digit is saved to the

data frame corresponding to the frame evaluated. After each frame is evaluated the

post processed temperature digits per second is saved to a .csv file.
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A.3 Optical Character Recognition

To analyze TIC # 2 and TIC # 3 TIC temperature output, two additional

Python packages were needed: Pytesseract and regular expression operations, re.

Pytesseract is an OCR engine. Re is a syntax tool which allows for the use of

special characters within the given script without invoking their special meaning.

Lines 9 - 37 are identical to the aforementioned common commands (Lines

9 - 37). This script continues after the creation of the data frame (Line 37) by

looping over every frame within the video, at an interval equal to the frame rate,

and ‘reading’ or interpreting the video. This for loop specifies that the following

commands be executed for a single frame every second for the total length of the

video.

First, if the script can interpret the video, the script converts the video frame

into an image, cropped to only include the text of the TIC temperature output.

Although, Pytesseract can read various types of text in various states of dis-

array, a series of morphological processes, NumPY and CV2 python packages, are
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applied to the cropped image to increase the accuracy of Pytesseract. The ideal

image is in a binary, black and white, color space with minimal noise and increased

smoothness/blur. The manipulated image is then saved to the output location.

Lastly the Pytesseract engine is applied to the new image. The output text

produced from the Pytesseract software is then post processed to increase accuracy.

The new text is then saved to the data frame indexed to the respective frame number.

The data frame is saved as a new entry to the experiment specific csv file.
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Chapter B: Initial Evaluation Results

B.1 Percent Difference Analysis Example

To quantify the observed trends between the TIC spot temperature measure-

ment and TC measurements, the percent difference (PD) between the two temper-

ature measurement methods was calculated from Equation B.1.

PD =
TTIC − TTC

TTC
∗ 100 (B.1)

Where TTIC represents the temperature measurements obtained from the TIC

and TTC represents the temperature measurements obtained from the TC, both

temperature measurements were converted into Kelvin [K]. Kelvin is an absolute

thermodynamic temperature scale whose zero point is the temperature of absolute

zero, or the temperature at which molecules stop moving. This temperature scale

allows the difference between the two temperature methods to be determined and

presented as a percentage.

When the temperatures measured from the TC array are greater than cal-

culated by TIC, the graph is represented by a negative percent difference. When

the temperatures measured from the TC array are less than calculated by the TIC,
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the graph is represented by a positive percent difference. Due to the measurement

uncertainty of TC (± 15 %), there exists a temperature range for which the two tem-

perature measurement methods produce quantitatively the same temperature. If the

percent difference is less than 15 %, the two methods cannot be distinguished from

one another. If the percent difference is higher than this number it is determined

that the two temperature measurement methods are producing distinguishable mea-

surements.

The time-line of the experimental tests has been bounded into three regions.

The first region ‘Pre-Ignition’ is representative of the ambient conditions observed

before combustion occurred, bounded by time 0 s to the first instance of a tem-

perature increase greater than 15 % above ambient conditions. The second region

‘Combustion’ is representative of the combustion conditions observed during exper-

imentation, bounded by the first instance of a temperature increase greater than

15 % to 30 s before suppression efforts began. This region ends prior to initiation

of suppression tactics to avoid interference on the TIC temperature output, from

firefighters and water spray present in the FOV. The third region ‘Post-Suppression’

is representative of the conditions observed after combustion occurred, bounded by

30 s post suppression efforts ended to the last recorded temperature. Figure B.1

represents each comparative technique discussed above, as well as the bounded time-

line.
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Figure B.1: Figure B.1(a) contains temperature data obtained from the
TC array and TIC bounded into time-periods to quantify similarities
observed between the TIC temperature output and the TC measured
temperatures. The ‘Pre-Ignition’ region is colored light blue, the ‘Com-
bustion’ region is colored light orange, and the ‘Post-Suppression’ region
is colored dark orange. The time excluded from the analysis, indica-
tive of the time in which suppression tactics were conducted, has been
colored blue.
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In the following analysis, the ‘Combustion’ region was broken into two sub-

regions to further analyze the two temperature measurement methods. The first

sub-region was deemed ‘Initial Combustion’, representing the time-period when the

two temperature measurement methods are indistinguishable after ignition. During

this time-period, the percent difference between the two temperature methods is

nominally less than ± 15 %. This time-period ends when the percent difference

increases beyond ± 15 % and indicates distinguishable temperatures for the duration

of the ‘Combustion’ region. The second sub-region is ‘Combustion’, representing

the time-period when the two temperature methods produce distinguishable results

during combustion conditions. During this region the percent difference between

the two temperature methods remains greater than ± 15 %.

The percent difference between the two temperature methods was calculated

at every time-step during the experiment; therefore, the average percent difference

for each time-period could be calculated. These averaged values represent the TICs

ability to quantify thermal hazards during the various stages of fire growth, burn,

and decay. To easily identify if the two temperature methods produced distin-

guishable or indistinguishable temperatures, the color scale presented in Table B.1

was created. When the average percent difference indicates the two temperature

measurement methods produced indistinguishable results, the value was highlighted

green. If the average percent difference indicates that the two temperature mea-

surement methods produced distinguishable results, the value was highlighted red.
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Table B.1: Levels of Agree-ability: Percent Difference

Level of Agree-ability Percent Difference Color Indicator

Agreeable -15 % > PD < 15 %
Different -15 % < PD or PD > 15 %

B.2 Measurement Zone Height Approximation

The following method was established to quantify the height of the TIC spot

temperature measurement zone during the Fire Attack and IFSI experiments. Inte-

rior firefighting operations were employed during both projects, causing firefighters

to pass within the TIC FOV. The height of measurement zone was normalized by the

height of the firefighters. The average height of an adult male in the United States

is 1.70 m [57] and standard body proportionality measurements were assumed. The

relative scale, shown in Figure B.2 was established.

Figure B.2: Modern canons (system of measuring proportions) for ex-
pressing the human body are based on the length of the head. Gen-
erally, the overall height of an average human is expressed as 7.5 head
lengths [58].
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Three standing / kneeling firefighter positions were observed. The first position

assumed the firefighter was standing, referred to as the standing position. The

second position assumed the firefighter was kneeling, with their torso, hips, and

quadriceps in alignment; referred to as the kneeling / standing position. The third

position assumed the firefighter was kneeling, with their torso and hips in alignment

forming a 90 ◦ with their quadriceps, referred to as the kneeling position. Each

position and associated body proportionality is visually represented by Figure B.3.
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Figure B.3: Assuming the height of the firefighter and standard body
proportionality, the height of each position was calculated.

For each position, the height of the firefighter was determined by evaluating the

length various body parts. These heights were approximated to the nearest whole

foot to mimic the TC array interval distance. The height and length of various body

parts associated with each position are presented in Table B.2.

To determine the height of the measurement zone, the TIC video was visually

assessed during times of firefighter presence within the FOV. As the firefighters

passed within the measurement zone (at a similar depth within the FOV), the

height of the measurement zone was compared to the height of the firefighter. This
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Table B.2: Assuming the height of the firefighter and standard body proportions,
the height of each position was represented numerically.

FF Position Head Shoulders Waist Hips Knees

Standing 1.83 m 1.52 m 1.22 m 0.91 m 0.61 m
Standing / Kneeling 1.22 m 0.91 m 0.61 m 0.30 m -
Kneeling 0.91 m 0.61 m 0.30 m - -

process produced a relative height for the TIC spot temperature measurement zone.

The following analysis utilized this relative height to determine the TC bead most

representative of the measurement zone location.

B.3 Measurement Zone Depth within the FOV Approximation

The following method was established to quantify the depth within the FOV

for the TIC spot temperature measurement zone during the Fire Attack experiments.

During this experimental series three TC arrays were employed in the hallway. To

determine which TC array to use for the following analysis the TIC video was vi-

sually assessed to determine the location of the measurement zone location. Three

distances were determined (near, middle, and far). For a near distance, the measure-

ment zone was located in the living room or in the hallway nearest the living room.

For a middle distance, the measurement zone was located equidistant between both

the beginning and end of the hallway. For an end distance, the measurement zone

was located at the end of the hallway.

168



B.4 Cardiovascular and Chemical Exposure Risks in Modern Fire-

fighting

B.4.1 Hallway TIC

Table B.3: Measurement Zone Location: IFSI Hallway TIC

Exp. # Camera
Type

Zone Approx. Location Zone
Height

Associated
TC Tree

2 Type 1 Far Bedroom Door, Half
Open

0.91 m Bedroom2

3 Type 1 Far Bedroom Door, Half
Open

1.52 m Bedroom5

4 Type 1 Far Bedroom Door, Half
Open

1.52 m Bedroom2

6 Type 1 Far Bedroom Door, Half
Open

0.91 m Bedroom2

8 Type 1 Far Bedroom Door, Half
Open

0.91 m Bedroom2

9 Type 2 Far Bedroom Door, Half
Open

1.52 m Bedroom5

10 Type 2 Far Bedroom Wall with
Window

0.91 m Bedroom2

11 Type 2 Far Bedroom Door, Half
Open

2.13 m Bedroom5

12 Type 2 Far Bedroom Door, Half
Open

1.52 m Bedroom2

Conclusions
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Table B.4: Average Percent Difference: IFSI Hallway TIC

Exp. # Pre-Ignition Initial
Combustion

Combustion Post-
Suppression

2 3 5 -48 -3
3 2 -7 -46 3
4 2 -3 -49 -1
6 2 -2 -50 1
8 1 1 -36 1
9 1 -2 -54 -16
10 1 9 -57 2
11 1 -7 -61 -3
12 2 -5 -53 -18

When the average percent difference indicates the two temperature methods are indistin-
guishable, the cell is colored green. When the average percent difference indicates the two
temperature method are significantly different, the cell is colored red.
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Figure B.4: Experiment #2 Hallway TIC vs. TC
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Figure B.5: Experiment # 3 Hallway TIC vs. TC
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Figure B.6: Experiment # 4 Hallway TIC vs. TC
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Figure B.7: Experiment # 6 Hallway TIC vs. TC
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Figure B.8: Experiment # 8 Hallway TIC vs. TC .
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Figure B.9: Experiment # 9 Hallway TIC vs. TC
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Figure B.10: Experiment # 10 Hallway TIC vs. TC
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Figure B.11: Experiment # 11 Hallway TIC vs. TC
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Figure B.12: Experiment # 12 Hallway TIC vs. TC
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B.4.2 Living Room TIC

Table B.5: Measurement Zone Location: IFSI Living Room TIC

Exp. # Camera
Type

Zone Approx. Location Zone
Height

Associated
TC Tree

1 Type 1 Bedroom 4 / Hallway
Shared Wall

1.52 m HallLeft

7 Type 2 Bedroom 6 / Living
Room Shared Wall

1.52 m LRRearLeft

9 Type 1 Bedroom 6 / Living
Room Shared Wall

2.13 m LRRearLeft

11 Type 1 Bedroom 4 / Hallway
Shared Wall

2.13 m HallLeft

Conclusions

Table B.6: Average Percent Difference: IFSI Living Room TIC

Exp. # Pre-Ignition Initial
Combustion

Combustion Post-
Suppression

1 2 4 -43 7
7 2 -5 -50 1
9 -1 -9 -52 1
11 -1 -9 -49 -11

When the average percent difference indicates the two temperature methods are indistin-
guishable, the cell is colored green. When the average percent difference indicates the two
temperature method are significantly different, the cell is colored red.
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B.5 Impact of Fire Attack Utilizing Interior and Exterior Streams

on Firefighter SAfety and Occupant Survival: Full Scale Exper-

iments

B.5.1 Hallway TIC

Table B.7: Measurement Zone Location: FA Hallway TIC

Exp. # Approx.
Height

Associated
TC Tree

Approx.
Distance

Zone Additional Info.

1 2.13 m 4TC Middle Hallway ceiling
2 2.13 m 4TC Middle Hallway Ceiling
3 0.61 m 5TC Start Living Room west wall
4 1.22 m 5TC End Hallway north wall
5 1.22 m 3TC End Hallway west wall
6 1.22 m 3TC End Hallway west wall
7 1.52 m 3TC End Hallway west wall
8 1.52 m 3TC End Hallway west wall
9 1.52 m 3TC End Hallway west / north wall
10 1.52 m 3TC End Hallway west wall
11 1.52 m 3TC End Hallway west wall
12 1.52 m 3TC End Hallway west wall
13 1.52 m 3TC End Hallway west wall
15 1.83 m 3TC End Hallway west wall
16 1.52 m 3TC End Hallway west wall
17 1.83 m 3TC End Hallway west wall
18 1.83 m 3TC End Hallway west wall
19 1.52 m 3TC End Hallway west wall
20 1.52 m 4TC End Hallway north wall
21 1.83 m 3TC End Hallway south wall
22 2.13 m 3TC End Hallway ceiling
24 1.52 m 3TC End Hallway west / south wall
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Figure B.13: Experiment # 1 Living Room TIC vs. TC
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Figure B.14: Experiment # 7 Living Room TIC vs. TC
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Figure B.15: Experiment # 9 Living Room TIC vs. TC
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Figure B.16: Experiment # 11 Living Room TIC vs. TC
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Figure B.17: Experiment # 1 Hallway TIC vs. TC
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Figure B.18: Experiment # 2 Hallway TIC vs. TC
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Figure B.19: Experiment # 3 Hallway TIC vs. TC
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Figure B.20: Experiment # 4 Hallway TIC vs. TC.
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Figure B.21: Experiment # 5 Hallway TIC vs. TC
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Figure B.22: Experiment # 6 Hallway TIC vs. TC
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Figure B.23: Experiment # 7 Hallway TIC vs. TC
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Figure B.24: Experiment # 8 Hallway TIC vs. TC
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Figure B.25: Experiment # 9 Hallway TIC vs. TC
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Figure B.26: Experiment # 10 Hallway TIC vs. TC
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Figure B.27: Experiment # 11 Hallway TIC vs. TC
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Figure B.28: Experiment # 12 Hallway TIC vs. TC
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Figure B.29: Experiment # 13 Hallway TIC vs. TC
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Figure B.30: Experiment # 15 Hallway TIC vs. TC
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Figure B.31: Experiment # 16 Hallway TIC vs. TC

200



0 200 400 600 800 1000 1200 1400
Time [s]

0

200

400

600

800

1000

1200
Te

m
pe

ra
tu

re
 [K

]
Ign

itio
n

Ven
tila

tio
n: 

Doo
r

Hallway TC 6ft
TIC
TC Uncertainty +/-15%
Ventilation: Window
Suppression +/- 30 sec

(a) Temperature

0 200 400 600 800 1000 1200 1400
Time [s]

150

100

50

0

50

100

150

Pe
rc

en
t D

iff
er

en
ce

 [%
]

Ign
itio

n

Ven
tila

tio
n: 

Doo
r

Ventilation: Window
Suppression +/- 30 sec
TC Uncertainty +/- 15%

(b) Percent Difference

Figure B.32: Experiment # 17 Hallway TIC vs. TC
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Figure B.33: Experiment # 18 Hallway TIC vs. TC
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Figure B.34: Experiment # 19 Hallway TIC vs. TC
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Figure B.35: Experiment # 20 Hallway TIC vs. TC

204



0 100 200 300 400 500 600 700
Time [s]

0

200

400

600

800

1000

1200
Te

m
pe

ra
tu

re
 [K

]
Ign

itio
n

Ven
tila

tio
n: 

Doo
r

Hallway TC 6ft
TIC
TC Uncertainty +/-15%
Ventilation: Window
Suppression +/- 30 sec

(a) Temperature

0 100 200 300 400 500 600 700
Time [s]

150

100

50

0

50

100

150

Pe
rc

en
t D

iff
er

en
ce

 [%
]

Ign
itio

n

Ven
tila

tio
n: 

Doo
r

Ventilation: Window
Suppression +/- 30 sec
TC Uncertainty +/- 15%

(b) Percent Difference

Figure B.36: Experiment # 21 Hallway TIC vs. TC
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Figure B.37: Experiment # 22 Hallway TIC vs. TC
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Figure B.38: Experiment # 24 Hallway TIC vs. TC
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Conclusions

Table B.8: Average Percent Difference: FA Hallway TIC

Exp. # Pre-Ignition Initial
Combustion

Combustion Post-
Suppression

1 -5 -8 -37 -11
2 -5 -10 -40 -12
3 -2 N/A -7 4
4 -2 -2 -44 -4
5 -1 1 -44 -6
6 -2 -4 -39 -3
7 -1 1 -44 6
8 -2 -10 -34 -5
9 -2 -14 -34 -5
10 -1 -17 -38 -12
11 -3 -20 -50 -10
12 -2 -9 -52 -6
13 -1 24 -46 -5
15 -3 -7 -54 -8
16 -2 -1 -56 -9
17 -2 -8 -58 -2
18 -3 -11 -33 -12
19 -2 -10 -36 -4
20 -4 -6 -38 -13
21 -3 -12 -39 -12
22 -4 -10 -52 -11
24 -1 1 -48 -6
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B.5.2 Living Room TIC

Table B.9: Measurement Zone Location: FA Living Room TIC

Exp. # Approx.
Height

Associated
TC Tree

Zone Additional Info.

1 1.52 m 5TC Hallway north wall
2 0.91 m 5TC Living room north wall / bookcase
3 0.91 m 5TC Living Room north wall
4 0.61 m 5TC Living Room bookcase
5 1.22 m 5TC Living Room bookcase
6 0.91 m 5TC Living Room north wall
7 0.91 m 5TC Living Room bookcase
8 0.91 m 5TC Living Room bookcase
9 0.91 m 5TC Living Room bookcase
10 0.91 m 5TC Living Room bookcase
11 0.61 m 5TC Living Room bookcase
12 0.91 m 5TC Living Room bookcase
13 0.91 m 5TC Living Room bookcase
15 0.91 m 5TC Living Room bookcase
16 0.91 m 5TC Living Room bookcase
17 0.91 m 5TC Living Room bookcase
18 0.91 m 5TC Living Room north wall
19 0.91 m 5TC Living Room bookcase
20 0.61 m 5TC Living Room bookcase
21 0.91 m 5TC Living Room bookcase
22 0.91 m 5TC Living Room north wall / bookcase
24 0.91 m 5TC Living Room bookcase
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Figure B.39: Experiment # 1 Living Room TIC vs. TC
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Figure B.40: Experiment # 2 Living Room TIC vs. TC
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Figure B.41: Experiment # 3 Living Room TIC vs. TC
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Figure B.42: Experiment # 4 Living Room TIC vs. TC
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Figure B.43: Experiment # 5 Living Room TIC vs. TC
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Figure B.44: Experiment # 6 Living Room TIC vs. TC
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Figure B.45: Experiment # 7 Living Room TIC vs. TC
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Figure B.46: Experiment # 8 Living Room TIC vs. TC
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Figure B.47: Experiment # 9 Living Room TIC vs. TC
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Figure B.48: Experiment # 10 Living Room TIC vs. TC
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Figure B.49: Experiment # 11 Living Room TIC vs. TC
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Figure B.50: Experiment # 12 Living Room TIC vs. TC
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Figure B.51: Experiment # 13 Living Room TIC vs. TC
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Figure B.52: Experiment # 15 Living Room TIC vs. TC
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Figure B.53: Experiment # 16 Living Room TIC vs. TC
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Figure B.54: Experiment # 17 Living Room TIC vs. TC
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Figure B.55: Experiment # 18 Living Room TIC vs. TC
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Figure B.56: Experiment # 19 Living Room TIC vs. TC

227



0 100 200 300 400 500 600 700
Time [s]

0

100

200

300

400

500

600
Te

m
pe

ra
tu

re
 [K

]
Ign

itio
n

Ven
tila

tio
n: 

Doo
r

Living Room TC 2ft
TIC
TC Uncertainty +/-15%
Ventilation: Window
Suppression +/- 30 sec

(a) Temperature

0 100 200 300 400 500 600 700
Time [s]

40

30

20

10

0

10

20

30

40

Pe
rc

en
t D

iff
er

en
ce

 [%
]

Ign
itio

n

Ven
tila

tio
n: 

Doo
r

Ventilation: Window
Suppression +/- 30 sec
TC Uncertainty +\- 15%

(b) Percent Difference

Figure B.57: Experiment # 20 Living Room TIC vs. TC
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Figure B.58: Experiment # 21 Living Room TIC vs. TC
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Figure B.59: Experiment # 22 Living Room TIC vs. TC
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Figure B.60: Experiment # 24 Living Room TIC vs. TC
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Conclusions

Table B.10: Average Percent Difference: FA Living Room TIC

Exp. # Pre-Ignition Initial
Combustion

Combustion Post-
Suppression

1 -4 -9 -16 -3
2 -3 N/A -3 -5
3 -2 N/A -6 5
4 -3 N/A -9 2
5 -2 N/A -9 4
6 -3 N/A -5 -4
7 -2 N/A -1 3
8 -2 N/A 2 1
9 -1 N/A 4 3
10 -2 N/A 2 3
11 -1 N/A 4 2
12 -2 -4 -18 4
13 -2 -5 -20 2
15 -2 -5 -17 2
16 -2 -3 -18 1
17 -2 -6 -25 5
18 -2 N/A -1 3
19 -2 N/A 2 3
20 -2 N/A -1 -1
21 -1 N/A 4 4
22 -3 N/A -18 3
24 -2 N/A 2 6
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Chapter C: Fuel Load Characterization

Table C.1: Fuel Load Heat Release Data

Ignition Location Peak Heat
Release [kW]

Total Energy
Released [kJ]

Burn Duration
[min:sec]

Left 2.7 693 22:59
Right 4.9 640 21:58
Center 4.6 674 18:34
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Figure C.1: Left Ignition Fuel Load Characterization
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Figure C.2: Right Ignition Fuel Load Characterization
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Figure C.3: Center Ignition Fuel Load Characterization
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Chapter D: Experimental Results

D.1 Repeatability - Baseline Experiments

First, the temperature data obtained from the wall mounted during two ex-

periments was plotted together along with their associated Type B uncertainties.

This was used to verify that the data was initially similar, see Figure D.1.
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Figure D.1: Temperature measurements for the wall mounted TC during
the On-plane 6.10 m TIC # 1 and TIC # 2 experiments. Measurements
are accompanied by their associated Type B expanded uncertainty.
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Second, the data presented in Figure D.1 was paired together at each time

step within the interval. These paired measurements were then plotted together as

a scatter plot to ensure evenly distributed data. On this graph the line of perfect

agreement and the expanded Type B uncertainty were also indicated. The black

line represents the line of perfect agreement indicating what the scatter would look

like if the paired measurements were identical. The gray shaded area represents the

expanded Type B uncertainty associated with the line of perfect agreement. This

indicates that any measurement within this area can not be distinguished from one

another due to uncertainty in the measurement itself; therefore, all measurements

can be considered identical. Figure D.2 represents this analysis for data presented

in Figure D.1.

The red dashed line plotted on the graph is the linear regression line calculated

for the paired data. This line was forced through the origin (0,0). This line was used

to determine how different the set of paired data was. For when this line falls within

the gray shaded area, the data can not be determined as significantly different. When

the line falls outside the gray shaded area, the data can be considered as significantly

different.

To continue the analysis of agreement between the two data sets, two values

were calculated for the set at each time step: intraclass correlation coefficient (ICC)

and bias factor (δ). The ICC takes on values between 0, no agreement, to 1, perfect

agreement. In order to evaluate the ICC, the following equation was employed:
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Figure D.2: Scatter plot of temperature measurements obtained from
the wall mounted TC during the On-plane 6.10 m TIC # 1 and TIC # 2
experiments. Paired temperatures are plotted as blue circles. The line
of perfect agreement is plotted as a black line. The Type B expanded
uncertainty for this line is plotted as a gray shaded region. The linear
regression line associated with the paired data is plotted as a red dashed
line.

ICC =
σ2
a − σ2

d

σ2
a + σ2

d + 2
n
(nd

2 − σ2
d)

(D.1)

Where σa is the variance between the sum of the pairs, σd is the variance

between the difference of the pairs, and d is the mean of the differences [59]. When

calculated, a value greater than 0.5 represents that the majority of the total variance

between the paired data is unrelated to the differences between the data.

The bias factor (δ) is a measure of accuracy that describes the relationship
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between the paired experiential data and idealized data. It is an indication of the

magnitude of the difference between the linear approximation line, red, and the line

of perfect agreement, black. The bias factor signifies the relationship between a

measurement on the x-axis to its corresponding y-axis measurement on the linear

approximation line, expressed by the following equation:

y = δx (D.2)

The bias factor will take on various values; however, values within the range

of 0.85 - 1.15 will indicate bias was within the range of the measurement uncer-

tainty. Within this range the temperatures are considered indistinguishable from

one another. Values outside of this range indicate that bias was present and that

temperatures are significantly different from one another. When bias values are be-

low 1, the x-axis data was on average larger than the y-axis data. Conversely when

bias values are greater than 1, the y-axis data was on average larger than x-axis

data.

Acceptable ranges of values for both ICC and bias factors were determined

to define the level of agree-ability between paired data. Levels of agreeableness

were determined as ‘highly agreeable’, ‘agreeable’, and ‘significantly different’. See

Table D.1 for respective ranges.

The ICC and bias values were determined for each paired data set for all

experiments mentioned previously. The results are presented in Table D.2.
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Table D.1: Levels of Agree-ability: ICC & Bias Factor

Level of Agree-ability ICC Range Bias Range Color
Indicator

Highly Agreeable 0.75 - 1.00 0.85 - 1.15
Agreeable 0.50 - 0.75 0.85 - 1.15
Significantly Different ICC < 0.50 0.85> Bias> 1.15

Table D.2: Baseline Experiments Repeatability

Experiment Temperature
(x-axis)

Temperature
(y-axis)

Overall ICC Overall Bias

Off-plane: 7.01 m
TIC # 1 TIC # 2 0.90 1.03
TIC # 3 TIC # 2 0.99 0.99
TIC # 1 TIC # 3 0.85 1.04

On-plane: 6.10 m
TIC # 1 TIC # 2 0.98 0.99
TIC # 3 TIC # 2 0.60 0.93
TIC # 1 TIC # 3 0.70 1.07

On-plane: 4.57 m
TIC # 1 TIC # 2 0.90 1.03
TIC # 3 TIC # 2 0.99 1.01
TIC # 1 TIC # 3 0.94 1.02

On-plane: 3.05 m
TIC # 1 TIC # 2 0.74 1.06
TIC # 3 TIC # 2 0.70 1.06
TIC # 1 TIC # 3 0.99 0.99

On-plane: 1.52 m
TIC # 1 TIC # 2 0.99 1.01
TIC # 3 TIC # 2 0.97 1.00
TIC # 1 TIC # 3 0.97 1.01
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D.2 Baseline Experiments

D.2.1 Off-plane Orientation

50 100 150 200 250 300 350 400
Time [s]

0

200

400

600

800

1000

Te
m

pe
ra

tu
re

 [K
]

Wall TC
TIC # 1
TC Uncertainty +/-15%
Heat Applied

Figure D.3: Off-Plane TIC # 1 vs. TC Temperature

242



50 100 150 200 250 300 350 400
Time [s]

0

200

400

600

800

1000
Te

m
pe

ra
tu

re
 [K

]
Wall TC
TIC # 2
TC Uncertainty +/-15%
Heat Applied

Figure D.4: Off-Plane TIC # 2 vs. TC Temperature
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Figure D.5: Off-Plane TIC # 3 vs. TC Temperature
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D.2.2 On-plane Orientation
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(a) TIC # 1 1.52 m
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(b) TIC # 1 3.05 m

Figure D.6: On-Plane TIC # 1 vs. TC Temperature
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(a) TIC # 1 4.57 m
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(b) TIC # 1 6.10 m

Figure D.7: On-Plane TIC # 1 vs. TC Temperature
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(a) TIC # 2 1.52 m
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(b) TIC # 2 3.05 m

Figure D.8: On-Plane TIC # 2 vs. TC Temperature
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(a) TIC # 2 4.57 m
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(b) TIC # 2 6.10 m

Figure D.9: On-Plane TIC # 2 vs. TC Temperature
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(a) TIC # 3 1.52 m
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(b) TIC # 3 3.05 m

Figure D.10: On-Plane TIC # 3 vs. TC Temperature
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(a) TIC # 3 4.57 m
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Figure D.11: On-Plane TIC # 3 vs. TC Temperature
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D.3 Room-Scale Fire Experiments

All subsequent graphs have been adjusted to begin at ignition, ignoring any

and all background information. The associated times of ventilation and suppression

were also adjusted.

D.3.1 Experiment no. 1

Item Quantity Initial Weight

Sofa #1 1 48.70 kg
Sofa #2 1 48.95 kg
Carpet 9.75 m2 13.40 kg
Carpet Padding 9.75 m2 7.70 kg
Plywood 19.75 m2 73.60 kg

Table D.3: Room-Scale Fire Experiments: Experiment no. 1 Fuel Load
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Figure D.12: Opacity during Experiment # 1.
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Figure D.13: Exterior TIC spot temperature measurement results
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Figure D.14: Interior TIC spot temperature measurement results
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D.3.2 Experiment no. 2

Item Quantity Initial Weight

Sofa #1 1 49.50 kg
Sofa #2 1 48.95 kg
Carpet 9.75 m2 12.95 kg
Carpet Padding 9.75 m2 8.00 kg
Plywood 9.75 m2 75.45 kg

Table D.4: Room-Scale Fire Experiments: Experiment no. 2 Fuel Load
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Figure D.15: Opacity during Experiment # 2.
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Figure D.16: Exterior TIC spot temperature measurement results
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Figure D.17: Interior TIC spot temperature measurement results
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D.3.3 Experiment no. 3

Item Quantity Initial Weight

Sofa #1 1 52.10 kg
Sofa #2 1 48.85 kg
Carpet 9.75 m2 12.55 kg
Carpet Padding 9.75 m2 8.40 kg
Plywood 9.75 m2 76.60 kg

Table D.5: Room-Scale Fire Experiments: Experiment no. 3 Fuel Load
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Figure D.18: Opacity during Experiment # 3.
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Figure D.19: Exterior TIC spot temperature measurement results
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Figure D.20: Interior TIC spot temperature measurement results
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D.3.4 Experiment no. 4

Item Quantity Initial Weight

Sofa #1 1 49.55 kg
Sofa #2 1 49.25 kg
Carpet 9.75 m2 12.65 kg
Carpet Padding 9.75 m2 8.35 kg
Plywood 9.75 m2 76.55 kg

Table D.6: Room-Scale Fire Experiments: Experiment no. 4 Fuel Load

0 100 200 300 400 500 600 700 800
Time (s)

0

20

40

60

80

100

Op
ac

ity
 (%

)

10
0 %

 Opa
cit

y

10
0 %

 Opa
cit

y

Ven
tila

tio
n: 

Doo
r

Ven
tila

tio
n: 

Wind
ow

Su
pp

res
sio

n

1OD: 27 in
2OD: 44 in

Figure D.21: Opacity during Experiment # 4.
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Figure D.22: Exterior TIC spot temperature measurement results
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Figure D.23: Interior TIC spot temperature measurement results
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